arm64: kgdb: Fix single-step exception handling oops
[linux/fpc-iii.git] / fs / f2fs / segment.h
blobfaca7fdb54b0816b4702b94a2742bb6d69814889
1 /*
2 * fs/f2fs/segment.h
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
14 /* constant macro */
15 #define NULL_SEGNO ((unsigned int)(~0))
16 #define NULL_SECNO ((unsigned int)(~0))
18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
19 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
21 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
23 /* L: Logical segment # in volume, R: Relative segment # in main area */
24 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
25 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
27 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
28 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
30 #define IS_CURSEG(sbi, seg) \
31 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
33 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
34 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
35 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
36 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
38 #define IS_CURSEC(sbi, secno) \
39 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
40 sbi->segs_per_sec) || \
41 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
42 sbi->segs_per_sec) || \
43 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
44 sbi->segs_per_sec) || \
45 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
46 sbi->segs_per_sec) || \
47 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
48 sbi->segs_per_sec) || \
49 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
50 sbi->segs_per_sec)) \
52 #define MAIN_BLKADDR(sbi) \
53 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \
54 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
55 #define SEG0_BLKADDR(sbi) \
56 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \
57 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
59 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
60 #define MAIN_SECS(sbi) (sbi->total_sections)
62 #define TOTAL_SEGS(sbi) \
63 (SM_I(sbi) ? SM_I(sbi)->segment_count : \
64 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
65 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
67 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
68 #define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \
69 sbi->log_blocks_per_seg))
71 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
72 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
74 #define NEXT_FREE_BLKADDR(sbi, curseg) \
75 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
77 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
78 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
79 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
80 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
81 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
83 #define GET_SEGNO(sbi, blk_addr) \
84 ((!is_valid_data_blkaddr(sbi, blk_addr)) ? \
85 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
86 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
87 #define GET_SECNO(sbi, segno) \
88 ((segno) / sbi->segs_per_sec)
89 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
90 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
92 #define GET_SUM_BLOCK(sbi, segno) \
93 ((sbi->sm_info->ssa_blkaddr) + segno)
95 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
96 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
98 #define SIT_ENTRY_OFFSET(sit_i, segno) \
99 (segno % sit_i->sents_per_block)
100 #define SIT_BLOCK_OFFSET(segno) \
101 (segno / SIT_ENTRY_PER_BLOCK)
102 #define START_SEGNO(segno) \
103 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
104 #define SIT_BLK_CNT(sbi) \
105 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
106 #define f2fs_bitmap_size(nr) \
107 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
109 #define SECTOR_FROM_BLOCK(blk_addr) \
110 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
111 #define SECTOR_TO_BLOCK(sectors) \
112 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
113 #define MAX_BIO_BLOCKS(sbi) \
114 ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
117 * indicate a block allocation direction: RIGHT and LEFT.
118 * RIGHT means allocating new sections towards the end of volume.
119 * LEFT means the opposite direction.
121 enum {
122 ALLOC_RIGHT = 0,
123 ALLOC_LEFT
127 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
128 * LFS writes data sequentially with cleaning operations.
129 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
131 enum {
132 LFS = 0,
137 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
138 * GC_CB is based on cost-benefit algorithm.
139 * GC_GREEDY is based on greedy algorithm.
141 enum {
142 GC_CB = 0,
143 GC_GREEDY
147 * BG_GC means the background cleaning job.
148 * FG_GC means the on-demand cleaning job.
149 * FORCE_FG_GC means on-demand cleaning job in background.
151 enum {
152 BG_GC = 0,
153 FG_GC,
154 FORCE_FG_GC,
157 /* for a function parameter to select a victim segment */
158 struct victim_sel_policy {
159 int alloc_mode; /* LFS or SSR */
160 int gc_mode; /* GC_CB or GC_GREEDY */
161 unsigned long *dirty_segmap; /* dirty segment bitmap */
162 unsigned int max_search; /* maximum # of segments to search */
163 unsigned int offset; /* last scanned bitmap offset */
164 unsigned int ofs_unit; /* bitmap search unit */
165 unsigned int min_cost; /* minimum cost */
166 unsigned int min_segno; /* segment # having min. cost */
169 struct seg_entry {
170 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
171 unsigned int valid_blocks:10; /* # of valid blocks */
172 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
173 unsigned int padding:6; /* padding */
174 unsigned char *cur_valid_map; /* validity bitmap of blocks */
176 * # of valid blocks and the validity bitmap stored in the the last
177 * checkpoint pack. This information is used by the SSR mode.
179 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
180 unsigned char *discard_map;
181 unsigned long long mtime; /* modification time of the segment */
184 struct sec_entry {
185 unsigned int valid_blocks; /* # of valid blocks in a section */
188 struct segment_allocation {
189 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
193 * this value is set in page as a private data which indicate that
194 * the page is atomically written, and it is in inmem_pages list.
196 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
198 #define IS_ATOMIC_WRITTEN_PAGE(page) \
199 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
201 struct inmem_pages {
202 struct list_head list;
203 struct page *page;
204 block_t old_addr; /* for revoking when fail to commit */
207 struct sit_info {
208 const struct segment_allocation *s_ops;
210 block_t sit_base_addr; /* start block address of SIT area */
211 block_t sit_blocks; /* # of blocks used by SIT area */
212 block_t written_valid_blocks; /* # of valid blocks in main area */
213 char *sit_bitmap; /* SIT bitmap pointer */
214 unsigned int bitmap_size; /* SIT bitmap size */
216 unsigned long *tmp_map; /* bitmap for temporal use */
217 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
218 unsigned int dirty_sentries; /* # of dirty sentries */
219 unsigned int sents_per_block; /* # of SIT entries per block */
220 struct mutex sentry_lock; /* to protect SIT cache */
221 struct seg_entry *sentries; /* SIT segment-level cache */
222 struct sec_entry *sec_entries; /* SIT section-level cache */
224 /* for cost-benefit algorithm in cleaning procedure */
225 unsigned long long elapsed_time; /* elapsed time after mount */
226 unsigned long long mounted_time; /* mount time */
227 unsigned long long min_mtime; /* min. modification time */
228 unsigned long long max_mtime; /* max. modification time */
231 struct free_segmap_info {
232 unsigned int start_segno; /* start segment number logically */
233 unsigned int free_segments; /* # of free segments */
234 unsigned int free_sections; /* # of free sections */
235 spinlock_t segmap_lock; /* free segmap lock */
236 unsigned long *free_segmap; /* free segment bitmap */
237 unsigned long *free_secmap; /* free section bitmap */
240 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
241 enum dirty_type {
242 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
243 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
244 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
245 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
246 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
247 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
248 DIRTY, /* to count # of dirty segments */
249 PRE, /* to count # of entirely obsolete segments */
250 NR_DIRTY_TYPE
253 struct dirty_seglist_info {
254 const struct victim_selection *v_ops; /* victim selction operation */
255 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
256 struct mutex seglist_lock; /* lock for segment bitmaps */
257 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
258 unsigned long *victim_secmap; /* background GC victims */
261 /* victim selection function for cleaning and SSR */
262 struct victim_selection {
263 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
264 int, int, char);
267 /* for active log information */
268 struct curseg_info {
269 struct mutex curseg_mutex; /* lock for consistency */
270 struct f2fs_summary_block *sum_blk; /* cached summary block */
271 struct rw_semaphore journal_rwsem; /* protect journal area */
272 struct f2fs_journal *journal; /* cached journal info */
273 unsigned char alloc_type; /* current allocation type */
274 unsigned int segno; /* current segment number */
275 unsigned short next_blkoff; /* next block offset to write */
276 unsigned int zone; /* current zone number */
277 unsigned int next_segno; /* preallocated segment */
280 struct sit_entry_set {
281 struct list_head set_list; /* link with all sit sets */
282 unsigned int start_segno; /* start segno of sits in set */
283 unsigned int entry_cnt; /* the # of sit entries in set */
287 * inline functions
289 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
291 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
294 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
295 unsigned int segno)
297 struct sit_info *sit_i = SIT_I(sbi);
298 return &sit_i->sentries[segno];
301 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
302 unsigned int segno)
304 struct sit_info *sit_i = SIT_I(sbi);
305 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
308 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
309 unsigned int segno, int section)
312 * In order to get # of valid blocks in a section instantly from many
313 * segments, f2fs manages two counting structures separately.
315 if (section > 1)
316 return get_sec_entry(sbi, segno)->valid_blocks;
317 else
318 return get_seg_entry(sbi, segno)->valid_blocks;
321 static inline void seg_info_from_raw_sit(struct seg_entry *se,
322 struct f2fs_sit_entry *rs)
324 se->valid_blocks = GET_SIT_VBLOCKS(rs);
325 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
326 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
327 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
328 se->type = GET_SIT_TYPE(rs);
329 se->mtime = le64_to_cpu(rs->mtime);
332 static inline void seg_info_to_raw_sit(struct seg_entry *se,
333 struct f2fs_sit_entry *rs)
335 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
336 se->valid_blocks;
337 rs->vblocks = cpu_to_le16(raw_vblocks);
338 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
339 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
340 se->ckpt_valid_blocks = se->valid_blocks;
341 rs->mtime = cpu_to_le64(se->mtime);
344 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
345 unsigned int max, unsigned int segno)
347 unsigned int ret;
348 spin_lock(&free_i->segmap_lock);
349 ret = find_next_bit(free_i->free_segmap, max, segno);
350 spin_unlock(&free_i->segmap_lock);
351 return ret;
354 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
356 struct free_segmap_info *free_i = FREE_I(sbi);
357 unsigned int secno = segno / sbi->segs_per_sec;
358 unsigned int start_segno = secno * sbi->segs_per_sec;
359 unsigned int next;
361 spin_lock(&free_i->segmap_lock);
362 clear_bit(segno, free_i->free_segmap);
363 free_i->free_segments++;
365 next = find_next_bit(free_i->free_segmap,
366 start_segno + sbi->segs_per_sec, start_segno);
367 if (next >= start_segno + sbi->segs_per_sec) {
368 clear_bit(secno, free_i->free_secmap);
369 free_i->free_sections++;
371 spin_unlock(&free_i->segmap_lock);
374 static inline void __set_inuse(struct f2fs_sb_info *sbi,
375 unsigned int segno)
377 struct free_segmap_info *free_i = FREE_I(sbi);
378 unsigned int secno = segno / sbi->segs_per_sec;
379 set_bit(segno, free_i->free_segmap);
380 free_i->free_segments--;
381 if (!test_and_set_bit(secno, free_i->free_secmap))
382 free_i->free_sections--;
385 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
386 unsigned int segno)
388 struct free_segmap_info *free_i = FREE_I(sbi);
389 unsigned int secno = segno / sbi->segs_per_sec;
390 unsigned int start_segno = secno * sbi->segs_per_sec;
391 unsigned int next;
393 spin_lock(&free_i->segmap_lock);
394 if (test_and_clear_bit(segno, free_i->free_segmap)) {
395 free_i->free_segments++;
397 if (IS_CURSEC(sbi, secno))
398 goto skip_free;
399 next = find_next_bit(free_i->free_segmap,
400 start_segno + sbi->segs_per_sec, start_segno);
401 if (next >= start_segno + sbi->segs_per_sec) {
402 if (test_and_clear_bit(secno, free_i->free_secmap))
403 free_i->free_sections++;
406 skip_free:
407 spin_unlock(&free_i->segmap_lock);
410 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
411 unsigned int segno)
413 struct free_segmap_info *free_i = FREE_I(sbi);
414 unsigned int secno = segno / sbi->segs_per_sec;
415 spin_lock(&free_i->segmap_lock);
416 if (!test_and_set_bit(segno, free_i->free_segmap)) {
417 free_i->free_segments--;
418 if (!test_and_set_bit(secno, free_i->free_secmap))
419 free_i->free_sections--;
421 spin_unlock(&free_i->segmap_lock);
424 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
425 void *dst_addr)
427 struct sit_info *sit_i = SIT_I(sbi);
428 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
431 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
433 return SIT_I(sbi)->written_valid_blocks;
436 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
438 return FREE_I(sbi)->free_segments;
441 static inline int reserved_segments(struct f2fs_sb_info *sbi)
443 return SM_I(sbi)->reserved_segments;
446 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
448 return FREE_I(sbi)->free_sections;
451 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
453 return DIRTY_I(sbi)->nr_dirty[PRE];
456 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
458 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
459 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
460 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
461 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
462 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
463 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
466 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
468 return SM_I(sbi)->ovp_segments;
471 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
473 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
476 static inline int reserved_sections(struct f2fs_sb_info *sbi)
478 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
481 static inline bool need_SSR(struct f2fs_sb_info *sbi)
483 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
484 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
486 if (test_opt(sbi, LFS))
487 return false;
489 return free_sections(sbi) <= (node_secs + 2 * dent_secs +
490 reserved_sections(sbi) + 1);
493 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
494 int freed, int needed)
496 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
497 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
499 node_secs += get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
501 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
502 return false;
504 return (free_sections(sbi) + freed) <=
505 (node_secs + 2 * dent_secs + reserved_sections(sbi) + needed);
508 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
510 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
513 static inline int utilization(struct f2fs_sb_info *sbi)
515 return div_u64((u64)valid_user_blocks(sbi) * 100,
516 sbi->user_block_count);
520 * Sometimes f2fs may be better to drop out-of-place update policy.
521 * And, users can control the policy through sysfs entries.
522 * There are five policies with triggering conditions as follows.
523 * F2FS_IPU_FORCE - all the time,
524 * F2FS_IPU_SSR - if SSR mode is activated,
525 * F2FS_IPU_UTIL - if FS utilization is over threashold,
526 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
527 * threashold,
528 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
529 * storages. IPU will be triggered only if the # of dirty
530 * pages over min_fsync_blocks.
531 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
533 #define DEF_MIN_IPU_UTIL 70
534 #define DEF_MIN_FSYNC_BLOCKS 8
536 enum {
537 F2FS_IPU_FORCE,
538 F2FS_IPU_SSR,
539 F2FS_IPU_UTIL,
540 F2FS_IPU_SSR_UTIL,
541 F2FS_IPU_FSYNC,
544 static inline bool need_inplace_update(struct inode *inode)
546 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
547 unsigned int policy = SM_I(sbi)->ipu_policy;
549 /* IPU can be done only for the user data */
550 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
551 return false;
553 if (test_opt(sbi, LFS))
554 return false;
556 if (policy & (0x1 << F2FS_IPU_FORCE))
557 return true;
558 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
559 return true;
560 if (policy & (0x1 << F2FS_IPU_UTIL) &&
561 utilization(sbi) > SM_I(sbi)->min_ipu_util)
562 return true;
563 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
564 utilization(sbi) > SM_I(sbi)->min_ipu_util)
565 return true;
567 /* this is only set during fdatasync */
568 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
569 is_inode_flag_set(inode, FI_NEED_IPU))
570 return true;
572 return false;
575 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
576 int type)
578 struct curseg_info *curseg = CURSEG_I(sbi, type);
579 return curseg->segno;
582 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
583 int type)
585 struct curseg_info *curseg = CURSEG_I(sbi, type);
586 return curseg->alloc_type;
589 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
591 struct curseg_info *curseg = CURSEG_I(sbi, type);
592 return curseg->next_blkoff;
595 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
597 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
600 static inline void verify_block_addr(struct f2fs_io_info *fio, block_t blk_addr)
602 struct f2fs_sb_info *sbi = fio->sbi;
604 if (__is_meta_io(fio))
605 verify_blkaddr(sbi, blk_addr, META_GENERIC);
606 else
607 verify_blkaddr(sbi, blk_addr, DATA_GENERIC);
611 * Summary block is always treated as an invalid block
613 static inline int check_block_count(struct f2fs_sb_info *sbi,
614 int segno, struct f2fs_sit_entry *raw_sit)
616 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
617 int valid_blocks = 0;
618 int cur_pos = 0, next_pos;
620 /* check bitmap with valid block count */
621 do {
622 if (is_valid) {
623 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
624 sbi->blocks_per_seg,
625 cur_pos);
626 valid_blocks += next_pos - cur_pos;
627 } else
628 next_pos = find_next_bit_le(&raw_sit->valid_map,
629 sbi->blocks_per_seg,
630 cur_pos);
631 cur_pos = next_pos;
632 is_valid = !is_valid;
633 } while (cur_pos < sbi->blocks_per_seg);
635 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
636 f2fs_msg(sbi->sb, KERN_ERR,
637 "Mismatch valid blocks %d vs. %d",
638 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
639 set_sbi_flag(sbi, SBI_NEED_FSCK);
640 return -EINVAL;
643 /* check segment usage, and check boundary of a given segment number */
644 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
645 || segno > TOTAL_SEGS(sbi) - 1)) {
646 f2fs_msg(sbi->sb, KERN_ERR,
647 "Wrong valid blocks %d or segno %u",
648 GET_SIT_VBLOCKS(raw_sit), segno);
649 set_sbi_flag(sbi, SBI_NEED_FSCK);
650 return -EINVAL;
652 return 0;
655 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
656 unsigned int start)
658 struct sit_info *sit_i = SIT_I(sbi);
659 unsigned int offset = SIT_BLOCK_OFFSET(start);
660 block_t blk_addr = sit_i->sit_base_addr + offset;
662 check_seg_range(sbi, start);
664 /* calculate sit block address */
665 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
666 blk_addr += sit_i->sit_blocks;
668 return blk_addr;
671 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
672 pgoff_t block_addr)
674 struct sit_info *sit_i = SIT_I(sbi);
675 block_addr -= sit_i->sit_base_addr;
676 if (block_addr < sit_i->sit_blocks)
677 block_addr += sit_i->sit_blocks;
678 else
679 block_addr -= sit_i->sit_blocks;
681 return block_addr + sit_i->sit_base_addr;
684 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
686 unsigned int block_off = SIT_BLOCK_OFFSET(start);
688 f2fs_change_bit(block_off, sit_i->sit_bitmap);
691 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
693 struct sit_info *sit_i = SIT_I(sbi);
694 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
695 sit_i->mounted_time;
698 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
699 unsigned int ofs_in_node, unsigned char version)
701 sum->nid = cpu_to_le32(nid);
702 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
703 sum->version = version;
706 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
708 return __start_cp_addr(sbi) +
709 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
712 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
714 return __start_cp_addr(sbi) +
715 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
716 - (base + 1) + type;
719 static inline bool no_fggc_candidate(struct f2fs_sb_info *sbi,
720 unsigned int secno)
722 if (get_valid_blocks(sbi, secno, sbi->segs_per_sec) >=
723 sbi->fggc_threshold)
724 return true;
725 return false;
728 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
730 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
731 return true;
732 return false;
735 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
737 struct block_device *bdev = sbi->sb->s_bdev;
738 struct request_queue *q = bdev_get_queue(bdev);
739 return SECTOR_TO_BLOCK(queue_max_sectors(q));
743 * It is very important to gather dirty pages and write at once, so that we can
744 * submit a big bio without interfering other data writes.
745 * By default, 512 pages for directory data,
746 * 512 pages (2MB) * 3 for three types of nodes, and
747 * max_bio_blocks for meta are set.
749 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
751 if (sbi->sb->s_bdi->wb.dirty_exceeded)
752 return 0;
754 if (type == DATA)
755 return sbi->blocks_per_seg;
756 else if (type == NODE)
757 return 8 * sbi->blocks_per_seg;
758 else if (type == META)
759 return 8 * MAX_BIO_BLOCKS(sbi);
760 else
761 return 0;
765 * When writing pages, it'd better align nr_to_write for segment size.
767 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
768 struct writeback_control *wbc)
770 long nr_to_write, desired;
772 if (wbc->sync_mode != WB_SYNC_NONE)
773 return 0;
775 nr_to_write = wbc->nr_to_write;
777 if (type == NODE)
778 desired = 2 * max_hw_blocks(sbi);
779 else
780 desired = MAX_BIO_BLOCKS(sbi);
782 wbc->nr_to_write = desired;
783 return desired - nr_to_write;