2 * Copyright (c) 2016 Avago Technologies. All rights reserved.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful.
9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13 * See the GNU General Public License for more details, a copy of which
14 * can be found in the file COPYING included with this package
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
30 /* *************************** Data Structures/Defines ****************** */
33 enum nvme_fc_queue_flags
{
34 NVME_FC_Q_CONNECTED
= 0,
38 #define NVMEFC_QUEUE_DELAY 3 /* ms units */
40 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */
42 struct nvme_fc_queue
{
43 struct nvme_fc_ctrl
*ctrl
;
45 struct blk_mq_hw_ctx
*hctx
;
47 size_t cmnd_capsule_len
;
56 } __aligned(sizeof(u64
)); /* alignment for other things alloc'd with */
58 enum nvme_fcop_flags
{
59 FCOP_FLAGS_TERMIO
= (1 << 0),
60 FCOP_FLAGS_RELEASED
= (1 << 1),
61 FCOP_FLAGS_COMPLETE
= (1 << 2),
62 FCOP_FLAGS_AEN
= (1 << 3),
65 struct nvmefc_ls_req_op
{
66 struct nvmefc_ls_req ls_req
;
68 struct nvme_fc_rport
*rport
;
69 struct nvme_fc_queue
*queue
;
74 struct completion ls_done
;
75 struct list_head lsreq_list
; /* rport->ls_req_list */
79 enum nvme_fcpop_state
{
80 FCPOP_STATE_UNINIT
= 0,
82 FCPOP_STATE_ACTIVE
= 2,
83 FCPOP_STATE_ABORTED
= 3,
84 FCPOP_STATE_COMPLETE
= 4,
87 struct nvme_fc_fcp_op
{
88 struct nvme_request nreq
; /*
91 * the 1st element in the
96 struct nvmefc_fcp_req fcp_req
;
98 struct nvme_fc_ctrl
*ctrl
;
99 struct nvme_fc_queue
*queue
;
107 struct nvme_fc_cmd_iu cmd_iu
;
108 struct nvme_fc_ersp_iu rsp_iu
;
111 struct nvme_fc_lport
{
112 struct nvme_fc_local_port localport
;
115 struct list_head port_list
; /* nvme_fc_port_list */
116 struct list_head endp_list
;
117 struct device
*dev
; /* physical device for dma */
118 struct nvme_fc_port_template
*ops
;
120 atomic_t act_rport_cnt
;
121 } __aligned(sizeof(u64
)); /* alignment for other things alloc'd with */
123 struct nvme_fc_rport
{
124 struct nvme_fc_remote_port remoteport
;
126 struct list_head endp_list
; /* for lport->endp_list */
127 struct list_head ctrl_list
;
128 struct list_head ls_req_list
;
129 struct device
*dev
; /* physical device for dma */
130 struct nvme_fc_lport
*lport
;
133 atomic_t act_ctrl_cnt
;
134 unsigned long dev_loss_end
;
135 } __aligned(sizeof(u64
)); /* alignment for other things alloc'd with */
137 enum nvme_fcctrl_flags
{
138 FCCTRL_TERMIO
= (1 << 0),
141 struct nvme_fc_ctrl
{
143 struct nvme_fc_queue
*queues
;
145 struct nvme_fc_lport
*lport
;
146 struct nvme_fc_rport
*rport
;
152 struct list_head ctrl_list
; /* rport->ctrl_list */
154 struct blk_mq_tag_set admin_tag_set
;
155 struct blk_mq_tag_set tag_set
;
157 struct delayed_work connect_work
;
162 wait_queue_head_t ioabort_wait
;
164 struct nvme_fc_fcp_op aen_ops
[NVME_NR_AEN_COMMANDS
];
166 struct nvme_ctrl ctrl
;
169 static inline struct nvme_fc_ctrl
*
170 to_fc_ctrl(struct nvme_ctrl
*ctrl
)
172 return container_of(ctrl
, struct nvme_fc_ctrl
, ctrl
);
175 static inline struct nvme_fc_lport
*
176 localport_to_lport(struct nvme_fc_local_port
*portptr
)
178 return container_of(portptr
, struct nvme_fc_lport
, localport
);
181 static inline struct nvme_fc_rport
*
182 remoteport_to_rport(struct nvme_fc_remote_port
*portptr
)
184 return container_of(portptr
, struct nvme_fc_rport
, remoteport
);
187 static inline struct nvmefc_ls_req_op
*
188 ls_req_to_lsop(struct nvmefc_ls_req
*lsreq
)
190 return container_of(lsreq
, struct nvmefc_ls_req_op
, ls_req
);
193 static inline struct nvme_fc_fcp_op
*
194 fcp_req_to_fcp_op(struct nvmefc_fcp_req
*fcpreq
)
196 return container_of(fcpreq
, struct nvme_fc_fcp_op
, fcp_req
);
201 /* *************************** Globals **************************** */
204 static DEFINE_SPINLOCK(nvme_fc_lock
);
206 static LIST_HEAD(nvme_fc_lport_list
);
207 static DEFINE_IDA(nvme_fc_local_port_cnt
);
208 static DEFINE_IDA(nvme_fc_ctrl_cnt
);
213 * These items are short-term. They will eventually be moved into
214 * a generic FC class. See comments in module init.
216 static struct class *fc_class
;
217 static struct device
*fc_udev_device
;
220 /* *********************** FC-NVME Port Management ************************ */
222 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl
*,
223 struct nvme_fc_queue
*, unsigned int);
226 nvme_fc_free_lport(struct kref
*ref
)
228 struct nvme_fc_lport
*lport
=
229 container_of(ref
, struct nvme_fc_lport
, ref
);
232 WARN_ON(lport
->localport
.port_state
!= FC_OBJSTATE_DELETED
);
233 WARN_ON(!list_empty(&lport
->endp_list
));
235 /* remove from transport list */
236 spin_lock_irqsave(&nvme_fc_lock
, flags
);
237 list_del(&lport
->port_list
);
238 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
240 ida_simple_remove(&nvme_fc_local_port_cnt
, lport
->localport
.port_num
);
241 ida_destroy(&lport
->endp_cnt
);
243 put_device(lport
->dev
);
249 nvme_fc_lport_put(struct nvme_fc_lport
*lport
)
251 kref_put(&lport
->ref
, nvme_fc_free_lport
);
255 nvme_fc_lport_get(struct nvme_fc_lport
*lport
)
257 return kref_get_unless_zero(&lport
->ref
);
261 static struct nvme_fc_lport
*
262 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info
*pinfo
,
263 struct nvme_fc_port_template
*ops
,
266 struct nvme_fc_lport
*lport
;
269 spin_lock_irqsave(&nvme_fc_lock
, flags
);
271 list_for_each_entry(lport
, &nvme_fc_lport_list
, port_list
) {
272 if (lport
->localport
.node_name
!= pinfo
->node_name
||
273 lport
->localport
.port_name
!= pinfo
->port_name
)
276 if (lport
->dev
!= dev
) {
277 lport
= ERR_PTR(-EXDEV
);
281 if (lport
->localport
.port_state
!= FC_OBJSTATE_DELETED
) {
282 lport
= ERR_PTR(-EEXIST
);
286 if (!nvme_fc_lport_get(lport
)) {
288 * fails if ref cnt already 0. If so,
289 * act as if lport already deleted
295 /* resume the lport */
298 lport
->localport
.port_role
= pinfo
->port_role
;
299 lport
->localport
.port_id
= pinfo
->port_id
;
300 lport
->localport
.port_state
= FC_OBJSTATE_ONLINE
;
302 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
310 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
316 * nvme_fc_register_localport - transport entry point called by an
317 * LLDD to register the existence of a NVME
319 * @pinfo: pointer to information about the port to be registered
320 * @template: LLDD entrypoints and operational parameters for the port
321 * @dev: physical hardware device node port corresponds to. Will be
322 * used for DMA mappings
323 * @lport_p: pointer to a local port pointer. Upon success, the routine
324 * will allocate a nvme_fc_local_port structure and place its
325 * address in the local port pointer. Upon failure, local port
326 * pointer will be set to 0.
329 * a completion status. Must be 0 upon success; a negative errno
330 * (ex: -ENXIO) upon failure.
333 nvme_fc_register_localport(struct nvme_fc_port_info
*pinfo
,
334 struct nvme_fc_port_template
*template,
336 struct nvme_fc_local_port
**portptr
)
338 struct nvme_fc_lport
*newrec
;
342 if (!template->localport_delete
|| !template->remoteport_delete
||
343 !template->ls_req
|| !template->fcp_io
||
344 !template->ls_abort
|| !template->fcp_abort
||
345 !template->max_hw_queues
|| !template->max_sgl_segments
||
346 !template->max_dif_sgl_segments
|| !template->dma_boundary
) {
348 goto out_reghost_failed
;
352 * look to see if there is already a localport that had been
353 * deregistered and in the process of waiting for all the
354 * references to fully be removed. If the references haven't
355 * expired, we can simply re-enable the localport. Remoteports
356 * and controller reconnections should resume naturally.
358 newrec
= nvme_fc_attach_to_unreg_lport(pinfo
, template, dev
);
360 /* found an lport, but something about its state is bad */
361 if (IS_ERR(newrec
)) {
362 ret
= PTR_ERR(newrec
);
363 goto out_reghost_failed
;
365 /* found existing lport, which was resumed */
367 *portptr
= &newrec
->localport
;
371 /* nothing found - allocate a new localport struct */
373 newrec
= kmalloc((sizeof(*newrec
) + template->local_priv_sz
),
377 goto out_reghost_failed
;
380 idx
= ida_simple_get(&nvme_fc_local_port_cnt
, 0, 0, GFP_KERNEL
);
386 if (!get_device(dev
) && dev
) {
391 INIT_LIST_HEAD(&newrec
->port_list
);
392 INIT_LIST_HEAD(&newrec
->endp_list
);
393 kref_init(&newrec
->ref
);
394 atomic_set(&newrec
->act_rport_cnt
, 0);
395 newrec
->ops
= template;
397 ida_init(&newrec
->endp_cnt
);
398 newrec
->localport
.private = &newrec
[1];
399 newrec
->localport
.node_name
= pinfo
->node_name
;
400 newrec
->localport
.port_name
= pinfo
->port_name
;
401 newrec
->localport
.port_role
= pinfo
->port_role
;
402 newrec
->localport
.port_id
= pinfo
->port_id
;
403 newrec
->localport
.port_state
= FC_OBJSTATE_ONLINE
;
404 newrec
->localport
.port_num
= idx
;
406 spin_lock_irqsave(&nvme_fc_lock
, flags
);
407 list_add_tail(&newrec
->port_list
, &nvme_fc_lport_list
);
408 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
411 dma_set_seg_boundary(dev
, template->dma_boundary
);
413 *portptr
= &newrec
->localport
;
417 ida_simple_remove(&nvme_fc_local_port_cnt
, idx
);
425 EXPORT_SYMBOL_GPL(nvme_fc_register_localport
);
428 * nvme_fc_unregister_localport - transport entry point called by an
429 * LLDD to deregister/remove a previously
430 * registered a NVME host FC port.
431 * @localport: pointer to the (registered) local port that is to be
435 * a completion status. Must be 0 upon success; a negative errno
436 * (ex: -ENXIO) upon failure.
439 nvme_fc_unregister_localport(struct nvme_fc_local_port
*portptr
)
441 struct nvme_fc_lport
*lport
= localport_to_lport(portptr
);
447 spin_lock_irqsave(&nvme_fc_lock
, flags
);
449 if (portptr
->port_state
!= FC_OBJSTATE_ONLINE
) {
450 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
453 portptr
->port_state
= FC_OBJSTATE_DELETED
;
455 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
457 if (atomic_read(&lport
->act_rport_cnt
) == 0)
458 lport
->ops
->localport_delete(&lport
->localport
);
460 nvme_fc_lport_put(lport
);
464 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport
);
467 * TRADDR strings, per FC-NVME are fixed format:
468 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
469 * udev event will only differ by prefix of what field is
471 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
472 * 19 + 43 + null_fudge = 64 characters
474 #define FCNVME_TRADDR_LENGTH 64
477 nvme_fc_signal_discovery_scan(struct nvme_fc_lport
*lport
,
478 struct nvme_fc_rport
*rport
)
480 char hostaddr
[FCNVME_TRADDR_LENGTH
]; /* NVMEFC_HOST_TRADDR=...*/
481 char tgtaddr
[FCNVME_TRADDR_LENGTH
]; /* NVMEFC_TRADDR=...*/
482 char *envp
[4] = { "FC_EVENT=nvmediscovery", hostaddr
, tgtaddr
, NULL
};
484 if (!(rport
->remoteport
.port_role
& FC_PORT_ROLE_NVME_DISCOVERY
))
487 snprintf(hostaddr
, sizeof(hostaddr
),
488 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
489 lport
->localport
.node_name
, lport
->localport
.port_name
);
490 snprintf(tgtaddr
, sizeof(tgtaddr
),
491 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
492 rport
->remoteport
.node_name
, rport
->remoteport
.port_name
);
493 kobject_uevent_env(&fc_udev_device
->kobj
, KOBJ_CHANGE
, envp
);
497 nvme_fc_free_rport(struct kref
*ref
)
499 struct nvme_fc_rport
*rport
=
500 container_of(ref
, struct nvme_fc_rport
, ref
);
501 struct nvme_fc_lport
*lport
=
502 localport_to_lport(rport
->remoteport
.localport
);
505 WARN_ON(rport
->remoteport
.port_state
!= FC_OBJSTATE_DELETED
);
506 WARN_ON(!list_empty(&rport
->ctrl_list
));
508 /* remove from lport list */
509 spin_lock_irqsave(&nvme_fc_lock
, flags
);
510 list_del(&rport
->endp_list
);
511 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
513 ida_simple_remove(&lport
->endp_cnt
, rport
->remoteport
.port_num
);
517 nvme_fc_lport_put(lport
);
521 nvme_fc_rport_put(struct nvme_fc_rport
*rport
)
523 kref_put(&rport
->ref
, nvme_fc_free_rport
);
527 nvme_fc_rport_get(struct nvme_fc_rport
*rport
)
529 return kref_get_unless_zero(&rport
->ref
);
533 nvme_fc_resume_controller(struct nvme_fc_ctrl
*ctrl
)
535 switch (ctrl
->ctrl
.state
) {
537 case NVME_CTRL_RECONNECTING
:
539 * As all reconnects were suppressed, schedule a
542 dev_info(ctrl
->ctrl
.device
,
543 "NVME-FC{%d}: connectivity re-established. "
544 "Attempting reconnect\n", ctrl
->cnum
);
546 queue_delayed_work(nvme_wq
, &ctrl
->connect_work
, 0);
549 case NVME_CTRL_RESETTING
:
551 * Controller is already in the process of terminating the
552 * association. No need to do anything further. The reconnect
553 * step will naturally occur after the reset completes.
558 /* no action to take - let it delete */
563 static struct nvme_fc_rport
*
564 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport
*lport
,
565 struct nvme_fc_port_info
*pinfo
)
567 struct nvme_fc_rport
*rport
;
568 struct nvme_fc_ctrl
*ctrl
;
571 spin_lock_irqsave(&nvme_fc_lock
, flags
);
573 list_for_each_entry(rport
, &lport
->endp_list
, endp_list
) {
574 if (rport
->remoteport
.node_name
!= pinfo
->node_name
||
575 rport
->remoteport
.port_name
!= pinfo
->port_name
)
578 if (!nvme_fc_rport_get(rport
)) {
579 rport
= ERR_PTR(-ENOLCK
);
583 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
585 spin_lock_irqsave(&rport
->lock
, flags
);
587 /* has it been unregistered */
588 if (rport
->remoteport
.port_state
!= FC_OBJSTATE_DELETED
) {
589 /* means lldd called us twice */
590 spin_unlock_irqrestore(&rport
->lock
, flags
);
591 nvme_fc_rport_put(rport
);
592 return ERR_PTR(-ESTALE
);
595 rport
->remoteport
.port_state
= FC_OBJSTATE_ONLINE
;
596 rport
->dev_loss_end
= 0;
599 * kick off a reconnect attempt on all associations to the
600 * remote port. A successful reconnects will resume i/o.
602 list_for_each_entry(ctrl
, &rport
->ctrl_list
, ctrl_list
)
603 nvme_fc_resume_controller(ctrl
);
605 spin_unlock_irqrestore(&rport
->lock
, flags
);
613 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
619 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport
*rport
,
620 struct nvme_fc_port_info
*pinfo
)
622 if (pinfo
->dev_loss_tmo
)
623 rport
->remoteport
.dev_loss_tmo
= pinfo
->dev_loss_tmo
;
625 rport
->remoteport
.dev_loss_tmo
= NVME_FC_DEFAULT_DEV_LOSS_TMO
;
629 * nvme_fc_register_remoteport - transport entry point called by an
630 * LLDD to register the existence of a NVME
631 * subsystem FC port on its fabric.
632 * @localport: pointer to the (registered) local port that the remote
633 * subsystem port is connected to.
634 * @pinfo: pointer to information about the port to be registered
635 * @rport_p: pointer to a remote port pointer. Upon success, the routine
636 * will allocate a nvme_fc_remote_port structure and place its
637 * address in the remote port pointer. Upon failure, remote port
638 * pointer will be set to 0.
641 * a completion status. Must be 0 upon success; a negative errno
642 * (ex: -ENXIO) upon failure.
645 nvme_fc_register_remoteport(struct nvme_fc_local_port
*localport
,
646 struct nvme_fc_port_info
*pinfo
,
647 struct nvme_fc_remote_port
**portptr
)
649 struct nvme_fc_lport
*lport
= localport_to_lport(localport
);
650 struct nvme_fc_rport
*newrec
;
654 if (!nvme_fc_lport_get(lport
)) {
656 goto out_reghost_failed
;
660 * look to see if there is already a remoteport that is waiting
661 * for a reconnect (within dev_loss_tmo) with the same WWN's.
662 * If so, transition to it and reconnect.
664 newrec
= nvme_fc_attach_to_suspended_rport(lport
, pinfo
);
666 /* found an rport, but something about its state is bad */
667 if (IS_ERR(newrec
)) {
668 ret
= PTR_ERR(newrec
);
671 /* found existing rport, which was resumed */
673 nvme_fc_lport_put(lport
);
674 __nvme_fc_set_dev_loss_tmo(newrec
, pinfo
);
675 nvme_fc_signal_discovery_scan(lport
, newrec
);
676 *portptr
= &newrec
->remoteport
;
680 /* nothing found - allocate a new remoteport struct */
682 newrec
= kmalloc((sizeof(*newrec
) + lport
->ops
->remote_priv_sz
),
689 idx
= ida_simple_get(&lport
->endp_cnt
, 0, 0, GFP_KERNEL
);
692 goto out_kfree_rport
;
695 INIT_LIST_HEAD(&newrec
->endp_list
);
696 INIT_LIST_HEAD(&newrec
->ctrl_list
);
697 INIT_LIST_HEAD(&newrec
->ls_req_list
);
698 kref_init(&newrec
->ref
);
699 atomic_set(&newrec
->act_ctrl_cnt
, 0);
700 spin_lock_init(&newrec
->lock
);
701 newrec
->remoteport
.localport
= &lport
->localport
;
702 newrec
->dev
= lport
->dev
;
703 newrec
->lport
= lport
;
704 newrec
->remoteport
.private = &newrec
[1];
705 newrec
->remoteport
.port_role
= pinfo
->port_role
;
706 newrec
->remoteport
.node_name
= pinfo
->node_name
;
707 newrec
->remoteport
.port_name
= pinfo
->port_name
;
708 newrec
->remoteport
.port_id
= pinfo
->port_id
;
709 newrec
->remoteport
.port_state
= FC_OBJSTATE_ONLINE
;
710 newrec
->remoteport
.port_num
= idx
;
711 __nvme_fc_set_dev_loss_tmo(newrec
, pinfo
);
713 spin_lock_irqsave(&nvme_fc_lock
, flags
);
714 list_add_tail(&newrec
->endp_list
, &lport
->endp_list
);
715 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
717 nvme_fc_signal_discovery_scan(lport
, newrec
);
719 *portptr
= &newrec
->remoteport
;
725 nvme_fc_lport_put(lport
);
730 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport
);
733 nvme_fc_abort_lsops(struct nvme_fc_rport
*rport
)
735 struct nvmefc_ls_req_op
*lsop
;
739 spin_lock_irqsave(&rport
->lock
, flags
);
741 list_for_each_entry(lsop
, &rport
->ls_req_list
, lsreq_list
) {
742 if (!(lsop
->flags
& FCOP_FLAGS_TERMIO
)) {
743 lsop
->flags
|= FCOP_FLAGS_TERMIO
;
744 spin_unlock_irqrestore(&rport
->lock
, flags
);
745 rport
->lport
->ops
->ls_abort(&rport
->lport
->localport
,
751 spin_unlock_irqrestore(&rport
->lock
, flags
);
757 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl
*ctrl
)
759 dev_info(ctrl
->ctrl
.device
,
760 "NVME-FC{%d}: controller connectivity lost. Awaiting "
761 "Reconnect", ctrl
->cnum
);
763 switch (ctrl
->ctrl
.state
) {
767 * Schedule a controller reset. The reset will terminate the
768 * association and schedule the reconnect timer. Reconnects
769 * will be attempted until either the ctlr_loss_tmo
770 * (max_retries * connect_delay) expires or the remoteport's
771 * dev_loss_tmo expires.
773 if (nvme_reset_ctrl(&ctrl
->ctrl
)) {
774 dev_warn(ctrl
->ctrl
.device
,
775 "NVME-FC{%d}: Couldn't schedule reset. "
776 "Deleting controller.\n",
778 nvme_delete_ctrl(&ctrl
->ctrl
);
782 case NVME_CTRL_RECONNECTING
:
784 * The association has already been terminated and the
785 * controller is attempting reconnects. No need to do anything
786 * futher. Reconnects will be attempted until either the
787 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
788 * remoteport's dev_loss_tmo expires.
792 case NVME_CTRL_RESETTING
:
794 * Controller is already in the process of terminating the
795 * association. No need to do anything further. The reconnect
796 * step will kick in naturally after the association is
801 case NVME_CTRL_DELETING
:
803 /* no action to take - let it delete */
809 * nvme_fc_unregister_remoteport - transport entry point called by an
810 * LLDD to deregister/remove a previously
811 * registered a NVME subsystem FC port.
812 * @remoteport: pointer to the (registered) remote port that is to be
816 * a completion status. Must be 0 upon success; a negative errno
817 * (ex: -ENXIO) upon failure.
820 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port
*portptr
)
822 struct nvme_fc_rport
*rport
= remoteport_to_rport(portptr
);
823 struct nvme_fc_ctrl
*ctrl
;
829 spin_lock_irqsave(&rport
->lock
, flags
);
831 if (portptr
->port_state
!= FC_OBJSTATE_ONLINE
) {
832 spin_unlock_irqrestore(&rport
->lock
, flags
);
835 portptr
->port_state
= FC_OBJSTATE_DELETED
;
837 rport
->dev_loss_end
= jiffies
+ (portptr
->dev_loss_tmo
* HZ
);
839 list_for_each_entry(ctrl
, &rport
->ctrl_list
, ctrl_list
) {
840 /* if dev_loss_tmo==0, dev loss is immediate */
841 if (!portptr
->dev_loss_tmo
) {
842 dev_warn(ctrl
->ctrl
.device
,
843 "NVME-FC{%d}: controller connectivity lost. "
844 "Deleting controller.\n",
846 nvme_delete_ctrl(&ctrl
->ctrl
);
848 nvme_fc_ctrl_connectivity_loss(ctrl
);
851 spin_unlock_irqrestore(&rport
->lock
, flags
);
853 nvme_fc_abort_lsops(rport
);
855 if (atomic_read(&rport
->act_ctrl_cnt
) == 0)
856 rport
->lport
->ops
->remoteport_delete(portptr
);
859 * release the reference, which will allow, if all controllers
860 * go away, which should only occur after dev_loss_tmo occurs,
861 * for the rport to be torn down.
863 nvme_fc_rport_put(rport
);
867 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport
);
870 * nvme_fc_rescan_remoteport - transport entry point called by an
871 * LLDD to request a nvme device rescan.
872 * @remoteport: pointer to the (registered) remote port that is to be
878 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port
*remoteport
)
880 struct nvme_fc_rport
*rport
= remoteport_to_rport(remoteport
);
882 nvme_fc_signal_discovery_scan(rport
->lport
, rport
);
884 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport
);
887 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port
*portptr
,
890 struct nvme_fc_rport
*rport
= remoteport_to_rport(portptr
);
893 spin_lock_irqsave(&rport
->lock
, flags
);
895 if (portptr
->port_state
!= FC_OBJSTATE_ONLINE
) {
896 spin_unlock_irqrestore(&rport
->lock
, flags
);
900 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
901 rport
->remoteport
.dev_loss_tmo
= dev_loss_tmo
;
903 spin_unlock_irqrestore(&rport
->lock
, flags
);
907 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss
);
910 /* *********************** FC-NVME DMA Handling **************************** */
913 * The fcloop device passes in a NULL device pointer. Real LLD's will
914 * pass in a valid device pointer. If NULL is passed to the dma mapping
915 * routines, depending on the platform, it may or may not succeed, and
919 * Wrapper all the dma routines and check the dev pointer.
921 * If simple mappings (return just a dma address, we'll noop them,
922 * returning a dma address of 0.
924 * On more complex mappings (dma_map_sg), a pseudo routine fills
925 * in the scatter list, setting all dma addresses to 0.
928 static inline dma_addr_t
929 fc_dma_map_single(struct device
*dev
, void *ptr
, size_t size
,
930 enum dma_data_direction dir
)
932 return dev
? dma_map_single(dev
, ptr
, size
, dir
) : (dma_addr_t
)0L;
936 fc_dma_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
938 return dev
? dma_mapping_error(dev
, dma_addr
) : 0;
942 fc_dma_unmap_single(struct device
*dev
, dma_addr_t addr
, size_t size
,
943 enum dma_data_direction dir
)
946 dma_unmap_single(dev
, addr
, size
, dir
);
950 fc_dma_sync_single_for_cpu(struct device
*dev
, dma_addr_t addr
, size_t size
,
951 enum dma_data_direction dir
)
954 dma_sync_single_for_cpu(dev
, addr
, size
, dir
);
958 fc_dma_sync_single_for_device(struct device
*dev
, dma_addr_t addr
, size_t size
,
959 enum dma_data_direction dir
)
962 dma_sync_single_for_device(dev
, addr
, size
, dir
);
965 /* pseudo dma_map_sg call */
967 fc_map_sg(struct scatterlist
*sg
, int nents
)
969 struct scatterlist
*s
;
972 WARN_ON(nents
== 0 || sg
[0].length
== 0);
974 for_each_sg(sg
, s
, nents
, i
) {
976 #ifdef CONFIG_NEED_SG_DMA_LENGTH
977 s
->dma_length
= s
->length
;
984 fc_dma_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
985 enum dma_data_direction dir
)
987 return dev
? dma_map_sg(dev
, sg
, nents
, dir
) : fc_map_sg(sg
, nents
);
991 fc_dma_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
992 enum dma_data_direction dir
)
995 dma_unmap_sg(dev
, sg
, nents
, dir
);
998 /* *********************** FC-NVME LS Handling **************************** */
1000 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl
*);
1001 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl
*);
1005 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op
*lsop
)
1007 struct nvme_fc_rport
*rport
= lsop
->rport
;
1008 struct nvmefc_ls_req
*lsreq
= &lsop
->ls_req
;
1009 unsigned long flags
;
1011 spin_lock_irqsave(&rport
->lock
, flags
);
1013 if (!lsop
->req_queued
) {
1014 spin_unlock_irqrestore(&rport
->lock
, flags
);
1018 list_del(&lsop
->lsreq_list
);
1020 lsop
->req_queued
= false;
1022 spin_unlock_irqrestore(&rport
->lock
, flags
);
1024 fc_dma_unmap_single(rport
->dev
, lsreq
->rqstdma
,
1025 (lsreq
->rqstlen
+ lsreq
->rsplen
),
1028 nvme_fc_rport_put(rport
);
1032 __nvme_fc_send_ls_req(struct nvme_fc_rport
*rport
,
1033 struct nvmefc_ls_req_op
*lsop
,
1034 void (*done
)(struct nvmefc_ls_req
*req
, int status
))
1036 struct nvmefc_ls_req
*lsreq
= &lsop
->ls_req
;
1037 unsigned long flags
;
1040 if (rport
->remoteport
.port_state
!= FC_OBJSTATE_ONLINE
)
1041 return -ECONNREFUSED
;
1043 if (!nvme_fc_rport_get(rport
))
1047 lsop
->rport
= rport
;
1048 lsop
->req_queued
= false;
1049 INIT_LIST_HEAD(&lsop
->lsreq_list
);
1050 init_completion(&lsop
->ls_done
);
1052 lsreq
->rqstdma
= fc_dma_map_single(rport
->dev
, lsreq
->rqstaddr
,
1053 lsreq
->rqstlen
+ lsreq
->rsplen
,
1055 if (fc_dma_mapping_error(rport
->dev
, lsreq
->rqstdma
)) {
1059 lsreq
->rspdma
= lsreq
->rqstdma
+ lsreq
->rqstlen
;
1061 spin_lock_irqsave(&rport
->lock
, flags
);
1063 list_add_tail(&lsop
->lsreq_list
, &rport
->ls_req_list
);
1065 lsop
->req_queued
= true;
1067 spin_unlock_irqrestore(&rport
->lock
, flags
);
1069 ret
= rport
->lport
->ops
->ls_req(&rport
->lport
->localport
,
1070 &rport
->remoteport
, lsreq
);
1077 lsop
->ls_error
= ret
;
1078 spin_lock_irqsave(&rport
->lock
, flags
);
1079 lsop
->req_queued
= false;
1080 list_del(&lsop
->lsreq_list
);
1081 spin_unlock_irqrestore(&rport
->lock
, flags
);
1082 fc_dma_unmap_single(rport
->dev
, lsreq
->rqstdma
,
1083 (lsreq
->rqstlen
+ lsreq
->rsplen
),
1086 nvme_fc_rport_put(rport
);
1092 nvme_fc_send_ls_req_done(struct nvmefc_ls_req
*lsreq
, int status
)
1094 struct nvmefc_ls_req_op
*lsop
= ls_req_to_lsop(lsreq
);
1096 lsop
->ls_error
= status
;
1097 complete(&lsop
->ls_done
);
1101 nvme_fc_send_ls_req(struct nvme_fc_rport
*rport
, struct nvmefc_ls_req_op
*lsop
)
1103 struct nvmefc_ls_req
*lsreq
= &lsop
->ls_req
;
1104 struct fcnvme_ls_rjt
*rjt
= lsreq
->rspaddr
;
1107 ret
= __nvme_fc_send_ls_req(rport
, lsop
, nvme_fc_send_ls_req_done
);
1111 * No timeout/not interruptible as we need the struct
1112 * to exist until the lldd calls us back. Thus mandate
1113 * wait until driver calls back. lldd responsible for
1114 * the timeout action
1116 wait_for_completion(&lsop
->ls_done
);
1118 __nvme_fc_finish_ls_req(lsop
);
1120 ret
= lsop
->ls_error
;
1126 /* ACC or RJT payload ? */
1127 if (rjt
->w0
.ls_cmd
== FCNVME_LS_RJT
)
1134 nvme_fc_send_ls_req_async(struct nvme_fc_rport
*rport
,
1135 struct nvmefc_ls_req_op
*lsop
,
1136 void (*done
)(struct nvmefc_ls_req
*req
, int status
))
1138 /* don't wait for completion */
1140 return __nvme_fc_send_ls_req(rport
, lsop
, done
);
1143 /* Validation Error indexes into the string table below */
1147 VERR_LSDESC_RQST
= 2,
1148 VERR_LSDESC_RQST_LEN
= 3,
1150 VERR_ASSOC_ID_LEN
= 5,
1152 VERR_CONN_ID_LEN
= 7,
1154 VERR_CR_ASSOC_ACC_LEN
= 9,
1156 VERR_CR_CONN_ACC_LEN
= 11,
1158 VERR_DISCONN_ACC_LEN
= 13,
1161 static char *validation_errors
[] = {
1165 "Bad LSDESC_RQST Length",
1166 "Not Association ID",
1167 "Bad Association ID Length",
1168 "Not Connection ID",
1169 "Bad Connection ID Length",
1170 "Not CR_ASSOC Rqst",
1171 "Bad CR_ASSOC ACC Length",
1173 "Bad CR_CONN ACC Length",
1174 "Not Disconnect Rqst",
1175 "Bad Disconnect ACC Length",
1179 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl
*ctrl
,
1180 struct nvme_fc_queue
*queue
, u16 qsize
, u16 ersp_ratio
)
1182 struct nvmefc_ls_req_op
*lsop
;
1183 struct nvmefc_ls_req
*lsreq
;
1184 struct fcnvme_ls_cr_assoc_rqst
*assoc_rqst
;
1185 struct fcnvme_ls_cr_assoc_acc
*assoc_acc
;
1188 lsop
= kzalloc((sizeof(*lsop
) +
1189 ctrl
->lport
->ops
->lsrqst_priv_sz
+
1190 sizeof(*assoc_rqst
) + sizeof(*assoc_acc
)), GFP_KERNEL
);
1195 lsreq
= &lsop
->ls_req
;
1197 lsreq
->private = (void *)&lsop
[1];
1198 assoc_rqst
= (struct fcnvme_ls_cr_assoc_rqst
*)
1199 (lsreq
->private + ctrl
->lport
->ops
->lsrqst_priv_sz
);
1200 assoc_acc
= (struct fcnvme_ls_cr_assoc_acc
*)&assoc_rqst
[1];
1202 assoc_rqst
->w0
.ls_cmd
= FCNVME_LS_CREATE_ASSOCIATION
;
1203 assoc_rqst
->desc_list_len
=
1204 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd
));
1206 assoc_rqst
->assoc_cmd
.desc_tag
=
1207 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD
);
1208 assoc_rqst
->assoc_cmd
.desc_len
=
1210 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd
));
1212 assoc_rqst
->assoc_cmd
.ersp_ratio
= cpu_to_be16(ersp_ratio
);
1213 assoc_rqst
->assoc_cmd
.sqsize
= cpu_to_be16(qsize
);
1214 /* Linux supports only Dynamic controllers */
1215 assoc_rqst
->assoc_cmd
.cntlid
= cpu_to_be16(0xffff);
1216 uuid_copy(&assoc_rqst
->assoc_cmd
.hostid
, &ctrl
->ctrl
.opts
->host
->id
);
1217 strncpy(assoc_rqst
->assoc_cmd
.hostnqn
, ctrl
->ctrl
.opts
->host
->nqn
,
1218 min(FCNVME_ASSOC_HOSTNQN_LEN
, NVMF_NQN_SIZE
));
1219 strncpy(assoc_rqst
->assoc_cmd
.subnqn
, ctrl
->ctrl
.opts
->subsysnqn
,
1220 min(FCNVME_ASSOC_SUBNQN_LEN
, NVMF_NQN_SIZE
));
1222 lsop
->queue
= queue
;
1223 lsreq
->rqstaddr
= assoc_rqst
;
1224 lsreq
->rqstlen
= sizeof(*assoc_rqst
);
1225 lsreq
->rspaddr
= assoc_acc
;
1226 lsreq
->rsplen
= sizeof(*assoc_acc
);
1227 lsreq
->timeout
= NVME_FC_CONNECT_TIMEOUT_SEC
;
1229 ret
= nvme_fc_send_ls_req(ctrl
->rport
, lsop
);
1231 goto out_free_buffer
;
1233 /* process connect LS completion */
1235 /* validate the ACC response */
1236 if (assoc_acc
->hdr
.w0
.ls_cmd
!= FCNVME_LS_ACC
)
1238 else if (assoc_acc
->hdr
.desc_list_len
!=
1240 sizeof(struct fcnvme_ls_cr_assoc_acc
)))
1241 fcret
= VERR_CR_ASSOC_ACC_LEN
;
1242 else if (assoc_acc
->hdr
.rqst
.desc_tag
!=
1243 cpu_to_be32(FCNVME_LSDESC_RQST
))
1244 fcret
= VERR_LSDESC_RQST
;
1245 else if (assoc_acc
->hdr
.rqst
.desc_len
!=
1246 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst
)))
1247 fcret
= VERR_LSDESC_RQST_LEN
;
1248 else if (assoc_acc
->hdr
.rqst
.w0
.ls_cmd
!= FCNVME_LS_CREATE_ASSOCIATION
)
1249 fcret
= VERR_CR_ASSOC
;
1250 else if (assoc_acc
->associd
.desc_tag
!=
1251 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID
))
1252 fcret
= VERR_ASSOC_ID
;
1253 else if (assoc_acc
->associd
.desc_len
!=
1255 sizeof(struct fcnvme_lsdesc_assoc_id
)))
1256 fcret
= VERR_ASSOC_ID_LEN
;
1257 else if (assoc_acc
->connectid
.desc_tag
!=
1258 cpu_to_be32(FCNVME_LSDESC_CONN_ID
))
1259 fcret
= VERR_CONN_ID
;
1260 else if (assoc_acc
->connectid
.desc_len
!=
1261 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id
)))
1262 fcret
= VERR_CONN_ID_LEN
;
1267 "q %d connect failed: %s\n",
1268 queue
->qnum
, validation_errors
[fcret
]);
1270 ctrl
->association_id
=
1271 be64_to_cpu(assoc_acc
->associd
.association_id
);
1272 queue
->connection_id
=
1273 be64_to_cpu(assoc_acc
->connectid
.connection_id
);
1274 set_bit(NVME_FC_Q_CONNECTED
, &queue
->flags
);
1282 "queue %d connect admin queue failed (%d).\n",
1288 nvme_fc_connect_queue(struct nvme_fc_ctrl
*ctrl
, struct nvme_fc_queue
*queue
,
1289 u16 qsize
, u16 ersp_ratio
)
1291 struct nvmefc_ls_req_op
*lsop
;
1292 struct nvmefc_ls_req
*lsreq
;
1293 struct fcnvme_ls_cr_conn_rqst
*conn_rqst
;
1294 struct fcnvme_ls_cr_conn_acc
*conn_acc
;
1297 lsop
= kzalloc((sizeof(*lsop
) +
1298 ctrl
->lport
->ops
->lsrqst_priv_sz
+
1299 sizeof(*conn_rqst
) + sizeof(*conn_acc
)), GFP_KERNEL
);
1304 lsreq
= &lsop
->ls_req
;
1306 lsreq
->private = (void *)&lsop
[1];
1307 conn_rqst
= (struct fcnvme_ls_cr_conn_rqst
*)
1308 (lsreq
->private + ctrl
->lport
->ops
->lsrqst_priv_sz
);
1309 conn_acc
= (struct fcnvme_ls_cr_conn_acc
*)&conn_rqst
[1];
1311 conn_rqst
->w0
.ls_cmd
= FCNVME_LS_CREATE_CONNECTION
;
1312 conn_rqst
->desc_list_len
= cpu_to_be32(
1313 sizeof(struct fcnvme_lsdesc_assoc_id
) +
1314 sizeof(struct fcnvme_lsdesc_cr_conn_cmd
));
1316 conn_rqst
->associd
.desc_tag
= cpu_to_be32(FCNVME_LSDESC_ASSOC_ID
);
1317 conn_rqst
->associd
.desc_len
=
1319 sizeof(struct fcnvme_lsdesc_assoc_id
));
1320 conn_rqst
->associd
.association_id
= cpu_to_be64(ctrl
->association_id
);
1321 conn_rqst
->connect_cmd
.desc_tag
=
1322 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD
);
1323 conn_rqst
->connect_cmd
.desc_len
=
1325 sizeof(struct fcnvme_lsdesc_cr_conn_cmd
));
1326 conn_rqst
->connect_cmd
.ersp_ratio
= cpu_to_be16(ersp_ratio
);
1327 conn_rqst
->connect_cmd
.qid
= cpu_to_be16(queue
->qnum
);
1328 conn_rqst
->connect_cmd
.sqsize
= cpu_to_be16(qsize
);
1330 lsop
->queue
= queue
;
1331 lsreq
->rqstaddr
= conn_rqst
;
1332 lsreq
->rqstlen
= sizeof(*conn_rqst
);
1333 lsreq
->rspaddr
= conn_acc
;
1334 lsreq
->rsplen
= sizeof(*conn_acc
);
1335 lsreq
->timeout
= NVME_FC_CONNECT_TIMEOUT_SEC
;
1337 ret
= nvme_fc_send_ls_req(ctrl
->rport
, lsop
);
1339 goto out_free_buffer
;
1341 /* process connect LS completion */
1343 /* validate the ACC response */
1344 if (conn_acc
->hdr
.w0
.ls_cmd
!= FCNVME_LS_ACC
)
1346 else if (conn_acc
->hdr
.desc_list_len
!=
1347 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc
)))
1348 fcret
= VERR_CR_CONN_ACC_LEN
;
1349 else if (conn_acc
->hdr
.rqst
.desc_tag
!= cpu_to_be32(FCNVME_LSDESC_RQST
))
1350 fcret
= VERR_LSDESC_RQST
;
1351 else if (conn_acc
->hdr
.rqst
.desc_len
!=
1352 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst
)))
1353 fcret
= VERR_LSDESC_RQST_LEN
;
1354 else if (conn_acc
->hdr
.rqst
.w0
.ls_cmd
!= FCNVME_LS_CREATE_CONNECTION
)
1355 fcret
= VERR_CR_CONN
;
1356 else if (conn_acc
->connectid
.desc_tag
!=
1357 cpu_to_be32(FCNVME_LSDESC_CONN_ID
))
1358 fcret
= VERR_CONN_ID
;
1359 else if (conn_acc
->connectid
.desc_len
!=
1360 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id
)))
1361 fcret
= VERR_CONN_ID_LEN
;
1366 "q %d connect failed: %s\n",
1367 queue
->qnum
, validation_errors
[fcret
]);
1369 queue
->connection_id
=
1370 be64_to_cpu(conn_acc
->connectid
.connection_id
);
1371 set_bit(NVME_FC_Q_CONNECTED
, &queue
->flags
);
1379 "queue %d connect command failed (%d).\n",
1385 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req
*lsreq
, int status
)
1387 struct nvmefc_ls_req_op
*lsop
= ls_req_to_lsop(lsreq
);
1389 __nvme_fc_finish_ls_req(lsop
);
1391 /* fc-nvme iniator doesn't care about success or failure of cmd */
1397 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1398 * the FC-NVME Association. Terminating the association also
1399 * terminates the FC-NVME connections (per queue, both admin and io
1400 * queues) that are part of the association. E.g. things are torn
1401 * down, and the related FC-NVME Association ID and Connection IDs
1404 * The behavior of the fc-nvme initiator is such that it's
1405 * understanding of the association and connections will implicitly
1406 * be torn down. The action is implicit as it may be due to a loss of
1407 * connectivity with the fc-nvme target, so you may never get a
1408 * response even if you tried. As such, the action of this routine
1409 * is to asynchronously send the LS, ignore any results of the LS, and
1410 * continue on with terminating the association. If the fc-nvme target
1411 * is present and receives the LS, it too can tear down.
1414 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl
*ctrl
)
1416 struct fcnvme_ls_disconnect_rqst
*discon_rqst
;
1417 struct fcnvme_ls_disconnect_acc
*discon_acc
;
1418 struct nvmefc_ls_req_op
*lsop
;
1419 struct nvmefc_ls_req
*lsreq
;
1422 lsop
= kzalloc((sizeof(*lsop
) +
1423 ctrl
->lport
->ops
->lsrqst_priv_sz
+
1424 sizeof(*discon_rqst
) + sizeof(*discon_acc
)),
1427 /* couldn't sent it... too bad */
1430 lsreq
= &lsop
->ls_req
;
1432 lsreq
->private = (void *)&lsop
[1];
1433 discon_rqst
= (struct fcnvme_ls_disconnect_rqst
*)
1434 (lsreq
->private + ctrl
->lport
->ops
->lsrqst_priv_sz
);
1435 discon_acc
= (struct fcnvme_ls_disconnect_acc
*)&discon_rqst
[1];
1437 discon_rqst
->w0
.ls_cmd
= FCNVME_LS_DISCONNECT
;
1438 discon_rqst
->desc_list_len
= cpu_to_be32(
1439 sizeof(struct fcnvme_lsdesc_assoc_id
) +
1440 sizeof(struct fcnvme_lsdesc_disconn_cmd
));
1442 discon_rqst
->associd
.desc_tag
= cpu_to_be32(FCNVME_LSDESC_ASSOC_ID
);
1443 discon_rqst
->associd
.desc_len
=
1445 sizeof(struct fcnvme_lsdesc_assoc_id
));
1447 discon_rqst
->associd
.association_id
= cpu_to_be64(ctrl
->association_id
);
1449 discon_rqst
->discon_cmd
.desc_tag
= cpu_to_be32(
1450 FCNVME_LSDESC_DISCONN_CMD
);
1451 discon_rqst
->discon_cmd
.desc_len
=
1453 sizeof(struct fcnvme_lsdesc_disconn_cmd
));
1454 discon_rqst
->discon_cmd
.scope
= FCNVME_DISCONN_ASSOCIATION
;
1455 discon_rqst
->discon_cmd
.id
= cpu_to_be64(ctrl
->association_id
);
1457 lsreq
->rqstaddr
= discon_rqst
;
1458 lsreq
->rqstlen
= sizeof(*discon_rqst
);
1459 lsreq
->rspaddr
= discon_acc
;
1460 lsreq
->rsplen
= sizeof(*discon_acc
);
1461 lsreq
->timeout
= NVME_FC_CONNECT_TIMEOUT_SEC
;
1463 ret
= nvme_fc_send_ls_req_async(ctrl
->rport
, lsop
,
1464 nvme_fc_disconnect_assoc_done
);
1468 /* only meaningful part to terminating the association */
1469 ctrl
->association_id
= 0;
1473 /* *********************** NVME Ctrl Routines **************************** */
1475 static void __nvme_fc_final_op_cleanup(struct request
*rq
);
1476 static void nvme_fc_error_recovery(struct nvme_fc_ctrl
*ctrl
, char *errmsg
);
1479 nvme_fc_reinit_request(void *data
, struct request
*rq
)
1481 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(rq
);
1482 struct nvme_fc_cmd_iu
*cmdiu
= &op
->cmd_iu
;
1484 memset(cmdiu
, 0, sizeof(*cmdiu
));
1485 cmdiu
->scsi_id
= NVME_CMD_SCSI_ID
;
1486 cmdiu
->fc_id
= NVME_CMD_FC_ID
;
1487 cmdiu
->iu_len
= cpu_to_be16(sizeof(*cmdiu
) / sizeof(u32
));
1488 memset(&op
->rsp_iu
, 0, sizeof(op
->rsp_iu
));
1494 __nvme_fc_exit_request(struct nvme_fc_ctrl
*ctrl
,
1495 struct nvme_fc_fcp_op
*op
)
1497 fc_dma_unmap_single(ctrl
->lport
->dev
, op
->fcp_req
.rspdma
,
1498 sizeof(op
->rsp_iu
), DMA_FROM_DEVICE
);
1499 fc_dma_unmap_single(ctrl
->lport
->dev
, op
->fcp_req
.cmddma
,
1500 sizeof(op
->cmd_iu
), DMA_TO_DEVICE
);
1502 atomic_set(&op
->state
, FCPOP_STATE_UNINIT
);
1506 nvme_fc_exit_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
1507 unsigned int hctx_idx
)
1509 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(rq
);
1511 return __nvme_fc_exit_request(set
->driver_data
, op
);
1515 __nvme_fc_abort_op(struct nvme_fc_ctrl
*ctrl
, struct nvme_fc_fcp_op
*op
)
1519 state
= atomic_xchg(&op
->state
, FCPOP_STATE_ABORTED
);
1520 if (state
!= FCPOP_STATE_ACTIVE
) {
1521 atomic_set(&op
->state
, state
);
1525 ctrl
->lport
->ops
->fcp_abort(&ctrl
->lport
->localport
,
1526 &ctrl
->rport
->remoteport
,
1527 op
->queue
->lldd_handle
,
1534 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl
*ctrl
)
1536 struct nvme_fc_fcp_op
*aen_op
= ctrl
->aen_ops
;
1537 unsigned long flags
;
1540 for (i
= 0; i
< NVME_NR_AEN_COMMANDS
; i
++, aen_op
++) {
1541 if (atomic_read(&aen_op
->state
) != FCPOP_STATE_ACTIVE
)
1544 spin_lock_irqsave(&ctrl
->lock
, flags
);
1545 if (ctrl
->flags
& FCCTRL_TERMIO
) {
1547 aen_op
->flags
|= FCOP_FLAGS_TERMIO
;
1549 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
1551 ret
= __nvme_fc_abort_op(ctrl
, aen_op
);
1554 * if __nvme_fc_abort_op failed the io wasn't
1555 * active. Thus this call path is running in
1556 * parallel to the io complete. Treat as non-error.
1559 /* back out the flags/counters */
1560 spin_lock_irqsave(&ctrl
->lock
, flags
);
1561 if (ctrl
->flags
& FCCTRL_TERMIO
)
1563 aen_op
->flags
&= ~FCOP_FLAGS_TERMIO
;
1564 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
1571 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl
*ctrl
,
1572 struct nvme_fc_fcp_op
*op
)
1574 unsigned long flags
;
1575 bool complete_rq
= false;
1577 spin_lock_irqsave(&ctrl
->lock
, flags
);
1578 if (unlikely(op
->flags
& FCOP_FLAGS_TERMIO
)) {
1579 if (ctrl
->flags
& FCCTRL_TERMIO
) {
1581 wake_up(&ctrl
->ioabort_wait
);
1584 if (op
->flags
& FCOP_FLAGS_RELEASED
)
1587 op
->flags
|= FCOP_FLAGS_COMPLETE
;
1588 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
1594 nvme_fc_fcpio_done(struct nvmefc_fcp_req
*req
)
1596 struct nvme_fc_fcp_op
*op
= fcp_req_to_fcp_op(req
);
1597 struct request
*rq
= op
->rq
;
1598 struct nvmefc_fcp_req
*freq
= &op
->fcp_req
;
1599 struct nvme_fc_ctrl
*ctrl
= op
->ctrl
;
1600 struct nvme_fc_queue
*queue
= op
->queue
;
1601 struct nvme_completion
*cqe
= &op
->rsp_iu
.cqe
;
1602 struct nvme_command
*sqe
= &op
->cmd_iu
.sqe
;
1603 __le16 status
= cpu_to_le16(NVME_SC_SUCCESS
<< 1);
1604 union nvme_result result
;
1605 bool terminate_assoc
= true;
1609 * The current linux implementation of a nvme controller
1610 * allocates a single tag set for all io queues and sizes
1611 * the io queues to fully hold all possible tags. Thus, the
1612 * implementation does not reference or care about the sqhd
1613 * value as it never needs to use the sqhd/sqtail pointers
1614 * for submission pacing.
1616 * This affects the FC-NVME implementation in two ways:
1617 * 1) As the value doesn't matter, we don't need to waste
1618 * cycles extracting it from ERSPs and stamping it in the
1619 * cases where the transport fabricates CQEs on successful
1621 * 2) The FC-NVME implementation requires that delivery of
1622 * ERSP completions are to go back to the nvme layer in order
1623 * relative to the rsn, such that the sqhd value will always
1624 * be "in order" for the nvme layer. As the nvme layer in
1625 * linux doesn't care about sqhd, there's no need to return
1629 * As the core nvme layer in linux currently does not look at
1630 * every field in the cqe - in cases where the FC transport must
1631 * fabricate a CQE, the following fields will not be set as they
1632 * are not referenced:
1633 * cqe.sqid, cqe.sqhd, cqe.command_id
1635 * Failure or error of an individual i/o, in a transport
1636 * detected fashion unrelated to the nvme completion status,
1637 * potentially cause the initiator and target sides to get out
1638 * of sync on SQ head/tail (aka outstanding io count allowed).
1639 * Per FC-NVME spec, failure of an individual command requires
1640 * the connection to be terminated, which in turn requires the
1641 * association to be terminated.
1644 fc_dma_sync_single_for_cpu(ctrl
->lport
->dev
, op
->fcp_req
.rspdma
,
1645 sizeof(op
->rsp_iu
), DMA_FROM_DEVICE
);
1647 if (atomic_read(&op
->state
) == FCPOP_STATE_ABORTED
||
1648 op
->flags
& FCOP_FLAGS_TERMIO
)
1649 status
= cpu_to_le16(NVME_SC_ABORT_REQ
<< 1);
1650 else if (freq
->status
)
1651 status
= cpu_to_le16(NVME_SC_INTERNAL
<< 1);
1654 * For the linux implementation, if we have an unsuccesful
1655 * status, they blk-mq layer can typically be called with the
1656 * non-zero status and the content of the cqe isn't important.
1662 * command completed successfully relative to the wire
1663 * protocol. However, validate anything received and
1664 * extract the status and result from the cqe (create it
1668 switch (freq
->rcv_rsplen
) {
1671 case NVME_FC_SIZEOF_ZEROS_RSP
:
1673 * No response payload or 12 bytes of payload (which
1674 * should all be zeros) are considered successful and
1675 * no payload in the CQE by the transport.
1677 if (freq
->transferred_length
!=
1678 be32_to_cpu(op
->cmd_iu
.data_len
)) {
1679 status
= cpu_to_le16(NVME_SC_INTERNAL
<< 1);
1685 case sizeof(struct nvme_fc_ersp_iu
):
1687 * The ERSP IU contains a full completion with CQE.
1688 * Validate ERSP IU and look at cqe.
1690 if (unlikely(be16_to_cpu(op
->rsp_iu
.iu_len
) !=
1691 (freq
->rcv_rsplen
/ 4) ||
1692 be32_to_cpu(op
->rsp_iu
.xfrd_len
) !=
1693 freq
->transferred_length
||
1694 op
->rsp_iu
.status_code
||
1695 sqe
->common
.command_id
!= cqe
->command_id
)) {
1696 status
= cpu_to_le16(NVME_SC_INTERNAL
<< 1);
1699 result
= cqe
->result
;
1700 status
= cqe
->status
;
1704 status
= cpu_to_le16(NVME_SC_INTERNAL
<< 1);
1708 terminate_assoc
= false;
1711 if (op
->flags
& FCOP_FLAGS_AEN
) {
1712 nvme_complete_async_event(&queue
->ctrl
->ctrl
, status
, &result
);
1713 __nvme_fc_fcpop_chk_teardowns(ctrl
, op
);
1714 atomic_set(&op
->state
, FCPOP_STATE_IDLE
);
1715 op
->flags
= FCOP_FLAGS_AEN
; /* clear other flags */
1716 nvme_fc_ctrl_put(ctrl
);
1721 * Force failures of commands if we're killing the controller
1722 * or have an error on a command used to create an new association
1725 (blk_queue_dying(rq
->q
) ||
1726 ctrl
->ctrl
.state
== NVME_CTRL_NEW
||
1727 ctrl
->ctrl
.state
== NVME_CTRL_RECONNECTING
))
1728 status
|= cpu_to_le16(NVME_SC_DNR
<< 1);
1730 if (__nvme_fc_fcpop_chk_teardowns(ctrl
, op
))
1731 __nvme_fc_final_op_cleanup(rq
);
1733 nvme_end_request(rq
, status
, result
);
1736 if (terminate_assoc
)
1737 nvme_fc_error_recovery(ctrl
, "transport detected io error");
1741 __nvme_fc_init_request(struct nvme_fc_ctrl
*ctrl
,
1742 struct nvme_fc_queue
*queue
, struct nvme_fc_fcp_op
*op
,
1743 struct request
*rq
, u32 rqno
)
1745 struct nvme_fc_cmd_iu
*cmdiu
= &op
->cmd_iu
;
1748 memset(op
, 0, sizeof(*op
));
1749 op
->fcp_req
.cmdaddr
= &op
->cmd_iu
;
1750 op
->fcp_req
.cmdlen
= sizeof(op
->cmd_iu
);
1751 op
->fcp_req
.rspaddr
= &op
->rsp_iu
;
1752 op
->fcp_req
.rsplen
= sizeof(op
->rsp_iu
);
1753 op
->fcp_req
.done
= nvme_fc_fcpio_done
;
1754 op
->fcp_req
.first_sgl
= (struct scatterlist
*)&op
[1];
1755 op
->fcp_req
.private = &op
->fcp_req
.first_sgl
[SG_CHUNK_SIZE
];
1761 cmdiu
->scsi_id
= NVME_CMD_SCSI_ID
;
1762 cmdiu
->fc_id
= NVME_CMD_FC_ID
;
1763 cmdiu
->iu_len
= cpu_to_be16(sizeof(*cmdiu
) / sizeof(u32
));
1765 op
->fcp_req
.cmddma
= fc_dma_map_single(ctrl
->lport
->dev
,
1766 &op
->cmd_iu
, sizeof(op
->cmd_iu
), DMA_TO_DEVICE
);
1767 if (fc_dma_mapping_error(ctrl
->lport
->dev
, op
->fcp_req
.cmddma
)) {
1769 "FCP Op failed - cmdiu dma mapping failed.\n");
1774 op
->fcp_req
.rspdma
= fc_dma_map_single(ctrl
->lport
->dev
,
1775 &op
->rsp_iu
, sizeof(op
->rsp_iu
),
1777 if (fc_dma_mapping_error(ctrl
->lport
->dev
, op
->fcp_req
.rspdma
)) {
1779 "FCP Op failed - rspiu dma mapping failed.\n");
1783 atomic_set(&op
->state
, FCPOP_STATE_IDLE
);
1789 nvme_fc_init_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
1790 unsigned int hctx_idx
, unsigned int numa_node
)
1792 struct nvme_fc_ctrl
*ctrl
= set
->driver_data
;
1793 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(rq
);
1794 int queue_idx
= (set
== &ctrl
->tag_set
) ? hctx_idx
+ 1 : 0;
1795 struct nvme_fc_queue
*queue
= &ctrl
->queues
[queue_idx
];
1797 return __nvme_fc_init_request(ctrl
, queue
, op
, rq
, queue
->rqcnt
++);
1801 nvme_fc_init_aen_ops(struct nvme_fc_ctrl
*ctrl
)
1803 struct nvme_fc_fcp_op
*aen_op
;
1804 struct nvme_fc_cmd_iu
*cmdiu
;
1805 struct nvme_command
*sqe
;
1809 aen_op
= ctrl
->aen_ops
;
1810 for (i
= 0; i
< NVME_NR_AEN_COMMANDS
; i
++, aen_op
++) {
1811 private = kzalloc(ctrl
->lport
->ops
->fcprqst_priv_sz
,
1816 cmdiu
= &aen_op
->cmd_iu
;
1818 ret
= __nvme_fc_init_request(ctrl
, &ctrl
->queues
[0],
1819 aen_op
, (struct request
*)NULL
,
1820 (NVME_AQ_BLK_MQ_DEPTH
+ i
));
1826 aen_op
->flags
= FCOP_FLAGS_AEN
;
1827 aen_op
->fcp_req
.first_sgl
= NULL
; /* no sg list */
1828 aen_op
->fcp_req
.private = private;
1830 memset(sqe
, 0, sizeof(*sqe
));
1831 sqe
->common
.opcode
= nvme_admin_async_event
;
1832 /* Note: core layer may overwrite the sqe.command_id value */
1833 sqe
->common
.command_id
= NVME_AQ_BLK_MQ_DEPTH
+ i
;
1839 nvme_fc_term_aen_ops(struct nvme_fc_ctrl
*ctrl
)
1841 struct nvme_fc_fcp_op
*aen_op
;
1844 aen_op
= ctrl
->aen_ops
;
1845 for (i
= 0; i
< NVME_NR_AEN_COMMANDS
; i
++, aen_op
++) {
1846 if (!aen_op
->fcp_req
.private)
1849 __nvme_fc_exit_request(ctrl
, aen_op
);
1851 kfree(aen_op
->fcp_req
.private);
1852 aen_op
->fcp_req
.private = NULL
;
1857 __nvme_fc_init_hctx(struct blk_mq_hw_ctx
*hctx
, struct nvme_fc_ctrl
*ctrl
,
1860 struct nvme_fc_queue
*queue
= &ctrl
->queues
[qidx
];
1862 hctx
->driver_data
= queue
;
1867 nvme_fc_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
1868 unsigned int hctx_idx
)
1870 struct nvme_fc_ctrl
*ctrl
= data
;
1872 __nvme_fc_init_hctx(hctx
, ctrl
, hctx_idx
+ 1);
1878 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
1879 unsigned int hctx_idx
)
1881 struct nvme_fc_ctrl
*ctrl
= data
;
1883 __nvme_fc_init_hctx(hctx
, ctrl
, hctx_idx
);
1889 nvme_fc_init_queue(struct nvme_fc_ctrl
*ctrl
, int idx
)
1891 struct nvme_fc_queue
*queue
;
1893 queue
= &ctrl
->queues
[idx
];
1894 memset(queue
, 0, sizeof(*queue
));
1897 atomic_set(&queue
->csn
, 1);
1898 queue
->dev
= ctrl
->dev
;
1901 queue
->cmnd_capsule_len
= ctrl
->ctrl
.ioccsz
* 16;
1903 queue
->cmnd_capsule_len
= sizeof(struct nvme_command
);
1906 * Considered whether we should allocate buffers for all SQEs
1907 * and CQEs and dma map them - mapping their respective entries
1908 * into the request structures (kernel vm addr and dma address)
1909 * thus the driver could use the buffers/mappings directly.
1910 * It only makes sense if the LLDD would use them for its
1911 * messaging api. It's very unlikely most adapter api's would use
1912 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1913 * structures were used instead.
1918 * This routine terminates a queue at the transport level.
1919 * The transport has already ensured that all outstanding ios on
1920 * the queue have been terminated.
1921 * The transport will send a Disconnect LS request to terminate
1922 * the queue's connection. Termination of the admin queue will also
1923 * terminate the association at the target.
1926 nvme_fc_free_queue(struct nvme_fc_queue
*queue
)
1928 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED
, &queue
->flags
))
1931 clear_bit(NVME_FC_Q_LIVE
, &queue
->flags
);
1933 * Current implementation never disconnects a single queue.
1934 * It always terminates a whole association. So there is never
1935 * a disconnect(queue) LS sent to the target.
1938 queue
->connection_id
= 0;
1942 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl
*ctrl
,
1943 struct nvme_fc_queue
*queue
, unsigned int qidx
)
1945 if (ctrl
->lport
->ops
->delete_queue
)
1946 ctrl
->lport
->ops
->delete_queue(&ctrl
->lport
->localport
, qidx
,
1947 queue
->lldd_handle
);
1948 queue
->lldd_handle
= NULL
;
1952 nvme_fc_free_io_queues(struct nvme_fc_ctrl
*ctrl
)
1956 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++)
1957 nvme_fc_free_queue(&ctrl
->queues
[i
]);
1961 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl
*ctrl
,
1962 struct nvme_fc_queue
*queue
, unsigned int qidx
, u16 qsize
)
1966 queue
->lldd_handle
= NULL
;
1967 if (ctrl
->lport
->ops
->create_queue
)
1968 ret
= ctrl
->lport
->ops
->create_queue(&ctrl
->lport
->localport
,
1969 qidx
, qsize
, &queue
->lldd_handle
);
1975 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl
*ctrl
)
1977 struct nvme_fc_queue
*queue
= &ctrl
->queues
[ctrl
->ctrl
.queue_count
- 1];
1980 for (i
= ctrl
->ctrl
.queue_count
- 1; i
>= 1; i
--, queue
--)
1981 __nvme_fc_delete_hw_queue(ctrl
, queue
, i
);
1985 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl
*ctrl
, u16 qsize
)
1987 struct nvme_fc_queue
*queue
= &ctrl
->queues
[1];
1990 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++, queue
++) {
1991 ret
= __nvme_fc_create_hw_queue(ctrl
, queue
, i
, qsize
);
2000 __nvme_fc_delete_hw_queue(ctrl
, &ctrl
->queues
[i
], i
);
2005 nvme_fc_connect_io_queues(struct nvme_fc_ctrl
*ctrl
, u16 qsize
)
2009 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++) {
2010 ret
= nvme_fc_connect_queue(ctrl
, &ctrl
->queues
[i
], qsize
,
2014 ret
= nvmf_connect_io_queue(&ctrl
->ctrl
, i
);
2018 set_bit(NVME_FC_Q_LIVE
, &ctrl
->queues
[i
].flags
);
2025 nvme_fc_init_io_queues(struct nvme_fc_ctrl
*ctrl
)
2029 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++)
2030 nvme_fc_init_queue(ctrl
, i
);
2034 nvme_fc_ctrl_free(struct kref
*ref
)
2036 struct nvme_fc_ctrl
*ctrl
=
2037 container_of(ref
, struct nvme_fc_ctrl
, ref
);
2038 unsigned long flags
;
2040 if (ctrl
->ctrl
.tagset
) {
2041 blk_cleanup_queue(ctrl
->ctrl
.connect_q
);
2042 blk_mq_free_tag_set(&ctrl
->tag_set
);
2045 /* remove from rport list */
2046 spin_lock_irqsave(&ctrl
->rport
->lock
, flags
);
2047 list_del(&ctrl
->ctrl_list
);
2048 spin_unlock_irqrestore(&ctrl
->rport
->lock
, flags
);
2050 blk_mq_unquiesce_queue(ctrl
->ctrl
.admin_q
);
2051 blk_cleanup_queue(ctrl
->ctrl
.admin_q
);
2052 blk_mq_free_tag_set(&ctrl
->admin_tag_set
);
2054 kfree(ctrl
->queues
);
2056 put_device(ctrl
->dev
);
2057 nvme_fc_rport_put(ctrl
->rport
);
2059 ida_simple_remove(&nvme_fc_ctrl_cnt
, ctrl
->cnum
);
2060 if (ctrl
->ctrl
.opts
)
2061 nvmf_free_options(ctrl
->ctrl
.opts
);
2066 nvme_fc_ctrl_put(struct nvme_fc_ctrl
*ctrl
)
2068 kref_put(&ctrl
->ref
, nvme_fc_ctrl_free
);
2072 nvme_fc_ctrl_get(struct nvme_fc_ctrl
*ctrl
)
2074 return kref_get_unless_zero(&ctrl
->ref
);
2078 * All accesses from nvme core layer done - can now free the
2079 * controller. Called after last nvme_put_ctrl() call
2082 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl
*nctrl
)
2084 struct nvme_fc_ctrl
*ctrl
= to_fc_ctrl(nctrl
);
2086 WARN_ON(nctrl
!= &ctrl
->ctrl
);
2088 nvme_fc_ctrl_put(ctrl
);
2092 nvme_fc_error_recovery(struct nvme_fc_ctrl
*ctrl
, char *errmsg
)
2094 /* only proceed if in LIVE state - e.g. on first error */
2095 if (ctrl
->ctrl
.state
!= NVME_CTRL_LIVE
)
2098 dev_warn(ctrl
->ctrl
.device
,
2099 "NVME-FC{%d}: transport association error detected: %s\n",
2100 ctrl
->cnum
, errmsg
);
2101 dev_warn(ctrl
->ctrl
.device
,
2102 "NVME-FC{%d}: resetting controller\n", ctrl
->cnum
);
2104 nvme_reset_ctrl(&ctrl
->ctrl
);
2107 static enum blk_eh_timer_return
2108 nvme_fc_timeout(struct request
*rq
, bool reserved
)
2110 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(rq
);
2111 struct nvme_fc_ctrl
*ctrl
= op
->ctrl
;
2114 if (ctrl
->rport
->remoteport
.port_state
!= FC_OBJSTATE_ONLINE
||
2115 atomic_read(&op
->state
) == FCPOP_STATE_ABORTED
)
2116 return BLK_EH_RESET_TIMER
;
2118 ret
= __nvme_fc_abort_op(ctrl
, op
);
2120 /* io wasn't active to abort */
2121 return BLK_EH_NOT_HANDLED
;
2124 * we can't individually ABTS an io without affecting the queue,
2125 * thus killing the queue, adn thus the association.
2126 * So resolve by performing a controller reset, which will stop
2127 * the host/io stack, terminate the association on the link,
2128 * and recreate an association on the link.
2130 nvme_fc_error_recovery(ctrl
, "io timeout error");
2133 * the io abort has been initiated. Have the reset timer
2134 * restarted and the abort completion will complete the io
2135 * shortly. Avoids a synchronous wait while the abort finishes.
2137 return BLK_EH_RESET_TIMER
;
2141 nvme_fc_map_data(struct nvme_fc_ctrl
*ctrl
, struct request
*rq
,
2142 struct nvme_fc_fcp_op
*op
)
2144 struct nvmefc_fcp_req
*freq
= &op
->fcp_req
;
2145 enum dma_data_direction dir
;
2150 if (!blk_rq_payload_bytes(rq
))
2153 freq
->sg_table
.sgl
= freq
->first_sgl
;
2154 ret
= sg_alloc_table_chained(&freq
->sg_table
,
2155 blk_rq_nr_phys_segments(rq
), freq
->sg_table
.sgl
);
2159 op
->nents
= blk_rq_map_sg(rq
->q
, rq
, freq
->sg_table
.sgl
);
2160 WARN_ON(op
->nents
> blk_rq_nr_phys_segments(rq
));
2161 dir
= (rq_data_dir(rq
) == WRITE
) ? DMA_TO_DEVICE
: DMA_FROM_DEVICE
;
2162 freq
->sg_cnt
= fc_dma_map_sg(ctrl
->lport
->dev
, freq
->sg_table
.sgl
,
2164 if (unlikely(freq
->sg_cnt
<= 0)) {
2165 sg_free_table_chained(&freq
->sg_table
, true);
2171 * TODO: blk_integrity_rq(rq) for DIF
2177 nvme_fc_unmap_data(struct nvme_fc_ctrl
*ctrl
, struct request
*rq
,
2178 struct nvme_fc_fcp_op
*op
)
2180 struct nvmefc_fcp_req
*freq
= &op
->fcp_req
;
2185 fc_dma_unmap_sg(ctrl
->lport
->dev
, freq
->sg_table
.sgl
, op
->nents
,
2186 ((rq_data_dir(rq
) == WRITE
) ?
2187 DMA_TO_DEVICE
: DMA_FROM_DEVICE
));
2189 nvme_cleanup_cmd(rq
);
2191 sg_free_table_chained(&freq
->sg_table
, true);
2197 * In FC, the queue is a logical thing. At transport connect, the target
2198 * creates its "queue" and returns a handle that is to be given to the
2199 * target whenever it posts something to the corresponding SQ. When an
2200 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2201 * command contained within the SQE, an io, and assigns a FC exchange
2202 * to it. The SQE and the associated SQ handle are sent in the initial
2203 * CMD IU sents on the exchange. All transfers relative to the io occur
2204 * as part of the exchange. The CQE is the last thing for the io,
2205 * which is transferred (explicitly or implicitly) with the RSP IU
2206 * sent on the exchange. After the CQE is received, the FC exchange is
2207 * terminaed and the Exchange may be used on a different io.
2209 * The transport to LLDD api has the transport making a request for a
2210 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2211 * resource and transfers the command. The LLDD will then process all
2212 * steps to complete the io. Upon completion, the transport done routine
2215 * So - while the operation is outstanding to the LLDD, there is a link
2216 * level FC exchange resource that is also outstanding. This must be
2217 * considered in all cleanup operations.
2220 nvme_fc_start_fcp_op(struct nvme_fc_ctrl
*ctrl
, struct nvme_fc_queue
*queue
,
2221 struct nvme_fc_fcp_op
*op
, u32 data_len
,
2222 enum nvmefc_fcp_datadir io_dir
)
2224 struct nvme_fc_cmd_iu
*cmdiu
= &op
->cmd_iu
;
2225 struct nvme_command
*sqe
= &cmdiu
->sqe
;
2230 * before attempting to send the io, check to see if we believe
2231 * the target device is present
2233 if (ctrl
->rport
->remoteport
.port_state
!= FC_OBJSTATE_ONLINE
)
2236 if (!nvme_fc_ctrl_get(ctrl
))
2237 return BLK_STS_IOERR
;
2239 /* format the FC-NVME CMD IU and fcp_req */
2240 cmdiu
->connection_id
= cpu_to_be64(queue
->connection_id
);
2241 csn
= atomic_inc_return(&queue
->csn
);
2242 cmdiu
->csn
= cpu_to_be32(csn
);
2243 cmdiu
->data_len
= cpu_to_be32(data_len
);
2245 case NVMEFC_FCP_WRITE
:
2246 cmdiu
->flags
= FCNVME_CMD_FLAGS_WRITE
;
2248 case NVMEFC_FCP_READ
:
2249 cmdiu
->flags
= FCNVME_CMD_FLAGS_READ
;
2251 case NVMEFC_FCP_NODATA
:
2255 op
->fcp_req
.payload_length
= data_len
;
2256 op
->fcp_req
.io_dir
= io_dir
;
2257 op
->fcp_req
.transferred_length
= 0;
2258 op
->fcp_req
.rcv_rsplen
= 0;
2259 op
->fcp_req
.status
= NVME_SC_SUCCESS
;
2260 op
->fcp_req
.sqid
= cpu_to_le16(queue
->qnum
);
2263 * validate per fabric rules, set fields mandated by fabric spec
2264 * as well as those by FC-NVME spec.
2266 WARN_ON_ONCE(sqe
->common
.metadata
);
2267 sqe
->common
.flags
|= NVME_CMD_SGL_METABUF
;
2270 * format SQE DPTR field per FC-NVME rules:
2271 * type=0x5 Transport SGL Data Block Descriptor
2272 * subtype=0xA Transport-specific value
2274 * length=length of the data series
2276 sqe
->rw
.dptr
.sgl
.type
= (NVME_TRANSPORT_SGL_DATA_DESC
<< 4) |
2277 NVME_SGL_FMT_TRANSPORT_A
;
2278 sqe
->rw
.dptr
.sgl
.length
= cpu_to_le32(data_len
);
2279 sqe
->rw
.dptr
.sgl
.addr
= 0;
2281 if (!(op
->flags
& FCOP_FLAGS_AEN
)) {
2282 ret
= nvme_fc_map_data(ctrl
, op
->rq
, op
);
2284 nvme_cleanup_cmd(op
->rq
);
2285 nvme_fc_ctrl_put(ctrl
);
2286 if (ret
== -ENOMEM
|| ret
== -EAGAIN
)
2287 return BLK_STS_RESOURCE
;
2288 return BLK_STS_IOERR
;
2292 fc_dma_sync_single_for_device(ctrl
->lport
->dev
, op
->fcp_req
.cmddma
,
2293 sizeof(op
->cmd_iu
), DMA_TO_DEVICE
);
2295 atomic_set(&op
->state
, FCPOP_STATE_ACTIVE
);
2297 if (!(op
->flags
& FCOP_FLAGS_AEN
))
2298 blk_mq_start_request(op
->rq
);
2300 ret
= ctrl
->lport
->ops
->fcp_io(&ctrl
->lport
->localport
,
2301 &ctrl
->rport
->remoteport
,
2302 queue
->lldd_handle
, &op
->fcp_req
);
2305 if (!(op
->flags
& FCOP_FLAGS_AEN
))
2306 nvme_fc_unmap_data(ctrl
, op
->rq
, op
);
2308 nvme_fc_ctrl_put(ctrl
);
2310 if (ctrl
->rport
->remoteport
.port_state
== FC_OBJSTATE_ONLINE
&&
2312 return BLK_STS_IOERR
;
2320 if (!(op
->flags
& FCOP_FLAGS_AEN
) && queue
->hctx
)
2321 blk_mq_delay_run_hw_queue(queue
->hctx
, NVMEFC_QUEUE_DELAY
);
2323 return BLK_STS_RESOURCE
;
2326 static inline blk_status_t
nvme_fc_is_ready(struct nvme_fc_queue
*queue
,
2329 if (unlikely(!test_bit(NVME_FC_Q_LIVE
, &queue
->flags
)))
2330 return nvmf_check_init_req(&queue
->ctrl
->ctrl
, rq
);
2335 nvme_fc_queue_rq(struct blk_mq_hw_ctx
*hctx
,
2336 const struct blk_mq_queue_data
*bd
)
2338 struct nvme_ns
*ns
= hctx
->queue
->queuedata
;
2339 struct nvme_fc_queue
*queue
= hctx
->driver_data
;
2340 struct nvme_fc_ctrl
*ctrl
= queue
->ctrl
;
2341 struct request
*rq
= bd
->rq
;
2342 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(rq
);
2343 struct nvme_fc_cmd_iu
*cmdiu
= &op
->cmd_iu
;
2344 struct nvme_command
*sqe
= &cmdiu
->sqe
;
2345 enum nvmefc_fcp_datadir io_dir
;
2349 ret
= nvme_fc_is_ready(queue
, rq
);
2353 ret
= nvme_setup_cmd(ns
, rq
, sqe
);
2357 data_len
= blk_rq_payload_bytes(rq
);
2359 io_dir
= ((rq_data_dir(rq
) == WRITE
) ?
2360 NVMEFC_FCP_WRITE
: NVMEFC_FCP_READ
);
2362 io_dir
= NVMEFC_FCP_NODATA
;
2364 return nvme_fc_start_fcp_op(ctrl
, queue
, op
, data_len
, io_dir
);
2367 static struct blk_mq_tags
*
2368 nvme_fc_tagset(struct nvme_fc_queue
*queue
)
2370 if (queue
->qnum
== 0)
2371 return queue
->ctrl
->admin_tag_set
.tags
[queue
->qnum
];
2373 return queue
->ctrl
->tag_set
.tags
[queue
->qnum
- 1];
2377 nvme_fc_poll(struct blk_mq_hw_ctx
*hctx
, unsigned int tag
)
2380 struct nvme_fc_queue
*queue
= hctx
->driver_data
;
2381 struct nvme_fc_ctrl
*ctrl
= queue
->ctrl
;
2382 struct request
*req
;
2383 struct nvme_fc_fcp_op
*op
;
2385 req
= blk_mq_tag_to_rq(nvme_fc_tagset(queue
), tag
);
2389 op
= blk_mq_rq_to_pdu(req
);
2391 if ((atomic_read(&op
->state
) == FCPOP_STATE_ACTIVE
) &&
2392 (ctrl
->lport
->ops
->poll_queue
))
2393 ctrl
->lport
->ops
->poll_queue(&ctrl
->lport
->localport
,
2394 queue
->lldd_handle
);
2396 return ((atomic_read(&op
->state
) != FCPOP_STATE_ACTIVE
));
2400 nvme_fc_submit_async_event(struct nvme_ctrl
*arg
)
2402 struct nvme_fc_ctrl
*ctrl
= to_fc_ctrl(arg
);
2403 struct nvme_fc_fcp_op
*aen_op
;
2404 unsigned long flags
;
2405 bool terminating
= false;
2408 spin_lock_irqsave(&ctrl
->lock
, flags
);
2409 if (ctrl
->flags
& FCCTRL_TERMIO
)
2411 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
2416 aen_op
= &ctrl
->aen_ops
[0];
2418 ret
= nvme_fc_start_fcp_op(ctrl
, aen_op
->queue
, aen_op
, 0,
2421 dev_err(ctrl
->ctrl
.device
,
2422 "failed async event work\n");
2426 __nvme_fc_final_op_cleanup(struct request
*rq
)
2428 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(rq
);
2429 struct nvme_fc_ctrl
*ctrl
= op
->ctrl
;
2431 atomic_set(&op
->state
, FCPOP_STATE_IDLE
);
2432 op
->flags
&= ~(FCOP_FLAGS_TERMIO
| FCOP_FLAGS_RELEASED
|
2433 FCOP_FLAGS_COMPLETE
);
2435 nvme_fc_unmap_data(ctrl
, rq
, op
);
2436 nvme_complete_rq(rq
);
2437 nvme_fc_ctrl_put(ctrl
);
2442 nvme_fc_complete_rq(struct request
*rq
)
2444 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(rq
);
2445 struct nvme_fc_ctrl
*ctrl
= op
->ctrl
;
2446 unsigned long flags
;
2447 bool completed
= false;
2450 * the core layer, on controller resets after calling
2451 * nvme_shutdown_ctrl(), calls complete_rq without our
2452 * calling blk_mq_complete_request(), thus there may still
2453 * be live i/o outstanding with the LLDD. Means transport has
2454 * to track complete calls vs fcpio_done calls to know what
2455 * path to take on completes and dones.
2457 spin_lock_irqsave(&ctrl
->lock
, flags
);
2458 if (op
->flags
& FCOP_FLAGS_COMPLETE
)
2461 op
->flags
|= FCOP_FLAGS_RELEASED
;
2462 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
2465 __nvme_fc_final_op_cleanup(rq
);
2469 * This routine is used by the transport when it needs to find active
2470 * io on a queue that is to be terminated. The transport uses
2471 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2472 * this routine to kill them on a 1 by 1 basis.
2474 * As FC allocates FC exchange for each io, the transport must contact
2475 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2476 * After terminating the exchange the LLDD will call the transport's
2477 * normal io done path for the request, but it will have an aborted
2478 * status. The done path will return the io request back to the block
2479 * layer with an error status.
2482 nvme_fc_terminate_exchange(struct request
*req
, void *data
, bool reserved
)
2484 struct nvme_ctrl
*nctrl
= data
;
2485 struct nvme_fc_ctrl
*ctrl
= to_fc_ctrl(nctrl
);
2486 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(req
);
2487 unsigned long flags
;
2490 if (!blk_mq_request_started(req
))
2493 spin_lock_irqsave(&ctrl
->lock
, flags
);
2494 if (ctrl
->flags
& FCCTRL_TERMIO
) {
2496 op
->flags
|= FCOP_FLAGS_TERMIO
;
2498 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
2500 status
= __nvme_fc_abort_op(ctrl
, op
);
2503 * if __nvme_fc_abort_op failed the io wasn't
2504 * active. Thus this call path is running in
2505 * parallel to the io complete. Treat as non-error.
2508 /* back out the flags/counters */
2509 spin_lock_irqsave(&ctrl
->lock
, flags
);
2510 if (ctrl
->flags
& FCCTRL_TERMIO
)
2512 op
->flags
&= ~FCOP_FLAGS_TERMIO
;
2513 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
2519 static const struct blk_mq_ops nvme_fc_mq_ops
= {
2520 .queue_rq
= nvme_fc_queue_rq
,
2521 .complete
= nvme_fc_complete_rq
,
2522 .init_request
= nvme_fc_init_request
,
2523 .exit_request
= nvme_fc_exit_request
,
2524 .init_hctx
= nvme_fc_init_hctx
,
2525 .poll
= nvme_fc_poll
,
2526 .timeout
= nvme_fc_timeout
,
2530 nvme_fc_create_io_queues(struct nvme_fc_ctrl
*ctrl
)
2532 struct nvmf_ctrl_options
*opts
= ctrl
->ctrl
.opts
;
2533 unsigned int nr_io_queues
;
2536 nr_io_queues
= min(min(opts
->nr_io_queues
, num_online_cpus()),
2537 ctrl
->lport
->ops
->max_hw_queues
);
2538 ret
= nvme_set_queue_count(&ctrl
->ctrl
, &nr_io_queues
);
2540 dev_info(ctrl
->ctrl
.device
,
2541 "set_queue_count failed: %d\n", ret
);
2545 ctrl
->ctrl
.queue_count
= nr_io_queues
+ 1;
2549 nvme_fc_init_io_queues(ctrl
);
2551 memset(&ctrl
->tag_set
, 0, sizeof(ctrl
->tag_set
));
2552 ctrl
->tag_set
.ops
= &nvme_fc_mq_ops
;
2553 ctrl
->tag_set
.queue_depth
= ctrl
->ctrl
.opts
->queue_size
;
2554 ctrl
->tag_set
.reserved_tags
= 1; /* fabric connect */
2555 ctrl
->tag_set
.numa_node
= NUMA_NO_NODE
;
2556 ctrl
->tag_set
.flags
= BLK_MQ_F_SHOULD_MERGE
;
2557 ctrl
->tag_set
.cmd_size
= sizeof(struct nvme_fc_fcp_op
) +
2559 sizeof(struct scatterlist
)) +
2560 ctrl
->lport
->ops
->fcprqst_priv_sz
;
2561 ctrl
->tag_set
.driver_data
= ctrl
;
2562 ctrl
->tag_set
.nr_hw_queues
= ctrl
->ctrl
.queue_count
- 1;
2563 ctrl
->tag_set
.timeout
= NVME_IO_TIMEOUT
;
2565 ret
= blk_mq_alloc_tag_set(&ctrl
->tag_set
);
2569 ctrl
->ctrl
.tagset
= &ctrl
->tag_set
;
2571 ctrl
->ctrl
.connect_q
= blk_mq_init_queue(&ctrl
->tag_set
);
2572 if (IS_ERR(ctrl
->ctrl
.connect_q
)) {
2573 ret
= PTR_ERR(ctrl
->ctrl
.connect_q
);
2574 goto out_free_tag_set
;
2577 ret
= nvme_fc_create_hw_io_queues(ctrl
, ctrl
->ctrl
.opts
->queue_size
);
2579 goto out_cleanup_blk_queue
;
2581 ret
= nvme_fc_connect_io_queues(ctrl
, ctrl
->ctrl
.opts
->queue_size
);
2583 goto out_delete_hw_queues
;
2587 out_delete_hw_queues
:
2588 nvme_fc_delete_hw_io_queues(ctrl
);
2589 out_cleanup_blk_queue
:
2590 blk_cleanup_queue(ctrl
->ctrl
.connect_q
);
2592 blk_mq_free_tag_set(&ctrl
->tag_set
);
2593 nvme_fc_free_io_queues(ctrl
);
2595 /* force put free routine to ignore io queues */
2596 ctrl
->ctrl
.tagset
= NULL
;
2602 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl
*ctrl
)
2604 struct nvmf_ctrl_options
*opts
= ctrl
->ctrl
.opts
;
2605 unsigned int nr_io_queues
;
2608 nr_io_queues
= min(min(opts
->nr_io_queues
, num_online_cpus()),
2609 ctrl
->lport
->ops
->max_hw_queues
);
2610 ret
= nvme_set_queue_count(&ctrl
->ctrl
, &nr_io_queues
);
2612 dev_info(ctrl
->ctrl
.device
,
2613 "set_queue_count failed: %d\n", ret
);
2617 ctrl
->ctrl
.queue_count
= nr_io_queues
+ 1;
2618 /* check for io queues existing */
2619 if (ctrl
->ctrl
.queue_count
== 1)
2622 nvme_fc_init_io_queues(ctrl
);
2624 ret
= nvme_reinit_tagset(&ctrl
->ctrl
, ctrl
->ctrl
.tagset
);
2626 goto out_free_io_queues
;
2628 ret
= nvme_fc_create_hw_io_queues(ctrl
, ctrl
->ctrl
.opts
->queue_size
);
2630 goto out_free_io_queues
;
2632 ret
= nvme_fc_connect_io_queues(ctrl
, ctrl
->ctrl
.opts
->queue_size
);
2634 goto out_delete_hw_queues
;
2636 blk_mq_update_nr_hw_queues(&ctrl
->tag_set
, nr_io_queues
);
2640 out_delete_hw_queues
:
2641 nvme_fc_delete_hw_io_queues(ctrl
);
2643 nvme_fc_free_io_queues(ctrl
);
2648 nvme_fc_rport_active_on_lport(struct nvme_fc_rport
*rport
)
2650 struct nvme_fc_lport
*lport
= rport
->lport
;
2652 atomic_inc(&lport
->act_rport_cnt
);
2656 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport
*rport
)
2658 struct nvme_fc_lport
*lport
= rport
->lport
;
2661 cnt
= atomic_dec_return(&lport
->act_rport_cnt
);
2662 if (cnt
== 0 && lport
->localport
.port_state
== FC_OBJSTATE_DELETED
)
2663 lport
->ops
->localport_delete(&lport
->localport
);
2667 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl
*ctrl
)
2669 struct nvme_fc_rport
*rport
= ctrl
->rport
;
2672 if (ctrl
->assoc_active
)
2675 ctrl
->assoc_active
= true;
2676 cnt
= atomic_inc_return(&rport
->act_ctrl_cnt
);
2678 nvme_fc_rport_active_on_lport(rport
);
2684 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl
*ctrl
)
2686 struct nvme_fc_rport
*rport
= ctrl
->rport
;
2687 struct nvme_fc_lport
*lport
= rport
->lport
;
2690 /* ctrl->assoc_active=false will be set independently */
2692 cnt
= atomic_dec_return(&rport
->act_ctrl_cnt
);
2694 if (rport
->remoteport
.port_state
== FC_OBJSTATE_DELETED
)
2695 lport
->ops
->remoteport_delete(&rport
->remoteport
);
2696 nvme_fc_rport_inactive_on_lport(rport
);
2703 * This routine restarts the controller on the host side, and
2704 * on the link side, recreates the controller association.
2707 nvme_fc_create_association(struct nvme_fc_ctrl
*ctrl
)
2709 struct nvmf_ctrl_options
*opts
= ctrl
->ctrl
.opts
;
2713 ++ctrl
->ctrl
.nr_reconnects
;
2715 if (ctrl
->rport
->remoteport
.port_state
!= FC_OBJSTATE_ONLINE
)
2718 if (nvme_fc_ctlr_active_on_rport(ctrl
))
2722 * Create the admin queue
2725 nvme_fc_init_queue(ctrl
, 0);
2727 ret
= __nvme_fc_create_hw_queue(ctrl
, &ctrl
->queues
[0], 0,
2728 NVME_AQ_BLK_MQ_DEPTH
);
2730 goto out_free_queue
;
2732 ret
= nvme_fc_connect_admin_queue(ctrl
, &ctrl
->queues
[0],
2733 NVME_AQ_BLK_MQ_DEPTH
,
2734 (NVME_AQ_BLK_MQ_DEPTH
/ 4));
2736 goto out_delete_hw_queue
;
2738 if (ctrl
->ctrl
.state
!= NVME_CTRL_NEW
)
2739 blk_mq_unquiesce_queue(ctrl
->ctrl
.admin_q
);
2741 ret
= nvmf_connect_admin_queue(&ctrl
->ctrl
);
2743 goto out_disconnect_admin_queue
;
2745 set_bit(NVME_FC_Q_LIVE
, &ctrl
->queues
[0].flags
);
2748 * Check controller capabilities
2750 * todo:- add code to check if ctrl attributes changed from
2751 * prior connection values
2754 ret
= nvmf_reg_read64(&ctrl
->ctrl
, NVME_REG_CAP
, &ctrl
->ctrl
.cap
);
2756 dev_err(ctrl
->ctrl
.device
,
2757 "prop_get NVME_REG_CAP failed\n");
2758 goto out_disconnect_admin_queue
;
2762 min_t(int, NVME_CAP_MQES(ctrl
->ctrl
.cap
) + 1, ctrl
->ctrl
.sqsize
);
2764 ret
= nvme_enable_ctrl(&ctrl
->ctrl
, ctrl
->ctrl
.cap
);
2766 goto out_disconnect_admin_queue
;
2768 ctrl
->ctrl
.max_hw_sectors
=
2769 (ctrl
->lport
->ops
->max_sgl_segments
- 1) << (PAGE_SHIFT
- 9);
2771 ret
= nvme_init_identify(&ctrl
->ctrl
);
2773 goto out_disconnect_admin_queue
;
2777 /* FC-NVME does not have other data in the capsule */
2778 if (ctrl
->ctrl
.icdoff
) {
2779 dev_err(ctrl
->ctrl
.device
, "icdoff %d is not supported!\n",
2781 goto out_disconnect_admin_queue
;
2784 /* FC-NVME supports normal SGL Data Block Descriptors */
2786 if (opts
->queue_size
> ctrl
->ctrl
.maxcmd
) {
2787 /* warn if maxcmd is lower than queue_size */
2788 dev_warn(ctrl
->ctrl
.device
,
2789 "queue_size %zu > ctrl maxcmd %u, reducing "
2791 opts
->queue_size
, ctrl
->ctrl
.maxcmd
);
2792 opts
->queue_size
= ctrl
->ctrl
.maxcmd
;
2795 ret
= nvme_fc_init_aen_ops(ctrl
);
2797 goto out_term_aen_ops
;
2800 * Create the io queues
2803 if (ctrl
->ctrl
.queue_count
> 1) {
2804 if (ctrl
->ctrl
.state
== NVME_CTRL_NEW
)
2805 ret
= nvme_fc_create_io_queues(ctrl
);
2807 ret
= nvme_fc_reinit_io_queues(ctrl
);
2809 goto out_term_aen_ops
;
2812 changed
= nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_LIVE
);
2814 ctrl
->ctrl
.nr_reconnects
= 0;
2817 nvme_start_ctrl(&ctrl
->ctrl
);
2819 return 0; /* Success */
2822 nvme_fc_term_aen_ops(ctrl
);
2823 out_disconnect_admin_queue
:
2824 /* send a Disconnect(association) LS to fc-nvme target */
2825 nvme_fc_xmt_disconnect_assoc(ctrl
);
2826 out_delete_hw_queue
:
2827 __nvme_fc_delete_hw_queue(ctrl
, &ctrl
->queues
[0], 0);
2829 nvme_fc_free_queue(&ctrl
->queues
[0]);
2830 ctrl
->assoc_active
= false;
2831 nvme_fc_ctlr_inactive_on_rport(ctrl
);
2837 * This routine stops operation of the controller on the host side.
2838 * On the host os stack side: Admin and IO queues are stopped,
2839 * outstanding ios on them terminated via FC ABTS.
2840 * On the link side: the association is terminated.
2843 nvme_fc_delete_association(struct nvme_fc_ctrl
*ctrl
)
2845 unsigned long flags
;
2847 if (!ctrl
->assoc_active
)
2849 ctrl
->assoc_active
= false;
2851 spin_lock_irqsave(&ctrl
->lock
, flags
);
2852 ctrl
->flags
|= FCCTRL_TERMIO
;
2854 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
2857 * If io queues are present, stop them and terminate all outstanding
2858 * ios on them. As FC allocates FC exchange for each io, the
2859 * transport must contact the LLDD to terminate the exchange,
2860 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2861 * to tell us what io's are busy and invoke a transport routine
2862 * to kill them with the LLDD. After terminating the exchange
2863 * the LLDD will call the transport's normal io done path, but it
2864 * will have an aborted status. The done path will return the
2865 * io requests back to the block layer as part of normal completions
2866 * (but with error status).
2868 if (ctrl
->ctrl
.queue_count
> 1) {
2869 nvme_stop_queues(&ctrl
->ctrl
);
2870 blk_mq_tagset_busy_iter(&ctrl
->tag_set
,
2871 nvme_fc_terminate_exchange
, &ctrl
->ctrl
);
2875 * Other transports, which don't have link-level contexts bound
2876 * to sqe's, would try to gracefully shutdown the controller by
2877 * writing the registers for shutdown and polling (call
2878 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2879 * just aborted and we will wait on those contexts, and given
2880 * there was no indication of how live the controlelr is on the
2881 * link, don't send more io to create more contexts for the
2882 * shutdown. Let the controller fail via keepalive failure if
2883 * its still present.
2887 * clean up the admin queue. Same thing as above.
2888 * use blk_mq_tagset_busy_itr() and the transport routine to
2889 * terminate the exchanges.
2891 if (ctrl
->ctrl
.state
!= NVME_CTRL_NEW
)
2892 blk_mq_quiesce_queue(ctrl
->ctrl
.admin_q
);
2893 blk_mq_tagset_busy_iter(&ctrl
->admin_tag_set
,
2894 nvme_fc_terminate_exchange
, &ctrl
->ctrl
);
2896 /* kill the aens as they are a separate path */
2897 nvme_fc_abort_aen_ops(ctrl
);
2899 /* wait for all io that had to be aborted */
2900 spin_lock_irq(&ctrl
->lock
);
2901 wait_event_lock_irq(ctrl
->ioabort_wait
, ctrl
->iocnt
== 0, ctrl
->lock
);
2902 ctrl
->flags
&= ~FCCTRL_TERMIO
;
2903 spin_unlock_irq(&ctrl
->lock
);
2905 nvme_fc_term_aen_ops(ctrl
);
2908 * send a Disconnect(association) LS to fc-nvme target
2909 * Note: could have been sent at top of process, but
2910 * cleaner on link traffic if after the aborts complete.
2911 * Note: if association doesn't exist, association_id will be 0
2913 if (ctrl
->association_id
)
2914 nvme_fc_xmt_disconnect_assoc(ctrl
);
2916 if (ctrl
->ctrl
.tagset
) {
2917 nvme_fc_delete_hw_io_queues(ctrl
);
2918 nvme_fc_free_io_queues(ctrl
);
2921 __nvme_fc_delete_hw_queue(ctrl
, &ctrl
->queues
[0], 0);
2922 nvme_fc_free_queue(&ctrl
->queues
[0]);
2924 nvme_fc_ctlr_inactive_on_rport(ctrl
);
2928 nvme_fc_delete_ctrl(struct nvme_ctrl
*nctrl
)
2930 struct nvme_fc_ctrl
*ctrl
= to_fc_ctrl(nctrl
);
2932 cancel_delayed_work_sync(&ctrl
->connect_work
);
2934 * kill the association on the link side. this will block
2935 * waiting for io to terminate
2937 nvme_fc_delete_association(ctrl
);
2941 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl
*ctrl
, int status
)
2943 struct nvme_fc_rport
*rport
= ctrl
->rport
;
2944 struct nvme_fc_remote_port
*portptr
= &rport
->remoteport
;
2945 unsigned long recon_delay
= ctrl
->ctrl
.opts
->reconnect_delay
* HZ
;
2948 if (ctrl
->ctrl
.state
!= NVME_CTRL_RECONNECTING
)
2951 if (portptr
->port_state
== FC_OBJSTATE_ONLINE
)
2952 dev_info(ctrl
->ctrl
.device
,
2953 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2954 ctrl
->cnum
, status
);
2955 else if (time_after_eq(jiffies
, rport
->dev_loss_end
))
2958 if (recon
&& nvmf_should_reconnect(&ctrl
->ctrl
)) {
2959 if (portptr
->port_state
== FC_OBJSTATE_ONLINE
)
2960 dev_info(ctrl
->ctrl
.device
,
2961 "NVME-FC{%d}: Reconnect attempt in %ld "
2963 ctrl
->cnum
, recon_delay
/ HZ
);
2964 else if (time_after(jiffies
+ recon_delay
, rport
->dev_loss_end
))
2965 recon_delay
= rport
->dev_loss_end
- jiffies
;
2967 queue_delayed_work(nvme_wq
, &ctrl
->connect_work
, recon_delay
);
2969 if (portptr
->port_state
== FC_OBJSTATE_ONLINE
)
2970 dev_warn(ctrl
->ctrl
.device
,
2971 "NVME-FC{%d}: Max reconnect attempts (%d) "
2972 "reached. Removing controller\n",
2973 ctrl
->cnum
, ctrl
->ctrl
.nr_reconnects
);
2975 dev_warn(ctrl
->ctrl
.device
,
2976 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
2977 "while waiting for remoteport connectivity. "
2978 "Removing controller\n", ctrl
->cnum
,
2979 portptr
->dev_loss_tmo
);
2980 WARN_ON(nvme_delete_ctrl(&ctrl
->ctrl
));
2985 nvme_fc_reset_ctrl_work(struct work_struct
*work
)
2987 struct nvme_fc_ctrl
*ctrl
=
2988 container_of(work
, struct nvme_fc_ctrl
, ctrl
.reset_work
);
2991 nvme_stop_ctrl(&ctrl
->ctrl
);
2993 /* will block will waiting for io to terminate */
2994 nvme_fc_delete_association(ctrl
);
2996 if (!nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_RECONNECTING
)) {
2997 dev_err(ctrl
->ctrl
.device
,
2998 "NVME-FC{%d}: error_recovery: Couldn't change state "
2999 "to RECONNECTING\n", ctrl
->cnum
);
3003 if (ctrl
->rport
->remoteport
.port_state
== FC_OBJSTATE_ONLINE
)
3004 ret
= nvme_fc_create_association(ctrl
);
3009 nvme_fc_reconnect_or_delete(ctrl
, ret
);
3011 dev_info(ctrl
->ctrl
.device
,
3012 "NVME-FC{%d}: controller reset complete\n",
3016 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops
= {
3018 .module
= THIS_MODULE
,
3019 .flags
= NVME_F_FABRICS
,
3020 .reg_read32
= nvmf_reg_read32
,
3021 .reg_read64
= nvmf_reg_read64
,
3022 .reg_write32
= nvmf_reg_write32
,
3023 .free_ctrl
= nvme_fc_nvme_ctrl_freed
,
3024 .submit_async_event
= nvme_fc_submit_async_event
,
3025 .delete_ctrl
= nvme_fc_delete_ctrl
,
3026 .get_address
= nvmf_get_address
,
3027 .reinit_request
= nvme_fc_reinit_request
,
3031 nvme_fc_connect_ctrl_work(struct work_struct
*work
)
3035 struct nvme_fc_ctrl
*ctrl
=
3036 container_of(to_delayed_work(work
),
3037 struct nvme_fc_ctrl
, connect_work
);
3039 ret
= nvme_fc_create_association(ctrl
);
3041 nvme_fc_reconnect_or_delete(ctrl
, ret
);
3043 dev_info(ctrl
->ctrl
.device
,
3044 "NVME-FC{%d}: controller reconnect complete\n",
3049 static const struct blk_mq_ops nvme_fc_admin_mq_ops
= {
3050 .queue_rq
= nvme_fc_queue_rq
,
3051 .complete
= nvme_fc_complete_rq
,
3052 .init_request
= nvme_fc_init_request
,
3053 .exit_request
= nvme_fc_exit_request
,
3054 .init_hctx
= nvme_fc_init_admin_hctx
,
3055 .timeout
= nvme_fc_timeout
,
3060 * Fails a controller request if it matches an existing controller
3061 * (association) with the same tuple:
3062 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3064 * The ports don't need to be compared as they are intrinsically
3065 * already matched by the port pointers supplied.
3068 nvme_fc_existing_controller(struct nvme_fc_rport
*rport
,
3069 struct nvmf_ctrl_options
*opts
)
3071 struct nvme_fc_ctrl
*ctrl
;
3072 unsigned long flags
;
3075 spin_lock_irqsave(&rport
->lock
, flags
);
3076 list_for_each_entry(ctrl
, &rport
->ctrl_list
, ctrl_list
) {
3077 found
= nvmf_ctlr_matches_baseopts(&ctrl
->ctrl
, opts
);
3081 spin_unlock_irqrestore(&rport
->lock
, flags
);
3086 static struct nvme_ctrl
*
3087 nvme_fc_init_ctrl(struct device
*dev
, struct nvmf_ctrl_options
*opts
,
3088 struct nvme_fc_lport
*lport
, struct nvme_fc_rport
*rport
)
3090 struct nvme_fc_ctrl
*ctrl
;
3091 unsigned long flags
;
3092 int ret
, idx
, retry
;
3094 if (!(rport
->remoteport
.port_role
&
3095 (FC_PORT_ROLE_NVME_DISCOVERY
| FC_PORT_ROLE_NVME_TARGET
))) {
3100 if (!opts
->duplicate_connect
&&
3101 nvme_fc_existing_controller(rport
, opts
)) {
3106 ctrl
= kzalloc(sizeof(*ctrl
), GFP_KERNEL
);
3112 idx
= ida_simple_get(&nvme_fc_ctrl_cnt
, 0, 0, GFP_KERNEL
);
3118 ctrl
->ctrl
.opts
= opts
;
3119 INIT_LIST_HEAD(&ctrl
->ctrl_list
);
3120 ctrl
->lport
= lport
;
3121 ctrl
->rport
= rport
;
3122 ctrl
->dev
= lport
->dev
;
3124 ctrl
->assoc_active
= false;
3125 init_waitqueue_head(&ctrl
->ioabort_wait
);
3127 get_device(ctrl
->dev
);
3128 kref_init(&ctrl
->ref
);
3130 INIT_WORK(&ctrl
->ctrl
.reset_work
, nvme_fc_reset_ctrl_work
);
3131 INIT_DELAYED_WORK(&ctrl
->connect_work
, nvme_fc_connect_ctrl_work
);
3132 spin_lock_init(&ctrl
->lock
);
3134 /* io queue count */
3135 ctrl
->ctrl
.queue_count
= min_t(unsigned int,
3137 lport
->ops
->max_hw_queues
);
3138 ctrl
->ctrl
.queue_count
++; /* +1 for admin queue */
3140 ctrl
->ctrl
.sqsize
= opts
->queue_size
- 1;
3141 ctrl
->ctrl
.kato
= opts
->kato
;
3144 ctrl
->queues
= kcalloc(ctrl
->ctrl
.queue_count
,
3145 sizeof(struct nvme_fc_queue
), GFP_KERNEL
);
3149 memset(&ctrl
->admin_tag_set
, 0, sizeof(ctrl
->admin_tag_set
));
3150 ctrl
->admin_tag_set
.ops
= &nvme_fc_admin_mq_ops
;
3151 ctrl
->admin_tag_set
.queue_depth
= NVME_AQ_MQ_TAG_DEPTH
;
3152 ctrl
->admin_tag_set
.reserved_tags
= 2; /* fabric connect + Keep-Alive */
3153 ctrl
->admin_tag_set
.numa_node
= NUMA_NO_NODE
;
3154 ctrl
->admin_tag_set
.cmd_size
= sizeof(struct nvme_fc_fcp_op
) +
3156 sizeof(struct scatterlist
)) +
3157 ctrl
->lport
->ops
->fcprqst_priv_sz
;
3158 ctrl
->admin_tag_set
.driver_data
= ctrl
;
3159 ctrl
->admin_tag_set
.nr_hw_queues
= 1;
3160 ctrl
->admin_tag_set
.timeout
= ADMIN_TIMEOUT
;
3161 ctrl
->admin_tag_set
.flags
= BLK_MQ_F_NO_SCHED
;
3163 ret
= blk_mq_alloc_tag_set(&ctrl
->admin_tag_set
);
3165 goto out_free_queues
;
3166 ctrl
->ctrl
.admin_tagset
= &ctrl
->admin_tag_set
;
3168 ctrl
->ctrl
.admin_q
= blk_mq_init_queue(&ctrl
->admin_tag_set
);
3169 if (IS_ERR(ctrl
->ctrl
.admin_q
)) {
3170 ret
= PTR_ERR(ctrl
->ctrl
.admin_q
);
3171 goto out_free_admin_tag_set
;
3175 * Would have been nice to init io queues tag set as well.
3176 * However, we require interaction from the controller
3177 * for max io queue count before we can do so.
3178 * Defer this to the connect path.
3181 ret
= nvme_init_ctrl(&ctrl
->ctrl
, dev
, &nvme_fc_ctrl_ops
, 0);
3183 goto out_cleanup_admin_q
;
3185 /* at this point, teardown path changes to ref counting on nvme ctrl */
3187 spin_lock_irqsave(&rport
->lock
, flags
);
3188 list_add_tail(&ctrl
->ctrl_list
, &rport
->ctrl_list
);
3189 spin_unlock_irqrestore(&rport
->lock
, flags
);
3192 * It's possible that transactions used to create the association
3193 * may fail. Examples: CreateAssociation LS or CreateIOConnection
3194 * LS gets dropped/corrupted/fails; or a frame gets dropped or a
3195 * command times out for one of the actions to init the controller
3196 * (Connect, Get/Set_Property, Set_Features, etc). Many of these
3197 * transport errors (frame drop, LS failure) inherently must kill
3198 * the association. The transport is coded so that any command used
3199 * to create the association (prior to a LIVE state transition
3200 * while NEW or RECONNECTING) will fail if it completes in error or
3203 * As such: as the connect request was mostly likely due to a
3204 * udev event that discovered the remote port, meaning there is
3205 * not an admin or script there to restart if the connect
3206 * request fails, retry the initial connection creation up to
3207 * three times before giving up and declaring failure.
3209 for (retry
= 0; retry
< 3; retry
++) {
3210 ret
= nvme_fc_create_association(ctrl
);
3216 /* couldn't schedule retry - fail out */
3217 dev_err(ctrl
->ctrl
.device
,
3218 "NVME-FC{%d}: Connect retry failed\n", ctrl
->cnum
);
3220 ctrl
->ctrl
.opts
= NULL
;
3222 /* initiate nvme ctrl ref counting teardown */
3223 nvme_uninit_ctrl(&ctrl
->ctrl
);
3224 nvme_put_ctrl(&ctrl
->ctrl
);
3226 /* Remove core ctrl ref. */
3227 nvme_put_ctrl(&ctrl
->ctrl
);
3229 /* as we're past the point where we transition to the ref
3230 * counting teardown path, if we return a bad pointer here,
3231 * the calling routine, thinking it's prior to the
3232 * transition, will do an rport put. Since the teardown
3233 * path also does a rport put, we do an extra get here to
3234 * so proper order/teardown happens.
3236 nvme_fc_rport_get(rport
);
3240 return ERR_PTR(ret
);
3243 nvme_get_ctrl(&ctrl
->ctrl
);
3245 dev_info(ctrl
->ctrl
.device
,
3246 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3247 ctrl
->cnum
, ctrl
->ctrl
.opts
->subsysnqn
);
3251 out_cleanup_admin_q
:
3252 blk_cleanup_queue(ctrl
->ctrl
.admin_q
);
3253 out_free_admin_tag_set
:
3254 blk_mq_free_tag_set(&ctrl
->admin_tag_set
);
3256 kfree(ctrl
->queues
);
3258 put_device(ctrl
->dev
);
3259 ida_simple_remove(&nvme_fc_ctrl_cnt
, ctrl
->cnum
);
3263 /* exit via here doesn't follow ctlr ref points */
3264 return ERR_PTR(ret
);
3268 struct nvmet_fc_traddr
{
3274 __nvme_fc_parse_u64(substring_t
*sstr
, u64
*val
)
3278 if (match_u64(sstr
, &token64
))
3286 * This routine validates and extracts the WWN's from the TRADDR string.
3287 * As kernel parsers need the 0x to determine number base, universally
3288 * build string to parse with 0x prefix before parsing name strings.
3291 nvme_fc_parse_traddr(struct nvmet_fc_traddr
*traddr
, char *buf
, size_t blen
)
3293 char name
[2 + NVME_FC_TRADDR_HEXNAMELEN
+ 1];
3294 substring_t wwn
= { name
, &name
[sizeof(name
)-1] };
3295 int nnoffset
, pnoffset
;
3297 /* validate it string one of the 2 allowed formats */
3298 if (strnlen(buf
, blen
) == NVME_FC_TRADDR_MAXLENGTH
&&
3299 !strncmp(buf
, "nn-0x", NVME_FC_TRADDR_OXNNLEN
) &&
3300 !strncmp(&buf
[NVME_FC_TRADDR_MAX_PN_OFFSET
],
3301 "pn-0x", NVME_FC_TRADDR_OXNNLEN
)) {
3302 nnoffset
= NVME_FC_TRADDR_OXNNLEN
;
3303 pnoffset
= NVME_FC_TRADDR_MAX_PN_OFFSET
+
3304 NVME_FC_TRADDR_OXNNLEN
;
3305 } else if ((strnlen(buf
, blen
) == NVME_FC_TRADDR_MINLENGTH
&&
3306 !strncmp(buf
, "nn-", NVME_FC_TRADDR_NNLEN
) &&
3307 !strncmp(&buf
[NVME_FC_TRADDR_MIN_PN_OFFSET
],
3308 "pn-", NVME_FC_TRADDR_NNLEN
))) {
3309 nnoffset
= NVME_FC_TRADDR_NNLEN
;
3310 pnoffset
= NVME_FC_TRADDR_MIN_PN_OFFSET
+ NVME_FC_TRADDR_NNLEN
;
3316 name
[2 + NVME_FC_TRADDR_HEXNAMELEN
] = 0;
3318 memcpy(&name
[2], &buf
[nnoffset
], NVME_FC_TRADDR_HEXNAMELEN
);
3319 if (__nvme_fc_parse_u64(&wwn
, &traddr
->nn
))
3322 memcpy(&name
[2], &buf
[pnoffset
], NVME_FC_TRADDR_HEXNAMELEN
);
3323 if (__nvme_fc_parse_u64(&wwn
, &traddr
->pn
))
3329 pr_warn("%s: bad traddr string\n", __func__
);
3333 static struct nvme_ctrl
*
3334 nvme_fc_create_ctrl(struct device
*dev
, struct nvmf_ctrl_options
*opts
)
3336 struct nvme_fc_lport
*lport
;
3337 struct nvme_fc_rport
*rport
;
3338 struct nvme_ctrl
*ctrl
;
3339 struct nvmet_fc_traddr laddr
= { 0L, 0L };
3340 struct nvmet_fc_traddr raddr
= { 0L, 0L };
3341 unsigned long flags
;
3344 ret
= nvme_fc_parse_traddr(&raddr
, opts
->traddr
, NVMF_TRADDR_SIZE
);
3345 if (ret
|| !raddr
.nn
|| !raddr
.pn
)
3346 return ERR_PTR(-EINVAL
);
3348 ret
= nvme_fc_parse_traddr(&laddr
, opts
->host_traddr
, NVMF_TRADDR_SIZE
);
3349 if (ret
|| !laddr
.nn
|| !laddr
.pn
)
3350 return ERR_PTR(-EINVAL
);
3352 /* find the host and remote ports to connect together */
3353 spin_lock_irqsave(&nvme_fc_lock
, flags
);
3354 list_for_each_entry(lport
, &nvme_fc_lport_list
, port_list
) {
3355 if (lport
->localport
.node_name
!= laddr
.nn
||
3356 lport
->localport
.port_name
!= laddr
.pn
)
3359 list_for_each_entry(rport
, &lport
->endp_list
, endp_list
) {
3360 if (rport
->remoteport
.node_name
!= raddr
.nn
||
3361 rport
->remoteport
.port_name
!= raddr
.pn
)
3364 /* if fail to get reference fall through. Will error */
3365 if (!nvme_fc_rport_get(rport
))
3368 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
3370 ctrl
= nvme_fc_init_ctrl(dev
, opts
, lport
, rport
);
3372 nvme_fc_rport_put(rport
);
3376 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
3378 return ERR_PTR(-ENOENT
);
3382 static struct nvmf_transport_ops nvme_fc_transport
= {
3384 .required_opts
= NVMF_OPT_TRADDR
| NVMF_OPT_HOST_TRADDR
,
3385 .allowed_opts
= NVMF_OPT_RECONNECT_DELAY
| NVMF_OPT_CTRL_LOSS_TMO
,
3386 .create_ctrl
= nvme_fc_create_ctrl
,
3389 static int __init
nvme_fc_init_module(void)
3395 * It is expected that in the future the kernel will combine
3396 * the FC-isms that are currently under scsi and now being
3397 * added to by NVME into a new standalone FC class. The SCSI
3398 * and NVME protocols and their devices would be under this
3401 * As we need something to post FC-specific udev events to,
3402 * specifically for nvme probe events, start by creating the
3403 * new device class. When the new standalone FC class is
3404 * put in place, this code will move to a more generic
3405 * location for the class.
3407 fc_class
= class_create(THIS_MODULE
, "fc");
3408 if (IS_ERR(fc_class
)) {
3409 pr_err("couldn't register class fc\n");
3410 return PTR_ERR(fc_class
);
3414 * Create a device for the FC-centric udev events
3416 fc_udev_device
= device_create(fc_class
, NULL
, MKDEV(0, 0), NULL
,
3418 if (IS_ERR(fc_udev_device
)) {
3419 pr_err("couldn't create fc_udev device!\n");
3420 ret
= PTR_ERR(fc_udev_device
);
3421 goto out_destroy_class
;
3424 ret
= nvmf_register_transport(&nvme_fc_transport
);
3426 goto out_destroy_device
;
3431 device_destroy(fc_class
, MKDEV(0, 0));
3433 class_destroy(fc_class
);
3437 static void __exit
nvme_fc_exit_module(void)
3439 /* sanity check - all lports should be removed */
3440 if (!list_empty(&nvme_fc_lport_list
))
3441 pr_warn("%s: localport list not empty\n", __func__
);
3443 nvmf_unregister_transport(&nvme_fc_transport
);
3445 ida_destroy(&nvme_fc_local_port_cnt
);
3446 ida_destroy(&nvme_fc_ctrl_cnt
);
3448 device_destroy(fc_class
, MKDEV(0, 0));
3449 class_destroy(fc_class
);
3452 module_init(nvme_fc_init_module
);
3453 module_exit(nvme_fc_exit_module
);
3455 MODULE_LICENSE("GPL v2");