2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/aer.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/blk-mq-pci.h>
19 #include <linux/dmi.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/once.h>
27 #include <linux/pci.h>
28 #include <linux/t10-pi.h>
29 #include <linux/types.h>
30 #include <linux/io-64-nonatomic-lo-hi.h>
31 #include <linux/sed-opal.h>
35 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
36 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
38 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
40 static int use_threaded_interrupts
;
41 module_param(use_threaded_interrupts
, int, 0);
43 static bool use_cmb_sqes
= true;
44 module_param(use_cmb_sqes
, bool, 0644);
45 MODULE_PARM_DESC(use_cmb_sqes
, "use controller's memory buffer for I/O SQes");
47 static unsigned int max_host_mem_size_mb
= 128;
48 module_param(max_host_mem_size_mb
, uint
, 0444);
49 MODULE_PARM_DESC(max_host_mem_size_mb
,
50 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
52 static unsigned int sgl_threshold
= SZ_32K
;
53 module_param(sgl_threshold
, uint
, 0644);
54 MODULE_PARM_DESC(sgl_threshold
,
55 "Use SGLs when average request segment size is larger or equal to "
56 "this size. Use 0 to disable SGLs.");
58 static int io_queue_depth_set(const char *val
, const struct kernel_param
*kp
);
59 static const struct kernel_param_ops io_queue_depth_ops
= {
60 .set
= io_queue_depth_set
,
64 static int io_queue_depth
= 1024;
65 module_param_cb(io_queue_depth
, &io_queue_depth_ops
, &io_queue_depth
, 0644);
66 MODULE_PARM_DESC(io_queue_depth
, "set io queue depth, should >= 2");
71 static void nvme_process_cq(struct nvme_queue
*nvmeq
);
72 static void nvme_dev_disable(struct nvme_dev
*dev
, bool shutdown
);
75 * Represents an NVM Express device. Each nvme_dev is a PCI function.
78 struct nvme_queue
**queues
;
79 struct blk_mq_tag_set tagset
;
80 struct blk_mq_tag_set admin_tagset
;
83 struct dma_pool
*prp_page_pool
;
84 struct dma_pool
*prp_small_pool
;
85 unsigned online_queues
;
90 unsigned long bar_mapped_size
;
91 struct work_struct remove_work
;
92 struct mutex shutdown_lock
;
95 pci_bus_addr_t cmb_bus_addr
;
99 struct nvme_ctrl ctrl
;
100 struct completion ioq_wait
;
102 /* shadow doorbell buffer support: */
104 dma_addr_t dbbuf_dbs_dma_addr
;
106 dma_addr_t dbbuf_eis_dma_addr
;
108 /* host memory buffer support: */
110 u32 nr_host_mem_descs
;
111 dma_addr_t host_mem_descs_dma
;
112 struct nvme_host_mem_buf_desc
*host_mem_descs
;
113 void **host_mem_desc_bufs
;
116 static int io_queue_depth_set(const char *val
, const struct kernel_param
*kp
)
120 ret
= kstrtoint(val
, 10, &n
);
121 if (ret
!= 0 || n
< 2)
124 return param_set_int(val
, kp
);
127 static inline unsigned int sq_idx(unsigned int qid
, u32 stride
)
129 return qid
* 2 * stride
;
132 static inline unsigned int cq_idx(unsigned int qid
, u32 stride
)
134 return (qid
* 2 + 1) * stride
;
137 static inline struct nvme_dev
*to_nvme_dev(struct nvme_ctrl
*ctrl
)
139 return container_of(ctrl
, struct nvme_dev
, ctrl
);
143 * An NVM Express queue. Each device has at least two (one for admin
144 * commands and one for I/O commands).
147 struct device
*q_dmadev
;
148 struct nvme_dev
*dev
;
150 struct nvme_command
*sq_cmds
;
151 struct nvme_command __iomem
*sq_cmds_io
;
152 volatile struct nvme_completion
*cqes
;
153 struct blk_mq_tags
**tags
;
154 dma_addr_t sq_dma_addr
;
155 dma_addr_t cq_dma_addr
;
171 * The nvme_iod describes the data in an I/O, including the list of PRP
172 * entries. You can't see it in this data structure because C doesn't let
173 * me express that. Use nvme_init_iod to ensure there's enough space
174 * allocated to store the PRP list.
177 struct nvme_request req
;
178 struct nvme_queue
*nvmeq
;
181 int npages
; /* In the PRP list. 0 means small pool in use */
182 int nents
; /* Used in scatterlist */
183 int length
; /* Of data, in bytes */
184 dma_addr_t first_dma
;
185 struct scatterlist meta_sg
; /* metadata requires single contiguous buffer */
186 struct scatterlist
*sg
;
187 struct scatterlist inline_sg
[0];
191 * Check we didin't inadvertently grow the command struct
193 static inline void _nvme_check_size(void)
195 BUILD_BUG_ON(sizeof(struct nvme_rw_command
) != 64);
196 BUILD_BUG_ON(sizeof(struct nvme_create_cq
) != 64);
197 BUILD_BUG_ON(sizeof(struct nvme_create_sq
) != 64);
198 BUILD_BUG_ON(sizeof(struct nvme_delete_queue
) != 64);
199 BUILD_BUG_ON(sizeof(struct nvme_features
) != 64);
200 BUILD_BUG_ON(sizeof(struct nvme_format_cmd
) != 64);
201 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd
) != 64);
202 BUILD_BUG_ON(sizeof(struct nvme_command
) != 64);
203 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl
) != NVME_IDENTIFY_DATA_SIZE
);
204 BUILD_BUG_ON(sizeof(struct nvme_id_ns
) != NVME_IDENTIFY_DATA_SIZE
);
205 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type
) != 64);
206 BUILD_BUG_ON(sizeof(struct nvme_smart_log
) != 512);
207 BUILD_BUG_ON(sizeof(struct nvme_dbbuf
) != 64);
210 static inline unsigned int nvme_dbbuf_size(u32 stride
)
212 return ((num_possible_cpus() + 1) * 8 * stride
);
215 static int nvme_dbbuf_dma_alloc(struct nvme_dev
*dev
)
217 unsigned int mem_size
= nvme_dbbuf_size(dev
->db_stride
);
222 dev
->dbbuf_dbs
= dma_alloc_coherent(dev
->dev
, mem_size
,
223 &dev
->dbbuf_dbs_dma_addr
,
227 dev
->dbbuf_eis
= dma_alloc_coherent(dev
->dev
, mem_size
,
228 &dev
->dbbuf_eis_dma_addr
,
230 if (!dev
->dbbuf_eis
) {
231 dma_free_coherent(dev
->dev
, mem_size
,
232 dev
->dbbuf_dbs
, dev
->dbbuf_dbs_dma_addr
);
233 dev
->dbbuf_dbs
= NULL
;
240 static void nvme_dbbuf_dma_free(struct nvme_dev
*dev
)
242 unsigned int mem_size
= nvme_dbbuf_size(dev
->db_stride
);
244 if (dev
->dbbuf_dbs
) {
245 dma_free_coherent(dev
->dev
, mem_size
,
246 dev
->dbbuf_dbs
, dev
->dbbuf_dbs_dma_addr
);
247 dev
->dbbuf_dbs
= NULL
;
249 if (dev
->dbbuf_eis
) {
250 dma_free_coherent(dev
->dev
, mem_size
,
251 dev
->dbbuf_eis
, dev
->dbbuf_eis_dma_addr
);
252 dev
->dbbuf_eis
= NULL
;
256 static void nvme_dbbuf_init(struct nvme_dev
*dev
,
257 struct nvme_queue
*nvmeq
, int qid
)
259 if (!dev
->dbbuf_dbs
|| !qid
)
262 nvmeq
->dbbuf_sq_db
= &dev
->dbbuf_dbs
[sq_idx(qid
, dev
->db_stride
)];
263 nvmeq
->dbbuf_cq_db
= &dev
->dbbuf_dbs
[cq_idx(qid
, dev
->db_stride
)];
264 nvmeq
->dbbuf_sq_ei
= &dev
->dbbuf_eis
[sq_idx(qid
, dev
->db_stride
)];
265 nvmeq
->dbbuf_cq_ei
= &dev
->dbbuf_eis
[cq_idx(qid
, dev
->db_stride
)];
268 static void nvme_dbbuf_set(struct nvme_dev
*dev
)
270 struct nvme_command c
;
275 memset(&c
, 0, sizeof(c
));
276 c
.dbbuf
.opcode
= nvme_admin_dbbuf
;
277 c
.dbbuf
.prp1
= cpu_to_le64(dev
->dbbuf_dbs_dma_addr
);
278 c
.dbbuf
.prp2
= cpu_to_le64(dev
->dbbuf_eis_dma_addr
);
280 if (nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0)) {
281 dev_warn(dev
->ctrl
.device
, "unable to set dbbuf\n");
282 /* Free memory and continue on */
283 nvme_dbbuf_dma_free(dev
);
287 static inline int nvme_dbbuf_need_event(u16 event_idx
, u16 new_idx
, u16 old
)
289 return (u16
)(new_idx
- event_idx
- 1) < (u16
)(new_idx
- old
);
292 /* Update dbbuf and return true if an MMIO is required */
293 static bool nvme_dbbuf_update_and_check_event(u16 value
, u32
*dbbuf_db
,
294 volatile u32
*dbbuf_ei
)
300 * Ensure that the queue is written before updating
301 * the doorbell in memory
305 old_value
= *dbbuf_db
;
308 if (!nvme_dbbuf_need_event(*dbbuf_ei
, value
, old_value
))
316 * Max size of iod being embedded in the request payload
318 #define NVME_INT_PAGES 2
319 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
322 * Will slightly overestimate the number of pages needed. This is OK
323 * as it only leads to a small amount of wasted memory for the lifetime of
326 static int nvme_npages(unsigned size
, struct nvme_dev
*dev
)
328 unsigned nprps
= DIV_ROUND_UP(size
+ dev
->ctrl
.page_size
,
329 dev
->ctrl
.page_size
);
330 return DIV_ROUND_UP(8 * nprps
, PAGE_SIZE
- 8);
334 * Calculates the number of pages needed for the SGL segments. For example a 4k
335 * page can accommodate 256 SGL descriptors.
337 static int nvme_pci_npages_sgl(unsigned int num_seg
)
339 return DIV_ROUND_UP(num_seg
* sizeof(struct nvme_sgl_desc
), PAGE_SIZE
);
342 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev
*dev
,
343 unsigned int size
, unsigned int nseg
, bool use_sgl
)
348 alloc_size
= sizeof(__le64
*) * nvme_pci_npages_sgl(nseg
);
350 alloc_size
= sizeof(__le64
*) * nvme_npages(size
, dev
);
352 return alloc_size
+ sizeof(struct scatterlist
) * nseg
;
355 static unsigned int nvme_pci_cmd_size(struct nvme_dev
*dev
, bool use_sgl
)
357 unsigned int alloc_size
= nvme_pci_iod_alloc_size(dev
,
358 NVME_INT_BYTES(dev
), NVME_INT_PAGES
,
361 return sizeof(struct nvme_iod
) + alloc_size
;
364 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
365 unsigned int hctx_idx
)
367 struct nvme_dev
*dev
= data
;
368 struct nvme_queue
*nvmeq
= dev
->queues
[0];
370 WARN_ON(hctx_idx
!= 0);
371 WARN_ON(dev
->admin_tagset
.tags
[0] != hctx
->tags
);
372 WARN_ON(nvmeq
->tags
);
374 hctx
->driver_data
= nvmeq
;
375 nvmeq
->tags
= &dev
->admin_tagset
.tags
[0];
379 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
381 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
386 static int nvme_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
387 unsigned int hctx_idx
)
389 struct nvme_dev
*dev
= data
;
390 struct nvme_queue
*nvmeq
= dev
->queues
[hctx_idx
+ 1];
393 nvmeq
->tags
= &dev
->tagset
.tags
[hctx_idx
];
395 WARN_ON(dev
->tagset
.tags
[hctx_idx
] != hctx
->tags
);
396 hctx
->driver_data
= nvmeq
;
400 static int nvme_init_request(struct blk_mq_tag_set
*set
, struct request
*req
,
401 unsigned int hctx_idx
, unsigned int numa_node
)
403 struct nvme_dev
*dev
= set
->driver_data
;
404 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
405 int queue_idx
= (set
== &dev
->tagset
) ? hctx_idx
+ 1 : 0;
406 struct nvme_queue
*nvmeq
= dev
->queues
[queue_idx
];
413 static int nvme_pci_map_queues(struct blk_mq_tag_set
*set
)
415 struct nvme_dev
*dev
= set
->driver_data
;
417 return blk_mq_pci_map_queues(set
, to_pci_dev(dev
->dev
));
421 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
422 * @nvmeq: The queue to use
423 * @cmd: The command to send
425 * Safe to use from interrupt context
427 static void __nvme_submit_cmd(struct nvme_queue
*nvmeq
,
428 struct nvme_command
*cmd
)
430 u16 tail
= nvmeq
->sq_tail
;
432 if (nvmeq
->sq_cmds_io
)
433 memcpy_toio(&nvmeq
->sq_cmds_io
[tail
], cmd
, sizeof(*cmd
));
435 memcpy(&nvmeq
->sq_cmds
[tail
], cmd
, sizeof(*cmd
));
437 if (++tail
== nvmeq
->q_depth
)
439 if (nvme_dbbuf_update_and_check_event(tail
, nvmeq
->dbbuf_sq_db
,
441 writel(tail
, nvmeq
->q_db
);
442 nvmeq
->sq_tail
= tail
;
445 static void **nvme_pci_iod_list(struct request
*req
)
447 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
448 return (void **)(iod
->sg
+ blk_rq_nr_phys_segments(req
));
451 static blk_status_t
nvme_init_iod(struct request
*rq
, struct nvme_dev
*dev
)
453 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(rq
);
454 int nseg
= blk_rq_nr_phys_segments(rq
);
455 unsigned int size
= blk_rq_payload_bytes(rq
);
457 if (nseg
> NVME_INT_PAGES
|| size
> NVME_INT_BYTES(dev
)) {
458 size_t alloc_size
= nvme_pci_iod_alloc_size(dev
, size
, nseg
,
461 iod
->sg
= kmalloc(alloc_size
, GFP_ATOMIC
);
463 return BLK_STS_RESOURCE
;
465 iod
->sg
= iod
->inline_sg
;
476 static void nvme_free_iod(struct nvme_dev
*dev
, struct request
*req
)
478 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
479 const int last_prp
= dev
->ctrl
.page_size
/ sizeof(__le64
) - 1;
480 dma_addr_t dma_addr
= iod
->first_dma
, next_dma_addr
;
484 if (iod
->npages
== 0)
485 dma_pool_free(dev
->prp_small_pool
, nvme_pci_iod_list(req
)[0],
488 for (i
= 0; i
< iod
->npages
; i
++) {
489 void *addr
= nvme_pci_iod_list(req
)[i
];
492 struct nvme_sgl_desc
*sg_list
= addr
;
495 le64_to_cpu((sg_list
[SGES_PER_PAGE
- 1]).addr
);
497 __le64
*prp_list
= addr
;
499 next_dma_addr
= le64_to_cpu(prp_list
[last_prp
]);
502 dma_pool_free(dev
->prp_page_pool
, addr
, dma_addr
);
503 dma_addr
= next_dma_addr
;
506 if (iod
->sg
!= iod
->inline_sg
)
510 #ifdef CONFIG_BLK_DEV_INTEGRITY
511 static void nvme_dif_prep(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
513 if (be32_to_cpu(pi
->ref_tag
) == v
)
514 pi
->ref_tag
= cpu_to_be32(p
);
517 static void nvme_dif_complete(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
519 if (be32_to_cpu(pi
->ref_tag
) == p
)
520 pi
->ref_tag
= cpu_to_be32(v
);
524 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
526 * The virtual start sector is the one that was originally submitted by the
527 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
528 * start sector may be different. Remap protection information to match the
529 * physical LBA on writes, and back to the original seed on reads.
531 * Type 0 and 3 do not have a ref tag, so no remapping required.
533 static void nvme_dif_remap(struct request
*req
,
534 void (*dif_swap
)(u32 p
, u32 v
, struct t10_pi_tuple
*pi
))
536 struct nvme_ns
*ns
= req
->rq_disk
->private_data
;
537 struct bio_integrity_payload
*bip
;
538 struct t10_pi_tuple
*pi
;
540 u32 i
, nlb
, ts
, phys
, virt
;
542 if (!ns
->pi_type
|| ns
->pi_type
== NVME_NS_DPS_PI_TYPE3
)
545 bip
= bio_integrity(req
->bio
);
549 pmap
= kmap_atomic(bip
->bip_vec
->bv_page
) + bip
->bip_vec
->bv_offset
;
552 virt
= bip_get_seed(bip
);
553 phys
= nvme_block_nr(ns
, blk_rq_pos(req
));
554 nlb
= (blk_rq_bytes(req
) >> ns
->lba_shift
);
555 ts
= ns
->disk
->queue
->integrity
.tuple_size
;
557 for (i
= 0; i
< nlb
; i
++, virt
++, phys
++) {
558 pi
= (struct t10_pi_tuple
*)p
;
559 dif_swap(phys
, virt
, pi
);
564 #else /* CONFIG_BLK_DEV_INTEGRITY */
565 static void nvme_dif_remap(struct request
*req
,
566 void (*dif_swap
)(u32 p
, u32 v
, struct t10_pi_tuple
*pi
))
569 static void nvme_dif_prep(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
572 static void nvme_dif_complete(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
577 static void nvme_print_sgl(struct scatterlist
*sgl
, int nents
)
580 struct scatterlist
*sg
;
582 for_each_sg(sgl
, sg
, nents
, i
) {
583 dma_addr_t phys
= sg_phys(sg
);
584 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
585 "dma_address:%pad dma_length:%d\n",
586 i
, &phys
, sg
->offset
, sg
->length
, &sg_dma_address(sg
),
591 static blk_status_t
nvme_pci_setup_prps(struct nvme_dev
*dev
,
592 struct request
*req
, struct nvme_rw_command
*cmnd
)
594 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
595 struct dma_pool
*pool
;
596 int length
= blk_rq_payload_bytes(req
);
597 struct scatterlist
*sg
= iod
->sg
;
598 int dma_len
= sg_dma_len(sg
);
599 u64 dma_addr
= sg_dma_address(sg
);
600 u32 page_size
= dev
->ctrl
.page_size
;
601 int offset
= dma_addr
& (page_size
- 1);
603 void **list
= nvme_pci_iod_list(req
);
607 iod
->use_sgl
= false;
609 length
-= (page_size
- offset
);
615 dma_len
-= (page_size
- offset
);
617 dma_addr
+= (page_size
- offset
);
620 dma_addr
= sg_dma_address(sg
);
621 dma_len
= sg_dma_len(sg
);
624 if (length
<= page_size
) {
625 iod
->first_dma
= dma_addr
;
629 nprps
= DIV_ROUND_UP(length
, page_size
);
630 if (nprps
<= (256 / 8)) {
631 pool
= dev
->prp_small_pool
;
634 pool
= dev
->prp_page_pool
;
638 prp_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &prp_dma
);
640 iod
->first_dma
= dma_addr
;
642 return BLK_STS_RESOURCE
;
645 iod
->first_dma
= prp_dma
;
648 if (i
== page_size
>> 3) {
649 __le64
*old_prp_list
= prp_list
;
650 prp_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &prp_dma
);
652 return BLK_STS_RESOURCE
;
653 list
[iod
->npages
++] = prp_list
;
654 prp_list
[0] = old_prp_list
[i
- 1];
655 old_prp_list
[i
- 1] = cpu_to_le64(prp_dma
);
658 prp_list
[i
++] = cpu_to_le64(dma_addr
);
659 dma_len
-= page_size
;
660 dma_addr
+= page_size
;
666 if (unlikely(dma_len
< 0))
669 dma_addr
= sg_dma_address(sg
);
670 dma_len
= sg_dma_len(sg
);
674 cmnd
->dptr
.prp1
= cpu_to_le64(sg_dma_address(iod
->sg
));
675 cmnd
->dptr
.prp2
= cpu_to_le64(iod
->first_dma
);
680 WARN(DO_ONCE(nvme_print_sgl
, iod
->sg
, iod
->nents
),
681 "Invalid SGL for payload:%d nents:%d\n",
682 blk_rq_payload_bytes(req
), iod
->nents
);
683 return BLK_STS_IOERR
;
686 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc
*sge
,
687 struct scatterlist
*sg
)
689 sge
->addr
= cpu_to_le64(sg_dma_address(sg
));
690 sge
->length
= cpu_to_le32(sg_dma_len(sg
));
691 sge
->type
= NVME_SGL_FMT_DATA_DESC
<< 4;
694 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc
*sge
,
695 dma_addr_t dma_addr
, int entries
)
697 sge
->addr
= cpu_to_le64(dma_addr
);
698 if (entries
< SGES_PER_PAGE
) {
699 sge
->length
= cpu_to_le32(entries
* sizeof(*sge
));
700 sge
->type
= NVME_SGL_FMT_LAST_SEG_DESC
<< 4;
702 sge
->length
= cpu_to_le32(PAGE_SIZE
);
703 sge
->type
= NVME_SGL_FMT_SEG_DESC
<< 4;
707 static blk_status_t
nvme_pci_setup_sgls(struct nvme_dev
*dev
,
708 struct request
*req
, struct nvme_rw_command
*cmd
)
710 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
711 int length
= blk_rq_payload_bytes(req
);
712 struct dma_pool
*pool
;
713 struct nvme_sgl_desc
*sg_list
;
714 struct scatterlist
*sg
= iod
->sg
;
715 int entries
= iod
->nents
, i
= 0;
720 /* setting the transfer type as SGL */
721 cmd
->flags
= NVME_CMD_SGL_METABUF
;
723 if (length
== sg_dma_len(sg
)) {
724 nvme_pci_sgl_set_data(&cmd
->dptr
.sgl
, sg
);
728 if (entries
<= (256 / sizeof(struct nvme_sgl_desc
))) {
729 pool
= dev
->prp_small_pool
;
732 pool
= dev
->prp_page_pool
;
736 sg_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &sgl_dma
);
739 return BLK_STS_RESOURCE
;
742 nvme_pci_iod_list(req
)[0] = sg_list
;
743 iod
->first_dma
= sgl_dma
;
745 nvme_pci_sgl_set_seg(&cmd
->dptr
.sgl
, sgl_dma
, entries
);
748 if (i
== SGES_PER_PAGE
) {
749 struct nvme_sgl_desc
*old_sg_desc
= sg_list
;
750 struct nvme_sgl_desc
*link
= &old_sg_desc
[i
- 1];
752 sg_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &sgl_dma
);
754 return BLK_STS_RESOURCE
;
757 nvme_pci_iod_list(req
)[iod
->npages
++] = sg_list
;
758 sg_list
[i
++] = *link
;
759 nvme_pci_sgl_set_seg(link
, sgl_dma
, entries
);
762 nvme_pci_sgl_set_data(&sg_list
[i
++], sg
);
764 length
-= sg_dma_len(sg
);
767 } while (length
> 0);
769 WARN_ON(entries
> 0);
773 static inline bool nvme_pci_use_sgls(struct nvme_dev
*dev
, struct request
*req
)
775 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
776 unsigned int avg_seg_size
;
778 avg_seg_size
= DIV_ROUND_UP(blk_rq_payload_bytes(req
),
779 blk_rq_nr_phys_segments(req
));
781 if (!(dev
->ctrl
.sgls
& ((1 << 0) | (1 << 1))))
783 if (!iod
->nvmeq
->qid
)
785 if (!sgl_threshold
|| avg_seg_size
< sgl_threshold
)
790 static blk_status_t
nvme_map_data(struct nvme_dev
*dev
, struct request
*req
,
791 struct nvme_command
*cmnd
)
793 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
794 struct request_queue
*q
= req
->q
;
795 enum dma_data_direction dma_dir
= rq_data_dir(req
) ?
796 DMA_TO_DEVICE
: DMA_FROM_DEVICE
;
797 blk_status_t ret
= BLK_STS_IOERR
;
799 sg_init_table(iod
->sg
, blk_rq_nr_phys_segments(req
));
800 iod
->nents
= blk_rq_map_sg(q
, req
, iod
->sg
);
804 ret
= BLK_STS_RESOURCE
;
805 if (!dma_map_sg_attrs(dev
->dev
, iod
->sg
, iod
->nents
, dma_dir
,
809 if (nvme_pci_use_sgls(dev
, req
))
810 ret
= nvme_pci_setup_sgls(dev
, req
, &cmnd
->rw
);
812 ret
= nvme_pci_setup_prps(dev
, req
, &cmnd
->rw
);
814 if (ret
!= BLK_STS_OK
)
818 if (blk_integrity_rq(req
)) {
819 if (blk_rq_count_integrity_sg(q
, req
->bio
) != 1)
822 sg_init_table(&iod
->meta_sg
, 1);
823 if (blk_rq_map_integrity_sg(q
, req
->bio
, &iod
->meta_sg
) != 1)
826 if (req_op(req
) == REQ_OP_WRITE
)
827 nvme_dif_remap(req
, nvme_dif_prep
);
829 if (!dma_map_sg(dev
->dev
, &iod
->meta_sg
, 1, dma_dir
))
833 if (blk_integrity_rq(req
))
834 cmnd
->rw
.metadata
= cpu_to_le64(sg_dma_address(&iod
->meta_sg
));
838 dma_unmap_sg(dev
->dev
, iod
->sg
, iod
->nents
, dma_dir
);
843 static void nvme_unmap_data(struct nvme_dev
*dev
, struct request
*req
)
845 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
846 enum dma_data_direction dma_dir
= rq_data_dir(req
) ?
847 DMA_TO_DEVICE
: DMA_FROM_DEVICE
;
850 dma_unmap_sg(dev
->dev
, iod
->sg
, iod
->nents
, dma_dir
);
851 if (blk_integrity_rq(req
)) {
852 if (req_op(req
) == REQ_OP_READ
)
853 nvme_dif_remap(req
, nvme_dif_complete
);
854 dma_unmap_sg(dev
->dev
, &iod
->meta_sg
, 1, dma_dir
);
858 nvme_cleanup_cmd(req
);
859 nvme_free_iod(dev
, req
);
863 * NOTE: ns is NULL when called on the admin queue.
865 static blk_status_t
nvme_queue_rq(struct blk_mq_hw_ctx
*hctx
,
866 const struct blk_mq_queue_data
*bd
)
868 struct nvme_ns
*ns
= hctx
->queue
->queuedata
;
869 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
870 struct nvme_dev
*dev
= nvmeq
->dev
;
871 struct request
*req
= bd
->rq
;
872 struct nvme_command cmnd
;
875 ret
= nvme_setup_cmd(ns
, req
, &cmnd
);
879 ret
= nvme_init_iod(req
, dev
);
883 if (blk_rq_nr_phys_segments(req
)) {
884 ret
= nvme_map_data(dev
, req
, &cmnd
);
886 goto out_cleanup_iod
;
889 blk_mq_start_request(req
);
891 spin_lock_irq(&nvmeq
->q_lock
);
892 if (unlikely(nvmeq
->cq_vector
< 0)) {
894 spin_unlock_irq(&nvmeq
->q_lock
);
895 goto out_cleanup_iod
;
897 __nvme_submit_cmd(nvmeq
, &cmnd
);
898 nvme_process_cq(nvmeq
);
899 spin_unlock_irq(&nvmeq
->q_lock
);
902 nvme_free_iod(dev
, req
);
904 nvme_cleanup_cmd(req
);
908 static void nvme_pci_complete_rq(struct request
*req
)
910 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
912 nvme_unmap_data(iod
->nvmeq
->dev
, req
);
913 nvme_complete_rq(req
);
916 /* We read the CQE phase first to check if the rest of the entry is valid */
917 static inline bool nvme_cqe_valid(struct nvme_queue
*nvmeq
, u16 head
,
920 return (le16_to_cpu(nvmeq
->cqes
[head
].status
) & 1) == phase
;
923 static inline void nvme_ring_cq_doorbell(struct nvme_queue
*nvmeq
)
925 u16 head
= nvmeq
->cq_head
;
927 if (likely(nvmeq
->cq_vector
>= 0)) {
928 if (nvme_dbbuf_update_and_check_event(head
, nvmeq
->dbbuf_cq_db
,
930 writel(head
, nvmeq
->q_db
+ nvmeq
->dev
->db_stride
);
934 static inline void nvme_handle_cqe(struct nvme_queue
*nvmeq
,
935 struct nvme_completion
*cqe
)
939 if (unlikely(cqe
->command_id
>= nvmeq
->q_depth
)) {
940 dev_warn(nvmeq
->dev
->ctrl
.device
,
941 "invalid id %d completed on queue %d\n",
942 cqe
->command_id
, le16_to_cpu(cqe
->sq_id
));
947 * AEN requests are special as they don't time out and can
948 * survive any kind of queue freeze and often don't respond to
949 * aborts. We don't even bother to allocate a struct request
950 * for them but rather special case them here.
952 if (unlikely(nvmeq
->qid
== 0 &&
953 cqe
->command_id
>= NVME_AQ_BLK_MQ_DEPTH
)) {
954 nvme_complete_async_event(&nvmeq
->dev
->ctrl
,
955 cqe
->status
, &cqe
->result
);
960 req
= blk_mq_tag_to_rq(*nvmeq
->tags
, cqe
->command_id
);
961 nvme_end_request(req
, cqe
->status
, cqe
->result
);
964 static inline bool nvme_read_cqe(struct nvme_queue
*nvmeq
,
965 struct nvme_completion
*cqe
)
967 if (nvme_cqe_valid(nvmeq
, nvmeq
->cq_head
, nvmeq
->cq_phase
)) {
968 *cqe
= nvmeq
->cqes
[nvmeq
->cq_head
];
970 if (++nvmeq
->cq_head
== nvmeq
->q_depth
) {
972 nvmeq
->cq_phase
= !nvmeq
->cq_phase
;
979 static void nvme_process_cq(struct nvme_queue
*nvmeq
)
981 struct nvme_completion cqe
;
984 while (nvme_read_cqe(nvmeq
, &cqe
)) {
985 nvme_handle_cqe(nvmeq
, &cqe
);
990 nvme_ring_cq_doorbell(nvmeq
);
993 static irqreturn_t
nvme_irq(int irq
, void *data
)
996 struct nvme_queue
*nvmeq
= data
;
997 spin_lock(&nvmeq
->q_lock
);
998 nvme_process_cq(nvmeq
);
999 result
= nvmeq
->cqe_seen
? IRQ_HANDLED
: IRQ_NONE
;
1000 nvmeq
->cqe_seen
= 0;
1001 spin_unlock(&nvmeq
->q_lock
);
1005 static irqreturn_t
nvme_irq_check(int irq
, void *data
)
1007 struct nvme_queue
*nvmeq
= data
;
1008 if (nvme_cqe_valid(nvmeq
, nvmeq
->cq_head
, nvmeq
->cq_phase
))
1009 return IRQ_WAKE_THREAD
;
1013 static int __nvme_poll(struct nvme_queue
*nvmeq
, unsigned int tag
)
1015 struct nvme_completion cqe
;
1016 int found
= 0, consumed
= 0;
1018 if (!nvme_cqe_valid(nvmeq
, nvmeq
->cq_head
, nvmeq
->cq_phase
))
1021 spin_lock_irq(&nvmeq
->q_lock
);
1022 while (nvme_read_cqe(nvmeq
, &cqe
)) {
1023 nvme_handle_cqe(nvmeq
, &cqe
);
1026 if (tag
== cqe
.command_id
) {
1033 nvme_ring_cq_doorbell(nvmeq
);
1034 spin_unlock_irq(&nvmeq
->q_lock
);
1039 static int nvme_poll(struct blk_mq_hw_ctx
*hctx
, unsigned int tag
)
1041 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
1043 return __nvme_poll(nvmeq
, tag
);
1046 static void nvme_pci_submit_async_event(struct nvme_ctrl
*ctrl
)
1048 struct nvme_dev
*dev
= to_nvme_dev(ctrl
);
1049 struct nvme_queue
*nvmeq
= dev
->queues
[0];
1050 struct nvme_command c
;
1052 memset(&c
, 0, sizeof(c
));
1053 c
.common
.opcode
= nvme_admin_async_event
;
1054 c
.common
.command_id
= NVME_AQ_BLK_MQ_DEPTH
;
1056 spin_lock_irq(&nvmeq
->q_lock
);
1057 __nvme_submit_cmd(nvmeq
, &c
);
1058 spin_unlock_irq(&nvmeq
->q_lock
);
1061 static int adapter_delete_queue(struct nvme_dev
*dev
, u8 opcode
, u16 id
)
1063 struct nvme_command c
;
1065 memset(&c
, 0, sizeof(c
));
1066 c
.delete_queue
.opcode
= opcode
;
1067 c
.delete_queue
.qid
= cpu_to_le16(id
);
1069 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1072 static int adapter_alloc_cq(struct nvme_dev
*dev
, u16 qid
,
1073 struct nvme_queue
*nvmeq
)
1075 struct nvme_command c
;
1076 int flags
= NVME_QUEUE_PHYS_CONTIG
| NVME_CQ_IRQ_ENABLED
;
1079 * Note: we (ab)use the fact that the prp fields survive if no data
1080 * is attached to the request.
1082 memset(&c
, 0, sizeof(c
));
1083 c
.create_cq
.opcode
= nvme_admin_create_cq
;
1084 c
.create_cq
.prp1
= cpu_to_le64(nvmeq
->cq_dma_addr
);
1085 c
.create_cq
.cqid
= cpu_to_le16(qid
);
1086 c
.create_cq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
1087 c
.create_cq
.cq_flags
= cpu_to_le16(flags
);
1088 c
.create_cq
.irq_vector
= cpu_to_le16(nvmeq
->cq_vector
);
1090 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1093 static int adapter_alloc_sq(struct nvme_dev
*dev
, u16 qid
,
1094 struct nvme_queue
*nvmeq
)
1096 struct nvme_command c
;
1097 int flags
= NVME_QUEUE_PHYS_CONTIG
;
1100 * Note: we (ab)use the fact that the prp fields survive if no data
1101 * is attached to the request.
1103 memset(&c
, 0, sizeof(c
));
1104 c
.create_sq
.opcode
= nvme_admin_create_sq
;
1105 c
.create_sq
.prp1
= cpu_to_le64(nvmeq
->sq_dma_addr
);
1106 c
.create_sq
.sqid
= cpu_to_le16(qid
);
1107 c
.create_sq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
1108 c
.create_sq
.sq_flags
= cpu_to_le16(flags
);
1109 c
.create_sq
.cqid
= cpu_to_le16(qid
);
1111 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1114 static int adapter_delete_cq(struct nvme_dev
*dev
, u16 cqid
)
1116 return adapter_delete_queue(dev
, nvme_admin_delete_cq
, cqid
);
1119 static int adapter_delete_sq(struct nvme_dev
*dev
, u16 sqid
)
1121 return adapter_delete_queue(dev
, nvme_admin_delete_sq
, sqid
);
1124 static void abort_endio(struct request
*req
, blk_status_t error
)
1126 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
1127 struct nvme_queue
*nvmeq
= iod
->nvmeq
;
1129 dev_warn(nvmeq
->dev
->ctrl
.device
,
1130 "Abort status: 0x%x", nvme_req(req
)->status
);
1131 atomic_inc(&nvmeq
->dev
->ctrl
.abort_limit
);
1132 blk_mq_free_request(req
);
1135 static bool nvme_should_reset(struct nvme_dev
*dev
, u32 csts
)
1138 /* If true, indicates loss of adapter communication, possibly by a
1139 * NVMe Subsystem reset.
1141 bool nssro
= dev
->subsystem
&& (csts
& NVME_CSTS_NSSRO
);
1143 /* If there is a reset ongoing, we shouldn't reset again. */
1144 if (dev
->ctrl
.state
== NVME_CTRL_RESETTING
)
1147 /* We shouldn't reset unless the controller is on fatal error state
1148 * _or_ if we lost the communication with it.
1150 if (!(csts
& NVME_CSTS_CFS
) && !nssro
)
1153 /* If PCI error recovery process is happening, we cannot reset or
1154 * the recovery mechanism will surely fail.
1156 if (pci_channel_offline(to_pci_dev(dev
->dev
)))
1162 static void nvme_warn_reset(struct nvme_dev
*dev
, u32 csts
)
1164 /* Read a config register to help see what died. */
1168 result
= pci_read_config_word(to_pci_dev(dev
->dev
), PCI_STATUS
,
1170 if (result
== PCIBIOS_SUCCESSFUL
)
1171 dev_warn(dev
->ctrl
.device
,
1172 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1175 dev_warn(dev
->ctrl
.device
,
1176 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1180 static enum blk_eh_timer_return
nvme_timeout(struct request
*req
, bool reserved
)
1182 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
1183 struct nvme_queue
*nvmeq
= iod
->nvmeq
;
1184 struct nvme_dev
*dev
= nvmeq
->dev
;
1185 struct request
*abort_req
;
1186 struct nvme_command cmd
;
1187 u32 csts
= readl(dev
->bar
+ NVME_REG_CSTS
);
1190 * Reset immediately if the controller is failed
1192 if (nvme_should_reset(dev
, csts
)) {
1193 nvme_warn_reset(dev
, csts
);
1194 nvme_dev_disable(dev
, false);
1195 nvme_reset_ctrl(&dev
->ctrl
);
1196 return BLK_EH_HANDLED
;
1200 * Did we miss an interrupt?
1202 if (__nvme_poll(nvmeq
, req
->tag
)) {
1203 dev_warn(dev
->ctrl
.device
,
1204 "I/O %d QID %d timeout, completion polled\n",
1205 req
->tag
, nvmeq
->qid
);
1206 return BLK_EH_HANDLED
;
1210 * Shutdown immediately if controller times out while starting. The
1211 * reset work will see the pci device disabled when it gets the forced
1212 * cancellation error. All outstanding requests are completed on
1213 * shutdown, so we return BLK_EH_HANDLED.
1215 if (dev
->ctrl
.state
== NVME_CTRL_RESETTING
) {
1216 dev_warn(dev
->ctrl
.device
,
1217 "I/O %d QID %d timeout, disable controller\n",
1218 req
->tag
, nvmeq
->qid
);
1219 nvme_dev_disable(dev
, false);
1220 nvme_req(req
)->flags
|= NVME_REQ_CANCELLED
;
1221 return BLK_EH_HANDLED
;
1225 * Shutdown the controller immediately and schedule a reset if the
1226 * command was already aborted once before and still hasn't been
1227 * returned to the driver, or if this is the admin queue.
1229 if (!nvmeq
->qid
|| iod
->aborted
) {
1230 dev_warn(dev
->ctrl
.device
,
1231 "I/O %d QID %d timeout, reset controller\n",
1232 req
->tag
, nvmeq
->qid
);
1233 nvme_dev_disable(dev
, false);
1234 nvme_reset_ctrl(&dev
->ctrl
);
1237 * Mark the request as handled, since the inline shutdown
1238 * forces all outstanding requests to complete.
1240 nvme_req(req
)->flags
|= NVME_REQ_CANCELLED
;
1241 return BLK_EH_HANDLED
;
1244 if (atomic_dec_return(&dev
->ctrl
.abort_limit
) < 0) {
1245 atomic_inc(&dev
->ctrl
.abort_limit
);
1246 return BLK_EH_RESET_TIMER
;
1250 memset(&cmd
, 0, sizeof(cmd
));
1251 cmd
.abort
.opcode
= nvme_admin_abort_cmd
;
1252 cmd
.abort
.cid
= req
->tag
;
1253 cmd
.abort
.sqid
= cpu_to_le16(nvmeq
->qid
);
1255 dev_warn(nvmeq
->dev
->ctrl
.device
,
1256 "I/O %d QID %d timeout, aborting\n",
1257 req
->tag
, nvmeq
->qid
);
1259 abort_req
= nvme_alloc_request(dev
->ctrl
.admin_q
, &cmd
,
1260 BLK_MQ_REQ_NOWAIT
, NVME_QID_ANY
);
1261 if (IS_ERR(abort_req
)) {
1262 atomic_inc(&dev
->ctrl
.abort_limit
);
1263 return BLK_EH_RESET_TIMER
;
1266 abort_req
->timeout
= ADMIN_TIMEOUT
;
1267 abort_req
->end_io_data
= NULL
;
1268 blk_execute_rq_nowait(abort_req
->q
, NULL
, abort_req
, 0, abort_endio
);
1271 * The aborted req will be completed on receiving the abort req.
1272 * We enable the timer again. If hit twice, it'll cause a device reset,
1273 * as the device then is in a faulty state.
1275 return BLK_EH_RESET_TIMER
;
1278 static void nvme_free_queue(struct nvme_queue
*nvmeq
)
1280 dma_free_coherent(nvmeq
->q_dmadev
, CQ_SIZE(nvmeq
->q_depth
),
1281 (void *)nvmeq
->cqes
, nvmeq
->cq_dma_addr
);
1283 dma_free_coherent(nvmeq
->q_dmadev
, SQ_SIZE(nvmeq
->q_depth
),
1284 nvmeq
->sq_cmds
, nvmeq
->sq_dma_addr
);
1288 static void nvme_free_queues(struct nvme_dev
*dev
, int lowest
)
1292 for (i
= dev
->ctrl
.queue_count
- 1; i
>= lowest
; i
--) {
1293 struct nvme_queue
*nvmeq
= dev
->queues
[i
];
1294 dev
->ctrl
.queue_count
--;
1295 dev
->queues
[i
] = NULL
;
1296 nvme_free_queue(nvmeq
);
1301 * nvme_suspend_queue - put queue into suspended state
1302 * @nvmeq - queue to suspend
1304 static int nvme_suspend_queue(struct nvme_queue
*nvmeq
)
1308 spin_lock_irq(&nvmeq
->q_lock
);
1309 if (nvmeq
->cq_vector
== -1) {
1310 spin_unlock_irq(&nvmeq
->q_lock
);
1313 vector
= nvmeq
->cq_vector
;
1314 nvmeq
->dev
->online_queues
--;
1315 nvmeq
->cq_vector
= -1;
1316 spin_unlock_irq(&nvmeq
->q_lock
);
1318 if (!nvmeq
->qid
&& nvmeq
->dev
->ctrl
.admin_q
)
1319 blk_mq_quiesce_queue(nvmeq
->dev
->ctrl
.admin_q
);
1321 pci_free_irq(to_pci_dev(nvmeq
->dev
->dev
), vector
, nvmeq
);
1326 static void nvme_disable_admin_queue(struct nvme_dev
*dev
, bool shutdown
)
1328 struct nvme_queue
*nvmeq
= dev
->queues
[0];
1332 if (nvme_suspend_queue(nvmeq
))
1336 nvme_shutdown_ctrl(&dev
->ctrl
);
1338 nvme_disable_ctrl(&dev
->ctrl
, dev
->ctrl
.cap
);
1340 spin_lock_irq(&nvmeq
->q_lock
);
1341 nvme_process_cq(nvmeq
);
1342 spin_unlock_irq(&nvmeq
->q_lock
);
1345 static int nvme_cmb_qdepth(struct nvme_dev
*dev
, int nr_io_queues
,
1348 int q_depth
= dev
->q_depth
;
1349 unsigned q_size_aligned
= roundup(q_depth
* entry_size
,
1350 dev
->ctrl
.page_size
);
1352 if (q_size_aligned
* nr_io_queues
> dev
->cmb_size
) {
1353 u64 mem_per_q
= div_u64(dev
->cmb_size
, nr_io_queues
);
1354 mem_per_q
= round_down(mem_per_q
, dev
->ctrl
.page_size
);
1355 q_depth
= div_u64(mem_per_q
, entry_size
);
1358 * Ensure the reduced q_depth is above some threshold where it
1359 * would be better to map queues in system memory with the
1369 static int nvme_alloc_sq_cmds(struct nvme_dev
*dev
, struct nvme_queue
*nvmeq
,
1372 if (qid
&& dev
->cmb
&& use_cmb_sqes
&& NVME_CMB_SQS(dev
->cmbsz
)) {
1373 unsigned offset
= (qid
- 1) * roundup(SQ_SIZE(depth
),
1374 dev
->ctrl
.page_size
);
1375 nvmeq
->sq_dma_addr
= dev
->cmb_bus_addr
+ offset
;
1376 nvmeq
->sq_cmds_io
= dev
->cmb
+ offset
;
1378 nvmeq
->sq_cmds
= dma_alloc_coherent(dev
->dev
, SQ_SIZE(depth
),
1379 &nvmeq
->sq_dma_addr
, GFP_KERNEL
);
1380 if (!nvmeq
->sq_cmds
)
1387 static struct nvme_queue
*nvme_alloc_queue(struct nvme_dev
*dev
, int qid
,
1388 int depth
, int node
)
1390 struct nvme_queue
*nvmeq
= kzalloc_node(sizeof(*nvmeq
), GFP_KERNEL
,
1395 nvmeq
->cqes
= dma_zalloc_coherent(dev
->dev
, CQ_SIZE(depth
),
1396 &nvmeq
->cq_dma_addr
, GFP_KERNEL
);
1400 if (nvme_alloc_sq_cmds(dev
, nvmeq
, qid
, depth
))
1403 nvmeq
->q_dmadev
= dev
->dev
;
1405 spin_lock_init(&nvmeq
->q_lock
);
1407 nvmeq
->cq_phase
= 1;
1408 nvmeq
->q_db
= &dev
->dbs
[qid
* 2 * dev
->db_stride
];
1409 nvmeq
->q_depth
= depth
;
1411 nvmeq
->cq_vector
= -1;
1412 dev
->queues
[qid
] = nvmeq
;
1413 dev
->ctrl
.queue_count
++;
1418 dma_free_coherent(dev
->dev
, CQ_SIZE(depth
), (void *)nvmeq
->cqes
,
1419 nvmeq
->cq_dma_addr
);
1425 static int queue_request_irq(struct nvme_queue
*nvmeq
)
1427 struct pci_dev
*pdev
= to_pci_dev(nvmeq
->dev
->dev
);
1428 int nr
= nvmeq
->dev
->ctrl
.instance
;
1430 if (use_threaded_interrupts
) {
1431 return pci_request_irq(pdev
, nvmeq
->cq_vector
, nvme_irq_check
,
1432 nvme_irq
, nvmeq
, "nvme%dq%d", nr
, nvmeq
->qid
);
1434 return pci_request_irq(pdev
, nvmeq
->cq_vector
, nvme_irq
,
1435 NULL
, nvmeq
, "nvme%dq%d", nr
, nvmeq
->qid
);
1439 static void nvme_init_queue(struct nvme_queue
*nvmeq
, u16 qid
)
1441 struct nvme_dev
*dev
= nvmeq
->dev
;
1443 spin_lock_irq(&nvmeq
->q_lock
);
1446 nvmeq
->cq_phase
= 1;
1447 nvmeq
->q_db
= &dev
->dbs
[qid
* 2 * dev
->db_stride
];
1448 memset((void *)nvmeq
->cqes
, 0, CQ_SIZE(nvmeq
->q_depth
));
1449 nvme_dbbuf_init(dev
, nvmeq
, qid
);
1450 dev
->online_queues
++;
1451 spin_unlock_irq(&nvmeq
->q_lock
);
1454 static int nvme_create_queue(struct nvme_queue
*nvmeq
, int qid
)
1456 struct nvme_dev
*dev
= nvmeq
->dev
;
1459 nvmeq
->cq_vector
= qid
- 1;
1460 result
= adapter_alloc_cq(dev
, qid
, nvmeq
);
1464 result
= adapter_alloc_sq(dev
, qid
, nvmeq
);
1468 nvme_init_queue(nvmeq
, qid
);
1469 result
= queue_request_irq(nvmeq
);
1476 adapter_delete_sq(dev
, qid
);
1478 adapter_delete_cq(dev
, qid
);
1482 static const struct blk_mq_ops nvme_mq_admin_ops
= {
1483 .queue_rq
= nvme_queue_rq
,
1484 .complete
= nvme_pci_complete_rq
,
1485 .init_hctx
= nvme_admin_init_hctx
,
1486 .exit_hctx
= nvme_admin_exit_hctx
,
1487 .init_request
= nvme_init_request
,
1488 .timeout
= nvme_timeout
,
1491 static const struct blk_mq_ops nvme_mq_ops
= {
1492 .queue_rq
= nvme_queue_rq
,
1493 .complete
= nvme_pci_complete_rq
,
1494 .init_hctx
= nvme_init_hctx
,
1495 .init_request
= nvme_init_request
,
1496 .map_queues
= nvme_pci_map_queues
,
1497 .timeout
= nvme_timeout
,
1501 static void nvme_dev_remove_admin(struct nvme_dev
*dev
)
1503 if (dev
->ctrl
.admin_q
&& !blk_queue_dying(dev
->ctrl
.admin_q
)) {
1505 * If the controller was reset during removal, it's possible
1506 * user requests may be waiting on a stopped queue. Start the
1507 * queue to flush these to completion.
1509 blk_mq_unquiesce_queue(dev
->ctrl
.admin_q
);
1510 blk_cleanup_queue(dev
->ctrl
.admin_q
);
1511 blk_mq_free_tag_set(&dev
->admin_tagset
);
1515 static int nvme_alloc_admin_tags(struct nvme_dev
*dev
)
1517 if (!dev
->ctrl
.admin_q
) {
1518 dev
->admin_tagset
.ops
= &nvme_mq_admin_ops
;
1519 dev
->admin_tagset
.nr_hw_queues
= 1;
1521 dev
->admin_tagset
.queue_depth
= NVME_AQ_MQ_TAG_DEPTH
;
1522 dev
->admin_tagset
.timeout
= ADMIN_TIMEOUT
;
1523 dev
->admin_tagset
.numa_node
= dev_to_node(dev
->dev
);
1524 dev
->admin_tagset
.cmd_size
= nvme_pci_cmd_size(dev
, false);
1525 dev
->admin_tagset
.flags
= BLK_MQ_F_NO_SCHED
;
1526 dev
->admin_tagset
.driver_data
= dev
;
1528 if (blk_mq_alloc_tag_set(&dev
->admin_tagset
))
1530 dev
->ctrl
.admin_tagset
= &dev
->admin_tagset
;
1532 dev
->ctrl
.admin_q
= blk_mq_init_queue(&dev
->admin_tagset
);
1533 if (IS_ERR(dev
->ctrl
.admin_q
)) {
1534 blk_mq_free_tag_set(&dev
->admin_tagset
);
1537 if (!blk_get_queue(dev
->ctrl
.admin_q
)) {
1538 nvme_dev_remove_admin(dev
);
1539 dev
->ctrl
.admin_q
= NULL
;
1543 blk_mq_unquiesce_queue(dev
->ctrl
.admin_q
);
1548 static unsigned long db_bar_size(struct nvme_dev
*dev
, unsigned nr_io_queues
)
1550 return NVME_REG_DBS
+ ((nr_io_queues
+ 1) * 8 * dev
->db_stride
);
1553 static int nvme_remap_bar(struct nvme_dev
*dev
, unsigned long size
)
1555 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1557 if (size
<= dev
->bar_mapped_size
)
1559 if (size
> pci_resource_len(pdev
, 0))
1563 dev
->bar
= ioremap(pci_resource_start(pdev
, 0), size
);
1565 dev
->bar_mapped_size
= 0;
1568 dev
->bar_mapped_size
= size
;
1569 dev
->dbs
= dev
->bar
+ NVME_REG_DBS
;
1574 static int nvme_pci_configure_admin_queue(struct nvme_dev
*dev
)
1578 struct nvme_queue
*nvmeq
;
1580 result
= nvme_remap_bar(dev
, db_bar_size(dev
, 0));
1584 dev
->subsystem
= readl(dev
->bar
+ NVME_REG_VS
) >= NVME_VS(1, 1, 0) ?
1585 NVME_CAP_NSSRC(dev
->ctrl
.cap
) : 0;
1587 if (dev
->subsystem
&&
1588 (readl(dev
->bar
+ NVME_REG_CSTS
) & NVME_CSTS_NSSRO
))
1589 writel(NVME_CSTS_NSSRO
, dev
->bar
+ NVME_REG_CSTS
);
1591 result
= nvme_disable_ctrl(&dev
->ctrl
, dev
->ctrl
.cap
);
1595 nvmeq
= dev
->queues
[0];
1597 nvmeq
= nvme_alloc_queue(dev
, 0, NVME_AQ_DEPTH
,
1598 dev_to_node(dev
->dev
));
1603 aqa
= nvmeq
->q_depth
- 1;
1606 writel(aqa
, dev
->bar
+ NVME_REG_AQA
);
1607 lo_hi_writeq(nvmeq
->sq_dma_addr
, dev
->bar
+ NVME_REG_ASQ
);
1608 lo_hi_writeq(nvmeq
->cq_dma_addr
, dev
->bar
+ NVME_REG_ACQ
);
1610 result
= nvme_enable_ctrl(&dev
->ctrl
, dev
->ctrl
.cap
);
1614 nvmeq
->cq_vector
= 0;
1615 nvme_init_queue(nvmeq
, 0);
1616 result
= queue_request_irq(nvmeq
);
1618 nvmeq
->cq_vector
= -1;
1625 static int nvme_create_io_queues(struct nvme_dev
*dev
)
1630 for (i
= dev
->ctrl
.queue_count
; i
<= dev
->max_qid
; i
++) {
1631 /* vector == qid - 1, match nvme_create_queue */
1632 if (!nvme_alloc_queue(dev
, i
, dev
->q_depth
,
1633 pci_irq_get_node(to_pci_dev(dev
->dev
), i
- 1))) {
1639 max
= min(dev
->max_qid
, dev
->ctrl
.queue_count
- 1);
1640 for (i
= dev
->online_queues
; i
<= max
; i
++) {
1641 ret
= nvme_create_queue(dev
->queues
[i
], i
);
1647 * Ignore failing Create SQ/CQ commands, we can continue with less
1648 * than the desired aount of queues, and even a controller without
1649 * I/O queues an still be used to issue admin commands. This might
1650 * be useful to upgrade a buggy firmware for example.
1652 return ret
>= 0 ? 0 : ret
;
1655 static ssize_t
nvme_cmb_show(struct device
*dev
,
1656 struct device_attribute
*attr
,
1659 struct nvme_dev
*ndev
= to_nvme_dev(dev_get_drvdata(dev
));
1661 return scnprintf(buf
, PAGE_SIZE
, "cmbloc : x%08x\ncmbsz : x%08x\n",
1662 ndev
->cmbloc
, ndev
->cmbsz
);
1664 static DEVICE_ATTR(cmb
, S_IRUGO
, nvme_cmb_show
, NULL
);
1666 static void __iomem
*nvme_map_cmb(struct nvme_dev
*dev
)
1668 u64 szu
, size
, offset
;
1669 resource_size_t bar_size
;
1670 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1674 dev
->cmbsz
= readl(dev
->bar
+ NVME_REG_CMBSZ
);
1675 if (!(NVME_CMB_SZ(dev
->cmbsz
)))
1677 dev
->cmbloc
= readl(dev
->bar
+ NVME_REG_CMBLOC
);
1682 szu
= (u64
)1 << (12 + 4 * NVME_CMB_SZU(dev
->cmbsz
));
1683 size
= szu
* NVME_CMB_SZ(dev
->cmbsz
);
1684 offset
= szu
* NVME_CMB_OFST(dev
->cmbloc
);
1685 bar
= NVME_CMB_BIR(dev
->cmbloc
);
1686 bar_size
= pci_resource_len(pdev
, bar
);
1688 if (offset
> bar_size
)
1692 * Controllers may support a CMB size larger than their BAR,
1693 * for example, due to being behind a bridge. Reduce the CMB to
1694 * the reported size of the BAR
1696 if (size
> bar_size
- offset
)
1697 size
= bar_size
- offset
;
1699 cmb
= ioremap_wc(pci_resource_start(pdev
, bar
) + offset
, size
);
1703 dev
->cmb_bus_addr
= pci_bus_address(pdev
, bar
) + offset
;
1704 dev
->cmb_size
= size
;
1708 static inline void nvme_release_cmb(struct nvme_dev
*dev
)
1713 sysfs_remove_file_from_group(&dev
->ctrl
.device
->kobj
,
1714 &dev_attr_cmb
.attr
, NULL
);
1719 static int nvme_set_host_mem(struct nvme_dev
*dev
, u32 bits
)
1721 u64 dma_addr
= dev
->host_mem_descs_dma
;
1722 struct nvme_command c
;
1725 memset(&c
, 0, sizeof(c
));
1726 c
.features
.opcode
= nvme_admin_set_features
;
1727 c
.features
.fid
= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF
);
1728 c
.features
.dword11
= cpu_to_le32(bits
);
1729 c
.features
.dword12
= cpu_to_le32(dev
->host_mem_size
>>
1730 ilog2(dev
->ctrl
.page_size
));
1731 c
.features
.dword13
= cpu_to_le32(lower_32_bits(dma_addr
));
1732 c
.features
.dword14
= cpu_to_le32(upper_32_bits(dma_addr
));
1733 c
.features
.dword15
= cpu_to_le32(dev
->nr_host_mem_descs
);
1735 ret
= nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1737 dev_warn(dev
->ctrl
.device
,
1738 "failed to set host mem (err %d, flags %#x).\n",
1744 static void nvme_free_host_mem(struct nvme_dev
*dev
)
1748 for (i
= 0; i
< dev
->nr_host_mem_descs
; i
++) {
1749 struct nvme_host_mem_buf_desc
*desc
= &dev
->host_mem_descs
[i
];
1750 size_t size
= le32_to_cpu(desc
->size
) * dev
->ctrl
.page_size
;
1752 dma_free_coherent(dev
->dev
, size
, dev
->host_mem_desc_bufs
[i
],
1753 le64_to_cpu(desc
->addr
));
1756 kfree(dev
->host_mem_desc_bufs
);
1757 dev
->host_mem_desc_bufs
= NULL
;
1758 dma_free_coherent(dev
->dev
,
1759 dev
->nr_host_mem_descs
* sizeof(*dev
->host_mem_descs
),
1760 dev
->host_mem_descs
, dev
->host_mem_descs_dma
);
1761 dev
->host_mem_descs
= NULL
;
1762 dev
->nr_host_mem_descs
= 0;
1765 static int __nvme_alloc_host_mem(struct nvme_dev
*dev
, u64 preferred
,
1768 struct nvme_host_mem_buf_desc
*descs
;
1769 u32 max_entries
, len
;
1770 dma_addr_t descs_dma
;
1775 tmp
= (preferred
+ chunk_size
- 1);
1776 do_div(tmp
, chunk_size
);
1779 if (dev
->ctrl
.hmmaxd
&& dev
->ctrl
.hmmaxd
< max_entries
)
1780 max_entries
= dev
->ctrl
.hmmaxd
;
1782 descs
= dma_zalloc_coherent(dev
->dev
, max_entries
* sizeof(*descs
),
1783 &descs_dma
, GFP_KERNEL
);
1787 bufs
= kcalloc(max_entries
, sizeof(*bufs
), GFP_KERNEL
);
1789 goto out_free_descs
;
1791 for (size
= 0; size
< preferred
&& i
< max_entries
; size
+= len
) {
1792 dma_addr_t dma_addr
;
1794 len
= min_t(u64
, chunk_size
, preferred
- size
);
1795 bufs
[i
] = dma_alloc_attrs(dev
->dev
, len
, &dma_addr
, GFP_KERNEL
,
1796 DMA_ATTR_NO_KERNEL_MAPPING
| DMA_ATTR_NO_WARN
);
1800 descs
[i
].addr
= cpu_to_le64(dma_addr
);
1801 descs
[i
].size
= cpu_to_le32(len
/ dev
->ctrl
.page_size
);
1808 dev
->nr_host_mem_descs
= i
;
1809 dev
->host_mem_size
= size
;
1810 dev
->host_mem_descs
= descs
;
1811 dev
->host_mem_descs_dma
= descs_dma
;
1812 dev
->host_mem_desc_bufs
= bufs
;
1817 size_t size
= le32_to_cpu(descs
[i
].size
) * dev
->ctrl
.page_size
;
1819 dma_free_coherent(dev
->dev
, size
, bufs
[i
],
1820 le64_to_cpu(descs
[i
].addr
));
1825 dma_free_coherent(dev
->dev
, max_entries
* sizeof(*descs
), descs
,
1828 dev
->host_mem_descs
= NULL
;
1832 static int nvme_alloc_host_mem(struct nvme_dev
*dev
, u64 min
, u64 preferred
)
1836 /* start big and work our way down */
1837 for (chunk_size
= min_t(u64
, preferred
, PAGE_SIZE
* MAX_ORDER_NR_PAGES
);
1838 chunk_size
>= max_t(u32
, dev
->ctrl
.hmminds
* 4096, PAGE_SIZE
* 2);
1840 if (!__nvme_alloc_host_mem(dev
, preferred
, chunk_size
)) {
1841 if (!min
|| dev
->host_mem_size
>= min
)
1843 nvme_free_host_mem(dev
);
1850 static int nvme_setup_host_mem(struct nvme_dev
*dev
)
1852 u64 max
= (u64
)max_host_mem_size_mb
* SZ_1M
;
1853 u64 preferred
= (u64
)dev
->ctrl
.hmpre
* 4096;
1854 u64 min
= (u64
)dev
->ctrl
.hmmin
* 4096;
1855 u32 enable_bits
= NVME_HOST_MEM_ENABLE
;
1858 preferred
= min(preferred
, max
);
1860 dev_warn(dev
->ctrl
.device
,
1861 "min host memory (%lld MiB) above limit (%d MiB).\n",
1862 min
>> ilog2(SZ_1M
), max_host_mem_size_mb
);
1863 nvme_free_host_mem(dev
);
1868 * If we already have a buffer allocated check if we can reuse it.
1870 if (dev
->host_mem_descs
) {
1871 if (dev
->host_mem_size
>= min
)
1872 enable_bits
|= NVME_HOST_MEM_RETURN
;
1874 nvme_free_host_mem(dev
);
1877 if (!dev
->host_mem_descs
) {
1878 if (nvme_alloc_host_mem(dev
, min
, preferred
)) {
1879 dev_warn(dev
->ctrl
.device
,
1880 "failed to allocate host memory buffer.\n");
1881 return 0; /* controller must work without HMB */
1884 dev_info(dev
->ctrl
.device
,
1885 "allocated %lld MiB host memory buffer.\n",
1886 dev
->host_mem_size
>> ilog2(SZ_1M
));
1889 ret
= nvme_set_host_mem(dev
, enable_bits
);
1891 nvme_free_host_mem(dev
);
1895 static int nvme_setup_io_queues(struct nvme_dev
*dev
)
1897 struct nvme_queue
*adminq
= dev
->queues
[0];
1898 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1899 int result
, nr_io_queues
;
1902 nr_io_queues
= num_present_cpus();
1903 result
= nvme_set_queue_count(&dev
->ctrl
, &nr_io_queues
);
1907 if (nr_io_queues
== 0)
1910 if (dev
->cmb
&& NVME_CMB_SQS(dev
->cmbsz
)) {
1911 result
= nvme_cmb_qdepth(dev
, nr_io_queues
,
1912 sizeof(struct nvme_command
));
1914 dev
->q_depth
= result
;
1916 nvme_release_cmb(dev
);
1920 size
= db_bar_size(dev
, nr_io_queues
);
1921 result
= nvme_remap_bar(dev
, size
);
1924 if (!--nr_io_queues
)
1927 adminq
->q_db
= dev
->dbs
;
1929 /* Deregister the admin queue's interrupt */
1930 pci_free_irq(pdev
, 0, adminq
);
1933 * If we enable msix early due to not intx, disable it again before
1934 * setting up the full range we need.
1936 pci_free_irq_vectors(pdev
);
1937 nr_io_queues
= pci_alloc_irq_vectors(pdev
, 1, nr_io_queues
,
1938 PCI_IRQ_ALL_TYPES
| PCI_IRQ_AFFINITY
);
1939 if (nr_io_queues
<= 0)
1941 dev
->max_qid
= nr_io_queues
;
1944 * Should investigate if there's a performance win from allocating
1945 * more queues than interrupt vectors; it might allow the submission
1946 * path to scale better, even if the receive path is limited by the
1947 * number of interrupts.
1950 result
= queue_request_irq(adminq
);
1952 adminq
->cq_vector
= -1;
1955 return nvme_create_io_queues(dev
);
1958 static void nvme_del_queue_end(struct request
*req
, blk_status_t error
)
1960 struct nvme_queue
*nvmeq
= req
->end_io_data
;
1962 blk_mq_free_request(req
);
1963 complete(&nvmeq
->dev
->ioq_wait
);
1966 static void nvme_del_cq_end(struct request
*req
, blk_status_t error
)
1968 struct nvme_queue
*nvmeq
= req
->end_io_data
;
1971 unsigned long flags
;
1974 * We might be called with the AQ q_lock held
1975 * and the I/O queue q_lock should always
1976 * nest inside the AQ one.
1978 spin_lock_irqsave_nested(&nvmeq
->q_lock
, flags
,
1979 SINGLE_DEPTH_NESTING
);
1980 nvme_process_cq(nvmeq
);
1981 spin_unlock_irqrestore(&nvmeq
->q_lock
, flags
);
1984 nvme_del_queue_end(req
, error
);
1987 static int nvme_delete_queue(struct nvme_queue
*nvmeq
, u8 opcode
)
1989 struct request_queue
*q
= nvmeq
->dev
->ctrl
.admin_q
;
1990 struct request
*req
;
1991 struct nvme_command cmd
;
1993 memset(&cmd
, 0, sizeof(cmd
));
1994 cmd
.delete_queue
.opcode
= opcode
;
1995 cmd
.delete_queue
.qid
= cpu_to_le16(nvmeq
->qid
);
1997 req
= nvme_alloc_request(q
, &cmd
, BLK_MQ_REQ_NOWAIT
, NVME_QID_ANY
);
1999 return PTR_ERR(req
);
2001 req
->timeout
= ADMIN_TIMEOUT
;
2002 req
->end_io_data
= nvmeq
;
2004 blk_execute_rq_nowait(q
, NULL
, req
, false,
2005 opcode
== nvme_admin_delete_cq
?
2006 nvme_del_cq_end
: nvme_del_queue_end
);
2010 static void nvme_disable_io_queues(struct nvme_dev
*dev
, int queues
)
2013 unsigned long timeout
;
2014 u8 opcode
= nvme_admin_delete_sq
;
2016 for (pass
= 0; pass
< 2; pass
++) {
2017 int sent
= 0, i
= queues
;
2019 reinit_completion(&dev
->ioq_wait
);
2021 timeout
= ADMIN_TIMEOUT
;
2022 for (; i
> 0; i
--, sent
++)
2023 if (nvme_delete_queue(dev
->queues
[i
], opcode
))
2027 timeout
= wait_for_completion_io_timeout(&dev
->ioq_wait
, timeout
);
2033 opcode
= nvme_admin_delete_cq
;
2038 * Return: error value if an error occurred setting up the queues or calling
2039 * Identify Device. 0 if these succeeded, even if adding some of the
2040 * namespaces failed. At the moment, these failures are silent. TBD which
2041 * failures should be reported.
2043 static int nvme_dev_add(struct nvme_dev
*dev
)
2045 if (!dev
->ctrl
.tagset
) {
2046 dev
->tagset
.ops
= &nvme_mq_ops
;
2047 dev
->tagset
.nr_hw_queues
= dev
->online_queues
- 1;
2048 dev
->tagset
.timeout
= NVME_IO_TIMEOUT
;
2049 dev
->tagset
.numa_node
= dev_to_node(dev
->dev
);
2050 dev
->tagset
.queue_depth
=
2051 min_t(int, dev
->q_depth
, BLK_MQ_MAX_DEPTH
) - 1;
2052 dev
->tagset
.cmd_size
= nvme_pci_cmd_size(dev
, false);
2053 if ((dev
->ctrl
.sgls
& ((1 << 0) | (1 << 1))) && sgl_threshold
) {
2054 dev
->tagset
.cmd_size
= max(dev
->tagset
.cmd_size
,
2055 nvme_pci_cmd_size(dev
, true));
2057 dev
->tagset
.flags
= BLK_MQ_F_SHOULD_MERGE
;
2058 dev
->tagset
.driver_data
= dev
;
2060 if (blk_mq_alloc_tag_set(&dev
->tagset
))
2062 dev
->ctrl
.tagset
= &dev
->tagset
;
2064 nvme_dbbuf_set(dev
);
2066 blk_mq_update_nr_hw_queues(&dev
->tagset
, dev
->online_queues
- 1);
2068 /* Free previously allocated queues that are no longer usable */
2069 nvme_free_queues(dev
, dev
->online_queues
);
2075 static int nvme_pci_enable(struct nvme_dev
*dev
)
2077 int result
= -ENOMEM
;
2078 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2080 if (pci_enable_device_mem(pdev
))
2083 pci_set_master(pdev
);
2085 if (dma_set_mask_and_coherent(dev
->dev
, DMA_BIT_MASK(64)) &&
2086 dma_set_mask_and_coherent(dev
->dev
, DMA_BIT_MASK(32)))
2089 if (readl(dev
->bar
+ NVME_REG_CSTS
) == -1) {
2095 * Some devices and/or platforms don't advertise or work with INTx
2096 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2097 * adjust this later.
2099 result
= pci_alloc_irq_vectors(pdev
, 1, 1, PCI_IRQ_ALL_TYPES
);
2103 dev
->ctrl
.cap
= lo_hi_readq(dev
->bar
+ NVME_REG_CAP
);
2105 dev
->q_depth
= min_t(int, NVME_CAP_MQES(dev
->ctrl
.cap
) + 1,
2107 dev
->db_stride
= 1 << NVME_CAP_STRIDE(dev
->ctrl
.cap
);
2108 dev
->dbs
= dev
->bar
+ 4096;
2111 * Temporary fix for the Apple controller found in the MacBook8,1 and
2112 * some MacBook7,1 to avoid controller resets and data loss.
2114 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
&& pdev
->device
== 0x2001) {
2116 dev_warn(dev
->ctrl
.device
, "detected Apple NVMe controller, "
2117 "set queue depth=%u to work around controller resets\n",
2119 } else if (pdev
->vendor
== PCI_VENDOR_ID_SAMSUNG
&&
2120 (pdev
->device
== 0xa821 || pdev
->device
== 0xa822) &&
2121 NVME_CAP_MQES(dev
->ctrl
.cap
) == 0) {
2123 dev_err(dev
->ctrl
.device
, "detected PM1725 NVMe controller, "
2124 "set queue depth=%u\n", dev
->q_depth
);
2128 * CMBs can currently only exist on >=1.2 PCIe devices. We only
2129 * populate sysfs if a CMB is implemented. Since nvme_dev_attrs_group
2130 * has no name we can pass NULL as final argument to
2131 * sysfs_add_file_to_group.
2134 if (readl(dev
->bar
+ NVME_REG_VS
) >= NVME_VS(1, 2, 0)) {
2135 dev
->cmb
= nvme_map_cmb(dev
);
2137 if (sysfs_add_file_to_group(&dev
->ctrl
.device
->kobj
,
2138 &dev_attr_cmb
.attr
, NULL
))
2139 dev_warn(dev
->ctrl
.device
,
2140 "failed to add sysfs attribute for CMB\n");
2144 pci_enable_pcie_error_reporting(pdev
);
2145 pci_save_state(pdev
);
2149 pci_disable_device(pdev
);
2153 static void nvme_dev_unmap(struct nvme_dev
*dev
)
2157 pci_release_mem_regions(to_pci_dev(dev
->dev
));
2160 static void nvme_pci_disable(struct nvme_dev
*dev
)
2162 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2164 nvme_release_cmb(dev
);
2165 pci_free_irq_vectors(pdev
);
2167 if (pci_is_enabled(pdev
)) {
2168 pci_disable_pcie_error_reporting(pdev
);
2169 pci_disable_device(pdev
);
2173 static void nvme_dev_disable(struct nvme_dev
*dev
, bool shutdown
)
2177 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2179 mutex_lock(&dev
->shutdown_lock
);
2180 if (pci_is_enabled(pdev
)) {
2181 u32 csts
= readl(dev
->bar
+ NVME_REG_CSTS
);
2183 if (dev
->ctrl
.state
== NVME_CTRL_LIVE
||
2184 dev
->ctrl
.state
== NVME_CTRL_RESETTING
)
2185 nvme_start_freeze(&dev
->ctrl
);
2186 dead
= !!((csts
& NVME_CSTS_CFS
) || !(csts
& NVME_CSTS_RDY
) ||
2187 pdev
->error_state
!= pci_channel_io_normal
);
2191 * Give the controller a chance to complete all entered requests if
2192 * doing a safe shutdown.
2196 nvme_wait_freeze_timeout(&dev
->ctrl
, NVME_IO_TIMEOUT
);
2199 * If the controller is still alive tell it to stop using the
2200 * host memory buffer. In theory the shutdown / reset should
2201 * make sure that it doesn't access the host memoery anymore,
2202 * but I'd rather be safe than sorry..
2204 if (dev
->host_mem_descs
)
2205 nvme_set_host_mem(dev
, 0);
2208 nvme_stop_queues(&dev
->ctrl
);
2210 queues
= dev
->online_queues
- 1;
2211 for (i
= dev
->ctrl
.queue_count
- 1; i
> 0; i
--)
2212 nvme_suspend_queue(dev
->queues
[i
]);
2215 /* A device might become IO incapable very soon during
2216 * probe, before the admin queue is configured. Thus,
2217 * queue_count can be 0 here.
2219 if (dev
->ctrl
.queue_count
)
2220 nvme_suspend_queue(dev
->queues
[0]);
2222 nvme_disable_io_queues(dev
, queues
);
2223 nvme_disable_admin_queue(dev
, shutdown
);
2225 nvme_pci_disable(dev
);
2227 blk_mq_tagset_busy_iter(&dev
->tagset
, nvme_cancel_request
, &dev
->ctrl
);
2228 blk_mq_tagset_busy_iter(&dev
->admin_tagset
, nvme_cancel_request
, &dev
->ctrl
);
2231 * The driver will not be starting up queues again if shutting down so
2232 * must flush all entered requests to their failed completion to avoid
2233 * deadlocking blk-mq hot-cpu notifier.
2236 nvme_start_queues(&dev
->ctrl
);
2237 mutex_unlock(&dev
->shutdown_lock
);
2240 static int nvme_setup_prp_pools(struct nvme_dev
*dev
)
2242 dev
->prp_page_pool
= dma_pool_create("prp list page", dev
->dev
,
2243 PAGE_SIZE
, PAGE_SIZE
, 0);
2244 if (!dev
->prp_page_pool
)
2247 /* Optimisation for I/Os between 4k and 128k */
2248 dev
->prp_small_pool
= dma_pool_create("prp list 256", dev
->dev
,
2250 if (!dev
->prp_small_pool
) {
2251 dma_pool_destroy(dev
->prp_page_pool
);
2257 static void nvme_release_prp_pools(struct nvme_dev
*dev
)
2259 dma_pool_destroy(dev
->prp_page_pool
);
2260 dma_pool_destroy(dev
->prp_small_pool
);
2263 static void nvme_pci_free_ctrl(struct nvme_ctrl
*ctrl
)
2265 struct nvme_dev
*dev
= to_nvme_dev(ctrl
);
2267 nvme_dbbuf_dma_free(dev
);
2268 put_device(dev
->dev
);
2269 if (dev
->tagset
.tags
)
2270 blk_mq_free_tag_set(&dev
->tagset
);
2271 if (dev
->ctrl
.admin_q
)
2272 blk_put_queue(dev
->ctrl
.admin_q
);
2274 free_opal_dev(dev
->ctrl
.opal_dev
);
2278 static void nvme_remove_dead_ctrl(struct nvme_dev
*dev
, int status
)
2280 dev_warn(dev
->ctrl
.device
, "Removing after probe failure status: %d\n", status
);
2282 nvme_get_ctrl(&dev
->ctrl
);
2283 nvme_dev_disable(dev
, false);
2284 if (!queue_work(nvme_wq
, &dev
->remove_work
))
2285 nvme_put_ctrl(&dev
->ctrl
);
2288 static void nvme_reset_work(struct work_struct
*work
)
2290 struct nvme_dev
*dev
=
2291 container_of(work
, struct nvme_dev
, ctrl
.reset_work
);
2292 bool was_suspend
= !!(dev
->ctrl
.ctrl_config
& NVME_CC_SHN_NORMAL
);
2293 int result
= -ENODEV
;
2295 if (WARN_ON(dev
->ctrl
.state
!= NVME_CTRL_RESETTING
))
2299 * If we're called to reset a live controller first shut it down before
2302 if (dev
->ctrl
.ctrl_config
& NVME_CC_ENABLE
)
2303 nvme_dev_disable(dev
, false);
2305 result
= nvme_pci_enable(dev
);
2309 result
= nvme_pci_configure_admin_queue(dev
);
2313 result
= nvme_alloc_admin_tags(dev
);
2317 result
= nvme_init_identify(&dev
->ctrl
);
2321 if (dev
->ctrl
.oacs
& NVME_CTRL_OACS_SEC_SUPP
) {
2322 if (!dev
->ctrl
.opal_dev
)
2323 dev
->ctrl
.opal_dev
=
2324 init_opal_dev(&dev
->ctrl
, &nvme_sec_submit
);
2325 else if (was_suspend
)
2326 opal_unlock_from_suspend(dev
->ctrl
.opal_dev
);
2328 free_opal_dev(dev
->ctrl
.opal_dev
);
2329 dev
->ctrl
.opal_dev
= NULL
;
2332 if (dev
->ctrl
.oacs
& NVME_CTRL_OACS_DBBUF_SUPP
) {
2333 result
= nvme_dbbuf_dma_alloc(dev
);
2336 "unable to allocate dma for dbbuf\n");
2339 if (dev
->ctrl
.hmpre
) {
2340 result
= nvme_setup_host_mem(dev
);
2345 result
= nvme_setup_io_queues(dev
);
2350 * Keep the controller around but remove all namespaces if we don't have
2351 * any working I/O queue.
2353 if (dev
->online_queues
< 2) {
2354 dev_warn(dev
->ctrl
.device
, "IO queues not created\n");
2355 nvme_kill_queues(&dev
->ctrl
);
2356 nvme_remove_namespaces(&dev
->ctrl
);
2358 nvme_start_queues(&dev
->ctrl
);
2359 nvme_wait_freeze(&dev
->ctrl
);
2361 nvme_unfreeze(&dev
->ctrl
);
2364 if (!nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_LIVE
)) {
2365 dev_warn(dev
->ctrl
.device
, "failed to mark controller live\n");
2369 nvme_start_ctrl(&dev
->ctrl
);
2373 nvme_remove_dead_ctrl(dev
, result
);
2376 static void nvme_remove_dead_ctrl_work(struct work_struct
*work
)
2378 struct nvme_dev
*dev
= container_of(work
, struct nvme_dev
, remove_work
);
2379 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2381 nvme_kill_queues(&dev
->ctrl
);
2382 if (pci_get_drvdata(pdev
))
2383 device_release_driver(&pdev
->dev
);
2384 nvme_put_ctrl(&dev
->ctrl
);
2387 static int nvme_pci_reg_read32(struct nvme_ctrl
*ctrl
, u32 off
, u32
*val
)
2389 *val
= readl(to_nvme_dev(ctrl
)->bar
+ off
);
2393 static int nvme_pci_reg_write32(struct nvme_ctrl
*ctrl
, u32 off
, u32 val
)
2395 writel(val
, to_nvme_dev(ctrl
)->bar
+ off
);
2399 static int nvme_pci_reg_read64(struct nvme_ctrl
*ctrl
, u32 off
, u64
*val
)
2401 *val
= readq(to_nvme_dev(ctrl
)->bar
+ off
);
2405 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops
= {
2407 .module
= THIS_MODULE
,
2408 .flags
= NVME_F_METADATA_SUPPORTED
,
2409 .reg_read32
= nvme_pci_reg_read32
,
2410 .reg_write32
= nvme_pci_reg_write32
,
2411 .reg_read64
= nvme_pci_reg_read64
,
2412 .free_ctrl
= nvme_pci_free_ctrl
,
2413 .submit_async_event
= nvme_pci_submit_async_event
,
2416 static int nvme_dev_map(struct nvme_dev
*dev
)
2418 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2420 if (pci_request_mem_regions(pdev
, "nvme"))
2423 if (nvme_remap_bar(dev
, NVME_REG_DBS
+ 4096))
2428 pci_release_mem_regions(pdev
);
2432 static unsigned long check_vendor_combination_bug(struct pci_dev
*pdev
)
2434 if (pdev
->vendor
== 0x144d && pdev
->device
== 0xa802) {
2436 * Several Samsung devices seem to drop off the PCIe bus
2437 * randomly when APST is on and uses the deepest sleep state.
2438 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2439 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2440 * 950 PRO 256GB", but it seems to be restricted to two Dell
2443 if (dmi_match(DMI_SYS_VENDOR
, "Dell Inc.") &&
2444 (dmi_match(DMI_PRODUCT_NAME
, "XPS 15 9550") ||
2445 dmi_match(DMI_PRODUCT_NAME
, "Precision 5510")))
2446 return NVME_QUIRK_NO_DEEPEST_PS
;
2447 } else if (pdev
->vendor
== 0x144d && pdev
->device
== 0xa804) {
2449 * Samsung SSD 960 EVO drops off the PCIe bus after system
2450 * suspend on a Ryzen board, ASUS PRIME B350M-A.
2452 if (dmi_match(DMI_BOARD_VENDOR
, "ASUSTeK COMPUTER INC.") &&
2453 dmi_match(DMI_BOARD_NAME
, "PRIME B350M-A"))
2454 return NVME_QUIRK_NO_APST
;
2460 static int nvme_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
2462 int node
, result
= -ENOMEM
;
2463 struct nvme_dev
*dev
;
2464 unsigned long quirks
= id
->driver_data
;
2466 node
= dev_to_node(&pdev
->dev
);
2467 if (node
== NUMA_NO_NODE
)
2468 set_dev_node(&pdev
->dev
, first_memory_node
);
2470 dev
= kzalloc_node(sizeof(*dev
), GFP_KERNEL
, node
);
2473 dev
->queues
= kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2478 dev
->dev
= get_device(&pdev
->dev
);
2479 pci_set_drvdata(pdev
, dev
);
2481 result
= nvme_dev_map(dev
);
2485 INIT_WORK(&dev
->ctrl
.reset_work
, nvme_reset_work
);
2486 INIT_WORK(&dev
->remove_work
, nvme_remove_dead_ctrl_work
);
2487 mutex_init(&dev
->shutdown_lock
);
2488 init_completion(&dev
->ioq_wait
);
2490 result
= nvme_setup_prp_pools(dev
);
2494 quirks
|= check_vendor_combination_bug(pdev
);
2496 result
= nvme_init_ctrl(&dev
->ctrl
, &pdev
->dev
, &nvme_pci_ctrl_ops
,
2501 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_RESETTING
);
2502 dev_info(dev
->ctrl
.device
, "pci function %s\n", dev_name(&pdev
->dev
));
2504 queue_work(nvme_wq
, &dev
->ctrl
.reset_work
);
2508 nvme_release_prp_pools(dev
);
2510 nvme_dev_unmap(dev
);
2512 put_device(dev
->dev
);
2519 static void nvme_reset_prepare(struct pci_dev
*pdev
)
2521 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2522 nvme_dev_disable(dev
, false);
2525 static void nvme_reset_done(struct pci_dev
*pdev
)
2527 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2528 nvme_reset_ctrl(&dev
->ctrl
);
2531 static void nvme_shutdown(struct pci_dev
*pdev
)
2533 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2534 nvme_dev_disable(dev
, true);
2538 * The driver's remove may be called on a device in a partially initialized
2539 * state. This function must not have any dependencies on the device state in
2542 static void nvme_remove(struct pci_dev
*pdev
)
2544 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2546 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DELETING
);
2548 cancel_work_sync(&dev
->ctrl
.reset_work
);
2549 pci_set_drvdata(pdev
, NULL
);
2551 if (!pci_device_is_present(pdev
)) {
2552 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DEAD
);
2553 nvme_dev_disable(dev
, false);
2556 flush_work(&dev
->ctrl
.reset_work
);
2557 nvme_stop_ctrl(&dev
->ctrl
);
2558 nvme_remove_namespaces(&dev
->ctrl
);
2559 nvme_dev_disable(dev
, true);
2560 nvme_free_host_mem(dev
);
2561 nvme_dev_remove_admin(dev
);
2562 nvme_free_queues(dev
, 0);
2563 nvme_uninit_ctrl(&dev
->ctrl
);
2564 nvme_release_prp_pools(dev
);
2565 nvme_dev_unmap(dev
);
2566 nvme_put_ctrl(&dev
->ctrl
);
2569 static int nvme_pci_sriov_configure(struct pci_dev
*pdev
, int numvfs
)
2574 if (pci_vfs_assigned(pdev
)) {
2575 dev_warn(&pdev
->dev
,
2576 "Cannot disable SR-IOV VFs while assigned\n");
2579 pci_disable_sriov(pdev
);
2583 ret
= pci_enable_sriov(pdev
, numvfs
);
2584 return ret
? ret
: numvfs
;
2587 #ifdef CONFIG_PM_SLEEP
2588 static int nvme_suspend(struct device
*dev
)
2590 struct pci_dev
*pdev
= to_pci_dev(dev
);
2591 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
2593 nvme_dev_disable(ndev
, true);
2597 static int nvme_resume(struct device
*dev
)
2599 struct pci_dev
*pdev
= to_pci_dev(dev
);
2600 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
2602 nvme_reset_ctrl(&ndev
->ctrl
);
2607 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops
, nvme_suspend
, nvme_resume
);
2609 static pci_ers_result_t
nvme_error_detected(struct pci_dev
*pdev
,
2610 pci_channel_state_t state
)
2612 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2615 * A frozen channel requires a reset. When detected, this method will
2616 * shutdown the controller to quiesce. The controller will be restarted
2617 * after the slot reset through driver's slot_reset callback.
2620 case pci_channel_io_normal
:
2621 return PCI_ERS_RESULT_CAN_RECOVER
;
2622 case pci_channel_io_frozen
:
2623 dev_warn(dev
->ctrl
.device
,
2624 "frozen state error detected, reset controller\n");
2625 nvme_dev_disable(dev
, false);
2626 return PCI_ERS_RESULT_NEED_RESET
;
2627 case pci_channel_io_perm_failure
:
2628 dev_warn(dev
->ctrl
.device
,
2629 "failure state error detected, request disconnect\n");
2630 return PCI_ERS_RESULT_DISCONNECT
;
2632 return PCI_ERS_RESULT_NEED_RESET
;
2635 static pci_ers_result_t
nvme_slot_reset(struct pci_dev
*pdev
)
2637 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2639 dev_info(dev
->ctrl
.device
, "restart after slot reset\n");
2640 pci_restore_state(pdev
);
2641 nvme_reset_ctrl(&dev
->ctrl
);
2642 return PCI_ERS_RESULT_RECOVERED
;
2645 static void nvme_error_resume(struct pci_dev
*pdev
)
2647 pci_cleanup_aer_uncorrect_error_status(pdev
);
2650 static const struct pci_error_handlers nvme_err_handler
= {
2651 .error_detected
= nvme_error_detected
,
2652 .slot_reset
= nvme_slot_reset
,
2653 .resume
= nvme_error_resume
,
2654 .reset_prepare
= nvme_reset_prepare
,
2655 .reset_done
= nvme_reset_done
,
2658 static const struct pci_device_id nvme_id_table
[] = {
2659 { PCI_VDEVICE(INTEL
, 0x0953),
2660 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
2661 NVME_QUIRK_DEALLOCATE_ZEROES
, },
2662 { PCI_VDEVICE(INTEL
, 0x0a53),
2663 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
2664 NVME_QUIRK_DEALLOCATE_ZEROES
, },
2665 { PCI_VDEVICE(INTEL
, 0x0a54),
2666 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
2667 NVME_QUIRK_DEALLOCATE_ZEROES
, },
2668 { PCI_VDEVICE(INTEL
, 0x0a55),
2669 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
2670 NVME_QUIRK_DEALLOCATE_ZEROES
, },
2671 { PCI_VDEVICE(INTEL
, 0xf1a5), /* Intel 600P/P3100 */
2672 .driver_data
= NVME_QUIRK_NO_DEEPEST_PS
},
2673 { PCI_VDEVICE(INTEL
, 0x5845), /* Qemu emulated controller */
2674 .driver_data
= NVME_QUIRK_IDENTIFY_CNS
, },
2675 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2676 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
2677 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
2678 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
2679 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2680 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
2681 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2682 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
2683 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2684 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
2685 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
2686 .driver_data
= NVME_QUIRK_LIGHTNVM
, },
2687 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
2688 .driver_data
= NVME_QUIRK_LIGHTNVM
, },
2689 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS
, 0xffffff) },
2690 { PCI_DEVICE(PCI_VENDOR_ID_APPLE
, 0x2001) },
2691 { PCI_DEVICE(PCI_VENDOR_ID_APPLE
, 0x2003) },
2694 MODULE_DEVICE_TABLE(pci
, nvme_id_table
);
2696 static struct pci_driver nvme_driver
= {
2698 .id_table
= nvme_id_table
,
2699 .probe
= nvme_probe
,
2700 .remove
= nvme_remove
,
2701 .shutdown
= nvme_shutdown
,
2703 .pm
= &nvme_dev_pm_ops
,
2705 .sriov_configure
= nvme_pci_sriov_configure
,
2706 .err_handler
= &nvme_err_handler
,
2709 static int __init
nvme_init(void)
2711 return pci_register_driver(&nvme_driver
);
2714 static void __exit
nvme_exit(void)
2716 pci_unregister_driver(&nvme_driver
);
2717 flush_workqueue(nvme_wq
);
2721 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2722 MODULE_LICENSE("GPL");
2723 MODULE_VERSION("1.0");
2724 module_init(nvme_init
);
2725 module_exit(nvme_exit
);