intel-iommu: Introduce domain_sg_mapping() to speed up intel_map_sg()
[linux/fpc-iii.git] / fs / proc / task_mmu.c
blob6f61b7cc32e0e09c39aea2dd31cf64e2bc049060
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/mount.h>
4 #include <linux/seq_file.h>
5 #include <linux/highmem.h>
6 #include <linux/ptrace.h>
7 #include <linux/pagemap.h>
8 #include <linux/mempolicy.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
12 #include <asm/elf.h>
13 #include <asm/uaccess.h>
14 #include <asm/tlbflush.h>
15 #include "internal.h"
17 void task_mem(struct seq_file *m, struct mm_struct *mm)
19 unsigned long data, text, lib;
20 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
23 * Note: to minimize their overhead, mm maintains hiwater_vm and
24 * hiwater_rss only when about to *lower* total_vm or rss. Any
25 * collector of these hiwater stats must therefore get total_vm
26 * and rss too, which will usually be the higher. Barriers? not
27 * worth the effort, such snapshots can always be inconsistent.
29 hiwater_vm = total_vm = mm->total_vm;
30 if (hiwater_vm < mm->hiwater_vm)
31 hiwater_vm = mm->hiwater_vm;
32 hiwater_rss = total_rss = get_mm_rss(mm);
33 if (hiwater_rss < mm->hiwater_rss)
34 hiwater_rss = mm->hiwater_rss;
36 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
37 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
38 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
39 seq_printf(m,
40 "VmPeak:\t%8lu kB\n"
41 "VmSize:\t%8lu kB\n"
42 "VmLck:\t%8lu kB\n"
43 "VmHWM:\t%8lu kB\n"
44 "VmRSS:\t%8lu kB\n"
45 "VmData:\t%8lu kB\n"
46 "VmStk:\t%8lu kB\n"
47 "VmExe:\t%8lu kB\n"
48 "VmLib:\t%8lu kB\n"
49 "VmPTE:\t%8lu kB\n",
50 hiwater_vm << (PAGE_SHIFT-10),
51 (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
52 mm->locked_vm << (PAGE_SHIFT-10),
53 hiwater_rss << (PAGE_SHIFT-10),
54 total_rss << (PAGE_SHIFT-10),
55 data << (PAGE_SHIFT-10),
56 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
57 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10);
60 unsigned long task_vsize(struct mm_struct *mm)
62 return PAGE_SIZE * mm->total_vm;
65 int task_statm(struct mm_struct *mm, int *shared, int *text,
66 int *data, int *resident)
68 *shared = get_mm_counter(mm, file_rss);
69 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
70 >> PAGE_SHIFT;
71 *data = mm->total_vm - mm->shared_vm;
72 *resident = *shared + get_mm_counter(mm, anon_rss);
73 return mm->total_vm;
76 static void pad_len_spaces(struct seq_file *m, int len)
78 len = 25 + sizeof(void*) * 6 - len;
79 if (len < 1)
80 len = 1;
81 seq_printf(m, "%*c", len, ' ');
84 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
86 if (vma && vma != priv->tail_vma) {
87 struct mm_struct *mm = vma->vm_mm;
88 up_read(&mm->mmap_sem);
89 mmput(mm);
93 static void *m_start(struct seq_file *m, loff_t *pos)
95 struct proc_maps_private *priv = m->private;
96 unsigned long last_addr = m->version;
97 struct mm_struct *mm;
98 struct vm_area_struct *vma, *tail_vma = NULL;
99 loff_t l = *pos;
101 /* Clear the per syscall fields in priv */
102 priv->task = NULL;
103 priv->tail_vma = NULL;
106 * We remember last_addr rather than next_addr to hit with
107 * mmap_cache most of the time. We have zero last_addr at
108 * the beginning and also after lseek. We will have -1 last_addr
109 * after the end of the vmas.
112 if (last_addr == -1UL)
113 return NULL;
115 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
116 if (!priv->task)
117 return NULL;
119 mm = mm_for_maps(priv->task);
120 if (!mm)
121 return NULL;
123 tail_vma = get_gate_vma(priv->task);
124 priv->tail_vma = tail_vma;
126 /* Start with last addr hint */
127 vma = find_vma(mm, last_addr);
128 if (last_addr && vma) {
129 vma = vma->vm_next;
130 goto out;
134 * Check the vma index is within the range and do
135 * sequential scan until m_index.
137 vma = NULL;
138 if ((unsigned long)l < mm->map_count) {
139 vma = mm->mmap;
140 while (l-- && vma)
141 vma = vma->vm_next;
142 goto out;
145 if (l != mm->map_count)
146 tail_vma = NULL; /* After gate vma */
148 out:
149 if (vma)
150 return vma;
152 /* End of vmas has been reached */
153 m->version = (tail_vma != NULL)? 0: -1UL;
154 up_read(&mm->mmap_sem);
155 mmput(mm);
156 return tail_vma;
159 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
161 struct proc_maps_private *priv = m->private;
162 struct vm_area_struct *vma = v;
163 struct vm_area_struct *tail_vma = priv->tail_vma;
165 (*pos)++;
166 if (vma && (vma != tail_vma) && vma->vm_next)
167 return vma->vm_next;
168 vma_stop(priv, vma);
169 return (vma != tail_vma)? tail_vma: NULL;
172 static void m_stop(struct seq_file *m, void *v)
174 struct proc_maps_private *priv = m->private;
175 struct vm_area_struct *vma = v;
177 vma_stop(priv, vma);
178 if (priv->task)
179 put_task_struct(priv->task);
182 static int do_maps_open(struct inode *inode, struct file *file,
183 const struct seq_operations *ops)
185 struct proc_maps_private *priv;
186 int ret = -ENOMEM;
187 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
188 if (priv) {
189 priv->pid = proc_pid(inode);
190 ret = seq_open(file, ops);
191 if (!ret) {
192 struct seq_file *m = file->private_data;
193 m->private = priv;
194 } else {
195 kfree(priv);
198 return ret;
201 static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
203 struct mm_struct *mm = vma->vm_mm;
204 struct file *file = vma->vm_file;
205 int flags = vma->vm_flags;
206 unsigned long ino = 0;
207 unsigned long long pgoff = 0;
208 dev_t dev = 0;
209 int len;
211 if (file) {
212 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
213 dev = inode->i_sb->s_dev;
214 ino = inode->i_ino;
215 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
218 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
219 vma->vm_start,
220 vma->vm_end,
221 flags & VM_READ ? 'r' : '-',
222 flags & VM_WRITE ? 'w' : '-',
223 flags & VM_EXEC ? 'x' : '-',
224 flags & VM_MAYSHARE ? 's' : 'p',
225 pgoff,
226 MAJOR(dev), MINOR(dev), ino, &len);
229 * Print the dentry name for named mappings, and a
230 * special [heap] marker for the heap:
232 if (file) {
233 pad_len_spaces(m, len);
234 seq_path(m, &file->f_path, "\n");
235 } else {
236 const char *name = arch_vma_name(vma);
237 if (!name) {
238 if (mm) {
239 if (vma->vm_start <= mm->start_brk &&
240 vma->vm_end >= mm->brk) {
241 name = "[heap]";
242 } else if (vma->vm_start <= mm->start_stack &&
243 vma->vm_end >= mm->start_stack) {
244 name = "[stack]";
246 } else {
247 name = "[vdso]";
250 if (name) {
251 pad_len_spaces(m, len);
252 seq_puts(m, name);
255 seq_putc(m, '\n');
258 static int show_map(struct seq_file *m, void *v)
260 struct vm_area_struct *vma = v;
261 struct proc_maps_private *priv = m->private;
262 struct task_struct *task = priv->task;
264 show_map_vma(m, vma);
266 if (m->count < m->size) /* vma is copied successfully */
267 m->version = (vma != get_gate_vma(task))? vma->vm_start: 0;
268 return 0;
271 static const struct seq_operations proc_pid_maps_op = {
272 .start = m_start,
273 .next = m_next,
274 .stop = m_stop,
275 .show = show_map
278 static int maps_open(struct inode *inode, struct file *file)
280 return do_maps_open(inode, file, &proc_pid_maps_op);
283 const struct file_operations proc_maps_operations = {
284 .open = maps_open,
285 .read = seq_read,
286 .llseek = seq_lseek,
287 .release = seq_release_private,
291 * Proportional Set Size(PSS): my share of RSS.
293 * PSS of a process is the count of pages it has in memory, where each
294 * page is divided by the number of processes sharing it. So if a
295 * process has 1000 pages all to itself, and 1000 shared with one other
296 * process, its PSS will be 1500.
298 * To keep (accumulated) division errors low, we adopt a 64bit
299 * fixed-point pss counter to minimize division errors. So (pss >>
300 * PSS_SHIFT) would be the real byte count.
302 * A shift of 12 before division means (assuming 4K page size):
303 * - 1M 3-user-pages add up to 8KB errors;
304 * - supports mapcount up to 2^24, or 16M;
305 * - supports PSS up to 2^52 bytes, or 4PB.
307 #define PSS_SHIFT 12
309 #ifdef CONFIG_PROC_PAGE_MONITOR
310 struct mem_size_stats {
311 struct vm_area_struct *vma;
312 unsigned long resident;
313 unsigned long shared_clean;
314 unsigned long shared_dirty;
315 unsigned long private_clean;
316 unsigned long private_dirty;
317 unsigned long referenced;
318 unsigned long swap;
319 u64 pss;
322 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
323 struct mm_walk *walk)
325 struct mem_size_stats *mss = walk->private;
326 struct vm_area_struct *vma = mss->vma;
327 pte_t *pte, ptent;
328 spinlock_t *ptl;
329 struct page *page;
330 int mapcount;
332 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
333 for (; addr != end; pte++, addr += PAGE_SIZE) {
334 ptent = *pte;
336 if (is_swap_pte(ptent)) {
337 mss->swap += PAGE_SIZE;
338 continue;
341 if (!pte_present(ptent))
342 continue;
344 mss->resident += PAGE_SIZE;
346 page = vm_normal_page(vma, addr, ptent);
347 if (!page)
348 continue;
350 /* Accumulate the size in pages that have been accessed. */
351 if (pte_young(ptent) || PageReferenced(page))
352 mss->referenced += PAGE_SIZE;
353 mapcount = page_mapcount(page);
354 if (mapcount >= 2) {
355 if (pte_dirty(ptent))
356 mss->shared_dirty += PAGE_SIZE;
357 else
358 mss->shared_clean += PAGE_SIZE;
359 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
360 } else {
361 if (pte_dirty(ptent))
362 mss->private_dirty += PAGE_SIZE;
363 else
364 mss->private_clean += PAGE_SIZE;
365 mss->pss += (PAGE_SIZE << PSS_SHIFT);
368 pte_unmap_unlock(pte - 1, ptl);
369 cond_resched();
370 return 0;
373 static int show_smap(struct seq_file *m, void *v)
375 struct proc_maps_private *priv = m->private;
376 struct task_struct *task = priv->task;
377 struct vm_area_struct *vma = v;
378 struct mem_size_stats mss;
379 struct mm_walk smaps_walk = {
380 .pmd_entry = smaps_pte_range,
381 .mm = vma->vm_mm,
382 .private = &mss,
385 memset(&mss, 0, sizeof mss);
386 mss.vma = vma;
387 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
388 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
390 show_map_vma(m, vma);
392 seq_printf(m,
393 "Size: %8lu kB\n"
394 "Rss: %8lu kB\n"
395 "Pss: %8lu kB\n"
396 "Shared_Clean: %8lu kB\n"
397 "Shared_Dirty: %8lu kB\n"
398 "Private_Clean: %8lu kB\n"
399 "Private_Dirty: %8lu kB\n"
400 "Referenced: %8lu kB\n"
401 "Swap: %8lu kB\n"
402 "KernelPageSize: %8lu kB\n"
403 "MMUPageSize: %8lu kB\n",
404 (vma->vm_end - vma->vm_start) >> 10,
405 mss.resident >> 10,
406 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
407 mss.shared_clean >> 10,
408 mss.shared_dirty >> 10,
409 mss.private_clean >> 10,
410 mss.private_dirty >> 10,
411 mss.referenced >> 10,
412 mss.swap >> 10,
413 vma_kernel_pagesize(vma) >> 10,
414 vma_mmu_pagesize(vma) >> 10);
416 if (m->count < m->size) /* vma is copied successfully */
417 m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0;
418 return 0;
421 static const struct seq_operations proc_pid_smaps_op = {
422 .start = m_start,
423 .next = m_next,
424 .stop = m_stop,
425 .show = show_smap
428 static int smaps_open(struct inode *inode, struct file *file)
430 return do_maps_open(inode, file, &proc_pid_smaps_op);
433 const struct file_operations proc_smaps_operations = {
434 .open = smaps_open,
435 .read = seq_read,
436 .llseek = seq_lseek,
437 .release = seq_release_private,
440 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
441 unsigned long end, struct mm_walk *walk)
443 struct vm_area_struct *vma = walk->private;
444 pte_t *pte, ptent;
445 spinlock_t *ptl;
446 struct page *page;
448 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
449 for (; addr != end; pte++, addr += PAGE_SIZE) {
450 ptent = *pte;
451 if (!pte_present(ptent))
452 continue;
454 page = vm_normal_page(vma, addr, ptent);
455 if (!page)
456 continue;
458 /* Clear accessed and referenced bits. */
459 ptep_test_and_clear_young(vma, addr, pte);
460 ClearPageReferenced(page);
462 pte_unmap_unlock(pte - 1, ptl);
463 cond_resched();
464 return 0;
467 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
468 size_t count, loff_t *ppos)
470 struct task_struct *task;
471 char buffer[PROC_NUMBUF], *end;
472 struct mm_struct *mm;
473 struct vm_area_struct *vma;
475 memset(buffer, 0, sizeof(buffer));
476 if (count > sizeof(buffer) - 1)
477 count = sizeof(buffer) - 1;
478 if (copy_from_user(buffer, buf, count))
479 return -EFAULT;
480 if (!simple_strtol(buffer, &end, 0))
481 return -EINVAL;
482 if (*end == '\n')
483 end++;
484 task = get_proc_task(file->f_path.dentry->d_inode);
485 if (!task)
486 return -ESRCH;
487 mm = get_task_mm(task);
488 if (mm) {
489 struct mm_walk clear_refs_walk = {
490 .pmd_entry = clear_refs_pte_range,
491 .mm = mm,
493 down_read(&mm->mmap_sem);
494 for (vma = mm->mmap; vma; vma = vma->vm_next) {
495 clear_refs_walk.private = vma;
496 if (!is_vm_hugetlb_page(vma))
497 walk_page_range(vma->vm_start, vma->vm_end,
498 &clear_refs_walk);
500 flush_tlb_mm(mm);
501 up_read(&mm->mmap_sem);
502 mmput(mm);
504 put_task_struct(task);
505 if (end - buffer == 0)
506 return -EIO;
507 return end - buffer;
510 const struct file_operations proc_clear_refs_operations = {
511 .write = clear_refs_write,
514 struct pagemapread {
515 u64 __user *out, *end;
518 #define PM_ENTRY_BYTES sizeof(u64)
519 #define PM_STATUS_BITS 3
520 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
521 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
522 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
523 #define PM_PSHIFT_BITS 6
524 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
525 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
526 #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
527 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
528 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
530 #define PM_PRESENT PM_STATUS(4LL)
531 #define PM_SWAP PM_STATUS(2LL)
532 #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
533 #define PM_END_OF_BUFFER 1
535 static int add_to_pagemap(unsigned long addr, u64 pfn,
536 struct pagemapread *pm)
538 if (put_user(pfn, pm->out))
539 return -EFAULT;
540 pm->out++;
541 if (pm->out >= pm->end)
542 return PM_END_OF_BUFFER;
543 return 0;
546 static int pagemap_pte_hole(unsigned long start, unsigned long end,
547 struct mm_walk *walk)
549 struct pagemapread *pm = walk->private;
550 unsigned long addr;
551 int err = 0;
552 for (addr = start; addr < end; addr += PAGE_SIZE) {
553 err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
554 if (err)
555 break;
557 return err;
560 static u64 swap_pte_to_pagemap_entry(pte_t pte)
562 swp_entry_t e = pte_to_swp_entry(pte);
563 return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
566 static u64 pte_to_pagemap_entry(pte_t pte)
568 u64 pme = 0;
569 if (is_swap_pte(pte))
570 pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
571 | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
572 else if (pte_present(pte))
573 pme = PM_PFRAME(pte_pfn(pte))
574 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
575 return pme;
578 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
579 struct mm_walk *walk)
581 struct vm_area_struct *vma;
582 struct pagemapread *pm = walk->private;
583 pte_t *pte;
584 int err = 0;
586 /* find the first VMA at or above 'addr' */
587 vma = find_vma(walk->mm, addr);
588 for (; addr != end; addr += PAGE_SIZE) {
589 u64 pfn = PM_NOT_PRESENT;
591 /* check to see if we've left 'vma' behind
592 * and need a new, higher one */
593 if (vma && (addr >= vma->vm_end))
594 vma = find_vma(walk->mm, addr);
596 /* check that 'vma' actually covers this address,
597 * and that it isn't a huge page vma */
598 if (vma && (vma->vm_start <= addr) &&
599 !is_vm_hugetlb_page(vma)) {
600 pte = pte_offset_map(pmd, addr);
601 pfn = pte_to_pagemap_entry(*pte);
602 /* unmap before userspace copy */
603 pte_unmap(pte);
605 err = add_to_pagemap(addr, pfn, pm);
606 if (err)
607 return err;
610 cond_resched();
612 return err;
616 * /proc/pid/pagemap - an array mapping virtual pages to pfns
618 * For each page in the address space, this file contains one 64-bit entry
619 * consisting of the following:
621 * Bits 0-55 page frame number (PFN) if present
622 * Bits 0-4 swap type if swapped
623 * Bits 5-55 swap offset if swapped
624 * Bits 55-60 page shift (page size = 1<<page shift)
625 * Bit 61 reserved for future use
626 * Bit 62 page swapped
627 * Bit 63 page present
629 * If the page is not present but in swap, then the PFN contains an
630 * encoding of the swap file number and the page's offset into the
631 * swap. Unmapped pages return a null PFN. This allows determining
632 * precisely which pages are mapped (or in swap) and comparing mapped
633 * pages between processes.
635 * Efficient users of this interface will use /proc/pid/maps to
636 * determine which areas of memory are actually mapped and llseek to
637 * skip over unmapped regions.
639 static ssize_t pagemap_read(struct file *file, char __user *buf,
640 size_t count, loff_t *ppos)
642 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
643 struct page **pages, *page;
644 unsigned long uaddr, uend;
645 struct mm_struct *mm;
646 struct pagemapread pm;
647 int pagecount;
648 int ret = -ESRCH;
649 struct mm_walk pagemap_walk = {};
650 unsigned long src;
651 unsigned long svpfn;
652 unsigned long start_vaddr;
653 unsigned long end_vaddr;
655 if (!task)
656 goto out;
658 ret = -EACCES;
659 if (!ptrace_may_access(task, PTRACE_MODE_READ))
660 goto out_task;
662 ret = -EINVAL;
663 /* file position must be aligned */
664 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
665 goto out_task;
667 ret = 0;
669 if (!count)
670 goto out_task;
672 mm = get_task_mm(task);
673 if (!mm)
674 goto out_task;
677 uaddr = (unsigned long)buf & PAGE_MASK;
678 uend = (unsigned long)(buf + count);
679 pagecount = (PAGE_ALIGN(uend) - uaddr) / PAGE_SIZE;
680 ret = 0;
681 if (pagecount == 0)
682 goto out_mm;
683 pages = kcalloc(pagecount, sizeof(struct page *), GFP_KERNEL);
684 ret = -ENOMEM;
685 if (!pages)
686 goto out_mm;
688 down_read(&current->mm->mmap_sem);
689 ret = get_user_pages(current, current->mm, uaddr, pagecount,
690 1, 0, pages, NULL);
691 up_read(&current->mm->mmap_sem);
693 if (ret < 0)
694 goto out_free;
696 if (ret != pagecount) {
697 pagecount = ret;
698 ret = -EFAULT;
699 goto out_pages;
702 pm.out = (u64 __user *)buf;
703 pm.end = (u64 __user *)(buf + count);
705 pagemap_walk.pmd_entry = pagemap_pte_range;
706 pagemap_walk.pte_hole = pagemap_pte_hole;
707 pagemap_walk.mm = mm;
708 pagemap_walk.private = &pm;
710 src = *ppos;
711 svpfn = src / PM_ENTRY_BYTES;
712 start_vaddr = svpfn << PAGE_SHIFT;
713 end_vaddr = TASK_SIZE_OF(task);
715 /* watch out for wraparound */
716 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
717 start_vaddr = end_vaddr;
720 * The odds are that this will stop walking way
721 * before end_vaddr, because the length of the
722 * user buffer is tracked in "pm", and the walk
723 * will stop when we hit the end of the buffer.
725 ret = walk_page_range(start_vaddr, end_vaddr, &pagemap_walk);
726 if (ret == PM_END_OF_BUFFER)
727 ret = 0;
728 /* don't need mmap_sem for these, but this looks cleaner */
729 *ppos += (char __user *)pm.out - buf;
730 if (!ret)
731 ret = (char __user *)pm.out - buf;
733 out_pages:
734 for (; pagecount; pagecount--) {
735 page = pages[pagecount-1];
736 if (!PageReserved(page))
737 SetPageDirty(page);
738 page_cache_release(page);
740 out_free:
741 kfree(pages);
742 out_mm:
743 mmput(mm);
744 out_task:
745 put_task_struct(task);
746 out:
747 return ret;
750 const struct file_operations proc_pagemap_operations = {
751 .llseek = mem_lseek, /* borrow this */
752 .read = pagemap_read,
754 #endif /* CONFIG_PROC_PAGE_MONITOR */
756 #ifdef CONFIG_NUMA
757 extern int show_numa_map(struct seq_file *m, void *v);
759 static const struct seq_operations proc_pid_numa_maps_op = {
760 .start = m_start,
761 .next = m_next,
762 .stop = m_stop,
763 .show = show_numa_map,
766 static int numa_maps_open(struct inode *inode, struct file *file)
768 return do_maps_open(inode, file, &proc_pid_numa_maps_op);
771 const struct file_operations proc_numa_maps_operations = {
772 .open = numa_maps_open,
773 .read = seq_read,
774 .llseek = seq_lseek,
775 .release = seq_release_private,
777 #endif