amd64_edac: bump driver version
[linux/fpc-iii.git] / fs / exec.c
blobc0c636e34f60f5b347407f1c43599e088d7fedca
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/tracehook.h>
54 #include <linux/kmod.h>
55 #include <linux/fsnotify.h>
56 #include <linux/fs_struct.h>
57 #include <linux/pipe_fs_i.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include "internal.h"
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 unsigned int core_pipe_limit;
67 int suid_dumpable = 0;
69 /* The maximal length of core_pattern is also specified in sysctl.c */
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
74 int __register_binfmt(struct linux_binfmt * fmt, int insert)
76 if (!fmt)
77 return -EINVAL;
78 write_lock(&binfmt_lock);
79 insert ? list_add(&fmt->lh, &formats) :
80 list_add_tail(&fmt->lh, &formats);
81 write_unlock(&binfmt_lock);
82 return 0;
85 EXPORT_SYMBOL(__register_binfmt);
87 void unregister_binfmt(struct linux_binfmt * fmt)
89 write_lock(&binfmt_lock);
90 list_del(&fmt->lh);
91 write_unlock(&binfmt_lock);
94 EXPORT_SYMBOL(unregister_binfmt);
96 static inline void put_binfmt(struct linux_binfmt * fmt)
98 module_put(fmt->module);
102 * Note that a shared library must be both readable and executable due to
103 * security reasons.
105 * Also note that we take the address to load from from the file itself.
107 SYSCALL_DEFINE1(uselib, const char __user *, library)
109 struct file *file;
110 char *tmp = getname(library);
111 int error = PTR_ERR(tmp);
113 if (IS_ERR(tmp))
114 goto out;
116 file = do_filp_open(AT_FDCWD, tmp,
117 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
118 MAY_READ | MAY_EXEC | MAY_OPEN);
119 putname(tmp);
120 error = PTR_ERR(file);
121 if (IS_ERR(file))
122 goto out;
124 error = -EINVAL;
125 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
126 goto exit;
128 error = -EACCES;
129 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
130 goto exit;
132 fsnotify_open(file->f_path.dentry);
134 error = -ENOEXEC;
135 if(file->f_op) {
136 struct linux_binfmt * fmt;
138 read_lock(&binfmt_lock);
139 list_for_each_entry(fmt, &formats, lh) {
140 if (!fmt->load_shlib)
141 continue;
142 if (!try_module_get(fmt->module))
143 continue;
144 read_unlock(&binfmt_lock);
145 error = fmt->load_shlib(file);
146 read_lock(&binfmt_lock);
147 put_binfmt(fmt);
148 if (error != -ENOEXEC)
149 break;
151 read_unlock(&binfmt_lock);
153 exit:
154 fput(file);
155 out:
156 return error;
159 #ifdef CONFIG_MMU
161 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
162 int write)
164 struct page *page;
165 int ret;
167 #ifdef CONFIG_STACK_GROWSUP
168 if (write) {
169 ret = expand_stack_downwards(bprm->vma, pos);
170 if (ret < 0)
171 return NULL;
173 #endif
174 ret = get_user_pages(current, bprm->mm, pos,
175 1, write, 1, &page, NULL);
176 if (ret <= 0)
177 return NULL;
179 if (write) {
180 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
181 struct rlimit *rlim;
184 * We've historically supported up to 32 pages (ARG_MAX)
185 * of argument strings even with small stacks
187 if (size <= ARG_MAX)
188 return page;
191 * Limit to 1/4-th the stack size for the argv+env strings.
192 * This ensures that:
193 * - the remaining binfmt code will not run out of stack space,
194 * - the program will have a reasonable amount of stack left
195 * to work from.
197 rlim = current->signal->rlim;
198 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
199 put_page(page);
200 return NULL;
204 return page;
207 static void put_arg_page(struct page *page)
209 put_page(page);
212 static void free_arg_page(struct linux_binprm *bprm, int i)
216 static void free_arg_pages(struct linux_binprm *bprm)
220 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
221 struct page *page)
223 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
226 static int __bprm_mm_init(struct linux_binprm *bprm)
228 int err;
229 struct vm_area_struct *vma = NULL;
230 struct mm_struct *mm = bprm->mm;
232 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
233 if (!vma)
234 return -ENOMEM;
236 down_write(&mm->mmap_sem);
237 vma->vm_mm = mm;
240 * Place the stack at the largest stack address the architecture
241 * supports. Later, we'll move this to an appropriate place. We don't
242 * use STACK_TOP because that can depend on attributes which aren't
243 * configured yet.
245 vma->vm_end = STACK_TOP_MAX;
246 vma->vm_start = vma->vm_end - PAGE_SIZE;
247 vma->vm_flags = VM_STACK_FLAGS;
248 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
249 err = insert_vm_struct(mm, vma);
250 if (err)
251 goto err;
253 mm->stack_vm = mm->total_vm = 1;
254 up_write(&mm->mmap_sem);
255 bprm->p = vma->vm_end - sizeof(void *);
256 return 0;
257 err:
258 up_write(&mm->mmap_sem);
259 bprm->vma = NULL;
260 kmem_cache_free(vm_area_cachep, vma);
261 return err;
264 static bool valid_arg_len(struct linux_binprm *bprm, long len)
266 return len <= MAX_ARG_STRLEN;
269 #else
271 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
272 int write)
274 struct page *page;
276 page = bprm->page[pos / PAGE_SIZE];
277 if (!page && write) {
278 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
279 if (!page)
280 return NULL;
281 bprm->page[pos / PAGE_SIZE] = page;
284 return page;
287 static void put_arg_page(struct page *page)
291 static void free_arg_page(struct linux_binprm *bprm, int i)
293 if (bprm->page[i]) {
294 __free_page(bprm->page[i]);
295 bprm->page[i] = NULL;
299 static void free_arg_pages(struct linux_binprm *bprm)
301 int i;
303 for (i = 0; i < MAX_ARG_PAGES; i++)
304 free_arg_page(bprm, i);
307 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
308 struct page *page)
312 static int __bprm_mm_init(struct linux_binprm *bprm)
314 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
315 return 0;
318 static bool valid_arg_len(struct linux_binprm *bprm, long len)
320 return len <= bprm->p;
323 #endif /* CONFIG_MMU */
326 * Create a new mm_struct and populate it with a temporary stack
327 * vm_area_struct. We don't have enough context at this point to set the stack
328 * flags, permissions, and offset, so we use temporary values. We'll update
329 * them later in setup_arg_pages().
331 int bprm_mm_init(struct linux_binprm *bprm)
333 int err;
334 struct mm_struct *mm = NULL;
336 bprm->mm = mm = mm_alloc();
337 err = -ENOMEM;
338 if (!mm)
339 goto err;
341 err = init_new_context(current, mm);
342 if (err)
343 goto err;
345 err = __bprm_mm_init(bprm);
346 if (err)
347 goto err;
349 return 0;
351 err:
352 if (mm) {
353 bprm->mm = NULL;
354 mmdrop(mm);
357 return err;
361 * count() counts the number of strings in array ARGV.
363 static int count(char __user * __user * argv, int max)
365 int i = 0;
367 if (argv != NULL) {
368 for (;;) {
369 char __user * p;
371 if (get_user(p, argv))
372 return -EFAULT;
373 if (!p)
374 break;
375 argv++;
376 if (i++ >= max)
377 return -E2BIG;
378 cond_resched();
381 return i;
385 * 'copy_strings()' copies argument/environment strings from the old
386 * processes's memory to the new process's stack. The call to get_user_pages()
387 * ensures the destination page is created and not swapped out.
389 static int copy_strings(int argc, char __user * __user * argv,
390 struct linux_binprm *bprm)
392 struct page *kmapped_page = NULL;
393 char *kaddr = NULL;
394 unsigned long kpos = 0;
395 int ret;
397 while (argc-- > 0) {
398 char __user *str;
399 int len;
400 unsigned long pos;
402 if (get_user(str, argv+argc) ||
403 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
404 ret = -EFAULT;
405 goto out;
408 if (!valid_arg_len(bprm, len)) {
409 ret = -E2BIG;
410 goto out;
413 /* We're going to work our way backwords. */
414 pos = bprm->p;
415 str += len;
416 bprm->p -= len;
418 while (len > 0) {
419 int offset, bytes_to_copy;
421 offset = pos % PAGE_SIZE;
422 if (offset == 0)
423 offset = PAGE_SIZE;
425 bytes_to_copy = offset;
426 if (bytes_to_copy > len)
427 bytes_to_copy = len;
429 offset -= bytes_to_copy;
430 pos -= bytes_to_copy;
431 str -= bytes_to_copy;
432 len -= bytes_to_copy;
434 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
435 struct page *page;
437 page = get_arg_page(bprm, pos, 1);
438 if (!page) {
439 ret = -E2BIG;
440 goto out;
443 if (kmapped_page) {
444 flush_kernel_dcache_page(kmapped_page);
445 kunmap(kmapped_page);
446 put_arg_page(kmapped_page);
448 kmapped_page = page;
449 kaddr = kmap(kmapped_page);
450 kpos = pos & PAGE_MASK;
451 flush_arg_page(bprm, kpos, kmapped_page);
453 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
454 ret = -EFAULT;
455 goto out;
459 ret = 0;
460 out:
461 if (kmapped_page) {
462 flush_kernel_dcache_page(kmapped_page);
463 kunmap(kmapped_page);
464 put_arg_page(kmapped_page);
466 return ret;
470 * Like copy_strings, but get argv and its values from kernel memory.
472 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
474 int r;
475 mm_segment_t oldfs = get_fs();
476 set_fs(KERNEL_DS);
477 r = copy_strings(argc, (char __user * __user *)argv, bprm);
478 set_fs(oldfs);
479 return r;
481 EXPORT_SYMBOL(copy_strings_kernel);
483 #ifdef CONFIG_MMU
486 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
487 * the binfmt code determines where the new stack should reside, we shift it to
488 * its final location. The process proceeds as follows:
490 * 1) Use shift to calculate the new vma endpoints.
491 * 2) Extend vma to cover both the old and new ranges. This ensures the
492 * arguments passed to subsequent functions are consistent.
493 * 3) Move vma's page tables to the new range.
494 * 4) Free up any cleared pgd range.
495 * 5) Shrink the vma to cover only the new range.
497 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
499 struct mm_struct *mm = vma->vm_mm;
500 unsigned long old_start = vma->vm_start;
501 unsigned long old_end = vma->vm_end;
502 unsigned long length = old_end - old_start;
503 unsigned long new_start = old_start - shift;
504 unsigned long new_end = old_end - shift;
505 struct mmu_gather *tlb;
507 BUG_ON(new_start > new_end);
510 * ensure there are no vmas between where we want to go
511 * and where we are
513 if (vma != find_vma(mm, new_start))
514 return -EFAULT;
517 * cover the whole range: [new_start, old_end)
519 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
522 * move the page tables downwards, on failure we rely on
523 * process cleanup to remove whatever mess we made.
525 if (length != move_page_tables(vma, old_start,
526 vma, new_start, length))
527 return -ENOMEM;
529 lru_add_drain();
530 tlb = tlb_gather_mmu(mm, 0);
531 if (new_end > old_start) {
533 * when the old and new regions overlap clear from new_end.
535 free_pgd_range(tlb, new_end, old_end, new_end,
536 vma->vm_next ? vma->vm_next->vm_start : 0);
537 } else {
539 * otherwise, clean from old_start; this is done to not touch
540 * the address space in [new_end, old_start) some architectures
541 * have constraints on va-space that make this illegal (IA64) -
542 * for the others its just a little faster.
544 free_pgd_range(tlb, old_start, old_end, new_end,
545 vma->vm_next ? vma->vm_next->vm_start : 0);
547 tlb_finish_mmu(tlb, new_end, old_end);
550 * shrink the vma to just the new range.
552 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
554 return 0;
557 #define EXTRA_STACK_VM_PAGES 20 /* random */
560 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
561 * the stack is optionally relocated, and some extra space is added.
563 int setup_arg_pages(struct linux_binprm *bprm,
564 unsigned long stack_top,
565 int executable_stack)
567 unsigned long ret;
568 unsigned long stack_shift;
569 struct mm_struct *mm = current->mm;
570 struct vm_area_struct *vma = bprm->vma;
571 struct vm_area_struct *prev = NULL;
572 unsigned long vm_flags;
573 unsigned long stack_base;
575 #ifdef CONFIG_STACK_GROWSUP
576 /* Limit stack size to 1GB */
577 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
578 if (stack_base > (1 << 30))
579 stack_base = 1 << 30;
581 /* Make sure we didn't let the argument array grow too large. */
582 if (vma->vm_end - vma->vm_start > stack_base)
583 return -ENOMEM;
585 stack_base = PAGE_ALIGN(stack_top - stack_base);
587 stack_shift = vma->vm_start - stack_base;
588 mm->arg_start = bprm->p - stack_shift;
589 bprm->p = vma->vm_end - stack_shift;
590 #else
591 stack_top = arch_align_stack(stack_top);
592 stack_top = PAGE_ALIGN(stack_top);
593 stack_shift = vma->vm_end - stack_top;
595 bprm->p -= stack_shift;
596 mm->arg_start = bprm->p;
597 #endif
599 if (bprm->loader)
600 bprm->loader -= stack_shift;
601 bprm->exec -= stack_shift;
603 down_write(&mm->mmap_sem);
604 vm_flags = VM_STACK_FLAGS;
607 * Adjust stack execute permissions; explicitly enable for
608 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
609 * (arch default) otherwise.
611 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
612 vm_flags |= VM_EXEC;
613 else if (executable_stack == EXSTACK_DISABLE_X)
614 vm_flags &= ~VM_EXEC;
615 vm_flags |= mm->def_flags;
617 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
618 vm_flags);
619 if (ret)
620 goto out_unlock;
621 BUG_ON(prev != vma);
623 /* Move stack pages down in memory. */
624 if (stack_shift) {
625 ret = shift_arg_pages(vma, stack_shift);
626 if (ret)
627 goto out_unlock;
630 #ifdef CONFIG_STACK_GROWSUP
631 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
632 #else
633 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
634 #endif
635 ret = expand_stack(vma, stack_base);
636 if (ret)
637 ret = -EFAULT;
639 out_unlock:
640 up_write(&mm->mmap_sem);
641 return ret;
643 EXPORT_SYMBOL(setup_arg_pages);
645 #endif /* CONFIG_MMU */
647 struct file *open_exec(const char *name)
649 struct file *file;
650 int err;
652 file = do_filp_open(AT_FDCWD, name,
653 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
654 MAY_EXEC | MAY_OPEN);
655 if (IS_ERR(file))
656 goto out;
658 err = -EACCES;
659 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
660 goto exit;
662 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
663 goto exit;
665 fsnotify_open(file->f_path.dentry);
667 err = deny_write_access(file);
668 if (err)
669 goto exit;
671 out:
672 return file;
674 exit:
675 fput(file);
676 return ERR_PTR(err);
678 EXPORT_SYMBOL(open_exec);
680 int kernel_read(struct file *file, loff_t offset,
681 char *addr, unsigned long count)
683 mm_segment_t old_fs;
684 loff_t pos = offset;
685 int result;
687 old_fs = get_fs();
688 set_fs(get_ds());
689 /* The cast to a user pointer is valid due to the set_fs() */
690 result = vfs_read(file, (void __user *)addr, count, &pos);
691 set_fs(old_fs);
692 return result;
695 EXPORT_SYMBOL(kernel_read);
697 static int exec_mmap(struct mm_struct *mm)
699 struct task_struct *tsk;
700 struct mm_struct * old_mm, *active_mm;
702 /* Notify parent that we're no longer interested in the old VM */
703 tsk = current;
704 old_mm = current->mm;
705 mm_release(tsk, old_mm);
707 if (old_mm) {
709 * Make sure that if there is a core dump in progress
710 * for the old mm, we get out and die instead of going
711 * through with the exec. We must hold mmap_sem around
712 * checking core_state and changing tsk->mm.
714 down_read(&old_mm->mmap_sem);
715 if (unlikely(old_mm->core_state)) {
716 up_read(&old_mm->mmap_sem);
717 return -EINTR;
720 task_lock(tsk);
721 active_mm = tsk->active_mm;
722 tsk->mm = mm;
723 tsk->active_mm = mm;
724 activate_mm(active_mm, mm);
725 task_unlock(tsk);
726 arch_pick_mmap_layout(mm);
727 if (old_mm) {
728 up_read(&old_mm->mmap_sem);
729 BUG_ON(active_mm != old_mm);
730 mm_update_next_owner(old_mm);
731 mmput(old_mm);
732 return 0;
734 mmdrop(active_mm);
735 return 0;
739 * This function makes sure the current process has its own signal table,
740 * so that flush_signal_handlers can later reset the handlers without
741 * disturbing other processes. (Other processes might share the signal
742 * table via the CLONE_SIGHAND option to clone().)
744 static int de_thread(struct task_struct *tsk)
746 struct signal_struct *sig = tsk->signal;
747 struct sighand_struct *oldsighand = tsk->sighand;
748 spinlock_t *lock = &oldsighand->siglock;
749 int count;
751 if (thread_group_empty(tsk))
752 goto no_thread_group;
755 * Kill all other threads in the thread group.
757 spin_lock_irq(lock);
758 if (signal_group_exit(sig)) {
760 * Another group action in progress, just
761 * return so that the signal is processed.
763 spin_unlock_irq(lock);
764 return -EAGAIN;
766 sig->group_exit_task = tsk;
767 zap_other_threads(tsk);
769 /* Account for the thread group leader hanging around: */
770 count = thread_group_leader(tsk) ? 1 : 2;
771 sig->notify_count = count;
772 while (atomic_read(&sig->count) > count) {
773 __set_current_state(TASK_UNINTERRUPTIBLE);
774 spin_unlock_irq(lock);
775 schedule();
776 spin_lock_irq(lock);
778 spin_unlock_irq(lock);
781 * At this point all other threads have exited, all we have to
782 * do is to wait for the thread group leader to become inactive,
783 * and to assume its PID:
785 if (!thread_group_leader(tsk)) {
786 struct task_struct *leader = tsk->group_leader;
788 sig->notify_count = -1; /* for exit_notify() */
789 for (;;) {
790 write_lock_irq(&tasklist_lock);
791 if (likely(leader->exit_state))
792 break;
793 __set_current_state(TASK_UNINTERRUPTIBLE);
794 write_unlock_irq(&tasklist_lock);
795 schedule();
799 * The only record we have of the real-time age of a
800 * process, regardless of execs it's done, is start_time.
801 * All the past CPU time is accumulated in signal_struct
802 * from sister threads now dead. But in this non-leader
803 * exec, nothing survives from the original leader thread,
804 * whose birth marks the true age of this process now.
805 * When we take on its identity by switching to its PID, we
806 * also take its birthdate (always earlier than our own).
808 tsk->start_time = leader->start_time;
810 BUG_ON(!same_thread_group(leader, tsk));
811 BUG_ON(has_group_leader_pid(tsk));
813 * An exec() starts a new thread group with the
814 * TGID of the previous thread group. Rehash the
815 * two threads with a switched PID, and release
816 * the former thread group leader:
819 /* Become a process group leader with the old leader's pid.
820 * The old leader becomes a thread of the this thread group.
821 * Note: The old leader also uses this pid until release_task
822 * is called. Odd but simple and correct.
824 detach_pid(tsk, PIDTYPE_PID);
825 tsk->pid = leader->pid;
826 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
827 transfer_pid(leader, tsk, PIDTYPE_PGID);
828 transfer_pid(leader, tsk, PIDTYPE_SID);
829 list_replace_rcu(&leader->tasks, &tsk->tasks);
831 tsk->group_leader = tsk;
832 leader->group_leader = tsk;
834 tsk->exit_signal = SIGCHLD;
836 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
837 leader->exit_state = EXIT_DEAD;
838 write_unlock_irq(&tasklist_lock);
840 release_task(leader);
843 sig->group_exit_task = NULL;
844 sig->notify_count = 0;
846 no_thread_group:
847 if (current->mm)
848 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
850 exit_itimers(sig);
851 flush_itimer_signals();
853 if (atomic_read(&oldsighand->count) != 1) {
854 struct sighand_struct *newsighand;
856 * This ->sighand is shared with the CLONE_SIGHAND
857 * but not CLONE_THREAD task, switch to the new one.
859 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
860 if (!newsighand)
861 return -ENOMEM;
863 atomic_set(&newsighand->count, 1);
864 memcpy(newsighand->action, oldsighand->action,
865 sizeof(newsighand->action));
867 write_lock_irq(&tasklist_lock);
868 spin_lock(&oldsighand->siglock);
869 rcu_assign_pointer(tsk->sighand, newsighand);
870 spin_unlock(&oldsighand->siglock);
871 write_unlock_irq(&tasklist_lock);
873 __cleanup_sighand(oldsighand);
876 BUG_ON(!thread_group_leader(tsk));
877 return 0;
881 * These functions flushes out all traces of the currently running executable
882 * so that a new one can be started
884 static void flush_old_files(struct files_struct * files)
886 long j = -1;
887 struct fdtable *fdt;
889 spin_lock(&files->file_lock);
890 for (;;) {
891 unsigned long set, i;
893 j++;
894 i = j * __NFDBITS;
895 fdt = files_fdtable(files);
896 if (i >= fdt->max_fds)
897 break;
898 set = fdt->close_on_exec->fds_bits[j];
899 if (!set)
900 continue;
901 fdt->close_on_exec->fds_bits[j] = 0;
902 spin_unlock(&files->file_lock);
903 for ( ; set ; i++,set >>= 1) {
904 if (set & 1) {
905 sys_close(i);
908 spin_lock(&files->file_lock);
911 spin_unlock(&files->file_lock);
914 char *get_task_comm(char *buf, struct task_struct *tsk)
916 /* buf must be at least sizeof(tsk->comm) in size */
917 task_lock(tsk);
918 strncpy(buf, tsk->comm, sizeof(tsk->comm));
919 task_unlock(tsk);
920 return buf;
923 void set_task_comm(struct task_struct *tsk, char *buf)
925 task_lock(tsk);
926 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
927 task_unlock(tsk);
928 perf_event_comm(tsk);
931 int flush_old_exec(struct linux_binprm * bprm)
933 char * name;
934 int i, ch, retval;
935 char tcomm[sizeof(current->comm)];
938 * Make sure we have a private signal table and that
939 * we are unassociated from the previous thread group.
941 retval = de_thread(current);
942 if (retval)
943 goto out;
945 set_mm_exe_file(bprm->mm, bprm->file);
948 * Release all of the old mmap stuff
950 retval = exec_mmap(bprm->mm);
951 if (retval)
952 goto out;
954 bprm->mm = NULL; /* We're using it now */
956 /* This is the point of no return */
957 current->sas_ss_sp = current->sas_ss_size = 0;
959 if (current_euid() == current_uid() && current_egid() == current_gid())
960 set_dumpable(current->mm, 1);
961 else
962 set_dumpable(current->mm, suid_dumpable);
964 name = bprm->filename;
966 /* Copies the binary name from after last slash */
967 for (i=0; (ch = *(name++)) != '\0';) {
968 if (ch == '/')
969 i = 0; /* overwrite what we wrote */
970 else
971 if (i < (sizeof(tcomm) - 1))
972 tcomm[i++] = ch;
974 tcomm[i] = '\0';
975 set_task_comm(current, tcomm);
977 current->flags &= ~PF_RANDOMIZE;
978 flush_thread();
980 /* Set the new mm task size. We have to do that late because it may
981 * depend on TIF_32BIT which is only updated in flush_thread() on
982 * some architectures like powerpc
984 current->mm->task_size = TASK_SIZE;
986 /* install the new credentials */
987 if (bprm->cred->uid != current_euid() ||
988 bprm->cred->gid != current_egid()) {
989 current->pdeath_signal = 0;
990 } else if (file_permission(bprm->file, MAY_READ) ||
991 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
992 set_dumpable(current->mm, suid_dumpable);
995 current->personality &= ~bprm->per_clear;
998 * Flush performance counters when crossing a
999 * security domain:
1001 if (!get_dumpable(current->mm))
1002 perf_event_exit_task(current);
1004 /* An exec changes our domain. We are no longer part of the thread
1005 group */
1007 current->self_exec_id++;
1009 flush_signal_handlers(current, 0);
1010 flush_old_files(current->files);
1012 return 0;
1014 out:
1015 return retval;
1018 EXPORT_SYMBOL(flush_old_exec);
1021 * Prepare credentials and lock ->cred_guard_mutex.
1022 * install_exec_creds() commits the new creds and drops the lock.
1023 * Or, if exec fails before, free_bprm() should release ->cred and
1024 * and unlock.
1026 int prepare_bprm_creds(struct linux_binprm *bprm)
1028 if (mutex_lock_interruptible(&current->cred_guard_mutex))
1029 return -ERESTARTNOINTR;
1031 bprm->cred = prepare_exec_creds();
1032 if (likely(bprm->cred))
1033 return 0;
1035 mutex_unlock(&current->cred_guard_mutex);
1036 return -ENOMEM;
1039 void free_bprm(struct linux_binprm *bprm)
1041 free_arg_pages(bprm);
1042 if (bprm->cred) {
1043 mutex_unlock(&current->cred_guard_mutex);
1044 abort_creds(bprm->cred);
1046 kfree(bprm);
1050 * install the new credentials for this executable
1052 void install_exec_creds(struct linux_binprm *bprm)
1054 security_bprm_committing_creds(bprm);
1056 commit_creds(bprm->cred);
1057 bprm->cred = NULL;
1059 * cred_guard_mutex must be held at least to this point to prevent
1060 * ptrace_attach() from altering our determination of the task's
1061 * credentials; any time after this it may be unlocked.
1063 security_bprm_committed_creds(bprm);
1064 mutex_unlock(&current->cred_guard_mutex);
1066 EXPORT_SYMBOL(install_exec_creds);
1069 * determine how safe it is to execute the proposed program
1070 * - the caller must hold current->cred_guard_mutex to protect against
1071 * PTRACE_ATTACH
1073 int check_unsafe_exec(struct linux_binprm *bprm)
1075 struct task_struct *p = current, *t;
1076 unsigned n_fs;
1077 int res = 0;
1079 bprm->unsafe = tracehook_unsafe_exec(p);
1081 n_fs = 1;
1082 write_lock(&p->fs->lock);
1083 rcu_read_lock();
1084 for (t = next_thread(p); t != p; t = next_thread(t)) {
1085 if (t->fs == p->fs)
1086 n_fs++;
1088 rcu_read_unlock();
1090 if (p->fs->users > n_fs) {
1091 bprm->unsafe |= LSM_UNSAFE_SHARE;
1092 } else {
1093 res = -EAGAIN;
1094 if (!p->fs->in_exec) {
1095 p->fs->in_exec = 1;
1096 res = 1;
1099 write_unlock(&p->fs->lock);
1101 return res;
1105 * Fill the binprm structure from the inode.
1106 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1108 * This may be called multiple times for binary chains (scripts for example).
1110 int prepare_binprm(struct linux_binprm *bprm)
1112 umode_t mode;
1113 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1114 int retval;
1116 mode = inode->i_mode;
1117 if (bprm->file->f_op == NULL)
1118 return -EACCES;
1120 /* clear any previous set[ug]id data from a previous binary */
1121 bprm->cred->euid = current_euid();
1122 bprm->cred->egid = current_egid();
1124 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1125 /* Set-uid? */
1126 if (mode & S_ISUID) {
1127 bprm->per_clear |= PER_CLEAR_ON_SETID;
1128 bprm->cred->euid = inode->i_uid;
1131 /* Set-gid? */
1133 * If setgid is set but no group execute bit then this
1134 * is a candidate for mandatory locking, not a setgid
1135 * executable.
1137 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1138 bprm->per_clear |= PER_CLEAR_ON_SETID;
1139 bprm->cred->egid = inode->i_gid;
1143 /* fill in binprm security blob */
1144 retval = security_bprm_set_creds(bprm);
1145 if (retval)
1146 return retval;
1147 bprm->cred_prepared = 1;
1149 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1150 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1153 EXPORT_SYMBOL(prepare_binprm);
1156 * Arguments are '\0' separated strings found at the location bprm->p
1157 * points to; chop off the first by relocating brpm->p to right after
1158 * the first '\0' encountered.
1160 int remove_arg_zero(struct linux_binprm *bprm)
1162 int ret = 0;
1163 unsigned long offset;
1164 char *kaddr;
1165 struct page *page;
1167 if (!bprm->argc)
1168 return 0;
1170 do {
1171 offset = bprm->p & ~PAGE_MASK;
1172 page = get_arg_page(bprm, bprm->p, 0);
1173 if (!page) {
1174 ret = -EFAULT;
1175 goto out;
1177 kaddr = kmap_atomic(page, KM_USER0);
1179 for (; offset < PAGE_SIZE && kaddr[offset];
1180 offset++, bprm->p++)
1183 kunmap_atomic(kaddr, KM_USER0);
1184 put_arg_page(page);
1186 if (offset == PAGE_SIZE)
1187 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1188 } while (offset == PAGE_SIZE);
1190 bprm->p++;
1191 bprm->argc--;
1192 ret = 0;
1194 out:
1195 return ret;
1197 EXPORT_SYMBOL(remove_arg_zero);
1200 * cycle the list of binary formats handler, until one recognizes the image
1202 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1204 unsigned int depth = bprm->recursion_depth;
1205 int try,retval;
1206 struct linux_binfmt *fmt;
1208 retval = security_bprm_check(bprm);
1209 if (retval)
1210 return retval;
1212 /* kernel module loader fixup */
1213 /* so we don't try to load run modprobe in kernel space. */
1214 set_fs(USER_DS);
1216 retval = audit_bprm(bprm);
1217 if (retval)
1218 return retval;
1220 retval = -ENOENT;
1221 for (try=0; try<2; try++) {
1222 read_lock(&binfmt_lock);
1223 list_for_each_entry(fmt, &formats, lh) {
1224 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1225 if (!fn)
1226 continue;
1227 if (!try_module_get(fmt->module))
1228 continue;
1229 read_unlock(&binfmt_lock);
1230 retval = fn(bprm, regs);
1232 * Restore the depth counter to its starting value
1233 * in this call, so we don't have to rely on every
1234 * load_binary function to restore it on return.
1236 bprm->recursion_depth = depth;
1237 if (retval >= 0) {
1238 if (depth == 0)
1239 tracehook_report_exec(fmt, bprm, regs);
1240 put_binfmt(fmt);
1241 allow_write_access(bprm->file);
1242 if (bprm->file)
1243 fput(bprm->file);
1244 bprm->file = NULL;
1245 current->did_exec = 1;
1246 proc_exec_connector(current);
1247 return retval;
1249 read_lock(&binfmt_lock);
1250 put_binfmt(fmt);
1251 if (retval != -ENOEXEC || bprm->mm == NULL)
1252 break;
1253 if (!bprm->file) {
1254 read_unlock(&binfmt_lock);
1255 return retval;
1258 read_unlock(&binfmt_lock);
1259 if (retval != -ENOEXEC || bprm->mm == NULL) {
1260 break;
1261 #ifdef CONFIG_MODULES
1262 } else {
1263 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1264 if (printable(bprm->buf[0]) &&
1265 printable(bprm->buf[1]) &&
1266 printable(bprm->buf[2]) &&
1267 printable(bprm->buf[3]))
1268 break; /* -ENOEXEC */
1269 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1270 #endif
1273 return retval;
1276 EXPORT_SYMBOL(search_binary_handler);
1279 * sys_execve() executes a new program.
1281 int do_execve(char * filename,
1282 char __user *__user *argv,
1283 char __user *__user *envp,
1284 struct pt_regs * regs)
1286 struct linux_binprm *bprm;
1287 struct file *file;
1288 struct files_struct *displaced;
1289 bool clear_in_exec;
1290 int retval;
1292 retval = unshare_files(&displaced);
1293 if (retval)
1294 goto out_ret;
1296 retval = -ENOMEM;
1297 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1298 if (!bprm)
1299 goto out_files;
1301 retval = prepare_bprm_creds(bprm);
1302 if (retval)
1303 goto out_free;
1305 retval = check_unsafe_exec(bprm);
1306 if (retval < 0)
1307 goto out_free;
1308 clear_in_exec = retval;
1309 current->in_execve = 1;
1311 file = open_exec(filename);
1312 retval = PTR_ERR(file);
1313 if (IS_ERR(file))
1314 goto out_unmark;
1316 sched_exec();
1318 bprm->file = file;
1319 bprm->filename = filename;
1320 bprm->interp = filename;
1322 retval = bprm_mm_init(bprm);
1323 if (retval)
1324 goto out_file;
1326 bprm->argc = count(argv, MAX_ARG_STRINGS);
1327 if ((retval = bprm->argc) < 0)
1328 goto out;
1330 bprm->envc = count(envp, MAX_ARG_STRINGS);
1331 if ((retval = bprm->envc) < 0)
1332 goto out;
1334 retval = prepare_binprm(bprm);
1335 if (retval < 0)
1336 goto out;
1338 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1339 if (retval < 0)
1340 goto out;
1342 bprm->exec = bprm->p;
1343 retval = copy_strings(bprm->envc, envp, bprm);
1344 if (retval < 0)
1345 goto out;
1347 retval = copy_strings(bprm->argc, argv, bprm);
1348 if (retval < 0)
1349 goto out;
1351 current->flags &= ~PF_KTHREAD;
1352 retval = search_binary_handler(bprm,regs);
1353 if (retval < 0)
1354 goto out;
1356 current->stack_start = current->mm->start_stack;
1358 /* execve succeeded */
1359 current->fs->in_exec = 0;
1360 current->in_execve = 0;
1361 acct_update_integrals(current);
1362 free_bprm(bprm);
1363 if (displaced)
1364 put_files_struct(displaced);
1365 return retval;
1367 out:
1368 if (bprm->mm)
1369 mmput (bprm->mm);
1371 out_file:
1372 if (bprm->file) {
1373 allow_write_access(bprm->file);
1374 fput(bprm->file);
1377 out_unmark:
1378 if (clear_in_exec)
1379 current->fs->in_exec = 0;
1380 current->in_execve = 0;
1382 out_free:
1383 free_bprm(bprm);
1385 out_files:
1386 if (displaced)
1387 reset_files_struct(displaced);
1388 out_ret:
1389 return retval;
1392 void set_binfmt(struct linux_binfmt *new)
1394 struct mm_struct *mm = current->mm;
1396 if (mm->binfmt)
1397 module_put(mm->binfmt->module);
1399 mm->binfmt = new;
1400 if (new)
1401 __module_get(new->module);
1404 EXPORT_SYMBOL(set_binfmt);
1406 /* format_corename will inspect the pattern parameter, and output a
1407 * name into corename, which must have space for at least
1408 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1410 static int format_corename(char *corename, long signr)
1412 const struct cred *cred = current_cred();
1413 const char *pat_ptr = core_pattern;
1414 int ispipe = (*pat_ptr == '|');
1415 char *out_ptr = corename;
1416 char *const out_end = corename + CORENAME_MAX_SIZE;
1417 int rc;
1418 int pid_in_pattern = 0;
1420 /* Repeat as long as we have more pattern to process and more output
1421 space */
1422 while (*pat_ptr) {
1423 if (*pat_ptr != '%') {
1424 if (out_ptr == out_end)
1425 goto out;
1426 *out_ptr++ = *pat_ptr++;
1427 } else {
1428 switch (*++pat_ptr) {
1429 case 0:
1430 goto out;
1431 /* Double percent, output one percent */
1432 case '%':
1433 if (out_ptr == out_end)
1434 goto out;
1435 *out_ptr++ = '%';
1436 break;
1437 /* pid */
1438 case 'p':
1439 pid_in_pattern = 1;
1440 rc = snprintf(out_ptr, out_end - out_ptr,
1441 "%d", task_tgid_vnr(current));
1442 if (rc > out_end - out_ptr)
1443 goto out;
1444 out_ptr += rc;
1445 break;
1446 /* uid */
1447 case 'u':
1448 rc = snprintf(out_ptr, out_end - out_ptr,
1449 "%d", cred->uid);
1450 if (rc > out_end - out_ptr)
1451 goto out;
1452 out_ptr += rc;
1453 break;
1454 /* gid */
1455 case 'g':
1456 rc = snprintf(out_ptr, out_end - out_ptr,
1457 "%d", cred->gid);
1458 if (rc > out_end - out_ptr)
1459 goto out;
1460 out_ptr += rc;
1461 break;
1462 /* signal that caused the coredump */
1463 case 's':
1464 rc = snprintf(out_ptr, out_end - out_ptr,
1465 "%ld", signr);
1466 if (rc > out_end - out_ptr)
1467 goto out;
1468 out_ptr += rc;
1469 break;
1470 /* UNIX time of coredump */
1471 case 't': {
1472 struct timeval tv;
1473 do_gettimeofday(&tv);
1474 rc = snprintf(out_ptr, out_end - out_ptr,
1475 "%lu", tv.tv_sec);
1476 if (rc > out_end - out_ptr)
1477 goto out;
1478 out_ptr += rc;
1479 break;
1481 /* hostname */
1482 case 'h':
1483 down_read(&uts_sem);
1484 rc = snprintf(out_ptr, out_end - out_ptr,
1485 "%s", utsname()->nodename);
1486 up_read(&uts_sem);
1487 if (rc > out_end - out_ptr)
1488 goto out;
1489 out_ptr += rc;
1490 break;
1491 /* executable */
1492 case 'e':
1493 rc = snprintf(out_ptr, out_end - out_ptr,
1494 "%s", current->comm);
1495 if (rc > out_end - out_ptr)
1496 goto out;
1497 out_ptr += rc;
1498 break;
1499 /* core limit size */
1500 case 'c':
1501 rc = snprintf(out_ptr, out_end - out_ptr,
1502 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1503 if (rc > out_end - out_ptr)
1504 goto out;
1505 out_ptr += rc;
1506 break;
1507 default:
1508 break;
1510 ++pat_ptr;
1513 /* Backward compatibility with core_uses_pid:
1515 * If core_pattern does not include a %p (as is the default)
1516 * and core_uses_pid is set, then .%pid will be appended to
1517 * the filename. Do not do this for piped commands. */
1518 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1519 rc = snprintf(out_ptr, out_end - out_ptr,
1520 ".%d", task_tgid_vnr(current));
1521 if (rc > out_end - out_ptr)
1522 goto out;
1523 out_ptr += rc;
1525 out:
1526 *out_ptr = 0;
1527 return ispipe;
1530 static int zap_process(struct task_struct *start)
1532 struct task_struct *t;
1533 int nr = 0;
1535 start->signal->flags = SIGNAL_GROUP_EXIT;
1536 start->signal->group_stop_count = 0;
1538 t = start;
1539 do {
1540 if (t != current && t->mm) {
1541 sigaddset(&t->pending.signal, SIGKILL);
1542 signal_wake_up(t, 1);
1543 nr++;
1545 } while_each_thread(start, t);
1547 return nr;
1550 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1551 struct core_state *core_state, int exit_code)
1553 struct task_struct *g, *p;
1554 unsigned long flags;
1555 int nr = -EAGAIN;
1557 spin_lock_irq(&tsk->sighand->siglock);
1558 if (!signal_group_exit(tsk->signal)) {
1559 mm->core_state = core_state;
1560 tsk->signal->group_exit_code = exit_code;
1561 nr = zap_process(tsk);
1563 spin_unlock_irq(&tsk->sighand->siglock);
1564 if (unlikely(nr < 0))
1565 return nr;
1567 if (atomic_read(&mm->mm_users) == nr + 1)
1568 goto done;
1570 * We should find and kill all tasks which use this mm, and we should
1571 * count them correctly into ->nr_threads. We don't take tasklist
1572 * lock, but this is safe wrt:
1574 * fork:
1575 * None of sub-threads can fork after zap_process(leader). All
1576 * processes which were created before this point should be
1577 * visible to zap_threads() because copy_process() adds the new
1578 * process to the tail of init_task.tasks list, and lock/unlock
1579 * of ->siglock provides a memory barrier.
1581 * do_exit:
1582 * The caller holds mm->mmap_sem. This means that the task which
1583 * uses this mm can't pass exit_mm(), so it can't exit or clear
1584 * its ->mm.
1586 * de_thread:
1587 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1588 * we must see either old or new leader, this does not matter.
1589 * However, it can change p->sighand, so lock_task_sighand(p)
1590 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1591 * it can't fail.
1593 * Note also that "g" can be the old leader with ->mm == NULL
1594 * and already unhashed and thus removed from ->thread_group.
1595 * This is OK, __unhash_process()->list_del_rcu() does not
1596 * clear the ->next pointer, we will find the new leader via
1597 * next_thread().
1599 rcu_read_lock();
1600 for_each_process(g) {
1601 if (g == tsk->group_leader)
1602 continue;
1603 if (g->flags & PF_KTHREAD)
1604 continue;
1605 p = g;
1606 do {
1607 if (p->mm) {
1608 if (unlikely(p->mm == mm)) {
1609 lock_task_sighand(p, &flags);
1610 nr += zap_process(p);
1611 unlock_task_sighand(p, &flags);
1613 break;
1615 } while_each_thread(g, p);
1617 rcu_read_unlock();
1618 done:
1619 atomic_set(&core_state->nr_threads, nr);
1620 return nr;
1623 static int coredump_wait(int exit_code, struct core_state *core_state)
1625 struct task_struct *tsk = current;
1626 struct mm_struct *mm = tsk->mm;
1627 struct completion *vfork_done;
1628 int core_waiters;
1630 init_completion(&core_state->startup);
1631 core_state->dumper.task = tsk;
1632 core_state->dumper.next = NULL;
1633 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1634 up_write(&mm->mmap_sem);
1636 if (unlikely(core_waiters < 0))
1637 goto fail;
1640 * Make sure nobody is waiting for us to release the VM,
1641 * otherwise we can deadlock when we wait on each other
1643 vfork_done = tsk->vfork_done;
1644 if (vfork_done) {
1645 tsk->vfork_done = NULL;
1646 complete(vfork_done);
1649 if (core_waiters)
1650 wait_for_completion(&core_state->startup);
1651 fail:
1652 return core_waiters;
1655 static void coredump_finish(struct mm_struct *mm)
1657 struct core_thread *curr, *next;
1658 struct task_struct *task;
1660 next = mm->core_state->dumper.next;
1661 while ((curr = next) != NULL) {
1662 next = curr->next;
1663 task = curr->task;
1665 * see exit_mm(), curr->task must not see
1666 * ->task == NULL before we read ->next.
1668 smp_mb();
1669 curr->task = NULL;
1670 wake_up_process(task);
1673 mm->core_state = NULL;
1677 * set_dumpable converts traditional three-value dumpable to two flags and
1678 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1679 * these bits are not changed atomically. So get_dumpable can observe the
1680 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1681 * return either old dumpable or new one by paying attention to the order of
1682 * modifying the bits.
1684 * dumpable | mm->flags (binary)
1685 * old new | initial interim final
1686 * ---------+-----------------------
1687 * 0 1 | 00 01 01
1688 * 0 2 | 00 10(*) 11
1689 * 1 0 | 01 00 00
1690 * 1 2 | 01 11 11
1691 * 2 0 | 11 10(*) 00
1692 * 2 1 | 11 11 01
1694 * (*) get_dumpable regards interim value of 10 as 11.
1696 void set_dumpable(struct mm_struct *mm, int value)
1698 switch (value) {
1699 case 0:
1700 clear_bit(MMF_DUMPABLE, &mm->flags);
1701 smp_wmb();
1702 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1703 break;
1704 case 1:
1705 set_bit(MMF_DUMPABLE, &mm->flags);
1706 smp_wmb();
1707 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1708 break;
1709 case 2:
1710 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1711 smp_wmb();
1712 set_bit(MMF_DUMPABLE, &mm->flags);
1713 break;
1717 int get_dumpable(struct mm_struct *mm)
1719 int ret;
1721 ret = mm->flags & 0x3;
1722 return (ret >= 2) ? 2 : ret;
1725 static void wait_for_dump_helpers(struct file *file)
1727 struct pipe_inode_info *pipe;
1729 pipe = file->f_path.dentry->d_inode->i_pipe;
1731 pipe_lock(pipe);
1732 pipe->readers++;
1733 pipe->writers--;
1735 while ((pipe->readers > 1) && (!signal_pending(current))) {
1736 wake_up_interruptible_sync(&pipe->wait);
1737 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1738 pipe_wait(pipe);
1741 pipe->readers--;
1742 pipe->writers++;
1743 pipe_unlock(pipe);
1748 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1750 struct core_state core_state;
1751 char corename[CORENAME_MAX_SIZE + 1];
1752 struct mm_struct *mm = current->mm;
1753 struct linux_binfmt * binfmt;
1754 struct inode * inode;
1755 struct file * file;
1756 const struct cred *old_cred;
1757 struct cred *cred;
1758 int retval = 0;
1759 int flag = 0;
1760 int ispipe = 0;
1761 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1762 char **helper_argv = NULL;
1763 int helper_argc = 0;
1764 int dump_count = 0;
1765 static atomic_t core_dump_count = ATOMIC_INIT(0);
1767 audit_core_dumps(signr);
1769 binfmt = mm->binfmt;
1770 if (!binfmt || !binfmt->core_dump)
1771 goto fail;
1773 cred = prepare_creds();
1774 if (!cred) {
1775 retval = -ENOMEM;
1776 goto fail;
1779 down_write(&mm->mmap_sem);
1781 * If another thread got here first, or we are not dumpable, bail out.
1783 if (mm->core_state || !get_dumpable(mm)) {
1784 up_write(&mm->mmap_sem);
1785 put_cred(cred);
1786 goto fail;
1790 * We cannot trust fsuid as being the "true" uid of the
1791 * process nor do we know its entire history. We only know it
1792 * was tainted so we dump it as root in mode 2.
1794 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1795 flag = O_EXCL; /* Stop rewrite attacks */
1796 cred->fsuid = 0; /* Dump root private */
1799 retval = coredump_wait(exit_code, &core_state);
1800 if (retval < 0) {
1801 put_cred(cred);
1802 goto fail;
1805 old_cred = override_creds(cred);
1808 * Clear any false indication of pending signals that might
1809 * be seen by the filesystem code called to write the core file.
1811 clear_thread_flag(TIF_SIGPENDING);
1814 * lock_kernel() because format_corename() is controlled by sysctl, which
1815 * uses lock_kernel()
1817 lock_kernel();
1818 ispipe = format_corename(corename, signr);
1819 unlock_kernel();
1821 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1822 goto fail_unlock;
1824 if (ispipe) {
1825 if (core_limit == 0) {
1827 * Normally core limits are irrelevant to pipes, since
1828 * we're not writing to the file system, but we use
1829 * core_limit of 0 here as a speacial value. Any
1830 * non-zero limit gets set to RLIM_INFINITY below, but
1831 * a limit of 0 skips the dump. This is a consistent
1832 * way to catch recursive crashes. We can still crash
1833 * if the core_pattern binary sets RLIM_CORE = !0
1834 * but it runs as root, and can do lots of stupid things
1835 * Note that we use task_tgid_vnr here to grab the pid
1836 * of the process group leader. That way we get the
1837 * right pid if a thread in a multi-threaded
1838 * core_pattern process dies.
1840 printk(KERN_WARNING
1841 "Process %d(%s) has RLIMIT_CORE set to 0\n",
1842 task_tgid_vnr(current), current->comm);
1843 printk(KERN_WARNING "Aborting core\n");
1844 goto fail_unlock;
1847 dump_count = atomic_inc_return(&core_dump_count);
1848 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1849 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1850 task_tgid_vnr(current), current->comm);
1851 printk(KERN_WARNING "Skipping core dump\n");
1852 goto fail_dropcount;
1855 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1856 if (!helper_argv) {
1857 printk(KERN_WARNING "%s failed to allocate memory\n",
1858 __func__);
1859 goto fail_dropcount;
1862 core_limit = RLIM_INFINITY;
1864 /* SIGPIPE can happen, but it's just never processed */
1865 if (call_usermodehelper_pipe(helper_argv[0], helper_argv, NULL,
1866 &file)) {
1867 printk(KERN_INFO "Core dump to %s pipe failed\n",
1868 corename);
1869 goto fail_dropcount;
1871 } else
1872 file = filp_open(corename,
1873 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1874 0600);
1875 if (IS_ERR(file))
1876 goto fail_dropcount;
1877 inode = file->f_path.dentry->d_inode;
1878 if (inode->i_nlink > 1)
1879 goto close_fail; /* multiple links - don't dump */
1880 if (!ispipe && d_unhashed(file->f_path.dentry))
1881 goto close_fail;
1883 /* AK: actually i see no reason to not allow this for named pipes etc.,
1884 but keep the previous behaviour for now. */
1885 if (!ispipe && !S_ISREG(inode->i_mode))
1886 goto close_fail;
1888 * Dont allow local users get cute and trick others to coredump
1889 * into their pre-created files:
1891 if (inode->i_uid != current_fsuid())
1892 goto close_fail;
1893 if (!file->f_op)
1894 goto close_fail;
1895 if (!file->f_op->write)
1896 goto close_fail;
1897 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1898 goto close_fail;
1900 retval = binfmt->core_dump(signr, regs, file, core_limit);
1902 if (retval)
1903 current->signal->group_exit_code |= 0x80;
1904 close_fail:
1905 if (ispipe && core_pipe_limit)
1906 wait_for_dump_helpers(file);
1907 filp_close(file, NULL);
1908 fail_dropcount:
1909 if (dump_count)
1910 atomic_dec(&core_dump_count);
1911 fail_unlock:
1912 if (helper_argv)
1913 argv_free(helper_argv);
1915 revert_creds(old_cred);
1916 put_cred(cred);
1917 coredump_finish(mm);
1918 fail:
1919 return;