Merge tag 'riscv-for-linus-4.15-rc2_cleanups' of git://git.kernel.org/pub/scm/linux...
[linux/fpc-iii.git] / drivers / nvme / host / fc.c
blob0a8af4daef8903f8ba983d345f1044498c57a975
1 /*
2 * Copyright (c) 2016 Avago Technologies. All rights reserved.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful.
9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13 * See the GNU General Public License for more details, a copy of which
14 * can be found in the file COPYING included with this package
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
24 #include "nvme.h"
25 #include "fabrics.h"
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
30 /* *************************** Data Structures/Defines ****************** */
33 enum nvme_fc_queue_flags {
34 NVME_FC_Q_CONNECTED = 0,
35 NVME_FC_Q_LIVE,
38 #define NVMEFC_QUEUE_DELAY 3 /* ms units */
40 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */
42 struct nvme_fc_queue {
43 struct nvme_fc_ctrl *ctrl;
44 struct device *dev;
45 struct blk_mq_hw_ctx *hctx;
46 void *lldd_handle;
47 size_t cmnd_capsule_len;
48 u32 qnum;
49 u32 rqcnt;
50 u32 seqno;
52 u64 connection_id;
53 atomic_t csn;
55 unsigned long flags;
56 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
58 enum nvme_fcop_flags {
59 FCOP_FLAGS_TERMIO = (1 << 0),
60 FCOP_FLAGS_RELEASED = (1 << 1),
61 FCOP_FLAGS_COMPLETE = (1 << 2),
62 FCOP_FLAGS_AEN = (1 << 3),
65 struct nvmefc_ls_req_op {
66 struct nvmefc_ls_req ls_req;
68 struct nvme_fc_rport *rport;
69 struct nvme_fc_queue *queue;
70 struct request *rq;
71 u32 flags;
73 int ls_error;
74 struct completion ls_done;
75 struct list_head lsreq_list; /* rport->ls_req_list */
76 bool req_queued;
79 enum nvme_fcpop_state {
80 FCPOP_STATE_UNINIT = 0,
81 FCPOP_STATE_IDLE = 1,
82 FCPOP_STATE_ACTIVE = 2,
83 FCPOP_STATE_ABORTED = 3,
84 FCPOP_STATE_COMPLETE = 4,
87 struct nvme_fc_fcp_op {
88 struct nvme_request nreq; /*
89 * nvme/host/core.c
90 * requires this to be
91 * the 1st element in the
92 * private structure
93 * associated with the
94 * request.
96 struct nvmefc_fcp_req fcp_req;
98 struct nvme_fc_ctrl *ctrl;
99 struct nvme_fc_queue *queue;
100 struct request *rq;
102 atomic_t state;
103 u32 flags;
104 u32 rqno;
105 u32 nents;
107 struct nvme_fc_cmd_iu cmd_iu;
108 struct nvme_fc_ersp_iu rsp_iu;
111 struct nvme_fc_lport {
112 struct nvme_fc_local_port localport;
114 struct ida endp_cnt;
115 struct list_head port_list; /* nvme_fc_port_list */
116 struct list_head endp_list;
117 struct device *dev; /* physical device for dma */
118 struct nvme_fc_port_template *ops;
119 struct kref ref;
120 atomic_t act_rport_cnt;
121 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
123 struct nvme_fc_rport {
124 struct nvme_fc_remote_port remoteport;
126 struct list_head endp_list; /* for lport->endp_list */
127 struct list_head ctrl_list;
128 struct list_head ls_req_list;
129 struct device *dev; /* physical device for dma */
130 struct nvme_fc_lport *lport;
131 spinlock_t lock;
132 struct kref ref;
133 atomic_t act_ctrl_cnt;
134 unsigned long dev_loss_end;
135 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
137 enum nvme_fcctrl_flags {
138 FCCTRL_TERMIO = (1 << 0),
141 struct nvme_fc_ctrl {
142 spinlock_t lock;
143 struct nvme_fc_queue *queues;
144 struct device *dev;
145 struct nvme_fc_lport *lport;
146 struct nvme_fc_rport *rport;
147 u32 cnum;
149 bool assoc_active;
150 u64 association_id;
152 struct list_head ctrl_list; /* rport->ctrl_list */
154 struct blk_mq_tag_set admin_tag_set;
155 struct blk_mq_tag_set tag_set;
157 struct delayed_work connect_work;
159 struct kref ref;
160 u32 flags;
161 u32 iocnt;
162 wait_queue_head_t ioabort_wait;
164 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS];
166 struct nvme_ctrl ctrl;
169 static inline struct nvme_fc_ctrl *
170 to_fc_ctrl(struct nvme_ctrl *ctrl)
172 return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
175 static inline struct nvme_fc_lport *
176 localport_to_lport(struct nvme_fc_local_port *portptr)
178 return container_of(portptr, struct nvme_fc_lport, localport);
181 static inline struct nvme_fc_rport *
182 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
184 return container_of(portptr, struct nvme_fc_rport, remoteport);
187 static inline struct nvmefc_ls_req_op *
188 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
190 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
193 static inline struct nvme_fc_fcp_op *
194 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
196 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
201 /* *************************** Globals **************************** */
204 static DEFINE_SPINLOCK(nvme_fc_lock);
206 static LIST_HEAD(nvme_fc_lport_list);
207 static DEFINE_IDA(nvme_fc_local_port_cnt);
208 static DEFINE_IDA(nvme_fc_ctrl_cnt);
213 * These items are short-term. They will eventually be moved into
214 * a generic FC class. See comments in module init.
216 static struct class *fc_class;
217 static struct device *fc_udev_device;
220 /* *********************** FC-NVME Port Management ************************ */
222 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
223 struct nvme_fc_queue *, unsigned int);
225 static void
226 nvme_fc_free_lport(struct kref *ref)
228 struct nvme_fc_lport *lport =
229 container_of(ref, struct nvme_fc_lport, ref);
230 unsigned long flags;
232 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
233 WARN_ON(!list_empty(&lport->endp_list));
235 /* remove from transport list */
236 spin_lock_irqsave(&nvme_fc_lock, flags);
237 list_del(&lport->port_list);
238 spin_unlock_irqrestore(&nvme_fc_lock, flags);
240 ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
241 ida_destroy(&lport->endp_cnt);
243 put_device(lport->dev);
245 kfree(lport);
248 static void
249 nvme_fc_lport_put(struct nvme_fc_lport *lport)
251 kref_put(&lport->ref, nvme_fc_free_lport);
254 static int
255 nvme_fc_lport_get(struct nvme_fc_lport *lport)
257 return kref_get_unless_zero(&lport->ref);
261 static struct nvme_fc_lport *
262 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
263 struct nvme_fc_port_template *ops,
264 struct device *dev)
266 struct nvme_fc_lport *lport;
267 unsigned long flags;
269 spin_lock_irqsave(&nvme_fc_lock, flags);
271 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
272 if (lport->localport.node_name != pinfo->node_name ||
273 lport->localport.port_name != pinfo->port_name)
274 continue;
276 if (lport->dev != dev) {
277 lport = ERR_PTR(-EXDEV);
278 goto out_done;
281 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
282 lport = ERR_PTR(-EEXIST);
283 goto out_done;
286 if (!nvme_fc_lport_get(lport)) {
288 * fails if ref cnt already 0. If so,
289 * act as if lport already deleted
291 lport = NULL;
292 goto out_done;
295 /* resume the lport */
297 lport->ops = ops;
298 lport->localport.port_role = pinfo->port_role;
299 lport->localport.port_id = pinfo->port_id;
300 lport->localport.port_state = FC_OBJSTATE_ONLINE;
302 spin_unlock_irqrestore(&nvme_fc_lock, flags);
304 return lport;
307 lport = NULL;
309 out_done:
310 spin_unlock_irqrestore(&nvme_fc_lock, flags);
312 return lport;
316 * nvme_fc_register_localport - transport entry point called by an
317 * LLDD to register the existence of a NVME
318 * host FC port.
319 * @pinfo: pointer to information about the port to be registered
320 * @template: LLDD entrypoints and operational parameters for the port
321 * @dev: physical hardware device node port corresponds to. Will be
322 * used for DMA mappings
323 * @lport_p: pointer to a local port pointer. Upon success, the routine
324 * will allocate a nvme_fc_local_port structure and place its
325 * address in the local port pointer. Upon failure, local port
326 * pointer will be set to 0.
328 * Returns:
329 * a completion status. Must be 0 upon success; a negative errno
330 * (ex: -ENXIO) upon failure.
333 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
334 struct nvme_fc_port_template *template,
335 struct device *dev,
336 struct nvme_fc_local_port **portptr)
338 struct nvme_fc_lport *newrec;
339 unsigned long flags;
340 int ret, idx;
342 if (!template->localport_delete || !template->remoteport_delete ||
343 !template->ls_req || !template->fcp_io ||
344 !template->ls_abort || !template->fcp_abort ||
345 !template->max_hw_queues || !template->max_sgl_segments ||
346 !template->max_dif_sgl_segments || !template->dma_boundary) {
347 ret = -EINVAL;
348 goto out_reghost_failed;
352 * look to see if there is already a localport that had been
353 * deregistered and in the process of waiting for all the
354 * references to fully be removed. If the references haven't
355 * expired, we can simply re-enable the localport. Remoteports
356 * and controller reconnections should resume naturally.
358 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
360 /* found an lport, but something about its state is bad */
361 if (IS_ERR(newrec)) {
362 ret = PTR_ERR(newrec);
363 goto out_reghost_failed;
365 /* found existing lport, which was resumed */
366 } else if (newrec) {
367 *portptr = &newrec->localport;
368 return 0;
371 /* nothing found - allocate a new localport struct */
373 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
374 GFP_KERNEL);
375 if (!newrec) {
376 ret = -ENOMEM;
377 goto out_reghost_failed;
380 idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
381 if (idx < 0) {
382 ret = -ENOSPC;
383 goto out_fail_kfree;
386 if (!get_device(dev) && dev) {
387 ret = -ENODEV;
388 goto out_ida_put;
391 INIT_LIST_HEAD(&newrec->port_list);
392 INIT_LIST_HEAD(&newrec->endp_list);
393 kref_init(&newrec->ref);
394 atomic_set(&newrec->act_rport_cnt, 0);
395 newrec->ops = template;
396 newrec->dev = dev;
397 ida_init(&newrec->endp_cnt);
398 newrec->localport.private = &newrec[1];
399 newrec->localport.node_name = pinfo->node_name;
400 newrec->localport.port_name = pinfo->port_name;
401 newrec->localport.port_role = pinfo->port_role;
402 newrec->localport.port_id = pinfo->port_id;
403 newrec->localport.port_state = FC_OBJSTATE_ONLINE;
404 newrec->localport.port_num = idx;
406 spin_lock_irqsave(&nvme_fc_lock, flags);
407 list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
408 spin_unlock_irqrestore(&nvme_fc_lock, flags);
410 if (dev)
411 dma_set_seg_boundary(dev, template->dma_boundary);
413 *portptr = &newrec->localport;
414 return 0;
416 out_ida_put:
417 ida_simple_remove(&nvme_fc_local_port_cnt, idx);
418 out_fail_kfree:
419 kfree(newrec);
420 out_reghost_failed:
421 *portptr = NULL;
423 return ret;
425 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
428 * nvme_fc_unregister_localport - transport entry point called by an
429 * LLDD to deregister/remove a previously
430 * registered a NVME host FC port.
431 * @localport: pointer to the (registered) local port that is to be
432 * deregistered.
434 * Returns:
435 * a completion status. Must be 0 upon success; a negative errno
436 * (ex: -ENXIO) upon failure.
439 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
441 struct nvme_fc_lport *lport = localport_to_lport(portptr);
442 unsigned long flags;
444 if (!portptr)
445 return -EINVAL;
447 spin_lock_irqsave(&nvme_fc_lock, flags);
449 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
450 spin_unlock_irqrestore(&nvme_fc_lock, flags);
451 return -EINVAL;
453 portptr->port_state = FC_OBJSTATE_DELETED;
455 spin_unlock_irqrestore(&nvme_fc_lock, flags);
457 if (atomic_read(&lport->act_rport_cnt) == 0)
458 lport->ops->localport_delete(&lport->localport);
460 nvme_fc_lport_put(lport);
462 return 0;
464 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
467 * TRADDR strings, per FC-NVME are fixed format:
468 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
469 * udev event will only differ by prefix of what field is
470 * being specified:
471 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
472 * 19 + 43 + null_fudge = 64 characters
474 #define FCNVME_TRADDR_LENGTH 64
476 static void
477 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
478 struct nvme_fc_rport *rport)
480 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/
481 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/
482 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
484 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
485 return;
487 snprintf(hostaddr, sizeof(hostaddr),
488 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
489 lport->localport.node_name, lport->localport.port_name);
490 snprintf(tgtaddr, sizeof(tgtaddr),
491 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
492 rport->remoteport.node_name, rport->remoteport.port_name);
493 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
496 static void
497 nvme_fc_free_rport(struct kref *ref)
499 struct nvme_fc_rport *rport =
500 container_of(ref, struct nvme_fc_rport, ref);
501 struct nvme_fc_lport *lport =
502 localport_to_lport(rport->remoteport.localport);
503 unsigned long flags;
505 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
506 WARN_ON(!list_empty(&rport->ctrl_list));
508 /* remove from lport list */
509 spin_lock_irqsave(&nvme_fc_lock, flags);
510 list_del(&rport->endp_list);
511 spin_unlock_irqrestore(&nvme_fc_lock, flags);
513 ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
515 kfree(rport);
517 nvme_fc_lport_put(lport);
520 static void
521 nvme_fc_rport_put(struct nvme_fc_rport *rport)
523 kref_put(&rport->ref, nvme_fc_free_rport);
526 static int
527 nvme_fc_rport_get(struct nvme_fc_rport *rport)
529 return kref_get_unless_zero(&rport->ref);
532 static void
533 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
535 switch (ctrl->ctrl.state) {
536 case NVME_CTRL_NEW:
537 case NVME_CTRL_RECONNECTING:
539 * As all reconnects were suppressed, schedule a
540 * connect.
542 dev_info(ctrl->ctrl.device,
543 "NVME-FC{%d}: connectivity re-established. "
544 "Attempting reconnect\n", ctrl->cnum);
546 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
547 break;
549 case NVME_CTRL_RESETTING:
551 * Controller is already in the process of terminating the
552 * association. No need to do anything further. The reconnect
553 * step will naturally occur after the reset completes.
555 break;
557 default:
558 /* no action to take - let it delete */
559 break;
563 static struct nvme_fc_rport *
564 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
565 struct nvme_fc_port_info *pinfo)
567 struct nvme_fc_rport *rport;
568 struct nvme_fc_ctrl *ctrl;
569 unsigned long flags;
571 spin_lock_irqsave(&nvme_fc_lock, flags);
573 list_for_each_entry(rport, &lport->endp_list, endp_list) {
574 if (rport->remoteport.node_name != pinfo->node_name ||
575 rport->remoteport.port_name != pinfo->port_name)
576 continue;
578 if (!nvme_fc_rport_get(rport)) {
579 rport = ERR_PTR(-ENOLCK);
580 goto out_done;
583 spin_unlock_irqrestore(&nvme_fc_lock, flags);
585 spin_lock_irqsave(&rport->lock, flags);
587 /* has it been unregistered */
588 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
589 /* means lldd called us twice */
590 spin_unlock_irqrestore(&rport->lock, flags);
591 nvme_fc_rport_put(rport);
592 return ERR_PTR(-ESTALE);
595 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
596 rport->dev_loss_end = 0;
599 * kick off a reconnect attempt on all associations to the
600 * remote port. A successful reconnects will resume i/o.
602 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
603 nvme_fc_resume_controller(ctrl);
605 spin_unlock_irqrestore(&rport->lock, flags);
607 return rport;
610 rport = NULL;
612 out_done:
613 spin_unlock_irqrestore(&nvme_fc_lock, flags);
615 return rport;
618 static inline void
619 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
620 struct nvme_fc_port_info *pinfo)
622 if (pinfo->dev_loss_tmo)
623 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
624 else
625 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
629 * nvme_fc_register_remoteport - transport entry point called by an
630 * LLDD to register the existence of a NVME
631 * subsystem FC port on its fabric.
632 * @localport: pointer to the (registered) local port that the remote
633 * subsystem port is connected to.
634 * @pinfo: pointer to information about the port to be registered
635 * @rport_p: pointer to a remote port pointer. Upon success, the routine
636 * will allocate a nvme_fc_remote_port structure and place its
637 * address in the remote port pointer. Upon failure, remote port
638 * pointer will be set to 0.
640 * Returns:
641 * a completion status. Must be 0 upon success; a negative errno
642 * (ex: -ENXIO) upon failure.
645 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
646 struct nvme_fc_port_info *pinfo,
647 struct nvme_fc_remote_port **portptr)
649 struct nvme_fc_lport *lport = localport_to_lport(localport);
650 struct nvme_fc_rport *newrec;
651 unsigned long flags;
652 int ret, idx;
654 if (!nvme_fc_lport_get(lport)) {
655 ret = -ESHUTDOWN;
656 goto out_reghost_failed;
660 * look to see if there is already a remoteport that is waiting
661 * for a reconnect (within dev_loss_tmo) with the same WWN's.
662 * If so, transition to it and reconnect.
664 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
666 /* found an rport, but something about its state is bad */
667 if (IS_ERR(newrec)) {
668 ret = PTR_ERR(newrec);
669 goto out_lport_put;
671 /* found existing rport, which was resumed */
672 } else if (newrec) {
673 nvme_fc_lport_put(lport);
674 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
675 nvme_fc_signal_discovery_scan(lport, newrec);
676 *portptr = &newrec->remoteport;
677 return 0;
680 /* nothing found - allocate a new remoteport struct */
682 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
683 GFP_KERNEL);
684 if (!newrec) {
685 ret = -ENOMEM;
686 goto out_lport_put;
689 idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
690 if (idx < 0) {
691 ret = -ENOSPC;
692 goto out_kfree_rport;
695 INIT_LIST_HEAD(&newrec->endp_list);
696 INIT_LIST_HEAD(&newrec->ctrl_list);
697 INIT_LIST_HEAD(&newrec->ls_req_list);
698 kref_init(&newrec->ref);
699 atomic_set(&newrec->act_ctrl_cnt, 0);
700 spin_lock_init(&newrec->lock);
701 newrec->remoteport.localport = &lport->localport;
702 newrec->dev = lport->dev;
703 newrec->lport = lport;
704 newrec->remoteport.private = &newrec[1];
705 newrec->remoteport.port_role = pinfo->port_role;
706 newrec->remoteport.node_name = pinfo->node_name;
707 newrec->remoteport.port_name = pinfo->port_name;
708 newrec->remoteport.port_id = pinfo->port_id;
709 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
710 newrec->remoteport.port_num = idx;
711 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
713 spin_lock_irqsave(&nvme_fc_lock, flags);
714 list_add_tail(&newrec->endp_list, &lport->endp_list);
715 spin_unlock_irqrestore(&nvme_fc_lock, flags);
717 nvme_fc_signal_discovery_scan(lport, newrec);
719 *portptr = &newrec->remoteport;
720 return 0;
722 out_kfree_rport:
723 kfree(newrec);
724 out_lport_put:
725 nvme_fc_lport_put(lport);
726 out_reghost_failed:
727 *portptr = NULL;
728 return ret;
730 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
732 static int
733 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
735 struct nvmefc_ls_req_op *lsop;
736 unsigned long flags;
738 restart:
739 spin_lock_irqsave(&rport->lock, flags);
741 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
742 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
743 lsop->flags |= FCOP_FLAGS_TERMIO;
744 spin_unlock_irqrestore(&rport->lock, flags);
745 rport->lport->ops->ls_abort(&rport->lport->localport,
746 &rport->remoteport,
747 &lsop->ls_req);
748 goto restart;
751 spin_unlock_irqrestore(&rport->lock, flags);
753 return 0;
756 static void
757 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
759 dev_info(ctrl->ctrl.device,
760 "NVME-FC{%d}: controller connectivity lost. Awaiting "
761 "Reconnect", ctrl->cnum);
763 switch (ctrl->ctrl.state) {
764 case NVME_CTRL_NEW:
765 case NVME_CTRL_LIVE:
767 * Schedule a controller reset. The reset will terminate the
768 * association and schedule the reconnect timer. Reconnects
769 * will be attempted until either the ctlr_loss_tmo
770 * (max_retries * connect_delay) expires or the remoteport's
771 * dev_loss_tmo expires.
773 if (nvme_reset_ctrl(&ctrl->ctrl)) {
774 dev_warn(ctrl->ctrl.device,
775 "NVME-FC{%d}: Couldn't schedule reset. "
776 "Deleting controller.\n",
777 ctrl->cnum);
778 nvme_delete_ctrl(&ctrl->ctrl);
780 break;
782 case NVME_CTRL_RECONNECTING:
784 * The association has already been terminated and the
785 * controller is attempting reconnects. No need to do anything
786 * futher. Reconnects will be attempted until either the
787 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
788 * remoteport's dev_loss_tmo expires.
790 break;
792 case NVME_CTRL_RESETTING:
794 * Controller is already in the process of terminating the
795 * association. No need to do anything further. The reconnect
796 * step will kick in naturally after the association is
797 * terminated.
799 break;
801 case NVME_CTRL_DELETING:
802 default:
803 /* no action to take - let it delete */
804 break;
809 * nvme_fc_unregister_remoteport - transport entry point called by an
810 * LLDD to deregister/remove a previously
811 * registered a NVME subsystem FC port.
812 * @remoteport: pointer to the (registered) remote port that is to be
813 * deregistered.
815 * Returns:
816 * a completion status. Must be 0 upon success; a negative errno
817 * (ex: -ENXIO) upon failure.
820 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
822 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
823 struct nvme_fc_ctrl *ctrl;
824 unsigned long flags;
826 if (!portptr)
827 return -EINVAL;
829 spin_lock_irqsave(&rport->lock, flags);
831 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
832 spin_unlock_irqrestore(&rport->lock, flags);
833 return -EINVAL;
835 portptr->port_state = FC_OBJSTATE_DELETED;
837 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
839 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
840 /* if dev_loss_tmo==0, dev loss is immediate */
841 if (!portptr->dev_loss_tmo) {
842 dev_warn(ctrl->ctrl.device,
843 "NVME-FC{%d}: controller connectivity lost. "
844 "Deleting controller.\n",
845 ctrl->cnum);
846 nvme_delete_ctrl(&ctrl->ctrl);
847 } else
848 nvme_fc_ctrl_connectivity_loss(ctrl);
851 spin_unlock_irqrestore(&rport->lock, flags);
853 nvme_fc_abort_lsops(rport);
855 if (atomic_read(&rport->act_ctrl_cnt) == 0)
856 rport->lport->ops->remoteport_delete(portptr);
859 * release the reference, which will allow, if all controllers
860 * go away, which should only occur after dev_loss_tmo occurs,
861 * for the rport to be torn down.
863 nvme_fc_rport_put(rport);
865 return 0;
867 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
870 * nvme_fc_rescan_remoteport - transport entry point called by an
871 * LLDD to request a nvme device rescan.
872 * @remoteport: pointer to the (registered) remote port that is to be
873 * rescanned.
875 * Returns: N/A
877 void
878 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
880 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
882 nvme_fc_signal_discovery_scan(rport->lport, rport);
884 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
887 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
888 u32 dev_loss_tmo)
890 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
891 unsigned long flags;
893 spin_lock_irqsave(&rport->lock, flags);
895 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
896 spin_unlock_irqrestore(&rport->lock, flags);
897 return -EINVAL;
900 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
901 rport->remoteport.dev_loss_tmo = dev_loss_tmo;
903 spin_unlock_irqrestore(&rport->lock, flags);
905 return 0;
907 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
910 /* *********************** FC-NVME DMA Handling **************************** */
913 * The fcloop device passes in a NULL device pointer. Real LLD's will
914 * pass in a valid device pointer. If NULL is passed to the dma mapping
915 * routines, depending on the platform, it may or may not succeed, and
916 * may crash.
918 * As such:
919 * Wrapper all the dma routines and check the dev pointer.
921 * If simple mappings (return just a dma address, we'll noop them,
922 * returning a dma address of 0.
924 * On more complex mappings (dma_map_sg), a pseudo routine fills
925 * in the scatter list, setting all dma addresses to 0.
928 static inline dma_addr_t
929 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
930 enum dma_data_direction dir)
932 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
935 static inline int
936 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
938 return dev ? dma_mapping_error(dev, dma_addr) : 0;
941 static inline void
942 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
943 enum dma_data_direction dir)
945 if (dev)
946 dma_unmap_single(dev, addr, size, dir);
949 static inline void
950 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
951 enum dma_data_direction dir)
953 if (dev)
954 dma_sync_single_for_cpu(dev, addr, size, dir);
957 static inline void
958 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
959 enum dma_data_direction dir)
961 if (dev)
962 dma_sync_single_for_device(dev, addr, size, dir);
965 /* pseudo dma_map_sg call */
966 static int
967 fc_map_sg(struct scatterlist *sg, int nents)
969 struct scatterlist *s;
970 int i;
972 WARN_ON(nents == 0 || sg[0].length == 0);
974 for_each_sg(sg, s, nents, i) {
975 s->dma_address = 0L;
976 #ifdef CONFIG_NEED_SG_DMA_LENGTH
977 s->dma_length = s->length;
978 #endif
980 return nents;
983 static inline int
984 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
985 enum dma_data_direction dir)
987 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
990 static inline void
991 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
992 enum dma_data_direction dir)
994 if (dev)
995 dma_unmap_sg(dev, sg, nents, dir);
998 /* *********************** FC-NVME LS Handling **************************** */
1000 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1001 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1004 static void
1005 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1007 struct nvme_fc_rport *rport = lsop->rport;
1008 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1009 unsigned long flags;
1011 spin_lock_irqsave(&rport->lock, flags);
1013 if (!lsop->req_queued) {
1014 spin_unlock_irqrestore(&rport->lock, flags);
1015 return;
1018 list_del(&lsop->lsreq_list);
1020 lsop->req_queued = false;
1022 spin_unlock_irqrestore(&rport->lock, flags);
1024 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1025 (lsreq->rqstlen + lsreq->rsplen),
1026 DMA_BIDIRECTIONAL);
1028 nvme_fc_rport_put(rport);
1031 static int
1032 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1033 struct nvmefc_ls_req_op *lsop,
1034 void (*done)(struct nvmefc_ls_req *req, int status))
1036 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1037 unsigned long flags;
1038 int ret = 0;
1040 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1041 return -ECONNREFUSED;
1043 if (!nvme_fc_rport_get(rport))
1044 return -ESHUTDOWN;
1046 lsreq->done = done;
1047 lsop->rport = rport;
1048 lsop->req_queued = false;
1049 INIT_LIST_HEAD(&lsop->lsreq_list);
1050 init_completion(&lsop->ls_done);
1052 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1053 lsreq->rqstlen + lsreq->rsplen,
1054 DMA_BIDIRECTIONAL);
1055 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1056 ret = -EFAULT;
1057 goto out_putrport;
1059 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1061 spin_lock_irqsave(&rport->lock, flags);
1063 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1065 lsop->req_queued = true;
1067 spin_unlock_irqrestore(&rport->lock, flags);
1069 ret = rport->lport->ops->ls_req(&rport->lport->localport,
1070 &rport->remoteport, lsreq);
1071 if (ret)
1072 goto out_unlink;
1074 return 0;
1076 out_unlink:
1077 lsop->ls_error = ret;
1078 spin_lock_irqsave(&rport->lock, flags);
1079 lsop->req_queued = false;
1080 list_del(&lsop->lsreq_list);
1081 spin_unlock_irqrestore(&rport->lock, flags);
1082 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1083 (lsreq->rqstlen + lsreq->rsplen),
1084 DMA_BIDIRECTIONAL);
1085 out_putrport:
1086 nvme_fc_rport_put(rport);
1088 return ret;
1091 static void
1092 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1094 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1096 lsop->ls_error = status;
1097 complete(&lsop->ls_done);
1100 static int
1101 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1103 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1104 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1105 int ret;
1107 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1109 if (!ret) {
1111 * No timeout/not interruptible as we need the struct
1112 * to exist until the lldd calls us back. Thus mandate
1113 * wait until driver calls back. lldd responsible for
1114 * the timeout action
1116 wait_for_completion(&lsop->ls_done);
1118 __nvme_fc_finish_ls_req(lsop);
1120 ret = lsop->ls_error;
1123 if (ret)
1124 return ret;
1126 /* ACC or RJT payload ? */
1127 if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1128 return -ENXIO;
1130 return 0;
1133 static int
1134 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1135 struct nvmefc_ls_req_op *lsop,
1136 void (*done)(struct nvmefc_ls_req *req, int status))
1138 /* don't wait for completion */
1140 return __nvme_fc_send_ls_req(rport, lsop, done);
1143 /* Validation Error indexes into the string table below */
1144 enum {
1145 VERR_NO_ERROR = 0,
1146 VERR_LSACC = 1,
1147 VERR_LSDESC_RQST = 2,
1148 VERR_LSDESC_RQST_LEN = 3,
1149 VERR_ASSOC_ID = 4,
1150 VERR_ASSOC_ID_LEN = 5,
1151 VERR_CONN_ID = 6,
1152 VERR_CONN_ID_LEN = 7,
1153 VERR_CR_ASSOC = 8,
1154 VERR_CR_ASSOC_ACC_LEN = 9,
1155 VERR_CR_CONN = 10,
1156 VERR_CR_CONN_ACC_LEN = 11,
1157 VERR_DISCONN = 12,
1158 VERR_DISCONN_ACC_LEN = 13,
1161 static char *validation_errors[] = {
1162 "OK",
1163 "Not LS_ACC",
1164 "Not LSDESC_RQST",
1165 "Bad LSDESC_RQST Length",
1166 "Not Association ID",
1167 "Bad Association ID Length",
1168 "Not Connection ID",
1169 "Bad Connection ID Length",
1170 "Not CR_ASSOC Rqst",
1171 "Bad CR_ASSOC ACC Length",
1172 "Not CR_CONN Rqst",
1173 "Bad CR_CONN ACC Length",
1174 "Not Disconnect Rqst",
1175 "Bad Disconnect ACC Length",
1178 static int
1179 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1180 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1182 struct nvmefc_ls_req_op *lsop;
1183 struct nvmefc_ls_req *lsreq;
1184 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1185 struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1186 int ret, fcret = 0;
1188 lsop = kzalloc((sizeof(*lsop) +
1189 ctrl->lport->ops->lsrqst_priv_sz +
1190 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1191 if (!lsop) {
1192 ret = -ENOMEM;
1193 goto out_no_memory;
1195 lsreq = &lsop->ls_req;
1197 lsreq->private = (void *)&lsop[1];
1198 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1199 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1200 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1202 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1203 assoc_rqst->desc_list_len =
1204 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1206 assoc_rqst->assoc_cmd.desc_tag =
1207 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1208 assoc_rqst->assoc_cmd.desc_len =
1209 fcnvme_lsdesc_len(
1210 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1212 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1213 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
1214 /* Linux supports only Dynamic controllers */
1215 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1216 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1217 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1218 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1219 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1220 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1222 lsop->queue = queue;
1223 lsreq->rqstaddr = assoc_rqst;
1224 lsreq->rqstlen = sizeof(*assoc_rqst);
1225 lsreq->rspaddr = assoc_acc;
1226 lsreq->rsplen = sizeof(*assoc_acc);
1227 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1229 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1230 if (ret)
1231 goto out_free_buffer;
1233 /* process connect LS completion */
1235 /* validate the ACC response */
1236 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1237 fcret = VERR_LSACC;
1238 else if (assoc_acc->hdr.desc_list_len !=
1239 fcnvme_lsdesc_len(
1240 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1241 fcret = VERR_CR_ASSOC_ACC_LEN;
1242 else if (assoc_acc->hdr.rqst.desc_tag !=
1243 cpu_to_be32(FCNVME_LSDESC_RQST))
1244 fcret = VERR_LSDESC_RQST;
1245 else if (assoc_acc->hdr.rqst.desc_len !=
1246 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1247 fcret = VERR_LSDESC_RQST_LEN;
1248 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1249 fcret = VERR_CR_ASSOC;
1250 else if (assoc_acc->associd.desc_tag !=
1251 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1252 fcret = VERR_ASSOC_ID;
1253 else if (assoc_acc->associd.desc_len !=
1254 fcnvme_lsdesc_len(
1255 sizeof(struct fcnvme_lsdesc_assoc_id)))
1256 fcret = VERR_ASSOC_ID_LEN;
1257 else if (assoc_acc->connectid.desc_tag !=
1258 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1259 fcret = VERR_CONN_ID;
1260 else if (assoc_acc->connectid.desc_len !=
1261 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1262 fcret = VERR_CONN_ID_LEN;
1264 if (fcret) {
1265 ret = -EBADF;
1266 dev_err(ctrl->dev,
1267 "q %d connect failed: %s\n",
1268 queue->qnum, validation_errors[fcret]);
1269 } else {
1270 ctrl->association_id =
1271 be64_to_cpu(assoc_acc->associd.association_id);
1272 queue->connection_id =
1273 be64_to_cpu(assoc_acc->connectid.connection_id);
1274 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1277 out_free_buffer:
1278 kfree(lsop);
1279 out_no_memory:
1280 if (ret)
1281 dev_err(ctrl->dev,
1282 "queue %d connect admin queue failed (%d).\n",
1283 queue->qnum, ret);
1284 return ret;
1287 static int
1288 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1289 u16 qsize, u16 ersp_ratio)
1291 struct nvmefc_ls_req_op *lsop;
1292 struct nvmefc_ls_req *lsreq;
1293 struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1294 struct fcnvme_ls_cr_conn_acc *conn_acc;
1295 int ret, fcret = 0;
1297 lsop = kzalloc((sizeof(*lsop) +
1298 ctrl->lport->ops->lsrqst_priv_sz +
1299 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1300 if (!lsop) {
1301 ret = -ENOMEM;
1302 goto out_no_memory;
1304 lsreq = &lsop->ls_req;
1306 lsreq->private = (void *)&lsop[1];
1307 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1308 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1309 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1311 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1312 conn_rqst->desc_list_len = cpu_to_be32(
1313 sizeof(struct fcnvme_lsdesc_assoc_id) +
1314 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1316 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1317 conn_rqst->associd.desc_len =
1318 fcnvme_lsdesc_len(
1319 sizeof(struct fcnvme_lsdesc_assoc_id));
1320 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1321 conn_rqst->connect_cmd.desc_tag =
1322 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1323 conn_rqst->connect_cmd.desc_len =
1324 fcnvme_lsdesc_len(
1325 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1326 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1327 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum);
1328 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
1330 lsop->queue = queue;
1331 lsreq->rqstaddr = conn_rqst;
1332 lsreq->rqstlen = sizeof(*conn_rqst);
1333 lsreq->rspaddr = conn_acc;
1334 lsreq->rsplen = sizeof(*conn_acc);
1335 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1337 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1338 if (ret)
1339 goto out_free_buffer;
1341 /* process connect LS completion */
1343 /* validate the ACC response */
1344 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1345 fcret = VERR_LSACC;
1346 else if (conn_acc->hdr.desc_list_len !=
1347 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1348 fcret = VERR_CR_CONN_ACC_LEN;
1349 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1350 fcret = VERR_LSDESC_RQST;
1351 else if (conn_acc->hdr.rqst.desc_len !=
1352 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1353 fcret = VERR_LSDESC_RQST_LEN;
1354 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1355 fcret = VERR_CR_CONN;
1356 else if (conn_acc->connectid.desc_tag !=
1357 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1358 fcret = VERR_CONN_ID;
1359 else if (conn_acc->connectid.desc_len !=
1360 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1361 fcret = VERR_CONN_ID_LEN;
1363 if (fcret) {
1364 ret = -EBADF;
1365 dev_err(ctrl->dev,
1366 "q %d connect failed: %s\n",
1367 queue->qnum, validation_errors[fcret]);
1368 } else {
1369 queue->connection_id =
1370 be64_to_cpu(conn_acc->connectid.connection_id);
1371 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1374 out_free_buffer:
1375 kfree(lsop);
1376 out_no_memory:
1377 if (ret)
1378 dev_err(ctrl->dev,
1379 "queue %d connect command failed (%d).\n",
1380 queue->qnum, ret);
1381 return ret;
1384 static void
1385 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1387 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1389 __nvme_fc_finish_ls_req(lsop);
1391 /* fc-nvme iniator doesn't care about success or failure of cmd */
1393 kfree(lsop);
1397 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1398 * the FC-NVME Association. Terminating the association also
1399 * terminates the FC-NVME connections (per queue, both admin and io
1400 * queues) that are part of the association. E.g. things are torn
1401 * down, and the related FC-NVME Association ID and Connection IDs
1402 * become invalid.
1404 * The behavior of the fc-nvme initiator is such that it's
1405 * understanding of the association and connections will implicitly
1406 * be torn down. The action is implicit as it may be due to a loss of
1407 * connectivity with the fc-nvme target, so you may never get a
1408 * response even if you tried. As such, the action of this routine
1409 * is to asynchronously send the LS, ignore any results of the LS, and
1410 * continue on with terminating the association. If the fc-nvme target
1411 * is present and receives the LS, it too can tear down.
1413 static void
1414 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1416 struct fcnvme_ls_disconnect_rqst *discon_rqst;
1417 struct fcnvme_ls_disconnect_acc *discon_acc;
1418 struct nvmefc_ls_req_op *lsop;
1419 struct nvmefc_ls_req *lsreq;
1420 int ret;
1422 lsop = kzalloc((sizeof(*lsop) +
1423 ctrl->lport->ops->lsrqst_priv_sz +
1424 sizeof(*discon_rqst) + sizeof(*discon_acc)),
1425 GFP_KERNEL);
1426 if (!lsop)
1427 /* couldn't sent it... too bad */
1428 return;
1430 lsreq = &lsop->ls_req;
1432 lsreq->private = (void *)&lsop[1];
1433 discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1434 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1435 discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1437 discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1438 discon_rqst->desc_list_len = cpu_to_be32(
1439 sizeof(struct fcnvme_lsdesc_assoc_id) +
1440 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1442 discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1443 discon_rqst->associd.desc_len =
1444 fcnvme_lsdesc_len(
1445 sizeof(struct fcnvme_lsdesc_assoc_id));
1447 discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1449 discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1450 FCNVME_LSDESC_DISCONN_CMD);
1451 discon_rqst->discon_cmd.desc_len =
1452 fcnvme_lsdesc_len(
1453 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1454 discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1455 discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1457 lsreq->rqstaddr = discon_rqst;
1458 lsreq->rqstlen = sizeof(*discon_rqst);
1459 lsreq->rspaddr = discon_acc;
1460 lsreq->rsplen = sizeof(*discon_acc);
1461 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1463 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1464 nvme_fc_disconnect_assoc_done);
1465 if (ret)
1466 kfree(lsop);
1468 /* only meaningful part to terminating the association */
1469 ctrl->association_id = 0;
1473 /* *********************** NVME Ctrl Routines **************************** */
1475 static void __nvme_fc_final_op_cleanup(struct request *rq);
1476 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1478 static int
1479 nvme_fc_reinit_request(void *data, struct request *rq)
1481 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1482 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1484 memset(cmdiu, 0, sizeof(*cmdiu));
1485 cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1486 cmdiu->fc_id = NVME_CMD_FC_ID;
1487 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1488 memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1490 return 0;
1493 static void
1494 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1495 struct nvme_fc_fcp_op *op)
1497 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1498 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1499 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1500 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1502 atomic_set(&op->state, FCPOP_STATE_UNINIT);
1505 static void
1506 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1507 unsigned int hctx_idx)
1509 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1511 return __nvme_fc_exit_request(set->driver_data, op);
1514 static int
1515 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1517 int state;
1519 state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1520 if (state != FCPOP_STATE_ACTIVE) {
1521 atomic_set(&op->state, state);
1522 return -ECANCELED;
1525 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1526 &ctrl->rport->remoteport,
1527 op->queue->lldd_handle,
1528 &op->fcp_req);
1530 return 0;
1533 static void
1534 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1536 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1537 unsigned long flags;
1538 int i, ret;
1540 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1541 if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE)
1542 continue;
1544 spin_lock_irqsave(&ctrl->lock, flags);
1545 if (ctrl->flags & FCCTRL_TERMIO) {
1546 ctrl->iocnt++;
1547 aen_op->flags |= FCOP_FLAGS_TERMIO;
1549 spin_unlock_irqrestore(&ctrl->lock, flags);
1551 ret = __nvme_fc_abort_op(ctrl, aen_op);
1552 if (ret) {
1554 * if __nvme_fc_abort_op failed the io wasn't
1555 * active. Thus this call path is running in
1556 * parallel to the io complete. Treat as non-error.
1559 /* back out the flags/counters */
1560 spin_lock_irqsave(&ctrl->lock, flags);
1561 if (ctrl->flags & FCCTRL_TERMIO)
1562 ctrl->iocnt--;
1563 aen_op->flags &= ~FCOP_FLAGS_TERMIO;
1564 spin_unlock_irqrestore(&ctrl->lock, flags);
1565 return;
1570 static inline int
1571 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1572 struct nvme_fc_fcp_op *op)
1574 unsigned long flags;
1575 bool complete_rq = false;
1577 spin_lock_irqsave(&ctrl->lock, flags);
1578 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1579 if (ctrl->flags & FCCTRL_TERMIO) {
1580 if (!--ctrl->iocnt)
1581 wake_up(&ctrl->ioabort_wait);
1584 if (op->flags & FCOP_FLAGS_RELEASED)
1585 complete_rq = true;
1586 else
1587 op->flags |= FCOP_FLAGS_COMPLETE;
1588 spin_unlock_irqrestore(&ctrl->lock, flags);
1590 return complete_rq;
1593 static void
1594 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1596 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1597 struct request *rq = op->rq;
1598 struct nvmefc_fcp_req *freq = &op->fcp_req;
1599 struct nvme_fc_ctrl *ctrl = op->ctrl;
1600 struct nvme_fc_queue *queue = op->queue;
1601 struct nvme_completion *cqe = &op->rsp_iu.cqe;
1602 struct nvme_command *sqe = &op->cmd_iu.sqe;
1603 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1604 union nvme_result result;
1605 bool terminate_assoc = true;
1608 * WARNING:
1609 * The current linux implementation of a nvme controller
1610 * allocates a single tag set for all io queues and sizes
1611 * the io queues to fully hold all possible tags. Thus, the
1612 * implementation does not reference or care about the sqhd
1613 * value as it never needs to use the sqhd/sqtail pointers
1614 * for submission pacing.
1616 * This affects the FC-NVME implementation in two ways:
1617 * 1) As the value doesn't matter, we don't need to waste
1618 * cycles extracting it from ERSPs and stamping it in the
1619 * cases where the transport fabricates CQEs on successful
1620 * completions.
1621 * 2) The FC-NVME implementation requires that delivery of
1622 * ERSP completions are to go back to the nvme layer in order
1623 * relative to the rsn, such that the sqhd value will always
1624 * be "in order" for the nvme layer. As the nvme layer in
1625 * linux doesn't care about sqhd, there's no need to return
1626 * them in order.
1628 * Additionally:
1629 * As the core nvme layer in linux currently does not look at
1630 * every field in the cqe - in cases where the FC transport must
1631 * fabricate a CQE, the following fields will not be set as they
1632 * are not referenced:
1633 * cqe.sqid, cqe.sqhd, cqe.command_id
1635 * Failure or error of an individual i/o, in a transport
1636 * detected fashion unrelated to the nvme completion status,
1637 * potentially cause the initiator and target sides to get out
1638 * of sync on SQ head/tail (aka outstanding io count allowed).
1639 * Per FC-NVME spec, failure of an individual command requires
1640 * the connection to be terminated, which in turn requires the
1641 * association to be terminated.
1644 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1645 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1647 if (atomic_read(&op->state) == FCPOP_STATE_ABORTED ||
1648 op->flags & FCOP_FLAGS_TERMIO)
1649 status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1650 else if (freq->status)
1651 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1654 * For the linux implementation, if we have an unsuccesful
1655 * status, they blk-mq layer can typically be called with the
1656 * non-zero status and the content of the cqe isn't important.
1658 if (status)
1659 goto done;
1662 * command completed successfully relative to the wire
1663 * protocol. However, validate anything received and
1664 * extract the status and result from the cqe (create it
1665 * where necessary).
1668 switch (freq->rcv_rsplen) {
1670 case 0:
1671 case NVME_FC_SIZEOF_ZEROS_RSP:
1673 * No response payload or 12 bytes of payload (which
1674 * should all be zeros) are considered successful and
1675 * no payload in the CQE by the transport.
1677 if (freq->transferred_length !=
1678 be32_to_cpu(op->cmd_iu.data_len)) {
1679 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1680 goto done;
1682 result.u64 = 0;
1683 break;
1685 case sizeof(struct nvme_fc_ersp_iu):
1687 * The ERSP IU contains a full completion with CQE.
1688 * Validate ERSP IU and look at cqe.
1690 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1691 (freq->rcv_rsplen / 4) ||
1692 be32_to_cpu(op->rsp_iu.xfrd_len) !=
1693 freq->transferred_length ||
1694 op->rsp_iu.status_code ||
1695 sqe->common.command_id != cqe->command_id)) {
1696 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1697 goto done;
1699 result = cqe->result;
1700 status = cqe->status;
1701 break;
1703 default:
1704 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1705 goto done;
1708 terminate_assoc = false;
1710 done:
1711 if (op->flags & FCOP_FLAGS_AEN) {
1712 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1713 __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1714 atomic_set(&op->state, FCPOP_STATE_IDLE);
1715 op->flags = FCOP_FLAGS_AEN; /* clear other flags */
1716 nvme_fc_ctrl_put(ctrl);
1717 goto check_error;
1721 * Force failures of commands if we're killing the controller
1722 * or have an error on a command used to create an new association
1724 if (status &&
1725 (blk_queue_dying(rq->q) ||
1726 ctrl->ctrl.state == NVME_CTRL_NEW ||
1727 ctrl->ctrl.state == NVME_CTRL_RECONNECTING))
1728 status |= cpu_to_le16(NVME_SC_DNR << 1);
1730 if (__nvme_fc_fcpop_chk_teardowns(ctrl, op))
1731 __nvme_fc_final_op_cleanup(rq);
1732 else
1733 nvme_end_request(rq, status, result);
1735 check_error:
1736 if (terminate_assoc)
1737 nvme_fc_error_recovery(ctrl, "transport detected io error");
1740 static int
1741 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1742 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1743 struct request *rq, u32 rqno)
1745 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1746 int ret = 0;
1748 memset(op, 0, sizeof(*op));
1749 op->fcp_req.cmdaddr = &op->cmd_iu;
1750 op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1751 op->fcp_req.rspaddr = &op->rsp_iu;
1752 op->fcp_req.rsplen = sizeof(op->rsp_iu);
1753 op->fcp_req.done = nvme_fc_fcpio_done;
1754 op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1755 op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1756 op->ctrl = ctrl;
1757 op->queue = queue;
1758 op->rq = rq;
1759 op->rqno = rqno;
1761 cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1762 cmdiu->fc_id = NVME_CMD_FC_ID;
1763 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1765 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1766 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1767 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1768 dev_err(ctrl->dev,
1769 "FCP Op failed - cmdiu dma mapping failed.\n");
1770 ret = EFAULT;
1771 goto out_on_error;
1774 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1775 &op->rsp_iu, sizeof(op->rsp_iu),
1776 DMA_FROM_DEVICE);
1777 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1778 dev_err(ctrl->dev,
1779 "FCP Op failed - rspiu dma mapping failed.\n");
1780 ret = EFAULT;
1783 atomic_set(&op->state, FCPOP_STATE_IDLE);
1784 out_on_error:
1785 return ret;
1788 static int
1789 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1790 unsigned int hctx_idx, unsigned int numa_node)
1792 struct nvme_fc_ctrl *ctrl = set->driver_data;
1793 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1794 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1795 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1797 return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1800 static int
1801 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1803 struct nvme_fc_fcp_op *aen_op;
1804 struct nvme_fc_cmd_iu *cmdiu;
1805 struct nvme_command *sqe;
1806 void *private;
1807 int i, ret;
1809 aen_op = ctrl->aen_ops;
1810 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1811 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1812 GFP_KERNEL);
1813 if (!private)
1814 return -ENOMEM;
1816 cmdiu = &aen_op->cmd_iu;
1817 sqe = &cmdiu->sqe;
1818 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1819 aen_op, (struct request *)NULL,
1820 (NVME_AQ_BLK_MQ_DEPTH + i));
1821 if (ret) {
1822 kfree(private);
1823 return ret;
1826 aen_op->flags = FCOP_FLAGS_AEN;
1827 aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1828 aen_op->fcp_req.private = private;
1830 memset(sqe, 0, sizeof(*sqe));
1831 sqe->common.opcode = nvme_admin_async_event;
1832 /* Note: core layer may overwrite the sqe.command_id value */
1833 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1835 return 0;
1838 static void
1839 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1841 struct nvme_fc_fcp_op *aen_op;
1842 int i;
1844 aen_op = ctrl->aen_ops;
1845 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1846 if (!aen_op->fcp_req.private)
1847 continue;
1849 __nvme_fc_exit_request(ctrl, aen_op);
1851 kfree(aen_op->fcp_req.private);
1852 aen_op->fcp_req.private = NULL;
1856 static inline void
1857 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1858 unsigned int qidx)
1860 struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1862 hctx->driver_data = queue;
1863 queue->hctx = hctx;
1866 static int
1867 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1868 unsigned int hctx_idx)
1870 struct nvme_fc_ctrl *ctrl = data;
1872 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1874 return 0;
1877 static int
1878 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1879 unsigned int hctx_idx)
1881 struct nvme_fc_ctrl *ctrl = data;
1883 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1885 return 0;
1888 static void
1889 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1891 struct nvme_fc_queue *queue;
1893 queue = &ctrl->queues[idx];
1894 memset(queue, 0, sizeof(*queue));
1895 queue->ctrl = ctrl;
1896 queue->qnum = idx;
1897 atomic_set(&queue->csn, 1);
1898 queue->dev = ctrl->dev;
1900 if (idx > 0)
1901 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1902 else
1903 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1906 * Considered whether we should allocate buffers for all SQEs
1907 * and CQEs and dma map them - mapping their respective entries
1908 * into the request structures (kernel vm addr and dma address)
1909 * thus the driver could use the buffers/mappings directly.
1910 * It only makes sense if the LLDD would use them for its
1911 * messaging api. It's very unlikely most adapter api's would use
1912 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1913 * structures were used instead.
1918 * This routine terminates a queue at the transport level.
1919 * The transport has already ensured that all outstanding ios on
1920 * the queue have been terminated.
1921 * The transport will send a Disconnect LS request to terminate
1922 * the queue's connection. Termination of the admin queue will also
1923 * terminate the association at the target.
1925 static void
1926 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1928 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1929 return;
1931 clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1933 * Current implementation never disconnects a single queue.
1934 * It always terminates a whole association. So there is never
1935 * a disconnect(queue) LS sent to the target.
1938 queue->connection_id = 0;
1941 static void
1942 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1943 struct nvme_fc_queue *queue, unsigned int qidx)
1945 if (ctrl->lport->ops->delete_queue)
1946 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1947 queue->lldd_handle);
1948 queue->lldd_handle = NULL;
1951 static void
1952 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1954 int i;
1956 for (i = 1; i < ctrl->ctrl.queue_count; i++)
1957 nvme_fc_free_queue(&ctrl->queues[i]);
1960 static int
1961 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1962 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1964 int ret = 0;
1966 queue->lldd_handle = NULL;
1967 if (ctrl->lport->ops->create_queue)
1968 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1969 qidx, qsize, &queue->lldd_handle);
1971 return ret;
1974 static void
1975 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1977 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1978 int i;
1980 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1981 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1984 static int
1985 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1987 struct nvme_fc_queue *queue = &ctrl->queues[1];
1988 int i, ret;
1990 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1991 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1992 if (ret)
1993 goto delete_queues;
1996 return 0;
1998 delete_queues:
1999 for (; i >= 0; i--)
2000 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
2001 return ret;
2004 static int
2005 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2007 int i, ret = 0;
2009 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
2010 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
2011 (qsize / 5));
2012 if (ret)
2013 break;
2014 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
2015 if (ret)
2016 break;
2018 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2021 return ret;
2024 static void
2025 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2027 int i;
2029 for (i = 1; i < ctrl->ctrl.queue_count; i++)
2030 nvme_fc_init_queue(ctrl, i);
2033 static void
2034 nvme_fc_ctrl_free(struct kref *ref)
2036 struct nvme_fc_ctrl *ctrl =
2037 container_of(ref, struct nvme_fc_ctrl, ref);
2038 unsigned long flags;
2040 if (ctrl->ctrl.tagset) {
2041 blk_cleanup_queue(ctrl->ctrl.connect_q);
2042 blk_mq_free_tag_set(&ctrl->tag_set);
2045 /* remove from rport list */
2046 spin_lock_irqsave(&ctrl->rport->lock, flags);
2047 list_del(&ctrl->ctrl_list);
2048 spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2050 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2051 blk_cleanup_queue(ctrl->ctrl.admin_q);
2052 blk_mq_free_tag_set(&ctrl->admin_tag_set);
2054 kfree(ctrl->queues);
2056 put_device(ctrl->dev);
2057 nvme_fc_rport_put(ctrl->rport);
2059 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2060 if (ctrl->ctrl.opts)
2061 nvmf_free_options(ctrl->ctrl.opts);
2062 kfree(ctrl);
2065 static void
2066 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2068 kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2071 static int
2072 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2074 return kref_get_unless_zero(&ctrl->ref);
2078 * All accesses from nvme core layer done - can now free the
2079 * controller. Called after last nvme_put_ctrl() call
2081 static void
2082 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2084 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2086 WARN_ON(nctrl != &ctrl->ctrl);
2088 nvme_fc_ctrl_put(ctrl);
2091 static void
2092 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2094 /* only proceed if in LIVE state - e.g. on first error */
2095 if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2096 return;
2098 dev_warn(ctrl->ctrl.device,
2099 "NVME-FC{%d}: transport association error detected: %s\n",
2100 ctrl->cnum, errmsg);
2101 dev_warn(ctrl->ctrl.device,
2102 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2104 nvme_reset_ctrl(&ctrl->ctrl);
2107 static enum blk_eh_timer_return
2108 nvme_fc_timeout(struct request *rq, bool reserved)
2110 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2111 struct nvme_fc_ctrl *ctrl = op->ctrl;
2112 int ret;
2114 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2115 atomic_read(&op->state) == FCPOP_STATE_ABORTED)
2116 return BLK_EH_RESET_TIMER;
2118 ret = __nvme_fc_abort_op(ctrl, op);
2119 if (ret)
2120 /* io wasn't active to abort */
2121 return BLK_EH_NOT_HANDLED;
2124 * we can't individually ABTS an io without affecting the queue,
2125 * thus killing the queue, adn thus the association.
2126 * So resolve by performing a controller reset, which will stop
2127 * the host/io stack, terminate the association on the link,
2128 * and recreate an association on the link.
2130 nvme_fc_error_recovery(ctrl, "io timeout error");
2133 * the io abort has been initiated. Have the reset timer
2134 * restarted and the abort completion will complete the io
2135 * shortly. Avoids a synchronous wait while the abort finishes.
2137 return BLK_EH_RESET_TIMER;
2140 static int
2141 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2142 struct nvme_fc_fcp_op *op)
2144 struct nvmefc_fcp_req *freq = &op->fcp_req;
2145 enum dma_data_direction dir;
2146 int ret;
2148 freq->sg_cnt = 0;
2150 if (!blk_rq_payload_bytes(rq))
2151 return 0;
2153 freq->sg_table.sgl = freq->first_sgl;
2154 ret = sg_alloc_table_chained(&freq->sg_table,
2155 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
2156 if (ret)
2157 return -ENOMEM;
2159 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2160 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2161 dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2162 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2163 op->nents, dir);
2164 if (unlikely(freq->sg_cnt <= 0)) {
2165 sg_free_table_chained(&freq->sg_table, true);
2166 freq->sg_cnt = 0;
2167 return -EFAULT;
2171 * TODO: blk_integrity_rq(rq) for DIF
2173 return 0;
2176 static void
2177 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2178 struct nvme_fc_fcp_op *op)
2180 struct nvmefc_fcp_req *freq = &op->fcp_req;
2182 if (!freq->sg_cnt)
2183 return;
2185 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2186 ((rq_data_dir(rq) == WRITE) ?
2187 DMA_TO_DEVICE : DMA_FROM_DEVICE));
2189 nvme_cleanup_cmd(rq);
2191 sg_free_table_chained(&freq->sg_table, true);
2193 freq->sg_cnt = 0;
2197 * In FC, the queue is a logical thing. At transport connect, the target
2198 * creates its "queue" and returns a handle that is to be given to the
2199 * target whenever it posts something to the corresponding SQ. When an
2200 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2201 * command contained within the SQE, an io, and assigns a FC exchange
2202 * to it. The SQE and the associated SQ handle are sent in the initial
2203 * CMD IU sents on the exchange. All transfers relative to the io occur
2204 * as part of the exchange. The CQE is the last thing for the io,
2205 * which is transferred (explicitly or implicitly) with the RSP IU
2206 * sent on the exchange. After the CQE is received, the FC exchange is
2207 * terminaed and the Exchange may be used on a different io.
2209 * The transport to LLDD api has the transport making a request for a
2210 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2211 * resource and transfers the command. The LLDD will then process all
2212 * steps to complete the io. Upon completion, the transport done routine
2213 * is called.
2215 * So - while the operation is outstanding to the LLDD, there is a link
2216 * level FC exchange resource that is also outstanding. This must be
2217 * considered in all cleanup operations.
2219 static blk_status_t
2220 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2221 struct nvme_fc_fcp_op *op, u32 data_len,
2222 enum nvmefc_fcp_datadir io_dir)
2224 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2225 struct nvme_command *sqe = &cmdiu->sqe;
2226 u32 csn;
2227 int ret;
2230 * before attempting to send the io, check to see if we believe
2231 * the target device is present
2233 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2234 goto busy;
2236 if (!nvme_fc_ctrl_get(ctrl))
2237 return BLK_STS_IOERR;
2239 /* format the FC-NVME CMD IU and fcp_req */
2240 cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2241 csn = atomic_inc_return(&queue->csn);
2242 cmdiu->csn = cpu_to_be32(csn);
2243 cmdiu->data_len = cpu_to_be32(data_len);
2244 switch (io_dir) {
2245 case NVMEFC_FCP_WRITE:
2246 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2247 break;
2248 case NVMEFC_FCP_READ:
2249 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2250 break;
2251 case NVMEFC_FCP_NODATA:
2252 cmdiu->flags = 0;
2253 break;
2255 op->fcp_req.payload_length = data_len;
2256 op->fcp_req.io_dir = io_dir;
2257 op->fcp_req.transferred_length = 0;
2258 op->fcp_req.rcv_rsplen = 0;
2259 op->fcp_req.status = NVME_SC_SUCCESS;
2260 op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2263 * validate per fabric rules, set fields mandated by fabric spec
2264 * as well as those by FC-NVME spec.
2266 WARN_ON_ONCE(sqe->common.metadata);
2267 sqe->common.flags |= NVME_CMD_SGL_METABUF;
2270 * format SQE DPTR field per FC-NVME rules:
2271 * type=0x5 Transport SGL Data Block Descriptor
2272 * subtype=0xA Transport-specific value
2273 * address=0
2274 * length=length of the data series
2276 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2277 NVME_SGL_FMT_TRANSPORT_A;
2278 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2279 sqe->rw.dptr.sgl.addr = 0;
2281 if (!(op->flags & FCOP_FLAGS_AEN)) {
2282 ret = nvme_fc_map_data(ctrl, op->rq, op);
2283 if (ret < 0) {
2284 nvme_cleanup_cmd(op->rq);
2285 nvme_fc_ctrl_put(ctrl);
2286 if (ret == -ENOMEM || ret == -EAGAIN)
2287 return BLK_STS_RESOURCE;
2288 return BLK_STS_IOERR;
2292 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2293 sizeof(op->cmd_iu), DMA_TO_DEVICE);
2295 atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2297 if (!(op->flags & FCOP_FLAGS_AEN))
2298 blk_mq_start_request(op->rq);
2300 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2301 &ctrl->rport->remoteport,
2302 queue->lldd_handle, &op->fcp_req);
2304 if (ret) {
2305 if (!(op->flags & FCOP_FLAGS_AEN))
2306 nvme_fc_unmap_data(ctrl, op->rq, op);
2308 nvme_fc_ctrl_put(ctrl);
2310 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2311 ret != -EBUSY)
2312 return BLK_STS_IOERR;
2314 goto busy;
2317 return BLK_STS_OK;
2319 busy:
2320 if (!(op->flags & FCOP_FLAGS_AEN) && queue->hctx)
2321 blk_mq_delay_run_hw_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
2323 return BLK_STS_RESOURCE;
2326 static inline blk_status_t nvme_fc_is_ready(struct nvme_fc_queue *queue,
2327 struct request *rq)
2329 if (unlikely(!test_bit(NVME_FC_Q_LIVE, &queue->flags)))
2330 return nvmf_check_init_req(&queue->ctrl->ctrl, rq);
2331 return BLK_STS_OK;
2334 static blk_status_t
2335 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2336 const struct blk_mq_queue_data *bd)
2338 struct nvme_ns *ns = hctx->queue->queuedata;
2339 struct nvme_fc_queue *queue = hctx->driver_data;
2340 struct nvme_fc_ctrl *ctrl = queue->ctrl;
2341 struct request *rq = bd->rq;
2342 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2343 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2344 struct nvme_command *sqe = &cmdiu->sqe;
2345 enum nvmefc_fcp_datadir io_dir;
2346 u32 data_len;
2347 blk_status_t ret;
2349 ret = nvme_fc_is_ready(queue, rq);
2350 if (unlikely(ret))
2351 return ret;
2353 ret = nvme_setup_cmd(ns, rq, sqe);
2354 if (ret)
2355 return ret;
2357 data_len = blk_rq_payload_bytes(rq);
2358 if (data_len)
2359 io_dir = ((rq_data_dir(rq) == WRITE) ?
2360 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2361 else
2362 io_dir = NVMEFC_FCP_NODATA;
2364 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2367 static struct blk_mq_tags *
2368 nvme_fc_tagset(struct nvme_fc_queue *queue)
2370 if (queue->qnum == 0)
2371 return queue->ctrl->admin_tag_set.tags[queue->qnum];
2373 return queue->ctrl->tag_set.tags[queue->qnum - 1];
2376 static int
2377 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2380 struct nvme_fc_queue *queue = hctx->driver_data;
2381 struct nvme_fc_ctrl *ctrl = queue->ctrl;
2382 struct request *req;
2383 struct nvme_fc_fcp_op *op;
2385 req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2386 if (!req)
2387 return 0;
2389 op = blk_mq_rq_to_pdu(req);
2391 if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2392 (ctrl->lport->ops->poll_queue))
2393 ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2394 queue->lldd_handle);
2396 return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2399 static void
2400 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2402 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2403 struct nvme_fc_fcp_op *aen_op;
2404 unsigned long flags;
2405 bool terminating = false;
2406 blk_status_t ret;
2408 spin_lock_irqsave(&ctrl->lock, flags);
2409 if (ctrl->flags & FCCTRL_TERMIO)
2410 terminating = true;
2411 spin_unlock_irqrestore(&ctrl->lock, flags);
2413 if (terminating)
2414 return;
2416 aen_op = &ctrl->aen_ops[0];
2418 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2419 NVMEFC_FCP_NODATA);
2420 if (ret)
2421 dev_err(ctrl->ctrl.device,
2422 "failed async event work\n");
2425 static void
2426 __nvme_fc_final_op_cleanup(struct request *rq)
2428 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2429 struct nvme_fc_ctrl *ctrl = op->ctrl;
2431 atomic_set(&op->state, FCPOP_STATE_IDLE);
2432 op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED |
2433 FCOP_FLAGS_COMPLETE);
2435 nvme_fc_unmap_data(ctrl, rq, op);
2436 nvme_complete_rq(rq);
2437 nvme_fc_ctrl_put(ctrl);
2441 static void
2442 nvme_fc_complete_rq(struct request *rq)
2444 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2445 struct nvme_fc_ctrl *ctrl = op->ctrl;
2446 unsigned long flags;
2447 bool completed = false;
2450 * the core layer, on controller resets after calling
2451 * nvme_shutdown_ctrl(), calls complete_rq without our
2452 * calling blk_mq_complete_request(), thus there may still
2453 * be live i/o outstanding with the LLDD. Means transport has
2454 * to track complete calls vs fcpio_done calls to know what
2455 * path to take on completes and dones.
2457 spin_lock_irqsave(&ctrl->lock, flags);
2458 if (op->flags & FCOP_FLAGS_COMPLETE)
2459 completed = true;
2460 else
2461 op->flags |= FCOP_FLAGS_RELEASED;
2462 spin_unlock_irqrestore(&ctrl->lock, flags);
2464 if (completed)
2465 __nvme_fc_final_op_cleanup(rq);
2469 * This routine is used by the transport when it needs to find active
2470 * io on a queue that is to be terminated. The transport uses
2471 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2472 * this routine to kill them on a 1 by 1 basis.
2474 * As FC allocates FC exchange for each io, the transport must contact
2475 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2476 * After terminating the exchange the LLDD will call the transport's
2477 * normal io done path for the request, but it will have an aborted
2478 * status. The done path will return the io request back to the block
2479 * layer with an error status.
2481 static void
2482 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2484 struct nvme_ctrl *nctrl = data;
2485 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2486 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2487 unsigned long flags;
2488 int status;
2490 if (!blk_mq_request_started(req))
2491 return;
2493 spin_lock_irqsave(&ctrl->lock, flags);
2494 if (ctrl->flags & FCCTRL_TERMIO) {
2495 ctrl->iocnt++;
2496 op->flags |= FCOP_FLAGS_TERMIO;
2498 spin_unlock_irqrestore(&ctrl->lock, flags);
2500 status = __nvme_fc_abort_op(ctrl, op);
2501 if (status) {
2503 * if __nvme_fc_abort_op failed the io wasn't
2504 * active. Thus this call path is running in
2505 * parallel to the io complete. Treat as non-error.
2508 /* back out the flags/counters */
2509 spin_lock_irqsave(&ctrl->lock, flags);
2510 if (ctrl->flags & FCCTRL_TERMIO)
2511 ctrl->iocnt--;
2512 op->flags &= ~FCOP_FLAGS_TERMIO;
2513 spin_unlock_irqrestore(&ctrl->lock, flags);
2514 return;
2519 static const struct blk_mq_ops nvme_fc_mq_ops = {
2520 .queue_rq = nvme_fc_queue_rq,
2521 .complete = nvme_fc_complete_rq,
2522 .init_request = nvme_fc_init_request,
2523 .exit_request = nvme_fc_exit_request,
2524 .init_hctx = nvme_fc_init_hctx,
2525 .poll = nvme_fc_poll,
2526 .timeout = nvme_fc_timeout,
2529 static int
2530 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2532 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2533 unsigned int nr_io_queues;
2534 int ret;
2536 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2537 ctrl->lport->ops->max_hw_queues);
2538 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2539 if (ret) {
2540 dev_info(ctrl->ctrl.device,
2541 "set_queue_count failed: %d\n", ret);
2542 return ret;
2545 ctrl->ctrl.queue_count = nr_io_queues + 1;
2546 if (!nr_io_queues)
2547 return 0;
2549 nvme_fc_init_io_queues(ctrl);
2551 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2552 ctrl->tag_set.ops = &nvme_fc_mq_ops;
2553 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2554 ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2555 ctrl->tag_set.numa_node = NUMA_NO_NODE;
2556 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2557 ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2558 (SG_CHUNK_SIZE *
2559 sizeof(struct scatterlist)) +
2560 ctrl->lport->ops->fcprqst_priv_sz;
2561 ctrl->tag_set.driver_data = ctrl;
2562 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2563 ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2565 ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2566 if (ret)
2567 return ret;
2569 ctrl->ctrl.tagset = &ctrl->tag_set;
2571 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2572 if (IS_ERR(ctrl->ctrl.connect_q)) {
2573 ret = PTR_ERR(ctrl->ctrl.connect_q);
2574 goto out_free_tag_set;
2577 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2578 if (ret)
2579 goto out_cleanup_blk_queue;
2581 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2582 if (ret)
2583 goto out_delete_hw_queues;
2585 return 0;
2587 out_delete_hw_queues:
2588 nvme_fc_delete_hw_io_queues(ctrl);
2589 out_cleanup_blk_queue:
2590 blk_cleanup_queue(ctrl->ctrl.connect_q);
2591 out_free_tag_set:
2592 blk_mq_free_tag_set(&ctrl->tag_set);
2593 nvme_fc_free_io_queues(ctrl);
2595 /* force put free routine to ignore io queues */
2596 ctrl->ctrl.tagset = NULL;
2598 return ret;
2601 static int
2602 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
2604 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2605 unsigned int nr_io_queues;
2606 int ret;
2608 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2609 ctrl->lport->ops->max_hw_queues);
2610 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2611 if (ret) {
2612 dev_info(ctrl->ctrl.device,
2613 "set_queue_count failed: %d\n", ret);
2614 return ret;
2617 ctrl->ctrl.queue_count = nr_io_queues + 1;
2618 /* check for io queues existing */
2619 if (ctrl->ctrl.queue_count == 1)
2620 return 0;
2622 nvme_fc_init_io_queues(ctrl);
2624 ret = nvme_reinit_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
2625 if (ret)
2626 goto out_free_io_queues;
2628 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2629 if (ret)
2630 goto out_free_io_queues;
2632 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2633 if (ret)
2634 goto out_delete_hw_queues;
2636 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2638 return 0;
2640 out_delete_hw_queues:
2641 nvme_fc_delete_hw_io_queues(ctrl);
2642 out_free_io_queues:
2643 nvme_fc_free_io_queues(ctrl);
2644 return ret;
2647 static void
2648 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2650 struct nvme_fc_lport *lport = rport->lport;
2652 atomic_inc(&lport->act_rport_cnt);
2655 static void
2656 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2658 struct nvme_fc_lport *lport = rport->lport;
2659 u32 cnt;
2661 cnt = atomic_dec_return(&lport->act_rport_cnt);
2662 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2663 lport->ops->localport_delete(&lport->localport);
2666 static int
2667 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2669 struct nvme_fc_rport *rport = ctrl->rport;
2670 u32 cnt;
2672 if (ctrl->assoc_active)
2673 return 1;
2675 ctrl->assoc_active = true;
2676 cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2677 if (cnt == 1)
2678 nvme_fc_rport_active_on_lport(rport);
2680 return 0;
2683 static int
2684 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2686 struct nvme_fc_rport *rport = ctrl->rport;
2687 struct nvme_fc_lport *lport = rport->lport;
2688 u32 cnt;
2690 /* ctrl->assoc_active=false will be set independently */
2692 cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2693 if (cnt == 0) {
2694 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2695 lport->ops->remoteport_delete(&rport->remoteport);
2696 nvme_fc_rport_inactive_on_lport(rport);
2699 return 0;
2703 * This routine restarts the controller on the host side, and
2704 * on the link side, recreates the controller association.
2706 static int
2707 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2709 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2710 int ret;
2711 bool changed;
2713 ++ctrl->ctrl.nr_reconnects;
2715 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2716 return -ENODEV;
2718 if (nvme_fc_ctlr_active_on_rport(ctrl))
2719 return -ENOTUNIQ;
2722 * Create the admin queue
2725 nvme_fc_init_queue(ctrl, 0);
2727 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2728 NVME_AQ_BLK_MQ_DEPTH);
2729 if (ret)
2730 goto out_free_queue;
2732 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2733 NVME_AQ_BLK_MQ_DEPTH,
2734 (NVME_AQ_BLK_MQ_DEPTH / 4));
2735 if (ret)
2736 goto out_delete_hw_queue;
2738 if (ctrl->ctrl.state != NVME_CTRL_NEW)
2739 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2741 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2742 if (ret)
2743 goto out_disconnect_admin_queue;
2745 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2748 * Check controller capabilities
2750 * todo:- add code to check if ctrl attributes changed from
2751 * prior connection values
2754 ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2755 if (ret) {
2756 dev_err(ctrl->ctrl.device,
2757 "prop_get NVME_REG_CAP failed\n");
2758 goto out_disconnect_admin_queue;
2761 ctrl->ctrl.sqsize =
2762 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap) + 1, ctrl->ctrl.sqsize);
2764 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2765 if (ret)
2766 goto out_disconnect_admin_queue;
2768 ctrl->ctrl.max_hw_sectors =
2769 (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2771 ret = nvme_init_identify(&ctrl->ctrl);
2772 if (ret)
2773 goto out_disconnect_admin_queue;
2775 /* sanity checks */
2777 /* FC-NVME does not have other data in the capsule */
2778 if (ctrl->ctrl.icdoff) {
2779 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2780 ctrl->ctrl.icdoff);
2781 goto out_disconnect_admin_queue;
2784 /* FC-NVME supports normal SGL Data Block Descriptors */
2786 if (opts->queue_size > ctrl->ctrl.maxcmd) {
2787 /* warn if maxcmd is lower than queue_size */
2788 dev_warn(ctrl->ctrl.device,
2789 "queue_size %zu > ctrl maxcmd %u, reducing "
2790 "to queue_size\n",
2791 opts->queue_size, ctrl->ctrl.maxcmd);
2792 opts->queue_size = ctrl->ctrl.maxcmd;
2795 ret = nvme_fc_init_aen_ops(ctrl);
2796 if (ret)
2797 goto out_term_aen_ops;
2800 * Create the io queues
2803 if (ctrl->ctrl.queue_count > 1) {
2804 if (ctrl->ctrl.state == NVME_CTRL_NEW)
2805 ret = nvme_fc_create_io_queues(ctrl);
2806 else
2807 ret = nvme_fc_reinit_io_queues(ctrl);
2808 if (ret)
2809 goto out_term_aen_ops;
2812 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2814 ctrl->ctrl.nr_reconnects = 0;
2816 if (changed)
2817 nvme_start_ctrl(&ctrl->ctrl);
2819 return 0; /* Success */
2821 out_term_aen_ops:
2822 nvme_fc_term_aen_ops(ctrl);
2823 out_disconnect_admin_queue:
2824 /* send a Disconnect(association) LS to fc-nvme target */
2825 nvme_fc_xmt_disconnect_assoc(ctrl);
2826 out_delete_hw_queue:
2827 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2828 out_free_queue:
2829 nvme_fc_free_queue(&ctrl->queues[0]);
2830 ctrl->assoc_active = false;
2831 nvme_fc_ctlr_inactive_on_rport(ctrl);
2833 return ret;
2837 * This routine stops operation of the controller on the host side.
2838 * On the host os stack side: Admin and IO queues are stopped,
2839 * outstanding ios on them terminated via FC ABTS.
2840 * On the link side: the association is terminated.
2842 static void
2843 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2845 unsigned long flags;
2847 if (!ctrl->assoc_active)
2848 return;
2849 ctrl->assoc_active = false;
2851 spin_lock_irqsave(&ctrl->lock, flags);
2852 ctrl->flags |= FCCTRL_TERMIO;
2853 ctrl->iocnt = 0;
2854 spin_unlock_irqrestore(&ctrl->lock, flags);
2857 * If io queues are present, stop them and terminate all outstanding
2858 * ios on them. As FC allocates FC exchange for each io, the
2859 * transport must contact the LLDD to terminate the exchange,
2860 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2861 * to tell us what io's are busy and invoke a transport routine
2862 * to kill them with the LLDD. After terminating the exchange
2863 * the LLDD will call the transport's normal io done path, but it
2864 * will have an aborted status. The done path will return the
2865 * io requests back to the block layer as part of normal completions
2866 * (but with error status).
2868 if (ctrl->ctrl.queue_count > 1) {
2869 nvme_stop_queues(&ctrl->ctrl);
2870 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2871 nvme_fc_terminate_exchange, &ctrl->ctrl);
2875 * Other transports, which don't have link-level contexts bound
2876 * to sqe's, would try to gracefully shutdown the controller by
2877 * writing the registers for shutdown and polling (call
2878 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2879 * just aborted and we will wait on those contexts, and given
2880 * there was no indication of how live the controlelr is on the
2881 * link, don't send more io to create more contexts for the
2882 * shutdown. Let the controller fail via keepalive failure if
2883 * its still present.
2887 * clean up the admin queue. Same thing as above.
2888 * use blk_mq_tagset_busy_itr() and the transport routine to
2889 * terminate the exchanges.
2891 if (ctrl->ctrl.state != NVME_CTRL_NEW)
2892 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2893 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2894 nvme_fc_terminate_exchange, &ctrl->ctrl);
2896 /* kill the aens as they are a separate path */
2897 nvme_fc_abort_aen_ops(ctrl);
2899 /* wait for all io that had to be aborted */
2900 spin_lock_irq(&ctrl->lock);
2901 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2902 ctrl->flags &= ~FCCTRL_TERMIO;
2903 spin_unlock_irq(&ctrl->lock);
2905 nvme_fc_term_aen_ops(ctrl);
2908 * send a Disconnect(association) LS to fc-nvme target
2909 * Note: could have been sent at top of process, but
2910 * cleaner on link traffic if after the aborts complete.
2911 * Note: if association doesn't exist, association_id will be 0
2913 if (ctrl->association_id)
2914 nvme_fc_xmt_disconnect_assoc(ctrl);
2916 if (ctrl->ctrl.tagset) {
2917 nvme_fc_delete_hw_io_queues(ctrl);
2918 nvme_fc_free_io_queues(ctrl);
2921 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2922 nvme_fc_free_queue(&ctrl->queues[0]);
2924 nvme_fc_ctlr_inactive_on_rport(ctrl);
2927 static void
2928 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2930 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2932 cancel_delayed_work_sync(&ctrl->connect_work);
2934 * kill the association on the link side. this will block
2935 * waiting for io to terminate
2937 nvme_fc_delete_association(ctrl);
2940 static void
2941 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2943 struct nvme_fc_rport *rport = ctrl->rport;
2944 struct nvme_fc_remote_port *portptr = &rport->remoteport;
2945 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2946 bool recon = true;
2948 if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING)
2949 return;
2951 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2952 dev_info(ctrl->ctrl.device,
2953 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2954 ctrl->cnum, status);
2955 else if (time_after_eq(jiffies, rport->dev_loss_end))
2956 recon = false;
2958 if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2959 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2960 dev_info(ctrl->ctrl.device,
2961 "NVME-FC{%d}: Reconnect attempt in %ld "
2962 "seconds\n",
2963 ctrl->cnum, recon_delay / HZ);
2964 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2965 recon_delay = rport->dev_loss_end - jiffies;
2967 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2968 } else {
2969 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2970 dev_warn(ctrl->ctrl.device,
2971 "NVME-FC{%d}: Max reconnect attempts (%d) "
2972 "reached. Removing controller\n",
2973 ctrl->cnum, ctrl->ctrl.nr_reconnects);
2974 else
2975 dev_warn(ctrl->ctrl.device,
2976 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
2977 "while waiting for remoteport connectivity. "
2978 "Removing controller\n", ctrl->cnum,
2979 portptr->dev_loss_tmo);
2980 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2984 static void
2985 nvme_fc_reset_ctrl_work(struct work_struct *work)
2987 struct nvme_fc_ctrl *ctrl =
2988 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2989 int ret;
2991 nvme_stop_ctrl(&ctrl->ctrl);
2993 /* will block will waiting for io to terminate */
2994 nvme_fc_delete_association(ctrl);
2996 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
2997 dev_err(ctrl->ctrl.device,
2998 "NVME-FC{%d}: error_recovery: Couldn't change state "
2999 "to RECONNECTING\n", ctrl->cnum);
3000 return;
3003 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
3004 ret = nvme_fc_create_association(ctrl);
3005 else
3006 ret = -ENOTCONN;
3008 if (ret)
3009 nvme_fc_reconnect_or_delete(ctrl, ret);
3010 else
3011 dev_info(ctrl->ctrl.device,
3012 "NVME-FC{%d}: controller reset complete\n",
3013 ctrl->cnum);
3016 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
3017 .name = "fc",
3018 .module = THIS_MODULE,
3019 .flags = NVME_F_FABRICS,
3020 .reg_read32 = nvmf_reg_read32,
3021 .reg_read64 = nvmf_reg_read64,
3022 .reg_write32 = nvmf_reg_write32,
3023 .free_ctrl = nvme_fc_nvme_ctrl_freed,
3024 .submit_async_event = nvme_fc_submit_async_event,
3025 .delete_ctrl = nvme_fc_delete_ctrl,
3026 .get_address = nvmf_get_address,
3027 .reinit_request = nvme_fc_reinit_request,
3030 static void
3031 nvme_fc_connect_ctrl_work(struct work_struct *work)
3033 int ret;
3035 struct nvme_fc_ctrl *ctrl =
3036 container_of(to_delayed_work(work),
3037 struct nvme_fc_ctrl, connect_work);
3039 ret = nvme_fc_create_association(ctrl);
3040 if (ret)
3041 nvme_fc_reconnect_or_delete(ctrl, ret);
3042 else
3043 dev_info(ctrl->ctrl.device,
3044 "NVME-FC{%d}: controller reconnect complete\n",
3045 ctrl->cnum);
3049 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3050 .queue_rq = nvme_fc_queue_rq,
3051 .complete = nvme_fc_complete_rq,
3052 .init_request = nvme_fc_init_request,
3053 .exit_request = nvme_fc_exit_request,
3054 .init_hctx = nvme_fc_init_admin_hctx,
3055 .timeout = nvme_fc_timeout,
3060 * Fails a controller request if it matches an existing controller
3061 * (association) with the same tuple:
3062 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3064 * The ports don't need to be compared as they are intrinsically
3065 * already matched by the port pointers supplied.
3067 static bool
3068 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3069 struct nvmf_ctrl_options *opts)
3071 struct nvme_fc_ctrl *ctrl;
3072 unsigned long flags;
3073 bool found = false;
3075 spin_lock_irqsave(&rport->lock, flags);
3076 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3077 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3078 if (found)
3079 break;
3081 spin_unlock_irqrestore(&rport->lock, flags);
3083 return found;
3086 static struct nvme_ctrl *
3087 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3088 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3090 struct nvme_fc_ctrl *ctrl;
3091 unsigned long flags;
3092 int ret, idx, retry;
3094 if (!(rport->remoteport.port_role &
3095 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3096 ret = -EBADR;
3097 goto out_fail;
3100 if (!opts->duplicate_connect &&
3101 nvme_fc_existing_controller(rport, opts)) {
3102 ret = -EALREADY;
3103 goto out_fail;
3106 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3107 if (!ctrl) {
3108 ret = -ENOMEM;
3109 goto out_fail;
3112 idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3113 if (idx < 0) {
3114 ret = -ENOSPC;
3115 goto out_free_ctrl;
3118 ctrl->ctrl.opts = opts;
3119 INIT_LIST_HEAD(&ctrl->ctrl_list);
3120 ctrl->lport = lport;
3121 ctrl->rport = rport;
3122 ctrl->dev = lport->dev;
3123 ctrl->cnum = idx;
3124 ctrl->assoc_active = false;
3125 init_waitqueue_head(&ctrl->ioabort_wait);
3127 get_device(ctrl->dev);
3128 kref_init(&ctrl->ref);
3130 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3131 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3132 spin_lock_init(&ctrl->lock);
3134 /* io queue count */
3135 ctrl->ctrl.queue_count = min_t(unsigned int,
3136 opts->nr_io_queues,
3137 lport->ops->max_hw_queues);
3138 ctrl->ctrl.queue_count++; /* +1 for admin queue */
3140 ctrl->ctrl.sqsize = opts->queue_size - 1;
3141 ctrl->ctrl.kato = opts->kato;
3143 ret = -ENOMEM;
3144 ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3145 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3146 if (!ctrl->queues)
3147 goto out_free_ida;
3149 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3150 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3151 ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3152 ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3153 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
3154 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
3155 (SG_CHUNK_SIZE *
3156 sizeof(struct scatterlist)) +
3157 ctrl->lport->ops->fcprqst_priv_sz;
3158 ctrl->admin_tag_set.driver_data = ctrl;
3159 ctrl->admin_tag_set.nr_hw_queues = 1;
3160 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3161 ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3163 ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3164 if (ret)
3165 goto out_free_queues;
3166 ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3168 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3169 if (IS_ERR(ctrl->ctrl.admin_q)) {
3170 ret = PTR_ERR(ctrl->ctrl.admin_q);
3171 goto out_free_admin_tag_set;
3175 * Would have been nice to init io queues tag set as well.
3176 * However, we require interaction from the controller
3177 * for max io queue count before we can do so.
3178 * Defer this to the connect path.
3181 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3182 if (ret)
3183 goto out_cleanup_admin_q;
3185 /* at this point, teardown path changes to ref counting on nvme ctrl */
3187 spin_lock_irqsave(&rport->lock, flags);
3188 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3189 spin_unlock_irqrestore(&rport->lock, flags);
3192 * It's possible that transactions used to create the association
3193 * may fail. Examples: CreateAssociation LS or CreateIOConnection
3194 * LS gets dropped/corrupted/fails; or a frame gets dropped or a
3195 * command times out for one of the actions to init the controller
3196 * (Connect, Get/Set_Property, Set_Features, etc). Many of these
3197 * transport errors (frame drop, LS failure) inherently must kill
3198 * the association. The transport is coded so that any command used
3199 * to create the association (prior to a LIVE state transition
3200 * while NEW or RECONNECTING) will fail if it completes in error or
3201 * times out.
3203 * As such: as the connect request was mostly likely due to a
3204 * udev event that discovered the remote port, meaning there is
3205 * not an admin or script there to restart if the connect
3206 * request fails, retry the initial connection creation up to
3207 * three times before giving up and declaring failure.
3209 for (retry = 0; retry < 3; retry++) {
3210 ret = nvme_fc_create_association(ctrl);
3211 if (!ret)
3212 break;
3215 if (ret) {
3216 /* couldn't schedule retry - fail out */
3217 dev_err(ctrl->ctrl.device,
3218 "NVME-FC{%d}: Connect retry failed\n", ctrl->cnum);
3220 ctrl->ctrl.opts = NULL;
3222 /* initiate nvme ctrl ref counting teardown */
3223 nvme_uninit_ctrl(&ctrl->ctrl);
3224 nvme_put_ctrl(&ctrl->ctrl);
3226 /* Remove core ctrl ref. */
3227 nvme_put_ctrl(&ctrl->ctrl);
3229 /* as we're past the point where we transition to the ref
3230 * counting teardown path, if we return a bad pointer here,
3231 * the calling routine, thinking it's prior to the
3232 * transition, will do an rport put. Since the teardown
3233 * path also does a rport put, we do an extra get here to
3234 * so proper order/teardown happens.
3236 nvme_fc_rport_get(rport);
3238 if (ret > 0)
3239 ret = -EIO;
3240 return ERR_PTR(ret);
3243 nvme_get_ctrl(&ctrl->ctrl);
3245 dev_info(ctrl->ctrl.device,
3246 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3247 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3249 return &ctrl->ctrl;
3251 out_cleanup_admin_q:
3252 blk_cleanup_queue(ctrl->ctrl.admin_q);
3253 out_free_admin_tag_set:
3254 blk_mq_free_tag_set(&ctrl->admin_tag_set);
3255 out_free_queues:
3256 kfree(ctrl->queues);
3257 out_free_ida:
3258 put_device(ctrl->dev);
3259 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3260 out_free_ctrl:
3261 kfree(ctrl);
3262 out_fail:
3263 /* exit via here doesn't follow ctlr ref points */
3264 return ERR_PTR(ret);
3268 struct nvmet_fc_traddr {
3269 u64 nn;
3270 u64 pn;
3273 static int
3274 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3276 u64 token64;
3278 if (match_u64(sstr, &token64))
3279 return -EINVAL;
3280 *val = token64;
3282 return 0;
3286 * This routine validates and extracts the WWN's from the TRADDR string.
3287 * As kernel parsers need the 0x to determine number base, universally
3288 * build string to parse with 0x prefix before parsing name strings.
3290 static int
3291 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3293 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3294 substring_t wwn = { name, &name[sizeof(name)-1] };
3295 int nnoffset, pnoffset;
3297 /* validate it string one of the 2 allowed formats */
3298 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3299 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3300 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3301 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3302 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3303 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3304 NVME_FC_TRADDR_OXNNLEN;
3305 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3306 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3307 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3308 "pn-", NVME_FC_TRADDR_NNLEN))) {
3309 nnoffset = NVME_FC_TRADDR_NNLEN;
3310 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3311 } else
3312 goto out_einval;
3314 name[0] = '0';
3315 name[1] = 'x';
3316 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3318 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3319 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3320 goto out_einval;
3322 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3323 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3324 goto out_einval;
3326 return 0;
3328 out_einval:
3329 pr_warn("%s: bad traddr string\n", __func__);
3330 return -EINVAL;
3333 static struct nvme_ctrl *
3334 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3336 struct nvme_fc_lport *lport;
3337 struct nvme_fc_rport *rport;
3338 struct nvme_ctrl *ctrl;
3339 struct nvmet_fc_traddr laddr = { 0L, 0L };
3340 struct nvmet_fc_traddr raddr = { 0L, 0L };
3341 unsigned long flags;
3342 int ret;
3344 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3345 if (ret || !raddr.nn || !raddr.pn)
3346 return ERR_PTR(-EINVAL);
3348 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3349 if (ret || !laddr.nn || !laddr.pn)
3350 return ERR_PTR(-EINVAL);
3352 /* find the host and remote ports to connect together */
3353 spin_lock_irqsave(&nvme_fc_lock, flags);
3354 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3355 if (lport->localport.node_name != laddr.nn ||
3356 lport->localport.port_name != laddr.pn)
3357 continue;
3359 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3360 if (rport->remoteport.node_name != raddr.nn ||
3361 rport->remoteport.port_name != raddr.pn)
3362 continue;
3364 /* if fail to get reference fall through. Will error */
3365 if (!nvme_fc_rport_get(rport))
3366 break;
3368 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3370 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3371 if (IS_ERR(ctrl))
3372 nvme_fc_rport_put(rport);
3373 return ctrl;
3376 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3378 return ERR_PTR(-ENOENT);
3382 static struct nvmf_transport_ops nvme_fc_transport = {
3383 .name = "fc",
3384 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3385 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3386 .create_ctrl = nvme_fc_create_ctrl,
3389 static int __init nvme_fc_init_module(void)
3391 int ret;
3394 * NOTE:
3395 * It is expected that in the future the kernel will combine
3396 * the FC-isms that are currently under scsi and now being
3397 * added to by NVME into a new standalone FC class. The SCSI
3398 * and NVME protocols and their devices would be under this
3399 * new FC class.
3401 * As we need something to post FC-specific udev events to,
3402 * specifically for nvme probe events, start by creating the
3403 * new device class. When the new standalone FC class is
3404 * put in place, this code will move to a more generic
3405 * location for the class.
3407 fc_class = class_create(THIS_MODULE, "fc");
3408 if (IS_ERR(fc_class)) {
3409 pr_err("couldn't register class fc\n");
3410 return PTR_ERR(fc_class);
3414 * Create a device for the FC-centric udev events
3416 fc_udev_device = device_create(fc_class, NULL, MKDEV(0, 0), NULL,
3417 "fc_udev_device");
3418 if (IS_ERR(fc_udev_device)) {
3419 pr_err("couldn't create fc_udev device!\n");
3420 ret = PTR_ERR(fc_udev_device);
3421 goto out_destroy_class;
3424 ret = nvmf_register_transport(&nvme_fc_transport);
3425 if (ret)
3426 goto out_destroy_device;
3428 return 0;
3430 out_destroy_device:
3431 device_destroy(fc_class, MKDEV(0, 0));
3432 out_destroy_class:
3433 class_destroy(fc_class);
3434 return ret;
3437 static void __exit nvme_fc_exit_module(void)
3439 /* sanity check - all lports should be removed */
3440 if (!list_empty(&nvme_fc_lport_list))
3441 pr_warn("%s: localport list not empty\n", __func__);
3443 nvmf_unregister_transport(&nvme_fc_transport);
3445 ida_destroy(&nvme_fc_local_port_cnt);
3446 ida_destroy(&nvme_fc_ctrl_cnt);
3448 device_destroy(fc_class, MKDEV(0, 0));
3449 class_destroy(fc_class);
3452 module_init(nvme_fc_init_module);
3453 module_exit(nvme_fc_exit_module);
3455 MODULE_LICENSE("GPL v2");