libnvdimm/security: fix a typo
[linux/fpc-iii.git] / mm / hugetlb.c
blob2af1831596f22318a8ce23932b1bc9e413be218a
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30 #include <linux/llist.h>
32 #include <asm/page.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlb.h>
36 #include <linux/io.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/node.h>
40 #include <linux/userfaultfd_k.h>
41 #include <linux/page_owner.h>
42 #include "internal.h"
44 int hugetlb_max_hstate __read_mostly;
45 unsigned int default_hstate_idx;
46 struct hstate hstates[HUGE_MAX_HSTATE];
48 * Minimum page order among possible hugepage sizes, set to a proper value
49 * at boot time.
51 static unsigned int minimum_order __read_mostly = UINT_MAX;
53 __initdata LIST_HEAD(huge_boot_pages);
55 /* for command line parsing */
56 static struct hstate * __initdata parsed_hstate;
57 static unsigned long __initdata default_hstate_max_huge_pages;
58 static unsigned long __initdata default_hstate_size;
59 static bool __initdata parsed_valid_hugepagesz = true;
62 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
63 * free_huge_pages, and surplus_huge_pages.
65 DEFINE_SPINLOCK(hugetlb_lock);
68 * Serializes faults on the same logical page. This is used to
69 * prevent spurious OOMs when the hugepage pool is fully utilized.
71 static int num_fault_mutexes;
72 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
74 /* Forward declaration */
75 static int hugetlb_acct_memory(struct hstate *h, long delta);
77 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
79 bool free = (spool->count == 0) && (spool->used_hpages == 0);
81 spin_unlock(&spool->lock);
83 /* If no pages are used, and no other handles to the subpool
84 * remain, give up any reservations mased on minimum size and
85 * free the subpool */
86 if (free) {
87 if (spool->min_hpages != -1)
88 hugetlb_acct_memory(spool->hstate,
89 -spool->min_hpages);
90 kfree(spool);
94 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
95 long min_hpages)
97 struct hugepage_subpool *spool;
99 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
100 if (!spool)
101 return NULL;
103 spin_lock_init(&spool->lock);
104 spool->count = 1;
105 spool->max_hpages = max_hpages;
106 spool->hstate = h;
107 spool->min_hpages = min_hpages;
109 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
110 kfree(spool);
111 return NULL;
113 spool->rsv_hpages = min_hpages;
115 return spool;
118 void hugepage_put_subpool(struct hugepage_subpool *spool)
120 spin_lock(&spool->lock);
121 BUG_ON(!spool->count);
122 spool->count--;
123 unlock_or_release_subpool(spool);
127 * Subpool accounting for allocating and reserving pages.
128 * Return -ENOMEM if there are not enough resources to satisfy the
129 * the request. Otherwise, return the number of pages by which the
130 * global pools must be adjusted (upward). The returned value may
131 * only be different than the passed value (delta) in the case where
132 * a subpool minimum size must be manitained.
134 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
135 long delta)
137 long ret = delta;
139 if (!spool)
140 return ret;
142 spin_lock(&spool->lock);
144 if (spool->max_hpages != -1) { /* maximum size accounting */
145 if ((spool->used_hpages + delta) <= spool->max_hpages)
146 spool->used_hpages += delta;
147 else {
148 ret = -ENOMEM;
149 goto unlock_ret;
153 /* minimum size accounting */
154 if (spool->min_hpages != -1 && spool->rsv_hpages) {
155 if (delta > spool->rsv_hpages) {
157 * Asking for more reserves than those already taken on
158 * behalf of subpool. Return difference.
160 ret = delta - spool->rsv_hpages;
161 spool->rsv_hpages = 0;
162 } else {
163 ret = 0; /* reserves already accounted for */
164 spool->rsv_hpages -= delta;
168 unlock_ret:
169 spin_unlock(&spool->lock);
170 return ret;
174 * Subpool accounting for freeing and unreserving pages.
175 * Return the number of global page reservations that must be dropped.
176 * The return value may only be different than the passed value (delta)
177 * in the case where a subpool minimum size must be maintained.
179 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
180 long delta)
182 long ret = delta;
184 if (!spool)
185 return delta;
187 spin_lock(&spool->lock);
189 if (spool->max_hpages != -1) /* maximum size accounting */
190 spool->used_hpages -= delta;
192 /* minimum size accounting */
193 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
194 if (spool->rsv_hpages + delta <= spool->min_hpages)
195 ret = 0;
196 else
197 ret = spool->rsv_hpages + delta - spool->min_hpages;
199 spool->rsv_hpages += delta;
200 if (spool->rsv_hpages > spool->min_hpages)
201 spool->rsv_hpages = spool->min_hpages;
205 * If hugetlbfs_put_super couldn't free spool due to an outstanding
206 * quota reference, free it now.
208 unlock_or_release_subpool(spool);
210 return ret;
213 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
215 return HUGETLBFS_SB(inode->i_sb)->spool;
218 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
220 return subpool_inode(file_inode(vma->vm_file));
224 * Region tracking -- allows tracking of reservations and instantiated pages
225 * across the pages in a mapping.
227 * The region data structures are embedded into a resv_map and protected
228 * by a resv_map's lock. The set of regions within the resv_map represent
229 * reservations for huge pages, or huge pages that have already been
230 * instantiated within the map. The from and to elements are huge page
231 * indicies into the associated mapping. from indicates the starting index
232 * of the region. to represents the first index past the end of the region.
234 * For example, a file region structure with from == 0 and to == 4 represents
235 * four huge pages in a mapping. It is important to note that the to element
236 * represents the first element past the end of the region. This is used in
237 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
239 * Interval notation of the form [from, to) will be used to indicate that
240 * the endpoint from is inclusive and to is exclusive.
242 struct file_region {
243 struct list_head link;
244 long from;
245 long to;
249 * Add the huge page range represented by [f, t) to the reserve
250 * map. In the normal case, existing regions will be expanded
251 * to accommodate the specified range. Sufficient regions should
252 * exist for expansion due to the previous call to region_chg
253 * with the same range. However, it is possible that region_del
254 * could have been called after region_chg and modifed the map
255 * in such a way that no region exists to be expanded. In this
256 * case, pull a region descriptor from the cache associated with
257 * the map and use that for the new range.
259 * Return the number of new huge pages added to the map. This
260 * number is greater than or equal to zero.
262 static long region_add(struct resv_map *resv, long f, long t)
264 struct list_head *head = &resv->regions;
265 struct file_region *rg, *nrg, *trg;
266 long add = 0;
268 spin_lock(&resv->lock);
269 /* Locate the region we are either in or before. */
270 list_for_each_entry(rg, head, link)
271 if (f <= rg->to)
272 break;
275 * If no region exists which can be expanded to include the
276 * specified range, the list must have been modified by an
277 * interleving call to region_del(). Pull a region descriptor
278 * from the cache and use it for this range.
280 if (&rg->link == head || t < rg->from) {
281 VM_BUG_ON(resv->region_cache_count <= 0);
283 resv->region_cache_count--;
284 nrg = list_first_entry(&resv->region_cache, struct file_region,
285 link);
286 list_del(&nrg->link);
288 nrg->from = f;
289 nrg->to = t;
290 list_add(&nrg->link, rg->link.prev);
292 add += t - f;
293 goto out_locked;
296 /* Round our left edge to the current segment if it encloses us. */
297 if (f > rg->from)
298 f = rg->from;
300 /* Check for and consume any regions we now overlap with. */
301 nrg = rg;
302 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
303 if (&rg->link == head)
304 break;
305 if (rg->from > t)
306 break;
308 /* If this area reaches higher then extend our area to
309 * include it completely. If this is not the first area
310 * which we intend to reuse, free it. */
311 if (rg->to > t)
312 t = rg->to;
313 if (rg != nrg) {
314 /* Decrement return value by the deleted range.
315 * Another range will span this area so that by
316 * end of routine add will be >= zero
318 add -= (rg->to - rg->from);
319 list_del(&rg->link);
320 kfree(rg);
324 add += (nrg->from - f); /* Added to beginning of region */
325 nrg->from = f;
326 add += t - nrg->to; /* Added to end of region */
327 nrg->to = t;
329 out_locked:
330 resv->adds_in_progress--;
331 spin_unlock(&resv->lock);
332 VM_BUG_ON(add < 0);
333 return add;
337 * Examine the existing reserve map and determine how many
338 * huge pages in the specified range [f, t) are NOT currently
339 * represented. This routine is called before a subsequent
340 * call to region_add that will actually modify the reserve
341 * map to add the specified range [f, t). region_chg does
342 * not change the number of huge pages represented by the
343 * map. However, if the existing regions in the map can not
344 * be expanded to represent the new range, a new file_region
345 * structure is added to the map as a placeholder. This is
346 * so that the subsequent region_add call will have all the
347 * regions it needs and will not fail.
349 * Upon entry, region_chg will also examine the cache of region descriptors
350 * associated with the map. If there are not enough descriptors cached, one
351 * will be allocated for the in progress add operation.
353 * Returns the number of huge pages that need to be added to the existing
354 * reservation map for the range [f, t). This number is greater or equal to
355 * zero. -ENOMEM is returned if a new file_region structure or cache entry
356 * is needed and can not be allocated.
358 static long region_chg(struct resv_map *resv, long f, long t)
360 struct list_head *head = &resv->regions;
361 struct file_region *rg, *nrg = NULL;
362 long chg = 0;
364 retry:
365 spin_lock(&resv->lock);
366 retry_locked:
367 resv->adds_in_progress++;
370 * Check for sufficient descriptors in the cache to accommodate
371 * the number of in progress add operations.
373 if (resv->adds_in_progress > resv->region_cache_count) {
374 struct file_region *trg;
376 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
377 /* Must drop lock to allocate a new descriptor. */
378 resv->adds_in_progress--;
379 spin_unlock(&resv->lock);
381 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
382 if (!trg) {
383 kfree(nrg);
384 return -ENOMEM;
387 spin_lock(&resv->lock);
388 list_add(&trg->link, &resv->region_cache);
389 resv->region_cache_count++;
390 goto retry_locked;
393 /* Locate the region we are before or in. */
394 list_for_each_entry(rg, head, link)
395 if (f <= rg->to)
396 break;
398 /* If we are below the current region then a new region is required.
399 * Subtle, allocate a new region at the position but make it zero
400 * size such that we can guarantee to record the reservation. */
401 if (&rg->link == head || t < rg->from) {
402 if (!nrg) {
403 resv->adds_in_progress--;
404 spin_unlock(&resv->lock);
405 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
406 if (!nrg)
407 return -ENOMEM;
409 nrg->from = f;
410 nrg->to = f;
411 INIT_LIST_HEAD(&nrg->link);
412 goto retry;
415 list_add(&nrg->link, rg->link.prev);
416 chg = t - f;
417 goto out_nrg;
420 /* Round our left edge to the current segment if it encloses us. */
421 if (f > rg->from)
422 f = rg->from;
423 chg = t - f;
425 /* Check for and consume any regions we now overlap with. */
426 list_for_each_entry(rg, rg->link.prev, link) {
427 if (&rg->link == head)
428 break;
429 if (rg->from > t)
430 goto out;
432 /* We overlap with this area, if it extends further than
433 * us then we must extend ourselves. Account for its
434 * existing reservation. */
435 if (rg->to > t) {
436 chg += rg->to - t;
437 t = rg->to;
439 chg -= rg->to - rg->from;
442 out:
443 spin_unlock(&resv->lock);
444 /* We already know we raced and no longer need the new region */
445 kfree(nrg);
446 return chg;
447 out_nrg:
448 spin_unlock(&resv->lock);
449 return chg;
453 * Abort the in progress add operation. The adds_in_progress field
454 * of the resv_map keeps track of the operations in progress between
455 * calls to region_chg and region_add. Operations are sometimes
456 * aborted after the call to region_chg. In such cases, region_abort
457 * is called to decrement the adds_in_progress counter.
459 * NOTE: The range arguments [f, t) are not needed or used in this
460 * routine. They are kept to make reading the calling code easier as
461 * arguments will match the associated region_chg call.
463 static void region_abort(struct resv_map *resv, long f, long t)
465 spin_lock(&resv->lock);
466 VM_BUG_ON(!resv->region_cache_count);
467 resv->adds_in_progress--;
468 spin_unlock(&resv->lock);
472 * Delete the specified range [f, t) from the reserve map. If the
473 * t parameter is LONG_MAX, this indicates that ALL regions after f
474 * should be deleted. Locate the regions which intersect [f, t)
475 * and either trim, delete or split the existing regions.
477 * Returns the number of huge pages deleted from the reserve map.
478 * In the normal case, the return value is zero or more. In the
479 * case where a region must be split, a new region descriptor must
480 * be allocated. If the allocation fails, -ENOMEM will be returned.
481 * NOTE: If the parameter t == LONG_MAX, then we will never split
482 * a region and possibly return -ENOMEM. Callers specifying
483 * t == LONG_MAX do not need to check for -ENOMEM error.
485 static long region_del(struct resv_map *resv, long f, long t)
487 struct list_head *head = &resv->regions;
488 struct file_region *rg, *trg;
489 struct file_region *nrg = NULL;
490 long del = 0;
492 retry:
493 spin_lock(&resv->lock);
494 list_for_each_entry_safe(rg, trg, head, link) {
496 * Skip regions before the range to be deleted. file_region
497 * ranges are normally of the form [from, to). However, there
498 * may be a "placeholder" entry in the map which is of the form
499 * (from, to) with from == to. Check for placeholder entries
500 * at the beginning of the range to be deleted.
502 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
503 continue;
505 if (rg->from >= t)
506 break;
508 if (f > rg->from && t < rg->to) { /* Must split region */
510 * Check for an entry in the cache before dropping
511 * lock and attempting allocation.
513 if (!nrg &&
514 resv->region_cache_count > resv->adds_in_progress) {
515 nrg = list_first_entry(&resv->region_cache,
516 struct file_region,
517 link);
518 list_del(&nrg->link);
519 resv->region_cache_count--;
522 if (!nrg) {
523 spin_unlock(&resv->lock);
524 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
525 if (!nrg)
526 return -ENOMEM;
527 goto retry;
530 del += t - f;
532 /* New entry for end of split region */
533 nrg->from = t;
534 nrg->to = rg->to;
535 INIT_LIST_HEAD(&nrg->link);
537 /* Original entry is trimmed */
538 rg->to = f;
540 list_add(&nrg->link, &rg->link);
541 nrg = NULL;
542 break;
545 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
546 del += rg->to - rg->from;
547 list_del(&rg->link);
548 kfree(rg);
549 continue;
552 if (f <= rg->from) { /* Trim beginning of region */
553 del += t - rg->from;
554 rg->from = t;
555 } else { /* Trim end of region */
556 del += rg->to - f;
557 rg->to = f;
561 spin_unlock(&resv->lock);
562 kfree(nrg);
563 return del;
567 * A rare out of memory error was encountered which prevented removal of
568 * the reserve map region for a page. The huge page itself was free'ed
569 * and removed from the page cache. This routine will adjust the subpool
570 * usage count, and the global reserve count if needed. By incrementing
571 * these counts, the reserve map entry which could not be deleted will
572 * appear as a "reserved" entry instead of simply dangling with incorrect
573 * counts.
575 void hugetlb_fix_reserve_counts(struct inode *inode)
577 struct hugepage_subpool *spool = subpool_inode(inode);
578 long rsv_adjust;
580 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
581 if (rsv_adjust) {
582 struct hstate *h = hstate_inode(inode);
584 hugetlb_acct_memory(h, 1);
589 * Count and return the number of huge pages in the reserve map
590 * that intersect with the range [f, t).
592 static long region_count(struct resv_map *resv, long f, long t)
594 struct list_head *head = &resv->regions;
595 struct file_region *rg;
596 long chg = 0;
598 spin_lock(&resv->lock);
599 /* Locate each segment we overlap with, and count that overlap. */
600 list_for_each_entry(rg, head, link) {
601 long seg_from;
602 long seg_to;
604 if (rg->to <= f)
605 continue;
606 if (rg->from >= t)
607 break;
609 seg_from = max(rg->from, f);
610 seg_to = min(rg->to, t);
612 chg += seg_to - seg_from;
614 spin_unlock(&resv->lock);
616 return chg;
620 * Convert the address within this vma to the page offset within
621 * the mapping, in pagecache page units; huge pages here.
623 static pgoff_t vma_hugecache_offset(struct hstate *h,
624 struct vm_area_struct *vma, unsigned long address)
626 return ((address - vma->vm_start) >> huge_page_shift(h)) +
627 (vma->vm_pgoff >> huge_page_order(h));
630 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
631 unsigned long address)
633 return vma_hugecache_offset(hstate_vma(vma), vma, address);
635 EXPORT_SYMBOL_GPL(linear_hugepage_index);
638 * Return the size of the pages allocated when backing a VMA. In the majority
639 * cases this will be same size as used by the page table entries.
641 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
643 if (vma->vm_ops && vma->vm_ops->pagesize)
644 return vma->vm_ops->pagesize(vma);
645 return PAGE_SIZE;
647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
650 * Return the page size being used by the MMU to back a VMA. In the majority
651 * of cases, the page size used by the kernel matches the MMU size. On
652 * architectures where it differs, an architecture-specific 'strong'
653 * version of this symbol is required.
655 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
657 return vma_kernel_pagesize(vma);
661 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
662 * bits of the reservation map pointer, which are always clear due to
663 * alignment.
665 #define HPAGE_RESV_OWNER (1UL << 0)
666 #define HPAGE_RESV_UNMAPPED (1UL << 1)
667 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
670 * These helpers are used to track how many pages are reserved for
671 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
672 * is guaranteed to have their future faults succeed.
674 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
675 * the reserve counters are updated with the hugetlb_lock held. It is safe
676 * to reset the VMA at fork() time as it is not in use yet and there is no
677 * chance of the global counters getting corrupted as a result of the values.
679 * The private mapping reservation is represented in a subtly different
680 * manner to a shared mapping. A shared mapping has a region map associated
681 * with the underlying file, this region map represents the backing file
682 * pages which have ever had a reservation assigned which this persists even
683 * after the page is instantiated. A private mapping has a region map
684 * associated with the original mmap which is attached to all VMAs which
685 * reference it, this region map represents those offsets which have consumed
686 * reservation ie. where pages have been instantiated.
688 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
690 return (unsigned long)vma->vm_private_data;
693 static void set_vma_private_data(struct vm_area_struct *vma,
694 unsigned long value)
696 vma->vm_private_data = (void *)value;
699 struct resv_map *resv_map_alloc(void)
701 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
702 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
704 if (!resv_map || !rg) {
705 kfree(resv_map);
706 kfree(rg);
707 return NULL;
710 kref_init(&resv_map->refs);
711 spin_lock_init(&resv_map->lock);
712 INIT_LIST_HEAD(&resv_map->regions);
714 resv_map->adds_in_progress = 0;
716 INIT_LIST_HEAD(&resv_map->region_cache);
717 list_add(&rg->link, &resv_map->region_cache);
718 resv_map->region_cache_count = 1;
720 return resv_map;
723 void resv_map_release(struct kref *ref)
725 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
726 struct list_head *head = &resv_map->region_cache;
727 struct file_region *rg, *trg;
729 /* Clear out any active regions before we release the map. */
730 region_del(resv_map, 0, LONG_MAX);
732 /* ... and any entries left in the cache */
733 list_for_each_entry_safe(rg, trg, head, link) {
734 list_del(&rg->link);
735 kfree(rg);
738 VM_BUG_ON(resv_map->adds_in_progress);
740 kfree(resv_map);
743 static inline struct resv_map *inode_resv_map(struct inode *inode)
746 * At inode evict time, i_mapping may not point to the original
747 * address space within the inode. This original address space
748 * contains the pointer to the resv_map. So, always use the
749 * address space embedded within the inode.
750 * The VERY common case is inode->mapping == &inode->i_data but,
751 * this may not be true for device special inodes.
753 return (struct resv_map *)(&inode->i_data)->private_data;
756 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
758 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
759 if (vma->vm_flags & VM_MAYSHARE) {
760 struct address_space *mapping = vma->vm_file->f_mapping;
761 struct inode *inode = mapping->host;
763 return inode_resv_map(inode);
765 } else {
766 return (struct resv_map *)(get_vma_private_data(vma) &
767 ~HPAGE_RESV_MASK);
771 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
773 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
774 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
776 set_vma_private_data(vma, (get_vma_private_data(vma) &
777 HPAGE_RESV_MASK) | (unsigned long)map);
780 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
782 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
783 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
785 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
788 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
790 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
792 return (get_vma_private_data(vma) & flag) != 0;
795 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
796 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
798 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
799 if (!(vma->vm_flags & VM_MAYSHARE))
800 vma->vm_private_data = (void *)0;
803 /* Returns true if the VMA has associated reserve pages */
804 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
806 if (vma->vm_flags & VM_NORESERVE) {
808 * This address is already reserved by other process(chg == 0),
809 * so, we should decrement reserved count. Without decrementing,
810 * reserve count remains after releasing inode, because this
811 * allocated page will go into page cache and is regarded as
812 * coming from reserved pool in releasing step. Currently, we
813 * don't have any other solution to deal with this situation
814 * properly, so add work-around here.
816 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
817 return true;
818 else
819 return false;
822 /* Shared mappings always use reserves */
823 if (vma->vm_flags & VM_MAYSHARE) {
825 * We know VM_NORESERVE is not set. Therefore, there SHOULD
826 * be a region map for all pages. The only situation where
827 * there is no region map is if a hole was punched via
828 * fallocate. In this case, there really are no reverves to
829 * use. This situation is indicated if chg != 0.
831 if (chg)
832 return false;
833 else
834 return true;
838 * Only the process that called mmap() has reserves for
839 * private mappings.
841 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
843 * Like the shared case above, a hole punch or truncate
844 * could have been performed on the private mapping.
845 * Examine the value of chg to determine if reserves
846 * actually exist or were previously consumed.
847 * Very Subtle - The value of chg comes from a previous
848 * call to vma_needs_reserves(). The reserve map for
849 * private mappings has different (opposite) semantics
850 * than that of shared mappings. vma_needs_reserves()
851 * has already taken this difference in semantics into
852 * account. Therefore, the meaning of chg is the same
853 * as in the shared case above. Code could easily be
854 * combined, but keeping it separate draws attention to
855 * subtle differences.
857 if (chg)
858 return false;
859 else
860 return true;
863 return false;
866 static void enqueue_huge_page(struct hstate *h, struct page *page)
868 int nid = page_to_nid(page);
869 list_move(&page->lru, &h->hugepage_freelists[nid]);
870 h->free_huge_pages++;
871 h->free_huge_pages_node[nid]++;
874 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
876 struct page *page;
878 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
879 if (!PageHWPoison(page))
880 break;
882 * if 'non-isolated free hugepage' not found on the list,
883 * the allocation fails.
885 if (&h->hugepage_freelists[nid] == &page->lru)
886 return NULL;
887 list_move(&page->lru, &h->hugepage_activelist);
888 set_page_refcounted(page);
889 h->free_huge_pages--;
890 h->free_huge_pages_node[nid]--;
891 return page;
894 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
895 nodemask_t *nmask)
897 unsigned int cpuset_mems_cookie;
898 struct zonelist *zonelist;
899 struct zone *zone;
900 struct zoneref *z;
901 int node = NUMA_NO_NODE;
903 zonelist = node_zonelist(nid, gfp_mask);
905 retry_cpuset:
906 cpuset_mems_cookie = read_mems_allowed_begin();
907 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
908 struct page *page;
910 if (!cpuset_zone_allowed(zone, gfp_mask))
911 continue;
913 * no need to ask again on the same node. Pool is node rather than
914 * zone aware
916 if (zone_to_nid(zone) == node)
917 continue;
918 node = zone_to_nid(zone);
920 page = dequeue_huge_page_node_exact(h, node);
921 if (page)
922 return page;
924 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
925 goto retry_cpuset;
927 return NULL;
930 /* Movability of hugepages depends on migration support. */
931 static inline gfp_t htlb_alloc_mask(struct hstate *h)
933 if (hugepage_movable_supported(h))
934 return GFP_HIGHUSER_MOVABLE;
935 else
936 return GFP_HIGHUSER;
939 static struct page *dequeue_huge_page_vma(struct hstate *h,
940 struct vm_area_struct *vma,
941 unsigned long address, int avoid_reserve,
942 long chg)
944 struct page *page;
945 struct mempolicy *mpol;
946 gfp_t gfp_mask;
947 nodemask_t *nodemask;
948 int nid;
951 * A child process with MAP_PRIVATE mappings created by their parent
952 * have no page reserves. This check ensures that reservations are
953 * not "stolen". The child may still get SIGKILLed
955 if (!vma_has_reserves(vma, chg) &&
956 h->free_huge_pages - h->resv_huge_pages == 0)
957 goto err;
959 /* If reserves cannot be used, ensure enough pages are in the pool */
960 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
961 goto err;
963 gfp_mask = htlb_alloc_mask(h);
964 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
965 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
966 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
967 SetPagePrivate(page);
968 h->resv_huge_pages--;
971 mpol_cond_put(mpol);
972 return page;
974 err:
975 return NULL;
979 * common helper functions for hstate_next_node_to_{alloc|free}.
980 * We may have allocated or freed a huge page based on a different
981 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
982 * be outside of *nodes_allowed. Ensure that we use an allowed
983 * node for alloc or free.
985 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
987 nid = next_node_in(nid, *nodes_allowed);
988 VM_BUG_ON(nid >= MAX_NUMNODES);
990 return nid;
993 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
995 if (!node_isset(nid, *nodes_allowed))
996 nid = next_node_allowed(nid, nodes_allowed);
997 return nid;
1001 * returns the previously saved node ["this node"] from which to
1002 * allocate a persistent huge page for the pool and advance the
1003 * next node from which to allocate, handling wrap at end of node
1004 * mask.
1006 static int hstate_next_node_to_alloc(struct hstate *h,
1007 nodemask_t *nodes_allowed)
1009 int nid;
1011 VM_BUG_ON(!nodes_allowed);
1013 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1014 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1016 return nid;
1020 * helper for free_pool_huge_page() - return the previously saved
1021 * node ["this node"] from which to free a huge page. Advance the
1022 * next node id whether or not we find a free huge page to free so
1023 * that the next attempt to free addresses the next node.
1025 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1027 int nid;
1029 VM_BUG_ON(!nodes_allowed);
1031 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1032 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1034 return nid;
1037 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1038 for (nr_nodes = nodes_weight(*mask); \
1039 nr_nodes > 0 && \
1040 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1041 nr_nodes--)
1043 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1044 for (nr_nodes = nodes_weight(*mask); \
1045 nr_nodes > 0 && \
1046 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1047 nr_nodes--)
1049 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1050 static void destroy_compound_gigantic_page(struct page *page,
1051 unsigned int order)
1053 int i;
1054 int nr_pages = 1 << order;
1055 struct page *p = page + 1;
1057 atomic_set(compound_mapcount_ptr(page), 0);
1058 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1059 clear_compound_head(p);
1060 set_page_refcounted(p);
1063 set_compound_order(page, 0);
1064 __ClearPageHead(page);
1067 static void free_gigantic_page(struct page *page, unsigned int order)
1069 free_contig_range(page_to_pfn(page), 1 << order);
1072 #ifdef CONFIG_CONTIG_ALLOC
1073 static int __alloc_gigantic_page(unsigned long start_pfn,
1074 unsigned long nr_pages, gfp_t gfp_mask)
1076 unsigned long end_pfn = start_pfn + nr_pages;
1077 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1078 gfp_mask);
1081 static bool pfn_range_valid_gigantic(struct zone *z,
1082 unsigned long start_pfn, unsigned long nr_pages)
1084 unsigned long i, end_pfn = start_pfn + nr_pages;
1085 struct page *page;
1087 for (i = start_pfn; i < end_pfn; i++) {
1088 page = pfn_to_online_page(i);
1089 if (!page)
1090 return false;
1092 if (page_zone(page) != z)
1093 return false;
1095 if (PageReserved(page))
1096 return false;
1098 if (page_count(page) > 0)
1099 return false;
1101 if (PageHuge(page))
1102 return false;
1105 return true;
1108 static bool zone_spans_last_pfn(const struct zone *zone,
1109 unsigned long start_pfn, unsigned long nr_pages)
1111 unsigned long last_pfn = start_pfn + nr_pages - 1;
1112 return zone_spans_pfn(zone, last_pfn);
1115 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1116 int nid, nodemask_t *nodemask)
1118 unsigned int order = huge_page_order(h);
1119 unsigned long nr_pages = 1 << order;
1120 unsigned long ret, pfn, flags;
1121 struct zonelist *zonelist;
1122 struct zone *zone;
1123 struct zoneref *z;
1125 zonelist = node_zonelist(nid, gfp_mask);
1126 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1127 spin_lock_irqsave(&zone->lock, flags);
1129 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1130 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1131 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1133 * We release the zone lock here because
1134 * alloc_contig_range() will also lock the zone
1135 * at some point. If there's an allocation
1136 * spinning on this lock, it may win the race
1137 * and cause alloc_contig_range() to fail...
1139 spin_unlock_irqrestore(&zone->lock, flags);
1140 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1141 if (!ret)
1142 return pfn_to_page(pfn);
1143 spin_lock_irqsave(&zone->lock, flags);
1145 pfn += nr_pages;
1148 spin_unlock_irqrestore(&zone->lock, flags);
1151 return NULL;
1154 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1155 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1156 #else /* !CONFIG_CONTIG_ALLOC */
1157 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1158 int nid, nodemask_t *nodemask)
1160 return NULL;
1162 #endif /* CONFIG_CONTIG_ALLOC */
1164 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1165 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1166 int nid, nodemask_t *nodemask)
1168 return NULL;
1170 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1171 static inline void destroy_compound_gigantic_page(struct page *page,
1172 unsigned int order) { }
1173 #endif
1175 static void update_and_free_page(struct hstate *h, struct page *page)
1177 int i;
1179 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1180 return;
1182 h->nr_huge_pages--;
1183 h->nr_huge_pages_node[page_to_nid(page)]--;
1184 for (i = 0; i < pages_per_huge_page(h); i++) {
1185 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1186 1 << PG_referenced | 1 << PG_dirty |
1187 1 << PG_active | 1 << PG_private |
1188 1 << PG_writeback);
1190 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1191 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1192 set_page_refcounted(page);
1193 if (hstate_is_gigantic(h)) {
1194 destroy_compound_gigantic_page(page, huge_page_order(h));
1195 free_gigantic_page(page, huge_page_order(h));
1196 } else {
1197 __free_pages(page, huge_page_order(h));
1201 struct hstate *size_to_hstate(unsigned long size)
1203 struct hstate *h;
1205 for_each_hstate(h) {
1206 if (huge_page_size(h) == size)
1207 return h;
1209 return NULL;
1213 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1214 * to hstate->hugepage_activelist.)
1216 * This function can be called for tail pages, but never returns true for them.
1218 bool page_huge_active(struct page *page)
1220 VM_BUG_ON_PAGE(!PageHuge(page), page);
1221 return PageHead(page) && PagePrivate(&page[1]);
1224 /* never called for tail page */
1225 static void set_page_huge_active(struct page *page)
1227 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1228 SetPagePrivate(&page[1]);
1231 static void clear_page_huge_active(struct page *page)
1233 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1234 ClearPagePrivate(&page[1]);
1238 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1239 * code
1241 static inline bool PageHugeTemporary(struct page *page)
1243 if (!PageHuge(page))
1244 return false;
1246 return (unsigned long)page[2].mapping == -1U;
1249 static inline void SetPageHugeTemporary(struct page *page)
1251 page[2].mapping = (void *)-1U;
1254 static inline void ClearPageHugeTemporary(struct page *page)
1256 page[2].mapping = NULL;
1259 static void __free_huge_page(struct page *page)
1262 * Can't pass hstate in here because it is called from the
1263 * compound page destructor.
1265 struct hstate *h = page_hstate(page);
1266 int nid = page_to_nid(page);
1267 struct hugepage_subpool *spool =
1268 (struct hugepage_subpool *)page_private(page);
1269 bool restore_reserve;
1271 VM_BUG_ON_PAGE(page_count(page), page);
1272 VM_BUG_ON_PAGE(page_mapcount(page), page);
1274 set_page_private(page, 0);
1275 page->mapping = NULL;
1276 restore_reserve = PagePrivate(page);
1277 ClearPagePrivate(page);
1280 * If PagePrivate() was set on page, page allocation consumed a
1281 * reservation. If the page was associated with a subpool, there
1282 * would have been a page reserved in the subpool before allocation
1283 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1284 * reservtion, do not call hugepage_subpool_put_pages() as this will
1285 * remove the reserved page from the subpool.
1287 if (!restore_reserve) {
1289 * A return code of zero implies that the subpool will be
1290 * under its minimum size if the reservation is not restored
1291 * after page is free. Therefore, force restore_reserve
1292 * operation.
1294 if (hugepage_subpool_put_pages(spool, 1) == 0)
1295 restore_reserve = true;
1298 spin_lock(&hugetlb_lock);
1299 clear_page_huge_active(page);
1300 hugetlb_cgroup_uncharge_page(hstate_index(h),
1301 pages_per_huge_page(h), page);
1302 if (restore_reserve)
1303 h->resv_huge_pages++;
1305 if (PageHugeTemporary(page)) {
1306 list_del(&page->lru);
1307 ClearPageHugeTemporary(page);
1308 update_and_free_page(h, page);
1309 } else if (h->surplus_huge_pages_node[nid]) {
1310 /* remove the page from active list */
1311 list_del(&page->lru);
1312 update_and_free_page(h, page);
1313 h->surplus_huge_pages--;
1314 h->surplus_huge_pages_node[nid]--;
1315 } else {
1316 arch_clear_hugepage_flags(page);
1317 enqueue_huge_page(h, page);
1319 spin_unlock(&hugetlb_lock);
1323 * As free_huge_page() can be called from a non-task context, we have
1324 * to defer the actual freeing in a workqueue to prevent potential
1325 * hugetlb_lock deadlock.
1327 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1328 * be freed and frees them one-by-one. As the page->mapping pointer is
1329 * going to be cleared in __free_huge_page() anyway, it is reused as the
1330 * llist_node structure of a lockless linked list of huge pages to be freed.
1332 static LLIST_HEAD(hpage_freelist);
1334 static void free_hpage_workfn(struct work_struct *work)
1336 struct llist_node *node;
1337 struct page *page;
1339 node = llist_del_all(&hpage_freelist);
1341 while (node) {
1342 page = container_of((struct address_space **)node,
1343 struct page, mapping);
1344 node = node->next;
1345 __free_huge_page(page);
1348 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1350 void free_huge_page(struct page *page)
1353 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1355 if (!in_task()) {
1357 * Only call schedule_work() if hpage_freelist is previously
1358 * empty. Otherwise, schedule_work() had been called but the
1359 * workfn hasn't retrieved the list yet.
1361 if (llist_add((struct llist_node *)&page->mapping,
1362 &hpage_freelist))
1363 schedule_work(&free_hpage_work);
1364 return;
1367 __free_huge_page(page);
1370 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1372 INIT_LIST_HEAD(&page->lru);
1373 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1374 spin_lock(&hugetlb_lock);
1375 set_hugetlb_cgroup(page, NULL);
1376 h->nr_huge_pages++;
1377 h->nr_huge_pages_node[nid]++;
1378 spin_unlock(&hugetlb_lock);
1381 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1383 int i;
1384 int nr_pages = 1 << order;
1385 struct page *p = page + 1;
1387 /* we rely on prep_new_huge_page to set the destructor */
1388 set_compound_order(page, order);
1389 __ClearPageReserved(page);
1390 __SetPageHead(page);
1391 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1393 * For gigantic hugepages allocated through bootmem at
1394 * boot, it's safer to be consistent with the not-gigantic
1395 * hugepages and clear the PG_reserved bit from all tail pages
1396 * too. Otherwse drivers using get_user_pages() to access tail
1397 * pages may get the reference counting wrong if they see
1398 * PG_reserved set on a tail page (despite the head page not
1399 * having PG_reserved set). Enforcing this consistency between
1400 * head and tail pages allows drivers to optimize away a check
1401 * on the head page when they need know if put_page() is needed
1402 * after get_user_pages().
1404 __ClearPageReserved(p);
1405 set_page_count(p, 0);
1406 set_compound_head(p, page);
1408 atomic_set(compound_mapcount_ptr(page), -1);
1412 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1413 * transparent huge pages. See the PageTransHuge() documentation for more
1414 * details.
1416 int PageHuge(struct page *page)
1418 if (!PageCompound(page))
1419 return 0;
1421 page = compound_head(page);
1422 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1424 EXPORT_SYMBOL_GPL(PageHuge);
1427 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1428 * normal or transparent huge pages.
1430 int PageHeadHuge(struct page *page_head)
1432 if (!PageHead(page_head))
1433 return 0;
1435 return get_compound_page_dtor(page_head) == free_huge_page;
1438 pgoff_t __basepage_index(struct page *page)
1440 struct page *page_head = compound_head(page);
1441 pgoff_t index = page_index(page_head);
1442 unsigned long compound_idx;
1444 if (!PageHuge(page_head))
1445 return page_index(page);
1447 if (compound_order(page_head) >= MAX_ORDER)
1448 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1449 else
1450 compound_idx = page - page_head;
1452 return (index << compound_order(page_head)) + compound_idx;
1455 static struct page *alloc_buddy_huge_page(struct hstate *h,
1456 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1457 nodemask_t *node_alloc_noretry)
1459 int order = huge_page_order(h);
1460 struct page *page;
1461 bool alloc_try_hard = true;
1464 * By default we always try hard to allocate the page with
1465 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1466 * a loop (to adjust global huge page counts) and previous allocation
1467 * failed, do not continue to try hard on the same node. Use the
1468 * node_alloc_noretry bitmap to manage this state information.
1470 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1471 alloc_try_hard = false;
1472 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1473 if (alloc_try_hard)
1474 gfp_mask |= __GFP_RETRY_MAYFAIL;
1475 if (nid == NUMA_NO_NODE)
1476 nid = numa_mem_id();
1477 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1478 if (page)
1479 __count_vm_event(HTLB_BUDDY_PGALLOC);
1480 else
1481 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1484 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1485 * indicates an overall state change. Clear bit so that we resume
1486 * normal 'try hard' allocations.
1488 if (node_alloc_noretry && page && !alloc_try_hard)
1489 node_clear(nid, *node_alloc_noretry);
1492 * If we tried hard to get a page but failed, set bit so that
1493 * subsequent attempts will not try as hard until there is an
1494 * overall state change.
1496 if (node_alloc_noretry && !page && alloc_try_hard)
1497 node_set(nid, *node_alloc_noretry);
1499 return page;
1503 * Common helper to allocate a fresh hugetlb page. All specific allocators
1504 * should use this function to get new hugetlb pages
1506 static struct page *alloc_fresh_huge_page(struct hstate *h,
1507 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1508 nodemask_t *node_alloc_noretry)
1510 struct page *page;
1512 if (hstate_is_gigantic(h))
1513 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1514 else
1515 page = alloc_buddy_huge_page(h, gfp_mask,
1516 nid, nmask, node_alloc_noretry);
1517 if (!page)
1518 return NULL;
1520 if (hstate_is_gigantic(h))
1521 prep_compound_gigantic_page(page, huge_page_order(h));
1522 prep_new_huge_page(h, page, page_to_nid(page));
1524 return page;
1528 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1529 * manner.
1531 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1532 nodemask_t *node_alloc_noretry)
1534 struct page *page;
1535 int nr_nodes, node;
1536 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1538 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1539 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1540 node_alloc_noretry);
1541 if (page)
1542 break;
1545 if (!page)
1546 return 0;
1548 put_page(page); /* free it into the hugepage allocator */
1550 return 1;
1554 * Free huge page from pool from next node to free.
1555 * Attempt to keep persistent huge pages more or less
1556 * balanced over allowed nodes.
1557 * Called with hugetlb_lock locked.
1559 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1560 bool acct_surplus)
1562 int nr_nodes, node;
1563 int ret = 0;
1565 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1567 * If we're returning unused surplus pages, only examine
1568 * nodes with surplus pages.
1570 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1571 !list_empty(&h->hugepage_freelists[node])) {
1572 struct page *page =
1573 list_entry(h->hugepage_freelists[node].next,
1574 struct page, lru);
1575 list_del(&page->lru);
1576 h->free_huge_pages--;
1577 h->free_huge_pages_node[node]--;
1578 if (acct_surplus) {
1579 h->surplus_huge_pages--;
1580 h->surplus_huge_pages_node[node]--;
1582 update_and_free_page(h, page);
1583 ret = 1;
1584 break;
1588 return ret;
1592 * Dissolve a given free hugepage into free buddy pages. This function does
1593 * nothing for in-use hugepages and non-hugepages.
1594 * This function returns values like below:
1596 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1597 * (allocated or reserved.)
1598 * 0: successfully dissolved free hugepages or the page is not a
1599 * hugepage (considered as already dissolved)
1601 int dissolve_free_huge_page(struct page *page)
1603 int rc = -EBUSY;
1605 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1606 if (!PageHuge(page))
1607 return 0;
1609 spin_lock(&hugetlb_lock);
1610 if (!PageHuge(page)) {
1611 rc = 0;
1612 goto out;
1615 if (!page_count(page)) {
1616 struct page *head = compound_head(page);
1617 struct hstate *h = page_hstate(head);
1618 int nid = page_to_nid(head);
1619 if (h->free_huge_pages - h->resv_huge_pages == 0)
1620 goto out;
1622 * Move PageHWPoison flag from head page to the raw error page,
1623 * which makes any subpages rather than the error page reusable.
1625 if (PageHWPoison(head) && page != head) {
1626 SetPageHWPoison(page);
1627 ClearPageHWPoison(head);
1629 list_del(&head->lru);
1630 h->free_huge_pages--;
1631 h->free_huge_pages_node[nid]--;
1632 h->max_huge_pages--;
1633 update_and_free_page(h, head);
1634 rc = 0;
1636 out:
1637 spin_unlock(&hugetlb_lock);
1638 return rc;
1642 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1643 * make specified memory blocks removable from the system.
1644 * Note that this will dissolve a free gigantic hugepage completely, if any
1645 * part of it lies within the given range.
1646 * Also note that if dissolve_free_huge_page() returns with an error, all
1647 * free hugepages that were dissolved before that error are lost.
1649 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1651 unsigned long pfn;
1652 struct page *page;
1653 int rc = 0;
1655 if (!hugepages_supported())
1656 return rc;
1658 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1659 page = pfn_to_page(pfn);
1660 rc = dissolve_free_huge_page(page);
1661 if (rc)
1662 break;
1665 return rc;
1669 * Allocates a fresh surplus page from the page allocator.
1671 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1672 int nid, nodemask_t *nmask)
1674 struct page *page = NULL;
1676 if (hstate_is_gigantic(h))
1677 return NULL;
1679 spin_lock(&hugetlb_lock);
1680 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1681 goto out_unlock;
1682 spin_unlock(&hugetlb_lock);
1684 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1685 if (!page)
1686 return NULL;
1688 spin_lock(&hugetlb_lock);
1690 * We could have raced with the pool size change.
1691 * Double check that and simply deallocate the new page
1692 * if we would end up overcommiting the surpluses. Abuse
1693 * temporary page to workaround the nasty free_huge_page
1694 * codeflow
1696 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1697 SetPageHugeTemporary(page);
1698 spin_unlock(&hugetlb_lock);
1699 put_page(page);
1700 return NULL;
1701 } else {
1702 h->surplus_huge_pages++;
1703 h->surplus_huge_pages_node[page_to_nid(page)]++;
1706 out_unlock:
1707 spin_unlock(&hugetlb_lock);
1709 return page;
1712 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1713 int nid, nodemask_t *nmask)
1715 struct page *page;
1717 if (hstate_is_gigantic(h))
1718 return NULL;
1720 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1721 if (!page)
1722 return NULL;
1725 * We do not account these pages as surplus because they are only
1726 * temporary and will be released properly on the last reference
1728 SetPageHugeTemporary(page);
1730 return page;
1734 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1736 static
1737 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1738 struct vm_area_struct *vma, unsigned long addr)
1740 struct page *page;
1741 struct mempolicy *mpol;
1742 gfp_t gfp_mask = htlb_alloc_mask(h);
1743 int nid;
1744 nodemask_t *nodemask;
1746 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1747 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1748 mpol_cond_put(mpol);
1750 return page;
1753 /* page migration callback function */
1754 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1756 gfp_t gfp_mask = htlb_alloc_mask(h);
1757 struct page *page = NULL;
1759 if (nid != NUMA_NO_NODE)
1760 gfp_mask |= __GFP_THISNODE;
1762 spin_lock(&hugetlb_lock);
1763 if (h->free_huge_pages - h->resv_huge_pages > 0)
1764 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1765 spin_unlock(&hugetlb_lock);
1767 if (!page)
1768 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1770 return page;
1773 /* page migration callback function */
1774 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1775 nodemask_t *nmask)
1777 gfp_t gfp_mask = htlb_alloc_mask(h);
1779 spin_lock(&hugetlb_lock);
1780 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1781 struct page *page;
1783 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1784 if (page) {
1785 spin_unlock(&hugetlb_lock);
1786 return page;
1789 spin_unlock(&hugetlb_lock);
1791 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1794 /* mempolicy aware migration callback */
1795 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1796 unsigned long address)
1798 struct mempolicy *mpol;
1799 nodemask_t *nodemask;
1800 struct page *page;
1801 gfp_t gfp_mask;
1802 int node;
1804 gfp_mask = htlb_alloc_mask(h);
1805 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1806 page = alloc_huge_page_nodemask(h, node, nodemask);
1807 mpol_cond_put(mpol);
1809 return page;
1813 * Increase the hugetlb pool such that it can accommodate a reservation
1814 * of size 'delta'.
1816 static int gather_surplus_pages(struct hstate *h, int delta)
1818 struct list_head surplus_list;
1819 struct page *page, *tmp;
1820 int ret, i;
1821 int needed, allocated;
1822 bool alloc_ok = true;
1824 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1825 if (needed <= 0) {
1826 h->resv_huge_pages += delta;
1827 return 0;
1830 allocated = 0;
1831 INIT_LIST_HEAD(&surplus_list);
1833 ret = -ENOMEM;
1834 retry:
1835 spin_unlock(&hugetlb_lock);
1836 for (i = 0; i < needed; i++) {
1837 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1838 NUMA_NO_NODE, NULL);
1839 if (!page) {
1840 alloc_ok = false;
1841 break;
1843 list_add(&page->lru, &surplus_list);
1844 cond_resched();
1846 allocated += i;
1849 * After retaking hugetlb_lock, we need to recalculate 'needed'
1850 * because either resv_huge_pages or free_huge_pages may have changed.
1852 spin_lock(&hugetlb_lock);
1853 needed = (h->resv_huge_pages + delta) -
1854 (h->free_huge_pages + allocated);
1855 if (needed > 0) {
1856 if (alloc_ok)
1857 goto retry;
1859 * We were not able to allocate enough pages to
1860 * satisfy the entire reservation so we free what
1861 * we've allocated so far.
1863 goto free;
1866 * The surplus_list now contains _at_least_ the number of extra pages
1867 * needed to accommodate the reservation. Add the appropriate number
1868 * of pages to the hugetlb pool and free the extras back to the buddy
1869 * allocator. Commit the entire reservation here to prevent another
1870 * process from stealing the pages as they are added to the pool but
1871 * before they are reserved.
1873 needed += allocated;
1874 h->resv_huge_pages += delta;
1875 ret = 0;
1877 /* Free the needed pages to the hugetlb pool */
1878 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1879 if ((--needed) < 0)
1880 break;
1882 * This page is now managed by the hugetlb allocator and has
1883 * no users -- drop the buddy allocator's reference.
1885 put_page_testzero(page);
1886 VM_BUG_ON_PAGE(page_count(page), page);
1887 enqueue_huge_page(h, page);
1889 free:
1890 spin_unlock(&hugetlb_lock);
1892 /* Free unnecessary surplus pages to the buddy allocator */
1893 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1894 put_page(page);
1895 spin_lock(&hugetlb_lock);
1897 return ret;
1901 * This routine has two main purposes:
1902 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1903 * in unused_resv_pages. This corresponds to the prior adjustments made
1904 * to the associated reservation map.
1905 * 2) Free any unused surplus pages that may have been allocated to satisfy
1906 * the reservation. As many as unused_resv_pages may be freed.
1908 * Called with hugetlb_lock held. However, the lock could be dropped (and
1909 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1910 * we must make sure nobody else can claim pages we are in the process of
1911 * freeing. Do this by ensuring resv_huge_page always is greater than the
1912 * number of huge pages we plan to free when dropping the lock.
1914 static void return_unused_surplus_pages(struct hstate *h,
1915 unsigned long unused_resv_pages)
1917 unsigned long nr_pages;
1919 /* Cannot return gigantic pages currently */
1920 if (hstate_is_gigantic(h))
1921 goto out;
1924 * Part (or even all) of the reservation could have been backed
1925 * by pre-allocated pages. Only free surplus pages.
1927 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1930 * We want to release as many surplus pages as possible, spread
1931 * evenly across all nodes with memory. Iterate across these nodes
1932 * until we can no longer free unreserved surplus pages. This occurs
1933 * when the nodes with surplus pages have no free pages.
1934 * free_pool_huge_page() will balance the the freed pages across the
1935 * on-line nodes with memory and will handle the hstate accounting.
1937 * Note that we decrement resv_huge_pages as we free the pages. If
1938 * we drop the lock, resv_huge_pages will still be sufficiently large
1939 * to cover subsequent pages we may free.
1941 while (nr_pages--) {
1942 h->resv_huge_pages--;
1943 unused_resv_pages--;
1944 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1945 goto out;
1946 cond_resched_lock(&hugetlb_lock);
1949 out:
1950 /* Fully uncommit the reservation */
1951 h->resv_huge_pages -= unused_resv_pages;
1956 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1957 * are used by the huge page allocation routines to manage reservations.
1959 * vma_needs_reservation is called to determine if the huge page at addr
1960 * within the vma has an associated reservation. If a reservation is
1961 * needed, the value 1 is returned. The caller is then responsible for
1962 * managing the global reservation and subpool usage counts. After
1963 * the huge page has been allocated, vma_commit_reservation is called
1964 * to add the page to the reservation map. If the page allocation fails,
1965 * the reservation must be ended instead of committed. vma_end_reservation
1966 * is called in such cases.
1968 * In the normal case, vma_commit_reservation returns the same value
1969 * as the preceding vma_needs_reservation call. The only time this
1970 * is not the case is if a reserve map was changed between calls. It
1971 * is the responsibility of the caller to notice the difference and
1972 * take appropriate action.
1974 * vma_add_reservation is used in error paths where a reservation must
1975 * be restored when a newly allocated huge page must be freed. It is
1976 * to be called after calling vma_needs_reservation to determine if a
1977 * reservation exists.
1979 enum vma_resv_mode {
1980 VMA_NEEDS_RESV,
1981 VMA_COMMIT_RESV,
1982 VMA_END_RESV,
1983 VMA_ADD_RESV,
1985 static long __vma_reservation_common(struct hstate *h,
1986 struct vm_area_struct *vma, unsigned long addr,
1987 enum vma_resv_mode mode)
1989 struct resv_map *resv;
1990 pgoff_t idx;
1991 long ret;
1993 resv = vma_resv_map(vma);
1994 if (!resv)
1995 return 1;
1997 idx = vma_hugecache_offset(h, vma, addr);
1998 switch (mode) {
1999 case VMA_NEEDS_RESV:
2000 ret = region_chg(resv, idx, idx + 1);
2001 break;
2002 case VMA_COMMIT_RESV:
2003 ret = region_add(resv, idx, idx + 1);
2004 break;
2005 case VMA_END_RESV:
2006 region_abort(resv, idx, idx + 1);
2007 ret = 0;
2008 break;
2009 case VMA_ADD_RESV:
2010 if (vma->vm_flags & VM_MAYSHARE)
2011 ret = region_add(resv, idx, idx + 1);
2012 else {
2013 region_abort(resv, idx, idx + 1);
2014 ret = region_del(resv, idx, idx + 1);
2016 break;
2017 default:
2018 BUG();
2021 if (vma->vm_flags & VM_MAYSHARE)
2022 return ret;
2023 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2025 * In most cases, reserves always exist for private mappings.
2026 * However, a file associated with mapping could have been
2027 * hole punched or truncated after reserves were consumed.
2028 * As subsequent fault on such a range will not use reserves.
2029 * Subtle - The reserve map for private mappings has the
2030 * opposite meaning than that of shared mappings. If NO
2031 * entry is in the reserve map, it means a reservation exists.
2032 * If an entry exists in the reserve map, it means the
2033 * reservation has already been consumed. As a result, the
2034 * return value of this routine is the opposite of the
2035 * value returned from reserve map manipulation routines above.
2037 if (ret)
2038 return 0;
2039 else
2040 return 1;
2042 else
2043 return ret < 0 ? ret : 0;
2046 static long vma_needs_reservation(struct hstate *h,
2047 struct vm_area_struct *vma, unsigned long addr)
2049 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2052 static long vma_commit_reservation(struct hstate *h,
2053 struct vm_area_struct *vma, unsigned long addr)
2055 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2058 static void vma_end_reservation(struct hstate *h,
2059 struct vm_area_struct *vma, unsigned long addr)
2061 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2064 static long vma_add_reservation(struct hstate *h,
2065 struct vm_area_struct *vma, unsigned long addr)
2067 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2071 * This routine is called to restore a reservation on error paths. In the
2072 * specific error paths, a huge page was allocated (via alloc_huge_page)
2073 * and is about to be freed. If a reservation for the page existed,
2074 * alloc_huge_page would have consumed the reservation and set PagePrivate
2075 * in the newly allocated page. When the page is freed via free_huge_page,
2076 * the global reservation count will be incremented if PagePrivate is set.
2077 * However, free_huge_page can not adjust the reserve map. Adjust the
2078 * reserve map here to be consistent with global reserve count adjustments
2079 * to be made by free_huge_page.
2081 static void restore_reserve_on_error(struct hstate *h,
2082 struct vm_area_struct *vma, unsigned long address,
2083 struct page *page)
2085 if (unlikely(PagePrivate(page))) {
2086 long rc = vma_needs_reservation(h, vma, address);
2088 if (unlikely(rc < 0)) {
2090 * Rare out of memory condition in reserve map
2091 * manipulation. Clear PagePrivate so that
2092 * global reserve count will not be incremented
2093 * by free_huge_page. This will make it appear
2094 * as though the reservation for this page was
2095 * consumed. This may prevent the task from
2096 * faulting in the page at a later time. This
2097 * is better than inconsistent global huge page
2098 * accounting of reserve counts.
2100 ClearPagePrivate(page);
2101 } else if (rc) {
2102 rc = vma_add_reservation(h, vma, address);
2103 if (unlikely(rc < 0))
2105 * See above comment about rare out of
2106 * memory condition.
2108 ClearPagePrivate(page);
2109 } else
2110 vma_end_reservation(h, vma, address);
2114 struct page *alloc_huge_page(struct vm_area_struct *vma,
2115 unsigned long addr, int avoid_reserve)
2117 struct hugepage_subpool *spool = subpool_vma(vma);
2118 struct hstate *h = hstate_vma(vma);
2119 struct page *page;
2120 long map_chg, map_commit;
2121 long gbl_chg;
2122 int ret, idx;
2123 struct hugetlb_cgroup *h_cg;
2125 idx = hstate_index(h);
2127 * Examine the region/reserve map to determine if the process
2128 * has a reservation for the page to be allocated. A return
2129 * code of zero indicates a reservation exists (no change).
2131 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2132 if (map_chg < 0)
2133 return ERR_PTR(-ENOMEM);
2136 * Processes that did not create the mapping will have no
2137 * reserves as indicated by the region/reserve map. Check
2138 * that the allocation will not exceed the subpool limit.
2139 * Allocations for MAP_NORESERVE mappings also need to be
2140 * checked against any subpool limit.
2142 if (map_chg || avoid_reserve) {
2143 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2144 if (gbl_chg < 0) {
2145 vma_end_reservation(h, vma, addr);
2146 return ERR_PTR(-ENOSPC);
2150 * Even though there was no reservation in the region/reserve
2151 * map, there could be reservations associated with the
2152 * subpool that can be used. This would be indicated if the
2153 * return value of hugepage_subpool_get_pages() is zero.
2154 * However, if avoid_reserve is specified we still avoid even
2155 * the subpool reservations.
2157 if (avoid_reserve)
2158 gbl_chg = 1;
2161 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2162 if (ret)
2163 goto out_subpool_put;
2165 spin_lock(&hugetlb_lock);
2167 * glb_chg is passed to indicate whether or not a page must be taken
2168 * from the global free pool (global change). gbl_chg == 0 indicates
2169 * a reservation exists for the allocation.
2171 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2172 if (!page) {
2173 spin_unlock(&hugetlb_lock);
2174 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2175 if (!page)
2176 goto out_uncharge_cgroup;
2177 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2178 SetPagePrivate(page);
2179 h->resv_huge_pages--;
2181 spin_lock(&hugetlb_lock);
2182 list_move(&page->lru, &h->hugepage_activelist);
2183 /* Fall through */
2185 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2186 spin_unlock(&hugetlb_lock);
2188 set_page_private(page, (unsigned long)spool);
2190 map_commit = vma_commit_reservation(h, vma, addr);
2191 if (unlikely(map_chg > map_commit)) {
2193 * The page was added to the reservation map between
2194 * vma_needs_reservation and vma_commit_reservation.
2195 * This indicates a race with hugetlb_reserve_pages.
2196 * Adjust for the subpool count incremented above AND
2197 * in hugetlb_reserve_pages for the same page. Also,
2198 * the reservation count added in hugetlb_reserve_pages
2199 * no longer applies.
2201 long rsv_adjust;
2203 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2204 hugetlb_acct_memory(h, -rsv_adjust);
2206 return page;
2208 out_uncharge_cgroup:
2209 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2210 out_subpool_put:
2211 if (map_chg || avoid_reserve)
2212 hugepage_subpool_put_pages(spool, 1);
2213 vma_end_reservation(h, vma, addr);
2214 return ERR_PTR(-ENOSPC);
2217 int alloc_bootmem_huge_page(struct hstate *h)
2218 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2219 int __alloc_bootmem_huge_page(struct hstate *h)
2221 struct huge_bootmem_page *m;
2222 int nr_nodes, node;
2224 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2225 void *addr;
2227 addr = memblock_alloc_try_nid_raw(
2228 huge_page_size(h), huge_page_size(h),
2229 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2230 if (addr) {
2232 * Use the beginning of the huge page to store the
2233 * huge_bootmem_page struct (until gather_bootmem
2234 * puts them into the mem_map).
2236 m = addr;
2237 goto found;
2240 return 0;
2242 found:
2243 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2244 /* Put them into a private list first because mem_map is not up yet */
2245 INIT_LIST_HEAD(&m->list);
2246 list_add(&m->list, &huge_boot_pages);
2247 m->hstate = h;
2248 return 1;
2251 static void __init prep_compound_huge_page(struct page *page,
2252 unsigned int order)
2254 if (unlikely(order > (MAX_ORDER - 1)))
2255 prep_compound_gigantic_page(page, order);
2256 else
2257 prep_compound_page(page, order);
2260 /* Put bootmem huge pages into the standard lists after mem_map is up */
2261 static void __init gather_bootmem_prealloc(void)
2263 struct huge_bootmem_page *m;
2265 list_for_each_entry(m, &huge_boot_pages, list) {
2266 struct page *page = virt_to_page(m);
2267 struct hstate *h = m->hstate;
2269 WARN_ON(page_count(page) != 1);
2270 prep_compound_huge_page(page, h->order);
2271 WARN_ON(PageReserved(page));
2272 prep_new_huge_page(h, page, page_to_nid(page));
2273 put_page(page); /* free it into the hugepage allocator */
2276 * If we had gigantic hugepages allocated at boot time, we need
2277 * to restore the 'stolen' pages to totalram_pages in order to
2278 * fix confusing memory reports from free(1) and another
2279 * side-effects, like CommitLimit going negative.
2281 if (hstate_is_gigantic(h))
2282 adjust_managed_page_count(page, 1 << h->order);
2283 cond_resched();
2287 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2289 unsigned long i;
2290 nodemask_t *node_alloc_noretry;
2292 if (!hstate_is_gigantic(h)) {
2294 * Bit mask controlling how hard we retry per-node allocations.
2295 * Ignore errors as lower level routines can deal with
2296 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2297 * time, we are likely in bigger trouble.
2299 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2300 GFP_KERNEL);
2301 } else {
2302 /* allocations done at boot time */
2303 node_alloc_noretry = NULL;
2306 /* bit mask controlling how hard we retry per-node allocations */
2307 if (node_alloc_noretry)
2308 nodes_clear(*node_alloc_noretry);
2310 for (i = 0; i < h->max_huge_pages; ++i) {
2311 if (hstate_is_gigantic(h)) {
2312 if (!alloc_bootmem_huge_page(h))
2313 break;
2314 } else if (!alloc_pool_huge_page(h,
2315 &node_states[N_MEMORY],
2316 node_alloc_noretry))
2317 break;
2318 cond_resched();
2320 if (i < h->max_huge_pages) {
2321 char buf[32];
2323 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2324 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2325 h->max_huge_pages, buf, i);
2326 h->max_huge_pages = i;
2329 kfree(node_alloc_noretry);
2332 static void __init hugetlb_init_hstates(void)
2334 struct hstate *h;
2336 for_each_hstate(h) {
2337 if (minimum_order > huge_page_order(h))
2338 minimum_order = huge_page_order(h);
2340 /* oversize hugepages were init'ed in early boot */
2341 if (!hstate_is_gigantic(h))
2342 hugetlb_hstate_alloc_pages(h);
2344 VM_BUG_ON(minimum_order == UINT_MAX);
2347 static void __init report_hugepages(void)
2349 struct hstate *h;
2351 for_each_hstate(h) {
2352 char buf[32];
2354 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2355 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2356 buf, h->free_huge_pages);
2360 #ifdef CONFIG_HIGHMEM
2361 static void try_to_free_low(struct hstate *h, unsigned long count,
2362 nodemask_t *nodes_allowed)
2364 int i;
2366 if (hstate_is_gigantic(h))
2367 return;
2369 for_each_node_mask(i, *nodes_allowed) {
2370 struct page *page, *next;
2371 struct list_head *freel = &h->hugepage_freelists[i];
2372 list_for_each_entry_safe(page, next, freel, lru) {
2373 if (count >= h->nr_huge_pages)
2374 return;
2375 if (PageHighMem(page))
2376 continue;
2377 list_del(&page->lru);
2378 update_and_free_page(h, page);
2379 h->free_huge_pages--;
2380 h->free_huge_pages_node[page_to_nid(page)]--;
2384 #else
2385 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2386 nodemask_t *nodes_allowed)
2389 #endif
2392 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2393 * balanced by operating on them in a round-robin fashion.
2394 * Returns 1 if an adjustment was made.
2396 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2397 int delta)
2399 int nr_nodes, node;
2401 VM_BUG_ON(delta != -1 && delta != 1);
2403 if (delta < 0) {
2404 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2405 if (h->surplus_huge_pages_node[node])
2406 goto found;
2408 } else {
2409 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2410 if (h->surplus_huge_pages_node[node] <
2411 h->nr_huge_pages_node[node])
2412 goto found;
2415 return 0;
2417 found:
2418 h->surplus_huge_pages += delta;
2419 h->surplus_huge_pages_node[node] += delta;
2420 return 1;
2423 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2424 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2425 nodemask_t *nodes_allowed)
2427 unsigned long min_count, ret;
2428 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2431 * Bit mask controlling how hard we retry per-node allocations.
2432 * If we can not allocate the bit mask, do not attempt to allocate
2433 * the requested huge pages.
2435 if (node_alloc_noretry)
2436 nodes_clear(*node_alloc_noretry);
2437 else
2438 return -ENOMEM;
2440 spin_lock(&hugetlb_lock);
2443 * Check for a node specific request.
2444 * Changing node specific huge page count may require a corresponding
2445 * change to the global count. In any case, the passed node mask
2446 * (nodes_allowed) will restrict alloc/free to the specified node.
2448 if (nid != NUMA_NO_NODE) {
2449 unsigned long old_count = count;
2451 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2453 * User may have specified a large count value which caused the
2454 * above calculation to overflow. In this case, they wanted
2455 * to allocate as many huge pages as possible. Set count to
2456 * largest possible value to align with their intention.
2458 if (count < old_count)
2459 count = ULONG_MAX;
2463 * Gigantic pages runtime allocation depend on the capability for large
2464 * page range allocation.
2465 * If the system does not provide this feature, return an error when
2466 * the user tries to allocate gigantic pages but let the user free the
2467 * boottime allocated gigantic pages.
2469 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2470 if (count > persistent_huge_pages(h)) {
2471 spin_unlock(&hugetlb_lock);
2472 NODEMASK_FREE(node_alloc_noretry);
2473 return -EINVAL;
2475 /* Fall through to decrease pool */
2479 * Increase the pool size
2480 * First take pages out of surplus state. Then make up the
2481 * remaining difference by allocating fresh huge pages.
2483 * We might race with alloc_surplus_huge_page() here and be unable
2484 * to convert a surplus huge page to a normal huge page. That is
2485 * not critical, though, it just means the overall size of the
2486 * pool might be one hugepage larger than it needs to be, but
2487 * within all the constraints specified by the sysctls.
2489 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2490 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2491 break;
2494 while (count > persistent_huge_pages(h)) {
2496 * If this allocation races such that we no longer need the
2497 * page, free_huge_page will handle it by freeing the page
2498 * and reducing the surplus.
2500 spin_unlock(&hugetlb_lock);
2502 /* yield cpu to avoid soft lockup */
2503 cond_resched();
2505 ret = alloc_pool_huge_page(h, nodes_allowed,
2506 node_alloc_noretry);
2507 spin_lock(&hugetlb_lock);
2508 if (!ret)
2509 goto out;
2511 /* Bail for signals. Probably ctrl-c from user */
2512 if (signal_pending(current))
2513 goto out;
2517 * Decrease the pool size
2518 * First return free pages to the buddy allocator (being careful
2519 * to keep enough around to satisfy reservations). Then place
2520 * pages into surplus state as needed so the pool will shrink
2521 * to the desired size as pages become free.
2523 * By placing pages into the surplus state independent of the
2524 * overcommit value, we are allowing the surplus pool size to
2525 * exceed overcommit. There are few sane options here. Since
2526 * alloc_surplus_huge_page() is checking the global counter,
2527 * though, we'll note that we're not allowed to exceed surplus
2528 * and won't grow the pool anywhere else. Not until one of the
2529 * sysctls are changed, or the surplus pages go out of use.
2531 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2532 min_count = max(count, min_count);
2533 try_to_free_low(h, min_count, nodes_allowed);
2534 while (min_count < persistent_huge_pages(h)) {
2535 if (!free_pool_huge_page(h, nodes_allowed, 0))
2536 break;
2537 cond_resched_lock(&hugetlb_lock);
2539 while (count < persistent_huge_pages(h)) {
2540 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2541 break;
2543 out:
2544 h->max_huge_pages = persistent_huge_pages(h);
2545 spin_unlock(&hugetlb_lock);
2547 NODEMASK_FREE(node_alloc_noretry);
2549 return 0;
2552 #define HSTATE_ATTR_RO(_name) \
2553 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2555 #define HSTATE_ATTR(_name) \
2556 static struct kobj_attribute _name##_attr = \
2557 __ATTR(_name, 0644, _name##_show, _name##_store)
2559 static struct kobject *hugepages_kobj;
2560 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2562 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2564 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2566 int i;
2568 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2569 if (hstate_kobjs[i] == kobj) {
2570 if (nidp)
2571 *nidp = NUMA_NO_NODE;
2572 return &hstates[i];
2575 return kobj_to_node_hstate(kobj, nidp);
2578 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2579 struct kobj_attribute *attr, char *buf)
2581 struct hstate *h;
2582 unsigned long nr_huge_pages;
2583 int nid;
2585 h = kobj_to_hstate(kobj, &nid);
2586 if (nid == NUMA_NO_NODE)
2587 nr_huge_pages = h->nr_huge_pages;
2588 else
2589 nr_huge_pages = h->nr_huge_pages_node[nid];
2591 return sprintf(buf, "%lu\n", nr_huge_pages);
2594 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2595 struct hstate *h, int nid,
2596 unsigned long count, size_t len)
2598 int err;
2599 nodemask_t nodes_allowed, *n_mask;
2601 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2602 return -EINVAL;
2604 if (nid == NUMA_NO_NODE) {
2606 * global hstate attribute
2608 if (!(obey_mempolicy &&
2609 init_nodemask_of_mempolicy(&nodes_allowed)))
2610 n_mask = &node_states[N_MEMORY];
2611 else
2612 n_mask = &nodes_allowed;
2613 } else {
2615 * Node specific request. count adjustment happens in
2616 * set_max_huge_pages() after acquiring hugetlb_lock.
2618 init_nodemask_of_node(&nodes_allowed, nid);
2619 n_mask = &nodes_allowed;
2622 err = set_max_huge_pages(h, count, nid, n_mask);
2624 return err ? err : len;
2627 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2628 struct kobject *kobj, const char *buf,
2629 size_t len)
2631 struct hstate *h;
2632 unsigned long count;
2633 int nid;
2634 int err;
2636 err = kstrtoul(buf, 10, &count);
2637 if (err)
2638 return err;
2640 h = kobj_to_hstate(kobj, &nid);
2641 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2644 static ssize_t nr_hugepages_show(struct kobject *kobj,
2645 struct kobj_attribute *attr, char *buf)
2647 return nr_hugepages_show_common(kobj, attr, buf);
2650 static ssize_t nr_hugepages_store(struct kobject *kobj,
2651 struct kobj_attribute *attr, const char *buf, size_t len)
2653 return nr_hugepages_store_common(false, kobj, buf, len);
2655 HSTATE_ATTR(nr_hugepages);
2657 #ifdef CONFIG_NUMA
2660 * hstate attribute for optionally mempolicy-based constraint on persistent
2661 * huge page alloc/free.
2663 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2664 struct kobj_attribute *attr, char *buf)
2666 return nr_hugepages_show_common(kobj, attr, buf);
2669 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2670 struct kobj_attribute *attr, const char *buf, size_t len)
2672 return nr_hugepages_store_common(true, kobj, buf, len);
2674 HSTATE_ATTR(nr_hugepages_mempolicy);
2675 #endif
2678 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2679 struct kobj_attribute *attr, char *buf)
2681 struct hstate *h = kobj_to_hstate(kobj, NULL);
2682 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2685 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2686 struct kobj_attribute *attr, const char *buf, size_t count)
2688 int err;
2689 unsigned long input;
2690 struct hstate *h = kobj_to_hstate(kobj, NULL);
2692 if (hstate_is_gigantic(h))
2693 return -EINVAL;
2695 err = kstrtoul(buf, 10, &input);
2696 if (err)
2697 return err;
2699 spin_lock(&hugetlb_lock);
2700 h->nr_overcommit_huge_pages = input;
2701 spin_unlock(&hugetlb_lock);
2703 return count;
2705 HSTATE_ATTR(nr_overcommit_hugepages);
2707 static ssize_t free_hugepages_show(struct kobject *kobj,
2708 struct kobj_attribute *attr, char *buf)
2710 struct hstate *h;
2711 unsigned long free_huge_pages;
2712 int nid;
2714 h = kobj_to_hstate(kobj, &nid);
2715 if (nid == NUMA_NO_NODE)
2716 free_huge_pages = h->free_huge_pages;
2717 else
2718 free_huge_pages = h->free_huge_pages_node[nid];
2720 return sprintf(buf, "%lu\n", free_huge_pages);
2722 HSTATE_ATTR_RO(free_hugepages);
2724 static ssize_t resv_hugepages_show(struct kobject *kobj,
2725 struct kobj_attribute *attr, char *buf)
2727 struct hstate *h = kobj_to_hstate(kobj, NULL);
2728 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2730 HSTATE_ATTR_RO(resv_hugepages);
2732 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2733 struct kobj_attribute *attr, char *buf)
2735 struct hstate *h;
2736 unsigned long surplus_huge_pages;
2737 int nid;
2739 h = kobj_to_hstate(kobj, &nid);
2740 if (nid == NUMA_NO_NODE)
2741 surplus_huge_pages = h->surplus_huge_pages;
2742 else
2743 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2745 return sprintf(buf, "%lu\n", surplus_huge_pages);
2747 HSTATE_ATTR_RO(surplus_hugepages);
2749 static struct attribute *hstate_attrs[] = {
2750 &nr_hugepages_attr.attr,
2751 &nr_overcommit_hugepages_attr.attr,
2752 &free_hugepages_attr.attr,
2753 &resv_hugepages_attr.attr,
2754 &surplus_hugepages_attr.attr,
2755 #ifdef CONFIG_NUMA
2756 &nr_hugepages_mempolicy_attr.attr,
2757 #endif
2758 NULL,
2761 static const struct attribute_group hstate_attr_group = {
2762 .attrs = hstate_attrs,
2765 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2766 struct kobject **hstate_kobjs,
2767 const struct attribute_group *hstate_attr_group)
2769 int retval;
2770 int hi = hstate_index(h);
2772 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2773 if (!hstate_kobjs[hi])
2774 return -ENOMEM;
2776 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2777 if (retval)
2778 kobject_put(hstate_kobjs[hi]);
2780 return retval;
2783 static void __init hugetlb_sysfs_init(void)
2785 struct hstate *h;
2786 int err;
2788 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2789 if (!hugepages_kobj)
2790 return;
2792 for_each_hstate(h) {
2793 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2794 hstate_kobjs, &hstate_attr_group);
2795 if (err)
2796 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2800 #ifdef CONFIG_NUMA
2803 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2804 * with node devices in node_devices[] using a parallel array. The array
2805 * index of a node device or _hstate == node id.
2806 * This is here to avoid any static dependency of the node device driver, in
2807 * the base kernel, on the hugetlb module.
2809 struct node_hstate {
2810 struct kobject *hugepages_kobj;
2811 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2813 static struct node_hstate node_hstates[MAX_NUMNODES];
2816 * A subset of global hstate attributes for node devices
2818 static struct attribute *per_node_hstate_attrs[] = {
2819 &nr_hugepages_attr.attr,
2820 &free_hugepages_attr.attr,
2821 &surplus_hugepages_attr.attr,
2822 NULL,
2825 static const struct attribute_group per_node_hstate_attr_group = {
2826 .attrs = per_node_hstate_attrs,
2830 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2831 * Returns node id via non-NULL nidp.
2833 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2835 int nid;
2837 for (nid = 0; nid < nr_node_ids; nid++) {
2838 struct node_hstate *nhs = &node_hstates[nid];
2839 int i;
2840 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2841 if (nhs->hstate_kobjs[i] == kobj) {
2842 if (nidp)
2843 *nidp = nid;
2844 return &hstates[i];
2848 BUG();
2849 return NULL;
2853 * Unregister hstate attributes from a single node device.
2854 * No-op if no hstate attributes attached.
2856 static void hugetlb_unregister_node(struct node *node)
2858 struct hstate *h;
2859 struct node_hstate *nhs = &node_hstates[node->dev.id];
2861 if (!nhs->hugepages_kobj)
2862 return; /* no hstate attributes */
2864 for_each_hstate(h) {
2865 int idx = hstate_index(h);
2866 if (nhs->hstate_kobjs[idx]) {
2867 kobject_put(nhs->hstate_kobjs[idx]);
2868 nhs->hstate_kobjs[idx] = NULL;
2872 kobject_put(nhs->hugepages_kobj);
2873 nhs->hugepages_kobj = NULL;
2878 * Register hstate attributes for a single node device.
2879 * No-op if attributes already registered.
2881 static void hugetlb_register_node(struct node *node)
2883 struct hstate *h;
2884 struct node_hstate *nhs = &node_hstates[node->dev.id];
2885 int err;
2887 if (nhs->hugepages_kobj)
2888 return; /* already allocated */
2890 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2891 &node->dev.kobj);
2892 if (!nhs->hugepages_kobj)
2893 return;
2895 for_each_hstate(h) {
2896 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2897 nhs->hstate_kobjs,
2898 &per_node_hstate_attr_group);
2899 if (err) {
2900 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2901 h->name, node->dev.id);
2902 hugetlb_unregister_node(node);
2903 break;
2909 * hugetlb init time: register hstate attributes for all registered node
2910 * devices of nodes that have memory. All on-line nodes should have
2911 * registered their associated device by this time.
2913 static void __init hugetlb_register_all_nodes(void)
2915 int nid;
2917 for_each_node_state(nid, N_MEMORY) {
2918 struct node *node = node_devices[nid];
2919 if (node->dev.id == nid)
2920 hugetlb_register_node(node);
2924 * Let the node device driver know we're here so it can
2925 * [un]register hstate attributes on node hotplug.
2927 register_hugetlbfs_with_node(hugetlb_register_node,
2928 hugetlb_unregister_node);
2930 #else /* !CONFIG_NUMA */
2932 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2934 BUG();
2935 if (nidp)
2936 *nidp = -1;
2937 return NULL;
2940 static void hugetlb_register_all_nodes(void) { }
2942 #endif
2944 static int __init hugetlb_init(void)
2946 int i;
2948 if (!hugepages_supported())
2949 return 0;
2951 if (!size_to_hstate(default_hstate_size)) {
2952 if (default_hstate_size != 0) {
2953 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2954 default_hstate_size, HPAGE_SIZE);
2957 default_hstate_size = HPAGE_SIZE;
2958 if (!size_to_hstate(default_hstate_size))
2959 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2961 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2962 if (default_hstate_max_huge_pages) {
2963 if (!default_hstate.max_huge_pages)
2964 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2967 hugetlb_init_hstates();
2968 gather_bootmem_prealloc();
2969 report_hugepages();
2971 hugetlb_sysfs_init();
2972 hugetlb_register_all_nodes();
2973 hugetlb_cgroup_file_init();
2975 #ifdef CONFIG_SMP
2976 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2977 #else
2978 num_fault_mutexes = 1;
2979 #endif
2980 hugetlb_fault_mutex_table =
2981 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2982 GFP_KERNEL);
2983 BUG_ON(!hugetlb_fault_mutex_table);
2985 for (i = 0; i < num_fault_mutexes; i++)
2986 mutex_init(&hugetlb_fault_mutex_table[i]);
2987 return 0;
2989 subsys_initcall(hugetlb_init);
2991 /* Should be called on processing a hugepagesz=... option */
2992 void __init hugetlb_bad_size(void)
2994 parsed_valid_hugepagesz = false;
2997 void __init hugetlb_add_hstate(unsigned int order)
2999 struct hstate *h;
3000 unsigned long i;
3002 if (size_to_hstate(PAGE_SIZE << order)) {
3003 pr_warn("hugepagesz= specified twice, ignoring\n");
3004 return;
3006 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3007 BUG_ON(order == 0);
3008 h = &hstates[hugetlb_max_hstate++];
3009 h->order = order;
3010 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3011 h->nr_huge_pages = 0;
3012 h->free_huge_pages = 0;
3013 for (i = 0; i < MAX_NUMNODES; ++i)
3014 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3015 INIT_LIST_HEAD(&h->hugepage_activelist);
3016 h->next_nid_to_alloc = first_memory_node;
3017 h->next_nid_to_free = first_memory_node;
3018 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3019 huge_page_size(h)/1024);
3021 parsed_hstate = h;
3024 static int __init hugetlb_nrpages_setup(char *s)
3026 unsigned long *mhp;
3027 static unsigned long *last_mhp;
3029 if (!parsed_valid_hugepagesz) {
3030 pr_warn("hugepages = %s preceded by "
3031 "an unsupported hugepagesz, ignoring\n", s);
3032 parsed_valid_hugepagesz = true;
3033 return 1;
3036 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
3037 * so this hugepages= parameter goes to the "default hstate".
3039 else if (!hugetlb_max_hstate)
3040 mhp = &default_hstate_max_huge_pages;
3041 else
3042 mhp = &parsed_hstate->max_huge_pages;
3044 if (mhp == last_mhp) {
3045 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
3046 return 1;
3049 if (sscanf(s, "%lu", mhp) <= 0)
3050 *mhp = 0;
3053 * Global state is always initialized later in hugetlb_init.
3054 * But we need to allocate >= MAX_ORDER hstates here early to still
3055 * use the bootmem allocator.
3057 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3058 hugetlb_hstate_alloc_pages(parsed_hstate);
3060 last_mhp = mhp;
3062 return 1;
3064 __setup("hugepages=", hugetlb_nrpages_setup);
3066 static int __init hugetlb_default_setup(char *s)
3068 default_hstate_size = memparse(s, &s);
3069 return 1;
3071 __setup("default_hugepagesz=", hugetlb_default_setup);
3073 static unsigned int cpuset_mems_nr(unsigned int *array)
3075 int node;
3076 unsigned int nr = 0;
3078 for_each_node_mask(node, cpuset_current_mems_allowed)
3079 nr += array[node];
3081 return nr;
3084 #ifdef CONFIG_SYSCTL
3085 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3086 struct ctl_table *table, int write,
3087 void __user *buffer, size_t *length, loff_t *ppos)
3089 struct hstate *h = &default_hstate;
3090 unsigned long tmp = h->max_huge_pages;
3091 int ret;
3093 if (!hugepages_supported())
3094 return -EOPNOTSUPP;
3096 table->data = &tmp;
3097 table->maxlen = sizeof(unsigned long);
3098 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3099 if (ret)
3100 goto out;
3102 if (write)
3103 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3104 NUMA_NO_NODE, tmp, *length);
3105 out:
3106 return ret;
3109 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3110 void __user *buffer, size_t *length, loff_t *ppos)
3113 return hugetlb_sysctl_handler_common(false, table, write,
3114 buffer, length, ppos);
3117 #ifdef CONFIG_NUMA
3118 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3119 void __user *buffer, size_t *length, loff_t *ppos)
3121 return hugetlb_sysctl_handler_common(true, table, write,
3122 buffer, length, ppos);
3124 #endif /* CONFIG_NUMA */
3126 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3127 void __user *buffer,
3128 size_t *length, loff_t *ppos)
3130 struct hstate *h = &default_hstate;
3131 unsigned long tmp;
3132 int ret;
3134 if (!hugepages_supported())
3135 return -EOPNOTSUPP;
3137 tmp = h->nr_overcommit_huge_pages;
3139 if (write && hstate_is_gigantic(h))
3140 return -EINVAL;
3142 table->data = &tmp;
3143 table->maxlen = sizeof(unsigned long);
3144 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3145 if (ret)
3146 goto out;
3148 if (write) {
3149 spin_lock(&hugetlb_lock);
3150 h->nr_overcommit_huge_pages = tmp;
3151 spin_unlock(&hugetlb_lock);
3153 out:
3154 return ret;
3157 #endif /* CONFIG_SYSCTL */
3159 void hugetlb_report_meminfo(struct seq_file *m)
3161 struct hstate *h;
3162 unsigned long total = 0;
3164 if (!hugepages_supported())
3165 return;
3167 for_each_hstate(h) {
3168 unsigned long count = h->nr_huge_pages;
3170 total += (PAGE_SIZE << huge_page_order(h)) * count;
3172 if (h == &default_hstate)
3173 seq_printf(m,
3174 "HugePages_Total: %5lu\n"
3175 "HugePages_Free: %5lu\n"
3176 "HugePages_Rsvd: %5lu\n"
3177 "HugePages_Surp: %5lu\n"
3178 "Hugepagesize: %8lu kB\n",
3179 count,
3180 h->free_huge_pages,
3181 h->resv_huge_pages,
3182 h->surplus_huge_pages,
3183 (PAGE_SIZE << huge_page_order(h)) / 1024);
3186 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3189 int hugetlb_report_node_meminfo(int nid, char *buf)
3191 struct hstate *h = &default_hstate;
3192 if (!hugepages_supported())
3193 return 0;
3194 return sprintf(buf,
3195 "Node %d HugePages_Total: %5u\n"
3196 "Node %d HugePages_Free: %5u\n"
3197 "Node %d HugePages_Surp: %5u\n",
3198 nid, h->nr_huge_pages_node[nid],
3199 nid, h->free_huge_pages_node[nid],
3200 nid, h->surplus_huge_pages_node[nid]);
3203 void hugetlb_show_meminfo(void)
3205 struct hstate *h;
3206 int nid;
3208 if (!hugepages_supported())
3209 return;
3211 for_each_node_state(nid, N_MEMORY)
3212 for_each_hstate(h)
3213 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3214 nid,
3215 h->nr_huge_pages_node[nid],
3216 h->free_huge_pages_node[nid],
3217 h->surplus_huge_pages_node[nid],
3218 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3221 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3223 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3224 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3227 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3228 unsigned long hugetlb_total_pages(void)
3230 struct hstate *h;
3231 unsigned long nr_total_pages = 0;
3233 for_each_hstate(h)
3234 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3235 return nr_total_pages;
3238 static int hugetlb_acct_memory(struct hstate *h, long delta)
3240 int ret = -ENOMEM;
3242 spin_lock(&hugetlb_lock);
3244 * When cpuset is configured, it breaks the strict hugetlb page
3245 * reservation as the accounting is done on a global variable. Such
3246 * reservation is completely rubbish in the presence of cpuset because
3247 * the reservation is not checked against page availability for the
3248 * current cpuset. Application can still potentially OOM'ed by kernel
3249 * with lack of free htlb page in cpuset that the task is in.
3250 * Attempt to enforce strict accounting with cpuset is almost
3251 * impossible (or too ugly) because cpuset is too fluid that
3252 * task or memory node can be dynamically moved between cpusets.
3254 * The change of semantics for shared hugetlb mapping with cpuset is
3255 * undesirable. However, in order to preserve some of the semantics,
3256 * we fall back to check against current free page availability as
3257 * a best attempt and hopefully to minimize the impact of changing
3258 * semantics that cpuset has.
3260 if (delta > 0) {
3261 if (gather_surplus_pages(h, delta) < 0)
3262 goto out;
3264 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3265 return_unused_surplus_pages(h, delta);
3266 goto out;
3270 ret = 0;
3271 if (delta < 0)
3272 return_unused_surplus_pages(h, (unsigned long) -delta);
3274 out:
3275 spin_unlock(&hugetlb_lock);
3276 return ret;
3279 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3281 struct resv_map *resv = vma_resv_map(vma);
3284 * This new VMA should share its siblings reservation map if present.
3285 * The VMA will only ever have a valid reservation map pointer where
3286 * it is being copied for another still existing VMA. As that VMA
3287 * has a reference to the reservation map it cannot disappear until
3288 * after this open call completes. It is therefore safe to take a
3289 * new reference here without additional locking.
3291 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3292 kref_get(&resv->refs);
3295 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3297 struct hstate *h = hstate_vma(vma);
3298 struct resv_map *resv = vma_resv_map(vma);
3299 struct hugepage_subpool *spool = subpool_vma(vma);
3300 unsigned long reserve, start, end;
3301 long gbl_reserve;
3303 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3304 return;
3306 start = vma_hugecache_offset(h, vma, vma->vm_start);
3307 end = vma_hugecache_offset(h, vma, vma->vm_end);
3309 reserve = (end - start) - region_count(resv, start, end);
3311 kref_put(&resv->refs, resv_map_release);
3313 if (reserve) {
3315 * Decrement reserve counts. The global reserve count may be
3316 * adjusted if the subpool has a minimum size.
3318 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3319 hugetlb_acct_memory(h, -gbl_reserve);
3323 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3325 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3326 return -EINVAL;
3327 return 0;
3330 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3332 struct hstate *hstate = hstate_vma(vma);
3334 return 1UL << huge_page_shift(hstate);
3338 * We cannot handle pagefaults against hugetlb pages at all. They cause
3339 * handle_mm_fault() to try to instantiate regular-sized pages in the
3340 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3341 * this far.
3343 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3345 BUG();
3346 return 0;
3350 * When a new function is introduced to vm_operations_struct and added
3351 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3352 * This is because under System V memory model, mappings created via
3353 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3354 * their original vm_ops are overwritten with shm_vm_ops.
3356 const struct vm_operations_struct hugetlb_vm_ops = {
3357 .fault = hugetlb_vm_op_fault,
3358 .open = hugetlb_vm_op_open,
3359 .close = hugetlb_vm_op_close,
3360 .split = hugetlb_vm_op_split,
3361 .pagesize = hugetlb_vm_op_pagesize,
3364 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3365 int writable)
3367 pte_t entry;
3369 if (writable) {
3370 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3371 vma->vm_page_prot)));
3372 } else {
3373 entry = huge_pte_wrprotect(mk_huge_pte(page,
3374 vma->vm_page_prot));
3376 entry = pte_mkyoung(entry);
3377 entry = pte_mkhuge(entry);
3378 entry = arch_make_huge_pte(entry, vma, page, writable);
3380 return entry;
3383 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3384 unsigned long address, pte_t *ptep)
3386 pte_t entry;
3388 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3389 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3390 update_mmu_cache(vma, address, ptep);
3393 bool is_hugetlb_entry_migration(pte_t pte)
3395 swp_entry_t swp;
3397 if (huge_pte_none(pte) || pte_present(pte))
3398 return false;
3399 swp = pte_to_swp_entry(pte);
3400 if (non_swap_entry(swp) && is_migration_entry(swp))
3401 return true;
3402 else
3403 return false;
3406 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3408 swp_entry_t swp;
3410 if (huge_pte_none(pte) || pte_present(pte))
3411 return 0;
3412 swp = pte_to_swp_entry(pte);
3413 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3414 return 1;
3415 else
3416 return 0;
3419 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3420 struct vm_area_struct *vma)
3422 pte_t *src_pte, *dst_pte, entry, dst_entry;
3423 struct page *ptepage;
3424 unsigned long addr;
3425 int cow;
3426 struct hstate *h = hstate_vma(vma);
3427 unsigned long sz = huge_page_size(h);
3428 struct mmu_notifier_range range;
3429 int ret = 0;
3431 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3433 if (cow) {
3434 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3435 vma->vm_start,
3436 vma->vm_end);
3437 mmu_notifier_invalidate_range_start(&range);
3440 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3441 spinlock_t *src_ptl, *dst_ptl;
3442 src_pte = huge_pte_offset(src, addr, sz);
3443 if (!src_pte)
3444 continue;
3445 dst_pte = huge_pte_alloc(dst, addr, sz);
3446 if (!dst_pte) {
3447 ret = -ENOMEM;
3448 break;
3452 * If the pagetables are shared don't copy or take references.
3453 * dst_pte == src_pte is the common case of src/dest sharing.
3455 * However, src could have 'unshared' and dst shares with
3456 * another vma. If dst_pte !none, this implies sharing.
3457 * Check here before taking page table lock, and once again
3458 * after taking the lock below.
3460 dst_entry = huge_ptep_get(dst_pte);
3461 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3462 continue;
3464 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3465 src_ptl = huge_pte_lockptr(h, src, src_pte);
3466 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3467 entry = huge_ptep_get(src_pte);
3468 dst_entry = huge_ptep_get(dst_pte);
3469 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3471 * Skip if src entry none. Also, skip in the
3472 * unlikely case dst entry !none as this implies
3473 * sharing with another vma.
3476 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3477 is_hugetlb_entry_hwpoisoned(entry))) {
3478 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3480 if (is_write_migration_entry(swp_entry) && cow) {
3482 * COW mappings require pages in both
3483 * parent and child to be set to read.
3485 make_migration_entry_read(&swp_entry);
3486 entry = swp_entry_to_pte(swp_entry);
3487 set_huge_swap_pte_at(src, addr, src_pte,
3488 entry, sz);
3490 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3491 } else {
3492 if (cow) {
3494 * No need to notify as we are downgrading page
3495 * table protection not changing it to point
3496 * to a new page.
3498 * See Documentation/vm/mmu_notifier.rst
3500 huge_ptep_set_wrprotect(src, addr, src_pte);
3502 entry = huge_ptep_get(src_pte);
3503 ptepage = pte_page(entry);
3504 get_page(ptepage);
3505 page_dup_rmap(ptepage, true);
3506 set_huge_pte_at(dst, addr, dst_pte, entry);
3507 hugetlb_count_add(pages_per_huge_page(h), dst);
3509 spin_unlock(src_ptl);
3510 spin_unlock(dst_ptl);
3513 if (cow)
3514 mmu_notifier_invalidate_range_end(&range);
3516 return ret;
3519 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3520 unsigned long start, unsigned long end,
3521 struct page *ref_page)
3523 struct mm_struct *mm = vma->vm_mm;
3524 unsigned long address;
3525 pte_t *ptep;
3526 pte_t pte;
3527 spinlock_t *ptl;
3528 struct page *page;
3529 struct hstate *h = hstate_vma(vma);
3530 unsigned long sz = huge_page_size(h);
3531 struct mmu_notifier_range range;
3533 WARN_ON(!is_vm_hugetlb_page(vma));
3534 BUG_ON(start & ~huge_page_mask(h));
3535 BUG_ON(end & ~huge_page_mask(h));
3538 * This is a hugetlb vma, all the pte entries should point
3539 * to huge page.
3541 tlb_change_page_size(tlb, sz);
3542 tlb_start_vma(tlb, vma);
3545 * If sharing possible, alert mmu notifiers of worst case.
3547 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3548 end);
3549 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3550 mmu_notifier_invalidate_range_start(&range);
3551 address = start;
3552 for (; address < end; address += sz) {
3553 ptep = huge_pte_offset(mm, address, sz);
3554 if (!ptep)
3555 continue;
3557 ptl = huge_pte_lock(h, mm, ptep);
3558 if (huge_pmd_unshare(mm, &address, ptep)) {
3559 spin_unlock(ptl);
3561 * We just unmapped a page of PMDs by clearing a PUD.
3562 * The caller's TLB flush range should cover this area.
3564 continue;
3567 pte = huge_ptep_get(ptep);
3568 if (huge_pte_none(pte)) {
3569 spin_unlock(ptl);
3570 continue;
3574 * Migrating hugepage or HWPoisoned hugepage is already
3575 * unmapped and its refcount is dropped, so just clear pte here.
3577 if (unlikely(!pte_present(pte))) {
3578 huge_pte_clear(mm, address, ptep, sz);
3579 spin_unlock(ptl);
3580 continue;
3583 page = pte_page(pte);
3585 * If a reference page is supplied, it is because a specific
3586 * page is being unmapped, not a range. Ensure the page we
3587 * are about to unmap is the actual page of interest.
3589 if (ref_page) {
3590 if (page != ref_page) {
3591 spin_unlock(ptl);
3592 continue;
3595 * Mark the VMA as having unmapped its page so that
3596 * future faults in this VMA will fail rather than
3597 * looking like data was lost
3599 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3602 pte = huge_ptep_get_and_clear(mm, address, ptep);
3603 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3604 if (huge_pte_dirty(pte))
3605 set_page_dirty(page);
3607 hugetlb_count_sub(pages_per_huge_page(h), mm);
3608 page_remove_rmap(page, true);
3610 spin_unlock(ptl);
3611 tlb_remove_page_size(tlb, page, huge_page_size(h));
3613 * Bail out after unmapping reference page if supplied
3615 if (ref_page)
3616 break;
3618 mmu_notifier_invalidate_range_end(&range);
3619 tlb_end_vma(tlb, vma);
3622 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3623 struct vm_area_struct *vma, unsigned long start,
3624 unsigned long end, struct page *ref_page)
3626 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3629 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3630 * test will fail on a vma being torn down, and not grab a page table
3631 * on its way out. We're lucky that the flag has such an appropriate
3632 * name, and can in fact be safely cleared here. We could clear it
3633 * before the __unmap_hugepage_range above, but all that's necessary
3634 * is to clear it before releasing the i_mmap_rwsem. This works
3635 * because in the context this is called, the VMA is about to be
3636 * destroyed and the i_mmap_rwsem is held.
3638 vma->vm_flags &= ~VM_MAYSHARE;
3641 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3642 unsigned long end, struct page *ref_page)
3644 struct mm_struct *mm;
3645 struct mmu_gather tlb;
3646 unsigned long tlb_start = start;
3647 unsigned long tlb_end = end;
3650 * If shared PMDs were possibly used within this vma range, adjust
3651 * start/end for worst case tlb flushing.
3652 * Note that we can not be sure if PMDs are shared until we try to
3653 * unmap pages. However, we want to make sure TLB flushing covers
3654 * the largest possible range.
3656 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3658 mm = vma->vm_mm;
3660 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3661 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3662 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3666 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3667 * mappping it owns the reserve page for. The intention is to unmap the page
3668 * from other VMAs and let the children be SIGKILLed if they are faulting the
3669 * same region.
3671 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3672 struct page *page, unsigned long address)
3674 struct hstate *h = hstate_vma(vma);
3675 struct vm_area_struct *iter_vma;
3676 struct address_space *mapping;
3677 pgoff_t pgoff;
3680 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3681 * from page cache lookup which is in HPAGE_SIZE units.
3683 address = address & huge_page_mask(h);
3684 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3685 vma->vm_pgoff;
3686 mapping = vma->vm_file->f_mapping;
3689 * Take the mapping lock for the duration of the table walk. As
3690 * this mapping should be shared between all the VMAs,
3691 * __unmap_hugepage_range() is called as the lock is already held
3693 i_mmap_lock_write(mapping);
3694 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3695 /* Do not unmap the current VMA */
3696 if (iter_vma == vma)
3697 continue;
3700 * Shared VMAs have their own reserves and do not affect
3701 * MAP_PRIVATE accounting but it is possible that a shared
3702 * VMA is using the same page so check and skip such VMAs.
3704 if (iter_vma->vm_flags & VM_MAYSHARE)
3705 continue;
3708 * Unmap the page from other VMAs without their own reserves.
3709 * They get marked to be SIGKILLed if they fault in these
3710 * areas. This is because a future no-page fault on this VMA
3711 * could insert a zeroed page instead of the data existing
3712 * from the time of fork. This would look like data corruption
3714 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3715 unmap_hugepage_range(iter_vma, address,
3716 address + huge_page_size(h), page);
3718 i_mmap_unlock_write(mapping);
3722 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3723 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3724 * cannot race with other handlers or page migration.
3725 * Keep the pte_same checks anyway to make transition from the mutex easier.
3727 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3728 unsigned long address, pte_t *ptep,
3729 struct page *pagecache_page, spinlock_t *ptl)
3731 pte_t pte;
3732 struct hstate *h = hstate_vma(vma);
3733 struct page *old_page, *new_page;
3734 int outside_reserve = 0;
3735 vm_fault_t ret = 0;
3736 unsigned long haddr = address & huge_page_mask(h);
3737 struct mmu_notifier_range range;
3739 pte = huge_ptep_get(ptep);
3740 old_page = pte_page(pte);
3742 retry_avoidcopy:
3743 /* If no-one else is actually using this page, avoid the copy
3744 * and just make the page writable */
3745 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3746 page_move_anon_rmap(old_page, vma);
3747 set_huge_ptep_writable(vma, haddr, ptep);
3748 return 0;
3752 * If the process that created a MAP_PRIVATE mapping is about to
3753 * perform a COW due to a shared page count, attempt to satisfy
3754 * the allocation without using the existing reserves. The pagecache
3755 * page is used to determine if the reserve at this address was
3756 * consumed or not. If reserves were used, a partial faulted mapping
3757 * at the time of fork() could consume its reserves on COW instead
3758 * of the full address range.
3760 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3761 old_page != pagecache_page)
3762 outside_reserve = 1;
3764 get_page(old_page);
3767 * Drop page table lock as buddy allocator may be called. It will
3768 * be acquired again before returning to the caller, as expected.
3770 spin_unlock(ptl);
3771 new_page = alloc_huge_page(vma, haddr, outside_reserve);
3773 if (IS_ERR(new_page)) {
3775 * If a process owning a MAP_PRIVATE mapping fails to COW,
3776 * it is due to references held by a child and an insufficient
3777 * huge page pool. To guarantee the original mappers
3778 * reliability, unmap the page from child processes. The child
3779 * may get SIGKILLed if it later faults.
3781 if (outside_reserve) {
3782 put_page(old_page);
3783 BUG_ON(huge_pte_none(pte));
3784 unmap_ref_private(mm, vma, old_page, haddr);
3785 BUG_ON(huge_pte_none(pte));
3786 spin_lock(ptl);
3787 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3788 if (likely(ptep &&
3789 pte_same(huge_ptep_get(ptep), pte)))
3790 goto retry_avoidcopy;
3792 * race occurs while re-acquiring page table
3793 * lock, and our job is done.
3795 return 0;
3798 ret = vmf_error(PTR_ERR(new_page));
3799 goto out_release_old;
3803 * When the original hugepage is shared one, it does not have
3804 * anon_vma prepared.
3806 if (unlikely(anon_vma_prepare(vma))) {
3807 ret = VM_FAULT_OOM;
3808 goto out_release_all;
3811 copy_user_huge_page(new_page, old_page, address, vma,
3812 pages_per_huge_page(h));
3813 __SetPageUptodate(new_page);
3815 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3816 haddr + huge_page_size(h));
3817 mmu_notifier_invalidate_range_start(&range);
3820 * Retake the page table lock to check for racing updates
3821 * before the page tables are altered
3823 spin_lock(ptl);
3824 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3825 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3826 ClearPagePrivate(new_page);
3828 /* Break COW */
3829 huge_ptep_clear_flush(vma, haddr, ptep);
3830 mmu_notifier_invalidate_range(mm, range.start, range.end);
3831 set_huge_pte_at(mm, haddr, ptep,
3832 make_huge_pte(vma, new_page, 1));
3833 page_remove_rmap(old_page, true);
3834 hugepage_add_new_anon_rmap(new_page, vma, haddr);
3835 set_page_huge_active(new_page);
3836 /* Make the old page be freed below */
3837 new_page = old_page;
3839 spin_unlock(ptl);
3840 mmu_notifier_invalidate_range_end(&range);
3841 out_release_all:
3842 restore_reserve_on_error(h, vma, haddr, new_page);
3843 put_page(new_page);
3844 out_release_old:
3845 put_page(old_page);
3847 spin_lock(ptl); /* Caller expects lock to be held */
3848 return ret;
3851 /* Return the pagecache page at a given address within a VMA */
3852 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3853 struct vm_area_struct *vma, unsigned long address)
3855 struct address_space *mapping;
3856 pgoff_t idx;
3858 mapping = vma->vm_file->f_mapping;
3859 idx = vma_hugecache_offset(h, vma, address);
3861 return find_lock_page(mapping, idx);
3865 * Return whether there is a pagecache page to back given address within VMA.
3866 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3868 static bool hugetlbfs_pagecache_present(struct hstate *h,
3869 struct vm_area_struct *vma, unsigned long address)
3871 struct address_space *mapping;
3872 pgoff_t idx;
3873 struct page *page;
3875 mapping = vma->vm_file->f_mapping;
3876 idx = vma_hugecache_offset(h, vma, address);
3878 page = find_get_page(mapping, idx);
3879 if (page)
3880 put_page(page);
3881 return page != NULL;
3884 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3885 pgoff_t idx)
3887 struct inode *inode = mapping->host;
3888 struct hstate *h = hstate_inode(inode);
3889 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3891 if (err)
3892 return err;
3893 ClearPagePrivate(page);
3896 * set page dirty so that it will not be removed from cache/file
3897 * by non-hugetlbfs specific code paths.
3899 set_page_dirty(page);
3901 spin_lock(&inode->i_lock);
3902 inode->i_blocks += blocks_per_huge_page(h);
3903 spin_unlock(&inode->i_lock);
3904 return 0;
3907 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3908 struct vm_area_struct *vma,
3909 struct address_space *mapping, pgoff_t idx,
3910 unsigned long address, pte_t *ptep, unsigned int flags)
3912 struct hstate *h = hstate_vma(vma);
3913 vm_fault_t ret = VM_FAULT_SIGBUS;
3914 int anon_rmap = 0;
3915 unsigned long size;
3916 struct page *page;
3917 pte_t new_pte;
3918 spinlock_t *ptl;
3919 unsigned long haddr = address & huge_page_mask(h);
3920 bool new_page = false;
3923 * Currently, we are forced to kill the process in the event the
3924 * original mapper has unmapped pages from the child due to a failed
3925 * COW. Warn that such a situation has occurred as it may not be obvious
3927 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3928 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3929 current->pid);
3930 return ret;
3934 * Use page lock to guard against racing truncation
3935 * before we get page_table_lock.
3937 retry:
3938 page = find_lock_page(mapping, idx);
3939 if (!page) {
3940 size = i_size_read(mapping->host) >> huge_page_shift(h);
3941 if (idx >= size)
3942 goto out;
3945 * Check for page in userfault range
3947 if (userfaultfd_missing(vma)) {
3948 u32 hash;
3949 struct vm_fault vmf = {
3950 .vma = vma,
3951 .address = haddr,
3952 .flags = flags,
3954 * Hard to debug if it ends up being
3955 * used by a callee that assumes
3956 * something about the other
3957 * uninitialized fields... same as in
3958 * memory.c
3963 * hugetlb_fault_mutex must be dropped before
3964 * handling userfault. Reacquire after handling
3965 * fault to make calling code simpler.
3967 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
3968 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3969 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3970 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3971 goto out;
3974 page = alloc_huge_page(vma, haddr, 0);
3975 if (IS_ERR(page)) {
3977 * Returning error will result in faulting task being
3978 * sent SIGBUS. The hugetlb fault mutex prevents two
3979 * tasks from racing to fault in the same page which
3980 * could result in false unable to allocate errors.
3981 * Page migration does not take the fault mutex, but
3982 * does a clear then write of pte's under page table
3983 * lock. Page fault code could race with migration,
3984 * notice the clear pte and try to allocate a page
3985 * here. Before returning error, get ptl and make
3986 * sure there really is no pte entry.
3988 ptl = huge_pte_lock(h, mm, ptep);
3989 if (!huge_pte_none(huge_ptep_get(ptep))) {
3990 ret = 0;
3991 spin_unlock(ptl);
3992 goto out;
3994 spin_unlock(ptl);
3995 ret = vmf_error(PTR_ERR(page));
3996 goto out;
3998 clear_huge_page(page, address, pages_per_huge_page(h));
3999 __SetPageUptodate(page);
4000 new_page = true;
4002 if (vma->vm_flags & VM_MAYSHARE) {
4003 int err = huge_add_to_page_cache(page, mapping, idx);
4004 if (err) {
4005 put_page(page);
4006 if (err == -EEXIST)
4007 goto retry;
4008 goto out;
4010 } else {
4011 lock_page(page);
4012 if (unlikely(anon_vma_prepare(vma))) {
4013 ret = VM_FAULT_OOM;
4014 goto backout_unlocked;
4016 anon_rmap = 1;
4018 } else {
4020 * If memory error occurs between mmap() and fault, some process
4021 * don't have hwpoisoned swap entry for errored virtual address.
4022 * So we need to block hugepage fault by PG_hwpoison bit check.
4024 if (unlikely(PageHWPoison(page))) {
4025 ret = VM_FAULT_HWPOISON |
4026 VM_FAULT_SET_HINDEX(hstate_index(h));
4027 goto backout_unlocked;
4032 * If we are going to COW a private mapping later, we examine the
4033 * pending reservations for this page now. This will ensure that
4034 * any allocations necessary to record that reservation occur outside
4035 * the spinlock.
4037 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4038 if (vma_needs_reservation(h, vma, haddr) < 0) {
4039 ret = VM_FAULT_OOM;
4040 goto backout_unlocked;
4042 /* Just decrements count, does not deallocate */
4043 vma_end_reservation(h, vma, haddr);
4046 ptl = huge_pte_lock(h, mm, ptep);
4047 size = i_size_read(mapping->host) >> huge_page_shift(h);
4048 if (idx >= size)
4049 goto backout;
4051 ret = 0;
4052 if (!huge_pte_none(huge_ptep_get(ptep)))
4053 goto backout;
4055 if (anon_rmap) {
4056 ClearPagePrivate(page);
4057 hugepage_add_new_anon_rmap(page, vma, haddr);
4058 } else
4059 page_dup_rmap(page, true);
4060 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4061 && (vma->vm_flags & VM_SHARED)));
4062 set_huge_pte_at(mm, haddr, ptep, new_pte);
4064 hugetlb_count_add(pages_per_huge_page(h), mm);
4065 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4066 /* Optimization, do the COW without a second fault */
4067 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4070 spin_unlock(ptl);
4073 * Only make newly allocated pages active. Existing pages found
4074 * in the pagecache could be !page_huge_active() if they have been
4075 * isolated for migration.
4077 if (new_page)
4078 set_page_huge_active(page);
4080 unlock_page(page);
4081 out:
4082 return ret;
4084 backout:
4085 spin_unlock(ptl);
4086 backout_unlocked:
4087 unlock_page(page);
4088 restore_reserve_on_error(h, vma, haddr, page);
4089 put_page(page);
4090 goto out;
4093 #ifdef CONFIG_SMP
4094 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
4095 pgoff_t idx, unsigned long address)
4097 unsigned long key[2];
4098 u32 hash;
4100 key[0] = (unsigned long) mapping;
4101 key[1] = idx;
4103 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
4105 return hash & (num_fault_mutexes - 1);
4107 #else
4109 * For uniprocesor systems we always use a single mutex, so just
4110 * return 0 and avoid the hashing overhead.
4112 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
4113 pgoff_t idx, unsigned long address)
4115 return 0;
4117 #endif
4119 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4120 unsigned long address, unsigned int flags)
4122 pte_t *ptep, entry;
4123 spinlock_t *ptl;
4124 vm_fault_t ret;
4125 u32 hash;
4126 pgoff_t idx;
4127 struct page *page = NULL;
4128 struct page *pagecache_page = NULL;
4129 struct hstate *h = hstate_vma(vma);
4130 struct address_space *mapping;
4131 int need_wait_lock = 0;
4132 unsigned long haddr = address & huge_page_mask(h);
4134 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4135 if (ptep) {
4136 entry = huge_ptep_get(ptep);
4137 if (unlikely(is_hugetlb_entry_migration(entry))) {
4138 migration_entry_wait_huge(vma, mm, ptep);
4139 return 0;
4140 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4141 return VM_FAULT_HWPOISON_LARGE |
4142 VM_FAULT_SET_HINDEX(hstate_index(h));
4143 } else {
4144 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4145 if (!ptep)
4146 return VM_FAULT_OOM;
4149 mapping = vma->vm_file->f_mapping;
4150 idx = vma_hugecache_offset(h, vma, haddr);
4153 * Serialize hugepage allocation and instantiation, so that we don't
4154 * get spurious allocation failures if two CPUs race to instantiate
4155 * the same page in the page cache.
4157 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
4158 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4160 entry = huge_ptep_get(ptep);
4161 if (huge_pte_none(entry)) {
4162 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4163 goto out_mutex;
4166 ret = 0;
4169 * entry could be a migration/hwpoison entry at this point, so this
4170 * check prevents the kernel from going below assuming that we have
4171 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4172 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4173 * handle it.
4175 if (!pte_present(entry))
4176 goto out_mutex;
4179 * If we are going to COW the mapping later, we examine the pending
4180 * reservations for this page now. This will ensure that any
4181 * allocations necessary to record that reservation occur outside the
4182 * spinlock. For private mappings, we also lookup the pagecache
4183 * page now as it is used to determine if a reservation has been
4184 * consumed.
4186 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4187 if (vma_needs_reservation(h, vma, haddr) < 0) {
4188 ret = VM_FAULT_OOM;
4189 goto out_mutex;
4191 /* Just decrements count, does not deallocate */
4192 vma_end_reservation(h, vma, haddr);
4194 if (!(vma->vm_flags & VM_MAYSHARE))
4195 pagecache_page = hugetlbfs_pagecache_page(h,
4196 vma, haddr);
4199 ptl = huge_pte_lock(h, mm, ptep);
4201 /* Check for a racing update before calling hugetlb_cow */
4202 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4203 goto out_ptl;
4206 * hugetlb_cow() requires page locks of pte_page(entry) and
4207 * pagecache_page, so here we need take the former one
4208 * when page != pagecache_page or !pagecache_page.
4210 page = pte_page(entry);
4211 if (page != pagecache_page)
4212 if (!trylock_page(page)) {
4213 need_wait_lock = 1;
4214 goto out_ptl;
4217 get_page(page);
4219 if (flags & FAULT_FLAG_WRITE) {
4220 if (!huge_pte_write(entry)) {
4221 ret = hugetlb_cow(mm, vma, address, ptep,
4222 pagecache_page, ptl);
4223 goto out_put_page;
4225 entry = huge_pte_mkdirty(entry);
4227 entry = pte_mkyoung(entry);
4228 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4229 flags & FAULT_FLAG_WRITE))
4230 update_mmu_cache(vma, haddr, ptep);
4231 out_put_page:
4232 if (page != pagecache_page)
4233 unlock_page(page);
4234 put_page(page);
4235 out_ptl:
4236 spin_unlock(ptl);
4238 if (pagecache_page) {
4239 unlock_page(pagecache_page);
4240 put_page(pagecache_page);
4242 out_mutex:
4243 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4245 * Generally it's safe to hold refcount during waiting page lock. But
4246 * here we just wait to defer the next page fault to avoid busy loop and
4247 * the page is not used after unlocked before returning from the current
4248 * page fault. So we are safe from accessing freed page, even if we wait
4249 * here without taking refcount.
4251 if (need_wait_lock)
4252 wait_on_page_locked(page);
4253 return ret;
4257 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4258 * modifications for huge pages.
4260 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4261 pte_t *dst_pte,
4262 struct vm_area_struct *dst_vma,
4263 unsigned long dst_addr,
4264 unsigned long src_addr,
4265 struct page **pagep)
4267 struct address_space *mapping;
4268 pgoff_t idx;
4269 unsigned long size;
4270 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4271 struct hstate *h = hstate_vma(dst_vma);
4272 pte_t _dst_pte;
4273 spinlock_t *ptl;
4274 int ret;
4275 struct page *page;
4277 if (!*pagep) {
4278 ret = -ENOMEM;
4279 page = alloc_huge_page(dst_vma, dst_addr, 0);
4280 if (IS_ERR(page))
4281 goto out;
4283 ret = copy_huge_page_from_user(page,
4284 (const void __user *) src_addr,
4285 pages_per_huge_page(h), false);
4287 /* fallback to copy_from_user outside mmap_sem */
4288 if (unlikely(ret)) {
4289 ret = -ENOENT;
4290 *pagep = page;
4291 /* don't free the page */
4292 goto out;
4294 } else {
4295 page = *pagep;
4296 *pagep = NULL;
4300 * The memory barrier inside __SetPageUptodate makes sure that
4301 * preceding stores to the page contents become visible before
4302 * the set_pte_at() write.
4304 __SetPageUptodate(page);
4306 mapping = dst_vma->vm_file->f_mapping;
4307 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4310 * If shared, add to page cache
4312 if (vm_shared) {
4313 size = i_size_read(mapping->host) >> huge_page_shift(h);
4314 ret = -EFAULT;
4315 if (idx >= size)
4316 goto out_release_nounlock;
4319 * Serialization between remove_inode_hugepages() and
4320 * huge_add_to_page_cache() below happens through the
4321 * hugetlb_fault_mutex_table that here must be hold by
4322 * the caller.
4324 ret = huge_add_to_page_cache(page, mapping, idx);
4325 if (ret)
4326 goto out_release_nounlock;
4329 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4330 spin_lock(ptl);
4333 * Recheck the i_size after holding PT lock to make sure not
4334 * to leave any page mapped (as page_mapped()) beyond the end
4335 * of the i_size (remove_inode_hugepages() is strict about
4336 * enforcing that). If we bail out here, we'll also leave a
4337 * page in the radix tree in the vm_shared case beyond the end
4338 * of the i_size, but remove_inode_hugepages() will take care
4339 * of it as soon as we drop the hugetlb_fault_mutex_table.
4341 size = i_size_read(mapping->host) >> huge_page_shift(h);
4342 ret = -EFAULT;
4343 if (idx >= size)
4344 goto out_release_unlock;
4346 ret = -EEXIST;
4347 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4348 goto out_release_unlock;
4350 if (vm_shared) {
4351 page_dup_rmap(page, true);
4352 } else {
4353 ClearPagePrivate(page);
4354 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4357 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4358 if (dst_vma->vm_flags & VM_WRITE)
4359 _dst_pte = huge_pte_mkdirty(_dst_pte);
4360 _dst_pte = pte_mkyoung(_dst_pte);
4362 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4364 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4365 dst_vma->vm_flags & VM_WRITE);
4366 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4368 /* No need to invalidate - it was non-present before */
4369 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4371 spin_unlock(ptl);
4372 set_page_huge_active(page);
4373 if (vm_shared)
4374 unlock_page(page);
4375 ret = 0;
4376 out:
4377 return ret;
4378 out_release_unlock:
4379 spin_unlock(ptl);
4380 if (vm_shared)
4381 unlock_page(page);
4382 out_release_nounlock:
4383 put_page(page);
4384 goto out;
4387 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4388 struct page **pages, struct vm_area_struct **vmas,
4389 unsigned long *position, unsigned long *nr_pages,
4390 long i, unsigned int flags, int *nonblocking)
4392 unsigned long pfn_offset;
4393 unsigned long vaddr = *position;
4394 unsigned long remainder = *nr_pages;
4395 struct hstate *h = hstate_vma(vma);
4396 int err = -EFAULT;
4398 while (vaddr < vma->vm_end && remainder) {
4399 pte_t *pte;
4400 spinlock_t *ptl = NULL;
4401 int absent;
4402 struct page *page;
4405 * If we have a pending SIGKILL, don't keep faulting pages and
4406 * potentially allocating memory.
4408 if (fatal_signal_pending(current)) {
4409 remainder = 0;
4410 break;
4414 * Some archs (sparc64, sh*) have multiple pte_ts to
4415 * each hugepage. We have to make sure we get the
4416 * first, for the page indexing below to work.
4418 * Note that page table lock is not held when pte is null.
4420 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4421 huge_page_size(h));
4422 if (pte)
4423 ptl = huge_pte_lock(h, mm, pte);
4424 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4427 * When coredumping, it suits get_dump_page if we just return
4428 * an error where there's an empty slot with no huge pagecache
4429 * to back it. This way, we avoid allocating a hugepage, and
4430 * the sparse dumpfile avoids allocating disk blocks, but its
4431 * huge holes still show up with zeroes where they need to be.
4433 if (absent && (flags & FOLL_DUMP) &&
4434 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4435 if (pte)
4436 spin_unlock(ptl);
4437 remainder = 0;
4438 break;
4442 * We need call hugetlb_fault for both hugepages under migration
4443 * (in which case hugetlb_fault waits for the migration,) and
4444 * hwpoisoned hugepages (in which case we need to prevent the
4445 * caller from accessing to them.) In order to do this, we use
4446 * here is_swap_pte instead of is_hugetlb_entry_migration and
4447 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4448 * both cases, and because we can't follow correct pages
4449 * directly from any kind of swap entries.
4451 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4452 ((flags & FOLL_WRITE) &&
4453 !huge_pte_write(huge_ptep_get(pte)))) {
4454 vm_fault_t ret;
4455 unsigned int fault_flags = 0;
4457 if (pte)
4458 spin_unlock(ptl);
4459 if (flags & FOLL_WRITE)
4460 fault_flags |= FAULT_FLAG_WRITE;
4461 if (nonblocking)
4462 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4463 if (flags & FOLL_NOWAIT)
4464 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4465 FAULT_FLAG_RETRY_NOWAIT;
4466 if (flags & FOLL_TRIED) {
4467 VM_WARN_ON_ONCE(fault_flags &
4468 FAULT_FLAG_ALLOW_RETRY);
4469 fault_flags |= FAULT_FLAG_TRIED;
4471 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4472 if (ret & VM_FAULT_ERROR) {
4473 err = vm_fault_to_errno(ret, flags);
4474 remainder = 0;
4475 break;
4477 if (ret & VM_FAULT_RETRY) {
4478 if (nonblocking &&
4479 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4480 *nonblocking = 0;
4481 *nr_pages = 0;
4483 * VM_FAULT_RETRY must not return an
4484 * error, it will return zero
4485 * instead.
4487 * No need to update "position" as the
4488 * caller will not check it after
4489 * *nr_pages is set to 0.
4491 return i;
4493 continue;
4496 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4497 page = pte_page(huge_ptep_get(pte));
4500 * Instead of doing 'try_get_page()' below in the same_page
4501 * loop, just check the count once here.
4503 if (unlikely(page_count(page) <= 0)) {
4504 if (pages) {
4505 spin_unlock(ptl);
4506 remainder = 0;
4507 err = -ENOMEM;
4508 break;
4511 same_page:
4512 if (pages) {
4513 pages[i] = mem_map_offset(page, pfn_offset);
4514 get_page(pages[i]);
4517 if (vmas)
4518 vmas[i] = vma;
4520 vaddr += PAGE_SIZE;
4521 ++pfn_offset;
4522 --remainder;
4523 ++i;
4524 if (vaddr < vma->vm_end && remainder &&
4525 pfn_offset < pages_per_huge_page(h)) {
4527 * We use pfn_offset to avoid touching the pageframes
4528 * of this compound page.
4530 goto same_page;
4532 spin_unlock(ptl);
4534 *nr_pages = remainder;
4536 * setting position is actually required only if remainder is
4537 * not zero but it's faster not to add a "if (remainder)"
4538 * branch.
4540 *position = vaddr;
4542 return i ? i : err;
4545 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4547 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4548 * implement this.
4550 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4551 #endif
4553 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4554 unsigned long address, unsigned long end, pgprot_t newprot)
4556 struct mm_struct *mm = vma->vm_mm;
4557 unsigned long start = address;
4558 pte_t *ptep;
4559 pte_t pte;
4560 struct hstate *h = hstate_vma(vma);
4561 unsigned long pages = 0;
4562 bool shared_pmd = false;
4563 struct mmu_notifier_range range;
4566 * In the case of shared PMDs, the area to flush could be beyond
4567 * start/end. Set range.start/range.end to cover the maximum possible
4568 * range if PMD sharing is possible.
4570 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4571 0, vma, mm, start, end);
4572 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4574 BUG_ON(address >= end);
4575 flush_cache_range(vma, range.start, range.end);
4577 mmu_notifier_invalidate_range_start(&range);
4578 i_mmap_lock_write(vma->vm_file->f_mapping);
4579 for (; address < end; address += huge_page_size(h)) {
4580 spinlock_t *ptl;
4581 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4582 if (!ptep)
4583 continue;
4584 ptl = huge_pte_lock(h, mm, ptep);
4585 if (huge_pmd_unshare(mm, &address, ptep)) {
4586 pages++;
4587 spin_unlock(ptl);
4588 shared_pmd = true;
4589 continue;
4591 pte = huge_ptep_get(ptep);
4592 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4593 spin_unlock(ptl);
4594 continue;
4596 if (unlikely(is_hugetlb_entry_migration(pte))) {
4597 swp_entry_t entry = pte_to_swp_entry(pte);
4599 if (is_write_migration_entry(entry)) {
4600 pte_t newpte;
4602 make_migration_entry_read(&entry);
4603 newpte = swp_entry_to_pte(entry);
4604 set_huge_swap_pte_at(mm, address, ptep,
4605 newpte, huge_page_size(h));
4606 pages++;
4608 spin_unlock(ptl);
4609 continue;
4611 if (!huge_pte_none(pte)) {
4612 pte_t old_pte;
4614 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4615 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4616 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4617 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4618 pages++;
4620 spin_unlock(ptl);
4623 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4624 * may have cleared our pud entry and done put_page on the page table:
4625 * once we release i_mmap_rwsem, another task can do the final put_page
4626 * and that page table be reused and filled with junk. If we actually
4627 * did unshare a page of pmds, flush the range corresponding to the pud.
4629 if (shared_pmd)
4630 flush_hugetlb_tlb_range(vma, range.start, range.end);
4631 else
4632 flush_hugetlb_tlb_range(vma, start, end);
4634 * No need to call mmu_notifier_invalidate_range() we are downgrading
4635 * page table protection not changing it to point to a new page.
4637 * See Documentation/vm/mmu_notifier.rst
4639 i_mmap_unlock_write(vma->vm_file->f_mapping);
4640 mmu_notifier_invalidate_range_end(&range);
4642 return pages << h->order;
4645 int hugetlb_reserve_pages(struct inode *inode,
4646 long from, long to,
4647 struct vm_area_struct *vma,
4648 vm_flags_t vm_flags)
4650 long ret, chg;
4651 struct hstate *h = hstate_inode(inode);
4652 struct hugepage_subpool *spool = subpool_inode(inode);
4653 struct resv_map *resv_map;
4654 long gbl_reserve;
4656 /* This should never happen */
4657 if (from > to) {
4658 VM_WARN(1, "%s called with a negative range\n", __func__);
4659 return -EINVAL;
4663 * Only apply hugepage reservation if asked. At fault time, an
4664 * attempt will be made for VM_NORESERVE to allocate a page
4665 * without using reserves
4667 if (vm_flags & VM_NORESERVE)
4668 return 0;
4671 * Shared mappings base their reservation on the number of pages that
4672 * are already allocated on behalf of the file. Private mappings need
4673 * to reserve the full area even if read-only as mprotect() may be
4674 * called to make the mapping read-write. Assume !vma is a shm mapping
4676 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4678 * resv_map can not be NULL as hugetlb_reserve_pages is only
4679 * called for inodes for which resv_maps were created (see
4680 * hugetlbfs_get_inode).
4682 resv_map = inode_resv_map(inode);
4684 chg = region_chg(resv_map, from, to);
4686 } else {
4687 resv_map = resv_map_alloc();
4688 if (!resv_map)
4689 return -ENOMEM;
4691 chg = to - from;
4693 set_vma_resv_map(vma, resv_map);
4694 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4697 if (chg < 0) {
4698 ret = chg;
4699 goto out_err;
4703 * There must be enough pages in the subpool for the mapping. If
4704 * the subpool has a minimum size, there may be some global
4705 * reservations already in place (gbl_reserve).
4707 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4708 if (gbl_reserve < 0) {
4709 ret = -ENOSPC;
4710 goto out_err;
4714 * Check enough hugepages are available for the reservation.
4715 * Hand the pages back to the subpool if there are not
4717 ret = hugetlb_acct_memory(h, gbl_reserve);
4718 if (ret < 0) {
4719 /* put back original number of pages, chg */
4720 (void)hugepage_subpool_put_pages(spool, chg);
4721 goto out_err;
4725 * Account for the reservations made. Shared mappings record regions
4726 * that have reservations as they are shared by multiple VMAs.
4727 * When the last VMA disappears, the region map says how much
4728 * the reservation was and the page cache tells how much of
4729 * the reservation was consumed. Private mappings are per-VMA and
4730 * only the consumed reservations are tracked. When the VMA
4731 * disappears, the original reservation is the VMA size and the
4732 * consumed reservations are stored in the map. Hence, nothing
4733 * else has to be done for private mappings here
4735 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4736 long add = region_add(resv_map, from, to);
4738 if (unlikely(chg > add)) {
4740 * pages in this range were added to the reserve
4741 * map between region_chg and region_add. This
4742 * indicates a race with alloc_huge_page. Adjust
4743 * the subpool and reserve counts modified above
4744 * based on the difference.
4746 long rsv_adjust;
4748 rsv_adjust = hugepage_subpool_put_pages(spool,
4749 chg - add);
4750 hugetlb_acct_memory(h, -rsv_adjust);
4753 return 0;
4754 out_err:
4755 if (!vma || vma->vm_flags & VM_MAYSHARE)
4756 /* Don't call region_abort if region_chg failed */
4757 if (chg >= 0)
4758 region_abort(resv_map, from, to);
4759 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4760 kref_put(&resv_map->refs, resv_map_release);
4761 return ret;
4764 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4765 long freed)
4767 struct hstate *h = hstate_inode(inode);
4768 struct resv_map *resv_map = inode_resv_map(inode);
4769 long chg = 0;
4770 struct hugepage_subpool *spool = subpool_inode(inode);
4771 long gbl_reserve;
4774 * Since this routine can be called in the evict inode path for all
4775 * hugetlbfs inodes, resv_map could be NULL.
4777 if (resv_map) {
4778 chg = region_del(resv_map, start, end);
4780 * region_del() can fail in the rare case where a region
4781 * must be split and another region descriptor can not be
4782 * allocated. If end == LONG_MAX, it will not fail.
4784 if (chg < 0)
4785 return chg;
4788 spin_lock(&inode->i_lock);
4789 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4790 spin_unlock(&inode->i_lock);
4793 * If the subpool has a minimum size, the number of global
4794 * reservations to be released may be adjusted.
4796 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4797 hugetlb_acct_memory(h, -gbl_reserve);
4799 return 0;
4802 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4803 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4804 struct vm_area_struct *vma,
4805 unsigned long addr, pgoff_t idx)
4807 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4808 svma->vm_start;
4809 unsigned long sbase = saddr & PUD_MASK;
4810 unsigned long s_end = sbase + PUD_SIZE;
4812 /* Allow segments to share if only one is marked locked */
4813 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4814 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4817 * match the virtual addresses, permission and the alignment of the
4818 * page table page.
4820 if (pmd_index(addr) != pmd_index(saddr) ||
4821 vm_flags != svm_flags ||
4822 sbase < svma->vm_start || svma->vm_end < s_end)
4823 return 0;
4825 return saddr;
4828 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4830 unsigned long base = addr & PUD_MASK;
4831 unsigned long end = base + PUD_SIZE;
4834 * check on proper vm_flags and page table alignment
4836 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4837 return true;
4838 return false;
4842 * Determine if start,end range within vma could be mapped by shared pmd.
4843 * If yes, adjust start and end to cover range associated with possible
4844 * shared pmd mappings.
4846 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4847 unsigned long *start, unsigned long *end)
4849 unsigned long check_addr = *start;
4851 if (!(vma->vm_flags & VM_MAYSHARE))
4852 return;
4854 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4855 unsigned long a_start = check_addr & PUD_MASK;
4856 unsigned long a_end = a_start + PUD_SIZE;
4859 * If sharing is possible, adjust start/end if necessary.
4861 if (range_in_vma(vma, a_start, a_end)) {
4862 if (a_start < *start)
4863 *start = a_start;
4864 if (a_end > *end)
4865 *end = a_end;
4871 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4872 * and returns the corresponding pte. While this is not necessary for the
4873 * !shared pmd case because we can allocate the pmd later as well, it makes the
4874 * code much cleaner. pmd allocation is essential for the shared case because
4875 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4876 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4877 * bad pmd for sharing.
4879 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4881 struct vm_area_struct *vma = find_vma(mm, addr);
4882 struct address_space *mapping = vma->vm_file->f_mapping;
4883 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4884 vma->vm_pgoff;
4885 struct vm_area_struct *svma;
4886 unsigned long saddr;
4887 pte_t *spte = NULL;
4888 pte_t *pte;
4889 spinlock_t *ptl;
4891 if (!vma_shareable(vma, addr))
4892 return (pte_t *)pmd_alloc(mm, pud, addr);
4894 i_mmap_lock_write(mapping);
4895 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4896 if (svma == vma)
4897 continue;
4899 saddr = page_table_shareable(svma, vma, addr, idx);
4900 if (saddr) {
4901 spte = huge_pte_offset(svma->vm_mm, saddr,
4902 vma_mmu_pagesize(svma));
4903 if (spte) {
4904 get_page(virt_to_page(spte));
4905 break;
4910 if (!spte)
4911 goto out;
4913 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4914 if (pud_none(*pud)) {
4915 pud_populate(mm, pud,
4916 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4917 mm_inc_nr_pmds(mm);
4918 } else {
4919 put_page(virt_to_page(spte));
4921 spin_unlock(ptl);
4922 out:
4923 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4924 i_mmap_unlock_write(mapping);
4925 return pte;
4929 * unmap huge page backed by shared pte.
4931 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4932 * indicated by page_count > 1, unmap is achieved by clearing pud and
4933 * decrementing the ref count. If count == 1, the pte page is not shared.
4935 * called with page table lock held.
4937 * returns: 1 successfully unmapped a shared pte page
4938 * 0 the underlying pte page is not shared, or it is the last user
4940 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4942 pgd_t *pgd = pgd_offset(mm, *addr);
4943 p4d_t *p4d = p4d_offset(pgd, *addr);
4944 pud_t *pud = pud_offset(p4d, *addr);
4946 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4947 if (page_count(virt_to_page(ptep)) == 1)
4948 return 0;
4950 pud_clear(pud);
4951 put_page(virt_to_page(ptep));
4952 mm_dec_nr_pmds(mm);
4953 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4954 return 1;
4956 #define want_pmd_share() (1)
4957 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4958 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4960 return NULL;
4963 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4965 return 0;
4968 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4969 unsigned long *start, unsigned long *end)
4972 #define want_pmd_share() (0)
4973 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4975 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4976 pte_t *huge_pte_alloc(struct mm_struct *mm,
4977 unsigned long addr, unsigned long sz)
4979 pgd_t *pgd;
4980 p4d_t *p4d;
4981 pud_t *pud;
4982 pte_t *pte = NULL;
4984 pgd = pgd_offset(mm, addr);
4985 p4d = p4d_alloc(mm, pgd, addr);
4986 if (!p4d)
4987 return NULL;
4988 pud = pud_alloc(mm, p4d, addr);
4989 if (pud) {
4990 if (sz == PUD_SIZE) {
4991 pte = (pte_t *)pud;
4992 } else {
4993 BUG_ON(sz != PMD_SIZE);
4994 if (want_pmd_share() && pud_none(*pud))
4995 pte = huge_pmd_share(mm, addr, pud);
4996 else
4997 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5000 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5002 return pte;
5006 * huge_pte_offset() - Walk the page table to resolve the hugepage
5007 * entry at address @addr
5009 * Return: Pointer to page table or swap entry (PUD or PMD) for
5010 * address @addr, or NULL if a p*d_none() entry is encountered and the
5011 * size @sz doesn't match the hugepage size at this level of the page
5012 * table.
5014 pte_t *huge_pte_offset(struct mm_struct *mm,
5015 unsigned long addr, unsigned long sz)
5017 pgd_t *pgd;
5018 p4d_t *p4d;
5019 pud_t *pud, pud_entry;
5020 pmd_t *pmd, pmd_entry;
5022 pgd = pgd_offset(mm, addr);
5023 if (!pgd_present(*pgd))
5024 return NULL;
5025 p4d = p4d_offset(pgd, addr);
5026 if (!p4d_present(*p4d))
5027 return NULL;
5029 pud = pud_offset(p4d, addr);
5030 pud_entry = READ_ONCE(*pud);
5031 if (sz != PUD_SIZE && pud_none(pud_entry))
5032 return NULL;
5033 /* hugepage or swap? */
5034 if (pud_huge(pud_entry) || !pud_present(pud_entry))
5035 return (pte_t *)pud;
5037 pmd = pmd_offset(pud, addr);
5038 pmd_entry = READ_ONCE(*pmd);
5039 if (sz != PMD_SIZE && pmd_none(pmd_entry))
5040 return NULL;
5041 /* hugepage or swap? */
5042 if (pmd_huge(pmd_entry) || !pmd_present(pmd_entry))
5043 return (pte_t *)pmd;
5045 return NULL;
5048 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5051 * These functions are overwritable if your architecture needs its own
5052 * behavior.
5054 struct page * __weak
5055 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5056 int write)
5058 return ERR_PTR(-EINVAL);
5061 struct page * __weak
5062 follow_huge_pd(struct vm_area_struct *vma,
5063 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5065 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5066 return NULL;
5069 struct page * __weak
5070 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5071 pmd_t *pmd, int flags)
5073 struct page *page = NULL;
5074 spinlock_t *ptl;
5075 pte_t pte;
5076 retry:
5077 ptl = pmd_lockptr(mm, pmd);
5078 spin_lock(ptl);
5080 * make sure that the address range covered by this pmd is not
5081 * unmapped from other threads.
5083 if (!pmd_huge(*pmd))
5084 goto out;
5085 pte = huge_ptep_get((pte_t *)pmd);
5086 if (pte_present(pte)) {
5087 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5088 if (flags & FOLL_GET)
5089 get_page(page);
5090 } else {
5091 if (is_hugetlb_entry_migration(pte)) {
5092 spin_unlock(ptl);
5093 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5094 goto retry;
5097 * hwpoisoned entry is treated as no_page_table in
5098 * follow_page_mask().
5101 out:
5102 spin_unlock(ptl);
5103 return page;
5106 struct page * __weak
5107 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5108 pud_t *pud, int flags)
5110 if (flags & FOLL_GET)
5111 return NULL;
5113 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5116 struct page * __weak
5117 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5119 if (flags & FOLL_GET)
5120 return NULL;
5122 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5125 bool isolate_huge_page(struct page *page, struct list_head *list)
5127 bool ret = true;
5129 VM_BUG_ON_PAGE(!PageHead(page), page);
5130 spin_lock(&hugetlb_lock);
5131 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5132 ret = false;
5133 goto unlock;
5135 clear_page_huge_active(page);
5136 list_move_tail(&page->lru, list);
5137 unlock:
5138 spin_unlock(&hugetlb_lock);
5139 return ret;
5142 void putback_active_hugepage(struct page *page)
5144 VM_BUG_ON_PAGE(!PageHead(page), page);
5145 spin_lock(&hugetlb_lock);
5146 set_page_huge_active(page);
5147 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5148 spin_unlock(&hugetlb_lock);
5149 put_page(page);
5152 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5154 struct hstate *h = page_hstate(oldpage);
5156 hugetlb_cgroup_migrate(oldpage, newpage);
5157 set_page_owner_migrate_reason(newpage, reason);
5160 * transfer temporary state of the new huge page. This is
5161 * reverse to other transitions because the newpage is going to
5162 * be final while the old one will be freed so it takes over
5163 * the temporary status.
5165 * Also note that we have to transfer the per-node surplus state
5166 * here as well otherwise the global surplus count will not match
5167 * the per-node's.
5169 if (PageHugeTemporary(newpage)) {
5170 int old_nid = page_to_nid(oldpage);
5171 int new_nid = page_to_nid(newpage);
5173 SetPageHugeTemporary(oldpage);
5174 ClearPageHugeTemporary(newpage);
5176 spin_lock(&hugetlb_lock);
5177 if (h->surplus_huge_pages_node[old_nid]) {
5178 h->surplus_huge_pages_node[old_nid]--;
5179 h->surplus_huge_pages_node[new_nid]++;
5181 spin_unlock(&hugetlb_lock);