1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30 #include <linux/llist.h>
33 #include <asm/pgtable.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/node.h>
40 #include <linux/userfaultfd_k.h>
41 #include <linux/page_owner.h>
44 int hugetlb_max_hstate __read_mostly
;
45 unsigned int default_hstate_idx
;
46 struct hstate hstates
[HUGE_MAX_HSTATE
];
48 * Minimum page order among possible hugepage sizes, set to a proper value
51 static unsigned int minimum_order __read_mostly
= UINT_MAX
;
53 __initdata
LIST_HEAD(huge_boot_pages
);
55 /* for command line parsing */
56 static struct hstate
* __initdata parsed_hstate
;
57 static unsigned long __initdata default_hstate_max_huge_pages
;
58 static unsigned long __initdata default_hstate_size
;
59 static bool __initdata parsed_valid_hugepagesz
= true;
62 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
63 * free_huge_pages, and surplus_huge_pages.
65 DEFINE_SPINLOCK(hugetlb_lock
);
68 * Serializes faults on the same logical page. This is used to
69 * prevent spurious OOMs when the hugepage pool is fully utilized.
71 static int num_fault_mutexes
;
72 struct mutex
*hugetlb_fault_mutex_table ____cacheline_aligned_in_smp
;
74 /* Forward declaration */
75 static int hugetlb_acct_memory(struct hstate
*h
, long delta
);
77 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
79 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
81 spin_unlock(&spool
->lock
);
83 /* If no pages are used, and no other handles to the subpool
84 * remain, give up any reservations mased on minimum size and
87 if (spool
->min_hpages
!= -1)
88 hugetlb_acct_memory(spool
->hstate
,
94 struct hugepage_subpool
*hugepage_new_subpool(struct hstate
*h
, long max_hpages
,
97 struct hugepage_subpool
*spool
;
99 spool
= kzalloc(sizeof(*spool
), GFP_KERNEL
);
103 spin_lock_init(&spool
->lock
);
105 spool
->max_hpages
= max_hpages
;
107 spool
->min_hpages
= min_hpages
;
109 if (min_hpages
!= -1 && hugetlb_acct_memory(h
, min_hpages
)) {
113 spool
->rsv_hpages
= min_hpages
;
118 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
120 spin_lock(&spool
->lock
);
121 BUG_ON(!spool
->count
);
123 unlock_or_release_subpool(spool
);
127 * Subpool accounting for allocating and reserving pages.
128 * Return -ENOMEM if there are not enough resources to satisfy the
129 * the request. Otherwise, return the number of pages by which the
130 * global pools must be adjusted (upward). The returned value may
131 * only be different than the passed value (delta) in the case where
132 * a subpool minimum size must be manitained.
134 static long hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
142 spin_lock(&spool
->lock
);
144 if (spool
->max_hpages
!= -1) { /* maximum size accounting */
145 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
)
146 spool
->used_hpages
+= delta
;
153 /* minimum size accounting */
154 if (spool
->min_hpages
!= -1 && spool
->rsv_hpages
) {
155 if (delta
> spool
->rsv_hpages
) {
157 * Asking for more reserves than those already taken on
158 * behalf of subpool. Return difference.
160 ret
= delta
- spool
->rsv_hpages
;
161 spool
->rsv_hpages
= 0;
163 ret
= 0; /* reserves already accounted for */
164 spool
->rsv_hpages
-= delta
;
169 spin_unlock(&spool
->lock
);
174 * Subpool accounting for freeing and unreserving pages.
175 * Return the number of global page reservations that must be dropped.
176 * The return value may only be different than the passed value (delta)
177 * in the case where a subpool minimum size must be maintained.
179 static long hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
187 spin_lock(&spool
->lock
);
189 if (spool
->max_hpages
!= -1) /* maximum size accounting */
190 spool
->used_hpages
-= delta
;
192 /* minimum size accounting */
193 if (spool
->min_hpages
!= -1 && spool
->used_hpages
< spool
->min_hpages
) {
194 if (spool
->rsv_hpages
+ delta
<= spool
->min_hpages
)
197 ret
= spool
->rsv_hpages
+ delta
- spool
->min_hpages
;
199 spool
->rsv_hpages
+= delta
;
200 if (spool
->rsv_hpages
> spool
->min_hpages
)
201 spool
->rsv_hpages
= spool
->min_hpages
;
205 * If hugetlbfs_put_super couldn't free spool due to an outstanding
206 * quota reference, free it now.
208 unlock_or_release_subpool(spool
);
213 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
215 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
218 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
220 return subpool_inode(file_inode(vma
->vm_file
));
224 * Region tracking -- allows tracking of reservations and instantiated pages
225 * across the pages in a mapping.
227 * The region data structures are embedded into a resv_map and protected
228 * by a resv_map's lock. The set of regions within the resv_map represent
229 * reservations for huge pages, or huge pages that have already been
230 * instantiated within the map. The from and to elements are huge page
231 * indicies into the associated mapping. from indicates the starting index
232 * of the region. to represents the first index past the end of the region.
234 * For example, a file region structure with from == 0 and to == 4 represents
235 * four huge pages in a mapping. It is important to note that the to element
236 * represents the first element past the end of the region. This is used in
237 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
239 * Interval notation of the form [from, to) will be used to indicate that
240 * the endpoint from is inclusive and to is exclusive.
243 struct list_head link
;
249 * Add the huge page range represented by [f, t) to the reserve
250 * map. In the normal case, existing regions will be expanded
251 * to accommodate the specified range. Sufficient regions should
252 * exist for expansion due to the previous call to region_chg
253 * with the same range. However, it is possible that region_del
254 * could have been called after region_chg and modifed the map
255 * in such a way that no region exists to be expanded. In this
256 * case, pull a region descriptor from the cache associated with
257 * the map and use that for the new range.
259 * Return the number of new huge pages added to the map. This
260 * number is greater than or equal to zero.
262 static long region_add(struct resv_map
*resv
, long f
, long t
)
264 struct list_head
*head
= &resv
->regions
;
265 struct file_region
*rg
, *nrg
, *trg
;
268 spin_lock(&resv
->lock
);
269 /* Locate the region we are either in or before. */
270 list_for_each_entry(rg
, head
, link
)
275 * If no region exists which can be expanded to include the
276 * specified range, the list must have been modified by an
277 * interleving call to region_del(). Pull a region descriptor
278 * from the cache and use it for this range.
280 if (&rg
->link
== head
|| t
< rg
->from
) {
281 VM_BUG_ON(resv
->region_cache_count
<= 0);
283 resv
->region_cache_count
--;
284 nrg
= list_first_entry(&resv
->region_cache
, struct file_region
,
286 list_del(&nrg
->link
);
290 list_add(&nrg
->link
, rg
->link
.prev
);
296 /* Round our left edge to the current segment if it encloses us. */
300 /* Check for and consume any regions we now overlap with. */
302 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
303 if (&rg
->link
== head
)
308 /* If this area reaches higher then extend our area to
309 * include it completely. If this is not the first area
310 * which we intend to reuse, free it. */
314 /* Decrement return value by the deleted range.
315 * Another range will span this area so that by
316 * end of routine add will be >= zero
318 add
-= (rg
->to
- rg
->from
);
324 add
+= (nrg
->from
- f
); /* Added to beginning of region */
326 add
+= t
- nrg
->to
; /* Added to end of region */
330 resv
->adds_in_progress
--;
331 spin_unlock(&resv
->lock
);
337 * Examine the existing reserve map and determine how many
338 * huge pages in the specified range [f, t) are NOT currently
339 * represented. This routine is called before a subsequent
340 * call to region_add that will actually modify the reserve
341 * map to add the specified range [f, t). region_chg does
342 * not change the number of huge pages represented by the
343 * map. However, if the existing regions in the map can not
344 * be expanded to represent the new range, a new file_region
345 * structure is added to the map as a placeholder. This is
346 * so that the subsequent region_add call will have all the
347 * regions it needs and will not fail.
349 * Upon entry, region_chg will also examine the cache of region descriptors
350 * associated with the map. If there are not enough descriptors cached, one
351 * will be allocated for the in progress add operation.
353 * Returns the number of huge pages that need to be added to the existing
354 * reservation map for the range [f, t). This number is greater or equal to
355 * zero. -ENOMEM is returned if a new file_region structure or cache entry
356 * is needed and can not be allocated.
358 static long region_chg(struct resv_map
*resv
, long f
, long t
)
360 struct list_head
*head
= &resv
->regions
;
361 struct file_region
*rg
, *nrg
= NULL
;
365 spin_lock(&resv
->lock
);
367 resv
->adds_in_progress
++;
370 * Check for sufficient descriptors in the cache to accommodate
371 * the number of in progress add operations.
373 if (resv
->adds_in_progress
> resv
->region_cache_count
) {
374 struct file_region
*trg
;
376 VM_BUG_ON(resv
->adds_in_progress
- resv
->region_cache_count
> 1);
377 /* Must drop lock to allocate a new descriptor. */
378 resv
->adds_in_progress
--;
379 spin_unlock(&resv
->lock
);
381 trg
= kmalloc(sizeof(*trg
), GFP_KERNEL
);
387 spin_lock(&resv
->lock
);
388 list_add(&trg
->link
, &resv
->region_cache
);
389 resv
->region_cache_count
++;
393 /* Locate the region we are before or in. */
394 list_for_each_entry(rg
, head
, link
)
398 /* If we are below the current region then a new region is required.
399 * Subtle, allocate a new region at the position but make it zero
400 * size such that we can guarantee to record the reservation. */
401 if (&rg
->link
== head
|| t
< rg
->from
) {
403 resv
->adds_in_progress
--;
404 spin_unlock(&resv
->lock
);
405 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
411 INIT_LIST_HEAD(&nrg
->link
);
415 list_add(&nrg
->link
, rg
->link
.prev
);
420 /* Round our left edge to the current segment if it encloses us. */
425 /* Check for and consume any regions we now overlap with. */
426 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
427 if (&rg
->link
== head
)
432 /* We overlap with this area, if it extends further than
433 * us then we must extend ourselves. Account for its
434 * existing reservation. */
439 chg
-= rg
->to
- rg
->from
;
443 spin_unlock(&resv
->lock
);
444 /* We already know we raced and no longer need the new region */
448 spin_unlock(&resv
->lock
);
453 * Abort the in progress add operation. The adds_in_progress field
454 * of the resv_map keeps track of the operations in progress between
455 * calls to region_chg and region_add. Operations are sometimes
456 * aborted after the call to region_chg. In such cases, region_abort
457 * is called to decrement the adds_in_progress counter.
459 * NOTE: The range arguments [f, t) are not needed or used in this
460 * routine. They are kept to make reading the calling code easier as
461 * arguments will match the associated region_chg call.
463 static void region_abort(struct resv_map
*resv
, long f
, long t
)
465 spin_lock(&resv
->lock
);
466 VM_BUG_ON(!resv
->region_cache_count
);
467 resv
->adds_in_progress
--;
468 spin_unlock(&resv
->lock
);
472 * Delete the specified range [f, t) from the reserve map. If the
473 * t parameter is LONG_MAX, this indicates that ALL regions after f
474 * should be deleted. Locate the regions which intersect [f, t)
475 * and either trim, delete or split the existing regions.
477 * Returns the number of huge pages deleted from the reserve map.
478 * In the normal case, the return value is zero or more. In the
479 * case where a region must be split, a new region descriptor must
480 * be allocated. If the allocation fails, -ENOMEM will be returned.
481 * NOTE: If the parameter t == LONG_MAX, then we will never split
482 * a region and possibly return -ENOMEM. Callers specifying
483 * t == LONG_MAX do not need to check for -ENOMEM error.
485 static long region_del(struct resv_map
*resv
, long f
, long t
)
487 struct list_head
*head
= &resv
->regions
;
488 struct file_region
*rg
, *trg
;
489 struct file_region
*nrg
= NULL
;
493 spin_lock(&resv
->lock
);
494 list_for_each_entry_safe(rg
, trg
, head
, link
) {
496 * Skip regions before the range to be deleted. file_region
497 * ranges are normally of the form [from, to). However, there
498 * may be a "placeholder" entry in the map which is of the form
499 * (from, to) with from == to. Check for placeholder entries
500 * at the beginning of the range to be deleted.
502 if (rg
->to
<= f
&& (rg
->to
!= rg
->from
|| rg
->to
!= f
))
508 if (f
> rg
->from
&& t
< rg
->to
) { /* Must split region */
510 * Check for an entry in the cache before dropping
511 * lock and attempting allocation.
514 resv
->region_cache_count
> resv
->adds_in_progress
) {
515 nrg
= list_first_entry(&resv
->region_cache
,
518 list_del(&nrg
->link
);
519 resv
->region_cache_count
--;
523 spin_unlock(&resv
->lock
);
524 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
532 /* New entry for end of split region */
535 INIT_LIST_HEAD(&nrg
->link
);
537 /* Original entry is trimmed */
540 list_add(&nrg
->link
, &rg
->link
);
545 if (f
<= rg
->from
&& t
>= rg
->to
) { /* Remove entire region */
546 del
+= rg
->to
- rg
->from
;
552 if (f
<= rg
->from
) { /* Trim beginning of region */
555 } else { /* Trim end of region */
561 spin_unlock(&resv
->lock
);
567 * A rare out of memory error was encountered which prevented removal of
568 * the reserve map region for a page. The huge page itself was free'ed
569 * and removed from the page cache. This routine will adjust the subpool
570 * usage count, and the global reserve count if needed. By incrementing
571 * these counts, the reserve map entry which could not be deleted will
572 * appear as a "reserved" entry instead of simply dangling with incorrect
575 void hugetlb_fix_reserve_counts(struct inode
*inode
)
577 struct hugepage_subpool
*spool
= subpool_inode(inode
);
580 rsv_adjust
= hugepage_subpool_get_pages(spool
, 1);
582 struct hstate
*h
= hstate_inode(inode
);
584 hugetlb_acct_memory(h
, 1);
589 * Count and return the number of huge pages in the reserve map
590 * that intersect with the range [f, t).
592 static long region_count(struct resv_map
*resv
, long f
, long t
)
594 struct list_head
*head
= &resv
->regions
;
595 struct file_region
*rg
;
598 spin_lock(&resv
->lock
);
599 /* Locate each segment we overlap with, and count that overlap. */
600 list_for_each_entry(rg
, head
, link
) {
609 seg_from
= max(rg
->from
, f
);
610 seg_to
= min(rg
->to
, t
);
612 chg
+= seg_to
- seg_from
;
614 spin_unlock(&resv
->lock
);
620 * Convert the address within this vma to the page offset within
621 * the mapping, in pagecache page units; huge pages here.
623 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
624 struct vm_area_struct
*vma
, unsigned long address
)
626 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
627 (vma
->vm_pgoff
>> huge_page_order(h
));
630 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
631 unsigned long address
)
633 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
635 EXPORT_SYMBOL_GPL(linear_hugepage_index
);
638 * Return the size of the pages allocated when backing a VMA. In the majority
639 * cases this will be same size as used by the page table entries.
641 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
643 if (vma
->vm_ops
&& vma
->vm_ops
->pagesize
)
644 return vma
->vm_ops
->pagesize(vma
);
647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
650 * Return the page size being used by the MMU to back a VMA. In the majority
651 * of cases, the page size used by the kernel matches the MMU size. On
652 * architectures where it differs, an architecture-specific 'strong'
653 * version of this symbol is required.
655 __weak
unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
657 return vma_kernel_pagesize(vma
);
661 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
662 * bits of the reservation map pointer, which are always clear due to
665 #define HPAGE_RESV_OWNER (1UL << 0)
666 #define HPAGE_RESV_UNMAPPED (1UL << 1)
667 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
670 * These helpers are used to track how many pages are reserved for
671 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
672 * is guaranteed to have their future faults succeed.
674 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
675 * the reserve counters are updated with the hugetlb_lock held. It is safe
676 * to reset the VMA at fork() time as it is not in use yet and there is no
677 * chance of the global counters getting corrupted as a result of the values.
679 * The private mapping reservation is represented in a subtly different
680 * manner to a shared mapping. A shared mapping has a region map associated
681 * with the underlying file, this region map represents the backing file
682 * pages which have ever had a reservation assigned which this persists even
683 * after the page is instantiated. A private mapping has a region map
684 * associated with the original mmap which is attached to all VMAs which
685 * reference it, this region map represents those offsets which have consumed
686 * reservation ie. where pages have been instantiated.
688 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
690 return (unsigned long)vma
->vm_private_data
;
693 static void set_vma_private_data(struct vm_area_struct
*vma
,
696 vma
->vm_private_data
= (void *)value
;
699 struct resv_map
*resv_map_alloc(void)
701 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
702 struct file_region
*rg
= kmalloc(sizeof(*rg
), GFP_KERNEL
);
704 if (!resv_map
|| !rg
) {
710 kref_init(&resv_map
->refs
);
711 spin_lock_init(&resv_map
->lock
);
712 INIT_LIST_HEAD(&resv_map
->regions
);
714 resv_map
->adds_in_progress
= 0;
716 INIT_LIST_HEAD(&resv_map
->region_cache
);
717 list_add(&rg
->link
, &resv_map
->region_cache
);
718 resv_map
->region_cache_count
= 1;
723 void resv_map_release(struct kref
*ref
)
725 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
726 struct list_head
*head
= &resv_map
->region_cache
;
727 struct file_region
*rg
, *trg
;
729 /* Clear out any active regions before we release the map. */
730 region_del(resv_map
, 0, LONG_MAX
);
732 /* ... and any entries left in the cache */
733 list_for_each_entry_safe(rg
, trg
, head
, link
) {
738 VM_BUG_ON(resv_map
->adds_in_progress
);
743 static inline struct resv_map
*inode_resv_map(struct inode
*inode
)
746 * At inode evict time, i_mapping may not point to the original
747 * address space within the inode. This original address space
748 * contains the pointer to the resv_map. So, always use the
749 * address space embedded within the inode.
750 * The VERY common case is inode->mapping == &inode->i_data but,
751 * this may not be true for device special inodes.
753 return (struct resv_map
*)(&inode
->i_data
)->private_data
;
756 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
758 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
759 if (vma
->vm_flags
& VM_MAYSHARE
) {
760 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
761 struct inode
*inode
= mapping
->host
;
763 return inode_resv_map(inode
);
766 return (struct resv_map
*)(get_vma_private_data(vma
) &
771 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
773 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
774 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
776 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
777 HPAGE_RESV_MASK
) | (unsigned long)map
);
780 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
782 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
783 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
785 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
788 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
790 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
792 return (get_vma_private_data(vma
) & flag
) != 0;
795 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
796 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
798 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
799 if (!(vma
->vm_flags
& VM_MAYSHARE
))
800 vma
->vm_private_data
= (void *)0;
803 /* Returns true if the VMA has associated reserve pages */
804 static bool vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
806 if (vma
->vm_flags
& VM_NORESERVE
) {
808 * This address is already reserved by other process(chg == 0),
809 * so, we should decrement reserved count. Without decrementing,
810 * reserve count remains after releasing inode, because this
811 * allocated page will go into page cache and is regarded as
812 * coming from reserved pool in releasing step. Currently, we
813 * don't have any other solution to deal with this situation
814 * properly, so add work-around here.
816 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
822 /* Shared mappings always use reserves */
823 if (vma
->vm_flags
& VM_MAYSHARE
) {
825 * We know VM_NORESERVE is not set. Therefore, there SHOULD
826 * be a region map for all pages. The only situation where
827 * there is no region map is if a hole was punched via
828 * fallocate. In this case, there really are no reverves to
829 * use. This situation is indicated if chg != 0.
838 * Only the process that called mmap() has reserves for
841 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
843 * Like the shared case above, a hole punch or truncate
844 * could have been performed on the private mapping.
845 * Examine the value of chg to determine if reserves
846 * actually exist or were previously consumed.
847 * Very Subtle - The value of chg comes from a previous
848 * call to vma_needs_reserves(). The reserve map for
849 * private mappings has different (opposite) semantics
850 * than that of shared mappings. vma_needs_reserves()
851 * has already taken this difference in semantics into
852 * account. Therefore, the meaning of chg is the same
853 * as in the shared case above. Code could easily be
854 * combined, but keeping it separate draws attention to
855 * subtle differences.
866 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
868 int nid
= page_to_nid(page
);
869 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
870 h
->free_huge_pages
++;
871 h
->free_huge_pages_node
[nid
]++;
874 static struct page
*dequeue_huge_page_node_exact(struct hstate
*h
, int nid
)
878 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
)
879 if (!PageHWPoison(page
))
882 * if 'non-isolated free hugepage' not found on the list,
883 * the allocation fails.
885 if (&h
->hugepage_freelists
[nid
] == &page
->lru
)
887 list_move(&page
->lru
, &h
->hugepage_activelist
);
888 set_page_refcounted(page
);
889 h
->free_huge_pages
--;
890 h
->free_huge_pages_node
[nid
]--;
894 static struct page
*dequeue_huge_page_nodemask(struct hstate
*h
, gfp_t gfp_mask
, int nid
,
897 unsigned int cpuset_mems_cookie
;
898 struct zonelist
*zonelist
;
901 int node
= NUMA_NO_NODE
;
903 zonelist
= node_zonelist(nid
, gfp_mask
);
906 cpuset_mems_cookie
= read_mems_allowed_begin();
907 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, gfp_zone(gfp_mask
), nmask
) {
910 if (!cpuset_zone_allowed(zone
, gfp_mask
))
913 * no need to ask again on the same node. Pool is node rather than
916 if (zone_to_nid(zone
) == node
)
918 node
= zone_to_nid(zone
);
920 page
= dequeue_huge_page_node_exact(h
, node
);
924 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie
)))
930 /* Movability of hugepages depends on migration support. */
931 static inline gfp_t
htlb_alloc_mask(struct hstate
*h
)
933 if (hugepage_movable_supported(h
))
934 return GFP_HIGHUSER_MOVABLE
;
939 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
940 struct vm_area_struct
*vma
,
941 unsigned long address
, int avoid_reserve
,
945 struct mempolicy
*mpol
;
947 nodemask_t
*nodemask
;
951 * A child process with MAP_PRIVATE mappings created by their parent
952 * have no page reserves. This check ensures that reservations are
953 * not "stolen". The child may still get SIGKILLed
955 if (!vma_has_reserves(vma
, chg
) &&
956 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
959 /* If reserves cannot be used, ensure enough pages are in the pool */
960 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
963 gfp_mask
= htlb_alloc_mask(h
);
964 nid
= huge_node(vma
, address
, gfp_mask
, &mpol
, &nodemask
);
965 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, nid
, nodemask
);
966 if (page
&& !avoid_reserve
&& vma_has_reserves(vma
, chg
)) {
967 SetPagePrivate(page
);
968 h
->resv_huge_pages
--;
979 * common helper functions for hstate_next_node_to_{alloc|free}.
980 * We may have allocated or freed a huge page based on a different
981 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
982 * be outside of *nodes_allowed. Ensure that we use an allowed
983 * node for alloc or free.
985 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
987 nid
= next_node_in(nid
, *nodes_allowed
);
988 VM_BUG_ON(nid
>= MAX_NUMNODES
);
993 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
995 if (!node_isset(nid
, *nodes_allowed
))
996 nid
= next_node_allowed(nid
, nodes_allowed
);
1001 * returns the previously saved node ["this node"] from which to
1002 * allocate a persistent huge page for the pool and advance the
1003 * next node from which to allocate, handling wrap at end of node
1006 static int hstate_next_node_to_alloc(struct hstate
*h
,
1007 nodemask_t
*nodes_allowed
)
1011 VM_BUG_ON(!nodes_allowed
);
1013 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
1014 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
1020 * helper for free_pool_huge_page() - return the previously saved
1021 * node ["this node"] from which to free a huge page. Advance the
1022 * next node id whether or not we find a free huge page to free so
1023 * that the next attempt to free addresses the next node.
1025 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1029 VM_BUG_ON(!nodes_allowed
);
1031 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
1032 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
1037 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1038 for (nr_nodes = nodes_weight(*mask); \
1040 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1043 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1044 for (nr_nodes = nodes_weight(*mask); \
1046 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1049 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1050 static void destroy_compound_gigantic_page(struct page
*page
,
1054 int nr_pages
= 1 << order
;
1055 struct page
*p
= page
+ 1;
1057 atomic_set(compound_mapcount_ptr(page
), 0);
1058 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1059 clear_compound_head(p
);
1060 set_page_refcounted(p
);
1063 set_compound_order(page
, 0);
1064 __ClearPageHead(page
);
1067 static void free_gigantic_page(struct page
*page
, unsigned int order
)
1069 free_contig_range(page_to_pfn(page
), 1 << order
);
1072 #ifdef CONFIG_CONTIG_ALLOC
1073 static int __alloc_gigantic_page(unsigned long start_pfn
,
1074 unsigned long nr_pages
, gfp_t gfp_mask
)
1076 unsigned long end_pfn
= start_pfn
+ nr_pages
;
1077 return alloc_contig_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
,
1081 static bool pfn_range_valid_gigantic(struct zone
*z
,
1082 unsigned long start_pfn
, unsigned long nr_pages
)
1084 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
1087 for (i
= start_pfn
; i
< end_pfn
; i
++) {
1088 page
= pfn_to_online_page(i
);
1092 if (page_zone(page
) != z
)
1095 if (PageReserved(page
))
1098 if (page_count(page
) > 0)
1108 static bool zone_spans_last_pfn(const struct zone
*zone
,
1109 unsigned long start_pfn
, unsigned long nr_pages
)
1111 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
1112 return zone_spans_pfn(zone
, last_pfn
);
1115 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1116 int nid
, nodemask_t
*nodemask
)
1118 unsigned int order
= huge_page_order(h
);
1119 unsigned long nr_pages
= 1 << order
;
1120 unsigned long ret
, pfn
, flags
;
1121 struct zonelist
*zonelist
;
1125 zonelist
= node_zonelist(nid
, gfp_mask
);
1126 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, gfp_zone(gfp_mask
), nodemask
) {
1127 spin_lock_irqsave(&zone
->lock
, flags
);
1129 pfn
= ALIGN(zone
->zone_start_pfn
, nr_pages
);
1130 while (zone_spans_last_pfn(zone
, pfn
, nr_pages
)) {
1131 if (pfn_range_valid_gigantic(zone
, pfn
, nr_pages
)) {
1133 * We release the zone lock here because
1134 * alloc_contig_range() will also lock the zone
1135 * at some point. If there's an allocation
1136 * spinning on this lock, it may win the race
1137 * and cause alloc_contig_range() to fail...
1139 spin_unlock_irqrestore(&zone
->lock
, flags
);
1140 ret
= __alloc_gigantic_page(pfn
, nr_pages
, gfp_mask
);
1142 return pfn_to_page(pfn
);
1143 spin_lock_irqsave(&zone
->lock
, flags
);
1148 spin_unlock_irqrestore(&zone
->lock
, flags
);
1154 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
);
1155 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
);
1156 #else /* !CONFIG_CONTIG_ALLOC */
1157 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1158 int nid
, nodemask_t
*nodemask
)
1162 #endif /* CONFIG_CONTIG_ALLOC */
1164 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1165 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1166 int nid
, nodemask_t
*nodemask
)
1170 static inline void free_gigantic_page(struct page
*page
, unsigned int order
) { }
1171 static inline void destroy_compound_gigantic_page(struct page
*page
,
1172 unsigned int order
) { }
1175 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
1179 if (hstate_is_gigantic(h
) && !gigantic_page_runtime_supported())
1183 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
1184 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
1185 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
1186 1 << PG_referenced
| 1 << PG_dirty
|
1187 1 << PG_active
| 1 << PG_private
|
1190 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page
), page
);
1191 set_compound_page_dtor(page
, NULL_COMPOUND_DTOR
);
1192 set_page_refcounted(page
);
1193 if (hstate_is_gigantic(h
)) {
1194 destroy_compound_gigantic_page(page
, huge_page_order(h
));
1195 free_gigantic_page(page
, huge_page_order(h
));
1197 __free_pages(page
, huge_page_order(h
));
1201 struct hstate
*size_to_hstate(unsigned long size
)
1205 for_each_hstate(h
) {
1206 if (huge_page_size(h
) == size
)
1213 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1214 * to hstate->hugepage_activelist.)
1216 * This function can be called for tail pages, but never returns true for them.
1218 bool page_huge_active(struct page
*page
)
1220 VM_BUG_ON_PAGE(!PageHuge(page
), page
);
1221 return PageHead(page
) && PagePrivate(&page
[1]);
1224 /* never called for tail page */
1225 static void set_page_huge_active(struct page
*page
)
1227 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1228 SetPagePrivate(&page
[1]);
1231 static void clear_page_huge_active(struct page
*page
)
1233 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1234 ClearPagePrivate(&page
[1]);
1238 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1241 static inline bool PageHugeTemporary(struct page
*page
)
1243 if (!PageHuge(page
))
1246 return (unsigned long)page
[2].mapping
== -1U;
1249 static inline void SetPageHugeTemporary(struct page
*page
)
1251 page
[2].mapping
= (void *)-1U;
1254 static inline void ClearPageHugeTemporary(struct page
*page
)
1256 page
[2].mapping
= NULL
;
1259 static void __free_huge_page(struct page
*page
)
1262 * Can't pass hstate in here because it is called from the
1263 * compound page destructor.
1265 struct hstate
*h
= page_hstate(page
);
1266 int nid
= page_to_nid(page
);
1267 struct hugepage_subpool
*spool
=
1268 (struct hugepage_subpool
*)page_private(page
);
1269 bool restore_reserve
;
1271 VM_BUG_ON_PAGE(page_count(page
), page
);
1272 VM_BUG_ON_PAGE(page_mapcount(page
), page
);
1274 set_page_private(page
, 0);
1275 page
->mapping
= NULL
;
1276 restore_reserve
= PagePrivate(page
);
1277 ClearPagePrivate(page
);
1280 * If PagePrivate() was set on page, page allocation consumed a
1281 * reservation. If the page was associated with a subpool, there
1282 * would have been a page reserved in the subpool before allocation
1283 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1284 * reservtion, do not call hugepage_subpool_put_pages() as this will
1285 * remove the reserved page from the subpool.
1287 if (!restore_reserve
) {
1289 * A return code of zero implies that the subpool will be
1290 * under its minimum size if the reservation is not restored
1291 * after page is free. Therefore, force restore_reserve
1294 if (hugepage_subpool_put_pages(spool
, 1) == 0)
1295 restore_reserve
= true;
1298 spin_lock(&hugetlb_lock
);
1299 clear_page_huge_active(page
);
1300 hugetlb_cgroup_uncharge_page(hstate_index(h
),
1301 pages_per_huge_page(h
), page
);
1302 if (restore_reserve
)
1303 h
->resv_huge_pages
++;
1305 if (PageHugeTemporary(page
)) {
1306 list_del(&page
->lru
);
1307 ClearPageHugeTemporary(page
);
1308 update_and_free_page(h
, page
);
1309 } else if (h
->surplus_huge_pages_node
[nid
]) {
1310 /* remove the page from active list */
1311 list_del(&page
->lru
);
1312 update_and_free_page(h
, page
);
1313 h
->surplus_huge_pages
--;
1314 h
->surplus_huge_pages_node
[nid
]--;
1316 arch_clear_hugepage_flags(page
);
1317 enqueue_huge_page(h
, page
);
1319 spin_unlock(&hugetlb_lock
);
1323 * As free_huge_page() can be called from a non-task context, we have
1324 * to defer the actual freeing in a workqueue to prevent potential
1325 * hugetlb_lock deadlock.
1327 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1328 * be freed and frees them one-by-one. As the page->mapping pointer is
1329 * going to be cleared in __free_huge_page() anyway, it is reused as the
1330 * llist_node structure of a lockless linked list of huge pages to be freed.
1332 static LLIST_HEAD(hpage_freelist
);
1334 static void free_hpage_workfn(struct work_struct
*work
)
1336 struct llist_node
*node
;
1339 node
= llist_del_all(&hpage_freelist
);
1342 page
= container_of((struct address_space
**)node
,
1343 struct page
, mapping
);
1345 __free_huge_page(page
);
1348 static DECLARE_WORK(free_hpage_work
, free_hpage_workfn
);
1350 void free_huge_page(struct page
*page
)
1353 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1357 * Only call schedule_work() if hpage_freelist is previously
1358 * empty. Otherwise, schedule_work() had been called but the
1359 * workfn hasn't retrieved the list yet.
1361 if (llist_add((struct llist_node
*)&page
->mapping
,
1363 schedule_work(&free_hpage_work
);
1367 __free_huge_page(page
);
1370 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
1372 INIT_LIST_HEAD(&page
->lru
);
1373 set_compound_page_dtor(page
, HUGETLB_PAGE_DTOR
);
1374 spin_lock(&hugetlb_lock
);
1375 set_hugetlb_cgroup(page
, NULL
);
1377 h
->nr_huge_pages_node
[nid
]++;
1378 spin_unlock(&hugetlb_lock
);
1381 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
)
1384 int nr_pages
= 1 << order
;
1385 struct page
*p
= page
+ 1;
1387 /* we rely on prep_new_huge_page to set the destructor */
1388 set_compound_order(page
, order
);
1389 __ClearPageReserved(page
);
1390 __SetPageHead(page
);
1391 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1393 * For gigantic hugepages allocated through bootmem at
1394 * boot, it's safer to be consistent with the not-gigantic
1395 * hugepages and clear the PG_reserved bit from all tail pages
1396 * too. Otherwse drivers using get_user_pages() to access tail
1397 * pages may get the reference counting wrong if they see
1398 * PG_reserved set on a tail page (despite the head page not
1399 * having PG_reserved set). Enforcing this consistency between
1400 * head and tail pages allows drivers to optimize away a check
1401 * on the head page when they need know if put_page() is needed
1402 * after get_user_pages().
1404 __ClearPageReserved(p
);
1405 set_page_count(p
, 0);
1406 set_compound_head(p
, page
);
1408 atomic_set(compound_mapcount_ptr(page
), -1);
1412 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1413 * transparent huge pages. See the PageTransHuge() documentation for more
1416 int PageHuge(struct page
*page
)
1418 if (!PageCompound(page
))
1421 page
= compound_head(page
);
1422 return page
[1].compound_dtor
== HUGETLB_PAGE_DTOR
;
1424 EXPORT_SYMBOL_GPL(PageHuge
);
1427 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1428 * normal or transparent huge pages.
1430 int PageHeadHuge(struct page
*page_head
)
1432 if (!PageHead(page_head
))
1435 return get_compound_page_dtor(page_head
) == free_huge_page
;
1438 pgoff_t
__basepage_index(struct page
*page
)
1440 struct page
*page_head
= compound_head(page
);
1441 pgoff_t index
= page_index(page_head
);
1442 unsigned long compound_idx
;
1444 if (!PageHuge(page_head
))
1445 return page_index(page
);
1447 if (compound_order(page_head
) >= MAX_ORDER
)
1448 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
1450 compound_idx
= page
- page_head
;
1452 return (index
<< compound_order(page_head
)) + compound_idx
;
1455 static struct page
*alloc_buddy_huge_page(struct hstate
*h
,
1456 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
,
1457 nodemask_t
*node_alloc_noretry
)
1459 int order
= huge_page_order(h
);
1461 bool alloc_try_hard
= true;
1464 * By default we always try hard to allocate the page with
1465 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1466 * a loop (to adjust global huge page counts) and previous allocation
1467 * failed, do not continue to try hard on the same node. Use the
1468 * node_alloc_noretry bitmap to manage this state information.
1470 if (node_alloc_noretry
&& node_isset(nid
, *node_alloc_noretry
))
1471 alloc_try_hard
= false;
1472 gfp_mask
|= __GFP_COMP
|__GFP_NOWARN
;
1474 gfp_mask
|= __GFP_RETRY_MAYFAIL
;
1475 if (nid
== NUMA_NO_NODE
)
1476 nid
= numa_mem_id();
1477 page
= __alloc_pages_nodemask(gfp_mask
, order
, nid
, nmask
);
1479 __count_vm_event(HTLB_BUDDY_PGALLOC
);
1481 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1484 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1485 * indicates an overall state change. Clear bit so that we resume
1486 * normal 'try hard' allocations.
1488 if (node_alloc_noretry
&& page
&& !alloc_try_hard
)
1489 node_clear(nid
, *node_alloc_noretry
);
1492 * If we tried hard to get a page but failed, set bit so that
1493 * subsequent attempts will not try as hard until there is an
1494 * overall state change.
1496 if (node_alloc_noretry
&& !page
&& alloc_try_hard
)
1497 node_set(nid
, *node_alloc_noretry
);
1503 * Common helper to allocate a fresh hugetlb page. All specific allocators
1504 * should use this function to get new hugetlb pages
1506 static struct page
*alloc_fresh_huge_page(struct hstate
*h
,
1507 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
,
1508 nodemask_t
*node_alloc_noretry
)
1512 if (hstate_is_gigantic(h
))
1513 page
= alloc_gigantic_page(h
, gfp_mask
, nid
, nmask
);
1515 page
= alloc_buddy_huge_page(h
, gfp_mask
,
1516 nid
, nmask
, node_alloc_noretry
);
1520 if (hstate_is_gigantic(h
))
1521 prep_compound_gigantic_page(page
, huge_page_order(h
));
1522 prep_new_huge_page(h
, page
, page_to_nid(page
));
1528 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1531 static int alloc_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1532 nodemask_t
*node_alloc_noretry
)
1536 gfp_t gfp_mask
= htlb_alloc_mask(h
) | __GFP_THISNODE
;
1538 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1539 page
= alloc_fresh_huge_page(h
, gfp_mask
, node
, nodes_allowed
,
1540 node_alloc_noretry
);
1548 put_page(page
); /* free it into the hugepage allocator */
1554 * Free huge page from pool from next node to free.
1555 * Attempt to keep persistent huge pages more or less
1556 * balanced over allowed nodes.
1557 * Called with hugetlb_lock locked.
1559 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1565 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1567 * If we're returning unused surplus pages, only examine
1568 * nodes with surplus pages.
1570 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
1571 !list_empty(&h
->hugepage_freelists
[node
])) {
1573 list_entry(h
->hugepage_freelists
[node
].next
,
1575 list_del(&page
->lru
);
1576 h
->free_huge_pages
--;
1577 h
->free_huge_pages_node
[node
]--;
1579 h
->surplus_huge_pages
--;
1580 h
->surplus_huge_pages_node
[node
]--;
1582 update_and_free_page(h
, page
);
1592 * Dissolve a given free hugepage into free buddy pages. This function does
1593 * nothing for in-use hugepages and non-hugepages.
1594 * This function returns values like below:
1596 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1597 * (allocated or reserved.)
1598 * 0: successfully dissolved free hugepages or the page is not a
1599 * hugepage (considered as already dissolved)
1601 int dissolve_free_huge_page(struct page
*page
)
1605 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1606 if (!PageHuge(page
))
1609 spin_lock(&hugetlb_lock
);
1610 if (!PageHuge(page
)) {
1615 if (!page_count(page
)) {
1616 struct page
*head
= compound_head(page
);
1617 struct hstate
*h
= page_hstate(head
);
1618 int nid
= page_to_nid(head
);
1619 if (h
->free_huge_pages
- h
->resv_huge_pages
== 0)
1622 * Move PageHWPoison flag from head page to the raw error page,
1623 * which makes any subpages rather than the error page reusable.
1625 if (PageHWPoison(head
) && page
!= head
) {
1626 SetPageHWPoison(page
);
1627 ClearPageHWPoison(head
);
1629 list_del(&head
->lru
);
1630 h
->free_huge_pages
--;
1631 h
->free_huge_pages_node
[nid
]--;
1632 h
->max_huge_pages
--;
1633 update_and_free_page(h
, head
);
1637 spin_unlock(&hugetlb_lock
);
1642 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1643 * make specified memory blocks removable from the system.
1644 * Note that this will dissolve a free gigantic hugepage completely, if any
1645 * part of it lies within the given range.
1646 * Also note that if dissolve_free_huge_page() returns with an error, all
1647 * free hugepages that were dissolved before that error are lost.
1649 int dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1655 if (!hugepages_supported())
1658 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << minimum_order
) {
1659 page
= pfn_to_page(pfn
);
1660 rc
= dissolve_free_huge_page(page
);
1669 * Allocates a fresh surplus page from the page allocator.
1671 static struct page
*alloc_surplus_huge_page(struct hstate
*h
, gfp_t gfp_mask
,
1672 int nid
, nodemask_t
*nmask
)
1674 struct page
*page
= NULL
;
1676 if (hstate_is_gigantic(h
))
1679 spin_lock(&hugetlb_lock
);
1680 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
)
1682 spin_unlock(&hugetlb_lock
);
1684 page
= alloc_fresh_huge_page(h
, gfp_mask
, nid
, nmask
, NULL
);
1688 spin_lock(&hugetlb_lock
);
1690 * We could have raced with the pool size change.
1691 * Double check that and simply deallocate the new page
1692 * if we would end up overcommiting the surpluses. Abuse
1693 * temporary page to workaround the nasty free_huge_page
1696 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
1697 SetPageHugeTemporary(page
);
1698 spin_unlock(&hugetlb_lock
);
1702 h
->surplus_huge_pages
++;
1703 h
->surplus_huge_pages_node
[page_to_nid(page
)]++;
1707 spin_unlock(&hugetlb_lock
);
1712 struct page
*alloc_migrate_huge_page(struct hstate
*h
, gfp_t gfp_mask
,
1713 int nid
, nodemask_t
*nmask
)
1717 if (hstate_is_gigantic(h
))
1720 page
= alloc_fresh_huge_page(h
, gfp_mask
, nid
, nmask
, NULL
);
1725 * We do not account these pages as surplus because they are only
1726 * temporary and will be released properly on the last reference
1728 SetPageHugeTemporary(page
);
1734 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1737 struct page
*alloc_buddy_huge_page_with_mpol(struct hstate
*h
,
1738 struct vm_area_struct
*vma
, unsigned long addr
)
1741 struct mempolicy
*mpol
;
1742 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1744 nodemask_t
*nodemask
;
1746 nid
= huge_node(vma
, addr
, gfp_mask
, &mpol
, &nodemask
);
1747 page
= alloc_surplus_huge_page(h
, gfp_mask
, nid
, nodemask
);
1748 mpol_cond_put(mpol
);
1753 /* page migration callback function */
1754 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
1756 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1757 struct page
*page
= NULL
;
1759 if (nid
!= NUMA_NO_NODE
)
1760 gfp_mask
|= __GFP_THISNODE
;
1762 spin_lock(&hugetlb_lock
);
1763 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0)
1764 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, nid
, NULL
);
1765 spin_unlock(&hugetlb_lock
);
1768 page
= alloc_migrate_huge_page(h
, gfp_mask
, nid
, NULL
);
1773 /* page migration callback function */
1774 struct page
*alloc_huge_page_nodemask(struct hstate
*h
, int preferred_nid
,
1777 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1779 spin_lock(&hugetlb_lock
);
1780 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0) {
1783 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, preferred_nid
, nmask
);
1785 spin_unlock(&hugetlb_lock
);
1789 spin_unlock(&hugetlb_lock
);
1791 return alloc_migrate_huge_page(h
, gfp_mask
, preferred_nid
, nmask
);
1794 /* mempolicy aware migration callback */
1795 struct page
*alloc_huge_page_vma(struct hstate
*h
, struct vm_area_struct
*vma
,
1796 unsigned long address
)
1798 struct mempolicy
*mpol
;
1799 nodemask_t
*nodemask
;
1804 gfp_mask
= htlb_alloc_mask(h
);
1805 node
= huge_node(vma
, address
, gfp_mask
, &mpol
, &nodemask
);
1806 page
= alloc_huge_page_nodemask(h
, node
, nodemask
);
1807 mpol_cond_put(mpol
);
1813 * Increase the hugetlb pool such that it can accommodate a reservation
1816 static int gather_surplus_pages(struct hstate
*h
, int delta
)
1818 struct list_head surplus_list
;
1819 struct page
*page
, *tmp
;
1821 int needed
, allocated
;
1822 bool alloc_ok
= true;
1824 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
1826 h
->resv_huge_pages
+= delta
;
1831 INIT_LIST_HEAD(&surplus_list
);
1835 spin_unlock(&hugetlb_lock
);
1836 for (i
= 0; i
< needed
; i
++) {
1837 page
= alloc_surplus_huge_page(h
, htlb_alloc_mask(h
),
1838 NUMA_NO_NODE
, NULL
);
1843 list_add(&page
->lru
, &surplus_list
);
1849 * After retaking hugetlb_lock, we need to recalculate 'needed'
1850 * because either resv_huge_pages or free_huge_pages may have changed.
1852 spin_lock(&hugetlb_lock
);
1853 needed
= (h
->resv_huge_pages
+ delta
) -
1854 (h
->free_huge_pages
+ allocated
);
1859 * We were not able to allocate enough pages to
1860 * satisfy the entire reservation so we free what
1861 * we've allocated so far.
1866 * The surplus_list now contains _at_least_ the number of extra pages
1867 * needed to accommodate the reservation. Add the appropriate number
1868 * of pages to the hugetlb pool and free the extras back to the buddy
1869 * allocator. Commit the entire reservation here to prevent another
1870 * process from stealing the pages as they are added to the pool but
1871 * before they are reserved.
1873 needed
+= allocated
;
1874 h
->resv_huge_pages
+= delta
;
1877 /* Free the needed pages to the hugetlb pool */
1878 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1882 * This page is now managed by the hugetlb allocator and has
1883 * no users -- drop the buddy allocator's reference.
1885 put_page_testzero(page
);
1886 VM_BUG_ON_PAGE(page_count(page
), page
);
1887 enqueue_huge_page(h
, page
);
1890 spin_unlock(&hugetlb_lock
);
1892 /* Free unnecessary surplus pages to the buddy allocator */
1893 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
1895 spin_lock(&hugetlb_lock
);
1901 * This routine has two main purposes:
1902 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1903 * in unused_resv_pages. This corresponds to the prior adjustments made
1904 * to the associated reservation map.
1905 * 2) Free any unused surplus pages that may have been allocated to satisfy
1906 * the reservation. As many as unused_resv_pages may be freed.
1908 * Called with hugetlb_lock held. However, the lock could be dropped (and
1909 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1910 * we must make sure nobody else can claim pages we are in the process of
1911 * freeing. Do this by ensuring resv_huge_page always is greater than the
1912 * number of huge pages we plan to free when dropping the lock.
1914 static void return_unused_surplus_pages(struct hstate
*h
,
1915 unsigned long unused_resv_pages
)
1917 unsigned long nr_pages
;
1919 /* Cannot return gigantic pages currently */
1920 if (hstate_is_gigantic(h
))
1924 * Part (or even all) of the reservation could have been backed
1925 * by pre-allocated pages. Only free surplus pages.
1927 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1930 * We want to release as many surplus pages as possible, spread
1931 * evenly across all nodes with memory. Iterate across these nodes
1932 * until we can no longer free unreserved surplus pages. This occurs
1933 * when the nodes with surplus pages have no free pages.
1934 * free_pool_huge_page() will balance the the freed pages across the
1935 * on-line nodes with memory and will handle the hstate accounting.
1937 * Note that we decrement resv_huge_pages as we free the pages. If
1938 * we drop the lock, resv_huge_pages will still be sufficiently large
1939 * to cover subsequent pages we may free.
1941 while (nr_pages
--) {
1942 h
->resv_huge_pages
--;
1943 unused_resv_pages
--;
1944 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
1946 cond_resched_lock(&hugetlb_lock
);
1950 /* Fully uncommit the reservation */
1951 h
->resv_huge_pages
-= unused_resv_pages
;
1956 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1957 * are used by the huge page allocation routines to manage reservations.
1959 * vma_needs_reservation is called to determine if the huge page at addr
1960 * within the vma has an associated reservation. If a reservation is
1961 * needed, the value 1 is returned. The caller is then responsible for
1962 * managing the global reservation and subpool usage counts. After
1963 * the huge page has been allocated, vma_commit_reservation is called
1964 * to add the page to the reservation map. If the page allocation fails,
1965 * the reservation must be ended instead of committed. vma_end_reservation
1966 * is called in such cases.
1968 * In the normal case, vma_commit_reservation returns the same value
1969 * as the preceding vma_needs_reservation call. The only time this
1970 * is not the case is if a reserve map was changed between calls. It
1971 * is the responsibility of the caller to notice the difference and
1972 * take appropriate action.
1974 * vma_add_reservation is used in error paths where a reservation must
1975 * be restored when a newly allocated huge page must be freed. It is
1976 * to be called after calling vma_needs_reservation to determine if a
1977 * reservation exists.
1979 enum vma_resv_mode
{
1985 static long __vma_reservation_common(struct hstate
*h
,
1986 struct vm_area_struct
*vma
, unsigned long addr
,
1987 enum vma_resv_mode mode
)
1989 struct resv_map
*resv
;
1993 resv
= vma_resv_map(vma
);
1997 idx
= vma_hugecache_offset(h
, vma
, addr
);
1999 case VMA_NEEDS_RESV
:
2000 ret
= region_chg(resv
, idx
, idx
+ 1);
2002 case VMA_COMMIT_RESV
:
2003 ret
= region_add(resv
, idx
, idx
+ 1);
2006 region_abort(resv
, idx
, idx
+ 1);
2010 if (vma
->vm_flags
& VM_MAYSHARE
)
2011 ret
= region_add(resv
, idx
, idx
+ 1);
2013 region_abort(resv
, idx
, idx
+ 1);
2014 ret
= region_del(resv
, idx
, idx
+ 1);
2021 if (vma
->vm_flags
& VM_MAYSHARE
)
2023 else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) && ret
>= 0) {
2025 * In most cases, reserves always exist for private mappings.
2026 * However, a file associated with mapping could have been
2027 * hole punched or truncated after reserves were consumed.
2028 * As subsequent fault on such a range will not use reserves.
2029 * Subtle - The reserve map for private mappings has the
2030 * opposite meaning than that of shared mappings. If NO
2031 * entry is in the reserve map, it means a reservation exists.
2032 * If an entry exists in the reserve map, it means the
2033 * reservation has already been consumed. As a result, the
2034 * return value of this routine is the opposite of the
2035 * value returned from reserve map manipulation routines above.
2043 return ret
< 0 ? ret
: 0;
2046 static long vma_needs_reservation(struct hstate
*h
,
2047 struct vm_area_struct
*vma
, unsigned long addr
)
2049 return __vma_reservation_common(h
, vma
, addr
, VMA_NEEDS_RESV
);
2052 static long vma_commit_reservation(struct hstate
*h
,
2053 struct vm_area_struct
*vma
, unsigned long addr
)
2055 return __vma_reservation_common(h
, vma
, addr
, VMA_COMMIT_RESV
);
2058 static void vma_end_reservation(struct hstate
*h
,
2059 struct vm_area_struct
*vma
, unsigned long addr
)
2061 (void)__vma_reservation_common(h
, vma
, addr
, VMA_END_RESV
);
2064 static long vma_add_reservation(struct hstate
*h
,
2065 struct vm_area_struct
*vma
, unsigned long addr
)
2067 return __vma_reservation_common(h
, vma
, addr
, VMA_ADD_RESV
);
2071 * This routine is called to restore a reservation on error paths. In the
2072 * specific error paths, a huge page was allocated (via alloc_huge_page)
2073 * and is about to be freed. If a reservation for the page existed,
2074 * alloc_huge_page would have consumed the reservation and set PagePrivate
2075 * in the newly allocated page. When the page is freed via free_huge_page,
2076 * the global reservation count will be incremented if PagePrivate is set.
2077 * However, free_huge_page can not adjust the reserve map. Adjust the
2078 * reserve map here to be consistent with global reserve count adjustments
2079 * to be made by free_huge_page.
2081 static void restore_reserve_on_error(struct hstate
*h
,
2082 struct vm_area_struct
*vma
, unsigned long address
,
2085 if (unlikely(PagePrivate(page
))) {
2086 long rc
= vma_needs_reservation(h
, vma
, address
);
2088 if (unlikely(rc
< 0)) {
2090 * Rare out of memory condition in reserve map
2091 * manipulation. Clear PagePrivate so that
2092 * global reserve count will not be incremented
2093 * by free_huge_page. This will make it appear
2094 * as though the reservation for this page was
2095 * consumed. This may prevent the task from
2096 * faulting in the page at a later time. This
2097 * is better than inconsistent global huge page
2098 * accounting of reserve counts.
2100 ClearPagePrivate(page
);
2102 rc
= vma_add_reservation(h
, vma
, address
);
2103 if (unlikely(rc
< 0))
2105 * See above comment about rare out of
2108 ClearPagePrivate(page
);
2110 vma_end_reservation(h
, vma
, address
);
2114 struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
2115 unsigned long addr
, int avoid_reserve
)
2117 struct hugepage_subpool
*spool
= subpool_vma(vma
);
2118 struct hstate
*h
= hstate_vma(vma
);
2120 long map_chg
, map_commit
;
2123 struct hugetlb_cgroup
*h_cg
;
2125 idx
= hstate_index(h
);
2127 * Examine the region/reserve map to determine if the process
2128 * has a reservation for the page to be allocated. A return
2129 * code of zero indicates a reservation exists (no change).
2131 map_chg
= gbl_chg
= vma_needs_reservation(h
, vma
, addr
);
2133 return ERR_PTR(-ENOMEM
);
2136 * Processes that did not create the mapping will have no
2137 * reserves as indicated by the region/reserve map. Check
2138 * that the allocation will not exceed the subpool limit.
2139 * Allocations for MAP_NORESERVE mappings also need to be
2140 * checked against any subpool limit.
2142 if (map_chg
|| avoid_reserve
) {
2143 gbl_chg
= hugepage_subpool_get_pages(spool
, 1);
2145 vma_end_reservation(h
, vma
, addr
);
2146 return ERR_PTR(-ENOSPC
);
2150 * Even though there was no reservation in the region/reserve
2151 * map, there could be reservations associated with the
2152 * subpool that can be used. This would be indicated if the
2153 * return value of hugepage_subpool_get_pages() is zero.
2154 * However, if avoid_reserve is specified we still avoid even
2155 * the subpool reservations.
2161 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
2163 goto out_subpool_put
;
2165 spin_lock(&hugetlb_lock
);
2167 * glb_chg is passed to indicate whether or not a page must be taken
2168 * from the global free pool (global change). gbl_chg == 0 indicates
2169 * a reservation exists for the allocation.
2171 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, gbl_chg
);
2173 spin_unlock(&hugetlb_lock
);
2174 page
= alloc_buddy_huge_page_with_mpol(h
, vma
, addr
);
2176 goto out_uncharge_cgroup
;
2177 if (!avoid_reserve
&& vma_has_reserves(vma
, gbl_chg
)) {
2178 SetPagePrivate(page
);
2179 h
->resv_huge_pages
--;
2181 spin_lock(&hugetlb_lock
);
2182 list_move(&page
->lru
, &h
->hugepage_activelist
);
2185 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
2186 spin_unlock(&hugetlb_lock
);
2188 set_page_private(page
, (unsigned long)spool
);
2190 map_commit
= vma_commit_reservation(h
, vma
, addr
);
2191 if (unlikely(map_chg
> map_commit
)) {
2193 * The page was added to the reservation map between
2194 * vma_needs_reservation and vma_commit_reservation.
2195 * This indicates a race with hugetlb_reserve_pages.
2196 * Adjust for the subpool count incremented above AND
2197 * in hugetlb_reserve_pages for the same page. Also,
2198 * the reservation count added in hugetlb_reserve_pages
2199 * no longer applies.
2203 rsv_adjust
= hugepage_subpool_put_pages(spool
, 1);
2204 hugetlb_acct_memory(h
, -rsv_adjust
);
2208 out_uncharge_cgroup
:
2209 hugetlb_cgroup_uncharge_cgroup(idx
, pages_per_huge_page(h
), h_cg
);
2211 if (map_chg
|| avoid_reserve
)
2212 hugepage_subpool_put_pages(spool
, 1);
2213 vma_end_reservation(h
, vma
, addr
);
2214 return ERR_PTR(-ENOSPC
);
2217 int alloc_bootmem_huge_page(struct hstate
*h
)
2218 __attribute__ ((weak
, alias("__alloc_bootmem_huge_page")));
2219 int __alloc_bootmem_huge_page(struct hstate
*h
)
2221 struct huge_bootmem_page
*m
;
2224 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
2227 addr
= memblock_alloc_try_nid_raw(
2228 huge_page_size(h
), huge_page_size(h
),
2229 0, MEMBLOCK_ALLOC_ACCESSIBLE
, node
);
2232 * Use the beginning of the huge page to store the
2233 * huge_bootmem_page struct (until gather_bootmem
2234 * puts them into the mem_map).
2243 BUG_ON(!IS_ALIGNED(virt_to_phys(m
), huge_page_size(h
)));
2244 /* Put them into a private list first because mem_map is not up yet */
2245 INIT_LIST_HEAD(&m
->list
);
2246 list_add(&m
->list
, &huge_boot_pages
);
2251 static void __init
prep_compound_huge_page(struct page
*page
,
2254 if (unlikely(order
> (MAX_ORDER
- 1)))
2255 prep_compound_gigantic_page(page
, order
);
2257 prep_compound_page(page
, order
);
2260 /* Put bootmem huge pages into the standard lists after mem_map is up */
2261 static void __init
gather_bootmem_prealloc(void)
2263 struct huge_bootmem_page
*m
;
2265 list_for_each_entry(m
, &huge_boot_pages
, list
) {
2266 struct page
*page
= virt_to_page(m
);
2267 struct hstate
*h
= m
->hstate
;
2269 WARN_ON(page_count(page
) != 1);
2270 prep_compound_huge_page(page
, h
->order
);
2271 WARN_ON(PageReserved(page
));
2272 prep_new_huge_page(h
, page
, page_to_nid(page
));
2273 put_page(page
); /* free it into the hugepage allocator */
2276 * If we had gigantic hugepages allocated at boot time, we need
2277 * to restore the 'stolen' pages to totalram_pages in order to
2278 * fix confusing memory reports from free(1) and another
2279 * side-effects, like CommitLimit going negative.
2281 if (hstate_is_gigantic(h
))
2282 adjust_managed_page_count(page
, 1 << h
->order
);
2287 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
2290 nodemask_t
*node_alloc_noretry
;
2292 if (!hstate_is_gigantic(h
)) {
2294 * Bit mask controlling how hard we retry per-node allocations.
2295 * Ignore errors as lower level routines can deal with
2296 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2297 * time, we are likely in bigger trouble.
2299 node_alloc_noretry
= kmalloc(sizeof(*node_alloc_noretry
),
2302 /* allocations done at boot time */
2303 node_alloc_noretry
= NULL
;
2306 /* bit mask controlling how hard we retry per-node allocations */
2307 if (node_alloc_noretry
)
2308 nodes_clear(*node_alloc_noretry
);
2310 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
2311 if (hstate_is_gigantic(h
)) {
2312 if (!alloc_bootmem_huge_page(h
))
2314 } else if (!alloc_pool_huge_page(h
,
2315 &node_states
[N_MEMORY
],
2316 node_alloc_noretry
))
2320 if (i
< h
->max_huge_pages
) {
2323 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
2324 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2325 h
->max_huge_pages
, buf
, i
);
2326 h
->max_huge_pages
= i
;
2329 kfree(node_alloc_noretry
);
2332 static void __init
hugetlb_init_hstates(void)
2336 for_each_hstate(h
) {
2337 if (minimum_order
> huge_page_order(h
))
2338 minimum_order
= huge_page_order(h
);
2340 /* oversize hugepages were init'ed in early boot */
2341 if (!hstate_is_gigantic(h
))
2342 hugetlb_hstate_alloc_pages(h
);
2344 VM_BUG_ON(minimum_order
== UINT_MAX
);
2347 static void __init
report_hugepages(void)
2351 for_each_hstate(h
) {
2354 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
2355 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2356 buf
, h
->free_huge_pages
);
2360 #ifdef CONFIG_HIGHMEM
2361 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
2362 nodemask_t
*nodes_allowed
)
2366 if (hstate_is_gigantic(h
))
2369 for_each_node_mask(i
, *nodes_allowed
) {
2370 struct page
*page
, *next
;
2371 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
2372 list_for_each_entry_safe(page
, next
, freel
, lru
) {
2373 if (count
>= h
->nr_huge_pages
)
2375 if (PageHighMem(page
))
2377 list_del(&page
->lru
);
2378 update_and_free_page(h
, page
);
2379 h
->free_huge_pages
--;
2380 h
->free_huge_pages_node
[page_to_nid(page
)]--;
2385 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
2386 nodemask_t
*nodes_allowed
)
2392 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2393 * balanced by operating on them in a round-robin fashion.
2394 * Returns 1 if an adjustment was made.
2396 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
2401 VM_BUG_ON(delta
!= -1 && delta
!= 1);
2404 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
2405 if (h
->surplus_huge_pages_node
[node
])
2409 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
2410 if (h
->surplus_huge_pages_node
[node
] <
2411 h
->nr_huge_pages_node
[node
])
2418 h
->surplus_huge_pages
+= delta
;
2419 h
->surplus_huge_pages_node
[node
] += delta
;
2423 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2424 static int set_max_huge_pages(struct hstate
*h
, unsigned long count
, int nid
,
2425 nodemask_t
*nodes_allowed
)
2427 unsigned long min_count
, ret
;
2428 NODEMASK_ALLOC(nodemask_t
, node_alloc_noretry
, GFP_KERNEL
);
2431 * Bit mask controlling how hard we retry per-node allocations.
2432 * If we can not allocate the bit mask, do not attempt to allocate
2433 * the requested huge pages.
2435 if (node_alloc_noretry
)
2436 nodes_clear(*node_alloc_noretry
);
2440 spin_lock(&hugetlb_lock
);
2443 * Check for a node specific request.
2444 * Changing node specific huge page count may require a corresponding
2445 * change to the global count. In any case, the passed node mask
2446 * (nodes_allowed) will restrict alloc/free to the specified node.
2448 if (nid
!= NUMA_NO_NODE
) {
2449 unsigned long old_count
= count
;
2451 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
2453 * User may have specified a large count value which caused the
2454 * above calculation to overflow. In this case, they wanted
2455 * to allocate as many huge pages as possible. Set count to
2456 * largest possible value to align with their intention.
2458 if (count
< old_count
)
2463 * Gigantic pages runtime allocation depend on the capability for large
2464 * page range allocation.
2465 * If the system does not provide this feature, return an error when
2466 * the user tries to allocate gigantic pages but let the user free the
2467 * boottime allocated gigantic pages.
2469 if (hstate_is_gigantic(h
) && !IS_ENABLED(CONFIG_CONTIG_ALLOC
)) {
2470 if (count
> persistent_huge_pages(h
)) {
2471 spin_unlock(&hugetlb_lock
);
2472 NODEMASK_FREE(node_alloc_noretry
);
2475 /* Fall through to decrease pool */
2479 * Increase the pool size
2480 * First take pages out of surplus state. Then make up the
2481 * remaining difference by allocating fresh huge pages.
2483 * We might race with alloc_surplus_huge_page() here and be unable
2484 * to convert a surplus huge page to a normal huge page. That is
2485 * not critical, though, it just means the overall size of the
2486 * pool might be one hugepage larger than it needs to be, but
2487 * within all the constraints specified by the sysctls.
2489 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
2490 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
2494 while (count
> persistent_huge_pages(h
)) {
2496 * If this allocation races such that we no longer need the
2497 * page, free_huge_page will handle it by freeing the page
2498 * and reducing the surplus.
2500 spin_unlock(&hugetlb_lock
);
2502 /* yield cpu to avoid soft lockup */
2505 ret
= alloc_pool_huge_page(h
, nodes_allowed
,
2506 node_alloc_noretry
);
2507 spin_lock(&hugetlb_lock
);
2511 /* Bail for signals. Probably ctrl-c from user */
2512 if (signal_pending(current
))
2517 * Decrease the pool size
2518 * First return free pages to the buddy allocator (being careful
2519 * to keep enough around to satisfy reservations). Then place
2520 * pages into surplus state as needed so the pool will shrink
2521 * to the desired size as pages become free.
2523 * By placing pages into the surplus state independent of the
2524 * overcommit value, we are allowing the surplus pool size to
2525 * exceed overcommit. There are few sane options here. Since
2526 * alloc_surplus_huge_page() is checking the global counter,
2527 * though, we'll note that we're not allowed to exceed surplus
2528 * and won't grow the pool anywhere else. Not until one of the
2529 * sysctls are changed, or the surplus pages go out of use.
2531 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
2532 min_count
= max(count
, min_count
);
2533 try_to_free_low(h
, min_count
, nodes_allowed
);
2534 while (min_count
< persistent_huge_pages(h
)) {
2535 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
2537 cond_resched_lock(&hugetlb_lock
);
2539 while (count
< persistent_huge_pages(h
)) {
2540 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
2544 h
->max_huge_pages
= persistent_huge_pages(h
);
2545 spin_unlock(&hugetlb_lock
);
2547 NODEMASK_FREE(node_alloc_noretry
);
2552 #define HSTATE_ATTR_RO(_name) \
2553 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2555 #define HSTATE_ATTR(_name) \
2556 static struct kobj_attribute _name##_attr = \
2557 __ATTR(_name, 0644, _name##_show, _name##_store)
2559 static struct kobject
*hugepages_kobj
;
2560 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2562 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
2564 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
2568 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2569 if (hstate_kobjs
[i
] == kobj
) {
2571 *nidp
= NUMA_NO_NODE
;
2575 return kobj_to_node_hstate(kobj
, nidp
);
2578 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
2579 struct kobj_attribute
*attr
, char *buf
)
2582 unsigned long nr_huge_pages
;
2585 h
= kobj_to_hstate(kobj
, &nid
);
2586 if (nid
== NUMA_NO_NODE
)
2587 nr_huge_pages
= h
->nr_huge_pages
;
2589 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
2591 return sprintf(buf
, "%lu\n", nr_huge_pages
);
2594 static ssize_t
__nr_hugepages_store_common(bool obey_mempolicy
,
2595 struct hstate
*h
, int nid
,
2596 unsigned long count
, size_t len
)
2599 nodemask_t nodes_allowed
, *n_mask
;
2601 if (hstate_is_gigantic(h
) && !gigantic_page_runtime_supported())
2604 if (nid
== NUMA_NO_NODE
) {
2606 * global hstate attribute
2608 if (!(obey_mempolicy
&&
2609 init_nodemask_of_mempolicy(&nodes_allowed
)))
2610 n_mask
= &node_states
[N_MEMORY
];
2612 n_mask
= &nodes_allowed
;
2615 * Node specific request. count adjustment happens in
2616 * set_max_huge_pages() after acquiring hugetlb_lock.
2618 init_nodemask_of_node(&nodes_allowed
, nid
);
2619 n_mask
= &nodes_allowed
;
2622 err
= set_max_huge_pages(h
, count
, nid
, n_mask
);
2624 return err
? err
: len
;
2627 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
2628 struct kobject
*kobj
, const char *buf
,
2632 unsigned long count
;
2636 err
= kstrtoul(buf
, 10, &count
);
2640 h
= kobj_to_hstate(kobj
, &nid
);
2641 return __nr_hugepages_store_common(obey_mempolicy
, h
, nid
, count
, len
);
2644 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
2645 struct kobj_attribute
*attr
, char *buf
)
2647 return nr_hugepages_show_common(kobj
, attr
, buf
);
2650 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
2651 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2653 return nr_hugepages_store_common(false, kobj
, buf
, len
);
2655 HSTATE_ATTR(nr_hugepages
);
2660 * hstate attribute for optionally mempolicy-based constraint on persistent
2661 * huge page alloc/free.
2663 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
2664 struct kobj_attribute
*attr
, char *buf
)
2666 return nr_hugepages_show_common(kobj
, attr
, buf
);
2669 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
2670 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2672 return nr_hugepages_store_common(true, kobj
, buf
, len
);
2674 HSTATE_ATTR(nr_hugepages_mempolicy
);
2678 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
2679 struct kobj_attribute
*attr
, char *buf
)
2681 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2682 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
2685 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
2686 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
2689 unsigned long input
;
2690 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2692 if (hstate_is_gigantic(h
))
2695 err
= kstrtoul(buf
, 10, &input
);
2699 spin_lock(&hugetlb_lock
);
2700 h
->nr_overcommit_huge_pages
= input
;
2701 spin_unlock(&hugetlb_lock
);
2705 HSTATE_ATTR(nr_overcommit_hugepages
);
2707 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
2708 struct kobj_attribute
*attr
, char *buf
)
2711 unsigned long free_huge_pages
;
2714 h
= kobj_to_hstate(kobj
, &nid
);
2715 if (nid
== NUMA_NO_NODE
)
2716 free_huge_pages
= h
->free_huge_pages
;
2718 free_huge_pages
= h
->free_huge_pages_node
[nid
];
2720 return sprintf(buf
, "%lu\n", free_huge_pages
);
2722 HSTATE_ATTR_RO(free_hugepages
);
2724 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
2725 struct kobj_attribute
*attr
, char *buf
)
2727 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2728 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
2730 HSTATE_ATTR_RO(resv_hugepages
);
2732 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
2733 struct kobj_attribute
*attr
, char *buf
)
2736 unsigned long surplus_huge_pages
;
2739 h
= kobj_to_hstate(kobj
, &nid
);
2740 if (nid
== NUMA_NO_NODE
)
2741 surplus_huge_pages
= h
->surplus_huge_pages
;
2743 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
2745 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
2747 HSTATE_ATTR_RO(surplus_hugepages
);
2749 static struct attribute
*hstate_attrs
[] = {
2750 &nr_hugepages_attr
.attr
,
2751 &nr_overcommit_hugepages_attr
.attr
,
2752 &free_hugepages_attr
.attr
,
2753 &resv_hugepages_attr
.attr
,
2754 &surplus_hugepages_attr
.attr
,
2756 &nr_hugepages_mempolicy_attr
.attr
,
2761 static const struct attribute_group hstate_attr_group
= {
2762 .attrs
= hstate_attrs
,
2765 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
2766 struct kobject
**hstate_kobjs
,
2767 const struct attribute_group
*hstate_attr_group
)
2770 int hi
= hstate_index(h
);
2772 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
2773 if (!hstate_kobjs
[hi
])
2776 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
2778 kobject_put(hstate_kobjs
[hi
]);
2783 static void __init
hugetlb_sysfs_init(void)
2788 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
2789 if (!hugepages_kobj
)
2792 for_each_hstate(h
) {
2793 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
2794 hstate_kobjs
, &hstate_attr_group
);
2796 pr_err("Hugetlb: Unable to add hstate %s", h
->name
);
2803 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2804 * with node devices in node_devices[] using a parallel array. The array
2805 * index of a node device or _hstate == node id.
2806 * This is here to avoid any static dependency of the node device driver, in
2807 * the base kernel, on the hugetlb module.
2809 struct node_hstate
{
2810 struct kobject
*hugepages_kobj
;
2811 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2813 static struct node_hstate node_hstates
[MAX_NUMNODES
];
2816 * A subset of global hstate attributes for node devices
2818 static struct attribute
*per_node_hstate_attrs
[] = {
2819 &nr_hugepages_attr
.attr
,
2820 &free_hugepages_attr
.attr
,
2821 &surplus_hugepages_attr
.attr
,
2825 static const struct attribute_group per_node_hstate_attr_group
= {
2826 .attrs
= per_node_hstate_attrs
,
2830 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2831 * Returns node id via non-NULL nidp.
2833 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2837 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
2838 struct node_hstate
*nhs
= &node_hstates
[nid
];
2840 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2841 if (nhs
->hstate_kobjs
[i
] == kobj
) {
2853 * Unregister hstate attributes from a single node device.
2854 * No-op if no hstate attributes attached.
2856 static void hugetlb_unregister_node(struct node
*node
)
2859 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2861 if (!nhs
->hugepages_kobj
)
2862 return; /* no hstate attributes */
2864 for_each_hstate(h
) {
2865 int idx
= hstate_index(h
);
2866 if (nhs
->hstate_kobjs
[idx
]) {
2867 kobject_put(nhs
->hstate_kobjs
[idx
]);
2868 nhs
->hstate_kobjs
[idx
] = NULL
;
2872 kobject_put(nhs
->hugepages_kobj
);
2873 nhs
->hugepages_kobj
= NULL
;
2878 * Register hstate attributes for a single node device.
2879 * No-op if attributes already registered.
2881 static void hugetlb_register_node(struct node
*node
)
2884 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2887 if (nhs
->hugepages_kobj
)
2888 return; /* already allocated */
2890 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
2892 if (!nhs
->hugepages_kobj
)
2895 for_each_hstate(h
) {
2896 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
2898 &per_node_hstate_attr_group
);
2900 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2901 h
->name
, node
->dev
.id
);
2902 hugetlb_unregister_node(node
);
2909 * hugetlb init time: register hstate attributes for all registered node
2910 * devices of nodes that have memory. All on-line nodes should have
2911 * registered their associated device by this time.
2913 static void __init
hugetlb_register_all_nodes(void)
2917 for_each_node_state(nid
, N_MEMORY
) {
2918 struct node
*node
= node_devices
[nid
];
2919 if (node
->dev
.id
== nid
)
2920 hugetlb_register_node(node
);
2924 * Let the node device driver know we're here so it can
2925 * [un]register hstate attributes on node hotplug.
2927 register_hugetlbfs_with_node(hugetlb_register_node
,
2928 hugetlb_unregister_node
);
2930 #else /* !CONFIG_NUMA */
2932 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2940 static void hugetlb_register_all_nodes(void) { }
2944 static int __init
hugetlb_init(void)
2948 if (!hugepages_supported())
2951 if (!size_to_hstate(default_hstate_size
)) {
2952 if (default_hstate_size
!= 0) {
2953 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2954 default_hstate_size
, HPAGE_SIZE
);
2957 default_hstate_size
= HPAGE_SIZE
;
2958 if (!size_to_hstate(default_hstate_size
))
2959 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
2961 default_hstate_idx
= hstate_index(size_to_hstate(default_hstate_size
));
2962 if (default_hstate_max_huge_pages
) {
2963 if (!default_hstate
.max_huge_pages
)
2964 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
2967 hugetlb_init_hstates();
2968 gather_bootmem_prealloc();
2971 hugetlb_sysfs_init();
2972 hugetlb_register_all_nodes();
2973 hugetlb_cgroup_file_init();
2976 num_fault_mutexes
= roundup_pow_of_two(8 * num_possible_cpus());
2978 num_fault_mutexes
= 1;
2980 hugetlb_fault_mutex_table
=
2981 kmalloc_array(num_fault_mutexes
, sizeof(struct mutex
),
2983 BUG_ON(!hugetlb_fault_mutex_table
);
2985 for (i
= 0; i
< num_fault_mutexes
; i
++)
2986 mutex_init(&hugetlb_fault_mutex_table
[i
]);
2989 subsys_initcall(hugetlb_init
);
2991 /* Should be called on processing a hugepagesz=... option */
2992 void __init
hugetlb_bad_size(void)
2994 parsed_valid_hugepagesz
= false;
2997 void __init
hugetlb_add_hstate(unsigned int order
)
3002 if (size_to_hstate(PAGE_SIZE
<< order
)) {
3003 pr_warn("hugepagesz= specified twice, ignoring\n");
3006 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
3008 h
= &hstates
[hugetlb_max_hstate
++];
3010 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
3011 h
->nr_huge_pages
= 0;
3012 h
->free_huge_pages
= 0;
3013 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
3014 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
3015 INIT_LIST_HEAD(&h
->hugepage_activelist
);
3016 h
->next_nid_to_alloc
= first_memory_node
;
3017 h
->next_nid_to_free
= first_memory_node
;
3018 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
3019 huge_page_size(h
)/1024);
3024 static int __init
hugetlb_nrpages_setup(char *s
)
3027 static unsigned long *last_mhp
;
3029 if (!parsed_valid_hugepagesz
) {
3030 pr_warn("hugepages = %s preceded by "
3031 "an unsupported hugepagesz, ignoring\n", s
);
3032 parsed_valid_hugepagesz
= true;
3036 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
3037 * so this hugepages= parameter goes to the "default hstate".
3039 else if (!hugetlb_max_hstate
)
3040 mhp
= &default_hstate_max_huge_pages
;
3042 mhp
= &parsed_hstate
->max_huge_pages
;
3044 if (mhp
== last_mhp
) {
3045 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
3049 if (sscanf(s
, "%lu", mhp
) <= 0)
3053 * Global state is always initialized later in hugetlb_init.
3054 * But we need to allocate >= MAX_ORDER hstates here early to still
3055 * use the bootmem allocator.
3057 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
3058 hugetlb_hstate_alloc_pages(parsed_hstate
);
3064 __setup("hugepages=", hugetlb_nrpages_setup
);
3066 static int __init
hugetlb_default_setup(char *s
)
3068 default_hstate_size
= memparse(s
, &s
);
3071 __setup("default_hugepagesz=", hugetlb_default_setup
);
3073 static unsigned int cpuset_mems_nr(unsigned int *array
)
3076 unsigned int nr
= 0;
3078 for_each_node_mask(node
, cpuset_current_mems_allowed
)
3084 #ifdef CONFIG_SYSCTL
3085 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
3086 struct ctl_table
*table
, int write
,
3087 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
3089 struct hstate
*h
= &default_hstate
;
3090 unsigned long tmp
= h
->max_huge_pages
;
3093 if (!hugepages_supported())
3097 table
->maxlen
= sizeof(unsigned long);
3098 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
3103 ret
= __nr_hugepages_store_common(obey_mempolicy
, h
,
3104 NUMA_NO_NODE
, tmp
, *length
);
3109 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
3110 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
3113 return hugetlb_sysctl_handler_common(false, table
, write
,
3114 buffer
, length
, ppos
);
3118 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
3119 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
3121 return hugetlb_sysctl_handler_common(true, table
, write
,
3122 buffer
, length
, ppos
);
3124 #endif /* CONFIG_NUMA */
3126 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
3127 void __user
*buffer
,
3128 size_t *length
, loff_t
*ppos
)
3130 struct hstate
*h
= &default_hstate
;
3134 if (!hugepages_supported())
3137 tmp
= h
->nr_overcommit_huge_pages
;
3139 if (write
&& hstate_is_gigantic(h
))
3143 table
->maxlen
= sizeof(unsigned long);
3144 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
3149 spin_lock(&hugetlb_lock
);
3150 h
->nr_overcommit_huge_pages
= tmp
;
3151 spin_unlock(&hugetlb_lock
);
3157 #endif /* CONFIG_SYSCTL */
3159 void hugetlb_report_meminfo(struct seq_file
*m
)
3162 unsigned long total
= 0;
3164 if (!hugepages_supported())
3167 for_each_hstate(h
) {
3168 unsigned long count
= h
->nr_huge_pages
;
3170 total
+= (PAGE_SIZE
<< huge_page_order(h
)) * count
;
3172 if (h
== &default_hstate
)
3174 "HugePages_Total: %5lu\n"
3175 "HugePages_Free: %5lu\n"
3176 "HugePages_Rsvd: %5lu\n"
3177 "HugePages_Surp: %5lu\n"
3178 "Hugepagesize: %8lu kB\n",
3182 h
->surplus_huge_pages
,
3183 (PAGE_SIZE
<< huge_page_order(h
)) / 1024);
3186 seq_printf(m
, "Hugetlb: %8lu kB\n", total
/ 1024);
3189 int hugetlb_report_node_meminfo(int nid
, char *buf
)
3191 struct hstate
*h
= &default_hstate
;
3192 if (!hugepages_supported())
3195 "Node %d HugePages_Total: %5u\n"
3196 "Node %d HugePages_Free: %5u\n"
3197 "Node %d HugePages_Surp: %5u\n",
3198 nid
, h
->nr_huge_pages_node
[nid
],
3199 nid
, h
->free_huge_pages_node
[nid
],
3200 nid
, h
->surplus_huge_pages_node
[nid
]);
3203 void hugetlb_show_meminfo(void)
3208 if (!hugepages_supported())
3211 for_each_node_state(nid
, N_MEMORY
)
3213 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3215 h
->nr_huge_pages_node
[nid
],
3216 h
->free_huge_pages_node
[nid
],
3217 h
->surplus_huge_pages_node
[nid
],
3218 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
3221 void hugetlb_report_usage(struct seq_file
*m
, struct mm_struct
*mm
)
3223 seq_printf(m
, "HugetlbPages:\t%8lu kB\n",
3224 atomic_long_read(&mm
->hugetlb_usage
) << (PAGE_SHIFT
- 10));
3227 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3228 unsigned long hugetlb_total_pages(void)
3231 unsigned long nr_total_pages
= 0;
3234 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
3235 return nr_total_pages
;
3238 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
3242 spin_lock(&hugetlb_lock
);
3244 * When cpuset is configured, it breaks the strict hugetlb page
3245 * reservation as the accounting is done on a global variable. Such
3246 * reservation is completely rubbish in the presence of cpuset because
3247 * the reservation is not checked against page availability for the
3248 * current cpuset. Application can still potentially OOM'ed by kernel
3249 * with lack of free htlb page in cpuset that the task is in.
3250 * Attempt to enforce strict accounting with cpuset is almost
3251 * impossible (or too ugly) because cpuset is too fluid that
3252 * task or memory node can be dynamically moved between cpusets.
3254 * The change of semantics for shared hugetlb mapping with cpuset is
3255 * undesirable. However, in order to preserve some of the semantics,
3256 * we fall back to check against current free page availability as
3257 * a best attempt and hopefully to minimize the impact of changing
3258 * semantics that cpuset has.
3261 if (gather_surplus_pages(h
, delta
) < 0)
3264 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
3265 return_unused_surplus_pages(h
, delta
);
3272 return_unused_surplus_pages(h
, (unsigned long) -delta
);
3275 spin_unlock(&hugetlb_lock
);
3279 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
3281 struct resv_map
*resv
= vma_resv_map(vma
);
3284 * This new VMA should share its siblings reservation map if present.
3285 * The VMA will only ever have a valid reservation map pointer where
3286 * it is being copied for another still existing VMA. As that VMA
3287 * has a reference to the reservation map it cannot disappear until
3288 * after this open call completes. It is therefore safe to take a
3289 * new reference here without additional locking.
3291 if (resv
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3292 kref_get(&resv
->refs
);
3295 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
3297 struct hstate
*h
= hstate_vma(vma
);
3298 struct resv_map
*resv
= vma_resv_map(vma
);
3299 struct hugepage_subpool
*spool
= subpool_vma(vma
);
3300 unsigned long reserve
, start
, end
;
3303 if (!resv
|| !is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3306 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
3307 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
3309 reserve
= (end
- start
) - region_count(resv
, start
, end
);
3311 kref_put(&resv
->refs
, resv_map_release
);
3315 * Decrement reserve counts. The global reserve count may be
3316 * adjusted if the subpool has a minimum size.
3318 gbl_reserve
= hugepage_subpool_put_pages(spool
, reserve
);
3319 hugetlb_acct_memory(h
, -gbl_reserve
);
3323 static int hugetlb_vm_op_split(struct vm_area_struct
*vma
, unsigned long addr
)
3325 if (addr
& ~(huge_page_mask(hstate_vma(vma
))))
3330 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct
*vma
)
3332 struct hstate
*hstate
= hstate_vma(vma
);
3334 return 1UL << huge_page_shift(hstate
);
3338 * We cannot handle pagefaults against hugetlb pages at all. They cause
3339 * handle_mm_fault() to try to instantiate regular-sized pages in the
3340 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3343 static vm_fault_t
hugetlb_vm_op_fault(struct vm_fault
*vmf
)
3350 * When a new function is introduced to vm_operations_struct and added
3351 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3352 * This is because under System V memory model, mappings created via
3353 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3354 * their original vm_ops are overwritten with shm_vm_ops.
3356 const struct vm_operations_struct hugetlb_vm_ops
= {
3357 .fault
= hugetlb_vm_op_fault
,
3358 .open
= hugetlb_vm_op_open
,
3359 .close
= hugetlb_vm_op_close
,
3360 .split
= hugetlb_vm_op_split
,
3361 .pagesize
= hugetlb_vm_op_pagesize
,
3364 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
3370 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
3371 vma
->vm_page_prot
)));
3373 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
3374 vma
->vm_page_prot
));
3376 entry
= pte_mkyoung(entry
);
3377 entry
= pte_mkhuge(entry
);
3378 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
3383 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
3384 unsigned long address
, pte_t
*ptep
)
3388 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
3389 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
3390 update_mmu_cache(vma
, address
, ptep
);
3393 bool is_hugetlb_entry_migration(pte_t pte
)
3397 if (huge_pte_none(pte
) || pte_present(pte
))
3399 swp
= pte_to_swp_entry(pte
);
3400 if (non_swap_entry(swp
) && is_migration_entry(swp
))
3406 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
3410 if (huge_pte_none(pte
) || pte_present(pte
))
3412 swp
= pte_to_swp_entry(pte
);
3413 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
3419 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
3420 struct vm_area_struct
*vma
)
3422 pte_t
*src_pte
, *dst_pte
, entry
, dst_entry
;
3423 struct page
*ptepage
;
3426 struct hstate
*h
= hstate_vma(vma
);
3427 unsigned long sz
= huge_page_size(h
);
3428 struct mmu_notifier_range range
;
3431 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
3434 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, src
,
3437 mmu_notifier_invalidate_range_start(&range
);
3440 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
3441 spinlock_t
*src_ptl
, *dst_ptl
;
3442 src_pte
= huge_pte_offset(src
, addr
, sz
);
3445 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
3452 * If the pagetables are shared don't copy or take references.
3453 * dst_pte == src_pte is the common case of src/dest sharing.
3455 * However, src could have 'unshared' and dst shares with
3456 * another vma. If dst_pte !none, this implies sharing.
3457 * Check here before taking page table lock, and once again
3458 * after taking the lock below.
3460 dst_entry
= huge_ptep_get(dst_pte
);
3461 if ((dst_pte
== src_pte
) || !huge_pte_none(dst_entry
))
3464 dst_ptl
= huge_pte_lock(h
, dst
, dst_pte
);
3465 src_ptl
= huge_pte_lockptr(h
, src
, src_pte
);
3466 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
3467 entry
= huge_ptep_get(src_pte
);
3468 dst_entry
= huge_ptep_get(dst_pte
);
3469 if (huge_pte_none(entry
) || !huge_pte_none(dst_entry
)) {
3471 * Skip if src entry none. Also, skip in the
3472 * unlikely case dst entry !none as this implies
3473 * sharing with another vma.
3476 } else if (unlikely(is_hugetlb_entry_migration(entry
) ||
3477 is_hugetlb_entry_hwpoisoned(entry
))) {
3478 swp_entry_t swp_entry
= pte_to_swp_entry(entry
);
3480 if (is_write_migration_entry(swp_entry
) && cow
) {
3482 * COW mappings require pages in both
3483 * parent and child to be set to read.
3485 make_migration_entry_read(&swp_entry
);
3486 entry
= swp_entry_to_pte(swp_entry
);
3487 set_huge_swap_pte_at(src
, addr
, src_pte
,
3490 set_huge_swap_pte_at(dst
, addr
, dst_pte
, entry
, sz
);
3494 * No need to notify as we are downgrading page
3495 * table protection not changing it to point
3498 * See Documentation/vm/mmu_notifier.rst
3500 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
3502 entry
= huge_ptep_get(src_pte
);
3503 ptepage
= pte_page(entry
);
3505 page_dup_rmap(ptepage
, true);
3506 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
3507 hugetlb_count_add(pages_per_huge_page(h
), dst
);
3509 spin_unlock(src_ptl
);
3510 spin_unlock(dst_ptl
);
3514 mmu_notifier_invalidate_range_end(&range
);
3519 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
3520 unsigned long start
, unsigned long end
,
3521 struct page
*ref_page
)
3523 struct mm_struct
*mm
= vma
->vm_mm
;
3524 unsigned long address
;
3529 struct hstate
*h
= hstate_vma(vma
);
3530 unsigned long sz
= huge_page_size(h
);
3531 struct mmu_notifier_range range
;
3533 WARN_ON(!is_vm_hugetlb_page(vma
));
3534 BUG_ON(start
& ~huge_page_mask(h
));
3535 BUG_ON(end
& ~huge_page_mask(h
));
3538 * This is a hugetlb vma, all the pte entries should point
3541 tlb_change_page_size(tlb
, sz
);
3542 tlb_start_vma(tlb
, vma
);
3545 * If sharing possible, alert mmu notifiers of worst case.
3547 mmu_notifier_range_init(&range
, MMU_NOTIFY_UNMAP
, 0, vma
, mm
, start
,
3549 adjust_range_if_pmd_sharing_possible(vma
, &range
.start
, &range
.end
);
3550 mmu_notifier_invalidate_range_start(&range
);
3552 for (; address
< end
; address
+= sz
) {
3553 ptep
= huge_pte_offset(mm
, address
, sz
);
3557 ptl
= huge_pte_lock(h
, mm
, ptep
);
3558 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
3561 * We just unmapped a page of PMDs by clearing a PUD.
3562 * The caller's TLB flush range should cover this area.
3567 pte
= huge_ptep_get(ptep
);
3568 if (huge_pte_none(pte
)) {
3574 * Migrating hugepage or HWPoisoned hugepage is already
3575 * unmapped and its refcount is dropped, so just clear pte here.
3577 if (unlikely(!pte_present(pte
))) {
3578 huge_pte_clear(mm
, address
, ptep
, sz
);
3583 page
= pte_page(pte
);
3585 * If a reference page is supplied, it is because a specific
3586 * page is being unmapped, not a range. Ensure the page we
3587 * are about to unmap is the actual page of interest.
3590 if (page
!= ref_page
) {
3595 * Mark the VMA as having unmapped its page so that
3596 * future faults in this VMA will fail rather than
3597 * looking like data was lost
3599 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
3602 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3603 tlb_remove_huge_tlb_entry(h
, tlb
, ptep
, address
);
3604 if (huge_pte_dirty(pte
))
3605 set_page_dirty(page
);
3607 hugetlb_count_sub(pages_per_huge_page(h
), mm
);
3608 page_remove_rmap(page
, true);
3611 tlb_remove_page_size(tlb
, page
, huge_page_size(h
));
3613 * Bail out after unmapping reference page if supplied
3618 mmu_notifier_invalidate_range_end(&range
);
3619 tlb_end_vma(tlb
, vma
);
3622 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
3623 struct vm_area_struct
*vma
, unsigned long start
,
3624 unsigned long end
, struct page
*ref_page
)
3626 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
3629 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3630 * test will fail on a vma being torn down, and not grab a page table
3631 * on its way out. We're lucky that the flag has such an appropriate
3632 * name, and can in fact be safely cleared here. We could clear it
3633 * before the __unmap_hugepage_range above, but all that's necessary
3634 * is to clear it before releasing the i_mmap_rwsem. This works
3635 * because in the context this is called, the VMA is about to be
3636 * destroyed and the i_mmap_rwsem is held.
3638 vma
->vm_flags
&= ~VM_MAYSHARE
;
3641 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
3642 unsigned long end
, struct page
*ref_page
)
3644 struct mm_struct
*mm
;
3645 struct mmu_gather tlb
;
3646 unsigned long tlb_start
= start
;
3647 unsigned long tlb_end
= end
;
3650 * If shared PMDs were possibly used within this vma range, adjust
3651 * start/end for worst case tlb flushing.
3652 * Note that we can not be sure if PMDs are shared until we try to
3653 * unmap pages. However, we want to make sure TLB flushing covers
3654 * the largest possible range.
3656 adjust_range_if_pmd_sharing_possible(vma
, &tlb_start
, &tlb_end
);
3660 tlb_gather_mmu(&tlb
, mm
, tlb_start
, tlb_end
);
3661 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
3662 tlb_finish_mmu(&tlb
, tlb_start
, tlb_end
);
3666 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3667 * mappping it owns the reserve page for. The intention is to unmap the page
3668 * from other VMAs and let the children be SIGKILLed if they are faulting the
3671 static void unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3672 struct page
*page
, unsigned long address
)
3674 struct hstate
*h
= hstate_vma(vma
);
3675 struct vm_area_struct
*iter_vma
;
3676 struct address_space
*mapping
;
3680 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3681 * from page cache lookup which is in HPAGE_SIZE units.
3683 address
= address
& huge_page_mask(h
);
3684 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
3686 mapping
= vma
->vm_file
->f_mapping
;
3689 * Take the mapping lock for the duration of the table walk. As
3690 * this mapping should be shared between all the VMAs,
3691 * __unmap_hugepage_range() is called as the lock is already held
3693 i_mmap_lock_write(mapping
);
3694 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
3695 /* Do not unmap the current VMA */
3696 if (iter_vma
== vma
)
3700 * Shared VMAs have their own reserves and do not affect
3701 * MAP_PRIVATE accounting but it is possible that a shared
3702 * VMA is using the same page so check and skip such VMAs.
3704 if (iter_vma
->vm_flags
& VM_MAYSHARE
)
3708 * Unmap the page from other VMAs without their own reserves.
3709 * They get marked to be SIGKILLed if they fault in these
3710 * areas. This is because a future no-page fault on this VMA
3711 * could insert a zeroed page instead of the data existing
3712 * from the time of fork. This would look like data corruption
3714 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
3715 unmap_hugepage_range(iter_vma
, address
,
3716 address
+ huge_page_size(h
), page
);
3718 i_mmap_unlock_write(mapping
);
3722 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3723 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3724 * cannot race with other handlers or page migration.
3725 * Keep the pte_same checks anyway to make transition from the mutex easier.
3727 static vm_fault_t
hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3728 unsigned long address
, pte_t
*ptep
,
3729 struct page
*pagecache_page
, spinlock_t
*ptl
)
3732 struct hstate
*h
= hstate_vma(vma
);
3733 struct page
*old_page
, *new_page
;
3734 int outside_reserve
= 0;
3736 unsigned long haddr
= address
& huge_page_mask(h
);
3737 struct mmu_notifier_range range
;
3739 pte
= huge_ptep_get(ptep
);
3740 old_page
= pte_page(pte
);
3743 /* If no-one else is actually using this page, avoid the copy
3744 * and just make the page writable */
3745 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
3746 page_move_anon_rmap(old_page
, vma
);
3747 set_huge_ptep_writable(vma
, haddr
, ptep
);
3752 * If the process that created a MAP_PRIVATE mapping is about to
3753 * perform a COW due to a shared page count, attempt to satisfy
3754 * the allocation without using the existing reserves. The pagecache
3755 * page is used to determine if the reserve at this address was
3756 * consumed or not. If reserves were used, a partial faulted mapping
3757 * at the time of fork() could consume its reserves on COW instead
3758 * of the full address range.
3760 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
3761 old_page
!= pagecache_page
)
3762 outside_reserve
= 1;
3767 * Drop page table lock as buddy allocator may be called. It will
3768 * be acquired again before returning to the caller, as expected.
3771 new_page
= alloc_huge_page(vma
, haddr
, outside_reserve
);
3773 if (IS_ERR(new_page
)) {
3775 * If a process owning a MAP_PRIVATE mapping fails to COW,
3776 * it is due to references held by a child and an insufficient
3777 * huge page pool. To guarantee the original mappers
3778 * reliability, unmap the page from child processes. The child
3779 * may get SIGKILLed if it later faults.
3781 if (outside_reserve
) {
3783 BUG_ON(huge_pte_none(pte
));
3784 unmap_ref_private(mm
, vma
, old_page
, haddr
);
3785 BUG_ON(huge_pte_none(pte
));
3787 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
3789 pte_same(huge_ptep_get(ptep
), pte
)))
3790 goto retry_avoidcopy
;
3792 * race occurs while re-acquiring page table
3793 * lock, and our job is done.
3798 ret
= vmf_error(PTR_ERR(new_page
));
3799 goto out_release_old
;
3803 * When the original hugepage is shared one, it does not have
3804 * anon_vma prepared.
3806 if (unlikely(anon_vma_prepare(vma
))) {
3808 goto out_release_all
;
3811 copy_user_huge_page(new_page
, old_page
, address
, vma
,
3812 pages_per_huge_page(h
));
3813 __SetPageUptodate(new_page
);
3815 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, mm
, haddr
,
3816 haddr
+ huge_page_size(h
));
3817 mmu_notifier_invalidate_range_start(&range
);
3820 * Retake the page table lock to check for racing updates
3821 * before the page tables are altered
3824 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
3825 if (likely(ptep
&& pte_same(huge_ptep_get(ptep
), pte
))) {
3826 ClearPagePrivate(new_page
);
3829 huge_ptep_clear_flush(vma
, haddr
, ptep
);
3830 mmu_notifier_invalidate_range(mm
, range
.start
, range
.end
);
3831 set_huge_pte_at(mm
, haddr
, ptep
,
3832 make_huge_pte(vma
, new_page
, 1));
3833 page_remove_rmap(old_page
, true);
3834 hugepage_add_new_anon_rmap(new_page
, vma
, haddr
);
3835 set_page_huge_active(new_page
);
3836 /* Make the old page be freed below */
3837 new_page
= old_page
;
3840 mmu_notifier_invalidate_range_end(&range
);
3842 restore_reserve_on_error(h
, vma
, haddr
, new_page
);
3847 spin_lock(ptl
); /* Caller expects lock to be held */
3851 /* Return the pagecache page at a given address within a VMA */
3852 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
3853 struct vm_area_struct
*vma
, unsigned long address
)
3855 struct address_space
*mapping
;
3858 mapping
= vma
->vm_file
->f_mapping
;
3859 idx
= vma_hugecache_offset(h
, vma
, address
);
3861 return find_lock_page(mapping
, idx
);
3865 * Return whether there is a pagecache page to back given address within VMA.
3866 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3868 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
3869 struct vm_area_struct
*vma
, unsigned long address
)
3871 struct address_space
*mapping
;
3875 mapping
= vma
->vm_file
->f_mapping
;
3876 idx
= vma_hugecache_offset(h
, vma
, address
);
3878 page
= find_get_page(mapping
, idx
);
3881 return page
!= NULL
;
3884 int huge_add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
3887 struct inode
*inode
= mapping
->host
;
3888 struct hstate
*h
= hstate_inode(inode
);
3889 int err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
3893 ClearPagePrivate(page
);
3896 * set page dirty so that it will not be removed from cache/file
3897 * by non-hugetlbfs specific code paths.
3899 set_page_dirty(page
);
3901 spin_lock(&inode
->i_lock
);
3902 inode
->i_blocks
+= blocks_per_huge_page(h
);
3903 spin_unlock(&inode
->i_lock
);
3907 static vm_fault_t
hugetlb_no_page(struct mm_struct
*mm
,
3908 struct vm_area_struct
*vma
,
3909 struct address_space
*mapping
, pgoff_t idx
,
3910 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
3912 struct hstate
*h
= hstate_vma(vma
);
3913 vm_fault_t ret
= VM_FAULT_SIGBUS
;
3919 unsigned long haddr
= address
& huge_page_mask(h
);
3920 bool new_page
= false;
3923 * Currently, we are forced to kill the process in the event the
3924 * original mapper has unmapped pages from the child due to a failed
3925 * COW. Warn that such a situation has occurred as it may not be obvious
3927 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
3928 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3934 * Use page lock to guard against racing truncation
3935 * before we get page_table_lock.
3938 page
= find_lock_page(mapping
, idx
);
3940 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3945 * Check for page in userfault range
3947 if (userfaultfd_missing(vma
)) {
3949 struct vm_fault vmf
= {
3954 * Hard to debug if it ends up being
3955 * used by a callee that assumes
3956 * something about the other
3957 * uninitialized fields... same as in
3963 * hugetlb_fault_mutex must be dropped before
3964 * handling userfault. Reacquire after handling
3965 * fault to make calling code simpler.
3967 hash
= hugetlb_fault_mutex_hash(h
, mapping
, idx
, haddr
);
3968 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
3969 ret
= handle_userfault(&vmf
, VM_UFFD_MISSING
);
3970 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
3974 page
= alloc_huge_page(vma
, haddr
, 0);
3977 * Returning error will result in faulting task being
3978 * sent SIGBUS. The hugetlb fault mutex prevents two
3979 * tasks from racing to fault in the same page which
3980 * could result in false unable to allocate errors.
3981 * Page migration does not take the fault mutex, but
3982 * does a clear then write of pte's under page table
3983 * lock. Page fault code could race with migration,
3984 * notice the clear pte and try to allocate a page
3985 * here. Before returning error, get ptl and make
3986 * sure there really is no pte entry.
3988 ptl
= huge_pte_lock(h
, mm
, ptep
);
3989 if (!huge_pte_none(huge_ptep_get(ptep
))) {
3995 ret
= vmf_error(PTR_ERR(page
));
3998 clear_huge_page(page
, address
, pages_per_huge_page(h
));
3999 __SetPageUptodate(page
);
4002 if (vma
->vm_flags
& VM_MAYSHARE
) {
4003 int err
= huge_add_to_page_cache(page
, mapping
, idx
);
4012 if (unlikely(anon_vma_prepare(vma
))) {
4014 goto backout_unlocked
;
4020 * If memory error occurs between mmap() and fault, some process
4021 * don't have hwpoisoned swap entry for errored virtual address.
4022 * So we need to block hugepage fault by PG_hwpoison bit check.
4024 if (unlikely(PageHWPoison(page
))) {
4025 ret
= VM_FAULT_HWPOISON
|
4026 VM_FAULT_SET_HINDEX(hstate_index(h
));
4027 goto backout_unlocked
;
4032 * If we are going to COW a private mapping later, we examine the
4033 * pending reservations for this page now. This will ensure that
4034 * any allocations necessary to record that reservation occur outside
4037 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
4038 if (vma_needs_reservation(h
, vma
, haddr
) < 0) {
4040 goto backout_unlocked
;
4042 /* Just decrements count, does not deallocate */
4043 vma_end_reservation(h
, vma
, haddr
);
4046 ptl
= huge_pte_lock(h
, mm
, ptep
);
4047 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4052 if (!huge_pte_none(huge_ptep_get(ptep
)))
4056 ClearPagePrivate(page
);
4057 hugepage_add_new_anon_rmap(page
, vma
, haddr
);
4059 page_dup_rmap(page
, true);
4060 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
4061 && (vma
->vm_flags
& VM_SHARED
)));
4062 set_huge_pte_at(mm
, haddr
, ptep
, new_pte
);
4064 hugetlb_count_add(pages_per_huge_page(h
), mm
);
4065 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
4066 /* Optimization, do the COW without a second fault */
4067 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, page
, ptl
);
4073 * Only make newly allocated pages active. Existing pages found
4074 * in the pagecache could be !page_huge_active() if they have been
4075 * isolated for migration.
4078 set_page_huge_active(page
);
4088 restore_reserve_on_error(h
, vma
, haddr
, page
);
4094 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct address_space
*mapping
,
4095 pgoff_t idx
, unsigned long address
)
4097 unsigned long key
[2];
4100 key
[0] = (unsigned long) mapping
;
4103 hash
= jhash2((u32
*)&key
, sizeof(key
)/sizeof(u32
), 0);
4105 return hash
& (num_fault_mutexes
- 1);
4109 * For uniprocesor systems we always use a single mutex, so just
4110 * return 0 and avoid the hashing overhead.
4112 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct address_space
*mapping
,
4113 pgoff_t idx
, unsigned long address
)
4119 vm_fault_t
hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
4120 unsigned long address
, unsigned int flags
)
4127 struct page
*page
= NULL
;
4128 struct page
*pagecache_page
= NULL
;
4129 struct hstate
*h
= hstate_vma(vma
);
4130 struct address_space
*mapping
;
4131 int need_wait_lock
= 0;
4132 unsigned long haddr
= address
& huge_page_mask(h
);
4134 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
4136 entry
= huge_ptep_get(ptep
);
4137 if (unlikely(is_hugetlb_entry_migration(entry
))) {
4138 migration_entry_wait_huge(vma
, mm
, ptep
);
4140 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
4141 return VM_FAULT_HWPOISON_LARGE
|
4142 VM_FAULT_SET_HINDEX(hstate_index(h
));
4144 ptep
= huge_pte_alloc(mm
, haddr
, huge_page_size(h
));
4146 return VM_FAULT_OOM
;
4149 mapping
= vma
->vm_file
->f_mapping
;
4150 idx
= vma_hugecache_offset(h
, vma
, haddr
);
4153 * Serialize hugepage allocation and instantiation, so that we don't
4154 * get spurious allocation failures if two CPUs race to instantiate
4155 * the same page in the page cache.
4157 hash
= hugetlb_fault_mutex_hash(h
, mapping
, idx
, haddr
);
4158 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
4160 entry
= huge_ptep_get(ptep
);
4161 if (huge_pte_none(entry
)) {
4162 ret
= hugetlb_no_page(mm
, vma
, mapping
, idx
, address
, ptep
, flags
);
4169 * entry could be a migration/hwpoison entry at this point, so this
4170 * check prevents the kernel from going below assuming that we have
4171 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4172 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4175 if (!pte_present(entry
))
4179 * If we are going to COW the mapping later, we examine the pending
4180 * reservations for this page now. This will ensure that any
4181 * allocations necessary to record that reservation occur outside the
4182 * spinlock. For private mappings, we also lookup the pagecache
4183 * page now as it is used to determine if a reservation has been
4186 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
4187 if (vma_needs_reservation(h
, vma
, haddr
) < 0) {
4191 /* Just decrements count, does not deallocate */
4192 vma_end_reservation(h
, vma
, haddr
);
4194 if (!(vma
->vm_flags
& VM_MAYSHARE
))
4195 pagecache_page
= hugetlbfs_pagecache_page(h
,
4199 ptl
= huge_pte_lock(h
, mm
, ptep
);
4201 /* Check for a racing update before calling hugetlb_cow */
4202 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
4206 * hugetlb_cow() requires page locks of pte_page(entry) and
4207 * pagecache_page, so here we need take the former one
4208 * when page != pagecache_page or !pagecache_page.
4210 page
= pte_page(entry
);
4211 if (page
!= pagecache_page
)
4212 if (!trylock_page(page
)) {
4219 if (flags
& FAULT_FLAG_WRITE
) {
4220 if (!huge_pte_write(entry
)) {
4221 ret
= hugetlb_cow(mm
, vma
, address
, ptep
,
4222 pagecache_page
, ptl
);
4225 entry
= huge_pte_mkdirty(entry
);
4227 entry
= pte_mkyoung(entry
);
4228 if (huge_ptep_set_access_flags(vma
, haddr
, ptep
, entry
,
4229 flags
& FAULT_FLAG_WRITE
))
4230 update_mmu_cache(vma
, haddr
, ptep
);
4232 if (page
!= pagecache_page
)
4238 if (pagecache_page
) {
4239 unlock_page(pagecache_page
);
4240 put_page(pagecache_page
);
4243 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
4245 * Generally it's safe to hold refcount during waiting page lock. But
4246 * here we just wait to defer the next page fault to avoid busy loop and
4247 * the page is not used after unlocked before returning from the current
4248 * page fault. So we are safe from accessing freed page, even if we wait
4249 * here without taking refcount.
4252 wait_on_page_locked(page
);
4257 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4258 * modifications for huge pages.
4260 int hugetlb_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
4262 struct vm_area_struct
*dst_vma
,
4263 unsigned long dst_addr
,
4264 unsigned long src_addr
,
4265 struct page
**pagep
)
4267 struct address_space
*mapping
;
4270 int vm_shared
= dst_vma
->vm_flags
& VM_SHARED
;
4271 struct hstate
*h
= hstate_vma(dst_vma
);
4279 page
= alloc_huge_page(dst_vma
, dst_addr
, 0);
4283 ret
= copy_huge_page_from_user(page
,
4284 (const void __user
*) src_addr
,
4285 pages_per_huge_page(h
), false);
4287 /* fallback to copy_from_user outside mmap_sem */
4288 if (unlikely(ret
)) {
4291 /* don't free the page */
4300 * The memory barrier inside __SetPageUptodate makes sure that
4301 * preceding stores to the page contents become visible before
4302 * the set_pte_at() write.
4304 __SetPageUptodate(page
);
4306 mapping
= dst_vma
->vm_file
->f_mapping
;
4307 idx
= vma_hugecache_offset(h
, dst_vma
, dst_addr
);
4310 * If shared, add to page cache
4313 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4316 goto out_release_nounlock
;
4319 * Serialization between remove_inode_hugepages() and
4320 * huge_add_to_page_cache() below happens through the
4321 * hugetlb_fault_mutex_table that here must be hold by
4324 ret
= huge_add_to_page_cache(page
, mapping
, idx
);
4326 goto out_release_nounlock
;
4329 ptl
= huge_pte_lockptr(h
, dst_mm
, dst_pte
);
4333 * Recheck the i_size after holding PT lock to make sure not
4334 * to leave any page mapped (as page_mapped()) beyond the end
4335 * of the i_size (remove_inode_hugepages() is strict about
4336 * enforcing that). If we bail out here, we'll also leave a
4337 * page in the radix tree in the vm_shared case beyond the end
4338 * of the i_size, but remove_inode_hugepages() will take care
4339 * of it as soon as we drop the hugetlb_fault_mutex_table.
4341 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4344 goto out_release_unlock
;
4347 if (!huge_pte_none(huge_ptep_get(dst_pte
)))
4348 goto out_release_unlock
;
4351 page_dup_rmap(page
, true);
4353 ClearPagePrivate(page
);
4354 hugepage_add_new_anon_rmap(page
, dst_vma
, dst_addr
);
4357 _dst_pte
= make_huge_pte(dst_vma
, page
, dst_vma
->vm_flags
& VM_WRITE
);
4358 if (dst_vma
->vm_flags
& VM_WRITE
)
4359 _dst_pte
= huge_pte_mkdirty(_dst_pte
);
4360 _dst_pte
= pte_mkyoung(_dst_pte
);
4362 set_huge_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
4364 (void)huge_ptep_set_access_flags(dst_vma
, dst_addr
, dst_pte
, _dst_pte
,
4365 dst_vma
->vm_flags
& VM_WRITE
);
4366 hugetlb_count_add(pages_per_huge_page(h
), dst_mm
);
4368 /* No need to invalidate - it was non-present before */
4369 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
4372 set_page_huge_active(page
);
4382 out_release_nounlock
:
4387 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
4388 struct page
**pages
, struct vm_area_struct
**vmas
,
4389 unsigned long *position
, unsigned long *nr_pages
,
4390 long i
, unsigned int flags
, int *nonblocking
)
4392 unsigned long pfn_offset
;
4393 unsigned long vaddr
= *position
;
4394 unsigned long remainder
= *nr_pages
;
4395 struct hstate
*h
= hstate_vma(vma
);
4398 while (vaddr
< vma
->vm_end
&& remainder
) {
4400 spinlock_t
*ptl
= NULL
;
4405 * If we have a pending SIGKILL, don't keep faulting pages and
4406 * potentially allocating memory.
4408 if (fatal_signal_pending(current
)) {
4414 * Some archs (sparc64, sh*) have multiple pte_ts to
4415 * each hugepage. We have to make sure we get the
4416 * first, for the page indexing below to work.
4418 * Note that page table lock is not held when pte is null.
4420 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
),
4423 ptl
= huge_pte_lock(h
, mm
, pte
);
4424 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
4427 * When coredumping, it suits get_dump_page if we just return
4428 * an error where there's an empty slot with no huge pagecache
4429 * to back it. This way, we avoid allocating a hugepage, and
4430 * the sparse dumpfile avoids allocating disk blocks, but its
4431 * huge holes still show up with zeroes where they need to be.
4433 if (absent
&& (flags
& FOLL_DUMP
) &&
4434 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
4442 * We need call hugetlb_fault for both hugepages under migration
4443 * (in which case hugetlb_fault waits for the migration,) and
4444 * hwpoisoned hugepages (in which case we need to prevent the
4445 * caller from accessing to them.) In order to do this, we use
4446 * here is_swap_pte instead of is_hugetlb_entry_migration and
4447 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4448 * both cases, and because we can't follow correct pages
4449 * directly from any kind of swap entries.
4451 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
4452 ((flags
& FOLL_WRITE
) &&
4453 !huge_pte_write(huge_ptep_get(pte
)))) {
4455 unsigned int fault_flags
= 0;
4459 if (flags
& FOLL_WRITE
)
4460 fault_flags
|= FAULT_FLAG_WRITE
;
4462 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
4463 if (flags
& FOLL_NOWAIT
)
4464 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
|
4465 FAULT_FLAG_RETRY_NOWAIT
;
4466 if (flags
& FOLL_TRIED
) {
4467 VM_WARN_ON_ONCE(fault_flags
&
4468 FAULT_FLAG_ALLOW_RETRY
);
4469 fault_flags
|= FAULT_FLAG_TRIED
;
4471 ret
= hugetlb_fault(mm
, vma
, vaddr
, fault_flags
);
4472 if (ret
& VM_FAULT_ERROR
) {
4473 err
= vm_fault_to_errno(ret
, flags
);
4477 if (ret
& VM_FAULT_RETRY
) {
4479 !(fault_flags
& FAULT_FLAG_RETRY_NOWAIT
))
4483 * VM_FAULT_RETRY must not return an
4484 * error, it will return zero
4487 * No need to update "position" as the
4488 * caller will not check it after
4489 * *nr_pages is set to 0.
4496 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
4497 page
= pte_page(huge_ptep_get(pte
));
4500 * Instead of doing 'try_get_page()' below in the same_page
4501 * loop, just check the count once here.
4503 if (unlikely(page_count(page
) <= 0)) {
4513 pages
[i
] = mem_map_offset(page
, pfn_offset
);
4524 if (vaddr
< vma
->vm_end
&& remainder
&&
4525 pfn_offset
< pages_per_huge_page(h
)) {
4527 * We use pfn_offset to avoid touching the pageframes
4528 * of this compound page.
4534 *nr_pages
= remainder
;
4536 * setting position is actually required only if remainder is
4537 * not zero but it's faster not to add a "if (remainder)"
4545 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4547 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4550 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4553 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
4554 unsigned long address
, unsigned long end
, pgprot_t newprot
)
4556 struct mm_struct
*mm
= vma
->vm_mm
;
4557 unsigned long start
= address
;
4560 struct hstate
*h
= hstate_vma(vma
);
4561 unsigned long pages
= 0;
4562 bool shared_pmd
= false;
4563 struct mmu_notifier_range range
;
4566 * In the case of shared PMDs, the area to flush could be beyond
4567 * start/end. Set range.start/range.end to cover the maximum possible
4568 * range if PMD sharing is possible.
4570 mmu_notifier_range_init(&range
, MMU_NOTIFY_PROTECTION_VMA
,
4571 0, vma
, mm
, start
, end
);
4572 adjust_range_if_pmd_sharing_possible(vma
, &range
.start
, &range
.end
);
4574 BUG_ON(address
>= end
);
4575 flush_cache_range(vma
, range
.start
, range
.end
);
4577 mmu_notifier_invalidate_range_start(&range
);
4578 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
4579 for (; address
< end
; address
+= huge_page_size(h
)) {
4581 ptep
= huge_pte_offset(mm
, address
, huge_page_size(h
));
4584 ptl
= huge_pte_lock(h
, mm
, ptep
);
4585 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
4591 pte
= huge_ptep_get(ptep
);
4592 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
4596 if (unlikely(is_hugetlb_entry_migration(pte
))) {
4597 swp_entry_t entry
= pte_to_swp_entry(pte
);
4599 if (is_write_migration_entry(entry
)) {
4602 make_migration_entry_read(&entry
);
4603 newpte
= swp_entry_to_pte(entry
);
4604 set_huge_swap_pte_at(mm
, address
, ptep
,
4605 newpte
, huge_page_size(h
));
4611 if (!huge_pte_none(pte
)) {
4614 old_pte
= huge_ptep_modify_prot_start(vma
, address
, ptep
);
4615 pte
= pte_mkhuge(huge_pte_modify(old_pte
, newprot
));
4616 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
4617 huge_ptep_modify_prot_commit(vma
, address
, ptep
, old_pte
, pte
);
4623 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4624 * may have cleared our pud entry and done put_page on the page table:
4625 * once we release i_mmap_rwsem, another task can do the final put_page
4626 * and that page table be reused and filled with junk. If we actually
4627 * did unshare a page of pmds, flush the range corresponding to the pud.
4630 flush_hugetlb_tlb_range(vma
, range
.start
, range
.end
);
4632 flush_hugetlb_tlb_range(vma
, start
, end
);
4634 * No need to call mmu_notifier_invalidate_range() we are downgrading
4635 * page table protection not changing it to point to a new page.
4637 * See Documentation/vm/mmu_notifier.rst
4639 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
4640 mmu_notifier_invalidate_range_end(&range
);
4642 return pages
<< h
->order
;
4645 int hugetlb_reserve_pages(struct inode
*inode
,
4647 struct vm_area_struct
*vma
,
4648 vm_flags_t vm_flags
)
4651 struct hstate
*h
= hstate_inode(inode
);
4652 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4653 struct resv_map
*resv_map
;
4656 /* This should never happen */
4658 VM_WARN(1, "%s called with a negative range\n", __func__
);
4663 * Only apply hugepage reservation if asked. At fault time, an
4664 * attempt will be made for VM_NORESERVE to allocate a page
4665 * without using reserves
4667 if (vm_flags
& VM_NORESERVE
)
4671 * Shared mappings base their reservation on the number of pages that
4672 * are already allocated on behalf of the file. Private mappings need
4673 * to reserve the full area even if read-only as mprotect() may be
4674 * called to make the mapping read-write. Assume !vma is a shm mapping
4676 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4678 * resv_map can not be NULL as hugetlb_reserve_pages is only
4679 * called for inodes for which resv_maps were created (see
4680 * hugetlbfs_get_inode).
4682 resv_map
= inode_resv_map(inode
);
4684 chg
= region_chg(resv_map
, from
, to
);
4687 resv_map
= resv_map_alloc();
4693 set_vma_resv_map(vma
, resv_map
);
4694 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
4703 * There must be enough pages in the subpool for the mapping. If
4704 * the subpool has a minimum size, there may be some global
4705 * reservations already in place (gbl_reserve).
4707 gbl_reserve
= hugepage_subpool_get_pages(spool
, chg
);
4708 if (gbl_reserve
< 0) {
4714 * Check enough hugepages are available for the reservation.
4715 * Hand the pages back to the subpool if there are not
4717 ret
= hugetlb_acct_memory(h
, gbl_reserve
);
4719 /* put back original number of pages, chg */
4720 (void)hugepage_subpool_put_pages(spool
, chg
);
4725 * Account for the reservations made. Shared mappings record regions
4726 * that have reservations as they are shared by multiple VMAs.
4727 * When the last VMA disappears, the region map says how much
4728 * the reservation was and the page cache tells how much of
4729 * the reservation was consumed. Private mappings are per-VMA and
4730 * only the consumed reservations are tracked. When the VMA
4731 * disappears, the original reservation is the VMA size and the
4732 * consumed reservations are stored in the map. Hence, nothing
4733 * else has to be done for private mappings here
4735 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4736 long add
= region_add(resv_map
, from
, to
);
4738 if (unlikely(chg
> add
)) {
4740 * pages in this range were added to the reserve
4741 * map between region_chg and region_add. This
4742 * indicates a race with alloc_huge_page. Adjust
4743 * the subpool and reserve counts modified above
4744 * based on the difference.
4748 rsv_adjust
= hugepage_subpool_put_pages(spool
,
4750 hugetlb_acct_memory(h
, -rsv_adjust
);
4755 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
4756 /* Don't call region_abort if region_chg failed */
4758 region_abort(resv_map
, from
, to
);
4759 if (vma
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
4760 kref_put(&resv_map
->refs
, resv_map_release
);
4764 long hugetlb_unreserve_pages(struct inode
*inode
, long start
, long end
,
4767 struct hstate
*h
= hstate_inode(inode
);
4768 struct resv_map
*resv_map
= inode_resv_map(inode
);
4770 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4774 * Since this routine can be called in the evict inode path for all
4775 * hugetlbfs inodes, resv_map could be NULL.
4778 chg
= region_del(resv_map
, start
, end
);
4780 * region_del() can fail in the rare case where a region
4781 * must be split and another region descriptor can not be
4782 * allocated. If end == LONG_MAX, it will not fail.
4788 spin_lock(&inode
->i_lock
);
4789 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
4790 spin_unlock(&inode
->i_lock
);
4793 * If the subpool has a minimum size, the number of global
4794 * reservations to be released may be adjusted.
4796 gbl_reserve
= hugepage_subpool_put_pages(spool
, (chg
- freed
));
4797 hugetlb_acct_memory(h
, -gbl_reserve
);
4802 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4803 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
4804 struct vm_area_struct
*vma
,
4805 unsigned long addr
, pgoff_t idx
)
4807 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
4809 unsigned long sbase
= saddr
& PUD_MASK
;
4810 unsigned long s_end
= sbase
+ PUD_SIZE
;
4812 /* Allow segments to share if only one is marked locked */
4813 unsigned long vm_flags
= vma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4814 unsigned long svm_flags
= svma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4817 * match the virtual addresses, permission and the alignment of the
4820 if (pmd_index(addr
) != pmd_index(saddr
) ||
4821 vm_flags
!= svm_flags
||
4822 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
4828 static bool vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
4830 unsigned long base
= addr
& PUD_MASK
;
4831 unsigned long end
= base
+ PUD_SIZE
;
4834 * check on proper vm_flags and page table alignment
4836 if (vma
->vm_flags
& VM_MAYSHARE
&& range_in_vma(vma
, base
, end
))
4842 * Determine if start,end range within vma could be mapped by shared pmd.
4843 * If yes, adjust start and end to cover range associated with possible
4844 * shared pmd mappings.
4846 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct
*vma
,
4847 unsigned long *start
, unsigned long *end
)
4849 unsigned long check_addr
= *start
;
4851 if (!(vma
->vm_flags
& VM_MAYSHARE
))
4854 for (check_addr
= *start
; check_addr
< *end
; check_addr
+= PUD_SIZE
) {
4855 unsigned long a_start
= check_addr
& PUD_MASK
;
4856 unsigned long a_end
= a_start
+ PUD_SIZE
;
4859 * If sharing is possible, adjust start/end if necessary.
4861 if (range_in_vma(vma
, a_start
, a_end
)) {
4862 if (a_start
< *start
)
4871 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4872 * and returns the corresponding pte. While this is not necessary for the
4873 * !shared pmd case because we can allocate the pmd later as well, it makes the
4874 * code much cleaner. pmd allocation is essential for the shared case because
4875 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4876 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4877 * bad pmd for sharing.
4879 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4881 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
4882 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
4883 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
4885 struct vm_area_struct
*svma
;
4886 unsigned long saddr
;
4891 if (!vma_shareable(vma
, addr
))
4892 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4894 i_mmap_lock_write(mapping
);
4895 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
4899 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
4901 spte
= huge_pte_offset(svma
->vm_mm
, saddr
,
4902 vma_mmu_pagesize(svma
));
4904 get_page(virt_to_page(spte
));
4913 ptl
= huge_pte_lock(hstate_vma(vma
), mm
, spte
);
4914 if (pud_none(*pud
)) {
4915 pud_populate(mm
, pud
,
4916 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
4919 put_page(virt_to_page(spte
));
4923 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4924 i_mmap_unlock_write(mapping
);
4929 * unmap huge page backed by shared pte.
4931 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4932 * indicated by page_count > 1, unmap is achieved by clearing pud and
4933 * decrementing the ref count. If count == 1, the pte page is not shared.
4935 * called with page table lock held.
4937 * returns: 1 successfully unmapped a shared pte page
4938 * 0 the underlying pte page is not shared, or it is the last user
4940 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4942 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
4943 p4d_t
*p4d
= p4d_offset(pgd
, *addr
);
4944 pud_t
*pud
= pud_offset(p4d
, *addr
);
4946 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
4947 if (page_count(virt_to_page(ptep
)) == 1)
4951 put_page(virt_to_page(ptep
));
4953 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
4956 #define want_pmd_share() (1)
4957 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4958 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4963 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4968 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct
*vma
,
4969 unsigned long *start
, unsigned long *end
)
4972 #define want_pmd_share() (0)
4973 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4975 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4976 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
4977 unsigned long addr
, unsigned long sz
)
4984 pgd
= pgd_offset(mm
, addr
);
4985 p4d
= p4d_alloc(mm
, pgd
, addr
);
4988 pud
= pud_alloc(mm
, p4d
, addr
);
4990 if (sz
== PUD_SIZE
) {
4993 BUG_ON(sz
!= PMD_SIZE
);
4994 if (want_pmd_share() && pud_none(*pud
))
4995 pte
= huge_pmd_share(mm
, addr
, pud
);
4997 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
5000 BUG_ON(pte
&& pte_present(*pte
) && !pte_huge(*pte
));
5006 * huge_pte_offset() - Walk the page table to resolve the hugepage
5007 * entry at address @addr
5009 * Return: Pointer to page table or swap entry (PUD or PMD) for
5010 * address @addr, or NULL if a p*d_none() entry is encountered and the
5011 * size @sz doesn't match the hugepage size at this level of the page
5014 pte_t
*huge_pte_offset(struct mm_struct
*mm
,
5015 unsigned long addr
, unsigned long sz
)
5019 pud_t
*pud
, pud_entry
;
5020 pmd_t
*pmd
, pmd_entry
;
5022 pgd
= pgd_offset(mm
, addr
);
5023 if (!pgd_present(*pgd
))
5025 p4d
= p4d_offset(pgd
, addr
);
5026 if (!p4d_present(*p4d
))
5029 pud
= pud_offset(p4d
, addr
);
5030 pud_entry
= READ_ONCE(*pud
);
5031 if (sz
!= PUD_SIZE
&& pud_none(pud_entry
))
5033 /* hugepage or swap? */
5034 if (pud_huge(pud_entry
) || !pud_present(pud_entry
))
5035 return (pte_t
*)pud
;
5037 pmd
= pmd_offset(pud
, addr
);
5038 pmd_entry
= READ_ONCE(*pmd
);
5039 if (sz
!= PMD_SIZE
&& pmd_none(pmd_entry
))
5041 /* hugepage or swap? */
5042 if (pmd_huge(pmd_entry
) || !pmd_present(pmd_entry
))
5043 return (pte_t
*)pmd
;
5048 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5051 * These functions are overwritable if your architecture needs its own
5054 struct page
* __weak
5055 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
,
5058 return ERR_PTR(-EINVAL
);
5061 struct page
* __weak
5062 follow_huge_pd(struct vm_area_struct
*vma
,
5063 unsigned long address
, hugepd_t hpd
, int flags
, int pdshift
)
5065 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5069 struct page
* __weak
5070 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
5071 pmd_t
*pmd
, int flags
)
5073 struct page
*page
= NULL
;
5077 ptl
= pmd_lockptr(mm
, pmd
);
5080 * make sure that the address range covered by this pmd is not
5081 * unmapped from other threads.
5083 if (!pmd_huge(*pmd
))
5085 pte
= huge_ptep_get((pte_t
*)pmd
);
5086 if (pte_present(pte
)) {
5087 page
= pmd_page(*pmd
) + ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
5088 if (flags
& FOLL_GET
)
5091 if (is_hugetlb_entry_migration(pte
)) {
5093 __migration_entry_wait(mm
, (pte_t
*)pmd
, ptl
);
5097 * hwpoisoned entry is treated as no_page_table in
5098 * follow_page_mask().
5106 struct page
* __weak
5107 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
5108 pud_t
*pud
, int flags
)
5110 if (flags
& FOLL_GET
)
5113 return pte_page(*(pte_t
*)pud
) + ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
5116 struct page
* __weak
5117 follow_huge_pgd(struct mm_struct
*mm
, unsigned long address
, pgd_t
*pgd
, int flags
)
5119 if (flags
& FOLL_GET
)
5122 return pte_page(*(pte_t
*)pgd
) + ((address
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
5125 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
5129 VM_BUG_ON_PAGE(!PageHead(page
), page
);
5130 spin_lock(&hugetlb_lock
);
5131 if (!page_huge_active(page
) || !get_page_unless_zero(page
)) {
5135 clear_page_huge_active(page
);
5136 list_move_tail(&page
->lru
, list
);
5138 spin_unlock(&hugetlb_lock
);
5142 void putback_active_hugepage(struct page
*page
)
5144 VM_BUG_ON_PAGE(!PageHead(page
), page
);
5145 spin_lock(&hugetlb_lock
);
5146 set_page_huge_active(page
);
5147 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
5148 spin_unlock(&hugetlb_lock
);
5152 void move_hugetlb_state(struct page
*oldpage
, struct page
*newpage
, int reason
)
5154 struct hstate
*h
= page_hstate(oldpage
);
5156 hugetlb_cgroup_migrate(oldpage
, newpage
);
5157 set_page_owner_migrate_reason(newpage
, reason
);
5160 * transfer temporary state of the new huge page. This is
5161 * reverse to other transitions because the newpage is going to
5162 * be final while the old one will be freed so it takes over
5163 * the temporary status.
5165 * Also note that we have to transfer the per-node surplus state
5166 * here as well otherwise the global surplus count will not match
5169 if (PageHugeTemporary(newpage
)) {
5170 int old_nid
= page_to_nid(oldpage
);
5171 int new_nid
= page_to_nid(newpage
);
5173 SetPageHugeTemporary(oldpage
);
5174 ClearPageHugeTemporary(newpage
);
5176 spin_lock(&hugetlb_lock
);
5177 if (h
->surplus_huge_pages_node
[old_nid
]) {
5178 h
->surplus_huge_pages_node
[old_nid
]--;
5179 h
->surplus_huge_pages_node
[new_nid
]++;
5181 spin_unlock(&hugetlb_lock
);