tracing, vmscan: add trace events for LRU list shrinking
[linux/fpc-iii.git] / mm / vmscan.c
blob4a6dccb57586f73596dd8c00311acb229274eee0
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
47 #include <linux/swapops.h>
49 #include "internal.h"
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/vmscan.h>
54 struct scan_control {
55 /* Incremented by the number of inactive pages that were scanned */
56 unsigned long nr_scanned;
58 /* Number of pages freed so far during a call to shrink_zones() */
59 unsigned long nr_reclaimed;
61 /* How many pages shrink_list() should reclaim */
62 unsigned long nr_to_reclaim;
64 unsigned long hibernation_mode;
66 /* This context's GFP mask */
67 gfp_t gfp_mask;
69 int may_writepage;
71 /* Can mapped pages be reclaimed? */
72 int may_unmap;
74 /* Can pages be swapped as part of reclaim? */
75 int may_swap;
77 int swappiness;
79 int order;
82 * Intend to reclaim enough continuous memory rather than reclaim
83 * enough amount of memory. i.e, mode for high order allocation.
85 bool lumpy_reclaim_mode;
87 /* Which cgroup do we reclaim from */
88 struct mem_cgroup *mem_cgroup;
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
94 nodemask_t *nodemask;
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
108 } while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
122 } while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
128 * From 0 .. 100. Higher means more swappy.
130 int vm_swappiness = 60;
131 long vm_total_pages; /* The total number of pages which the VM controls */
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
137 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
138 #else
139 #define scanning_global_lru(sc) (1)
140 #endif
142 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143 struct scan_control *sc)
145 if (!scanning_global_lru(sc))
146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
148 return &zone->reclaim_stat;
151 static unsigned long zone_nr_lru_pages(struct zone *zone,
152 struct scan_control *sc, enum lru_list lru)
154 if (!scanning_global_lru(sc))
155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
157 return zone_page_state(zone, NR_LRU_BASE + lru);
162 * Add a shrinker callback to be called from the vm
164 void register_shrinker(struct shrinker *shrinker)
166 shrinker->nr = 0;
167 down_write(&shrinker_rwsem);
168 list_add_tail(&shrinker->list, &shrinker_list);
169 up_write(&shrinker_rwsem);
171 EXPORT_SYMBOL(register_shrinker);
174 * Remove one
176 void unregister_shrinker(struct shrinker *shrinker)
178 down_write(&shrinker_rwsem);
179 list_del(&shrinker->list);
180 up_write(&shrinker_rwsem);
182 EXPORT_SYMBOL(unregister_shrinker);
184 #define SHRINK_BATCH 128
186 * Call the shrink functions to age shrinkable caches
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object. With this in mind we age equal
190 * percentages of the lru and ageable caches. This should balance the seeks
191 * generated by these structures.
193 * If the vm encountered mapped pages on the LRU it increase the pressure on
194 * slab to avoid swapping.
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt. It is used for balancing
200 * slab reclaim versus page reclaim.
202 * Returns the number of slab objects which we shrunk.
204 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205 unsigned long lru_pages)
207 struct shrinker *shrinker;
208 unsigned long ret = 0;
210 if (scanned == 0)
211 scanned = SWAP_CLUSTER_MAX;
213 if (!down_read_trylock(&shrinker_rwsem))
214 return 1; /* Assume we'll be able to shrink next time */
216 list_for_each_entry(shrinker, &shrinker_list, list) {
217 unsigned long long delta;
218 unsigned long total_scan;
219 unsigned long max_pass;
221 max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
222 delta = (4 * scanned) / shrinker->seeks;
223 delta *= max_pass;
224 do_div(delta, lru_pages + 1);
225 shrinker->nr += delta;
226 if (shrinker->nr < 0) {
227 printk(KERN_ERR "shrink_slab: %pF negative objects to "
228 "delete nr=%ld\n",
229 shrinker->shrink, shrinker->nr);
230 shrinker->nr = max_pass;
234 * Avoid risking looping forever due to too large nr value:
235 * never try to free more than twice the estimate number of
236 * freeable entries.
238 if (shrinker->nr > max_pass * 2)
239 shrinker->nr = max_pass * 2;
241 total_scan = shrinker->nr;
242 shrinker->nr = 0;
244 while (total_scan >= SHRINK_BATCH) {
245 long this_scan = SHRINK_BATCH;
246 int shrink_ret;
247 int nr_before;
249 nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
250 shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
251 gfp_mask);
252 if (shrink_ret == -1)
253 break;
254 if (shrink_ret < nr_before)
255 ret += nr_before - shrink_ret;
256 count_vm_events(SLABS_SCANNED, this_scan);
257 total_scan -= this_scan;
259 cond_resched();
262 shrinker->nr += total_scan;
264 up_read(&shrinker_rwsem);
265 return ret;
268 static inline int is_page_cache_freeable(struct page *page)
271 * A freeable page cache page is referenced only by the caller
272 * that isolated the page, the page cache radix tree and
273 * optional buffer heads at page->private.
275 return page_count(page) - page_has_private(page) == 2;
278 static int may_write_to_queue(struct backing_dev_info *bdi)
280 if (current->flags & PF_SWAPWRITE)
281 return 1;
282 if (!bdi_write_congested(bdi))
283 return 1;
284 if (bdi == current->backing_dev_info)
285 return 1;
286 return 0;
290 * We detected a synchronous write error writing a page out. Probably
291 * -ENOSPC. We need to propagate that into the address_space for a subsequent
292 * fsync(), msync() or close().
294 * The tricky part is that after writepage we cannot touch the mapping: nothing
295 * prevents it from being freed up. But we have a ref on the page and once
296 * that page is locked, the mapping is pinned.
298 * We're allowed to run sleeping lock_page() here because we know the caller has
299 * __GFP_FS.
301 static void handle_write_error(struct address_space *mapping,
302 struct page *page, int error)
304 lock_page_nosync(page);
305 if (page_mapping(page) == mapping)
306 mapping_set_error(mapping, error);
307 unlock_page(page);
310 /* Request for sync pageout. */
311 enum pageout_io {
312 PAGEOUT_IO_ASYNC,
313 PAGEOUT_IO_SYNC,
316 /* possible outcome of pageout() */
317 typedef enum {
318 /* failed to write page out, page is locked */
319 PAGE_KEEP,
320 /* move page to the active list, page is locked */
321 PAGE_ACTIVATE,
322 /* page has been sent to the disk successfully, page is unlocked */
323 PAGE_SUCCESS,
324 /* page is clean and locked */
325 PAGE_CLEAN,
326 } pageout_t;
329 * pageout is called by shrink_page_list() for each dirty page.
330 * Calls ->writepage().
332 static pageout_t pageout(struct page *page, struct address_space *mapping,
333 enum pageout_io sync_writeback)
336 * If the page is dirty, only perform writeback if that write
337 * will be non-blocking. To prevent this allocation from being
338 * stalled by pagecache activity. But note that there may be
339 * stalls if we need to run get_block(). We could test
340 * PagePrivate for that.
342 * If this process is currently in __generic_file_aio_write() against
343 * this page's queue, we can perform writeback even if that
344 * will block.
346 * If the page is swapcache, write it back even if that would
347 * block, for some throttling. This happens by accident, because
348 * swap_backing_dev_info is bust: it doesn't reflect the
349 * congestion state of the swapdevs. Easy to fix, if needed.
351 if (!is_page_cache_freeable(page))
352 return PAGE_KEEP;
353 if (!mapping) {
355 * Some data journaling orphaned pages can have
356 * page->mapping == NULL while being dirty with clean buffers.
358 if (page_has_private(page)) {
359 if (try_to_free_buffers(page)) {
360 ClearPageDirty(page);
361 printk("%s: orphaned page\n", __func__);
362 return PAGE_CLEAN;
365 return PAGE_KEEP;
367 if (mapping->a_ops->writepage == NULL)
368 return PAGE_ACTIVATE;
369 if (!may_write_to_queue(mapping->backing_dev_info))
370 return PAGE_KEEP;
372 if (clear_page_dirty_for_io(page)) {
373 int res;
374 struct writeback_control wbc = {
375 .sync_mode = WB_SYNC_NONE,
376 .nr_to_write = SWAP_CLUSTER_MAX,
377 .range_start = 0,
378 .range_end = LLONG_MAX,
379 .for_reclaim = 1,
382 SetPageReclaim(page);
383 res = mapping->a_ops->writepage(page, &wbc);
384 if (res < 0)
385 handle_write_error(mapping, page, res);
386 if (res == AOP_WRITEPAGE_ACTIVATE) {
387 ClearPageReclaim(page);
388 return PAGE_ACTIVATE;
392 * Wait on writeback if requested to. This happens when
393 * direct reclaiming a large contiguous area and the
394 * first attempt to free a range of pages fails.
396 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
397 wait_on_page_writeback(page);
399 if (!PageWriteback(page)) {
400 /* synchronous write or broken a_ops? */
401 ClearPageReclaim(page);
403 trace_mm_vmscan_writepage(page,
404 trace_reclaim_flags(page, sync_writeback));
405 inc_zone_page_state(page, NR_VMSCAN_WRITE);
406 return PAGE_SUCCESS;
409 return PAGE_CLEAN;
413 * Same as remove_mapping, but if the page is removed from the mapping, it
414 * gets returned with a refcount of 0.
416 static int __remove_mapping(struct address_space *mapping, struct page *page)
418 BUG_ON(!PageLocked(page));
419 BUG_ON(mapping != page_mapping(page));
421 spin_lock_irq(&mapping->tree_lock);
423 * The non racy check for a busy page.
425 * Must be careful with the order of the tests. When someone has
426 * a ref to the page, it may be possible that they dirty it then
427 * drop the reference. So if PageDirty is tested before page_count
428 * here, then the following race may occur:
430 * get_user_pages(&page);
431 * [user mapping goes away]
432 * write_to(page);
433 * !PageDirty(page) [good]
434 * SetPageDirty(page);
435 * put_page(page);
436 * !page_count(page) [good, discard it]
438 * [oops, our write_to data is lost]
440 * Reversing the order of the tests ensures such a situation cannot
441 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
442 * load is not satisfied before that of page->_count.
444 * Note that if SetPageDirty is always performed via set_page_dirty,
445 * and thus under tree_lock, then this ordering is not required.
447 if (!page_freeze_refs(page, 2))
448 goto cannot_free;
449 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
450 if (unlikely(PageDirty(page))) {
451 page_unfreeze_refs(page, 2);
452 goto cannot_free;
455 if (PageSwapCache(page)) {
456 swp_entry_t swap = { .val = page_private(page) };
457 __delete_from_swap_cache(page);
458 spin_unlock_irq(&mapping->tree_lock);
459 swapcache_free(swap, page);
460 } else {
461 __remove_from_page_cache(page);
462 spin_unlock_irq(&mapping->tree_lock);
463 mem_cgroup_uncharge_cache_page(page);
466 return 1;
468 cannot_free:
469 spin_unlock_irq(&mapping->tree_lock);
470 return 0;
474 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
475 * someone else has a ref on the page, abort and return 0. If it was
476 * successfully detached, return 1. Assumes the caller has a single ref on
477 * this page.
479 int remove_mapping(struct address_space *mapping, struct page *page)
481 if (__remove_mapping(mapping, page)) {
483 * Unfreezing the refcount with 1 rather than 2 effectively
484 * drops the pagecache ref for us without requiring another
485 * atomic operation.
487 page_unfreeze_refs(page, 1);
488 return 1;
490 return 0;
494 * putback_lru_page - put previously isolated page onto appropriate LRU list
495 * @page: page to be put back to appropriate lru list
497 * Add previously isolated @page to appropriate LRU list.
498 * Page may still be unevictable for other reasons.
500 * lru_lock must not be held, interrupts must be enabled.
502 void putback_lru_page(struct page *page)
504 int lru;
505 int active = !!TestClearPageActive(page);
506 int was_unevictable = PageUnevictable(page);
508 VM_BUG_ON(PageLRU(page));
510 redo:
511 ClearPageUnevictable(page);
513 if (page_evictable(page, NULL)) {
515 * For evictable pages, we can use the cache.
516 * In event of a race, worst case is we end up with an
517 * unevictable page on [in]active list.
518 * We know how to handle that.
520 lru = active + page_lru_base_type(page);
521 lru_cache_add_lru(page, lru);
522 } else {
524 * Put unevictable pages directly on zone's unevictable
525 * list.
527 lru = LRU_UNEVICTABLE;
528 add_page_to_unevictable_list(page);
530 * When racing with an mlock clearing (page is
531 * unlocked), make sure that if the other thread does
532 * not observe our setting of PG_lru and fails
533 * isolation, we see PG_mlocked cleared below and move
534 * the page back to the evictable list.
536 * The other side is TestClearPageMlocked().
538 smp_mb();
542 * page's status can change while we move it among lru. If an evictable
543 * page is on unevictable list, it never be freed. To avoid that,
544 * check after we added it to the list, again.
546 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
547 if (!isolate_lru_page(page)) {
548 put_page(page);
549 goto redo;
551 /* This means someone else dropped this page from LRU
552 * So, it will be freed or putback to LRU again. There is
553 * nothing to do here.
557 if (was_unevictable && lru != LRU_UNEVICTABLE)
558 count_vm_event(UNEVICTABLE_PGRESCUED);
559 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
560 count_vm_event(UNEVICTABLE_PGCULLED);
562 put_page(page); /* drop ref from isolate */
565 enum page_references {
566 PAGEREF_RECLAIM,
567 PAGEREF_RECLAIM_CLEAN,
568 PAGEREF_KEEP,
569 PAGEREF_ACTIVATE,
572 static enum page_references page_check_references(struct page *page,
573 struct scan_control *sc)
575 int referenced_ptes, referenced_page;
576 unsigned long vm_flags;
578 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
579 referenced_page = TestClearPageReferenced(page);
581 /* Lumpy reclaim - ignore references */
582 if (sc->lumpy_reclaim_mode)
583 return PAGEREF_RECLAIM;
586 * Mlock lost the isolation race with us. Let try_to_unmap()
587 * move the page to the unevictable list.
589 if (vm_flags & VM_LOCKED)
590 return PAGEREF_RECLAIM;
592 if (referenced_ptes) {
593 if (PageAnon(page))
594 return PAGEREF_ACTIVATE;
596 * All mapped pages start out with page table
597 * references from the instantiating fault, so we need
598 * to look twice if a mapped file page is used more
599 * than once.
601 * Mark it and spare it for another trip around the
602 * inactive list. Another page table reference will
603 * lead to its activation.
605 * Note: the mark is set for activated pages as well
606 * so that recently deactivated but used pages are
607 * quickly recovered.
609 SetPageReferenced(page);
611 if (referenced_page)
612 return PAGEREF_ACTIVATE;
614 return PAGEREF_KEEP;
617 /* Reclaim if clean, defer dirty pages to writeback */
618 if (referenced_page)
619 return PAGEREF_RECLAIM_CLEAN;
621 return PAGEREF_RECLAIM;
624 static noinline_for_stack void free_page_list(struct list_head *free_pages)
626 struct pagevec freed_pvec;
627 struct page *page, *tmp;
629 pagevec_init(&freed_pvec, 1);
631 list_for_each_entry_safe(page, tmp, free_pages, lru) {
632 list_del(&page->lru);
633 if (!pagevec_add(&freed_pvec, page)) {
634 __pagevec_free(&freed_pvec);
635 pagevec_reinit(&freed_pvec);
639 pagevec_free(&freed_pvec);
643 * shrink_page_list() returns the number of reclaimed pages
645 static unsigned long shrink_page_list(struct list_head *page_list,
646 struct scan_control *sc,
647 enum pageout_io sync_writeback)
649 LIST_HEAD(ret_pages);
650 LIST_HEAD(free_pages);
651 int pgactivate = 0;
652 unsigned long nr_reclaimed = 0;
654 cond_resched();
656 while (!list_empty(page_list)) {
657 enum page_references references;
658 struct address_space *mapping;
659 struct page *page;
660 int may_enter_fs;
662 cond_resched();
664 page = lru_to_page(page_list);
665 list_del(&page->lru);
667 if (!trylock_page(page))
668 goto keep;
670 VM_BUG_ON(PageActive(page));
672 sc->nr_scanned++;
674 if (unlikely(!page_evictable(page, NULL)))
675 goto cull_mlocked;
677 if (!sc->may_unmap && page_mapped(page))
678 goto keep_locked;
680 /* Double the slab pressure for mapped and swapcache pages */
681 if (page_mapped(page) || PageSwapCache(page))
682 sc->nr_scanned++;
684 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
685 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
687 if (PageWriteback(page)) {
689 * Synchronous reclaim is performed in two passes,
690 * first an asynchronous pass over the list to
691 * start parallel writeback, and a second synchronous
692 * pass to wait for the IO to complete. Wait here
693 * for any page for which writeback has already
694 * started.
696 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
697 wait_on_page_writeback(page);
698 else
699 goto keep_locked;
702 references = page_check_references(page, sc);
703 switch (references) {
704 case PAGEREF_ACTIVATE:
705 goto activate_locked;
706 case PAGEREF_KEEP:
707 goto keep_locked;
708 case PAGEREF_RECLAIM:
709 case PAGEREF_RECLAIM_CLEAN:
710 ; /* try to reclaim the page below */
714 * Anonymous process memory has backing store?
715 * Try to allocate it some swap space here.
717 if (PageAnon(page) && !PageSwapCache(page)) {
718 if (!(sc->gfp_mask & __GFP_IO))
719 goto keep_locked;
720 if (!add_to_swap(page))
721 goto activate_locked;
722 may_enter_fs = 1;
725 mapping = page_mapping(page);
728 * The page is mapped into the page tables of one or more
729 * processes. Try to unmap it here.
731 if (page_mapped(page) && mapping) {
732 switch (try_to_unmap(page, TTU_UNMAP)) {
733 case SWAP_FAIL:
734 goto activate_locked;
735 case SWAP_AGAIN:
736 goto keep_locked;
737 case SWAP_MLOCK:
738 goto cull_mlocked;
739 case SWAP_SUCCESS:
740 ; /* try to free the page below */
744 if (PageDirty(page)) {
745 if (references == PAGEREF_RECLAIM_CLEAN)
746 goto keep_locked;
747 if (!may_enter_fs)
748 goto keep_locked;
749 if (!sc->may_writepage)
750 goto keep_locked;
752 /* Page is dirty, try to write it out here */
753 switch (pageout(page, mapping, sync_writeback)) {
754 case PAGE_KEEP:
755 goto keep_locked;
756 case PAGE_ACTIVATE:
757 goto activate_locked;
758 case PAGE_SUCCESS:
759 if (PageWriteback(page) || PageDirty(page))
760 goto keep;
762 * A synchronous write - probably a ramdisk. Go
763 * ahead and try to reclaim the page.
765 if (!trylock_page(page))
766 goto keep;
767 if (PageDirty(page) || PageWriteback(page))
768 goto keep_locked;
769 mapping = page_mapping(page);
770 case PAGE_CLEAN:
771 ; /* try to free the page below */
776 * If the page has buffers, try to free the buffer mappings
777 * associated with this page. If we succeed we try to free
778 * the page as well.
780 * We do this even if the page is PageDirty().
781 * try_to_release_page() does not perform I/O, but it is
782 * possible for a page to have PageDirty set, but it is actually
783 * clean (all its buffers are clean). This happens if the
784 * buffers were written out directly, with submit_bh(). ext3
785 * will do this, as well as the blockdev mapping.
786 * try_to_release_page() will discover that cleanness and will
787 * drop the buffers and mark the page clean - it can be freed.
789 * Rarely, pages can have buffers and no ->mapping. These are
790 * the pages which were not successfully invalidated in
791 * truncate_complete_page(). We try to drop those buffers here
792 * and if that worked, and the page is no longer mapped into
793 * process address space (page_count == 1) it can be freed.
794 * Otherwise, leave the page on the LRU so it is swappable.
796 if (page_has_private(page)) {
797 if (!try_to_release_page(page, sc->gfp_mask))
798 goto activate_locked;
799 if (!mapping && page_count(page) == 1) {
800 unlock_page(page);
801 if (put_page_testzero(page))
802 goto free_it;
803 else {
805 * rare race with speculative reference.
806 * the speculative reference will free
807 * this page shortly, so we may
808 * increment nr_reclaimed here (and
809 * leave it off the LRU).
811 nr_reclaimed++;
812 continue;
817 if (!mapping || !__remove_mapping(mapping, page))
818 goto keep_locked;
821 * At this point, we have no other references and there is
822 * no way to pick any more up (removed from LRU, removed
823 * from pagecache). Can use non-atomic bitops now (and
824 * we obviously don't have to worry about waking up a process
825 * waiting on the page lock, because there are no references.
827 __clear_page_locked(page);
828 free_it:
829 nr_reclaimed++;
832 * Is there need to periodically free_page_list? It would
833 * appear not as the counts should be low
835 list_add(&page->lru, &free_pages);
836 continue;
838 cull_mlocked:
839 if (PageSwapCache(page))
840 try_to_free_swap(page);
841 unlock_page(page);
842 putback_lru_page(page);
843 continue;
845 activate_locked:
846 /* Not a candidate for swapping, so reclaim swap space. */
847 if (PageSwapCache(page) && vm_swap_full())
848 try_to_free_swap(page);
849 VM_BUG_ON(PageActive(page));
850 SetPageActive(page);
851 pgactivate++;
852 keep_locked:
853 unlock_page(page);
854 keep:
855 list_add(&page->lru, &ret_pages);
856 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
859 free_page_list(&free_pages);
861 list_splice(&ret_pages, page_list);
862 count_vm_events(PGACTIVATE, pgactivate);
863 return nr_reclaimed;
867 * Attempt to remove the specified page from its LRU. Only take this page
868 * if it is of the appropriate PageActive status. Pages which are being
869 * freed elsewhere are also ignored.
871 * page: page to consider
872 * mode: one of the LRU isolation modes defined above
874 * returns 0 on success, -ve errno on failure.
876 int __isolate_lru_page(struct page *page, int mode, int file)
878 int ret = -EINVAL;
880 /* Only take pages on the LRU. */
881 if (!PageLRU(page))
882 return ret;
885 * When checking the active state, we need to be sure we are
886 * dealing with comparible boolean values. Take the logical not
887 * of each.
889 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
890 return ret;
892 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
893 return ret;
896 * When this function is being called for lumpy reclaim, we
897 * initially look into all LRU pages, active, inactive and
898 * unevictable; only give shrink_page_list evictable pages.
900 if (PageUnevictable(page))
901 return ret;
903 ret = -EBUSY;
905 if (likely(get_page_unless_zero(page))) {
907 * Be careful not to clear PageLRU until after we're
908 * sure the page is not being freed elsewhere -- the
909 * page release code relies on it.
911 ClearPageLRU(page);
912 ret = 0;
915 return ret;
919 * zone->lru_lock is heavily contended. Some of the functions that
920 * shrink the lists perform better by taking out a batch of pages
921 * and working on them outside the LRU lock.
923 * For pagecache intensive workloads, this function is the hottest
924 * spot in the kernel (apart from copy_*_user functions).
926 * Appropriate locks must be held before calling this function.
928 * @nr_to_scan: The number of pages to look through on the list.
929 * @src: The LRU list to pull pages off.
930 * @dst: The temp list to put pages on to.
931 * @scanned: The number of pages that were scanned.
932 * @order: The caller's attempted allocation order
933 * @mode: One of the LRU isolation modes
934 * @file: True [1] if isolating file [!anon] pages
936 * returns how many pages were moved onto *@dst.
938 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
939 struct list_head *src, struct list_head *dst,
940 unsigned long *scanned, int order, int mode, int file)
942 unsigned long nr_taken = 0;
943 unsigned long nr_lumpy_taken = 0;
944 unsigned long nr_lumpy_dirty = 0;
945 unsigned long nr_lumpy_failed = 0;
946 unsigned long scan;
948 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
949 struct page *page;
950 unsigned long pfn;
951 unsigned long end_pfn;
952 unsigned long page_pfn;
953 int zone_id;
955 page = lru_to_page(src);
956 prefetchw_prev_lru_page(page, src, flags);
958 VM_BUG_ON(!PageLRU(page));
960 switch (__isolate_lru_page(page, mode, file)) {
961 case 0:
962 list_move(&page->lru, dst);
963 mem_cgroup_del_lru(page);
964 nr_taken++;
965 break;
967 case -EBUSY:
968 /* else it is being freed elsewhere */
969 list_move(&page->lru, src);
970 mem_cgroup_rotate_lru_list(page, page_lru(page));
971 continue;
973 default:
974 BUG();
977 if (!order)
978 continue;
981 * Attempt to take all pages in the order aligned region
982 * surrounding the tag page. Only take those pages of
983 * the same active state as that tag page. We may safely
984 * round the target page pfn down to the requested order
985 * as the mem_map is guarenteed valid out to MAX_ORDER,
986 * where that page is in a different zone we will detect
987 * it from its zone id and abort this block scan.
989 zone_id = page_zone_id(page);
990 page_pfn = page_to_pfn(page);
991 pfn = page_pfn & ~((1 << order) - 1);
992 end_pfn = pfn + (1 << order);
993 for (; pfn < end_pfn; pfn++) {
994 struct page *cursor_page;
996 /* The target page is in the block, ignore it. */
997 if (unlikely(pfn == page_pfn))
998 continue;
1000 /* Avoid holes within the zone. */
1001 if (unlikely(!pfn_valid_within(pfn)))
1002 break;
1004 cursor_page = pfn_to_page(pfn);
1006 /* Check that we have not crossed a zone boundary. */
1007 if (unlikely(page_zone_id(cursor_page) != zone_id))
1008 continue;
1011 * If we don't have enough swap space, reclaiming of
1012 * anon page which don't already have a swap slot is
1013 * pointless.
1015 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1016 !PageSwapCache(cursor_page))
1017 continue;
1019 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1020 list_move(&cursor_page->lru, dst);
1021 mem_cgroup_del_lru(cursor_page);
1022 nr_taken++;
1023 nr_lumpy_taken++;
1024 if (PageDirty(cursor_page))
1025 nr_lumpy_dirty++;
1026 scan++;
1027 } else {
1028 if (mode == ISOLATE_BOTH &&
1029 page_count(cursor_page))
1030 nr_lumpy_failed++;
1035 *scanned = scan;
1037 trace_mm_vmscan_lru_isolate(order,
1038 nr_to_scan, scan,
1039 nr_taken,
1040 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1041 mode);
1042 return nr_taken;
1045 static unsigned long isolate_pages_global(unsigned long nr,
1046 struct list_head *dst,
1047 unsigned long *scanned, int order,
1048 int mode, struct zone *z,
1049 int active, int file)
1051 int lru = LRU_BASE;
1052 if (active)
1053 lru += LRU_ACTIVE;
1054 if (file)
1055 lru += LRU_FILE;
1056 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1057 mode, file);
1061 * clear_active_flags() is a helper for shrink_active_list(), clearing
1062 * any active bits from the pages in the list.
1064 static unsigned long clear_active_flags(struct list_head *page_list,
1065 unsigned int *count)
1067 int nr_active = 0;
1068 int lru;
1069 struct page *page;
1071 list_for_each_entry(page, page_list, lru) {
1072 lru = page_lru_base_type(page);
1073 if (PageActive(page)) {
1074 lru += LRU_ACTIVE;
1075 ClearPageActive(page);
1076 nr_active++;
1078 if (count)
1079 count[lru]++;
1082 return nr_active;
1086 * isolate_lru_page - tries to isolate a page from its LRU list
1087 * @page: page to isolate from its LRU list
1089 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1090 * vmstat statistic corresponding to whatever LRU list the page was on.
1092 * Returns 0 if the page was removed from an LRU list.
1093 * Returns -EBUSY if the page was not on an LRU list.
1095 * The returned page will have PageLRU() cleared. If it was found on
1096 * the active list, it will have PageActive set. If it was found on
1097 * the unevictable list, it will have the PageUnevictable bit set. That flag
1098 * may need to be cleared by the caller before letting the page go.
1100 * The vmstat statistic corresponding to the list on which the page was
1101 * found will be decremented.
1103 * Restrictions:
1104 * (1) Must be called with an elevated refcount on the page. This is a
1105 * fundamentnal difference from isolate_lru_pages (which is called
1106 * without a stable reference).
1107 * (2) the lru_lock must not be held.
1108 * (3) interrupts must be enabled.
1110 int isolate_lru_page(struct page *page)
1112 int ret = -EBUSY;
1114 if (PageLRU(page)) {
1115 struct zone *zone = page_zone(page);
1117 spin_lock_irq(&zone->lru_lock);
1118 if (PageLRU(page) && get_page_unless_zero(page)) {
1119 int lru = page_lru(page);
1120 ret = 0;
1121 ClearPageLRU(page);
1123 del_page_from_lru_list(zone, page, lru);
1125 spin_unlock_irq(&zone->lru_lock);
1127 return ret;
1131 * Are there way too many processes in the direct reclaim path already?
1133 static int too_many_isolated(struct zone *zone, int file,
1134 struct scan_control *sc)
1136 unsigned long inactive, isolated;
1138 if (current_is_kswapd())
1139 return 0;
1141 if (!scanning_global_lru(sc))
1142 return 0;
1144 if (file) {
1145 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1146 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1147 } else {
1148 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1149 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1152 return isolated > inactive;
1156 * TODO: Try merging with migrations version of putback_lru_pages
1158 static noinline_for_stack void
1159 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1160 unsigned long nr_anon, unsigned long nr_file,
1161 struct list_head *page_list)
1163 struct page *page;
1164 struct pagevec pvec;
1165 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1167 pagevec_init(&pvec, 1);
1170 * Put back any unfreeable pages.
1172 spin_lock(&zone->lru_lock);
1173 while (!list_empty(page_list)) {
1174 int lru;
1175 page = lru_to_page(page_list);
1176 VM_BUG_ON(PageLRU(page));
1177 list_del(&page->lru);
1178 if (unlikely(!page_evictable(page, NULL))) {
1179 spin_unlock_irq(&zone->lru_lock);
1180 putback_lru_page(page);
1181 spin_lock_irq(&zone->lru_lock);
1182 continue;
1184 SetPageLRU(page);
1185 lru = page_lru(page);
1186 add_page_to_lru_list(zone, page, lru);
1187 if (is_active_lru(lru)) {
1188 int file = is_file_lru(lru);
1189 reclaim_stat->recent_rotated[file]++;
1191 if (!pagevec_add(&pvec, page)) {
1192 spin_unlock_irq(&zone->lru_lock);
1193 __pagevec_release(&pvec);
1194 spin_lock_irq(&zone->lru_lock);
1197 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1198 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1200 spin_unlock_irq(&zone->lru_lock);
1201 pagevec_release(&pvec);
1204 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1205 struct scan_control *sc,
1206 unsigned long *nr_anon,
1207 unsigned long *nr_file,
1208 struct list_head *isolated_list)
1210 unsigned long nr_active;
1211 unsigned int count[NR_LRU_LISTS] = { 0, };
1212 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1214 nr_active = clear_active_flags(isolated_list, count);
1215 __count_vm_events(PGDEACTIVATE, nr_active);
1217 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1218 -count[LRU_ACTIVE_FILE]);
1219 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1220 -count[LRU_INACTIVE_FILE]);
1221 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1222 -count[LRU_ACTIVE_ANON]);
1223 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1224 -count[LRU_INACTIVE_ANON]);
1226 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1227 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1228 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1229 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1231 reclaim_stat->recent_scanned[0] += *nr_anon;
1232 reclaim_stat->recent_scanned[1] += *nr_file;
1236 * Returns true if the caller should wait to clean dirty/writeback pages.
1238 * If we are direct reclaiming for contiguous pages and we do not reclaim
1239 * everything in the list, try again and wait for writeback IO to complete.
1240 * This will stall high-order allocations noticeably. Only do that when really
1241 * need to free the pages under high memory pressure.
1243 static inline bool should_reclaim_stall(unsigned long nr_taken,
1244 unsigned long nr_freed,
1245 int priority,
1246 struct scan_control *sc)
1248 int lumpy_stall_priority;
1250 /* kswapd should not stall on sync IO */
1251 if (current_is_kswapd())
1252 return false;
1254 /* Only stall on lumpy reclaim */
1255 if (!sc->lumpy_reclaim_mode)
1256 return false;
1258 /* If we have relaimed everything on the isolated list, no stall */
1259 if (nr_freed == nr_taken)
1260 return false;
1263 * For high-order allocations, there are two stall thresholds.
1264 * High-cost allocations stall immediately where as lower
1265 * order allocations such as stacks require the scanning
1266 * priority to be much higher before stalling.
1268 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1269 lumpy_stall_priority = DEF_PRIORITY;
1270 else
1271 lumpy_stall_priority = DEF_PRIORITY / 3;
1273 return priority <= lumpy_stall_priority;
1277 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1278 * of reclaimed pages
1280 static noinline_for_stack unsigned long
1281 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1282 struct scan_control *sc, int priority, int file)
1284 LIST_HEAD(page_list);
1285 unsigned long nr_scanned;
1286 unsigned long nr_reclaimed = 0;
1287 unsigned long nr_taken;
1288 unsigned long nr_active;
1289 unsigned long nr_anon;
1290 unsigned long nr_file;
1292 while (unlikely(too_many_isolated(zone, file, sc))) {
1293 congestion_wait(BLK_RW_ASYNC, HZ/10);
1295 /* We are about to die and free our memory. Return now. */
1296 if (fatal_signal_pending(current))
1297 return SWAP_CLUSTER_MAX;
1301 lru_add_drain();
1302 spin_lock_irq(&zone->lru_lock);
1304 if (scanning_global_lru(sc)) {
1305 nr_taken = isolate_pages_global(nr_to_scan,
1306 &page_list, &nr_scanned, sc->order,
1307 sc->lumpy_reclaim_mode ?
1308 ISOLATE_BOTH : ISOLATE_INACTIVE,
1309 zone, 0, file);
1310 zone->pages_scanned += nr_scanned;
1311 if (current_is_kswapd())
1312 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1313 nr_scanned);
1314 else
1315 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1316 nr_scanned);
1317 } else {
1318 nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1319 &page_list, &nr_scanned, sc->order,
1320 sc->lumpy_reclaim_mode ?
1321 ISOLATE_BOTH : ISOLATE_INACTIVE,
1322 zone, sc->mem_cgroup,
1323 0, file);
1325 * mem_cgroup_isolate_pages() keeps track of
1326 * scanned pages on its own.
1330 if (nr_taken == 0) {
1331 spin_unlock_irq(&zone->lru_lock);
1332 return 0;
1335 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1337 spin_unlock_irq(&zone->lru_lock);
1339 nr_reclaimed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1341 /* Check if we should syncronously wait for writeback */
1342 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1343 congestion_wait(BLK_RW_ASYNC, HZ/10);
1346 * The attempt at page out may have made some
1347 * of the pages active, mark them inactive again.
1349 nr_active = clear_active_flags(&page_list, NULL);
1350 count_vm_events(PGDEACTIVATE, nr_active);
1352 nr_reclaimed += shrink_page_list(&page_list, sc, PAGEOUT_IO_SYNC);
1355 local_irq_disable();
1356 if (current_is_kswapd())
1357 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1358 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1360 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1362 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1363 zone_idx(zone),
1364 nr_scanned, nr_reclaimed,
1365 priority,
1366 trace_shrink_flags(file, sc->lumpy_reclaim_mode));
1367 return nr_reclaimed;
1371 * This moves pages from the active list to the inactive list.
1373 * We move them the other way if the page is referenced by one or more
1374 * processes, from rmap.
1376 * If the pages are mostly unmapped, the processing is fast and it is
1377 * appropriate to hold zone->lru_lock across the whole operation. But if
1378 * the pages are mapped, the processing is slow (page_referenced()) so we
1379 * should drop zone->lru_lock around each page. It's impossible to balance
1380 * this, so instead we remove the pages from the LRU while processing them.
1381 * It is safe to rely on PG_active against the non-LRU pages in here because
1382 * nobody will play with that bit on a non-LRU page.
1384 * The downside is that we have to touch page->_count against each page.
1385 * But we had to alter page->flags anyway.
1388 static void move_active_pages_to_lru(struct zone *zone,
1389 struct list_head *list,
1390 enum lru_list lru)
1392 unsigned long pgmoved = 0;
1393 struct pagevec pvec;
1394 struct page *page;
1396 pagevec_init(&pvec, 1);
1398 while (!list_empty(list)) {
1399 page = lru_to_page(list);
1401 VM_BUG_ON(PageLRU(page));
1402 SetPageLRU(page);
1404 list_move(&page->lru, &zone->lru[lru].list);
1405 mem_cgroup_add_lru_list(page, lru);
1406 pgmoved++;
1408 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1409 spin_unlock_irq(&zone->lru_lock);
1410 if (buffer_heads_over_limit)
1411 pagevec_strip(&pvec);
1412 __pagevec_release(&pvec);
1413 spin_lock_irq(&zone->lru_lock);
1416 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1417 if (!is_active_lru(lru))
1418 __count_vm_events(PGDEACTIVATE, pgmoved);
1421 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1422 struct scan_control *sc, int priority, int file)
1424 unsigned long nr_taken;
1425 unsigned long pgscanned;
1426 unsigned long vm_flags;
1427 LIST_HEAD(l_hold); /* The pages which were snipped off */
1428 LIST_HEAD(l_active);
1429 LIST_HEAD(l_inactive);
1430 struct page *page;
1431 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1432 unsigned long nr_rotated = 0;
1434 lru_add_drain();
1435 spin_lock_irq(&zone->lru_lock);
1436 if (scanning_global_lru(sc)) {
1437 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1438 &pgscanned, sc->order,
1439 ISOLATE_ACTIVE, zone,
1440 1, file);
1441 zone->pages_scanned += pgscanned;
1442 } else {
1443 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1444 &pgscanned, sc->order,
1445 ISOLATE_ACTIVE, zone,
1446 sc->mem_cgroup, 1, file);
1448 * mem_cgroup_isolate_pages() keeps track of
1449 * scanned pages on its own.
1453 reclaim_stat->recent_scanned[file] += nr_taken;
1455 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1456 if (file)
1457 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1458 else
1459 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1460 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1461 spin_unlock_irq(&zone->lru_lock);
1463 while (!list_empty(&l_hold)) {
1464 cond_resched();
1465 page = lru_to_page(&l_hold);
1466 list_del(&page->lru);
1468 if (unlikely(!page_evictable(page, NULL))) {
1469 putback_lru_page(page);
1470 continue;
1473 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1474 nr_rotated++;
1476 * Identify referenced, file-backed active pages and
1477 * give them one more trip around the active list. So
1478 * that executable code get better chances to stay in
1479 * memory under moderate memory pressure. Anon pages
1480 * are not likely to be evicted by use-once streaming
1481 * IO, plus JVM can create lots of anon VM_EXEC pages,
1482 * so we ignore them here.
1484 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1485 list_add(&page->lru, &l_active);
1486 continue;
1490 ClearPageActive(page); /* we are de-activating */
1491 list_add(&page->lru, &l_inactive);
1495 * Move pages back to the lru list.
1497 spin_lock_irq(&zone->lru_lock);
1499 * Count referenced pages from currently used mappings as rotated,
1500 * even though only some of them are actually re-activated. This
1501 * helps balance scan pressure between file and anonymous pages in
1502 * get_scan_ratio.
1504 reclaim_stat->recent_rotated[file] += nr_rotated;
1506 move_active_pages_to_lru(zone, &l_active,
1507 LRU_ACTIVE + file * LRU_FILE);
1508 move_active_pages_to_lru(zone, &l_inactive,
1509 LRU_BASE + file * LRU_FILE);
1510 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1511 spin_unlock_irq(&zone->lru_lock);
1514 #ifdef CONFIG_SWAP
1515 static int inactive_anon_is_low_global(struct zone *zone)
1517 unsigned long active, inactive;
1519 active = zone_page_state(zone, NR_ACTIVE_ANON);
1520 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1522 if (inactive * zone->inactive_ratio < active)
1523 return 1;
1525 return 0;
1529 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1530 * @zone: zone to check
1531 * @sc: scan control of this context
1533 * Returns true if the zone does not have enough inactive anon pages,
1534 * meaning some active anon pages need to be deactivated.
1536 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1538 int low;
1541 * If we don't have swap space, anonymous page deactivation
1542 * is pointless.
1544 if (!total_swap_pages)
1545 return 0;
1547 if (scanning_global_lru(sc))
1548 low = inactive_anon_is_low_global(zone);
1549 else
1550 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1551 return low;
1553 #else
1554 static inline int inactive_anon_is_low(struct zone *zone,
1555 struct scan_control *sc)
1557 return 0;
1559 #endif
1561 static int inactive_file_is_low_global(struct zone *zone)
1563 unsigned long active, inactive;
1565 active = zone_page_state(zone, NR_ACTIVE_FILE);
1566 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1568 return (active > inactive);
1572 * inactive_file_is_low - check if file pages need to be deactivated
1573 * @zone: zone to check
1574 * @sc: scan control of this context
1576 * When the system is doing streaming IO, memory pressure here
1577 * ensures that active file pages get deactivated, until more
1578 * than half of the file pages are on the inactive list.
1580 * Once we get to that situation, protect the system's working
1581 * set from being evicted by disabling active file page aging.
1583 * This uses a different ratio than the anonymous pages, because
1584 * the page cache uses a use-once replacement algorithm.
1586 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1588 int low;
1590 if (scanning_global_lru(sc))
1591 low = inactive_file_is_low_global(zone);
1592 else
1593 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1594 return low;
1597 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1598 int file)
1600 if (file)
1601 return inactive_file_is_low(zone, sc);
1602 else
1603 return inactive_anon_is_low(zone, sc);
1606 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1607 struct zone *zone, struct scan_control *sc, int priority)
1609 int file = is_file_lru(lru);
1611 if (is_active_lru(lru)) {
1612 if (inactive_list_is_low(zone, sc, file))
1613 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1614 return 0;
1617 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1621 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1622 * until we collected @swap_cluster_max pages to scan.
1624 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1625 unsigned long *nr_saved_scan)
1627 unsigned long nr;
1629 *nr_saved_scan += nr_to_scan;
1630 nr = *nr_saved_scan;
1632 if (nr >= SWAP_CLUSTER_MAX)
1633 *nr_saved_scan = 0;
1634 else
1635 nr = 0;
1637 return nr;
1641 * Determine how aggressively the anon and file LRU lists should be
1642 * scanned. The relative value of each set of LRU lists is determined
1643 * by looking at the fraction of the pages scanned we did rotate back
1644 * onto the active list instead of evict.
1646 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1648 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1649 unsigned long *nr, int priority)
1651 unsigned long anon, file, free;
1652 unsigned long anon_prio, file_prio;
1653 unsigned long ap, fp;
1654 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1655 u64 fraction[2], denominator;
1656 enum lru_list l;
1657 int noswap = 0;
1659 /* If we have no swap space, do not bother scanning anon pages. */
1660 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1661 noswap = 1;
1662 fraction[0] = 0;
1663 fraction[1] = 1;
1664 denominator = 1;
1665 goto out;
1668 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1669 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1670 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1671 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1673 if (scanning_global_lru(sc)) {
1674 free = zone_page_state(zone, NR_FREE_PAGES);
1675 /* If we have very few page cache pages,
1676 force-scan anon pages. */
1677 if (unlikely(file + free <= high_wmark_pages(zone))) {
1678 fraction[0] = 1;
1679 fraction[1] = 0;
1680 denominator = 1;
1681 goto out;
1686 * With swappiness at 100, anonymous and file have the same priority.
1687 * This scanning priority is essentially the inverse of IO cost.
1689 anon_prio = sc->swappiness;
1690 file_prio = 200 - sc->swappiness;
1693 * OK, so we have swap space and a fair amount of page cache
1694 * pages. We use the recently rotated / recently scanned
1695 * ratios to determine how valuable each cache is.
1697 * Because workloads change over time (and to avoid overflow)
1698 * we keep these statistics as a floating average, which ends
1699 * up weighing recent references more than old ones.
1701 * anon in [0], file in [1]
1703 spin_lock_irq(&zone->lru_lock);
1704 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1705 reclaim_stat->recent_scanned[0] /= 2;
1706 reclaim_stat->recent_rotated[0] /= 2;
1709 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1710 reclaim_stat->recent_scanned[1] /= 2;
1711 reclaim_stat->recent_rotated[1] /= 2;
1715 * The amount of pressure on anon vs file pages is inversely
1716 * proportional to the fraction of recently scanned pages on
1717 * each list that were recently referenced and in active use.
1719 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1720 ap /= reclaim_stat->recent_rotated[0] + 1;
1722 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1723 fp /= reclaim_stat->recent_rotated[1] + 1;
1724 spin_unlock_irq(&zone->lru_lock);
1726 fraction[0] = ap;
1727 fraction[1] = fp;
1728 denominator = ap + fp + 1;
1729 out:
1730 for_each_evictable_lru(l) {
1731 int file = is_file_lru(l);
1732 unsigned long scan;
1734 scan = zone_nr_lru_pages(zone, sc, l);
1735 if (priority || noswap) {
1736 scan >>= priority;
1737 scan = div64_u64(scan * fraction[file], denominator);
1739 nr[l] = nr_scan_try_batch(scan,
1740 &reclaim_stat->nr_saved_scan[l]);
1744 static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc)
1747 * If we need a large contiguous chunk of memory, or have
1748 * trouble getting a small set of contiguous pages, we
1749 * will reclaim both active and inactive pages.
1751 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1752 sc->lumpy_reclaim_mode = 1;
1753 else if (sc->order && priority < DEF_PRIORITY - 2)
1754 sc->lumpy_reclaim_mode = 1;
1755 else
1756 sc->lumpy_reclaim_mode = 0;
1760 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1762 static void shrink_zone(int priority, struct zone *zone,
1763 struct scan_control *sc)
1765 unsigned long nr[NR_LRU_LISTS];
1766 unsigned long nr_to_scan;
1767 enum lru_list l;
1768 unsigned long nr_reclaimed = sc->nr_reclaimed;
1769 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1771 get_scan_count(zone, sc, nr, priority);
1773 set_lumpy_reclaim_mode(priority, sc);
1775 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1776 nr[LRU_INACTIVE_FILE]) {
1777 for_each_evictable_lru(l) {
1778 if (nr[l]) {
1779 nr_to_scan = min_t(unsigned long,
1780 nr[l], SWAP_CLUSTER_MAX);
1781 nr[l] -= nr_to_scan;
1783 nr_reclaimed += shrink_list(l, nr_to_scan,
1784 zone, sc, priority);
1788 * On large memory systems, scan >> priority can become
1789 * really large. This is fine for the starting priority;
1790 * we want to put equal scanning pressure on each zone.
1791 * However, if the VM has a harder time of freeing pages,
1792 * with multiple processes reclaiming pages, the total
1793 * freeing target can get unreasonably large.
1795 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1796 break;
1799 sc->nr_reclaimed = nr_reclaimed;
1802 * Even if we did not try to evict anon pages at all, we want to
1803 * rebalance the anon lru active/inactive ratio.
1805 if (inactive_anon_is_low(zone, sc))
1806 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1808 throttle_vm_writeout(sc->gfp_mask);
1812 * This is the direct reclaim path, for page-allocating processes. We only
1813 * try to reclaim pages from zones which will satisfy the caller's allocation
1814 * request.
1816 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1817 * Because:
1818 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1819 * allocation or
1820 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1821 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1822 * zone defense algorithm.
1824 * If a zone is deemed to be full of pinned pages then just give it a light
1825 * scan then give up on it.
1827 static void shrink_zones(int priority, struct zonelist *zonelist,
1828 struct scan_control *sc)
1830 struct zoneref *z;
1831 struct zone *zone;
1833 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1834 gfp_zone(sc->gfp_mask), sc->nodemask) {
1835 if (!populated_zone(zone))
1836 continue;
1838 * Take care memory controller reclaiming has small influence
1839 * to global LRU.
1841 if (scanning_global_lru(sc)) {
1842 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1843 continue;
1844 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1845 continue; /* Let kswapd poll it */
1848 shrink_zone(priority, zone, sc);
1852 static bool zone_reclaimable(struct zone *zone)
1854 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1858 * As hibernation is going on, kswapd is freezed so that it can't mark
1859 * the zone into all_unreclaimable. It can't handle OOM during hibernation.
1860 * So let's check zone's unreclaimable in direct reclaim as well as kswapd.
1862 static bool all_unreclaimable(struct zonelist *zonelist,
1863 struct scan_control *sc)
1865 struct zoneref *z;
1866 struct zone *zone;
1867 bool all_unreclaimable = true;
1869 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1870 gfp_zone(sc->gfp_mask), sc->nodemask) {
1871 if (!populated_zone(zone))
1872 continue;
1873 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1874 continue;
1875 if (zone_reclaimable(zone)) {
1876 all_unreclaimable = false;
1877 break;
1881 return all_unreclaimable;
1885 * This is the main entry point to direct page reclaim.
1887 * If a full scan of the inactive list fails to free enough memory then we
1888 * are "out of memory" and something needs to be killed.
1890 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1891 * high - the zone may be full of dirty or under-writeback pages, which this
1892 * caller can't do much about. We kick the writeback threads and take explicit
1893 * naps in the hope that some of these pages can be written. But if the
1894 * allocating task holds filesystem locks which prevent writeout this might not
1895 * work, and the allocation attempt will fail.
1897 * returns: 0, if no pages reclaimed
1898 * else, the number of pages reclaimed
1900 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1901 struct scan_control *sc)
1903 int priority;
1904 unsigned long total_scanned = 0;
1905 struct reclaim_state *reclaim_state = current->reclaim_state;
1906 struct zoneref *z;
1907 struct zone *zone;
1908 unsigned long writeback_threshold;
1910 get_mems_allowed();
1911 delayacct_freepages_start();
1913 if (scanning_global_lru(sc))
1914 count_vm_event(ALLOCSTALL);
1916 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1917 sc->nr_scanned = 0;
1918 if (!priority)
1919 disable_swap_token();
1920 shrink_zones(priority, zonelist, sc);
1922 * Don't shrink slabs when reclaiming memory from
1923 * over limit cgroups
1925 if (scanning_global_lru(sc)) {
1926 unsigned long lru_pages = 0;
1927 for_each_zone_zonelist(zone, z, zonelist,
1928 gfp_zone(sc->gfp_mask)) {
1929 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1930 continue;
1932 lru_pages += zone_reclaimable_pages(zone);
1935 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1936 if (reclaim_state) {
1937 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1938 reclaim_state->reclaimed_slab = 0;
1941 total_scanned += sc->nr_scanned;
1942 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1943 goto out;
1946 * Try to write back as many pages as we just scanned. This
1947 * tends to cause slow streaming writers to write data to the
1948 * disk smoothly, at the dirtying rate, which is nice. But
1949 * that's undesirable in laptop mode, where we *want* lumpy
1950 * writeout. So in laptop mode, write out the whole world.
1952 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1953 if (total_scanned > writeback_threshold) {
1954 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1955 sc->may_writepage = 1;
1958 /* Take a nap, wait for some writeback to complete */
1959 if (!sc->hibernation_mode && sc->nr_scanned &&
1960 priority < DEF_PRIORITY - 2)
1961 congestion_wait(BLK_RW_ASYNC, HZ/10);
1964 out:
1965 delayacct_freepages_end();
1966 put_mems_allowed();
1968 if (sc->nr_reclaimed)
1969 return sc->nr_reclaimed;
1971 /* top priority shrink_zones still had more to do? don't OOM, then */
1972 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
1973 return 1;
1975 return 0;
1978 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1979 gfp_t gfp_mask, nodemask_t *nodemask)
1981 unsigned long nr_reclaimed;
1982 struct scan_control sc = {
1983 .gfp_mask = gfp_mask,
1984 .may_writepage = !laptop_mode,
1985 .nr_to_reclaim = SWAP_CLUSTER_MAX,
1986 .may_unmap = 1,
1987 .may_swap = 1,
1988 .swappiness = vm_swappiness,
1989 .order = order,
1990 .mem_cgroup = NULL,
1991 .nodemask = nodemask,
1994 trace_mm_vmscan_direct_reclaim_begin(order,
1995 sc.may_writepage,
1996 gfp_mask);
1998 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2000 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2002 return nr_reclaimed;
2005 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2007 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2008 gfp_t gfp_mask, bool noswap,
2009 unsigned int swappiness,
2010 struct zone *zone)
2012 struct scan_control sc = {
2013 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2014 .may_writepage = !laptop_mode,
2015 .may_unmap = 1,
2016 .may_swap = !noswap,
2017 .swappiness = swappiness,
2018 .order = 0,
2019 .mem_cgroup = mem,
2021 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2022 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2024 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2025 sc.may_writepage,
2026 sc.gfp_mask);
2029 * NOTE: Although we can get the priority field, using it
2030 * here is not a good idea, since it limits the pages we can scan.
2031 * if we don't reclaim here, the shrink_zone from balance_pgdat
2032 * will pick up pages from other mem cgroup's as well. We hack
2033 * the priority and make it zero.
2035 shrink_zone(0, zone, &sc);
2037 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2039 return sc.nr_reclaimed;
2042 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2043 gfp_t gfp_mask,
2044 bool noswap,
2045 unsigned int swappiness)
2047 struct zonelist *zonelist;
2048 unsigned long nr_reclaimed;
2049 struct scan_control sc = {
2050 .may_writepage = !laptop_mode,
2051 .may_unmap = 1,
2052 .may_swap = !noswap,
2053 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2054 .swappiness = swappiness,
2055 .order = 0,
2056 .mem_cgroup = mem_cont,
2057 .nodemask = NULL, /* we don't care the placement */
2060 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2061 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2062 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2064 trace_mm_vmscan_memcg_reclaim_begin(0,
2065 sc.may_writepage,
2066 sc.gfp_mask);
2068 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2070 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2072 return nr_reclaimed;
2074 #endif
2076 /* is kswapd sleeping prematurely? */
2077 static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
2079 int i;
2081 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2082 if (remaining)
2083 return 1;
2085 /* If after HZ/10, a zone is below the high mark, it's premature */
2086 for (i = 0; i < pgdat->nr_zones; i++) {
2087 struct zone *zone = pgdat->node_zones + i;
2089 if (!populated_zone(zone))
2090 continue;
2092 if (zone->all_unreclaimable)
2093 continue;
2095 if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
2096 0, 0))
2097 return 1;
2100 return 0;
2104 * For kswapd, balance_pgdat() will work across all this node's zones until
2105 * they are all at high_wmark_pages(zone).
2107 * Returns the number of pages which were actually freed.
2109 * There is special handling here for zones which are full of pinned pages.
2110 * This can happen if the pages are all mlocked, or if they are all used by
2111 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2112 * What we do is to detect the case where all pages in the zone have been
2113 * scanned twice and there has been zero successful reclaim. Mark the zone as
2114 * dead and from now on, only perform a short scan. Basically we're polling
2115 * the zone for when the problem goes away.
2117 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2118 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2119 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2120 * lower zones regardless of the number of free pages in the lower zones. This
2121 * interoperates with the page allocator fallback scheme to ensure that aging
2122 * of pages is balanced across the zones.
2124 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
2126 int all_zones_ok;
2127 int priority;
2128 int i;
2129 unsigned long total_scanned;
2130 struct reclaim_state *reclaim_state = current->reclaim_state;
2131 struct scan_control sc = {
2132 .gfp_mask = GFP_KERNEL,
2133 .may_unmap = 1,
2134 .may_swap = 1,
2136 * kswapd doesn't want to be bailed out while reclaim. because
2137 * we want to put equal scanning pressure on each zone.
2139 .nr_to_reclaim = ULONG_MAX,
2140 .swappiness = vm_swappiness,
2141 .order = order,
2142 .mem_cgroup = NULL,
2144 loop_again:
2145 total_scanned = 0;
2146 sc.nr_reclaimed = 0;
2147 sc.may_writepage = !laptop_mode;
2148 count_vm_event(PAGEOUTRUN);
2150 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2151 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2152 unsigned long lru_pages = 0;
2153 int has_under_min_watermark_zone = 0;
2155 /* The swap token gets in the way of swapout... */
2156 if (!priority)
2157 disable_swap_token();
2159 all_zones_ok = 1;
2162 * Scan in the highmem->dma direction for the highest
2163 * zone which needs scanning
2165 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2166 struct zone *zone = pgdat->node_zones + i;
2168 if (!populated_zone(zone))
2169 continue;
2171 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2172 continue;
2175 * Do some background aging of the anon list, to give
2176 * pages a chance to be referenced before reclaiming.
2178 if (inactive_anon_is_low(zone, &sc))
2179 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2180 &sc, priority, 0);
2182 if (!zone_watermark_ok(zone, order,
2183 high_wmark_pages(zone), 0, 0)) {
2184 end_zone = i;
2185 break;
2188 if (i < 0)
2189 goto out;
2191 for (i = 0; i <= end_zone; i++) {
2192 struct zone *zone = pgdat->node_zones + i;
2194 lru_pages += zone_reclaimable_pages(zone);
2198 * Now scan the zone in the dma->highmem direction, stopping
2199 * at the last zone which needs scanning.
2201 * We do this because the page allocator works in the opposite
2202 * direction. This prevents the page allocator from allocating
2203 * pages behind kswapd's direction of progress, which would
2204 * cause too much scanning of the lower zones.
2206 for (i = 0; i <= end_zone; i++) {
2207 struct zone *zone = pgdat->node_zones + i;
2208 int nr_slab;
2210 if (!populated_zone(zone))
2211 continue;
2213 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2214 continue;
2216 sc.nr_scanned = 0;
2219 * Call soft limit reclaim before calling shrink_zone.
2220 * For now we ignore the return value
2222 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
2225 * We put equal pressure on every zone, unless one
2226 * zone has way too many pages free already.
2228 if (!zone_watermark_ok(zone, order,
2229 8*high_wmark_pages(zone), end_zone, 0))
2230 shrink_zone(priority, zone, &sc);
2231 reclaim_state->reclaimed_slab = 0;
2232 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2233 lru_pages);
2234 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2235 total_scanned += sc.nr_scanned;
2236 if (zone->all_unreclaimable)
2237 continue;
2238 if (nr_slab == 0 && !zone_reclaimable(zone))
2239 zone->all_unreclaimable = 1;
2241 * If we've done a decent amount of scanning and
2242 * the reclaim ratio is low, start doing writepage
2243 * even in laptop mode
2245 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2246 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2247 sc.may_writepage = 1;
2249 if (!zone_watermark_ok(zone, order,
2250 high_wmark_pages(zone), end_zone, 0)) {
2251 all_zones_ok = 0;
2253 * We are still under min water mark. This
2254 * means that we have a GFP_ATOMIC allocation
2255 * failure risk. Hurry up!
2257 if (!zone_watermark_ok(zone, order,
2258 min_wmark_pages(zone), end_zone, 0))
2259 has_under_min_watermark_zone = 1;
2263 if (all_zones_ok)
2264 break; /* kswapd: all done */
2266 * OK, kswapd is getting into trouble. Take a nap, then take
2267 * another pass across the zones.
2269 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2270 if (has_under_min_watermark_zone)
2271 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2272 else
2273 congestion_wait(BLK_RW_ASYNC, HZ/10);
2277 * We do this so kswapd doesn't build up large priorities for
2278 * example when it is freeing in parallel with allocators. It
2279 * matches the direct reclaim path behaviour in terms of impact
2280 * on zone->*_priority.
2282 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2283 break;
2285 out:
2286 if (!all_zones_ok) {
2287 cond_resched();
2289 try_to_freeze();
2292 * Fragmentation may mean that the system cannot be
2293 * rebalanced for high-order allocations in all zones.
2294 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2295 * it means the zones have been fully scanned and are still
2296 * not balanced. For high-order allocations, there is
2297 * little point trying all over again as kswapd may
2298 * infinite loop.
2300 * Instead, recheck all watermarks at order-0 as they
2301 * are the most important. If watermarks are ok, kswapd will go
2302 * back to sleep. High-order users can still perform direct
2303 * reclaim if they wish.
2305 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2306 order = sc.order = 0;
2308 goto loop_again;
2311 return sc.nr_reclaimed;
2315 * The background pageout daemon, started as a kernel thread
2316 * from the init process.
2318 * This basically trickles out pages so that we have _some_
2319 * free memory available even if there is no other activity
2320 * that frees anything up. This is needed for things like routing
2321 * etc, where we otherwise might have all activity going on in
2322 * asynchronous contexts that cannot page things out.
2324 * If there are applications that are active memory-allocators
2325 * (most normal use), this basically shouldn't matter.
2327 static int kswapd(void *p)
2329 unsigned long order;
2330 pg_data_t *pgdat = (pg_data_t*)p;
2331 struct task_struct *tsk = current;
2332 DEFINE_WAIT(wait);
2333 struct reclaim_state reclaim_state = {
2334 .reclaimed_slab = 0,
2336 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2338 lockdep_set_current_reclaim_state(GFP_KERNEL);
2340 if (!cpumask_empty(cpumask))
2341 set_cpus_allowed_ptr(tsk, cpumask);
2342 current->reclaim_state = &reclaim_state;
2345 * Tell the memory management that we're a "memory allocator",
2346 * and that if we need more memory we should get access to it
2347 * regardless (see "__alloc_pages()"). "kswapd" should
2348 * never get caught in the normal page freeing logic.
2350 * (Kswapd normally doesn't need memory anyway, but sometimes
2351 * you need a small amount of memory in order to be able to
2352 * page out something else, and this flag essentially protects
2353 * us from recursively trying to free more memory as we're
2354 * trying to free the first piece of memory in the first place).
2356 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2357 set_freezable();
2359 order = 0;
2360 for ( ; ; ) {
2361 unsigned long new_order;
2362 int ret;
2364 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2365 new_order = pgdat->kswapd_max_order;
2366 pgdat->kswapd_max_order = 0;
2367 if (order < new_order) {
2369 * Don't sleep if someone wants a larger 'order'
2370 * allocation
2372 order = new_order;
2373 } else {
2374 if (!freezing(current) && !kthread_should_stop()) {
2375 long remaining = 0;
2377 /* Try to sleep for a short interval */
2378 if (!sleeping_prematurely(pgdat, order, remaining)) {
2379 remaining = schedule_timeout(HZ/10);
2380 finish_wait(&pgdat->kswapd_wait, &wait);
2381 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2385 * After a short sleep, check if it was a
2386 * premature sleep. If not, then go fully
2387 * to sleep until explicitly woken up
2389 if (!sleeping_prematurely(pgdat, order, remaining)) {
2390 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2391 schedule();
2392 } else {
2393 if (remaining)
2394 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2395 else
2396 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2400 order = pgdat->kswapd_max_order;
2402 finish_wait(&pgdat->kswapd_wait, &wait);
2404 ret = try_to_freeze();
2405 if (kthread_should_stop())
2406 break;
2409 * We can speed up thawing tasks if we don't call balance_pgdat
2410 * after returning from the refrigerator
2412 if (!ret) {
2413 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2414 balance_pgdat(pgdat, order);
2417 return 0;
2421 * A zone is low on free memory, so wake its kswapd task to service it.
2423 void wakeup_kswapd(struct zone *zone, int order)
2425 pg_data_t *pgdat;
2427 if (!populated_zone(zone))
2428 return;
2430 pgdat = zone->zone_pgdat;
2431 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2432 return;
2433 if (pgdat->kswapd_max_order < order)
2434 pgdat->kswapd_max_order = order;
2435 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2436 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2437 return;
2438 if (!waitqueue_active(&pgdat->kswapd_wait))
2439 return;
2440 wake_up_interruptible(&pgdat->kswapd_wait);
2444 * The reclaimable count would be mostly accurate.
2445 * The less reclaimable pages may be
2446 * - mlocked pages, which will be moved to unevictable list when encountered
2447 * - mapped pages, which may require several travels to be reclaimed
2448 * - dirty pages, which is not "instantly" reclaimable
2450 unsigned long global_reclaimable_pages(void)
2452 int nr;
2454 nr = global_page_state(NR_ACTIVE_FILE) +
2455 global_page_state(NR_INACTIVE_FILE);
2457 if (nr_swap_pages > 0)
2458 nr += global_page_state(NR_ACTIVE_ANON) +
2459 global_page_state(NR_INACTIVE_ANON);
2461 return nr;
2464 unsigned long zone_reclaimable_pages(struct zone *zone)
2466 int nr;
2468 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2469 zone_page_state(zone, NR_INACTIVE_FILE);
2471 if (nr_swap_pages > 0)
2472 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2473 zone_page_state(zone, NR_INACTIVE_ANON);
2475 return nr;
2478 #ifdef CONFIG_HIBERNATION
2480 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2481 * freed pages.
2483 * Rather than trying to age LRUs the aim is to preserve the overall
2484 * LRU order by reclaiming preferentially
2485 * inactive > active > active referenced > active mapped
2487 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2489 struct reclaim_state reclaim_state;
2490 struct scan_control sc = {
2491 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2492 .may_swap = 1,
2493 .may_unmap = 1,
2494 .may_writepage = 1,
2495 .nr_to_reclaim = nr_to_reclaim,
2496 .hibernation_mode = 1,
2497 .swappiness = vm_swappiness,
2498 .order = 0,
2500 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2501 struct task_struct *p = current;
2502 unsigned long nr_reclaimed;
2504 p->flags |= PF_MEMALLOC;
2505 lockdep_set_current_reclaim_state(sc.gfp_mask);
2506 reclaim_state.reclaimed_slab = 0;
2507 p->reclaim_state = &reclaim_state;
2509 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2511 p->reclaim_state = NULL;
2512 lockdep_clear_current_reclaim_state();
2513 p->flags &= ~PF_MEMALLOC;
2515 return nr_reclaimed;
2517 #endif /* CONFIG_HIBERNATION */
2519 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2520 not required for correctness. So if the last cpu in a node goes
2521 away, we get changed to run anywhere: as the first one comes back,
2522 restore their cpu bindings. */
2523 static int __devinit cpu_callback(struct notifier_block *nfb,
2524 unsigned long action, void *hcpu)
2526 int nid;
2528 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2529 for_each_node_state(nid, N_HIGH_MEMORY) {
2530 pg_data_t *pgdat = NODE_DATA(nid);
2531 const struct cpumask *mask;
2533 mask = cpumask_of_node(pgdat->node_id);
2535 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2536 /* One of our CPUs online: restore mask */
2537 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2540 return NOTIFY_OK;
2544 * This kswapd start function will be called by init and node-hot-add.
2545 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2547 int kswapd_run(int nid)
2549 pg_data_t *pgdat = NODE_DATA(nid);
2550 int ret = 0;
2552 if (pgdat->kswapd)
2553 return 0;
2555 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2556 if (IS_ERR(pgdat->kswapd)) {
2557 /* failure at boot is fatal */
2558 BUG_ON(system_state == SYSTEM_BOOTING);
2559 printk("Failed to start kswapd on node %d\n",nid);
2560 ret = -1;
2562 return ret;
2566 * Called by memory hotplug when all memory in a node is offlined.
2568 void kswapd_stop(int nid)
2570 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2572 if (kswapd)
2573 kthread_stop(kswapd);
2576 static int __init kswapd_init(void)
2578 int nid;
2580 swap_setup();
2581 for_each_node_state(nid, N_HIGH_MEMORY)
2582 kswapd_run(nid);
2583 hotcpu_notifier(cpu_callback, 0);
2584 return 0;
2587 module_init(kswapd_init)
2589 #ifdef CONFIG_NUMA
2591 * Zone reclaim mode
2593 * If non-zero call zone_reclaim when the number of free pages falls below
2594 * the watermarks.
2596 int zone_reclaim_mode __read_mostly;
2598 #define RECLAIM_OFF 0
2599 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2600 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2601 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2604 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2605 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2606 * a zone.
2608 #define ZONE_RECLAIM_PRIORITY 4
2611 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2612 * occur.
2614 int sysctl_min_unmapped_ratio = 1;
2617 * If the number of slab pages in a zone grows beyond this percentage then
2618 * slab reclaim needs to occur.
2620 int sysctl_min_slab_ratio = 5;
2622 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2624 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2625 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2626 zone_page_state(zone, NR_ACTIVE_FILE);
2629 * It's possible for there to be more file mapped pages than
2630 * accounted for by the pages on the file LRU lists because
2631 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2633 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2636 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2637 static long zone_pagecache_reclaimable(struct zone *zone)
2639 long nr_pagecache_reclaimable;
2640 long delta = 0;
2643 * If RECLAIM_SWAP is set, then all file pages are considered
2644 * potentially reclaimable. Otherwise, we have to worry about
2645 * pages like swapcache and zone_unmapped_file_pages() provides
2646 * a better estimate
2648 if (zone_reclaim_mode & RECLAIM_SWAP)
2649 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2650 else
2651 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2653 /* If we can't clean pages, remove dirty pages from consideration */
2654 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2655 delta += zone_page_state(zone, NR_FILE_DIRTY);
2657 /* Watch for any possible underflows due to delta */
2658 if (unlikely(delta > nr_pagecache_reclaimable))
2659 delta = nr_pagecache_reclaimable;
2661 return nr_pagecache_reclaimable - delta;
2665 * Try to free up some pages from this zone through reclaim.
2667 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2669 /* Minimum pages needed in order to stay on node */
2670 const unsigned long nr_pages = 1 << order;
2671 struct task_struct *p = current;
2672 struct reclaim_state reclaim_state;
2673 int priority;
2674 struct scan_control sc = {
2675 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2676 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2677 .may_swap = 1,
2678 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2679 SWAP_CLUSTER_MAX),
2680 .gfp_mask = gfp_mask,
2681 .swappiness = vm_swappiness,
2682 .order = order,
2684 unsigned long nr_slab_pages0, nr_slab_pages1;
2686 cond_resched();
2688 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2689 * and we also need to be able to write out pages for RECLAIM_WRITE
2690 * and RECLAIM_SWAP.
2692 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2693 lockdep_set_current_reclaim_state(gfp_mask);
2694 reclaim_state.reclaimed_slab = 0;
2695 p->reclaim_state = &reclaim_state;
2697 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2699 * Free memory by calling shrink zone with increasing
2700 * priorities until we have enough memory freed.
2702 priority = ZONE_RECLAIM_PRIORITY;
2703 do {
2704 shrink_zone(priority, zone, &sc);
2705 priority--;
2706 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2709 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2710 if (nr_slab_pages0 > zone->min_slab_pages) {
2712 * shrink_slab() does not currently allow us to determine how
2713 * many pages were freed in this zone. So we take the current
2714 * number of slab pages and shake the slab until it is reduced
2715 * by the same nr_pages that we used for reclaiming unmapped
2716 * pages.
2718 * Note that shrink_slab will free memory on all zones and may
2719 * take a long time.
2721 for (;;) {
2722 unsigned long lru_pages = zone_reclaimable_pages(zone);
2724 /* No reclaimable slab or very low memory pressure */
2725 if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
2726 break;
2728 /* Freed enough memory */
2729 nr_slab_pages1 = zone_page_state(zone,
2730 NR_SLAB_RECLAIMABLE);
2731 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
2732 break;
2736 * Update nr_reclaimed by the number of slab pages we
2737 * reclaimed from this zone.
2739 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2740 if (nr_slab_pages1 < nr_slab_pages0)
2741 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2744 p->reclaim_state = NULL;
2745 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2746 lockdep_clear_current_reclaim_state();
2747 return sc.nr_reclaimed >= nr_pages;
2750 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2752 int node_id;
2753 int ret;
2756 * Zone reclaim reclaims unmapped file backed pages and
2757 * slab pages if we are over the defined limits.
2759 * A small portion of unmapped file backed pages is needed for
2760 * file I/O otherwise pages read by file I/O will be immediately
2761 * thrown out if the zone is overallocated. So we do not reclaim
2762 * if less than a specified percentage of the zone is used by
2763 * unmapped file backed pages.
2765 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2766 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2767 return ZONE_RECLAIM_FULL;
2769 if (zone->all_unreclaimable)
2770 return ZONE_RECLAIM_FULL;
2773 * Do not scan if the allocation should not be delayed.
2775 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2776 return ZONE_RECLAIM_NOSCAN;
2779 * Only run zone reclaim on the local zone or on zones that do not
2780 * have associated processors. This will favor the local processor
2781 * over remote processors and spread off node memory allocations
2782 * as wide as possible.
2784 node_id = zone_to_nid(zone);
2785 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2786 return ZONE_RECLAIM_NOSCAN;
2788 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2789 return ZONE_RECLAIM_NOSCAN;
2791 ret = __zone_reclaim(zone, gfp_mask, order);
2792 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2794 if (!ret)
2795 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2797 return ret;
2799 #endif
2802 * page_evictable - test whether a page is evictable
2803 * @page: the page to test
2804 * @vma: the VMA in which the page is or will be mapped, may be NULL
2806 * Test whether page is evictable--i.e., should be placed on active/inactive
2807 * lists vs unevictable list. The vma argument is !NULL when called from the
2808 * fault path to determine how to instantate a new page.
2810 * Reasons page might not be evictable:
2811 * (1) page's mapping marked unevictable
2812 * (2) page is part of an mlocked VMA
2815 int page_evictable(struct page *page, struct vm_area_struct *vma)
2818 if (mapping_unevictable(page_mapping(page)))
2819 return 0;
2821 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2822 return 0;
2824 return 1;
2828 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2829 * @page: page to check evictability and move to appropriate lru list
2830 * @zone: zone page is in
2832 * Checks a page for evictability and moves the page to the appropriate
2833 * zone lru list.
2835 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2836 * have PageUnevictable set.
2838 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2840 VM_BUG_ON(PageActive(page));
2842 retry:
2843 ClearPageUnevictable(page);
2844 if (page_evictable(page, NULL)) {
2845 enum lru_list l = page_lru_base_type(page);
2847 __dec_zone_state(zone, NR_UNEVICTABLE);
2848 list_move(&page->lru, &zone->lru[l].list);
2849 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2850 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2851 __count_vm_event(UNEVICTABLE_PGRESCUED);
2852 } else {
2854 * rotate unevictable list
2856 SetPageUnevictable(page);
2857 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2858 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2859 if (page_evictable(page, NULL))
2860 goto retry;
2865 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2866 * @mapping: struct address_space to scan for evictable pages
2868 * Scan all pages in mapping. Check unevictable pages for
2869 * evictability and move them to the appropriate zone lru list.
2871 void scan_mapping_unevictable_pages(struct address_space *mapping)
2873 pgoff_t next = 0;
2874 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2875 PAGE_CACHE_SHIFT;
2876 struct zone *zone;
2877 struct pagevec pvec;
2879 if (mapping->nrpages == 0)
2880 return;
2882 pagevec_init(&pvec, 0);
2883 while (next < end &&
2884 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2885 int i;
2886 int pg_scanned = 0;
2888 zone = NULL;
2890 for (i = 0; i < pagevec_count(&pvec); i++) {
2891 struct page *page = pvec.pages[i];
2892 pgoff_t page_index = page->index;
2893 struct zone *pagezone = page_zone(page);
2895 pg_scanned++;
2896 if (page_index > next)
2897 next = page_index;
2898 next++;
2900 if (pagezone != zone) {
2901 if (zone)
2902 spin_unlock_irq(&zone->lru_lock);
2903 zone = pagezone;
2904 spin_lock_irq(&zone->lru_lock);
2907 if (PageLRU(page) && PageUnevictable(page))
2908 check_move_unevictable_page(page, zone);
2910 if (zone)
2911 spin_unlock_irq(&zone->lru_lock);
2912 pagevec_release(&pvec);
2914 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2920 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2921 * @zone - zone of which to scan the unevictable list
2923 * Scan @zone's unevictable LRU lists to check for pages that have become
2924 * evictable. Move those that have to @zone's inactive list where they
2925 * become candidates for reclaim, unless shrink_inactive_zone() decides
2926 * to reactivate them. Pages that are still unevictable are rotated
2927 * back onto @zone's unevictable list.
2929 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2930 static void scan_zone_unevictable_pages(struct zone *zone)
2932 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2933 unsigned long scan;
2934 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2936 while (nr_to_scan > 0) {
2937 unsigned long batch_size = min(nr_to_scan,
2938 SCAN_UNEVICTABLE_BATCH_SIZE);
2940 spin_lock_irq(&zone->lru_lock);
2941 for (scan = 0; scan < batch_size; scan++) {
2942 struct page *page = lru_to_page(l_unevictable);
2944 if (!trylock_page(page))
2945 continue;
2947 prefetchw_prev_lru_page(page, l_unevictable, flags);
2949 if (likely(PageLRU(page) && PageUnevictable(page)))
2950 check_move_unevictable_page(page, zone);
2952 unlock_page(page);
2954 spin_unlock_irq(&zone->lru_lock);
2956 nr_to_scan -= batch_size;
2962 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2964 * A really big hammer: scan all zones' unevictable LRU lists to check for
2965 * pages that have become evictable. Move those back to the zones'
2966 * inactive list where they become candidates for reclaim.
2967 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2968 * and we add swap to the system. As such, it runs in the context of a task
2969 * that has possibly/probably made some previously unevictable pages
2970 * evictable.
2972 static void scan_all_zones_unevictable_pages(void)
2974 struct zone *zone;
2976 for_each_zone(zone) {
2977 scan_zone_unevictable_pages(zone);
2982 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2983 * all nodes' unevictable lists for evictable pages
2985 unsigned long scan_unevictable_pages;
2987 int scan_unevictable_handler(struct ctl_table *table, int write,
2988 void __user *buffer,
2989 size_t *length, loff_t *ppos)
2991 proc_doulongvec_minmax(table, write, buffer, length, ppos);
2993 if (write && *(unsigned long *)table->data)
2994 scan_all_zones_unevictable_pages();
2996 scan_unevictable_pages = 0;
2997 return 0;
3000 #ifdef CONFIG_NUMA
3002 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3003 * a specified node's per zone unevictable lists for evictable pages.
3006 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3007 struct sysdev_attribute *attr,
3008 char *buf)
3010 return sprintf(buf, "0\n"); /* always zero; should fit... */
3013 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3014 struct sysdev_attribute *attr,
3015 const char *buf, size_t count)
3017 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3018 struct zone *zone;
3019 unsigned long res;
3020 unsigned long req = strict_strtoul(buf, 10, &res);
3022 if (!req)
3023 return 1; /* zero is no-op */
3025 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3026 if (!populated_zone(zone))
3027 continue;
3028 scan_zone_unevictable_pages(zone);
3030 return 1;
3034 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3035 read_scan_unevictable_node,
3036 write_scan_unevictable_node);
3038 int scan_unevictable_register_node(struct node *node)
3040 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3043 void scan_unevictable_unregister_node(struct node *node)
3045 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3047 #endif