2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
28 #include <trace/events/block.h>
30 #define DM_MSG_PREFIX "core"
34 * ratelimit state to be used in DMXXX_LIMIT().
36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state
,
37 DEFAULT_RATELIMIT_INTERVAL
,
38 DEFAULT_RATELIMIT_BURST
);
39 EXPORT_SYMBOL(dm_ratelimit_state
);
43 * Cookies are numeric values sent with CHANGE and REMOVE
44 * uevents while resuming, removing or renaming the device.
46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
47 #define DM_COOKIE_LENGTH 24
49 static const char *_name
= DM_NAME
;
51 static unsigned int major
= 0;
52 static unsigned int _major
= 0;
54 static DEFINE_IDR(_minor_idr
);
56 static DEFINE_SPINLOCK(_minor_lock
);
58 static void do_deferred_remove(struct work_struct
*w
);
60 static DECLARE_WORK(deferred_remove_work
, do_deferred_remove
);
62 static struct workqueue_struct
*deferred_remove_workqueue
;
66 * One of these is allocated per bio.
69 struct mapped_device
*md
;
73 unsigned long start_time
;
74 spinlock_t endio_lock
;
75 struct dm_stats_aux stats_aux
;
79 * For request-based dm.
80 * One of these is allocated per request.
82 struct dm_rq_target_io
{
83 struct mapped_device
*md
;
85 struct request
*orig
, *clone
;
86 struct kthread_work work
;
89 struct dm_stats_aux stats_aux
;
90 unsigned long duration_jiffies
;
95 * For request-based dm - the bio clones we allocate are embedded in these
98 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
99 * the bioset is created - this means the bio has to come at the end of the
102 struct dm_rq_clone_bio_info
{
104 struct dm_rq_target_io
*tio
;
108 union map_info
*dm_get_rq_mapinfo(struct request
*rq
)
110 if (rq
&& rq
->end_io_data
)
111 return &((struct dm_rq_target_io
*)rq
->end_io_data
)->info
;
114 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo
);
116 #define MINOR_ALLOCED ((void *)-1)
119 * Bits for the md->flags field.
121 #define DMF_BLOCK_IO_FOR_SUSPEND 0
122 #define DMF_SUSPENDED 1
124 #define DMF_FREEING 3
125 #define DMF_DELETING 4
126 #define DMF_NOFLUSH_SUSPENDING 5
127 #define DMF_MERGE_IS_OPTIONAL 6
128 #define DMF_DEFERRED_REMOVE 7
129 #define DMF_SUSPENDED_INTERNALLY 8
132 * A dummy definition to make RCU happy.
133 * struct dm_table should never be dereferenced in this file.
140 * Work processed by per-device workqueue.
142 struct mapped_device
{
143 struct srcu_struct io_barrier
;
144 struct mutex suspend_lock
;
149 * The current mapping.
150 * Use dm_get_live_table{_fast} or take suspend_lock for
153 struct dm_table __rcu
*map
;
155 struct list_head table_devices
;
156 struct mutex table_devices_lock
;
160 struct request_queue
*queue
;
162 /* Protect queue and type against concurrent access. */
163 struct mutex type_lock
;
165 struct target_type
*immutable_target_type
;
167 struct gendisk
*disk
;
173 * A list of ios that arrived while we were suspended.
176 wait_queue_head_t wait
;
177 struct work_struct work
;
178 struct bio_list deferred
;
179 spinlock_t deferred_lock
;
182 * Processing queue (flush)
184 struct workqueue_struct
*wq
;
187 * io objects are allocated from here.
198 wait_queue_head_t eventq
;
200 struct list_head uevent_list
;
201 spinlock_t uevent_lock
; /* Protect access to uevent_list */
204 * freeze/thaw support require holding onto a super block
206 struct super_block
*frozen_sb
;
207 struct block_device
*bdev
;
209 /* forced geometry settings */
210 struct hd_geometry geometry
;
212 /* kobject and completion */
213 struct dm_kobject_holder kobj_holder
;
215 /* zero-length flush that will be cloned and submitted to targets */
216 struct bio flush_bio
;
218 /* the number of internal suspends */
219 unsigned internal_suspend_count
;
221 struct dm_stats stats
;
223 struct kthread_worker kworker
;
224 struct task_struct
*kworker_task
;
226 /* for request-based merge heuristic in dm_request_fn() */
227 unsigned seq_rq_merge_deadline_usecs
;
229 sector_t last_rq_pos
;
230 ktime_t last_rq_start_time
;
232 /* for blk-mq request-based DM support */
233 struct blk_mq_tag_set tag_set
;
237 #ifdef CONFIG_DM_MQ_DEFAULT
238 static bool use_blk_mq
= true;
240 static bool use_blk_mq
= false;
243 bool dm_use_blk_mq(struct mapped_device
*md
)
245 return md
->use_blk_mq
;
249 * For mempools pre-allocation at the table loading time.
251 struct dm_md_mempools
{
257 struct table_device
{
258 struct list_head list
;
260 struct dm_dev dm_dev
;
263 #define RESERVED_BIO_BASED_IOS 16
264 #define RESERVED_REQUEST_BASED_IOS 256
265 #define RESERVED_MAX_IOS 1024
266 static struct kmem_cache
*_io_cache
;
267 static struct kmem_cache
*_rq_tio_cache
;
268 static struct kmem_cache
*_rq_cache
;
271 * Bio-based DM's mempools' reserved IOs set by the user.
273 static unsigned reserved_bio_based_ios
= RESERVED_BIO_BASED_IOS
;
276 * Request-based DM's mempools' reserved IOs set by the user.
278 static unsigned reserved_rq_based_ios
= RESERVED_REQUEST_BASED_IOS
;
280 static unsigned __dm_get_module_param(unsigned *module_param
,
281 unsigned def
, unsigned max
)
283 unsigned param
= ACCESS_ONCE(*module_param
);
284 unsigned modified_param
= 0;
287 modified_param
= def
;
288 else if (param
> max
)
289 modified_param
= max
;
291 if (modified_param
) {
292 (void)cmpxchg(module_param
, param
, modified_param
);
293 param
= modified_param
;
299 unsigned dm_get_reserved_bio_based_ios(void)
301 return __dm_get_module_param(&reserved_bio_based_ios
,
302 RESERVED_BIO_BASED_IOS
, RESERVED_MAX_IOS
);
304 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios
);
306 unsigned dm_get_reserved_rq_based_ios(void)
308 return __dm_get_module_param(&reserved_rq_based_ios
,
309 RESERVED_REQUEST_BASED_IOS
, RESERVED_MAX_IOS
);
311 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios
);
313 static int __init
local_init(void)
317 /* allocate a slab for the dm_ios */
318 _io_cache
= KMEM_CACHE(dm_io
, 0);
322 _rq_tio_cache
= KMEM_CACHE(dm_rq_target_io
, 0);
324 goto out_free_io_cache
;
326 _rq_cache
= kmem_cache_create("dm_clone_request", sizeof(struct request
),
327 __alignof__(struct request
), 0, NULL
);
329 goto out_free_rq_tio_cache
;
331 r
= dm_uevent_init();
333 goto out_free_rq_cache
;
335 deferred_remove_workqueue
= alloc_workqueue("kdmremove", WQ_UNBOUND
, 1);
336 if (!deferred_remove_workqueue
) {
338 goto out_uevent_exit
;
342 r
= register_blkdev(_major
, _name
);
344 goto out_free_workqueue
;
352 destroy_workqueue(deferred_remove_workqueue
);
356 kmem_cache_destroy(_rq_cache
);
357 out_free_rq_tio_cache
:
358 kmem_cache_destroy(_rq_tio_cache
);
360 kmem_cache_destroy(_io_cache
);
365 static void local_exit(void)
367 flush_scheduled_work();
368 destroy_workqueue(deferred_remove_workqueue
);
370 kmem_cache_destroy(_rq_cache
);
371 kmem_cache_destroy(_rq_tio_cache
);
372 kmem_cache_destroy(_io_cache
);
373 unregister_blkdev(_major
, _name
);
378 DMINFO("cleaned up");
381 static int (*_inits
[])(void) __initdata
= {
392 static void (*_exits
[])(void) = {
403 static int __init
dm_init(void)
405 const int count
= ARRAY_SIZE(_inits
);
409 for (i
= 0; i
< count
; i
++) {
424 static void __exit
dm_exit(void)
426 int i
= ARRAY_SIZE(_exits
);
432 * Should be empty by this point.
434 idr_destroy(&_minor_idr
);
438 * Block device functions
440 int dm_deleting_md(struct mapped_device
*md
)
442 return test_bit(DMF_DELETING
, &md
->flags
);
445 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
447 struct mapped_device
*md
;
449 spin_lock(&_minor_lock
);
451 md
= bdev
->bd_disk
->private_data
;
455 if (test_bit(DMF_FREEING
, &md
->flags
) ||
456 dm_deleting_md(md
)) {
462 atomic_inc(&md
->open_count
);
464 spin_unlock(&_minor_lock
);
466 return md
? 0 : -ENXIO
;
469 static void dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
471 struct mapped_device
*md
;
473 spin_lock(&_minor_lock
);
475 md
= disk
->private_data
;
479 if (atomic_dec_and_test(&md
->open_count
) &&
480 (test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
)))
481 queue_work(deferred_remove_workqueue
, &deferred_remove_work
);
485 spin_unlock(&_minor_lock
);
488 int dm_open_count(struct mapped_device
*md
)
490 return atomic_read(&md
->open_count
);
494 * Guarantees nothing is using the device before it's deleted.
496 int dm_lock_for_deletion(struct mapped_device
*md
, bool mark_deferred
, bool only_deferred
)
500 spin_lock(&_minor_lock
);
502 if (dm_open_count(md
)) {
505 set_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
506 } else if (only_deferred
&& !test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
))
509 set_bit(DMF_DELETING
, &md
->flags
);
511 spin_unlock(&_minor_lock
);
516 int dm_cancel_deferred_remove(struct mapped_device
*md
)
520 spin_lock(&_minor_lock
);
522 if (test_bit(DMF_DELETING
, &md
->flags
))
525 clear_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
527 spin_unlock(&_minor_lock
);
532 static void do_deferred_remove(struct work_struct
*w
)
534 dm_deferred_remove();
537 sector_t
dm_get_size(struct mapped_device
*md
)
539 return get_capacity(md
->disk
);
542 struct request_queue
*dm_get_md_queue(struct mapped_device
*md
)
547 struct dm_stats
*dm_get_stats(struct mapped_device
*md
)
552 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
554 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
556 return dm_get_geometry(md
, geo
);
559 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
560 unsigned int cmd
, unsigned long arg
)
562 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
564 struct dm_table
*map
;
565 struct dm_target
*tgt
;
569 map
= dm_get_live_table(md
, &srcu_idx
);
571 if (!map
|| !dm_table_get_size(map
))
574 /* We only support devices that have a single target */
575 if (dm_table_get_num_targets(map
) != 1)
578 tgt
= dm_table_get_target(map
, 0);
579 if (!tgt
->type
->ioctl
)
582 if (dm_suspended_md(md
)) {
587 r
= tgt
->type
->ioctl(tgt
, cmd
, arg
);
590 dm_put_live_table(md
, srcu_idx
);
592 if (r
== -ENOTCONN
) {
600 static struct dm_io
*alloc_io(struct mapped_device
*md
)
602 return mempool_alloc(md
->io_pool
, GFP_NOIO
);
605 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
607 mempool_free(io
, md
->io_pool
);
610 static void free_tio(struct mapped_device
*md
, struct dm_target_io
*tio
)
612 bio_put(&tio
->clone
);
615 static struct dm_rq_target_io
*alloc_rq_tio(struct mapped_device
*md
,
618 return mempool_alloc(md
->io_pool
, gfp_mask
);
621 static void free_rq_tio(struct dm_rq_target_io
*tio
)
623 mempool_free(tio
, tio
->md
->io_pool
);
626 static struct request
*alloc_clone_request(struct mapped_device
*md
,
629 return mempool_alloc(md
->rq_pool
, gfp_mask
);
632 static void free_clone_request(struct mapped_device
*md
, struct request
*rq
)
634 mempool_free(rq
, md
->rq_pool
);
637 static int md_in_flight(struct mapped_device
*md
)
639 return atomic_read(&md
->pending
[READ
]) +
640 atomic_read(&md
->pending
[WRITE
]);
643 static void start_io_acct(struct dm_io
*io
)
645 struct mapped_device
*md
= io
->md
;
646 struct bio
*bio
= io
->bio
;
648 int rw
= bio_data_dir(bio
);
650 io
->start_time
= jiffies
;
652 cpu
= part_stat_lock();
653 part_round_stats(cpu
, &dm_disk(md
)->part0
);
655 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
],
656 atomic_inc_return(&md
->pending
[rw
]));
658 if (unlikely(dm_stats_used(&md
->stats
)))
659 dm_stats_account_io(&md
->stats
, bio
->bi_rw
, bio
->bi_iter
.bi_sector
,
660 bio_sectors(bio
), false, 0, &io
->stats_aux
);
663 static void end_io_acct(struct dm_io
*io
)
665 struct mapped_device
*md
= io
->md
;
666 struct bio
*bio
= io
->bio
;
667 unsigned long duration
= jiffies
- io
->start_time
;
669 int rw
= bio_data_dir(bio
);
671 generic_end_io_acct(rw
, &dm_disk(md
)->part0
, io
->start_time
);
673 if (unlikely(dm_stats_used(&md
->stats
)))
674 dm_stats_account_io(&md
->stats
, bio
->bi_rw
, bio
->bi_iter
.bi_sector
,
675 bio_sectors(bio
), true, duration
, &io
->stats_aux
);
678 * After this is decremented the bio must not be touched if it is
681 pending
= atomic_dec_return(&md
->pending
[rw
]);
682 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
], pending
);
683 pending
+= atomic_read(&md
->pending
[rw
^0x1]);
685 /* nudge anyone waiting on suspend queue */
691 * Add the bio to the list of deferred io.
693 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
697 spin_lock_irqsave(&md
->deferred_lock
, flags
);
698 bio_list_add(&md
->deferred
, bio
);
699 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
700 queue_work(md
->wq
, &md
->work
);
704 * Everyone (including functions in this file), should use this
705 * function to access the md->map field, and make sure they call
706 * dm_put_live_table() when finished.
708 struct dm_table
*dm_get_live_table(struct mapped_device
*md
, int *srcu_idx
) __acquires(md
->io_barrier
)
710 *srcu_idx
= srcu_read_lock(&md
->io_barrier
);
712 return srcu_dereference(md
->map
, &md
->io_barrier
);
715 void dm_put_live_table(struct mapped_device
*md
, int srcu_idx
) __releases(md
->io_barrier
)
717 srcu_read_unlock(&md
->io_barrier
, srcu_idx
);
720 void dm_sync_table(struct mapped_device
*md
)
722 synchronize_srcu(&md
->io_barrier
);
723 synchronize_rcu_expedited();
727 * A fast alternative to dm_get_live_table/dm_put_live_table.
728 * The caller must not block between these two functions.
730 static struct dm_table
*dm_get_live_table_fast(struct mapped_device
*md
) __acquires(RCU
)
733 return rcu_dereference(md
->map
);
736 static void dm_put_live_table_fast(struct mapped_device
*md
) __releases(RCU
)
742 * Open a table device so we can use it as a map destination.
744 static int open_table_device(struct table_device
*td
, dev_t dev
,
745 struct mapped_device
*md
)
747 static char *_claim_ptr
= "I belong to device-mapper";
748 struct block_device
*bdev
;
752 BUG_ON(td
->dm_dev
.bdev
);
754 bdev
= blkdev_get_by_dev(dev
, td
->dm_dev
.mode
| FMODE_EXCL
, _claim_ptr
);
756 return PTR_ERR(bdev
);
758 r
= bd_link_disk_holder(bdev
, dm_disk(md
));
760 blkdev_put(bdev
, td
->dm_dev
.mode
| FMODE_EXCL
);
764 td
->dm_dev
.bdev
= bdev
;
769 * Close a table device that we've been using.
771 static void close_table_device(struct table_device
*td
, struct mapped_device
*md
)
773 if (!td
->dm_dev
.bdev
)
776 bd_unlink_disk_holder(td
->dm_dev
.bdev
, dm_disk(md
));
777 blkdev_put(td
->dm_dev
.bdev
, td
->dm_dev
.mode
| FMODE_EXCL
);
778 td
->dm_dev
.bdev
= NULL
;
781 static struct table_device
*find_table_device(struct list_head
*l
, dev_t dev
,
783 struct table_device
*td
;
785 list_for_each_entry(td
, l
, list
)
786 if (td
->dm_dev
.bdev
->bd_dev
== dev
&& td
->dm_dev
.mode
== mode
)
792 int dm_get_table_device(struct mapped_device
*md
, dev_t dev
, fmode_t mode
,
793 struct dm_dev
**result
) {
795 struct table_device
*td
;
797 mutex_lock(&md
->table_devices_lock
);
798 td
= find_table_device(&md
->table_devices
, dev
, mode
);
800 td
= kmalloc(sizeof(*td
), GFP_KERNEL
);
802 mutex_unlock(&md
->table_devices_lock
);
806 td
->dm_dev
.mode
= mode
;
807 td
->dm_dev
.bdev
= NULL
;
809 if ((r
= open_table_device(td
, dev
, md
))) {
810 mutex_unlock(&md
->table_devices_lock
);
815 format_dev_t(td
->dm_dev
.name
, dev
);
817 atomic_set(&td
->count
, 0);
818 list_add(&td
->list
, &md
->table_devices
);
820 atomic_inc(&td
->count
);
821 mutex_unlock(&md
->table_devices_lock
);
823 *result
= &td
->dm_dev
;
826 EXPORT_SYMBOL_GPL(dm_get_table_device
);
828 void dm_put_table_device(struct mapped_device
*md
, struct dm_dev
*d
)
830 struct table_device
*td
= container_of(d
, struct table_device
, dm_dev
);
832 mutex_lock(&md
->table_devices_lock
);
833 if (atomic_dec_and_test(&td
->count
)) {
834 close_table_device(td
, md
);
838 mutex_unlock(&md
->table_devices_lock
);
840 EXPORT_SYMBOL(dm_put_table_device
);
842 static void free_table_devices(struct list_head
*devices
)
844 struct list_head
*tmp
, *next
;
846 list_for_each_safe(tmp
, next
, devices
) {
847 struct table_device
*td
= list_entry(tmp
, struct table_device
, list
);
849 DMWARN("dm_destroy: %s still exists with %d references",
850 td
->dm_dev
.name
, atomic_read(&td
->count
));
856 * Get the geometry associated with a dm device
858 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
866 * Set the geometry of a device.
868 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
870 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
872 if (geo
->start
> sz
) {
873 DMWARN("Start sector is beyond the geometry limits.");
882 /*-----------------------------------------------------------------
884 * A more elegant soln is in the works that uses the queue
885 * merge fn, unfortunately there are a couple of changes to
886 * the block layer that I want to make for this. So in the
887 * interests of getting something for people to use I give
888 * you this clearly demarcated crap.
889 *---------------------------------------------------------------*/
891 static int __noflush_suspending(struct mapped_device
*md
)
893 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
897 * Decrements the number of outstanding ios that a bio has been
898 * cloned into, completing the original io if necc.
900 static void dec_pending(struct dm_io
*io
, int error
)
905 struct mapped_device
*md
= io
->md
;
907 /* Push-back supersedes any I/O errors */
908 if (unlikely(error
)) {
909 spin_lock_irqsave(&io
->endio_lock
, flags
);
910 if (!(io
->error
> 0 && __noflush_suspending(md
)))
912 spin_unlock_irqrestore(&io
->endio_lock
, flags
);
915 if (atomic_dec_and_test(&io
->io_count
)) {
916 if (io
->error
== DM_ENDIO_REQUEUE
) {
918 * Target requested pushing back the I/O.
920 spin_lock_irqsave(&md
->deferred_lock
, flags
);
921 if (__noflush_suspending(md
))
922 bio_list_add_head(&md
->deferred
, io
->bio
);
924 /* noflush suspend was interrupted. */
926 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
929 io_error
= io
->error
;
934 if (io_error
== DM_ENDIO_REQUEUE
)
937 if ((bio
->bi_rw
& REQ_FLUSH
) && bio
->bi_iter
.bi_size
) {
939 * Preflush done for flush with data, reissue
942 bio
->bi_rw
&= ~REQ_FLUSH
;
945 /* done with normal IO or empty flush */
946 trace_block_bio_complete(md
->queue
, bio
, io_error
);
947 bio_endio(bio
, io_error
);
952 static void disable_write_same(struct mapped_device
*md
)
954 struct queue_limits
*limits
= dm_get_queue_limits(md
);
956 /* device doesn't really support WRITE SAME, disable it */
957 limits
->max_write_same_sectors
= 0;
960 static void clone_endio(struct bio
*bio
, int error
)
963 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
964 struct dm_io
*io
= tio
->io
;
965 struct mapped_device
*md
= tio
->io
->md
;
966 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
968 if (!bio_flagged(bio
, BIO_UPTODATE
) && !error
)
972 r
= endio(tio
->ti
, bio
, error
);
973 if (r
< 0 || r
== DM_ENDIO_REQUEUE
)
975 * error and requeue request are handled
979 else if (r
== DM_ENDIO_INCOMPLETE
)
980 /* The target will handle the io */
983 DMWARN("unimplemented target endio return value: %d", r
);
988 if (unlikely(r
== -EREMOTEIO
&& (bio
->bi_rw
& REQ_WRITE_SAME
) &&
989 !bdev_get_queue(bio
->bi_bdev
)->limits
.max_write_same_sectors
))
990 disable_write_same(md
);
993 dec_pending(io
, error
);
996 static struct dm_rq_target_io
*tio_from_request(struct request
*rq
)
998 return (rq
->q
->mq_ops
? blk_mq_rq_to_pdu(rq
) : rq
->special
);
1001 static void rq_end_stats(struct mapped_device
*md
, struct request
*orig
)
1003 if (unlikely(dm_stats_used(&md
->stats
))) {
1004 struct dm_rq_target_io
*tio
= tio_from_request(orig
);
1005 tio
->duration_jiffies
= jiffies
- tio
->duration_jiffies
;
1006 dm_stats_account_io(&md
->stats
, orig
->cmd_flags
, blk_rq_pos(orig
),
1007 tio
->n_sectors
, true, tio
->duration_jiffies
,
1013 * Don't touch any member of the md after calling this function because
1014 * the md may be freed in dm_put() at the end of this function.
1015 * Or do dm_get() before calling this function and dm_put() later.
1017 static void rq_completed(struct mapped_device
*md
, int rw
, bool run_queue
)
1019 int nr_requests_pending
;
1021 atomic_dec(&md
->pending
[rw
]);
1023 /* nudge anyone waiting on suspend queue */
1024 nr_requests_pending
= md_in_flight(md
);
1025 if (!nr_requests_pending
)
1029 * Run this off this callpath, as drivers could invoke end_io while
1030 * inside their request_fn (and holding the queue lock). Calling
1031 * back into ->request_fn() could deadlock attempting to grab the
1035 if (md
->queue
->mq_ops
)
1036 blk_mq_run_hw_queues(md
->queue
, true);
1037 else if (!nr_requests_pending
||
1038 (nr_requests_pending
>= md
->queue
->nr_congestion_on
))
1039 blk_run_queue_async(md
->queue
);
1043 * dm_put() must be at the end of this function. See the comment above
1048 static void free_rq_clone(struct request
*clone
)
1050 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
1051 struct mapped_device
*md
= tio
->md
;
1053 if (md
->type
== DM_TYPE_MQ_REQUEST_BASED
)
1054 /* stacked on blk-mq queue(s) */
1055 tio
->ti
->type
->release_clone_rq(clone
);
1056 else if (!md
->queue
->mq_ops
)
1057 /* request_fn queue stacked on request_fn queue(s) */
1058 free_clone_request(md
, clone
);
1060 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1061 * no need to call free_clone_request() because we leverage blk-mq by
1062 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1065 if (!md
->queue
->mq_ops
)
1070 * Complete the clone and the original request.
1071 * Must be called without clone's queue lock held,
1072 * see end_clone_request() for more details.
1074 static void dm_end_request(struct request
*clone
, int error
)
1076 int rw
= rq_data_dir(clone
);
1077 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
1078 struct mapped_device
*md
= tio
->md
;
1079 struct request
*rq
= tio
->orig
;
1081 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
1082 rq
->errors
= clone
->errors
;
1083 rq
->resid_len
= clone
->resid_len
;
1087 * We are using the sense buffer of the original
1089 * So setting the length of the sense data is enough.
1091 rq
->sense_len
= clone
->sense_len
;
1094 free_rq_clone(clone
);
1095 rq_end_stats(md
, rq
);
1097 blk_end_request_all(rq
, error
);
1099 blk_mq_end_request(rq
, error
);
1100 rq_completed(md
, rw
, true);
1103 static void dm_unprep_request(struct request
*rq
)
1105 struct dm_rq_target_io
*tio
= tio_from_request(rq
);
1106 struct request
*clone
= tio
->clone
;
1108 if (!rq
->q
->mq_ops
) {
1110 rq
->cmd_flags
&= ~REQ_DONTPREP
;
1114 free_rq_clone(clone
);
1118 * Requeue the original request of a clone.
1120 static void old_requeue_request(struct request
*rq
)
1122 struct request_queue
*q
= rq
->q
;
1123 unsigned long flags
;
1125 spin_lock_irqsave(q
->queue_lock
, flags
);
1126 blk_requeue_request(q
, rq
);
1127 blk_run_queue_async(q
);
1128 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1131 static void dm_requeue_original_request(struct mapped_device
*md
,
1134 int rw
= rq_data_dir(rq
);
1136 dm_unprep_request(rq
);
1138 rq_end_stats(md
, rq
);
1140 old_requeue_request(rq
);
1142 blk_mq_requeue_request(rq
);
1143 blk_mq_kick_requeue_list(rq
->q
);
1146 rq_completed(md
, rw
, false);
1149 static void old_stop_queue(struct request_queue
*q
)
1151 unsigned long flags
;
1153 if (blk_queue_stopped(q
))
1156 spin_lock_irqsave(q
->queue_lock
, flags
);
1158 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1161 static void stop_queue(struct request_queue
*q
)
1166 blk_mq_stop_hw_queues(q
);
1169 static void old_start_queue(struct request_queue
*q
)
1171 unsigned long flags
;
1173 spin_lock_irqsave(q
->queue_lock
, flags
);
1174 if (blk_queue_stopped(q
))
1176 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1179 static void start_queue(struct request_queue
*q
)
1184 blk_mq_start_stopped_hw_queues(q
, true);
1187 static void dm_done(struct request
*clone
, int error
, bool mapped
)
1190 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
1191 dm_request_endio_fn rq_end_io
= NULL
;
1194 rq_end_io
= tio
->ti
->type
->rq_end_io
;
1196 if (mapped
&& rq_end_io
)
1197 r
= rq_end_io(tio
->ti
, clone
, error
, &tio
->info
);
1200 if (unlikely(r
== -EREMOTEIO
&& (clone
->cmd_flags
& REQ_WRITE_SAME
) &&
1201 !clone
->q
->limits
.max_write_same_sectors
))
1202 disable_write_same(tio
->md
);
1205 /* The target wants to complete the I/O */
1206 dm_end_request(clone
, r
);
1207 else if (r
== DM_ENDIO_INCOMPLETE
)
1208 /* The target will handle the I/O */
1210 else if (r
== DM_ENDIO_REQUEUE
)
1211 /* The target wants to requeue the I/O */
1212 dm_requeue_original_request(tio
->md
, tio
->orig
);
1214 DMWARN("unimplemented target endio return value: %d", r
);
1220 * Request completion handler for request-based dm
1222 static void dm_softirq_done(struct request
*rq
)
1225 struct dm_rq_target_io
*tio
= tio_from_request(rq
);
1226 struct request
*clone
= tio
->clone
;
1230 rq_end_stats(tio
->md
, rq
);
1231 rw
= rq_data_dir(rq
);
1232 if (!rq
->q
->mq_ops
) {
1233 blk_end_request_all(rq
, tio
->error
);
1234 rq_completed(tio
->md
, rw
, false);
1237 blk_mq_end_request(rq
, tio
->error
);
1238 rq_completed(tio
->md
, rw
, false);
1243 if (rq
->cmd_flags
& REQ_FAILED
)
1246 dm_done(clone
, tio
->error
, mapped
);
1250 * Complete the clone and the original request with the error status
1251 * through softirq context.
1253 static void dm_complete_request(struct request
*rq
, int error
)
1255 struct dm_rq_target_io
*tio
= tio_from_request(rq
);
1258 blk_complete_request(rq
);
1262 * Complete the not-mapped clone and the original request with the error status
1263 * through softirq context.
1264 * Target's rq_end_io() function isn't called.
1265 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1267 static void dm_kill_unmapped_request(struct request
*rq
, int error
)
1269 rq
->cmd_flags
|= REQ_FAILED
;
1270 dm_complete_request(rq
, error
);
1274 * Called with the clone's queue lock held (for non-blk-mq)
1276 static void end_clone_request(struct request
*clone
, int error
)
1278 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
1280 if (!clone
->q
->mq_ops
) {
1282 * For just cleaning up the information of the queue in which
1283 * the clone was dispatched.
1284 * The clone is *NOT* freed actually here because it is alloced
1285 * from dm own mempool (REQ_ALLOCED isn't set).
1287 __blk_put_request(clone
->q
, clone
);
1291 * Actual request completion is done in a softirq context which doesn't
1292 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1293 * - another request may be submitted by the upper level driver
1294 * of the stacking during the completion
1295 * - the submission which requires queue lock may be done
1296 * against this clone's queue
1298 dm_complete_request(tio
->orig
, error
);
1302 * Return maximum size of I/O possible at the supplied sector up to the current
1305 static sector_t
max_io_len_target_boundary(sector_t sector
, struct dm_target
*ti
)
1307 sector_t target_offset
= dm_target_offset(ti
, sector
);
1309 return ti
->len
- target_offset
;
1312 static sector_t
max_io_len(sector_t sector
, struct dm_target
*ti
)
1314 sector_t len
= max_io_len_target_boundary(sector
, ti
);
1315 sector_t offset
, max_len
;
1318 * Does the target need to split even further?
1320 if (ti
->max_io_len
) {
1321 offset
= dm_target_offset(ti
, sector
);
1322 if (unlikely(ti
->max_io_len
& (ti
->max_io_len
- 1)))
1323 max_len
= sector_div(offset
, ti
->max_io_len
);
1325 max_len
= offset
& (ti
->max_io_len
- 1);
1326 max_len
= ti
->max_io_len
- max_len
;
1335 int dm_set_target_max_io_len(struct dm_target
*ti
, sector_t len
)
1337 if (len
> UINT_MAX
) {
1338 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1339 (unsigned long long)len
, UINT_MAX
);
1340 ti
->error
= "Maximum size of target IO is too large";
1344 ti
->max_io_len
= (uint32_t) len
;
1348 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len
);
1351 * A target may call dm_accept_partial_bio only from the map routine. It is
1352 * allowed for all bio types except REQ_FLUSH.
1354 * dm_accept_partial_bio informs the dm that the target only wants to process
1355 * additional n_sectors sectors of the bio and the rest of the data should be
1356 * sent in a next bio.
1358 * A diagram that explains the arithmetics:
1359 * +--------------------+---------------+-------+
1361 * +--------------------+---------------+-------+
1363 * <-------------- *tio->len_ptr --------------->
1364 * <------- bi_size ------->
1367 * Region 1 was already iterated over with bio_advance or similar function.
1368 * (it may be empty if the target doesn't use bio_advance)
1369 * Region 2 is the remaining bio size that the target wants to process.
1370 * (it may be empty if region 1 is non-empty, although there is no reason
1372 * The target requires that region 3 is to be sent in the next bio.
1374 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1375 * the partially processed part (the sum of regions 1+2) must be the same for all
1376 * copies of the bio.
1378 void dm_accept_partial_bio(struct bio
*bio
, unsigned n_sectors
)
1380 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
1381 unsigned bi_size
= bio
->bi_iter
.bi_size
>> SECTOR_SHIFT
;
1382 BUG_ON(bio
->bi_rw
& REQ_FLUSH
);
1383 BUG_ON(bi_size
> *tio
->len_ptr
);
1384 BUG_ON(n_sectors
> bi_size
);
1385 *tio
->len_ptr
-= bi_size
- n_sectors
;
1386 bio
->bi_iter
.bi_size
= n_sectors
<< SECTOR_SHIFT
;
1388 EXPORT_SYMBOL_GPL(dm_accept_partial_bio
);
1390 static void __map_bio(struct dm_target_io
*tio
)
1394 struct mapped_device
*md
;
1395 struct bio
*clone
= &tio
->clone
;
1396 struct dm_target
*ti
= tio
->ti
;
1398 clone
->bi_end_io
= clone_endio
;
1401 * Map the clone. If r == 0 we don't need to do
1402 * anything, the target has assumed ownership of
1405 atomic_inc(&tio
->io
->io_count
);
1406 sector
= clone
->bi_iter
.bi_sector
;
1407 r
= ti
->type
->map(ti
, clone
);
1408 if (r
== DM_MAPIO_REMAPPED
) {
1409 /* the bio has been remapped so dispatch it */
1411 trace_block_bio_remap(bdev_get_queue(clone
->bi_bdev
), clone
,
1412 tio
->io
->bio
->bi_bdev
->bd_dev
, sector
);
1414 generic_make_request(clone
);
1415 } else if (r
< 0 || r
== DM_MAPIO_REQUEUE
) {
1416 /* error the io and bail out, or requeue it if needed */
1418 dec_pending(tio
->io
, r
);
1421 DMWARN("unimplemented target map return value: %d", r
);
1427 struct mapped_device
*md
;
1428 struct dm_table
*map
;
1432 unsigned sector_count
;
1435 static void bio_setup_sector(struct bio
*bio
, sector_t sector
, unsigned len
)
1437 bio
->bi_iter
.bi_sector
= sector
;
1438 bio
->bi_iter
.bi_size
= to_bytes(len
);
1442 * Creates a bio that consists of range of complete bvecs.
1444 static void clone_bio(struct dm_target_io
*tio
, struct bio
*bio
,
1445 sector_t sector
, unsigned len
)
1447 struct bio
*clone
= &tio
->clone
;
1449 __bio_clone_fast(clone
, bio
);
1451 if (bio_integrity(bio
))
1452 bio_integrity_clone(clone
, bio
, GFP_NOIO
);
1454 bio_advance(clone
, to_bytes(sector
- clone
->bi_iter
.bi_sector
));
1455 clone
->bi_iter
.bi_size
= to_bytes(len
);
1457 if (bio_integrity(bio
))
1458 bio_integrity_trim(clone
, 0, len
);
1461 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
,
1462 struct dm_target
*ti
,
1463 unsigned target_bio_nr
)
1465 struct dm_target_io
*tio
;
1468 clone
= bio_alloc_bioset(GFP_NOIO
, 0, ci
->md
->bs
);
1469 tio
= container_of(clone
, struct dm_target_io
, clone
);
1473 tio
->target_bio_nr
= target_bio_nr
;
1478 static void __clone_and_map_simple_bio(struct clone_info
*ci
,
1479 struct dm_target
*ti
,
1480 unsigned target_bio_nr
, unsigned *len
)
1482 struct dm_target_io
*tio
= alloc_tio(ci
, ti
, target_bio_nr
);
1483 struct bio
*clone
= &tio
->clone
;
1487 __bio_clone_fast(clone
, ci
->bio
);
1489 bio_setup_sector(clone
, ci
->sector
, *len
);
1494 static void __send_duplicate_bios(struct clone_info
*ci
, struct dm_target
*ti
,
1495 unsigned num_bios
, unsigned *len
)
1497 unsigned target_bio_nr
;
1499 for (target_bio_nr
= 0; target_bio_nr
< num_bios
; target_bio_nr
++)
1500 __clone_and_map_simple_bio(ci
, ti
, target_bio_nr
, len
);
1503 static int __send_empty_flush(struct clone_info
*ci
)
1505 unsigned target_nr
= 0;
1506 struct dm_target
*ti
;
1508 BUG_ON(bio_has_data(ci
->bio
));
1509 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1510 __send_duplicate_bios(ci
, ti
, ti
->num_flush_bios
, NULL
);
1515 static void __clone_and_map_data_bio(struct clone_info
*ci
, struct dm_target
*ti
,
1516 sector_t sector
, unsigned *len
)
1518 struct bio
*bio
= ci
->bio
;
1519 struct dm_target_io
*tio
;
1520 unsigned target_bio_nr
;
1521 unsigned num_target_bios
= 1;
1524 * Does the target want to receive duplicate copies of the bio?
1526 if (bio_data_dir(bio
) == WRITE
&& ti
->num_write_bios
)
1527 num_target_bios
= ti
->num_write_bios(ti
, bio
);
1529 for (target_bio_nr
= 0; target_bio_nr
< num_target_bios
; target_bio_nr
++) {
1530 tio
= alloc_tio(ci
, ti
, target_bio_nr
);
1532 clone_bio(tio
, bio
, sector
, *len
);
1537 typedef unsigned (*get_num_bios_fn
)(struct dm_target
*ti
);
1539 static unsigned get_num_discard_bios(struct dm_target
*ti
)
1541 return ti
->num_discard_bios
;
1544 static unsigned get_num_write_same_bios(struct dm_target
*ti
)
1546 return ti
->num_write_same_bios
;
1549 typedef bool (*is_split_required_fn
)(struct dm_target
*ti
);
1551 static bool is_split_required_for_discard(struct dm_target
*ti
)
1553 return ti
->split_discard_bios
;
1556 static int __send_changing_extent_only(struct clone_info
*ci
,
1557 get_num_bios_fn get_num_bios
,
1558 is_split_required_fn is_split_required
)
1560 struct dm_target
*ti
;
1565 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1566 if (!dm_target_is_valid(ti
))
1570 * Even though the device advertised support for this type of
1571 * request, that does not mean every target supports it, and
1572 * reconfiguration might also have changed that since the
1573 * check was performed.
1575 num_bios
= get_num_bios
? get_num_bios(ti
) : 0;
1579 if (is_split_required
&& !is_split_required(ti
))
1580 len
= min((sector_t
)ci
->sector_count
, max_io_len_target_boundary(ci
->sector
, ti
));
1582 len
= min((sector_t
)ci
->sector_count
, max_io_len(ci
->sector
, ti
));
1584 __send_duplicate_bios(ci
, ti
, num_bios
, &len
);
1587 } while (ci
->sector_count
-= len
);
1592 static int __send_discard(struct clone_info
*ci
)
1594 return __send_changing_extent_only(ci
, get_num_discard_bios
,
1595 is_split_required_for_discard
);
1598 static int __send_write_same(struct clone_info
*ci
)
1600 return __send_changing_extent_only(ci
, get_num_write_same_bios
, NULL
);
1604 * Select the correct strategy for processing a non-flush bio.
1606 static int __split_and_process_non_flush(struct clone_info
*ci
)
1608 struct bio
*bio
= ci
->bio
;
1609 struct dm_target
*ti
;
1612 if (unlikely(bio
->bi_rw
& REQ_DISCARD
))
1613 return __send_discard(ci
);
1614 else if (unlikely(bio
->bi_rw
& REQ_WRITE_SAME
))
1615 return __send_write_same(ci
);
1617 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1618 if (!dm_target_is_valid(ti
))
1621 len
= min_t(sector_t
, max_io_len(ci
->sector
, ti
), ci
->sector_count
);
1623 __clone_and_map_data_bio(ci
, ti
, ci
->sector
, &len
);
1626 ci
->sector_count
-= len
;
1632 * Entry point to split a bio into clones and submit them to the targets.
1634 static void __split_and_process_bio(struct mapped_device
*md
,
1635 struct dm_table
*map
, struct bio
*bio
)
1637 struct clone_info ci
;
1640 if (unlikely(!map
)) {
1647 ci
.io
= alloc_io(md
);
1649 atomic_set(&ci
.io
->io_count
, 1);
1652 spin_lock_init(&ci
.io
->endio_lock
);
1653 ci
.sector
= bio
->bi_iter
.bi_sector
;
1655 start_io_acct(ci
.io
);
1657 if (bio
->bi_rw
& REQ_FLUSH
) {
1658 ci
.bio
= &ci
.md
->flush_bio
;
1659 ci
.sector_count
= 0;
1660 error
= __send_empty_flush(&ci
);
1661 /* dec_pending submits any data associated with flush */
1664 ci
.sector_count
= bio_sectors(bio
);
1665 while (ci
.sector_count
&& !error
)
1666 error
= __split_and_process_non_flush(&ci
);
1669 /* drop the extra reference count */
1670 dec_pending(ci
.io
, error
);
1672 /*-----------------------------------------------------------------
1674 *---------------------------------------------------------------*/
1676 static int dm_merge_bvec(struct request_queue
*q
,
1677 struct bvec_merge_data
*bvm
,
1678 struct bio_vec
*biovec
)
1680 struct mapped_device
*md
= q
->queuedata
;
1681 struct dm_table
*map
= dm_get_live_table_fast(md
);
1682 struct dm_target
*ti
;
1683 sector_t max_sectors
, max_size
= 0;
1688 ti
= dm_table_find_target(map
, bvm
->bi_sector
);
1689 if (!dm_target_is_valid(ti
))
1693 * Find maximum amount of I/O that won't need splitting
1695 max_sectors
= min(max_io_len(bvm
->bi_sector
, ti
),
1696 (sector_t
) queue_max_sectors(q
));
1697 max_size
= (max_sectors
<< SECTOR_SHIFT
) - bvm
->bi_size
;
1700 * FIXME: this stop-gap fix _must_ be cleaned up (by passing a sector_t
1701 * to the targets' merge function since it holds sectors not bytes).
1702 * Just doing this as an interim fix for stable@ because the more
1703 * comprehensive cleanup of switching to sector_t will impact every
1704 * DM target that implements a ->merge hook.
1706 if (max_size
> INT_MAX
)
1710 * merge_bvec_fn() returns number of bytes
1711 * it can accept at this offset
1712 * max is precomputed maximal io size
1714 if (max_size
&& ti
->type
->merge
)
1715 max_size
= ti
->type
->merge(ti
, bvm
, biovec
, (int) max_size
);
1717 * If the target doesn't support merge method and some of the devices
1718 * provided their merge_bvec method (we know this by looking for the
1719 * max_hw_sectors that dm_set_device_limits may set), then we can't
1720 * allow bios with multiple vector entries. So always set max_size
1721 * to 0, and the code below allows just one page.
1723 else if (queue_max_hw_sectors(q
) <= PAGE_SIZE
>> 9)
1727 dm_put_live_table_fast(md
);
1729 * Always allow an entire first page
1731 if (max_size
<= biovec
->bv_len
&& !(bvm
->bi_size
>> SECTOR_SHIFT
))
1732 max_size
= biovec
->bv_len
;
1738 * The request function that just remaps the bio built up by
1741 static void dm_make_request(struct request_queue
*q
, struct bio
*bio
)
1743 int rw
= bio_data_dir(bio
);
1744 struct mapped_device
*md
= q
->queuedata
;
1746 struct dm_table
*map
;
1748 map
= dm_get_live_table(md
, &srcu_idx
);
1750 generic_start_io_acct(rw
, bio_sectors(bio
), &dm_disk(md
)->part0
);
1752 /* if we're suspended, we have to queue this io for later */
1753 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))) {
1754 dm_put_live_table(md
, srcu_idx
);
1756 if (bio_rw(bio
) != READA
)
1763 __split_and_process_bio(md
, map
, bio
);
1764 dm_put_live_table(md
, srcu_idx
);
1768 int dm_request_based(struct mapped_device
*md
)
1770 return blk_queue_stackable(md
->queue
);
1773 static void dm_dispatch_clone_request(struct request
*clone
, struct request
*rq
)
1777 if (blk_queue_io_stat(clone
->q
))
1778 clone
->cmd_flags
|= REQ_IO_STAT
;
1780 clone
->start_time
= jiffies
;
1781 r
= blk_insert_cloned_request(clone
->q
, clone
);
1783 /* must complete clone in terms of original request */
1784 dm_complete_request(rq
, r
);
1787 static void setup_clone(struct request
*clone
, struct request
*rq
,
1788 struct dm_rq_target_io
*tio
)
1790 blk_rq_prep_clone(clone
, rq
);
1791 clone
->end_io
= end_clone_request
;
1792 clone
->end_io_data
= tio
;
1796 static struct request
*clone_rq(struct request
*rq
, struct mapped_device
*md
,
1797 struct dm_rq_target_io
*tio
, gfp_t gfp_mask
)
1800 * Do not allocate a clone if tio->clone was already set
1801 * (see: dm_mq_queue_rq).
1803 bool alloc_clone
= !tio
->clone
;
1804 struct request
*clone
;
1807 clone
= alloc_clone_request(md
, gfp_mask
);
1813 blk_rq_init(NULL
, clone
);
1814 setup_clone(clone
, rq
, tio
);
1819 static void map_tio_request(struct kthread_work
*work
);
1821 static void init_tio(struct dm_rq_target_io
*tio
, struct request
*rq
,
1822 struct mapped_device
*md
)
1829 memset(&tio
->info
, 0, sizeof(tio
->info
));
1830 if (md
->kworker_task
)
1831 init_kthread_work(&tio
->work
, map_tio_request
);
1834 static struct dm_rq_target_io
*prep_tio(struct request
*rq
,
1835 struct mapped_device
*md
, gfp_t gfp_mask
)
1837 struct dm_rq_target_io
*tio
;
1839 struct dm_table
*table
;
1841 tio
= alloc_rq_tio(md
, gfp_mask
);
1845 init_tio(tio
, rq
, md
);
1847 table
= dm_get_live_table(md
, &srcu_idx
);
1848 if (!dm_table_mq_request_based(table
)) {
1849 if (!clone_rq(rq
, md
, tio
, gfp_mask
)) {
1850 dm_put_live_table(md
, srcu_idx
);
1855 dm_put_live_table(md
, srcu_idx
);
1861 * Called with the queue lock held.
1863 static int dm_prep_fn(struct request_queue
*q
, struct request
*rq
)
1865 struct mapped_device
*md
= q
->queuedata
;
1866 struct dm_rq_target_io
*tio
;
1868 if (unlikely(rq
->special
)) {
1869 DMWARN("Already has something in rq->special.");
1870 return BLKPREP_KILL
;
1873 tio
= prep_tio(rq
, md
, GFP_ATOMIC
);
1875 return BLKPREP_DEFER
;
1878 rq
->cmd_flags
|= REQ_DONTPREP
;
1885 * 0 : the request has been processed
1886 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1887 * < 0 : the request was completed due to failure
1889 static int map_request(struct dm_rq_target_io
*tio
, struct request
*rq
,
1890 struct mapped_device
*md
)
1893 struct dm_target
*ti
= tio
->ti
;
1894 struct request
*clone
= NULL
;
1898 r
= ti
->type
->map_rq(ti
, clone
, &tio
->info
);
1900 r
= ti
->type
->clone_and_map_rq(ti
, rq
, &tio
->info
, &clone
);
1902 /* The target wants to complete the I/O */
1903 dm_kill_unmapped_request(rq
, r
);
1906 if (r
!= DM_MAPIO_REMAPPED
)
1908 setup_clone(clone
, rq
, tio
);
1912 case DM_MAPIO_SUBMITTED
:
1913 /* The target has taken the I/O to submit by itself later */
1915 case DM_MAPIO_REMAPPED
:
1916 /* The target has remapped the I/O so dispatch it */
1917 trace_block_rq_remap(clone
->q
, clone
, disk_devt(dm_disk(md
)),
1919 dm_dispatch_clone_request(clone
, rq
);
1921 case DM_MAPIO_REQUEUE
:
1922 /* The target wants to requeue the I/O */
1923 dm_requeue_original_request(md
, tio
->orig
);
1927 DMWARN("unimplemented target map return value: %d", r
);
1931 /* The target wants to complete the I/O */
1932 dm_kill_unmapped_request(rq
, r
);
1939 static void map_tio_request(struct kthread_work
*work
)
1941 struct dm_rq_target_io
*tio
= container_of(work
, struct dm_rq_target_io
, work
);
1942 struct request
*rq
= tio
->orig
;
1943 struct mapped_device
*md
= tio
->md
;
1945 if (map_request(tio
, rq
, md
) == DM_MAPIO_REQUEUE
)
1946 dm_requeue_original_request(md
, rq
);
1949 static void dm_start_request(struct mapped_device
*md
, struct request
*orig
)
1951 if (!orig
->q
->mq_ops
)
1952 blk_start_request(orig
);
1954 blk_mq_start_request(orig
);
1955 atomic_inc(&md
->pending
[rq_data_dir(orig
)]);
1957 if (md
->seq_rq_merge_deadline_usecs
) {
1958 md
->last_rq_pos
= rq_end_sector(orig
);
1959 md
->last_rq_rw
= rq_data_dir(orig
);
1960 md
->last_rq_start_time
= ktime_get();
1963 if (unlikely(dm_stats_used(&md
->stats
))) {
1964 struct dm_rq_target_io
*tio
= tio_from_request(orig
);
1965 tio
->duration_jiffies
= jiffies
;
1966 tio
->n_sectors
= blk_rq_sectors(orig
);
1967 dm_stats_account_io(&md
->stats
, orig
->cmd_flags
, blk_rq_pos(orig
),
1968 tio
->n_sectors
, false, 0, &tio
->stats_aux
);
1972 * Hold the md reference here for the in-flight I/O.
1973 * We can't rely on the reference count by device opener,
1974 * because the device may be closed during the request completion
1975 * when all bios are completed.
1976 * See the comment in rq_completed() too.
1981 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
1983 ssize_t
dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device
*md
, char *buf
)
1985 return sprintf(buf
, "%u\n", md
->seq_rq_merge_deadline_usecs
);
1988 ssize_t
dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device
*md
,
1989 const char *buf
, size_t count
)
1993 if (!dm_request_based(md
) || md
->use_blk_mq
)
1996 if (kstrtouint(buf
, 10, &deadline
))
1999 if (deadline
> MAX_SEQ_RQ_MERGE_DEADLINE_USECS
)
2000 deadline
= MAX_SEQ_RQ_MERGE_DEADLINE_USECS
;
2002 md
->seq_rq_merge_deadline_usecs
= deadline
;
2007 static bool dm_request_peeked_before_merge_deadline(struct mapped_device
*md
)
2009 ktime_t kt_deadline
;
2011 if (!md
->seq_rq_merge_deadline_usecs
)
2014 kt_deadline
= ns_to_ktime((u64
)md
->seq_rq_merge_deadline_usecs
* NSEC_PER_USEC
);
2015 kt_deadline
= ktime_add_safe(md
->last_rq_start_time
, kt_deadline
);
2017 return !ktime_after(ktime_get(), kt_deadline
);
2021 * q->request_fn for request-based dm.
2022 * Called with the queue lock held.
2024 static void dm_request_fn(struct request_queue
*q
)
2026 struct mapped_device
*md
= q
->queuedata
;
2028 struct dm_table
*map
= dm_get_live_table(md
, &srcu_idx
);
2029 struct dm_target
*ti
;
2031 struct dm_rq_target_io
*tio
;
2035 * For suspend, check blk_queue_stopped() and increment
2036 * ->pending within a single queue_lock not to increment the
2037 * number of in-flight I/Os after the queue is stopped in
2040 while (!blk_queue_stopped(q
)) {
2041 rq
= blk_peek_request(q
);
2045 /* always use block 0 to find the target for flushes for now */
2047 if (!(rq
->cmd_flags
& REQ_FLUSH
))
2048 pos
= blk_rq_pos(rq
);
2050 ti
= dm_table_find_target(map
, pos
);
2051 if (!dm_target_is_valid(ti
)) {
2053 * Must perform setup, that rq_completed() requires,
2054 * before calling dm_kill_unmapped_request
2056 DMERR_LIMIT("request attempted access beyond the end of device");
2057 dm_start_request(md
, rq
);
2058 dm_kill_unmapped_request(rq
, -EIO
);
2062 if (dm_request_peeked_before_merge_deadline(md
) &&
2063 md_in_flight(md
) && rq
->bio
&& rq
->bio
->bi_vcnt
== 1 &&
2064 md
->last_rq_pos
== pos
&& md
->last_rq_rw
== rq_data_dir(rq
))
2067 if (ti
->type
->busy
&& ti
->type
->busy(ti
))
2070 dm_start_request(md
, rq
);
2072 tio
= tio_from_request(rq
);
2073 /* Establish tio->ti before queuing work (map_tio_request) */
2075 queue_kthread_work(&md
->kworker
, &tio
->work
);
2076 BUG_ON(!irqs_disabled());
2082 blk_delay_queue(q
, HZ
/ 100);
2084 dm_put_live_table(md
, srcu_idx
);
2087 static int dm_any_congested(void *congested_data
, int bdi_bits
)
2090 struct mapped_device
*md
= congested_data
;
2091 struct dm_table
*map
;
2093 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2094 map
= dm_get_live_table_fast(md
);
2097 * Request-based dm cares about only own queue for
2098 * the query about congestion status of request_queue
2100 if (dm_request_based(md
))
2101 r
= md
->queue
->backing_dev_info
.state
&
2104 r
= dm_table_any_congested(map
, bdi_bits
);
2106 dm_put_live_table_fast(md
);
2112 /*-----------------------------------------------------------------
2113 * An IDR is used to keep track of allocated minor numbers.
2114 *---------------------------------------------------------------*/
2115 static void free_minor(int minor
)
2117 spin_lock(&_minor_lock
);
2118 idr_remove(&_minor_idr
, minor
);
2119 spin_unlock(&_minor_lock
);
2123 * See if the device with a specific minor # is free.
2125 static int specific_minor(int minor
)
2129 if (minor
>= (1 << MINORBITS
))
2132 idr_preload(GFP_KERNEL
);
2133 spin_lock(&_minor_lock
);
2135 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, minor
, minor
+ 1, GFP_NOWAIT
);
2137 spin_unlock(&_minor_lock
);
2140 return r
== -ENOSPC
? -EBUSY
: r
;
2144 static int next_free_minor(int *minor
)
2148 idr_preload(GFP_KERNEL
);
2149 spin_lock(&_minor_lock
);
2151 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, 0, 1 << MINORBITS
, GFP_NOWAIT
);
2153 spin_unlock(&_minor_lock
);
2161 static const struct block_device_operations dm_blk_dops
;
2163 static void dm_wq_work(struct work_struct
*work
);
2165 static void dm_init_md_queue(struct mapped_device
*md
)
2168 * Request-based dm devices cannot be stacked on top of bio-based dm
2169 * devices. The type of this dm device may not have been decided yet.
2170 * The type is decided at the first table loading time.
2171 * To prevent problematic device stacking, clear the queue flag
2172 * for request stacking support until then.
2174 * This queue is new, so no concurrency on the queue_flags.
2176 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE
, md
->queue
);
2179 static void dm_init_old_md_queue(struct mapped_device
*md
)
2181 md
->use_blk_mq
= false;
2182 dm_init_md_queue(md
);
2185 * Initialize aspects of queue that aren't relevant for blk-mq
2187 md
->queue
->queuedata
= md
;
2188 md
->queue
->backing_dev_info
.congested_fn
= dm_any_congested
;
2189 md
->queue
->backing_dev_info
.congested_data
= md
;
2191 blk_queue_bounce_limit(md
->queue
, BLK_BOUNCE_ANY
);
2194 static void cleanup_mapped_device(struct mapped_device
*md
)
2196 cleanup_srcu_struct(&md
->io_barrier
);
2199 destroy_workqueue(md
->wq
);
2200 if (md
->kworker_task
)
2201 kthread_stop(md
->kworker_task
);
2203 mempool_destroy(md
->io_pool
);
2205 mempool_destroy(md
->rq_pool
);
2207 bioset_free(md
->bs
);
2210 spin_lock(&_minor_lock
);
2211 md
->disk
->private_data
= NULL
;
2212 spin_unlock(&_minor_lock
);
2213 if (blk_get_integrity(md
->disk
))
2214 blk_integrity_unregister(md
->disk
);
2215 del_gendisk(md
->disk
);
2220 blk_cleanup_queue(md
->queue
);
2229 * Allocate and initialise a blank device with a given minor.
2231 static struct mapped_device
*alloc_dev(int minor
)
2234 struct mapped_device
*md
= kzalloc(sizeof(*md
), GFP_KERNEL
);
2238 DMWARN("unable to allocate device, out of memory.");
2242 if (!try_module_get(THIS_MODULE
))
2243 goto bad_module_get
;
2245 /* get a minor number for the dev */
2246 if (minor
== DM_ANY_MINOR
)
2247 r
= next_free_minor(&minor
);
2249 r
= specific_minor(minor
);
2253 r
= init_srcu_struct(&md
->io_barrier
);
2255 goto bad_io_barrier
;
2257 md
->use_blk_mq
= use_blk_mq
;
2258 md
->type
= DM_TYPE_NONE
;
2259 mutex_init(&md
->suspend_lock
);
2260 mutex_init(&md
->type_lock
);
2261 mutex_init(&md
->table_devices_lock
);
2262 spin_lock_init(&md
->deferred_lock
);
2263 atomic_set(&md
->holders
, 1);
2264 atomic_set(&md
->open_count
, 0);
2265 atomic_set(&md
->event_nr
, 0);
2266 atomic_set(&md
->uevent_seq
, 0);
2267 INIT_LIST_HEAD(&md
->uevent_list
);
2268 INIT_LIST_HEAD(&md
->table_devices
);
2269 spin_lock_init(&md
->uevent_lock
);
2271 md
->queue
= blk_alloc_queue(GFP_KERNEL
);
2275 dm_init_md_queue(md
);
2277 md
->disk
= alloc_disk(1);
2281 atomic_set(&md
->pending
[0], 0);
2282 atomic_set(&md
->pending
[1], 0);
2283 init_waitqueue_head(&md
->wait
);
2284 INIT_WORK(&md
->work
, dm_wq_work
);
2285 init_waitqueue_head(&md
->eventq
);
2286 init_completion(&md
->kobj_holder
.completion
);
2287 md
->kworker_task
= NULL
;
2289 md
->disk
->major
= _major
;
2290 md
->disk
->first_minor
= minor
;
2291 md
->disk
->fops
= &dm_blk_dops
;
2292 md
->disk
->queue
= md
->queue
;
2293 md
->disk
->private_data
= md
;
2294 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
2296 format_dev_t(md
->name
, MKDEV(_major
, minor
));
2298 md
->wq
= alloc_workqueue("kdmflush", WQ_MEM_RECLAIM
, 0);
2302 md
->bdev
= bdget_disk(md
->disk
, 0);
2306 bio_init(&md
->flush_bio
);
2307 md
->flush_bio
.bi_bdev
= md
->bdev
;
2308 md
->flush_bio
.bi_rw
= WRITE_FLUSH
;
2310 dm_stats_init(&md
->stats
);
2312 /* Populate the mapping, nobody knows we exist yet */
2313 spin_lock(&_minor_lock
);
2314 old_md
= idr_replace(&_minor_idr
, md
, minor
);
2315 spin_unlock(&_minor_lock
);
2317 BUG_ON(old_md
!= MINOR_ALLOCED
);
2322 cleanup_mapped_device(md
);
2326 module_put(THIS_MODULE
);
2332 static void unlock_fs(struct mapped_device
*md
);
2334 static void free_dev(struct mapped_device
*md
)
2336 int minor
= MINOR(disk_devt(md
->disk
));
2340 cleanup_mapped_device(md
);
2342 blk_mq_free_tag_set(&md
->tag_set
);
2344 free_table_devices(&md
->table_devices
);
2345 dm_stats_cleanup(&md
->stats
);
2348 module_put(THIS_MODULE
);
2352 static unsigned filter_md_type(unsigned type
, struct mapped_device
*md
)
2354 if (type
== DM_TYPE_BIO_BASED
)
2357 return !md
->use_blk_mq
? DM_TYPE_REQUEST_BASED
: DM_TYPE_MQ_REQUEST_BASED
;
2360 static void __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
2362 struct dm_md_mempools
*p
= dm_table_get_md_mempools(t
);
2364 switch (filter_md_type(dm_table_get_type(t
), md
)) {
2365 case DM_TYPE_BIO_BASED
:
2366 if (md
->bs
&& md
->io_pool
) {
2368 * This bio-based md already has necessary mempools.
2369 * Reload bioset because front_pad may have changed
2370 * because a different table was loaded.
2372 bioset_free(md
->bs
);
2378 case DM_TYPE_REQUEST_BASED
:
2379 if (md
->rq_pool
&& md
->io_pool
)
2381 * This request-based md already has necessary mempools.
2385 case DM_TYPE_MQ_REQUEST_BASED
:
2386 BUG_ON(p
); /* No mempools needed */
2390 BUG_ON(!p
|| md
->io_pool
|| md
->rq_pool
|| md
->bs
);
2392 md
->io_pool
= p
->io_pool
;
2394 md
->rq_pool
= p
->rq_pool
;
2399 /* mempool bind completed, no longer need any mempools in the table */
2400 dm_table_free_md_mempools(t
);
2404 * Bind a table to the device.
2406 static void event_callback(void *context
)
2408 unsigned long flags
;
2410 struct mapped_device
*md
= (struct mapped_device
*) context
;
2412 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2413 list_splice_init(&md
->uevent_list
, &uevents
);
2414 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2416 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
2418 atomic_inc(&md
->event_nr
);
2419 wake_up(&md
->eventq
);
2423 * Protected by md->suspend_lock obtained by dm_swap_table().
2425 static void __set_size(struct mapped_device
*md
, sector_t size
)
2427 set_capacity(md
->disk
, size
);
2429 i_size_write(md
->bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
2433 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2435 * If this function returns 0, then the device is either a non-dm
2436 * device without a merge_bvec_fn, or it is a dm device that is
2437 * able to split any bios it receives that are too big.
2439 int dm_queue_merge_is_compulsory(struct request_queue
*q
)
2441 struct mapped_device
*dev_md
;
2443 if (!q
->merge_bvec_fn
)
2446 if (q
->make_request_fn
== dm_make_request
) {
2447 dev_md
= q
->queuedata
;
2448 if (test_bit(DMF_MERGE_IS_OPTIONAL
, &dev_md
->flags
))
2455 static int dm_device_merge_is_compulsory(struct dm_target
*ti
,
2456 struct dm_dev
*dev
, sector_t start
,
2457 sector_t len
, void *data
)
2459 struct block_device
*bdev
= dev
->bdev
;
2460 struct request_queue
*q
= bdev_get_queue(bdev
);
2462 return dm_queue_merge_is_compulsory(q
);
2466 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2467 * on the properties of the underlying devices.
2469 static int dm_table_merge_is_optional(struct dm_table
*table
)
2472 struct dm_target
*ti
;
2474 while (i
< dm_table_get_num_targets(table
)) {
2475 ti
= dm_table_get_target(table
, i
++);
2477 if (ti
->type
->iterate_devices
&&
2478 ti
->type
->iterate_devices(ti
, dm_device_merge_is_compulsory
, NULL
))
2486 * Returns old map, which caller must destroy.
2488 static struct dm_table
*__bind(struct mapped_device
*md
, struct dm_table
*t
,
2489 struct queue_limits
*limits
)
2491 struct dm_table
*old_map
;
2492 struct request_queue
*q
= md
->queue
;
2494 int merge_is_optional
;
2496 size
= dm_table_get_size(t
);
2499 * Wipe any geometry if the size of the table changed.
2501 if (size
!= dm_get_size(md
))
2502 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
2504 __set_size(md
, size
);
2506 dm_table_event_callback(t
, event_callback
, md
);
2509 * The queue hasn't been stopped yet, if the old table type wasn't
2510 * for request-based during suspension. So stop it to prevent
2511 * I/O mapping before resume.
2512 * This must be done before setting the queue restrictions,
2513 * because request-based dm may be run just after the setting.
2515 if (dm_table_request_based(t
))
2518 __bind_mempools(md
, t
);
2520 merge_is_optional
= dm_table_merge_is_optional(t
);
2522 old_map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2523 rcu_assign_pointer(md
->map
, t
);
2524 md
->immutable_target_type
= dm_table_get_immutable_target_type(t
);
2526 dm_table_set_restrictions(t
, q
, limits
);
2527 if (merge_is_optional
)
2528 set_bit(DMF_MERGE_IS_OPTIONAL
, &md
->flags
);
2530 clear_bit(DMF_MERGE_IS_OPTIONAL
, &md
->flags
);
2538 * Returns unbound table for the caller to free.
2540 static struct dm_table
*__unbind(struct mapped_device
*md
)
2542 struct dm_table
*map
= rcu_dereference_protected(md
->map
, 1);
2547 dm_table_event_callback(map
, NULL
, NULL
);
2548 RCU_INIT_POINTER(md
->map
, NULL
);
2555 * Constructor for a new device.
2557 int dm_create(int minor
, struct mapped_device
**result
)
2559 struct mapped_device
*md
;
2561 md
= alloc_dev(minor
);
2572 * Functions to manage md->type.
2573 * All are required to hold md->type_lock.
2575 void dm_lock_md_type(struct mapped_device
*md
)
2577 mutex_lock(&md
->type_lock
);
2580 void dm_unlock_md_type(struct mapped_device
*md
)
2582 mutex_unlock(&md
->type_lock
);
2585 void dm_set_md_type(struct mapped_device
*md
, unsigned type
)
2587 BUG_ON(!mutex_is_locked(&md
->type_lock
));
2591 unsigned dm_get_md_type(struct mapped_device
*md
)
2593 BUG_ON(!mutex_is_locked(&md
->type_lock
));
2597 struct target_type
*dm_get_immutable_target_type(struct mapped_device
*md
)
2599 return md
->immutable_target_type
;
2603 * The queue_limits are only valid as long as you have a reference
2606 struct queue_limits
*dm_get_queue_limits(struct mapped_device
*md
)
2608 BUG_ON(!atomic_read(&md
->holders
));
2609 return &md
->queue
->limits
;
2611 EXPORT_SYMBOL_GPL(dm_get_queue_limits
);
2613 static void init_rq_based_worker_thread(struct mapped_device
*md
)
2615 /* Initialize the request-based DM worker thread */
2616 init_kthread_worker(&md
->kworker
);
2617 md
->kworker_task
= kthread_run(kthread_worker_fn
, &md
->kworker
,
2618 "kdmwork-%s", dm_device_name(md
));
2622 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2624 static int dm_init_request_based_queue(struct mapped_device
*md
)
2626 struct request_queue
*q
= NULL
;
2628 /* Fully initialize the queue */
2629 q
= blk_init_allocated_queue(md
->queue
, dm_request_fn
, NULL
);
2633 /* disable dm_request_fn's merge heuristic by default */
2634 md
->seq_rq_merge_deadline_usecs
= 0;
2637 dm_init_old_md_queue(md
);
2638 blk_queue_softirq_done(md
->queue
, dm_softirq_done
);
2639 blk_queue_prep_rq(md
->queue
, dm_prep_fn
);
2641 init_rq_based_worker_thread(md
);
2643 elv_register_queue(md
->queue
);
2648 static int dm_mq_init_request(void *data
, struct request
*rq
,
2649 unsigned int hctx_idx
, unsigned int request_idx
,
2650 unsigned int numa_node
)
2652 struct mapped_device
*md
= data
;
2653 struct dm_rq_target_io
*tio
= blk_mq_rq_to_pdu(rq
);
2656 * Must initialize md member of tio, otherwise it won't
2657 * be available in dm_mq_queue_rq.
2664 static int dm_mq_queue_rq(struct blk_mq_hw_ctx
*hctx
,
2665 const struct blk_mq_queue_data
*bd
)
2667 struct request
*rq
= bd
->rq
;
2668 struct dm_rq_target_io
*tio
= blk_mq_rq_to_pdu(rq
);
2669 struct mapped_device
*md
= tio
->md
;
2671 struct dm_table
*map
= dm_get_live_table(md
, &srcu_idx
);
2672 struct dm_target
*ti
;
2675 /* always use block 0 to find the target for flushes for now */
2677 if (!(rq
->cmd_flags
& REQ_FLUSH
))
2678 pos
= blk_rq_pos(rq
);
2680 ti
= dm_table_find_target(map
, pos
);
2681 if (!dm_target_is_valid(ti
)) {
2682 dm_put_live_table(md
, srcu_idx
);
2683 DMERR_LIMIT("request attempted access beyond the end of device");
2685 * Must perform setup, that rq_completed() requires,
2686 * before returning BLK_MQ_RQ_QUEUE_ERROR
2688 dm_start_request(md
, rq
);
2689 return BLK_MQ_RQ_QUEUE_ERROR
;
2691 dm_put_live_table(md
, srcu_idx
);
2693 if (ti
->type
->busy
&& ti
->type
->busy(ti
))
2694 return BLK_MQ_RQ_QUEUE_BUSY
;
2696 dm_start_request(md
, rq
);
2698 /* Init tio using md established in .init_request */
2699 init_tio(tio
, rq
, md
);
2702 * Establish tio->ti before queuing work (map_tio_request)
2703 * or making direct call to map_request().
2707 /* Clone the request if underlying devices aren't blk-mq */
2708 if (dm_table_get_type(map
) == DM_TYPE_REQUEST_BASED
) {
2709 /* clone request is allocated at the end of the pdu */
2710 tio
->clone
= (void *)blk_mq_rq_to_pdu(rq
) + sizeof(struct dm_rq_target_io
);
2711 (void) clone_rq(rq
, md
, tio
, GFP_ATOMIC
);
2712 queue_kthread_work(&md
->kworker
, &tio
->work
);
2714 /* Direct call is fine since .queue_rq allows allocations */
2715 if (map_request(tio
, rq
, md
) == DM_MAPIO_REQUEUE
) {
2716 /* Undo dm_start_request() before requeuing */
2717 rq_end_stats(md
, rq
);
2718 rq_completed(md
, rq_data_dir(rq
), false);
2719 return BLK_MQ_RQ_QUEUE_BUSY
;
2723 return BLK_MQ_RQ_QUEUE_OK
;
2726 static struct blk_mq_ops dm_mq_ops
= {
2727 .queue_rq
= dm_mq_queue_rq
,
2728 .map_queue
= blk_mq_map_queue
,
2729 .complete
= dm_softirq_done
,
2730 .init_request
= dm_mq_init_request
,
2733 static int dm_init_request_based_blk_mq_queue(struct mapped_device
*md
)
2735 unsigned md_type
= dm_get_md_type(md
);
2736 struct request_queue
*q
;
2739 memset(&md
->tag_set
, 0, sizeof(md
->tag_set
));
2740 md
->tag_set
.ops
= &dm_mq_ops
;
2741 md
->tag_set
.queue_depth
= BLKDEV_MAX_RQ
;
2742 md
->tag_set
.numa_node
= NUMA_NO_NODE
;
2743 md
->tag_set
.flags
= BLK_MQ_F_SHOULD_MERGE
| BLK_MQ_F_SG_MERGE
;
2744 md
->tag_set
.nr_hw_queues
= 1;
2745 if (md_type
== DM_TYPE_REQUEST_BASED
) {
2746 /* make the memory for non-blk-mq clone part of the pdu */
2747 md
->tag_set
.cmd_size
= sizeof(struct dm_rq_target_io
) + sizeof(struct request
);
2749 md
->tag_set
.cmd_size
= sizeof(struct dm_rq_target_io
);
2750 md
->tag_set
.driver_data
= md
;
2752 err
= blk_mq_alloc_tag_set(&md
->tag_set
);
2756 q
= blk_mq_init_allocated_queue(&md
->tag_set
, md
->queue
);
2762 dm_init_md_queue(md
);
2764 /* backfill 'mq' sysfs registration normally done in blk_register_queue */
2765 blk_mq_register_disk(md
->disk
);
2767 if (md_type
== DM_TYPE_REQUEST_BASED
)
2768 init_rq_based_worker_thread(md
);
2773 blk_mq_free_tag_set(&md
->tag_set
);
2778 * Setup the DM device's queue based on md's type
2780 int dm_setup_md_queue(struct mapped_device
*md
)
2783 unsigned md_type
= filter_md_type(dm_get_md_type(md
), md
);
2786 case DM_TYPE_REQUEST_BASED
:
2787 r
= dm_init_request_based_queue(md
);
2789 DMWARN("Cannot initialize queue for request-based mapped device");
2793 case DM_TYPE_MQ_REQUEST_BASED
:
2794 r
= dm_init_request_based_blk_mq_queue(md
);
2796 DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2800 case DM_TYPE_BIO_BASED
:
2801 dm_init_old_md_queue(md
);
2802 blk_queue_make_request(md
->queue
, dm_make_request
);
2803 blk_queue_merge_bvec(md
->queue
, dm_merge_bvec
);
2810 struct mapped_device
*dm_get_md(dev_t dev
)
2812 struct mapped_device
*md
;
2813 unsigned minor
= MINOR(dev
);
2815 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2818 spin_lock(&_minor_lock
);
2820 md
= idr_find(&_minor_idr
, minor
);
2822 if ((md
== MINOR_ALLOCED
||
2823 (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2824 dm_deleting_md(md
) ||
2825 test_bit(DMF_FREEING
, &md
->flags
))) {
2833 spin_unlock(&_minor_lock
);
2837 EXPORT_SYMBOL_GPL(dm_get_md
);
2839 void *dm_get_mdptr(struct mapped_device
*md
)
2841 return md
->interface_ptr
;
2844 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2846 md
->interface_ptr
= ptr
;
2849 void dm_get(struct mapped_device
*md
)
2851 atomic_inc(&md
->holders
);
2852 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2855 int dm_hold(struct mapped_device
*md
)
2857 spin_lock(&_minor_lock
);
2858 if (test_bit(DMF_FREEING
, &md
->flags
)) {
2859 spin_unlock(&_minor_lock
);
2863 spin_unlock(&_minor_lock
);
2866 EXPORT_SYMBOL_GPL(dm_hold
);
2868 const char *dm_device_name(struct mapped_device
*md
)
2872 EXPORT_SYMBOL_GPL(dm_device_name
);
2874 static void __dm_destroy(struct mapped_device
*md
, bool wait
)
2876 struct dm_table
*map
;
2881 map
= dm_get_live_table(md
, &srcu_idx
);
2883 spin_lock(&_minor_lock
);
2884 idr_replace(&_minor_idr
, MINOR_ALLOCED
, MINOR(disk_devt(dm_disk(md
))));
2885 set_bit(DMF_FREEING
, &md
->flags
);
2886 spin_unlock(&_minor_lock
);
2888 if (dm_request_based(md
) && md
->kworker_task
)
2889 flush_kthread_worker(&md
->kworker
);
2892 * Take suspend_lock so that presuspend and postsuspend methods
2893 * do not race with internal suspend.
2895 mutex_lock(&md
->suspend_lock
);
2896 if (!dm_suspended_md(md
)) {
2897 dm_table_presuspend_targets(map
);
2898 dm_table_postsuspend_targets(map
);
2900 mutex_unlock(&md
->suspend_lock
);
2902 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2903 dm_put_live_table(md
, srcu_idx
);
2906 * Rare, but there may be I/O requests still going to complete,
2907 * for example. Wait for all references to disappear.
2908 * No one should increment the reference count of the mapped_device,
2909 * after the mapped_device state becomes DMF_FREEING.
2912 while (atomic_read(&md
->holders
))
2914 else if (atomic_read(&md
->holders
))
2915 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2916 dm_device_name(md
), atomic_read(&md
->holders
));
2919 dm_table_destroy(__unbind(md
));
2923 void dm_destroy(struct mapped_device
*md
)
2925 __dm_destroy(md
, true);
2928 void dm_destroy_immediate(struct mapped_device
*md
)
2930 __dm_destroy(md
, false);
2933 void dm_put(struct mapped_device
*md
)
2935 atomic_dec(&md
->holders
);
2937 EXPORT_SYMBOL_GPL(dm_put
);
2939 static int dm_wait_for_completion(struct mapped_device
*md
, int interruptible
)
2942 DECLARE_WAITQUEUE(wait
, current
);
2944 add_wait_queue(&md
->wait
, &wait
);
2947 set_current_state(interruptible
);
2949 if (!md_in_flight(md
))
2952 if (interruptible
== TASK_INTERRUPTIBLE
&&
2953 signal_pending(current
)) {
2960 set_current_state(TASK_RUNNING
);
2962 remove_wait_queue(&md
->wait
, &wait
);
2968 * Process the deferred bios
2970 static void dm_wq_work(struct work_struct
*work
)
2972 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
2976 struct dm_table
*map
;
2978 map
= dm_get_live_table(md
, &srcu_idx
);
2980 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2981 spin_lock_irq(&md
->deferred_lock
);
2982 c
= bio_list_pop(&md
->deferred
);
2983 spin_unlock_irq(&md
->deferred_lock
);
2988 if (dm_request_based(md
))
2989 generic_make_request(c
);
2991 __split_and_process_bio(md
, map
, c
);
2994 dm_put_live_table(md
, srcu_idx
);
2997 static void dm_queue_flush(struct mapped_device
*md
)
2999 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
3000 smp_mb__after_atomic();
3001 queue_work(md
->wq
, &md
->work
);
3005 * Swap in a new table, returning the old one for the caller to destroy.
3007 struct dm_table
*dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
3009 struct dm_table
*live_map
= NULL
, *map
= ERR_PTR(-EINVAL
);
3010 struct queue_limits limits
;
3013 mutex_lock(&md
->suspend_lock
);
3015 /* device must be suspended */
3016 if (!dm_suspended_md(md
))
3020 * If the new table has no data devices, retain the existing limits.
3021 * This helps multipath with queue_if_no_path if all paths disappear,
3022 * then new I/O is queued based on these limits, and then some paths
3025 if (dm_table_has_no_data_devices(table
)) {
3026 live_map
= dm_get_live_table_fast(md
);
3028 limits
= md
->queue
->limits
;
3029 dm_put_live_table_fast(md
);
3033 r
= dm_calculate_queue_limits(table
, &limits
);
3040 map
= __bind(md
, table
, &limits
);
3043 mutex_unlock(&md
->suspend_lock
);
3048 * Functions to lock and unlock any filesystem running on the
3051 static int lock_fs(struct mapped_device
*md
)
3055 WARN_ON(md
->frozen_sb
);
3057 md
->frozen_sb
= freeze_bdev(md
->bdev
);
3058 if (IS_ERR(md
->frozen_sb
)) {
3059 r
= PTR_ERR(md
->frozen_sb
);
3060 md
->frozen_sb
= NULL
;
3064 set_bit(DMF_FROZEN
, &md
->flags
);
3069 static void unlock_fs(struct mapped_device
*md
)
3071 if (!test_bit(DMF_FROZEN
, &md
->flags
))
3074 thaw_bdev(md
->bdev
, md
->frozen_sb
);
3075 md
->frozen_sb
= NULL
;
3076 clear_bit(DMF_FROZEN
, &md
->flags
);
3080 * If __dm_suspend returns 0, the device is completely quiescent
3081 * now. There is no request-processing activity. All new requests
3082 * are being added to md->deferred list.
3084 * Caller must hold md->suspend_lock
3086 static int __dm_suspend(struct mapped_device
*md
, struct dm_table
*map
,
3087 unsigned suspend_flags
, int interruptible
)
3089 bool do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
;
3090 bool noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
;
3094 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3095 * This flag is cleared before dm_suspend returns.
3098 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
3101 * This gets reverted if there's an error later and the targets
3102 * provide the .presuspend_undo hook.
3104 dm_table_presuspend_targets(map
);
3107 * Flush I/O to the device.
3108 * Any I/O submitted after lock_fs() may not be flushed.
3109 * noflush takes precedence over do_lockfs.
3110 * (lock_fs() flushes I/Os and waits for them to complete.)
3112 if (!noflush
&& do_lockfs
) {
3115 dm_table_presuspend_undo_targets(map
);
3121 * Here we must make sure that no processes are submitting requests
3122 * to target drivers i.e. no one may be executing
3123 * __split_and_process_bio. This is called from dm_request and
3126 * To get all processes out of __split_and_process_bio in dm_request,
3127 * we take the write lock. To prevent any process from reentering
3128 * __split_and_process_bio from dm_request and quiesce the thread
3129 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3130 * flush_workqueue(md->wq).
3132 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
3134 synchronize_srcu(&md
->io_barrier
);
3137 * Stop md->queue before flushing md->wq in case request-based
3138 * dm defers requests to md->wq from md->queue.
3140 if (dm_request_based(md
)) {
3141 stop_queue(md
->queue
);
3142 if (md
->kworker_task
)
3143 flush_kthread_worker(&md
->kworker
);
3146 flush_workqueue(md
->wq
);
3149 * At this point no more requests are entering target request routines.
3150 * We call dm_wait_for_completion to wait for all existing requests
3153 r
= dm_wait_for_completion(md
, interruptible
);
3156 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
3158 synchronize_srcu(&md
->io_barrier
);
3160 /* were we interrupted ? */
3164 if (dm_request_based(md
))
3165 start_queue(md
->queue
);
3168 dm_table_presuspend_undo_targets(map
);
3169 /* pushback list is already flushed, so skip flush */
3176 * We need to be able to change a mapping table under a mounted
3177 * filesystem. For example we might want to move some data in
3178 * the background. Before the table can be swapped with
3179 * dm_bind_table, dm_suspend must be called to flush any in
3180 * flight bios and ensure that any further io gets deferred.
3183 * Suspend mechanism in request-based dm.
3185 * 1. Flush all I/Os by lock_fs() if needed.
3186 * 2. Stop dispatching any I/O by stopping the request_queue.
3187 * 3. Wait for all in-flight I/Os to be completed or requeued.
3189 * To abort suspend, start the request_queue.
3191 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
3193 struct dm_table
*map
= NULL
;
3197 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
3199 if (dm_suspended_md(md
)) {
3204 if (dm_suspended_internally_md(md
)) {
3205 /* already internally suspended, wait for internal resume */
3206 mutex_unlock(&md
->suspend_lock
);
3207 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
3213 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
3215 r
= __dm_suspend(md
, map
, suspend_flags
, TASK_INTERRUPTIBLE
);
3219 set_bit(DMF_SUSPENDED
, &md
->flags
);
3221 dm_table_postsuspend_targets(map
);
3224 mutex_unlock(&md
->suspend_lock
);
3228 static int __dm_resume(struct mapped_device
*md
, struct dm_table
*map
)
3231 int r
= dm_table_resume_targets(map
);
3239 * Flushing deferred I/Os must be done after targets are resumed
3240 * so that mapping of targets can work correctly.
3241 * Request-based dm is queueing the deferred I/Os in its request_queue.
3243 if (dm_request_based(md
))
3244 start_queue(md
->queue
);
3251 int dm_resume(struct mapped_device
*md
)
3254 struct dm_table
*map
= NULL
;
3257 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
3259 if (!dm_suspended_md(md
))
3262 if (dm_suspended_internally_md(md
)) {
3263 /* already internally suspended, wait for internal resume */
3264 mutex_unlock(&md
->suspend_lock
);
3265 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
3271 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
3272 if (!map
|| !dm_table_get_size(map
))
3275 r
= __dm_resume(md
, map
);
3279 clear_bit(DMF_SUSPENDED
, &md
->flags
);
3283 mutex_unlock(&md
->suspend_lock
);
3289 * Internal suspend/resume works like userspace-driven suspend. It waits
3290 * until all bios finish and prevents issuing new bios to the target drivers.
3291 * It may be used only from the kernel.
3294 static void __dm_internal_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
3296 struct dm_table
*map
= NULL
;
3298 if (md
->internal_suspend_count
++)
3299 return; /* nested internal suspend */
3301 if (dm_suspended_md(md
)) {
3302 set_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
3303 return; /* nest suspend */
3306 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
3309 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3310 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3311 * would require changing .presuspend to return an error -- avoid this
3312 * until there is a need for more elaborate variants of internal suspend.
3314 (void) __dm_suspend(md
, map
, suspend_flags
, TASK_UNINTERRUPTIBLE
);
3316 set_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
3318 dm_table_postsuspend_targets(map
);
3321 static void __dm_internal_resume(struct mapped_device
*md
)
3323 BUG_ON(!md
->internal_suspend_count
);
3325 if (--md
->internal_suspend_count
)
3326 return; /* resume from nested internal suspend */
3328 if (dm_suspended_md(md
))
3329 goto done
; /* resume from nested suspend */
3332 * NOTE: existing callers don't need to call dm_table_resume_targets
3333 * (which may fail -- so best to avoid it for now by passing NULL map)
3335 (void) __dm_resume(md
, NULL
);
3338 clear_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
3339 smp_mb__after_atomic();
3340 wake_up_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
);
3343 void dm_internal_suspend_noflush(struct mapped_device
*md
)
3345 mutex_lock(&md
->suspend_lock
);
3346 __dm_internal_suspend(md
, DM_SUSPEND_NOFLUSH_FLAG
);
3347 mutex_unlock(&md
->suspend_lock
);
3349 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush
);
3351 void dm_internal_resume(struct mapped_device
*md
)
3353 mutex_lock(&md
->suspend_lock
);
3354 __dm_internal_resume(md
);
3355 mutex_unlock(&md
->suspend_lock
);
3357 EXPORT_SYMBOL_GPL(dm_internal_resume
);
3360 * Fast variants of internal suspend/resume hold md->suspend_lock,
3361 * which prevents interaction with userspace-driven suspend.
3364 void dm_internal_suspend_fast(struct mapped_device
*md
)
3366 mutex_lock(&md
->suspend_lock
);
3367 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
3370 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
3371 synchronize_srcu(&md
->io_barrier
);
3372 flush_workqueue(md
->wq
);
3373 dm_wait_for_completion(md
, TASK_UNINTERRUPTIBLE
);
3375 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast
);
3377 void dm_internal_resume_fast(struct mapped_device
*md
)
3379 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
3385 mutex_unlock(&md
->suspend_lock
);
3387 EXPORT_SYMBOL_GPL(dm_internal_resume_fast
);
3389 /*-----------------------------------------------------------------
3390 * Event notification.
3391 *---------------------------------------------------------------*/
3392 int dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
3395 char udev_cookie
[DM_COOKIE_LENGTH
];
3396 char *envp
[] = { udev_cookie
, NULL
};
3399 return kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
3401 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
3402 DM_COOKIE_ENV_VAR_NAME
, cookie
);
3403 return kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
,
3408 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
3410 return atomic_add_return(1, &md
->uevent_seq
);
3413 uint32_t dm_get_event_nr(struct mapped_device
*md
)
3415 return atomic_read(&md
->event_nr
);
3418 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
3420 return wait_event_interruptible(md
->eventq
,
3421 (event_nr
!= atomic_read(&md
->event_nr
)));
3424 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
3426 unsigned long flags
;
3428 spin_lock_irqsave(&md
->uevent_lock
, flags
);
3429 list_add(elist
, &md
->uevent_list
);
3430 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
3434 * The gendisk is only valid as long as you have a reference
3437 struct gendisk
*dm_disk(struct mapped_device
*md
)
3441 EXPORT_SYMBOL_GPL(dm_disk
);
3443 struct kobject
*dm_kobject(struct mapped_device
*md
)
3445 return &md
->kobj_holder
.kobj
;
3448 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
3450 struct mapped_device
*md
;
3452 md
= container_of(kobj
, struct mapped_device
, kobj_holder
.kobj
);
3454 if (test_bit(DMF_FREEING
, &md
->flags
) ||
3462 int dm_suspended_md(struct mapped_device
*md
)
3464 return test_bit(DMF_SUSPENDED
, &md
->flags
);
3467 int dm_suspended_internally_md(struct mapped_device
*md
)
3469 return test_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
3472 int dm_test_deferred_remove_flag(struct mapped_device
*md
)
3474 return test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
3477 int dm_suspended(struct dm_target
*ti
)
3479 return dm_suspended_md(dm_table_get_md(ti
->table
));
3481 EXPORT_SYMBOL_GPL(dm_suspended
);
3483 int dm_noflush_suspending(struct dm_target
*ti
)
3485 return __noflush_suspending(dm_table_get_md(ti
->table
));
3487 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
3489 struct dm_md_mempools
*dm_alloc_bio_mempools(unsigned integrity
,
3490 unsigned per_bio_data_size
)
3492 struct dm_md_mempools
*pools
;
3493 unsigned int pool_size
= dm_get_reserved_bio_based_ios();
3494 unsigned int front_pad
;
3496 pools
= kzalloc(sizeof(*pools
), GFP_KERNEL
);
3498 return ERR_PTR(-ENOMEM
);
3500 front_pad
= roundup(per_bio_data_size
, __alignof__(struct dm_target_io
)) +
3501 offsetof(struct dm_target_io
, clone
);
3503 pools
->io_pool
= mempool_create_slab_pool(pool_size
, _io_cache
);
3504 if (!pools
->io_pool
)
3507 pools
->bs
= bioset_create_nobvec(pool_size
, front_pad
);
3511 if (integrity
&& bioset_integrity_create(pools
->bs
, pool_size
))
3516 dm_free_md_mempools(pools
);
3517 return ERR_PTR(-ENOMEM
);
3520 struct dm_md_mempools
*dm_alloc_rq_mempools(struct mapped_device
*md
,
3523 unsigned int pool_size
;
3524 struct dm_md_mempools
*pools
;
3526 if (filter_md_type(type
, md
) == DM_TYPE_MQ_REQUEST_BASED
)
3527 return NULL
; /* No mempools needed */
3529 pool_size
= dm_get_reserved_rq_based_ios();
3530 pools
= kzalloc(sizeof(*pools
), GFP_KERNEL
);
3532 return ERR_PTR(-ENOMEM
);
3534 pools
->rq_pool
= mempool_create_slab_pool(pool_size
, _rq_cache
);
3535 if (!pools
->rq_pool
)
3538 pools
->io_pool
= mempool_create_slab_pool(pool_size
, _rq_tio_cache
);
3539 if (!pools
->io_pool
)
3544 dm_free_md_mempools(pools
);
3545 return ERR_PTR(-ENOMEM
);
3548 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
3554 mempool_destroy(pools
->io_pool
);
3557 mempool_destroy(pools
->rq_pool
);
3560 bioset_free(pools
->bs
);
3565 static const struct block_device_operations dm_blk_dops
= {
3566 .open
= dm_blk_open
,
3567 .release
= dm_blk_close
,
3568 .ioctl
= dm_blk_ioctl
,
3569 .getgeo
= dm_blk_getgeo
,
3570 .owner
= THIS_MODULE
3576 module_init(dm_init
);
3577 module_exit(dm_exit
);
3579 module_param(major
, uint
, 0);
3580 MODULE_PARM_DESC(major
, "The major number of the device mapper");
3582 module_param(reserved_bio_based_ios
, uint
, S_IRUGO
| S_IWUSR
);
3583 MODULE_PARM_DESC(reserved_bio_based_ios
, "Reserved IOs in bio-based mempools");
3585 module_param(reserved_rq_based_ios
, uint
, S_IRUGO
| S_IWUSR
);
3586 MODULE_PARM_DESC(reserved_rq_based_ios
, "Reserved IOs in request-based mempools");
3588 module_param(use_blk_mq
, bool, S_IRUGO
| S_IWUSR
);
3589 MODULE_PARM_DESC(use_blk_mq
, "Use block multiqueue for request-based DM devices");
3591 MODULE_DESCRIPTION(DM_NAME
" driver");
3592 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3593 MODULE_LICENSE("GPL");