4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
47 #include <linux/swapops.h>
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/vmscan.h>
55 /* Incremented by the number of inactive pages that were scanned */
56 unsigned long nr_scanned
;
58 /* Number of pages freed so far during a call to shrink_zones() */
59 unsigned long nr_reclaimed
;
61 /* How many pages shrink_list() should reclaim */
62 unsigned long nr_to_reclaim
;
64 unsigned long hibernation_mode
;
66 /* This context's GFP mask */
71 /* Can mapped pages be reclaimed? */
74 /* Can pages be swapped as part of reclaim? */
82 * Intend to reclaim enough continuous memory rather than reclaim
83 * enough amount of memory. i.e, mode for high order allocation.
85 bool lumpy_reclaim_mode
;
87 /* Which cgroup do we reclaim from */
88 struct mem_cgroup
*mem_cgroup
;
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field) \
102 if ((_page)->lru.prev != _base) { \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field) \
116 if ((_page)->lru.prev != _base) { \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
128 * From 0 .. 100. Higher means more swappy.
130 int vm_swappiness
= 60;
131 long vm_total_pages
; /* The total number of pages which the VM controls */
133 static LIST_HEAD(shrinker_list
);
134 static DECLARE_RWSEM(shrinker_rwsem
);
136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
137 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
139 #define scanning_global_lru(sc) (1)
142 static struct zone_reclaim_stat
*get_reclaim_stat(struct zone
*zone
,
143 struct scan_control
*sc
)
145 if (!scanning_global_lru(sc
))
146 return mem_cgroup_get_reclaim_stat(sc
->mem_cgroup
, zone
);
148 return &zone
->reclaim_stat
;
151 static unsigned long zone_nr_lru_pages(struct zone
*zone
,
152 struct scan_control
*sc
, enum lru_list lru
)
154 if (!scanning_global_lru(sc
))
155 return mem_cgroup_zone_nr_pages(sc
->mem_cgroup
, zone
, lru
);
157 return zone_page_state(zone
, NR_LRU_BASE
+ lru
);
162 * Add a shrinker callback to be called from the vm
164 void register_shrinker(struct shrinker
*shrinker
)
167 down_write(&shrinker_rwsem
);
168 list_add_tail(&shrinker
->list
, &shrinker_list
);
169 up_write(&shrinker_rwsem
);
171 EXPORT_SYMBOL(register_shrinker
);
176 void unregister_shrinker(struct shrinker
*shrinker
)
178 down_write(&shrinker_rwsem
);
179 list_del(&shrinker
->list
);
180 up_write(&shrinker_rwsem
);
182 EXPORT_SYMBOL(unregister_shrinker
);
184 #define SHRINK_BATCH 128
186 * Call the shrink functions to age shrinkable caches
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object. With this in mind we age equal
190 * percentages of the lru and ageable caches. This should balance the seeks
191 * generated by these structures.
193 * If the vm encountered mapped pages on the LRU it increase the pressure on
194 * slab to avoid swapping.
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt. It is used for balancing
200 * slab reclaim versus page reclaim.
202 * Returns the number of slab objects which we shrunk.
204 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
205 unsigned long lru_pages
)
207 struct shrinker
*shrinker
;
208 unsigned long ret
= 0;
211 scanned
= SWAP_CLUSTER_MAX
;
213 if (!down_read_trylock(&shrinker_rwsem
))
214 return 1; /* Assume we'll be able to shrink next time */
216 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
217 unsigned long long delta
;
218 unsigned long total_scan
;
219 unsigned long max_pass
;
221 max_pass
= (*shrinker
->shrink
)(shrinker
, 0, gfp_mask
);
222 delta
= (4 * scanned
) / shrinker
->seeks
;
224 do_div(delta
, lru_pages
+ 1);
225 shrinker
->nr
+= delta
;
226 if (shrinker
->nr
< 0) {
227 printk(KERN_ERR
"shrink_slab: %pF negative objects to "
229 shrinker
->shrink
, shrinker
->nr
);
230 shrinker
->nr
= max_pass
;
234 * Avoid risking looping forever due to too large nr value:
235 * never try to free more than twice the estimate number of
238 if (shrinker
->nr
> max_pass
* 2)
239 shrinker
->nr
= max_pass
* 2;
241 total_scan
= shrinker
->nr
;
244 while (total_scan
>= SHRINK_BATCH
) {
245 long this_scan
= SHRINK_BATCH
;
249 nr_before
= (*shrinker
->shrink
)(shrinker
, 0, gfp_mask
);
250 shrink_ret
= (*shrinker
->shrink
)(shrinker
, this_scan
,
252 if (shrink_ret
== -1)
254 if (shrink_ret
< nr_before
)
255 ret
+= nr_before
- shrink_ret
;
256 count_vm_events(SLABS_SCANNED
, this_scan
);
257 total_scan
-= this_scan
;
262 shrinker
->nr
+= total_scan
;
264 up_read(&shrinker_rwsem
);
268 static inline int is_page_cache_freeable(struct page
*page
)
271 * A freeable page cache page is referenced only by the caller
272 * that isolated the page, the page cache radix tree and
273 * optional buffer heads at page->private.
275 return page_count(page
) - page_has_private(page
) == 2;
278 static int may_write_to_queue(struct backing_dev_info
*bdi
)
280 if (current
->flags
& PF_SWAPWRITE
)
282 if (!bdi_write_congested(bdi
))
284 if (bdi
== current
->backing_dev_info
)
290 * We detected a synchronous write error writing a page out. Probably
291 * -ENOSPC. We need to propagate that into the address_space for a subsequent
292 * fsync(), msync() or close().
294 * The tricky part is that after writepage we cannot touch the mapping: nothing
295 * prevents it from being freed up. But we have a ref on the page and once
296 * that page is locked, the mapping is pinned.
298 * We're allowed to run sleeping lock_page() here because we know the caller has
301 static void handle_write_error(struct address_space
*mapping
,
302 struct page
*page
, int error
)
304 lock_page_nosync(page
);
305 if (page_mapping(page
) == mapping
)
306 mapping_set_error(mapping
, error
);
310 /* Request for sync pageout. */
316 /* possible outcome of pageout() */
318 /* failed to write page out, page is locked */
320 /* move page to the active list, page is locked */
322 /* page has been sent to the disk successfully, page is unlocked */
324 /* page is clean and locked */
329 * pageout is called by shrink_page_list() for each dirty page.
330 * Calls ->writepage().
332 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
333 enum pageout_io sync_writeback
)
336 * If the page is dirty, only perform writeback if that write
337 * will be non-blocking. To prevent this allocation from being
338 * stalled by pagecache activity. But note that there may be
339 * stalls if we need to run get_block(). We could test
340 * PagePrivate for that.
342 * If this process is currently in __generic_file_aio_write() against
343 * this page's queue, we can perform writeback even if that
346 * If the page is swapcache, write it back even if that would
347 * block, for some throttling. This happens by accident, because
348 * swap_backing_dev_info is bust: it doesn't reflect the
349 * congestion state of the swapdevs. Easy to fix, if needed.
351 if (!is_page_cache_freeable(page
))
355 * Some data journaling orphaned pages can have
356 * page->mapping == NULL while being dirty with clean buffers.
358 if (page_has_private(page
)) {
359 if (try_to_free_buffers(page
)) {
360 ClearPageDirty(page
);
361 printk("%s: orphaned page\n", __func__
);
367 if (mapping
->a_ops
->writepage
== NULL
)
368 return PAGE_ACTIVATE
;
369 if (!may_write_to_queue(mapping
->backing_dev_info
))
372 if (clear_page_dirty_for_io(page
)) {
374 struct writeback_control wbc
= {
375 .sync_mode
= WB_SYNC_NONE
,
376 .nr_to_write
= SWAP_CLUSTER_MAX
,
378 .range_end
= LLONG_MAX
,
382 SetPageReclaim(page
);
383 res
= mapping
->a_ops
->writepage(page
, &wbc
);
385 handle_write_error(mapping
, page
, res
);
386 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
387 ClearPageReclaim(page
);
388 return PAGE_ACTIVATE
;
392 * Wait on writeback if requested to. This happens when
393 * direct reclaiming a large contiguous area and the
394 * first attempt to free a range of pages fails.
396 if (PageWriteback(page
) && sync_writeback
== PAGEOUT_IO_SYNC
)
397 wait_on_page_writeback(page
);
399 if (!PageWriteback(page
)) {
400 /* synchronous write or broken a_ops? */
401 ClearPageReclaim(page
);
403 trace_mm_vmscan_writepage(page
,
404 trace_reclaim_flags(page
, sync_writeback
));
405 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
413 * Same as remove_mapping, but if the page is removed from the mapping, it
414 * gets returned with a refcount of 0.
416 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
)
418 BUG_ON(!PageLocked(page
));
419 BUG_ON(mapping
!= page_mapping(page
));
421 spin_lock_irq(&mapping
->tree_lock
);
423 * The non racy check for a busy page.
425 * Must be careful with the order of the tests. When someone has
426 * a ref to the page, it may be possible that they dirty it then
427 * drop the reference. So if PageDirty is tested before page_count
428 * here, then the following race may occur:
430 * get_user_pages(&page);
431 * [user mapping goes away]
433 * !PageDirty(page) [good]
434 * SetPageDirty(page);
436 * !page_count(page) [good, discard it]
438 * [oops, our write_to data is lost]
440 * Reversing the order of the tests ensures such a situation cannot
441 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
442 * load is not satisfied before that of page->_count.
444 * Note that if SetPageDirty is always performed via set_page_dirty,
445 * and thus under tree_lock, then this ordering is not required.
447 if (!page_freeze_refs(page
, 2))
449 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
450 if (unlikely(PageDirty(page
))) {
451 page_unfreeze_refs(page
, 2);
455 if (PageSwapCache(page
)) {
456 swp_entry_t swap
= { .val
= page_private(page
) };
457 __delete_from_swap_cache(page
);
458 spin_unlock_irq(&mapping
->tree_lock
);
459 swapcache_free(swap
, page
);
461 __remove_from_page_cache(page
);
462 spin_unlock_irq(&mapping
->tree_lock
);
463 mem_cgroup_uncharge_cache_page(page
);
469 spin_unlock_irq(&mapping
->tree_lock
);
474 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
475 * someone else has a ref on the page, abort and return 0. If it was
476 * successfully detached, return 1. Assumes the caller has a single ref on
479 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
481 if (__remove_mapping(mapping
, page
)) {
483 * Unfreezing the refcount with 1 rather than 2 effectively
484 * drops the pagecache ref for us without requiring another
487 page_unfreeze_refs(page
, 1);
494 * putback_lru_page - put previously isolated page onto appropriate LRU list
495 * @page: page to be put back to appropriate lru list
497 * Add previously isolated @page to appropriate LRU list.
498 * Page may still be unevictable for other reasons.
500 * lru_lock must not be held, interrupts must be enabled.
502 void putback_lru_page(struct page
*page
)
505 int active
= !!TestClearPageActive(page
);
506 int was_unevictable
= PageUnevictable(page
);
508 VM_BUG_ON(PageLRU(page
));
511 ClearPageUnevictable(page
);
513 if (page_evictable(page
, NULL
)) {
515 * For evictable pages, we can use the cache.
516 * In event of a race, worst case is we end up with an
517 * unevictable page on [in]active list.
518 * We know how to handle that.
520 lru
= active
+ page_lru_base_type(page
);
521 lru_cache_add_lru(page
, lru
);
524 * Put unevictable pages directly on zone's unevictable
527 lru
= LRU_UNEVICTABLE
;
528 add_page_to_unevictable_list(page
);
530 * When racing with an mlock clearing (page is
531 * unlocked), make sure that if the other thread does
532 * not observe our setting of PG_lru and fails
533 * isolation, we see PG_mlocked cleared below and move
534 * the page back to the evictable list.
536 * The other side is TestClearPageMlocked().
542 * page's status can change while we move it among lru. If an evictable
543 * page is on unevictable list, it never be freed. To avoid that,
544 * check after we added it to the list, again.
546 if (lru
== LRU_UNEVICTABLE
&& page_evictable(page
, NULL
)) {
547 if (!isolate_lru_page(page
)) {
551 /* This means someone else dropped this page from LRU
552 * So, it will be freed or putback to LRU again. There is
553 * nothing to do here.
557 if (was_unevictable
&& lru
!= LRU_UNEVICTABLE
)
558 count_vm_event(UNEVICTABLE_PGRESCUED
);
559 else if (!was_unevictable
&& lru
== LRU_UNEVICTABLE
)
560 count_vm_event(UNEVICTABLE_PGCULLED
);
562 put_page(page
); /* drop ref from isolate */
565 enum page_references
{
567 PAGEREF_RECLAIM_CLEAN
,
572 static enum page_references
page_check_references(struct page
*page
,
573 struct scan_control
*sc
)
575 int referenced_ptes
, referenced_page
;
576 unsigned long vm_flags
;
578 referenced_ptes
= page_referenced(page
, 1, sc
->mem_cgroup
, &vm_flags
);
579 referenced_page
= TestClearPageReferenced(page
);
581 /* Lumpy reclaim - ignore references */
582 if (sc
->lumpy_reclaim_mode
)
583 return PAGEREF_RECLAIM
;
586 * Mlock lost the isolation race with us. Let try_to_unmap()
587 * move the page to the unevictable list.
589 if (vm_flags
& VM_LOCKED
)
590 return PAGEREF_RECLAIM
;
592 if (referenced_ptes
) {
594 return PAGEREF_ACTIVATE
;
596 * All mapped pages start out with page table
597 * references from the instantiating fault, so we need
598 * to look twice if a mapped file page is used more
601 * Mark it and spare it for another trip around the
602 * inactive list. Another page table reference will
603 * lead to its activation.
605 * Note: the mark is set for activated pages as well
606 * so that recently deactivated but used pages are
609 SetPageReferenced(page
);
612 return PAGEREF_ACTIVATE
;
617 /* Reclaim if clean, defer dirty pages to writeback */
619 return PAGEREF_RECLAIM_CLEAN
;
621 return PAGEREF_RECLAIM
;
624 static noinline_for_stack
void free_page_list(struct list_head
*free_pages
)
626 struct pagevec freed_pvec
;
627 struct page
*page
, *tmp
;
629 pagevec_init(&freed_pvec
, 1);
631 list_for_each_entry_safe(page
, tmp
, free_pages
, lru
) {
632 list_del(&page
->lru
);
633 if (!pagevec_add(&freed_pvec
, page
)) {
634 __pagevec_free(&freed_pvec
);
635 pagevec_reinit(&freed_pvec
);
639 pagevec_free(&freed_pvec
);
643 * shrink_page_list() returns the number of reclaimed pages
645 static unsigned long shrink_page_list(struct list_head
*page_list
,
646 struct scan_control
*sc
,
647 enum pageout_io sync_writeback
)
649 LIST_HEAD(ret_pages
);
650 LIST_HEAD(free_pages
);
652 unsigned long nr_reclaimed
= 0;
656 while (!list_empty(page_list
)) {
657 enum page_references references
;
658 struct address_space
*mapping
;
664 page
= lru_to_page(page_list
);
665 list_del(&page
->lru
);
667 if (!trylock_page(page
))
670 VM_BUG_ON(PageActive(page
));
674 if (unlikely(!page_evictable(page
, NULL
)))
677 if (!sc
->may_unmap
&& page_mapped(page
))
680 /* Double the slab pressure for mapped and swapcache pages */
681 if (page_mapped(page
) || PageSwapCache(page
))
684 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
685 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
687 if (PageWriteback(page
)) {
689 * Synchronous reclaim is performed in two passes,
690 * first an asynchronous pass over the list to
691 * start parallel writeback, and a second synchronous
692 * pass to wait for the IO to complete. Wait here
693 * for any page for which writeback has already
696 if (sync_writeback
== PAGEOUT_IO_SYNC
&& may_enter_fs
)
697 wait_on_page_writeback(page
);
702 references
= page_check_references(page
, sc
);
703 switch (references
) {
704 case PAGEREF_ACTIVATE
:
705 goto activate_locked
;
708 case PAGEREF_RECLAIM
:
709 case PAGEREF_RECLAIM_CLEAN
:
710 ; /* try to reclaim the page below */
714 * Anonymous process memory has backing store?
715 * Try to allocate it some swap space here.
717 if (PageAnon(page
) && !PageSwapCache(page
)) {
718 if (!(sc
->gfp_mask
& __GFP_IO
))
720 if (!add_to_swap(page
))
721 goto activate_locked
;
725 mapping
= page_mapping(page
);
728 * The page is mapped into the page tables of one or more
729 * processes. Try to unmap it here.
731 if (page_mapped(page
) && mapping
) {
732 switch (try_to_unmap(page
, TTU_UNMAP
)) {
734 goto activate_locked
;
740 ; /* try to free the page below */
744 if (PageDirty(page
)) {
745 if (references
== PAGEREF_RECLAIM_CLEAN
)
749 if (!sc
->may_writepage
)
752 /* Page is dirty, try to write it out here */
753 switch (pageout(page
, mapping
, sync_writeback
)) {
757 goto activate_locked
;
759 if (PageWriteback(page
) || PageDirty(page
))
762 * A synchronous write - probably a ramdisk. Go
763 * ahead and try to reclaim the page.
765 if (!trylock_page(page
))
767 if (PageDirty(page
) || PageWriteback(page
))
769 mapping
= page_mapping(page
);
771 ; /* try to free the page below */
776 * If the page has buffers, try to free the buffer mappings
777 * associated with this page. If we succeed we try to free
780 * We do this even if the page is PageDirty().
781 * try_to_release_page() does not perform I/O, but it is
782 * possible for a page to have PageDirty set, but it is actually
783 * clean (all its buffers are clean). This happens if the
784 * buffers were written out directly, with submit_bh(). ext3
785 * will do this, as well as the blockdev mapping.
786 * try_to_release_page() will discover that cleanness and will
787 * drop the buffers and mark the page clean - it can be freed.
789 * Rarely, pages can have buffers and no ->mapping. These are
790 * the pages which were not successfully invalidated in
791 * truncate_complete_page(). We try to drop those buffers here
792 * and if that worked, and the page is no longer mapped into
793 * process address space (page_count == 1) it can be freed.
794 * Otherwise, leave the page on the LRU so it is swappable.
796 if (page_has_private(page
)) {
797 if (!try_to_release_page(page
, sc
->gfp_mask
))
798 goto activate_locked
;
799 if (!mapping
&& page_count(page
) == 1) {
801 if (put_page_testzero(page
))
805 * rare race with speculative reference.
806 * the speculative reference will free
807 * this page shortly, so we may
808 * increment nr_reclaimed here (and
809 * leave it off the LRU).
817 if (!mapping
|| !__remove_mapping(mapping
, page
))
821 * At this point, we have no other references and there is
822 * no way to pick any more up (removed from LRU, removed
823 * from pagecache). Can use non-atomic bitops now (and
824 * we obviously don't have to worry about waking up a process
825 * waiting on the page lock, because there are no references.
827 __clear_page_locked(page
);
832 * Is there need to periodically free_page_list? It would
833 * appear not as the counts should be low
835 list_add(&page
->lru
, &free_pages
);
839 if (PageSwapCache(page
))
840 try_to_free_swap(page
);
842 putback_lru_page(page
);
846 /* Not a candidate for swapping, so reclaim swap space. */
847 if (PageSwapCache(page
) && vm_swap_full())
848 try_to_free_swap(page
);
849 VM_BUG_ON(PageActive(page
));
855 list_add(&page
->lru
, &ret_pages
);
856 VM_BUG_ON(PageLRU(page
) || PageUnevictable(page
));
859 free_page_list(&free_pages
);
861 list_splice(&ret_pages
, page_list
);
862 count_vm_events(PGACTIVATE
, pgactivate
);
867 * Attempt to remove the specified page from its LRU. Only take this page
868 * if it is of the appropriate PageActive status. Pages which are being
869 * freed elsewhere are also ignored.
871 * page: page to consider
872 * mode: one of the LRU isolation modes defined above
874 * returns 0 on success, -ve errno on failure.
876 int __isolate_lru_page(struct page
*page
, int mode
, int file
)
880 /* Only take pages on the LRU. */
885 * When checking the active state, we need to be sure we are
886 * dealing with comparible boolean values. Take the logical not
889 if (mode
!= ISOLATE_BOTH
&& (!PageActive(page
) != !mode
))
892 if (mode
!= ISOLATE_BOTH
&& page_is_file_cache(page
) != file
)
896 * When this function is being called for lumpy reclaim, we
897 * initially look into all LRU pages, active, inactive and
898 * unevictable; only give shrink_page_list evictable pages.
900 if (PageUnevictable(page
))
905 if (likely(get_page_unless_zero(page
))) {
907 * Be careful not to clear PageLRU until after we're
908 * sure the page is not being freed elsewhere -- the
909 * page release code relies on it.
919 * zone->lru_lock is heavily contended. Some of the functions that
920 * shrink the lists perform better by taking out a batch of pages
921 * and working on them outside the LRU lock.
923 * For pagecache intensive workloads, this function is the hottest
924 * spot in the kernel (apart from copy_*_user functions).
926 * Appropriate locks must be held before calling this function.
928 * @nr_to_scan: The number of pages to look through on the list.
929 * @src: The LRU list to pull pages off.
930 * @dst: The temp list to put pages on to.
931 * @scanned: The number of pages that were scanned.
932 * @order: The caller's attempted allocation order
933 * @mode: One of the LRU isolation modes
934 * @file: True [1] if isolating file [!anon] pages
936 * returns how many pages were moved onto *@dst.
938 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
939 struct list_head
*src
, struct list_head
*dst
,
940 unsigned long *scanned
, int order
, int mode
, int file
)
942 unsigned long nr_taken
= 0;
943 unsigned long nr_lumpy_taken
= 0;
944 unsigned long nr_lumpy_dirty
= 0;
945 unsigned long nr_lumpy_failed
= 0;
948 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
951 unsigned long end_pfn
;
952 unsigned long page_pfn
;
955 page
= lru_to_page(src
);
956 prefetchw_prev_lru_page(page
, src
, flags
);
958 VM_BUG_ON(!PageLRU(page
));
960 switch (__isolate_lru_page(page
, mode
, file
)) {
962 list_move(&page
->lru
, dst
);
963 mem_cgroup_del_lru(page
);
968 /* else it is being freed elsewhere */
969 list_move(&page
->lru
, src
);
970 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
981 * Attempt to take all pages in the order aligned region
982 * surrounding the tag page. Only take those pages of
983 * the same active state as that tag page. We may safely
984 * round the target page pfn down to the requested order
985 * as the mem_map is guarenteed valid out to MAX_ORDER,
986 * where that page is in a different zone we will detect
987 * it from its zone id and abort this block scan.
989 zone_id
= page_zone_id(page
);
990 page_pfn
= page_to_pfn(page
);
991 pfn
= page_pfn
& ~((1 << order
) - 1);
992 end_pfn
= pfn
+ (1 << order
);
993 for (; pfn
< end_pfn
; pfn
++) {
994 struct page
*cursor_page
;
996 /* The target page is in the block, ignore it. */
997 if (unlikely(pfn
== page_pfn
))
1000 /* Avoid holes within the zone. */
1001 if (unlikely(!pfn_valid_within(pfn
)))
1004 cursor_page
= pfn_to_page(pfn
);
1006 /* Check that we have not crossed a zone boundary. */
1007 if (unlikely(page_zone_id(cursor_page
) != zone_id
))
1011 * If we don't have enough swap space, reclaiming of
1012 * anon page which don't already have a swap slot is
1015 if (nr_swap_pages
<= 0 && PageAnon(cursor_page
) &&
1016 !PageSwapCache(cursor_page
))
1019 if (__isolate_lru_page(cursor_page
, mode
, file
) == 0) {
1020 list_move(&cursor_page
->lru
, dst
);
1021 mem_cgroup_del_lru(cursor_page
);
1024 if (PageDirty(cursor_page
))
1028 if (mode
== ISOLATE_BOTH
&&
1029 page_count(cursor_page
))
1037 trace_mm_vmscan_lru_isolate(order
,
1040 nr_lumpy_taken
, nr_lumpy_dirty
, nr_lumpy_failed
,
1045 static unsigned long isolate_pages_global(unsigned long nr
,
1046 struct list_head
*dst
,
1047 unsigned long *scanned
, int order
,
1048 int mode
, struct zone
*z
,
1049 int active
, int file
)
1056 return isolate_lru_pages(nr
, &z
->lru
[lru
].list
, dst
, scanned
, order
,
1061 * clear_active_flags() is a helper for shrink_active_list(), clearing
1062 * any active bits from the pages in the list.
1064 static unsigned long clear_active_flags(struct list_head
*page_list
,
1065 unsigned int *count
)
1071 list_for_each_entry(page
, page_list
, lru
) {
1072 lru
= page_lru_base_type(page
);
1073 if (PageActive(page
)) {
1075 ClearPageActive(page
);
1086 * isolate_lru_page - tries to isolate a page from its LRU list
1087 * @page: page to isolate from its LRU list
1089 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1090 * vmstat statistic corresponding to whatever LRU list the page was on.
1092 * Returns 0 if the page was removed from an LRU list.
1093 * Returns -EBUSY if the page was not on an LRU list.
1095 * The returned page will have PageLRU() cleared. If it was found on
1096 * the active list, it will have PageActive set. If it was found on
1097 * the unevictable list, it will have the PageUnevictable bit set. That flag
1098 * may need to be cleared by the caller before letting the page go.
1100 * The vmstat statistic corresponding to the list on which the page was
1101 * found will be decremented.
1104 * (1) Must be called with an elevated refcount on the page. This is a
1105 * fundamentnal difference from isolate_lru_pages (which is called
1106 * without a stable reference).
1107 * (2) the lru_lock must not be held.
1108 * (3) interrupts must be enabled.
1110 int isolate_lru_page(struct page
*page
)
1114 if (PageLRU(page
)) {
1115 struct zone
*zone
= page_zone(page
);
1117 spin_lock_irq(&zone
->lru_lock
);
1118 if (PageLRU(page
) && get_page_unless_zero(page
)) {
1119 int lru
= page_lru(page
);
1123 del_page_from_lru_list(zone
, page
, lru
);
1125 spin_unlock_irq(&zone
->lru_lock
);
1131 * Are there way too many processes in the direct reclaim path already?
1133 static int too_many_isolated(struct zone
*zone
, int file
,
1134 struct scan_control
*sc
)
1136 unsigned long inactive
, isolated
;
1138 if (current_is_kswapd())
1141 if (!scanning_global_lru(sc
))
1145 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1146 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
);
1148 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1149 isolated
= zone_page_state(zone
, NR_ISOLATED_ANON
);
1152 return isolated
> inactive
;
1156 * TODO: Try merging with migrations version of putback_lru_pages
1158 static noinline_for_stack
void
1159 putback_lru_pages(struct zone
*zone
, struct scan_control
*sc
,
1160 unsigned long nr_anon
, unsigned long nr_file
,
1161 struct list_head
*page_list
)
1164 struct pagevec pvec
;
1165 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1167 pagevec_init(&pvec
, 1);
1170 * Put back any unfreeable pages.
1172 spin_lock(&zone
->lru_lock
);
1173 while (!list_empty(page_list
)) {
1175 page
= lru_to_page(page_list
);
1176 VM_BUG_ON(PageLRU(page
));
1177 list_del(&page
->lru
);
1178 if (unlikely(!page_evictable(page
, NULL
))) {
1179 spin_unlock_irq(&zone
->lru_lock
);
1180 putback_lru_page(page
);
1181 spin_lock_irq(&zone
->lru_lock
);
1185 lru
= page_lru(page
);
1186 add_page_to_lru_list(zone
, page
, lru
);
1187 if (is_active_lru(lru
)) {
1188 int file
= is_file_lru(lru
);
1189 reclaim_stat
->recent_rotated
[file
]++;
1191 if (!pagevec_add(&pvec
, page
)) {
1192 spin_unlock_irq(&zone
->lru_lock
);
1193 __pagevec_release(&pvec
);
1194 spin_lock_irq(&zone
->lru_lock
);
1197 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
, -nr_anon
);
1198 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, -nr_file
);
1200 spin_unlock_irq(&zone
->lru_lock
);
1201 pagevec_release(&pvec
);
1204 static noinline_for_stack
void update_isolated_counts(struct zone
*zone
,
1205 struct scan_control
*sc
,
1206 unsigned long *nr_anon
,
1207 unsigned long *nr_file
,
1208 struct list_head
*isolated_list
)
1210 unsigned long nr_active
;
1211 unsigned int count
[NR_LRU_LISTS
] = { 0, };
1212 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1214 nr_active
= clear_active_flags(isolated_list
, count
);
1215 __count_vm_events(PGDEACTIVATE
, nr_active
);
1217 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
,
1218 -count
[LRU_ACTIVE_FILE
]);
1219 __mod_zone_page_state(zone
, NR_INACTIVE_FILE
,
1220 -count
[LRU_INACTIVE_FILE
]);
1221 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
,
1222 -count
[LRU_ACTIVE_ANON
]);
1223 __mod_zone_page_state(zone
, NR_INACTIVE_ANON
,
1224 -count
[LRU_INACTIVE_ANON
]);
1226 *nr_anon
= count
[LRU_ACTIVE_ANON
] + count
[LRU_INACTIVE_ANON
];
1227 *nr_file
= count
[LRU_ACTIVE_FILE
] + count
[LRU_INACTIVE_FILE
];
1228 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
, *nr_anon
);
1229 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, *nr_file
);
1231 reclaim_stat
->recent_scanned
[0] += *nr_anon
;
1232 reclaim_stat
->recent_scanned
[1] += *nr_file
;
1236 * Returns true if the caller should wait to clean dirty/writeback pages.
1238 * If we are direct reclaiming for contiguous pages and we do not reclaim
1239 * everything in the list, try again and wait for writeback IO to complete.
1240 * This will stall high-order allocations noticeably. Only do that when really
1241 * need to free the pages under high memory pressure.
1243 static inline bool should_reclaim_stall(unsigned long nr_taken
,
1244 unsigned long nr_freed
,
1246 struct scan_control
*sc
)
1248 int lumpy_stall_priority
;
1250 /* kswapd should not stall on sync IO */
1251 if (current_is_kswapd())
1254 /* Only stall on lumpy reclaim */
1255 if (!sc
->lumpy_reclaim_mode
)
1258 /* If we have relaimed everything on the isolated list, no stall */
1259 if (nr_freed
== nr_taken
)
1263 * For high-order allocations, there are two stall thresholds.
1264 * High-cost allocations stall immediately where as lower
1265 * order allocations such as stacks require the scanning
1266 * priority to be much higher before stalling.
1268 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
1269 lumpy_stall_priority
= DEF_PRIORITY
;
1271 lumpy_stall_priority
= DEF_PRIORITY
/ 3;
1273 return priority
<= lumpy_stall_priority
;
1277 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1278 * of reclaimed pages
1280 static noinline_for_stack
unsigned long
1281 shrink_inactive_list(unsigned long nr_to_scan
, struct zone
*zone
,
1282 struct scan_control
*sc
, int priority
, int file
)
1284 LIST_HEAD(page_list
);
1285 unsigned long nr_scanned
;
1286 unsigned long nr_reclaimed
= 0;
1287 unsigned long nr_taken
;
1288 unsigned long nr_active
;
1289 unsigned long nr_anon
;
1290 unsigned long nr_file
;
1292 while (unlikely(too_many_isolated(zone
, file
, sc
))) {
1293 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1295 /* We are about to die and free our memory. Return now. */
1296 if (fatal_signal_pending(current
))
1297 return SWAP_CLUSTER_MAX
;
1302 spin_lock_irq(&zone
->lru_lock
);
1304 if (scanning_global_lru(sc
)) {
1305 nr_taken
= isolate_pages_global(nr_to_scan
,
1306 &page_list
, &nr_scanned
, sc
->order
,
1307 sc
->lumpy_reclaim_mode
?
1308 ISOLATE_BOTH
: ISOLATE_INACTIVE
,
1310 zone
->pages_scanned
+= nr_scanned
;
1311 if (current_is_kswapd())
1312 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
,
1315 __count_zone_vm_events(PGSCAN_DIRECT
, zone
,
1318 nr_taken
= mem_cgroup_isolate_pages(nr_to_scan
,
1319 &page_list
, &nr_scanned
, sc
->order
,
1320 sc
->lumpy_reclaim_mode
?
1321 ISOLATE_BOTH
: ISOLATE_INACTIVE
,
1322 zone
, sc
->mem_cgroup
,
1325 * mem_cgroup_isolate_pages() keeps track of
1326 * scanned pages on its own.
1330 if (nr_taken
== 0) {
1331 spin_unlock_irq(&zone
->lru_lock
);
1335 update_isolated_counts(zone
, sc
, &nr_anon
, &nr_file
, &page_list
);
1337 spin_unlock_irq(&zone
->lru_lock
);
1339 nr_reclaimed
= shrink_page_list(&page_list
, sc
, PAGEOUT_IO_ASYNC
);
1341 /* Check if we should syncronously wait for writeback */
1342 if (should_reclaim_stall(nr_taken
, nr_reclaimed
, priority
, sc
)) {
1343 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1346 * The attempt at page out may have made some
1347 * of the pages active, mark them inactive again.
1349 nr_active
= clear_active_flags(&page_list
, NULL
);
1350 count_vm_events(PGDEACTIVATE
, nr_active
);
1352 nr_reclaimed
+= shrink_page_list(&page_list
, sc
, PAGEOUT_IO_SYNC
);
1355 local_irq_disable();
1356 if (current_is_kswapd())
1357 __count_vm_events(KSWAPD_STEAL
, nr_reclaimed
);
1358 __count_zone_vm_events(PGSTEAL
, zone
, nr_reclaimed
);
1360 putback_lru_pages(zone
, sc
, nr_anon
, nr_file
, &page_list
);
1362 trace_mm_vmscan_lru_shrink_inactive(zone
->zone_pgdat
->node_id
,
1364 nr_scanned
, nr_reclaimed
,
1366 trace_shrink_flags(file
, sc
->lumpy_reclaim_mode
));
1367 return nr_reclaimed
;
1371 * This moves pages from the active list to the inactive list.
1373 * We move them the other way if the page is referenced by one or more
1374 * processes, from rmap.
1376 * If the pages are mostly unmapped, the processing is fast and it is
1377 * appropriate to hold zone->lru_lock across the whole operation. But if
1378 * the pages are mapped, the processing is slow (page_referenced()) so we
1379 * should drop zone->lru_lock around each page. It's impossible to balance
1380 * this, so instead we remove the pages from the LRU while processing them.
1381 * It is safe to rely on PG_active against the non-LRU pages in here because
1382 * nobody will play with that bit on a non-LRU page.
1384 * The downside is that we have to touch page->_count against each page.
1385 * But we had to alter page->flags anyway.
1388 static void move_active_pages_to_lru(struct zone
*zone
,
1389 struct list_head
*list
,
1392 unsigned long pgmoved
= 0;
1393 struct pagevec pvec
;
1396 pagevec_init(&pvec
, 1);
1398 while (!list_empty(list
)) {
1399 page
= lru_to_page(list
);
1401 VM_BUG_ON(PageLRU(page
));
1404 list_move(&page
->lru
, &zone
->lru
[lru
].list
);
1405 mem_cgroup_add_lru_list(page
, lru
);
1408 if (!pagevec_add(&pvec
, page
) || list_empty(list
)) {
1409 spin_unlock_irq(&zone
->lru_lock
);
1410 if (buffer_heads_over_limit
)
1411 pagevec_strip(&pvec
);
1412 __pagevec_release(&pvec
);
1413 spin_lock_irq(&zone
->lru_lock
);
1416 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1417 if (!is_active_lru(lru
))
1418 __count_vm_events(PGDEACTIVATE
, pgmoved
);
1421 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
1422 struct scan_control
*sc
, int priority
, int file
)
1424 unsigned long nr_taken
;
1425 unsigned long pgscanned
;
1426 unsigned long vm_flags
;
1427 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1428 LIST_HEAD(l_active
);
1429 LIST_HEAD(l_inactive
);
1431 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1432 unsigned long nr_rotated
= 0;
1435 spin_lock_irq(&zone
->lru_lock
);
1436 if (scanning_global_lru(sc
)) {
1437 nr_taken
= isolate_pages_global(nr_pages
, &l_hold
,
1438 &pgscanned
, sc
->order
,
1439 ISOLATE_ACTIVE
, zone
,
1441 zone
->pages_scanned
+= pgscanned
;
1443 nr_taken
= mem_cgroup_isolate_pages(nr_pages
, &l_hold
,
1444 &pgscanned
, sc
->order
,
1445 ISOLATE_ACTIVE
, zone
,
1446 sc
->mem_cgroup
, 1, file
);
1448 * mem_cgroup_isolate_pages() keeps track of
1449 * scanned pages on its own.
1453 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1455 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
1457 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
, -nr_taken
);
1459 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
, -nr_taken
);
1460 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1461 spin_unlock_irq(&zone
->lru_lock
);
1463 while (!list_empty(&l_hold
)) {
1465 page
= lru_to_page(&l_hold
);
1466 list_del(&page
->lru
);
1468 if (unlikely(!page_evictable(page
, NULL
))) {
1469 putback_lru_page(page
);
1473 if (page_referenced(page
, 0, sc
->mem_cgroup
, &vm_flags
)) {
1476 * Identify referenced, file-backed active pages and
1477 * give them one more trip around the active list. So
1478 * that executable code get better chances to stay in
1479 * memory under moderate memory pressure. Anon pages
1480 * are not likely to be evicted by use-once streaming
1481 * IO, plus JVM can create lots of anon VM_EXEC pages,
1482 * so we ignore them here.
1484 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
1485 list_add(&page
->lru
, &l_active
);
1490 ClearPageActive(page
); /* we are de-activating */
1491 list_add(&page
->lru
, &l_inactive
);
1495 * Move pages back to the lru list.
1497 spin_lock_irq(&zone
->lru_lock
);
1499 * Count referenced pages from currently used mappings as rotated,
1500 * even though only some of them are actually re-activated. This
1501 * helps balance scan pressure between file and anonymous pages in
1504 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
1506 move_active_pages_to_lru(zone
, &l_active
,
1507 LRU_ACTIVE
+ file
* LRU_FILE
);
1508 move_active_pages_to_lru(zone
, &l_inactive
,
1509 LRU_BASE
+ file
* LRU_FILE
);
1510 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1511 spin_unlock_irq(&zone
->lru_lock
);
1515 static int inactive_anon_is_low_global(struct zone
*zone
)
1517 unsigned long active
, inactive
;
1519 active
= zone_page_state(zone
, NR_ACTIVE_ANON
);
1520 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1522 if (inactive
* zone
->inactive_ratio
< active
)
1529 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1530 * @zone: zone to check
1531 * @sc: scan control of this context
1533 * Returns true if the zone does not have enough inactive anon pages,
1534 * meaning some active anon pages need to be deactivated.
1536 static int inactive_anon_is_low(struct zone
*zone
, struct scan_control
*sc
)
1541 * If we don't have swap space, anonymous page deactivation
1544 if (!total_swap_pages
)
1547 if (scanning_global_lru(sc
))
1548 low
= inactive_anon_is_low_global(zone
);
1550 low
= mem_cgroup_inactive_anon_is_low(sc
->mem_cgroup
);
1554 static inline int inactive_anon_is_low(struct zone
*zone
,
1555 struct scan_control
*sc
)
1561 static int inactive_file_is_low_global(struct zone
*zone
)
1563 unsigned long active
, inactive
;
1565 active
= zone_page_state(zone
, NR_ACTIVE_FILE
);
1566 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1568 return (active
> inactive
);
1572 * inactive_file_is_low - check if file pages need to be deactivated
1573 * @zone: zone to check
1574 * @sc: scan control of this context
1576 * When the system is doing streaming IO, memory pressure here
1577 * ensures that active file pages get deactivated, until more
1578 * than half of the file pages are on the inactive list.
1580 * Once we get to that situation, protect the system's working
1581 * set from being evicted by disabling active file page aging.
1583 * This uses a different ratio than the anonymous pages, because
1584 * the page cache uses a use-once replacement algorithm.
1586 static int inactive_file_is_low(struct zone
*zone
, struct scan_control
*sc
)
1590 if (scanning_global_lru(sc
))
1591 low
= inactive_file_is_low_global(zone
);
1593 low
= mem_cgroup_inactive_file_is_low(sc
->mem_cgroup
);
1597 static int inactive_list_is_low(struct zone
*zone
, struct scan_control
*sc
,
1601 return inactive_file_is_low(zone
, sc
);
1603 return inactive_anon_is_low(zone
, sc
);
1606 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1607 struct zone
*zone
, struct scan_control
*sc
, int priority
)
1609 int file
= is_file_lru(lru
);
1611 if (is_active_lru(lru
)) {
1612 if (inactive_list_is_low(zone
, sc
, file
))
1613 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1617 return shrink_inactive_list(nr_to_scan
, zone
, sc
, priority
, file
);
1621 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1622 * until we collected @swap_cluster_max pages to scan.
1624 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan
,
1625 unsigned long *nr_saved_scan
)
1629 *nr_saved_scan
+= nr_to_scan
;
1630 nr
= *nr_saved_scan
;
1632 if (nr
>= SWAP_CLUSTER_MAX
)
1641 * Determine how aggressively the anon and file LRU lists should be
1642 * scanned. The relative value of each set of LRU lists is determined
1643 * by looking at the fraction of the pages scanned we did rotate back
1644 * onto the active list instead of evict.
1646 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1648 static void get_scan_count(struct zone
*zone
, struct scan_control
*sc
,
1649 unsigned long *nr
, int priority
)
1651 unsigned long anon
, file
, free
;
1652 unsigned long anon_prio
, file_prio
;
1653 unsigned long ap
, fp
;
1654 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1655 u64 fraction
[2], denominator
;
1659 /* If we have no swap space, do not bother scanning anon pages. */
1660 if (!sc
->may_swap
|| (nr_swap_pages
<= 0)) {
1668 anon
= zone_nr_lru_pages(zone
, sc
, LRU_ACTIVE_ANON
) +
1669 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_ANON
);
1670 file
= zone_nr_lru_pages(zone
, sc
, LRU_ACTIVE_FILE
) +
1671 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_FILE
);
1673 if (scanning_global_lru(sc
)) {
1674 free
= zone_page_state(zone
, NR_FREE_PAGES
);
1675 /* If we have very few page cache pages,
1676 force-scan anon pages. */
1677 if (unlikely(file
+ free
<= high_wmark_pages(zone
))) {
1686 * With swappiness at 100, anonymous and file have the same priority.
1687 * This scanning priority is essentially the inverse of IO cost.
1689 anon_prio
= sc
->swappiness
;
1690 file_prio
= 200 - sc
->swappiness
;
1693 * OK, so we have swap space and a fair amount of page cache
1694 * pages. We use the recently rotated / recently scanned
1695 * ratios to determine how valuable each cache is.
1697 * Because workloads change over time (and to avoid overflow)
1698 * we keep these statistics as a floating average, which ends
1699 * up weighing recent references more than old ones.
1701 * anon in [0], file in [1]
1703 spin_lock_irq(&zone
->lru_lock
);
1704 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
1705 reclaim_stat
->recent_scanned
[0] /= 2;
1706 reclaim_stat
->recent_rotated
[0] /= 2;
1709 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
1710 reclaim_stat
->recent_scanned
[1] /= 2;
1711 reclaim_stat
->recent_rotated
[1] /= 2;
1715 * The amount of pressure on anon vs file pages is inversely
1716 * proportional to the fraction of recently scanned pages on
1717 * each list that were recently referenced and in active use.
1719 ap
= (anon_prio
+ 1) * (reclaim_stat
->recent_scanned
[0] + 1);
1720 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
1722 fp
= (file_prio
+ 1) * (reclaim_stat
->recent_scanned
[1] + 1);
1723 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
1724 spin_unlock_irq(&zone
->lru_lock
);
1728 denominator
= ap
+ fp
+ 1;
1730 for_each_evictable_lru(l
) {
1731 int file
= is_file_lru(l
);
1734 scan
= zone_nr_lru_pages(zone
, sc
, l
);
1735 if (priority
|| noswap
) {
1737 scan
= div64_u64(scan
* fraction
[file
], denominator
);
1739 nr
[l
] = nr_scan_try_batch(scan
,
1740 &reclaim_stat
->nr_saved_scan
[l
]);
1744 static void set_lumpy_reclaim_mode(int priority
, struct scan_control
*sc
)
1747 * If we need a large contiguous chunk of memory, or have
1748 * trouble getting a small set of contiguous pages, we
1749 * will reclaim both active and inactive pages.
1751 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
1752 sc
->lumpy_reclaim_mode
= 1;
1753 else if (sc
->order
&& priority
< DEF_PRIORITY
- 2)
1754 sc
->lumpy_reclaim_mode
= 1;
1756 sc
->lumpy_reclaim_mode
= 0;
1760 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1762 static void shrink_zone(int priority
, struct zone
*zone
,
1763 struct scan_control
*sc
)
1765 unsigned long nr
[NR_LRU_LISTS
];
1766 unsigned long nr_to_scan
;
1768 unsigned long nr_reclaimed
= sc
->nr_reclaimed
;
1769 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
1771 get_scan_count(zone
, sc
, nr
, priority
);
1773 set_lumpy_reclaim_mode(priority
, sc
);
1775 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
1776 nr
[LRU_INACTIVE_FILE
]) {
1777 for_each_evictable_lru(l
) {
1779 nr_to_scan
= min_t(unsigned long,
1780 nr
[l
], SWAP_CLUSTER_MAX
);
1781 nr
[l
] -= nr_to_scan
;
1783 nr_reclaimed
+= shrink_list(l
, nr_to_scan
,
1784 zone
, sc
, priority
);
1788 * On large memory systems, scan >> priority can become
1789 * really large. This is fine for the starting priority;
1790 * we want to put equal scanning pressure on each zone.
1791 * However, if the VM has a harder time of freeing pages,
1792 * with multiple processes reclaiming pages, the total
1793 * freeing target can get unreasonably large.
1795 if (nr_reclaimed
>= nr_to_reclaim
&& priority
< DEF_PRIORITY
)
1799 sc
->nr_reclaimed
= nr_reclaimed
;
1802 * Even if we did not try to evict anon pages at all, we want to
1803 * rebalance the anon lru active/inactive ratio.
1805 if (inactive_anon_is_low(zone
, sc
))
1806 shrink_active_list(SWAP_CLUSTER_MAX
, zone
, sc
, priority
, 0);
1808 throttle_vm_writeout(sc
->gfp_mask
);
1812 * This is the direct reclaim path, for page-allocating processes. We only
1813 * try to reclaim pages from zones which will satisfy the caller's allocation
1816 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1818 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1820 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1821 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1822 * zone defense algorithm.
1824 * If a zone is deemed to be full of pinned pages then just give it a light
1825 * scan then give up on it.
1827 static void shrink_zones(int priority
, struct zonelist
*zonelist
,
1828 struct scan_control
*sc
)
1833 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1834 gfp_zone(sc
->gfp_mask
), sc
->nodemask
) {
1835 if (!populated_zone(zone
))
1838 * Take care memory controller reclaiming has small influence
1841 if (scanning_global_lru(sc
)) {
1842 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1844 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1845 continue; /* Let kswapd poll it */
1848 shrink_zone(priority
, zone
, sc
);
1852 static bool zone_reclaimable(struct zone
*zone
)
1854 return zone
->pages_scanned
< zone_reclaimable_pages(zone
) * 6;
1858 * As hibernation is going on, kswapd is freezed so that it can't mark
1859 * the zone into all_unreclaimable. It can't handle OOM during hibernation.
1860 * So let's check zone's unreclaimable in direct reclaim as well as kswapd.
1862 static bool all_unreclaimable(struct zonelist
*zonelist
,
1863 struct scan_control
*sc
)
1867 bool all_unreclaimable
= true;
1869 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1870 gfp_zone(sc
->gfp_mask
), sc
->nodemask
) {
1871 if (!populated_zone(zone
))
1873 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1875 if (zone_reclaimable(zone
)) {
1876 all_unreclaimable
= false;
1881 return all_unreclaimable
;
1885 * This is the main entry point to direct page reclaim.
1887 * If a full scan of the inactive list fails to free enough memory then we
1888 * are "out of memory" and something needs to be killed.
1890 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1891 * high - the zone may be full of dirty or under-writeback pages, which this
1892 * caller can't do much about. We kick the writeback threads and take explicit
1893 * naps in the hope that some of these pages can be written. But if the
1894 * allocating task holds filesystem locks which prevent writeout this might not
1895 * work, and the allocation attempt will fail.
1897 * returns: 0, if no pages reclaimed
1898 * else, the number of pages reclaimed
1900 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
1901 struct scan_control
*sc
)
1904 unsigned long total_scanned
= 0;
1905 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1908 unsigned long writeback_threshold
;
1911 delayacct_freepages_start();
1913 if (scanning_global_lru(sc
))
1914 count_vm_event(ALLOCSTALL
);
1916 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1919 disable_swap_token();
1920 shrink_zones(priority
, zonelist
, sc
);
1922 * Don't shrink slabs when reclaiming memory from
1923 * over limit cgroups
1925 if (scanning_global_lru(sc
)) {
1926 unsigned long lru_pages
= 0;
1927 for_each_zone_zonelist(zone
, z
, zonelist
,
1928 gfp_zone(sc
->gfp_mask
)) {
1929 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1932 lru_pages
+= zone_reclaimable_pages(zone
);
1935 shrink_slab(sc
->nr_scanned
, sc
->gfp_mask
, lru_pages
);
1936 if (reclaim_state
) {
1937 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1938 reclaim_state
->reclaimed_slab
= 0;
1941 total_scanned
+= sc
->nr_scanned
;
1942 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
1946 * Try to write back as many pages as we just scanned. This
1947 * tends to cause slow streaming writers to write data to the
1948 * disk smoothly, at the dirtying rate, which is nice. But
1949 * that's undesirable in laptop mode, where we *want* lumpy
1950 * writeout. So in laptop mode, write out the whole world.
1952 writeback_threshold
= sc
->nr_to_reclaim
+ sc
->nr_to_reclaim
/ 2;
1953 if (total_scanned
> writeback_threshold
) {
1954 wakeup_flusher_threads(laptop_mode
? 0 : total_scanned
);
1955 sc
->may_writepage
= 1;
1958 /* Take a nap, wait for some writeback to complete */
1959 if (!sc
->hibernation_mode
&& sc
->nr_scanned
&&
1960 priority
< DEF_PRIORITY
- 2)
1961 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1965 delayacct_freepages_end();
1968 if (sc
->nr_reclaimed
)
1969 return sc
->nr_reclaimed
;
1971 /* top priority shrink_zones still had more to do? don't OOM, then */
1972 if (scanning_global_lru(sc
) && !all_unreclaimable(zonelist
, sc
))
1978 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
1979 gfp_t gfp_mask
, nodemask_t
*nodemask
)
1981 unsigned long nr_reclaimed
;
1982 struct scan_control sc
= {
1983 .gfp_mask
= gfp_mask
,
1984 .may_writepage
= !laptop_mode
,
1985 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
1988 .swappiness
= vm_swappiness
,
1991 .nodemask
= nodemask
,
1994 trace_mm_vmscan_direct_reclaim_begin(order
,
1998 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2000 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
2002 return nr_reclaimed
;
2005 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2007 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup
*mem
,
2008 gfp_t gfp_mask
, bool noswap
,
2009 unsigned int swappiness
,
2012 struct scan_control sc
= {
2013 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2014 .may_writepage
= !laptop_mode
,
2016 .may_swap
= !noswap
,
2017 .swappiness
= swappiness
,
2021 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2022 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
2024 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2029 * NOTE: Although we can get the priority field, using it
2030 * here is not a good idea, since it limits the pages we can scan.
2031 * if we don't reclaim here, the shrink_zone from balance_pgdat
2032 * will pick up pages from other mem cgroup's as well. We hack
2033 * the priority and make it zero.
2035 shrink_zone(0, zone
, &sc
);
2037 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
2039 return sc
.nr_reclaimed
;
2042 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*mem_cont
,
2045 unsigned int swappiness
)
2047 struct zonelist
*zonelist
;
2048 unsigned long nr_reclaimed
;
2049 struct scan_control sc
= {
2050 .may_writepage
= !laptop_mode
,
2052 .may_swap
= !noswap
,
2053 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2054 .swappiness
= swappiness
,
2056 .mem_cgroup
= mem_cont
,
2057 .nodemask
= NULL
, /* we don't care the placement */
2060 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2061 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
2062 zonelist
= NODE_DATA(numa_node_id())->node_zonelists
;
2064 trace_mm_vmscan_memcg_reclaim_begin(0,
2068 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2070 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
2072 return nr_reclaimed
;
2076 /* is kswapd sleeping prematurely? */
2077 static int sleeping_prematurely(pg_data_t
*pgdat
, int order
, long remaining
)
2081 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2085 /* If after HZ/10, a zone is below the high mark, it's premature */
2086 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
2087 struct zone
*zone
= pgdat
->node_zones
+ i
;
2089 if (!populated_zone(zone
))
2092 if (zone
->all_unreclaimable
)
2095 if (!zone_watermark_ok(zone
, order
, high_wmark_pages(zone
),
2104 * For kswapd, balance_pgdat() will work across all this node's zones until
2105 * they are all at high_wmark_pages(zone).
2107 * Returns the number of pages which were actually freed.
2109 * There is special handling here for zones which are full of pinned pages.
2110 * This can happen if the pages are all mlocked, or if they are all used by
2111 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2112 * What we do is to detect the case where all pages in the zone have been
2113 * scanned twice and there has been zero successful reclaim. Mark the zone as
2114 * dead and from now on, only perform a short scan. Basically we're polling
2115 * the zone for when the problem goes away.
2117 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2118 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2119 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2120 * lower zones regardless of the number of free pages in the lower zones. This
2121 * interoperates with the page allocator fallback scheme to ensure that aging
2122 * of pages is balanced across the zones.
2124 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
)
2129 unsigned long total_scanned
;
2130 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2131 struct scan_control sc
= {
2132 .gfp_mask
= GFP_KERNEL
,
2136 * kswapd doesn't want to be bailed out while reclaim. because
2137 * we want to put equal scanning pressure on each zone.
2139 .nr_to_reclaim
= ULONG_MAX
,
2140 .swappiness
= vm_swappiness
,
2146 sc
.nr_reclaimed
= 0;
2147 sc
.may_writepage
= !laptop_mode
;
2148 count_vm_event(PAGEOUTRUN
);
2150 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
2151 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
2152 unsigned long lru_pages
= 0;
2153 int has_under_min_watermark_zone
= 0;
2155 /* The swap token gets in the way of swapout... */
2157 disable_swap_token();
2162 * Scan in the highmem->dma direction for the highest
2163 * zone which needs scanning
2165 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
2166 struct zone
*zone
= pgdat
->node_zones
+ i
;
2168 if (!populated_zone(zone
))
2171 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2175 * Do some background aging of the anon list, to give
2176 * pages a chance to be referenced before reclaiming.
2178 if (inactive_anon_is_low(zone
, &sc
))
2179 shrink_active_list(SWAP_CLUSTER_MAX
, zone
,
2182 if (!zone_watermark_ok(zone
, order
,
2183 high_wmark_pages(zone
), 0, 0)) {
2191 for (i
= 0; i
<= end_zone
; i
++) {
2192 struct zone
*zone
= pgdat
->node_zones
+ i
;
2194 lru_pages
+= zone_reclaimable_pages(zone
);
2198 * Now scan the zone in the dma->highmem direction, stopping
2199 * at the last zone which needs scanning.
2201 * We do this because the page allocator works in the opposite
2202 * direction. This prevents the page allocator from allocating
2203 * pages behind kswapd's direction of progress, which would
2204 * cause too much scanning of the lower zones.
2206 for (i
= 0; i
<= end_zone
; i
++) {
2207 struct zone
*zone
= pgdat
->node_zones
+ i
;
2210 if (!populated_zone(zone
))
2213 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2219 * Call soft limit reclaim before calling shrink_zone.
2220 * For now we ignore the return value
2222 mem_cgroup_soft_limit_reclaim(zone
, order
, sc
.gfp_mask
);
2225 * We put equal pressure on every zone, unless one
2226 * zone has way too many pages free already.
2228 if (!zone_watermark_ok(zone
, order
,
2229 8*high_wmark_pages(zone
), end_zone
, 0))
2230 shrink_zone(priority
, zone
, &sc
);
2231 reclaim_state
->reclaimed_slab
= 0;
2232 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
2234 sc
.nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2235 total_scanned
+= sc
.nr_scanned
;
2236 if (zone
->all_unreclaimable
)
2238 if (nr_slab
== 0 && !zone_reclaimable(zone
))
2239 zone
->all_unreclaimable
= 1;
2241 * If we've done a decent amount of scanning and
2242 * the reclaim ratio is low, start doing writepage
2243 * even in laptop mode
2245 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
2246 total_scanned
> sc
.nr_reclaimed
+ sc
.nr_reclaimed
/ 2)
2247 sc
.may_writepage
= 1;
2249 if (!zone_watermark_ok(zone
, order
,
2250 high_wmark_pages(zone
), end_zone
, 0)) {
2253 * We are still under min water mark. This
2254 * means that we have a GFP_ATOMIC allocation
2255 * failure risk. Hurry up!
2257 if (!zone_watermark_ok(zone
, order
,
2258 min_wmark_pages(zone
), end_zone
, 0))
2259 has_under_min_watermark_zone
= 1;
2264 break; /* kswapd: all done */
2266 * OK, kswapd is getting into trouble. Take a nap, then take
2267 * another pass across the zones.
2269 if (total_scanned
&& (priority
< DEF_PRIORITY
- 2)) {
2270 if (has_under_min_watermark_zone
)
2271 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT
);
2273 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2277 * We do this so kswapd doesn't build up large priorities for
2278 * example when it is freeing in parallel with allocators. It
2279 * matches the direct reclaim path behaviour in terms of impact
2280 * on zone->*_priority.
2282 if (sc
.nr_reclaimed
>= SWAP_CLUSTER_MAX
)
2286 if (!all_zones_ok
) {
2292 * Fragmentation may mean that the system cannot be
2293 * rebalanced for high-order allocations in all zones.
2294 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2295 * it means the zones have been fully scanned and are still
2296 * not balanced. For high-order allocations, there is
2297 * little point trying all over again as kswapd may
2300 * Instead, recheck all watermarks at order-0 as they
2301 * are the most important. If watermarks are ok, kswapd will go
2302 * back to sleep. High-order users can still perform direct
2303 * reclaim if they wish.
2305 if (sc
.nr_reclaimed
< SWAP_CLUSTER_MAX
)
2306 order
= sc
.order
= 0;
2311 return sc
.nr_reclaimed
;
2315 * The background pageout daemon, started as a kernel thread
2316 * from the init process.
2318 * This basically trickles out pages so that we have _some_
2319 * free memory available even if there is no other activity
2320 * that frees anything up. This is needed for things like routing
2321 * etc, where we otherwise might have all activity going on in
2322 * asynchronous contexts that cannot page things out.
2324 * If there are applications that are active memory-allocators
2325 * (most normal use), this basically shouldn't matter.
2327 static int kswapd(void *p
)
2329 unsigned long order
;
2330 pg_data_t
*pgdat
= (pg_data_t
*)p
;
2331 struct task_struct
*tsk
= current
;
2333 struct reclaim_state reclaim_state
= {
2334 .reclaimed_slab
= 0,
2336 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
2338 lockdep_set_current_reclaim_state(GFP_KERNEL
);
2340 if (!cpumask_empty(cpumask
))
2341 set_cpus_allowed_ptr(tsk
, cpumask
);
2342 current
->reclaim_state
= &reclaim_state
;
2345 * Tell the memory management that we're a "memory allocator",
2346 * and that if we need more memory we should get access to it
2347 * regardless (see "__alloc_pages()"). "kswapd" should
2348 * never get caught in the normal page freeing logic.
2350 * (Kswapd normally doesn't need memory anyway, but sometimes
2351 * you need a small amount of memory in order to be able to
2352 * page out something else, and this flag essentially protects
2353 * us from recursively trying to free more memory as we're
2354 * trying to free the first piece of memory in the first place).
2356 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
2361 unsigned long new_order
;
2364 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2365 new_order
= pgdat
->kswapd_max_order
;
2366 pgdat
->kswapd_max_order
= 0;
2367 if (order
< new_order
) {
2369 * Don't sleep if someone wants a larger 'order'
2374 if (!freezing(current
) && !kthread_should_stop()) {
2377 /* Try to sleep for a short interval */
2378 if (!sleeping_prematurely(pgdat
, order
, remaining
)) {
2379 remaining
= schedule_timeout(HZ
/10);
2380 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2381 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2385 * After a short sleep, check if it was a
2386 * premature sleep. If not, then go fully
2387 * to sleep until explicitly woken up
2389 if (!sleeping_prematurely(pgdat
, order
, remaining
)) {
2390 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
2394 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
2396 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
2400 order
= pgdat
->kswapd_max_order
;
2402 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2404 ret
= try_to_freeze();
2405 if (kthread_should_stop())
2409 * We can speed up thawing tasks if we don't call balance_pgdat
2410 * after returning from the refrigerator
2413 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, order
);
2414 balance_pgdat(pgdat
, order
);
2421 * A zone is low on free memory, so wake its kswapd task to service it.
2423 void wakeup_kswapd(struct zone
*zone
, int order
)
2427 if (!populated_zone(zone
))
2430 pgdat
= zone
->zone_pgdat
;
2431 if (zone_watermark_ok(zone
, order
, low_wmark_pages(zone
), 0, 0))
2433 if (pgdat
->kswapd_max_order
< order
)
2434 pgdat
->kswapd_max_order
= order
;
2435 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, zone_idx(zone
), order
);
2436 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2438 if (!waitqueue_active(&pgdat
->kswapd_wait
))
2440 wake_up_interruptible(&pgdat
->kswapd_wait
);
2444 * The reclaimable count would be mostly accurate.
2445 * The less reclaimable pages may be
2446 * - mlocked pages, which will be moved to unevictable list when encountered
2447 * - mapped pages, which may require several travels to be reclaimed
2448 * - dirty pages, which is not "instantly" reclaimable
2450 unsigned long global_reclaimable_pages(void)
2454 nr
= global_page_state(NR_ACTIVE_FILE
) +
2455 global_page_state(NR_INACTIVE_FILE
);
2457 if (nr_swap_pages
> 0)
2458 nr
+= global_page_state(NR_ACTIVE_ANON
) +
2459 global_page_state(NR_INACTIVE_ANON
);
2464 unsigned long zone_reclaimable_pages(struct zone
*zone
)
2468 nr
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
2469 zone_page_state(zone
, NR_INACTIVE_FILE
);
2471 if (nr_swap_pages
> 0)
2472 nr
+= zone_page_state(zone
, NR_ACTIVE_ANON
) +
2473 zone_page_state(zone
, NR_INACTIVE_ANON
);
2478 #ifdef CONFIG_HIBERNATION
2480 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2483 * Rather than trying to age LRUs the aim is to preserve the overall
2484 * LRU order by reclaiming preferentially
2485 * inactive > active > active referenced > active mapped
2487 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
2489 struct reclaim_state reclaim_state
;
2490 struct scan_control sc
= {
2491 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
2495 .nr_to_reclaim
= nr_to_reclaim
,
2496 .hibernation_mode
= 1,
2497 .swappiness
= vm_swappiness
,
2500 struct zonelist
* zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
2501 struct task_struct
*p
= current
;
2502 unsigned long nr_reclaimed
;
2504 p
->flags
|= PF_MEMALLOC
;
2505 lockdep_set_current_reclaim_state(sc
.gfp_mask
);
2506 reclaim_state
.reclaimed_slab
= 0;
2507 p
->reclaim_state
= &reclaim_state
;
2509 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2511 p
->reclaim_state
= NULL
;
2512 lockdep_clear_current_reclaim_state();
2513 p
->flags
&= ~PF_MEMALLOC
;
2515 return nr_reclaimed
;
2517 #endif /* CONFIG_HIBERNATION */
2519 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2520 not required for correctness. So if the last cpu in a node goes
2521 away, we get changed to run anywhere: as the first one comes back,
2522 restore their cpu bindings. */
2523 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
2524 unsigned long action
, void *hcpu
)
2528 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
2529 for_each_node_state(nid
, N_HIGH_MEMORY
) {
2530 pg_data_t
*pgdat
= NODE_DATA(nid
);
2531 const struct cpumask
*mask
;
2533 mask
= cpumask_of_node(pgdat
->node_id
);
2535 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
2536 /* One of our CPUs online: restore mask */
2537 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
2544 * This kswapd start function will be called by init and node-hot-add.
2545 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2547 int kswapd_run(int nid
)
2549 pg_data_t
*pgdat
= NODE_DATA(nid
);
2555 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
2556 if (IS_ERR(pgdat
->kswapd
)) {
2557 /* failure at boot is fatal */
2558 BUG_ON(system_state
== SYSTEM_BOOTING
);
2559 printk("Failed to start kswapd on node %d\n",nid
);
2566 * Called by memory hotplug when all memory in a node is offlined.
2568 void kswapd_stop(int nid
)
2570 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
2573 kthread_stop(kswapd
);
2576 static int __init
kswapd_init(void)
2581 for_each_node_state(nid
, N_HIGH_MEMORY
)
2583 hotcpu_notifier(cpu_callback
, 0);
2587 module_init(kswapd_init
)
2593 * If non-zero call zone_reclaim when the number of free pages falls below
2596 int zone_reclaim_mode __read_mostly
;
2598 #define RECLAIM_OFF 0
2599 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2600 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2601 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2604 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2605 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2608 #define ZONE_RECLAIM_PRIORITY 4
2611 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2614 int sysctl_min_unmapped_ratio
= 1;
2617 * If the number of slab pages in a zone grows beyond this percentage then
2618 * slab reclaim needs to occur.
2620 int sysctl_min_slab_ratio
= 5;
2622 static inline unsigned long zone_unmapped_file_pages(struct zone
*zone
)
2624 unsigned long file_mapped
= zone_page_state(zone
, NR_FILE_MAPPED
);
2625 unsigned long file_lru
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
2626 zone_page_state(zone
, NR_ACTIVE_FILE
);
2629 * It's possible for there to be more file mapped pages than
2630 * accounted for by the pages on the file LRU lists because
2631 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2633 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
2636 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2637 static long zone_pagecache_reclaimable(struct zone
*zone
)
2639 long nr_pagecache_reclaimable
;
2643 * If RECLAIM_SWAP is set, then all file pages are considered
2644 * potentially reclaimable. Otherwise, we have to worry about
2645 * pages like swapcache and zone_unmapped_file_pages() provides
2648 if (zone_reclaim_mode
& RECLAIM_SWAP
)
2649 nr_pagecache_reclaimable
= zone_page_state(zone
, NR_FILE_PAGES
);
2651 nr_pagecache_reclaimable
= zone_unmapped_file_pages(zone
);
2653 /* If we can't clean pages, remove dirty pages from consideration */
2654 if (!(zone_reclaim_mode
& RECLAIM_WRITE
))
2655 delta
+= zone_page_state(zone
, NR_FILE_DIRTY
);
2657 /* Watch for any possible underflows due to delta */
2658 if (unlikely(delta
> nr_pagecache_reclaimable
))
2659 delta
= nr_pagecache_reclaimable
;
2661 return nr_pagecache_reclaimable
- delta
;
2665 * Try to free up some pages from this zone through reclaim.
2667 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2669 /* Minimum pages needed in order to stay on node */
2670 const unsigned long nr_pages
= 1 << order
;
2671 struct task_struct
*p
= current
;
2672 struct reclaim_state reclaim_state
;
2674 struct scan_control sc
= {
2675 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
2676 .may_unmap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
2678 .nr_to_reclaim
= max_t(unsigned long, nr_pages
,
2680 .gfp_mask
= gfp_mask
,
2681 .swappiness
= vm_swappiness
,
2684 unsigned long nr_slab_pages0
, nr_slab_pages1
;
2688 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2689 * and we also need to be able to write out pages for RECLAIM_WRITE
2692 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
2693 lockdep_set_current_reclaim_state(gfp_mask
);
2694 reclaim_state
.reclaimed_slab
= 0;
2695 p
->reclaim_state
= &reclaim_state
;
2697 if (zone_pagecache_reclaimable(zone
) > zone
->min_unmapped_pages
) {
2699 * Free memory by calling shrink zone with increasing
2700 * priorities until we have enough memory freed.
2702 priority
= ZONE_RECLAIM_PRIORITY
;
2704 shrink_zone(priority
, zone
, &sc
);
2706 } while (priority
>= 0 && sc
.nr_reclaimed
< nr_pages
);
2709 nr_slab_pages0
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2710 if (nr_slab_pages0
> zone
->min_slab_pages
) {
2712 * shrink_slab() does not currently allow us to determine how
2713 * many pages were freed in this zone. So we take the current
2714 * number of slab pages and shake the slab until it is reduced
2715 * by the same nr_pages that we used for reclaiming unmapped
2718 * Note that shrink_slab will free memory on all zones and may
2722 unsigned long lru_pages
= zone_reclaimable_pages(zone
);
2724 /* No reclaimable slab or very low memory pressure */
2725 if (!shrink_slab(sc
.nr_scanned
, gfp_mask
, lru_pages
))
2728 /* Freed enough memory */
2729 nr_slab_pages1
= zone_page_state(zone
,
2730 NR_SLAB_RECLAIMABLE
);
2731 if (nr_slab_pages1
+ nr_pages
<= nr_slab_pages0
)
2736 * Update nr_reclaimed by the number of slab pages we
2737 * reclaimed from this zone.
2739 nr_slab_pages1
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2740 if (nr_slab_pages1
< nr_slab_pages0
)
2741 sc
.nr_reclaimed
+= nr_slab_pages0
- nr_slab_pages1
;
2744 p
->reclaim_state
= NULL
;
2745 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
2746 lockdep_clear_current_reclaim_state();
2747 return sc
.nr_reclaimed
>= nr_pages
;
2750 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2756 * Zone reclaim reclaims unmapped file backed pages and
2757 * slab pages if we are over the defined limits.
2759 * A small portion of unmapped file backed pages is needed for
2760 * file I/O otherwise pages read by file I/O will be immediately
2761 * thrown out if the zone is overallocated. So we do not reclaim
2762 * if less than a specified percentage of the zone is used by
2763 * unmapped file backed pages.
2765 if (zone_pagecache_reclaimable(zone
) <= zone
->min_unmapped_pages
&&
2766 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) <= zone
->min_slab_pages
)
2767 return ZONE_RECLAIM_FULL
;
2769 if (zone
->all_unreclaimable
)
2770 return ZONE_RECLAIM_FULL
;
2773 * Do not scan if the allocation should not be delayed.
2775 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
2776 return ZONE_RECLAIM_NOSCAN
;
2779 * Only run zone reclaim on the local zone or on zones that do not
2780 * have associated processors. This will favor the local processor
2781 * over remote processors and spread off node memory allocations
2782 * as wide as possible.
2784 node_id
= zone_to_nid(zone
);
2785 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
2786 return ZONE_RECLAIM_NOSCAN
;
2788 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
2789 return ZONE_RECLAIM_NOSCAN
;
2791 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
2792 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);
2795 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
2802 * page_evictable - test whether a page is evictable
2803 * @page: the page to test
2804 * @vma: the VMA in which the page is or will be mapped, may be NULL
2806 * Test whether page is evictable--i.e., should be placed on active/inactive
2807 * lists vs unevictable list. The vma argument is !NULL when called from the
2808 * fault path to determine how to instantate a new page.
2810 * Reasons page might not be evictable:
2811 * (1) page's mapping marked unevictable
2812 * (2) page is part of an mlocked VMA
2815 int page_evictable(struct page
*page
, struct vm_area_struct
*vma
)
2818 if (mapping_unevictable(page_mapping(page
)))
2821 if (PageMlocked(page
) || (vma
&& is_mlocked_vma(vma
, page
)))
2828 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2829 * @page: page to check evictability and move to appropriate lru list
2830 * @zone: zone page is in
2832 * Checks a page for evictability and moves the page to the appropriate
2835 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2836 * have PageUnevictable set.
2838 static void check_move_unevictable_page(struct page
*page
, struct zone
*zone
)
2840 VM_BUG_ON(PageActive(page
));
2843 ClearPageUnevictable(page
);
2844 if (page_evictable(page
, NULL
)) {
2845 enum lru_list l
= page_lru_base_type(page
);
2847 __dec_zone_state(zone
, NR_UNEVICTABLE
);
2848 list_move(&page
->lru
, &zone
->lru
[l
].list
);
2849 mem_cgroup_move_lists(page
, LRU_UNEVICTABLE
, l
);
2850 __inc_zone_state(zone
, NR_INACTIVE_ANON
+ l
);
2851 __count_vm_event(UNEVICTABLE_PGRESCUED
);
2854 * rotate unevictable list
2856 SetPageUnevictable(page
);
2857 list_move(&page
->lru
, &zone
->lru
[LRU_UNEVICTABLE
].list
);
2858 mem_cgroup_rotate_lru_list(page
, LRU_UNEVICTABLE
);
2859 if (page_evictable(page
, NULL
))
2865 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2866 * @mapping: struct address_space to scan for evictable pages
2868 * Scan all pages in mapping. Check unevictable pages for
2869 * evictability and move them to the appropriate zone lru list.
2871 void scan_mapping_unevictable_pages(struct address_space
*mapping
)
2874 pgoff_t end
= (i_size_read(mapping
->host
) + PAGE_CACHE_SIZE
- 1) >>
2877 struct pagevec pvec
;
2879 if (mapping
->nrpages
== 0)
2882 pagevec_init(&pvec
, 0);
2883 while (next
< end
&&
2884 pagevec_lookup(&pvec
, mapping
, next
, PAGEVEC_SIZE
)) {
2890 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
2891 struct page
*page
= pvec
.pages
[i
];
2892 pgoff_t page_index
= page
->index
;
2893 struct zone
*pagezone
= page_zone(page
);
2896 if (page_index
> next
)
2900 if (pagezone
!= zone
) {
2902 spin_unlock_irq(&zone
->lru_lock
);
2904 spin_lock_irq(&zone
->lru_lock
);
2907 if (PageLRU(page
) && PageUnevictable(page
))
2908 check_move_unevictable_page(page
, zone
);
2911 spin_unlock_irq(&zone
->lru_lock
);
2912 pagevec_release(&pvec
);
2914 count_vm_events(UNEVICTABLE_PGSCANNED
, pg_scanned
);
2920 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2921 * @zone - zone of which to scan the unevictable list
2923 * Scan @zone's unevictable LRU lists to check for pages that have become
2924 * evictable. Move those that have to @zone's inactive list where they
2925 * become candidates for reclaim, unless shrink_inactive_zone() decides
2926 * to reactivate them. Pages that are still unevictable are rotated
2927 * back onto @zone's unevictable list.
2929 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2930 static void scan_zone_unevictable_pages(struct zone
*zone
)
2932 struct list_head
*l_unevictable
= &zone
->lru
[LRU_UNEVICTABLE
].list
;
2934 unsigned long nr_to_scan
= zone_page_state(zone
, NR_UNEVICTABLE
);
2936 while (nr_to_scan
> 0) {
2937 unsigned long batch_size
= min(nr_to_scan
,
2938 SCAN_UNEVICTABLE_BATCH_SIZE
);
2940 spin_lock_irq(&zone
->lru_lock
);
2941 for (scan
= 0; scan
< batch_size
; scan
++) {
2942 struct page
*page
= lru_to_page(l_unevictable
);
2944 if (!trylock_page(page
))
2947 prefetchw_prev_lru_page(page
, l_unevictable
, flags
);
2949 if (likely(PageLRU(page
) && PageUnevictable(page
)))
2950 check_move_unevictable_page(page
, zone
);
2954 spin_unlock_irq(&zone
->lru_lock
);
2956 nr_to_scan
-= batch_size
;
2962 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2964 * A really big hammer: scan all zones' unevictable LRU lists to check for
2965 * pages that have become evictable. Move those back to the zones'
2966 * inactive list where they become candidates for reclaim.
2967 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2968 * and we add swap to the system. As such, it runs in the context of a task
2969 * that has possibly/probably made some previously unevictable pages
2972 static void scan_all_zones_unevictable_pages(void)
2976 for_each_zone(zone
) {
2977 scan_zone_unevictable_pages(zone
);
2982 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2983 * all nodes' unevictable lists for evictable pages
2985 unsigned long scan_unevictable_pages
;
2987 int scan_unevictable_handler(struct ctl_table
*table
, int write
,
2988 void __user
*buffer
,
2989 size_t *length
, loff_t
*ppos
)
2991 proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2993 if (write
&& *(unsigned long *)table
->data
)
2994 scan_all_zones_unevictable_pages();
2996 scan_unevictable_pages
= 0;
3002 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3003 * a specified node's per zone unevictable lists for evictable pages.
3006 static ssize_t
read_scan_unevictable_node(struct sys_device
*dev
,
3007 struct sysdev_attribute
*attr
,
3010 return sprintf(buf
, "0\n"); /* always zero; should fit... */
3013 static ssize_t
write_scan_unevictable_node(struct sys_device
*dev
,
3014 struct sysdev_attribute
*attr
,
3015 const char *buf
, size_t count
)
3017 struct zone
*node_zones
= NODE_DATA(dev
->id
)->node_zones
;
3020 unsigned long req
= strict_strtoul(buf
, 10, &res
);
3023 return 1; /* zero is no-op */
3025 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
3026 if (!populated_zone(zone
))
3028 scan_zone_unevictable_pages(zone
);
3034 static SYSDEV_ATTR(scan_unevictable_pages
, S_IRUGO
| S_IWUSR
,
3035 read_scan_unevictable_node
,
3036 write_scan_unevictable_node
);
3038 int scan_unevictable_register_node(struct node
*node
)
3040 return sysdev_create_file(&node
->sysdev
, &attr_scan_unevictable_pages
);
3043 void scan_unevictable_unregister_node(struct node
*node
)
3045 sysdev_remove_file(&node
->sysdev
, &attr_scan_unevictable_pages
);