power: improve inline asm memory constraints
[linux/fpc-iii.git] / kernel / futex.c
blob1dc98e4dd287ec95872c7c771aab7f14e0d9ca42
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
20 * enough at me, Linus for the original (flawed) idea, Matthew
21 * Kirkwood for proof-of-concept implementation.
23 * "The futexes are also cursed."
24 * "But they come in a choice of three flavours!"
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
40 #include <linux/slab.h>
41 #include <linux/poll.h>
42 #include <linux/fs.h>
43 #include <linux/file.h>
44 #include <linux/jhash.h>
45 #include <linux/init.h>
46 #include <linux/futex.h>
47 #include <linux/mount.h>
48 #include <linux/pagemap.h>
49 #include <linux/syscalls.h>
50 #include <linux/signal.h>
51 #include <asm/futex.h>
53 #include "rtmutex_common.h"
55 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
58 * Futexes are matched on equal values of this key.
59 * The key type depends on whether it's a shared or private mapping.
60 * Don't rearrange members without looking at hash_futex().
62 * offset is aligned to a multiple of sizeof(u32) (== 4) by definition.
63 * We set bit 0 to indicate if it's an inode-based key.
65 union futex_key {
66 struct {
67 unsigned long pgoff;
68 struct inode *inode;
69 int offset;
70 } shared;
71 struct {
72 unsigned long address;
73 struct mm_struct *mm;
74 int offset;
75 } private;
76 struct {
77 unsigned long word;
78 void *ptr;
79 int offset;
80 } both;
84 * Priority Inheritance state:
86 struct futex_pi_state {
88 * list of 'owned' pi_state instances - these have to be
89 * cleaned up in do_exit() if the task exits prematurely:
91 struct list_head list;
94 * The PI object:
96 struct rt_mutex pi_mutex;
98 struct task_struct *owner;
99 atomic_t refcount;
101 union futex_key key;
105 * We use this hashed waitqueue instead of a normal wait_queue_t, so
106 * we can wake only the relevant ones (hashed queues may be shared).
108 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
109 * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0.
110 * The order of wakup is always to make the first condition true, then
111 * wake up q->waiters, then make the second condition true.
113 struct futex_q {
114 struct list_head list;
115 wait_queue_head_t waiters;
117 /* Which hash list lock to use: */
118 spinlock_t *lock_ptr;
120 /* Key which the futex is hashed on: */
121 union futex_key key;
123 /* For fd, sigio sent using these: */
124 int fd;
125 struct file *filp;
127 /* Optional priority inheritance state: */
128 struct futex_pi_state *pi_state;
129 struct task_struct *task;
133 * Split the global futex_lock into every hash list lock.
135 struct futex_hash_bucket {
136 spinlock_t lock;
137 struct list_head chain;
140 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
142 /* Futex-fs vfsmount entry: */
143 static struct vfsmount *futex_mnt;
146 * We hash on the keys returned from get_futex_key (see below).
148 static struct futex_hash_bucket *hash_futex(union futex_key *key)
150 u32 hash = jhash2((u32*)&key->both.word,
151 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
152 key->both.offset);
153 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
157 * Return 1 if two futex_keys are equal, 0 otherwise.
159 static inline int match_futex(union futex_key *key1, union futex_key *key2)
161 return (key1->both.word == key2->both.word
162 && key1->both.ptr == key2->both.ptr
163 && key1->both.offset == key2->both.offset);
167 * Get parameters which are the keys for a futex.
169 * For shared mappings, it's (page->index, vma->vm_file->f_dentry->d_inode,
170 * offset_within_page). For private mappings, it's (uaddr, current->mm).
171 * We can usually work out the index without swapping in the page.
173 * Returns: 0, or negative error code.
174 * The key words are stored in *key on success.
176 * Should be called with &current->mm->mmap_sem but NOT any spinlocks.
178 static int get_futex_key(u32 __user *uaddr, union futex_key *key)
180 unsigned long address = (unsigned long)uaddr;
181 struct mm_struct *mm = current->mm;
182 struct vm_area_struct *vma;
183 struct page *page;
184 int err;
187 * The futex address must be "naturally" aligned.
189 key->both.offset = address % PAGE_SIZE;
190 if (unlikely((key->both.offset % sizeof(u32)) != 0))
191 return -EINVAL;
192 address -= key->both.offset;
195 * The futex is hashed differently depending on whether
196 * it's in a shared or private mapping. So check vma first.
198 vma = find_extend_vma(mm, address);
199 if (unlikely(!vma))
200 return -EFAULT;
203 * Permissions.
205 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
206 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
209 * Private mappings are handled in a simple way.
211 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
212 * it's a read-only handle, it's expected that futexes attach to
213 * the object not the particular process. Therefore we use
214 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
215 * mappings of _writable_ handles.
217 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
218 key->private.mm = mm;
219 key->private.address = address;
220 return 0;
224 * Linear file mappings are also simple.
226 key->shared.inode = vma->vm_file->f_dentry->d_inode;
227 key->both.offset++; /* Bit 0 of offset indicates inode-based key. */
228 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
229 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
230 + vma->vm_pgoff);
231 return 0;
235 * We could walk the page table to read the non-linear
236 * pte, and get the page index without fetching the page
237 * from swap. But that's a lot of code to duplicate here
238 * for a rare case, so we simply fetch the page.
240 err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
241 if (err >= 0) {
242 key->shared.pgoff =
243 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
244 put_page(page);
245 return 0;
247 return err;
251 * Take a reference to the resource addressed by a key.
252 * Can be called while holding spinlocks.
254 * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
255 * function, if it is called at all. mmap_sem keeps key->shared.inode valid.
257 static inline void get_key_refs(union futex_key *key)
259 if (key->both.ptr != 0) {
260 if (key->both.offset & 1)
261 atomic_inc(&key->shared.inode->i_count);
262 else
263 atomic_inc(&key->private.mm->mm_count);
268 * Drop a reference to the resource addressed by a key.
269 * The hash bucket spinlock must not be held.
271 static void drop_key_refs(union futex_key *key)
273 if (key->both.ptr != 0) {
274 if (key->both.offset & 1)
275 iput(key->shared.inode);
276 else
277 mmdrop(key->private.mm);
281 static inline int get_futex_value_locked(u32 *dest, u32 __user *from)
283 int ret;
285 inc_preempt_count();
286 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
287 dec_preempt_count();
289 return ret ? -EFAULT : 0;
293 * Fault handling. Called with current->mm->mmap_sem held.
295 static int futex_handle_fault(unsigned long address, int attempt)
297 struct vm_area_struct * vma;
298 struct mm_struct *mm = current->mm;
300 if (attempt >= 2 || !(vma = find_vma(mm, address)) ||
301 vma->vm_start > address || !(vma->vm_flags & VM_WRITE))
302 return -EFAULT;
304 switch (handle_mm_fault(mm, vma, address, 1)) {
305 case VM_FAULT_MINOR:
306 current->min_flt++;
307 break;
308 case VM_FAULT_MAJOR:
309 current->maj_flt++;
310 break;
311 default:
312 return -EFAULT;
314 return 0;
318 * PI code:
320 static int refill_pi_state_cache(void)
322 struct futex_pi_state *pi_state;
324 if (likely(current->pi_state_cache))
325 return 0;
327 pi_state = kmalloc(sizeof(*pi_state), GFP_KERNEL);
329 if (!pi_state)
330 return -ENOMEM;
332 memset(pi_state, 0, sizeof(*pi_state));
333 INIT_LIST_HEAD(&pi_state->list);
334 /* pi_mutex gets initialized later */
335 pi_state->owner = NULL;
336 atomic_set(&pi_state->refcount, 1);
338 current->pi_state_cache = pi_state;
340 return 0;
343 static struct futex_pi_state * alloc_pi_state(void)
345 struct futex_pi_state *pi_state = current->pi_state_cache;
347 WARN_ON(!pi_state);
348 current->pi_state_cache = NULL;
350 return pi_state;
353 static void free_pi_state(struct futex_pi_state *pi_state)
355 if (!atomic_dec_and_test(&pi_state->refcount))
356 return;
359 * If pi_state->owner is NULL, the owner is most probably dying
360 * and has cleaned up the pi_state already
362 if (pi_state->owner) {
363 spin_lock_irq(&pi_state->owner->pi_lock);
364 list_del_init(&pi_state->list);
365 spin_unlock_irq(&pi_state->owner->pi_lock);
367 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
370 if (current->pi_state_cache)
371 kfree(pi_state);
372 else {
374 * pi_state->list is already empty.
375 * clear pi_state->owner.
376 * refcount is at 0 - put it back to 1.
378 pi_state->owner = NULL;
379 atomic_set(&pi_state->refcount, 1);
380 current->pi_state_cache = pi_state;
385 * Look up the task based on what TID userspace gave us.
386 * We dont trust it.
388 static struct task_struct * futex_find_get_task(pid_t pid)
390 struct task_struct *p;
392 read_lock(&tasklist_lock);
393 p = find_task_by_pid(pid);
394 if (!p)
395 goto out_unlock;
396 if ((current->euid != p->euid) && (current->euid != p->uid)) {
397 p = NULL;
398 goto out_unlock;
400 if (p->state == EXIT_ZOMBIE || p->exit_state == EXIT_ZOMBIE) {
401 p = NULL;
402 goto out_unlock;
404 get_task_struct(p);
405 out_unlock:
406 read_unlock(&tasklist_lock);
408 return p;
412 * This task is holding PI mutexes at exit time => bad.
413 * Kernel cleans up PI-state, but userspace is likely hosed.
414 * (Robust-futex cleanup is separate and might save the day for userspace.)
416 void exit_pi_state_list(struct task_struct *curr)
418 struct futex_hash_bucket *hb;
419 struct list_head *next, *head = &curr->pi_state_list;
420 struct futex_pi_state *pi_state;
421 union futex_key key;
424 * We are a ZOMBIE and nobody can enqueue itself on
425 * pi_state_list anymore, but we have to be careful
426 * versus waiters unqueueing themselfs
428 spin_lock_irq(&curr->pi_lock);
429 while (!list_empty(head)) {
431 next = head->next;
432 pi_state = list_entry(next, struct futex_pi_state, list);
433 key = pi_state->key;
434 spin_unlock_irq(&curr->pi_lock);
436 hb = hash_futex(&key);
437 spin_lock(&hb->lock);
439 spin_lock_irq(&curr->pi_lock);
440 if (head->next != next) {
441 spin_unlock(&hb->lock);
442 continue;
445 list_del_init(&pi_state->list);
447 WARN_ON(pi_state->owner != curr);
449 pi_state->owner = NULL;
450 spin_unlock_irq(&curr->pi_lock);
452 rt_mutex_unlock(&pi_state->pi_mutex);
454 spin_unlock(&hb->lock);
456 spin_lock_irq(&curr->pi_lock);
458 spin_unlock_irq(&curr->pi_lock);
461 static int
462 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, struct futex_q *me)
464 struct futex_pi_state *pi_state = NULL;
465 struct futex_q *this, *next;
466 struct list_head *head;
467 struct task_struct *p;
468 pid_t pid;
470 head = &hb->chain;
472 list_for_each_entry_safe(this, next, head, list) {
473 if (match_futex (&this->key, &me->key)) {
475 * Another waiter already exists - bump up
476 * the refcount and return its pi_state:
478 pi_state = this->pi_state;
479 atomic_inc(&pi_state->refcount);
480 me->pi_state = pi_state;
482 return 0;
487 * We are the first waiter - try to look up the real owner and
488 * attach the new pi_state to it:
490 pid = uval & FUTEX_TID_MASK;
491 p = futex_find_get_task(pid);
492 if (!p)
493 return -ESRCH;
495 pi_state = alloc_pi_state();
498 * Initialize the pi_mutex in locked state and make 'p'
499 * the owner of it:
501 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
503 /* Store the key for possible exit cleanups: */
504 pi_state->key = me->key;
506 spin_lock_irq(&p->pi_lock);
507 list_add(&pi_state->list, &p->pi_state_list);
508 pi_state->owner = p;
509 spin_unlock_irq(&p->pi_lock);
511 put_task_struct(p);
513 me->pi_state = pi_state;
515 return 0;
519 * The hash bucket lock must be held when this is called.
520 * Afterwards, the futex_q must not be accessed.
522 static void wake_futex(struct futex_q *q)
524 list_del_init(&q->list);
525 if (q->filp)
526 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
528 * The lock in wake_up_all() is a crucial memory barrier after the
529 * list_del_init() and also before assigning to q->lock_ptr.
531 wake_up_all(&q->waiters);
533 * The waiting task can free the futex_q as soon as this is written,
534 * without taking any locks. This must come last.
536 * A memory barrier is required here to prevent the following store
537 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
538 * at the end of wake_up_all() does not prevent this store from
539 * moving.
541 wmb();
542 q->lock_ptr = NULL;
545 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
547 struct task_struct *new_owner;
548 struct futex_pi_state *pi_state = this->pi_state;
549 u32 curval, newval;
551 if (!pi_state)
552 return -EINVAL;
554 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
557 * This happens when we have stolen the lock and the original
558 * pending owner did not enqueue itself back on the rt_mutex.
559 * Thats not a tragedy. We know that way, that a lock waiter
560 * is on the fly. We make the futex_q waiter the pending owner.
562 if (!new_owner)
563 new_owner = this->task;
566 * We pass it to the next owner. (The WAITERS bit is always
567 * kept enabled while there is PI state around. We must also
568 * preserve the owner died bit.)
570 newval = (uval & FUTEX_OWNER_DIED) | FUTEX_WAITERS | new_owner->pid;
572 inc_preempt_count();
573 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
574 dec_preempt_count();
576 if (curval == -EFAULT)
577 return -EFAULT;
578 if (curval != uval)
579 return -EINVAL;
581 list_del_init(&pi_state->owner->pi_state_list);
582 list_add(&pi_state->list, &new_owner->pi_state_list);
583 pi_state->owner = new_owner;
584 rt_mutex_unlock(&pi_state->pi_mutex);
586 return 0;
589 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
591 u32 oldval;
594 * There is no waiter, so we unlock the futex. The owner died
595 * bit has not to be preserved here. We are the owner:
597 inc_preempt_count();
598 oldval = futex_atomic_cmpxchg_inatomic(uaddr, uval, 0);
599 dec_preempt_count();
601 if (oldval == -EFAULT)
602 return oldval;
603 if (oldval != uval)
604 return -EAGAIN;
606 return 0;
610 * Express the locking dependencies for lockdep:
612 static inline void
613 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
615 if (hb1 <= hb2) {
616 spin_lock(&hb1->lock);
617 if (hb1 < hb2)
618 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
619 } else { /* hb1 > hb2 */
620 spin_lock(&hb2->lock);
621 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
626 * Wake up all waiters hashed on the physical page that is mapped
627 * to this virtual address:
629 static int futex_wake(u32 __user *uaddr, int nr_wake)
631 struct futex_hash_bucket *hb;
632 struct futex_q *this, *next;
633 struct list_head *head;
634 union futex_key key;
635 int ret;
637 down_read(&current->mm->mmap_sem);
639 ret = get_futex_key(uaddr, &key);
640 if (unlikely(ret != 0))
641 goto out;
643 hb = hash_futex(&key);
644 spin_lock(&hb->lock);
645 head = &hb->chain;
647 list_for_each_entry_safe(this, next, head, list) {
648 if (match_futex (&this->key, &key)) {
649 if (this->pi_state) {
650 ret = -EINVAL;
651 break;
653 wake_futex(this);
654 if (++ret >= nr_wake)
655 break;
659 spin_unlock(&hb->lock);
660 out:
661 up_read(&current->mm->mmap_sem);
662 return ret;
666 * Wake up all waiters hashed on the physical page that is mapped
667 * to this virtual address:
669 static int
670 futex_wake_op(u32 __user *uaddr1, u32 __user *uaddr2,
671 int nr_wake, int nr_wake2, int op)
673 union futex_key key1, key2;
674 struct futex_hash_bucket *hb1, *hb2;
675 struct list_head *head;
676 struct futex_q *this, *next;
677 int ret, op_ret, attempt = 0;
679 retryfull:
680 down_read(&current->mm->mmap_sem);
682 ret = get_futex_key(uaddr1, &key1);
683 if (unlikely(ret != 0))
684 goto out;
685 ret = get_futex_key(uaddr2, &key2);
686 if (unlikely(ret != 0))
687 goto out;
689 hb1 = hash_futex(&key1);
690 hb2 = hash_futex(&key2);
692 retry:
693 double_lock_hb(hb1, hb2);
695 op_ret = futex_atomic_op_inuser(op, uaddr2);
696 if (unlikely(op_ret < 0)) {
697 u32 dummy;
699 spin_unlock(&hb1->lock);
700 if (hb1 != hb2)
701 spin_unlock(&hb2->lock);
703 #ifndef CONFIG_MMU
705 * we don't get EFAULT from MMU faults if we don't have an MMU,
706 * but we might get them from range checking
708 ret = op_ret;
709 goto out;
710 #endif
712 if (unlikely(op_ret != -EFAULT)) {
713 ret = op_ret;
714 goto out;
718 * futex_atomic_op_inuser needs to both read and write
719 * *(int __user *)uaddr2, but we can't modify it
720 * non-atomically. Therefore, if get_user below is not
721 * enough, we need to handle the fault ourselves, while
722 * still holding the mmap_sem.
724 if (attempt++) {
725 if (futex_handle_fault((unsigned long)uaddr2,
726 attempt))
727 goto out;
728 goto retry;
732 * If we would have faulted, release mmap_sem,
733 * fault it in and start all over again.
735 up_read(&current->mm->mmap_sem);
737 ret = get_user(dummy, uaddr2);
738 if (ret)
739 return ret;
741 goto retryfull;
744 head = &hb1->chain;
746 list_for_each_entry_safe(this, next, head, list) {
747 if (match_futex (&this->key, &key1)) {
748 wake_futex(this);
749 if (++ret >= nr_wake)
750 break;
754 if (op_ret > 0) {
755 head = &hb2->chain;
757 op_ret = 0;
758 list_for_each_entry_safe(this, next, head, list) {
759 if (match_futex (&this->key, &key2)) {
760 wake_futex(this);
761 if (++op_ret >= nr_wake2)
762 break;
765 ret += op_ret;
768 spin_unlock(&hb1->lock);
769 if (hb1 != hb2)
770 spin_unlock(&hb2->lock);
771 out:
772 up_read(&current->mm->mmap_sem);
773 return ret;
777 * Requeue all waiters hashed on one physical page to another
778 * physical page.
780 static int futex_requeue(u32 __user *uaddr1, u32 __user *uaddr2,
781 int nr_wake, int nr_requeue, u32 *cmpval)
783 union futex_key key1, key2;
784 struct futex_hash_bucket *hb1, *hb2;
785 struct list_head *head1;
786 struct futex_q *this, *next;
787 int ret, drop_count = 0;
789 retry:
790 down_read(&current->mm->mmap_sem);
792 ret = get_futex_key(uaddr1, &key1);
793 if (unlikely(ret != 0))
794 goto out;
795 ret = get_futex_key(uaddr2, &key2);
796 if (unlikely(ret != 0))
797 goto out;
799 hb1 = hash_futex(&key1);
800 hb2 = hash_futex(&key2);
802 double_lock_hb(hb1, hb2);
804 if (likely(cmpval != NULL)) {
805 u32 curval;
807 ret = get_futex_value_locked(&curval, uaddr1);
809 if (unlikely(ret)) {
810 spin_unlock(&hb1->lock);
811 if (hb1 != hb2)
812 spin_unlock(&hb2->lock);
815 * If we would have faulted, release mmap_sem, fault
816 * it in and start all over again.
818 up_read(&current->mm->mmap_sem);
820 ret = get_user(curval, uaddr1);
822 if (!ret)
823 goto retry;
825 return ret;
827 if (curval != *cmpval) {
828 ret = -EAGAIN;
829 goto out_unlock;
833 head1 = &hb1->chain;
834 list_for_each_entry_safe(this, next, head1, list) {
835 if (!match_futex (&this->key, &key1))
836 continue;
837 if (++ret <= nr_wake) {
838 wake_futex(this);
839 } else {
841 * If key1 and key2 hash to the same bucket, no need to
842 * requeue.
844 if (likely(head1 != &hb2->chain)) {
845 list_move_tail(&this->list, &hb2->chain);
846 this->lock_ptr = &hb2->lock;
848 this->key = key2;
849 get_key_refs(&key2);
850 drop_count++;
852 if (ret - nr_wake >= nr_requeue)
853 break;
857 out_unlock:
858 spin_unlock(&hb1->lock);
859 if (hb1 != hb2)
860 spin_unlock(&hb2->lock);
862 /* drop_key_refs() must be called outside the spinlocks. */
863 while (--drop_count >= 0)
864 drop_key_refs(&key1);
866 out:
867 up_read(&current->mm->mmap_sem);
868 return ret;
871 /* The key must be already stored in q->key. */
872 static inline struct futex_hash_bucket *
873 queue_lock(struct futex_q *q, int fd, struct file *filp)
875 struct futex_hash_bucket *hb;
877 q->fd = fd;
878 q->filp = filp;
880 init_waitqueue_head(&q->waiters);
882 get_key_refs(&q->key);
883 hb = hash_futex(&q->key);
884 q->lock_ptr = &hb->lock;
886 spin_lock(&hb->lock);
887 return hb;
890 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
892 list_add_tail(&q->list, &hb->chain);
893 q->task = current;
894 spin_unlock(&hb->lock);
897 static inline void
898 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
900 spin_unlock(&hb->lock);
901 drop_key_refs(&q->key);
905 * queue_me and unqueue_me must be called as a pair, each
906 * exactly once. They are called with the hashed spinlock held.
909 /* The key must be already stored in q->key. */
910 static void queue_me(struct futex_q *q, int fd, struct file *filp)
912 struct futex_hash_bucket *hb;
914 hb = queue_lock(q, fd, filp);
915 __queue_me(q, hb);
918 /* Return 1 if we were still queued (ie. 0 means we were woken) */
919 static int unqueue_me(struct futex_q *q)
921 spinlock_t *lock_ptr;
922 int ret = 0;
924 /* In the common case we don't take the spinlock, which is nice. */
925 retry:
926 lock_ptr = q->lock_ptr;
927 if (lock_ptr != 0) {
928 spin_lock(lock_ptr);
930 * q->lock_ptr can change between reading it and
931 * spin_lock(), causing us to take the wrong lock. This
932 * corrects the race condition.
934 * Reasoning goes like this: if we have the wrong lock,
935 * q->lock_ptr must have changed (maybe several times)
936 * between reading it and the spin_lock(). It can
937 * change again after the spin_lock() but only if it was
938 * already changed before the spin_lock(). It cannot,
939 * however, change back to the original value. Therefore
940 * we can detect whether we acquired the correct lock.
942 if (unlikely(lock_ptr != q->lock_ptr)) {
943 spin_unlock(lock_ptr);
944 goto retry;
946 WARN_ON(list_empty(&q->list));
947 list_del(&q->list);
949 BUG_ON(q->pi_state);
951 spin_unlock(lock_ptr);
952 ret = 1;
955 drop_key_refs(&q->key);
956 return ret;
960 * PI futexes can not be requeued and must remove themself from the
961 * hash bucket. The hash bucket lock is held on entry and dropped here.
963 static void unqueue_me_pi(struct futex_q *q, struct futex_hash_bucket *hb)
965 WARN_ON(list_empty(&q->list));
966 list_del(&q->list);
968 BUG_ON(!q->pi_state);
969 free_pi_state(q->pi_state);
970 q->pi_state = NULL;
972 spin_unlock(&hb->lock);
974 drop_key_refs(&q->key);
977 static int futex_wait(u32 __user *uaddr, u32 val, unsigned long time)
979 struct task_struct *curr = current;
980 DECLARE_WAITQUEUE(wait, curr);
981 struct futex_hash_bucket *hb;
982 struct futex_q q;
983 u32 uval;
984 int ret;
986 q.pi_state = NULL;
987 retry:
988 down_read(&curr->mm->mmap_sem);
990 ret = get_futex_key(uaddr, &q.key);
991 if (unlikely(ret != 0))
992 goto out_release_sem;
994 hb = queue_lock(&q, -1, NULL);
997 * Access the page AFTER the futex is queued.
998 * Order is important:
1000 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1001 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1003 * The basic logical guarantee of a futex is that it blocks ONLY
1004 * if cond(var) is known to be true at the time of blocking, for
1005 * any cond. If we queued after testing *uaddr, that would open
1006 * a race condition where we could block indefinitely with
1007 * cond(var) false, which would violate the guarantee.
1009 * A consequence is that futex_wait() can return zero and absorb
1010 * a wakeup when *uaddr != val on entry to the syscall. This is
1011 * rare, but normal.
1013 * We hold the mmap semaphore, so the mapping cannot have changed
1014 * since we looked it up in get_futex_key.
1016 ret = get_futex_value_locked(&uval, uaddr);
1018 if (unlikely(ret)) {
1019 queue_unlock(&q, hb);
1022 * If we would have faulted, release mmap_sem, fault it in and
1023 * start all over again.
1025 up_read(&curr->mm->mmap_sem);
1027 ret = get_user(uval, uaddr);
1029 if (!ret)
1030 goto retry;
1031 return ret;
1033 ret = -EWOULDBLOCK;
1034 if (uval != val)
1035 goto out_unlock_release_sem;
1037 /* Only actually queue if *uaddr contained val. */
1038 __queue_me(&q, hb);
1041 * Now the futex is queued and we have checked the data, we
1042 * don't want to hold mmap_sem while we sleep.
1044 up_read(&curr->mm->mmap_sem);
1047 * There might have been scheduling since the queue_me(), as we
1048 * cannot hold a spinlock across the get_user() in case it
1049 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1050 * queueing ourselves into the futex hash. This code thus has to
1051 * rely on the futex_wake() code removing us from hash when it
1052 * wakes us up.
1055 /* add_wait_queue is the barrier after __set_current_state. */
1056 __set_current_state(TASK_INTERRUPTIBLE);
1057 add_wait_queue(&q.waiters, &wait);
1059 * !list_empty() is safe here without any lock.
1060 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1062 if (likely(!list_empty(&q.list)))
1063 time = schedule_timeout(time);
1064 __set_current_state(TASK_RUNNING);
1067 * NOTE: we don't remove ourselves from the waitqueue because
1068 * we are the only user of it.
1071 /* If we were woken (and unqueued), we succeeded, whatever. */
1072 if (!unqueue_me(&q))
1073 return 0;
1074 if (time == 0)
1075 return -ETIMEDOUT;
1077 * We expect signal_pending(current), but another thread may
1078 * have handled it for us already.
1080 return -EINTR;
1082 out_unlock_release_sem:
1083 queue_unlock(&q, hb);
1085 out_release_sem:
1086 up_read(&curr->mm->mmap_sem);
1087 return ret;
1091 * Userspace tried a 0 -> TID atomic transition of the futex value
1092 * and failed. The kernel side here does the whole locking operation:
1093 * if there are waiters then it will block, it does PI, etc. (Due to
1094 * races the kernel might see a 0 value of the futex too.)
1096 static int do_futex_lock_pi(u32 __user *uaddr, int detect, int trylock,
1097 struct hrtimer_sleeper *to)
1099 struct task_struct *curr = current;
1100 struct futex_hash_bucket *hb;
1101 u32 uval, newval, curval;
1102 struct futex_q q;
1103 int ret, attempt = 0;
1105 if (refill_pi_state_cache())
1106 return -ENOMEM;
1108 q.pi_state = NULL;
1109 retry:
1110 down_read(&curr->mm->mmap_sem);
1112 ret = get_futex_key(uaddr, &q.key);
1113 if (unlikely(ret != 0))
1114 goto out_release_sem;
1116 hb = queue_lock(&q, -1, NULL);
1118 retry_locked:
1120 * To avoid races, we attempt to take the lock here again
1121 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1122 * the locks. It will most likely not succeed.
1124 newval = current->pid;
1126 inc_preempt_count();
1127 curval = futex_atomic_cmpxchg_inatomic(uaddr, 0, newval);
1128 dec_preempt_count();
1130 if (unlikely(curval == -EFAULT))
1131 goto uaddr_faulted;
1133 /* We own the lock already */
1134 if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) {
1135 if (!detect && 0)
1136 force_sig(SIGKILL, current);
1137 ret = -EDEADLK;
1138 goto out_unlock_release_sem;
1142 * Surprise - we got the lock. Just return
1143 * to userspace:
1145 if (unlikely(!curval))
1146 goto out_unlock_release_sem;
1148 uval = curval;
1149 newval = uval | FUTEX_WAITERS;
1151 inc_preempt_count();
1152 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
1153 dec_preempt_count();
1155 if (unlikely(curval == -EFAULT))
1156 goto uaddr_faulted;
1157 if (unlikely(curval != uval))
1158 goto retry_locked;
1161 * We dont have the lock. Look up the PI state (or create it if
1162 * we are the first waiter):
1164 ret = lookup_pi_state(uval, hb, &q);
1166 if (unlikely(ret)) {
1168 * There were no waiters and the owner task lookup
1169 * failed. When the OWNER_DIED bit is set, then we
1170 * know that this is a robust futex and we actually
1171 * take the lock. This is safe as we are protected by
1172 * the hash bucket lock. We also set the waiters bit
1173 * unconditionally here, to simplify glibc handling of
1174 * multiple tasks racing to acquire the lock and
1175 * cleanup the problems which were left by the dead
1176 * owner.
1178 if (curval & FUTEX_OWNER_DIED) {
1179 uval = newval;
1180 newval = current->pid |
1181 FUTEX_OWNER_DIED | FUTEX_WAITERS;
1183 inc_preempt_count();
1184 curval = futex_atomic_cmpxchg_inatomic(uaddr,
1185 uval, newval);
1186 dec_preempt_count();
1188 if (unlikely(curval == -EFAULT))
1189 goto uaddr_faulted;
1190 if (unlikely(curval != uval))
1191 goto retry_locked;
1192 ret = 0;
1194 goto out_unlock_release_sem;
1198 * Only actually queue now that the atomic ops are done:
1200 __queue_me(&q, hb);
1203 * Now the futex is queued and we have checked the data, we
1204 * don't want to hold mmap_sem while we sleep.
1206 up_read(&curr->mm->mmap_sem);
1208 WARN_ON(!q.pi_state);
1210 * Block on the PI mutex:
1212 if (!trylock)
1213 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1214 else {
1215 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1216 /* Fixup the trylock return value: */
1217 ret = ret ? 0 : -EWOULDBLOCK;
1220 down_read(&curr->mm->mmap_sem);
1221 spin_lock(q.lock_ptr);
1224 * Got the lock. We might not be the anticipated owner if we
1225 * did a lock-steal - fix up the PI-state in that case.
1227 if (!ret && q.pi_state->owner != curr) {
1228 u32 newtid = current->pid | FUTEX_WAITERS;
1230 /* Owner died? */
1231 if (q.pi_state->owner != NULL) {
1232 spin_lock_irq(&q.pi_state->owner->pi_lock);
1233 list_del_init(&q.pi_state->list);
1234 spin_unlock_irq(&q.pi_state->owner->pi_lock);
1235 } else
1236 newtid |= FUTEX_OWNER_DIED;
1238 q.pi_state->owner = current;
1240 spin_lock_irq(&current->pi_lock);
1241 list_add(&q.pi_state->list, &current->pi_state_list);
1242 spin_unlock_irq(&current->pi_lock);
1244 /* Unqueue and drop the lock */
1245 unqueue_me_pi(&q, hb);
1246 up_read(&curr->mm->mmap_sem);
1248 * We own it, so we have to replace the pending owner
1249 * TID. This must be atomic as we have preserve the
1250 * owner died bit here.
1252 ret = get_user(uval, uaddr);
1253 while (!ret) {
1254 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1255 curval = futex_atomic_cmpxchg_inatomic(uaddr,
1256 uval, newval);
1257 if (curval == -EFAULT)
1258 ret = -EFAULT;
1259 if (curval == uval)
1260 break;
1261 uval = curval;
1263 } else {
1265 * Catch the rare case, where the lock was released
1266 * when we were on the way back before we locked
1267 * the hash bucket.
1269 if (ret && q.pi_state->owner == curr) {
1270 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1271 ret = 0;
1273 /* Unqueue and drop the lock */
1274 unqueue_me_pi(&q, hb);
1275 up_read(&curr->mm->mmap_sem);
1278 if (!detect && ret == -EDEADLK && 0)
1279 force_sig(SIGKILL, current);
1281 return ret;
1283 out_unlock_release_sem:
1284 queue_unlock(&q, hb);
1286 out_release_sem:
1287 up_read(&curr->mm->mmap_sem);
1288 return ret;
1290 uaddr_faulted:
1292 * We have to r/w *(int __user *)uaddr, but we can't modify it
1293 * non-atomically. Therefore, if get_user below is not
1294 * enough, we need to handle the fault ourselves, while
1295 * still holding the mmap_sem.
1297 if (attempt++) {
1298 if (futex_handle_fault((unsigned long)uaddr, attempt))
1299 goto out_unlock_release_sem;
1301 goto retry_locked;
1304 queue_unlock(&q, hb);
1305 up_read(&curr->mm->mmap_sem);
1307 ret = get_user(uval, uaddr);
1308 if (!ret && (uval != -EFAULT))
1309 goto retry;
1311 return ret;
1315 * Restart handler
1317 static long futex_lock_pi_restart(struct restart_block *restart)
1319 struct hrtimer_sleeper timeout, *to = NULL;
1320 int ret;
1322 restart->fn = do_no_restart_syscall;
1324 if (restart->arg2 || restart->arg3) {
1325 to = &timeout;
1326 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_ABS);
1327 hrtimer_init_sleeper(to, current);
1328 to->timer.expires.tv64 = ((u64)restart->arg1 << 32) |
1329 (u64) restart->arg0;
1332 pr_debug("lock_pi restart: %p, %d (%d)\n",
1333 (u32 __user *)restart->arg0, current->pid);
1335 ret = do_futex_lock_pi((u32 __user *)restart->arg0, restart->arg1,
1336 0, to);
1338 if (ret != -EINTR)
1339 return ret;
1341 restart->fn = futex_lock_pi_restart;
1343 /* The other values are filled in */
1344 return -ERESTART_RESTARTBLOCK;
1348 * Called from the syscall entry below.
1350 static int futex_lock_pi(u32 __user *uaddr, int detect, unsigned long sec,
1351 long nsec, int trylock)
1353 struct hrtimer_sleeper timeout, *to = NULL;
1354 struct restart_block *restart;
1355 int ret;
1357 if (sec != MAX_SCHEDULE_TIMEOUT) {
1358 to = &timeout;
1359 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_ABS);
1360 hrtimer_init_sleeper(to, current);
1361 to->timer.expires = ktime_set(sec, nsec);
1364 ret = do_futex_lock_pi(uaddr, detect, trylock, to);
1366 if (ret != -EINTR)
1367 return ret;
1369 pr_debug("lock_pi interrupted: %p, %d (%d)\n", uaddr, current->pid);
1371 restart = &current_thread_info()->restart_block;
1372 restart->fn = futex_lock_pi_restart;
1373 restart->arg0 = (unsigned long) uaddr;
1374 restart->arg1 = detect;
1375 if (to) {
1376 restart->arg2 = to->timer.expires.tv64 & 0xFFFFFFFF;
1377 restart->arg3 = to->timer.expires.tv64 >> 32;
1378 } else
1379 restart->arg2 = restart->arg3 = 0;
1381 return -ERESTART_RESTARTBLOCK;
1385 * Userspace attempted a TID -> 0 atomic transition, and failed.
1386 * This is the in-kernel slowpath: we look up the PI state (if any),
1387 * and do the rt-mutex unlock.
1389 static int futex_unlock_pi(u32 __user *uaddr)
1391 struct futex_hash_bucket *hb;
1392 struct futex_q *this, *next;
1393 u32 uval;
1394 struct list_head *head;
1395 union futex_key key;
1396 int ret, attempt = 0;
1398 retry:
1399 if (get_user(uval, uaddr))
1400 return -EFAULT;
1402 * We release only a lock we actually own:
1404 if ((uval & FUTEX_TID_MASK) != current->pid)
1405 return -EPERM;
1407 * First take all the futex related locks:
1409 down_read(&current->mm->mmap_sem);
1411 ret = get_futex_key(uaddr, &key);
1412 if (unlikely(ret != 0))
1413 goto out;
1415 hb = hash_futex(&key);
1416 spin_lock(&hb->lock);
1418 retry_locked:
1420 * To avoid races, try to do the TID -> 0 atomic transition
1421 * again. If it succeeds then we can return without waking
1422 * anyone else up:
1424 inc_preempt_count();
1425 uval = futex_atomic_cmpxchg_inatomic(uaddr, current->pid, 0);
1426 dec_preempt_count();
1428 if (unlikely(uval == -EFAULT))
1429 goto pi_faulted;
1431 * Rare case: we managed to release the lock atomically,
1432 * no need to wake anyone else up:
1434 if (unlikely(uval == current->pid))
1435 goto out_unlock;
1438 * Ok, other tasks may need to be woken up - check waiters
1439 * and do the wakeup if necessary:
1441 head = &hb->chain;
1443 list_for_each_entry_safe(this, next, head, list) {
1444 if (!match_futex (&this->key, &key))
1445 continue;
1446 ret = wake_futex_pi(uaddr, uval, this);
1448 * The atomic access to the futex value
1449 * generated a pagefault, so retry the
1450 * user-access and the wakeup:
1452 if (ret == -EFAULT)
1453 goto pi_faulted;
1454 goto out_unlock;
1457 * No waiters - kernel unlocks the futex:
1459 ret = unlock_futex_pi(uaddr, uval);
1460 if (ret == -EFAULT)
1461 goto pi_faulted;
1463 out_unlock:
1464 spin_unlock(&hb->lock);
1465 out:
1466 up_read(&current->mm->mmap_sem);
1468 return ret;
1470 pi_faulted:
1472 * We have to r/w *(int __user *)uaddr, but we can't modify it
1473 * non-atomically. Therefore, if get_user below is not
1474 * enough, we need to handle the fault ourselves, while
1475 * still holding the mmap_sem.
1477 if (attempt++) {
1478 if (futex_handle_fault((unsigned long)uaddr, attempt))
1479 goto out_unlock;
1481 goto retry_locked;
1484 spin_unlock(&hb->lock);
1485 up_read(&current->mm->mmap_sem);
1487 ret = get_user(uval, uaddr);
1488 if (!ret && (uval != -EFAULT))
1489 goto retry;
1491 return ret;
1494 static int futex_close(struct inode *inode, struct file *filp)
1496 struct futex_q *q = filp->private_data;
1498 unqueue_me(q);
1499 kfree(q);
1501 return 0;
1504 /* This is one-shot: once it's gone off you need a new fd */
1505 static unsigned int futex_poll(struct file *filp,
1506 struct poll_table_struct *wait)
1508 struct futex_q *q = filp->private_data;
1509 int ret = 0;
1511 poll_wait(filp, &q->waiters, wait);
1514 * list_empty() is safe here without any lock.
1515 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1517 if (list_empty(&q->list))
1518 ret = POLLIN | POLLRDNORM;
1520 return ret;
1523 static struct file_operations futex_fops = {
1524 .release = futex_close,
1525 .poll = futex_poll,
1529 * Signal allows caller to avoid the race which would occur if they
1530 * set the sigio stuff up afterwards.
1532 static int futex_fd(u32 __user *uaddr, int signal)
1534 struct futex_q *q;
1535 struct file *filp;
1536 int ret, err;
1538 ret = -EINVAL;
1539 if (!valid_signal(signal))
1540 goto out;
1542 ret = get_unused_fd();
1543 if (ret < 0)
1544 goto out;
1545 filp = get_empty_filp();
1546 if (!filp) {
1547 put_unused_fd(ret);
1548 ret = -ENFILE;
1549 goto out;
1551 filp->f_op = &futex_fops;
1552 filp->f_vfsmnt = mntget(futex_mnt);
1553 filp->f_dentry = dget(futex_mnt->mnt_root);
1554 filp->f_mapping = filp->f_dentry->d_inode->i_mapping;
1556 if (signal) {
1557 err = f_setown(filp, current->pid, 1);
1558 if (err < 0) {
1559 goto error;
1561 filp->f_owner.signum = signal;
1564 q = kmalloc(sizeof(*q), GFP_KERNEL);
1565 if (!q) {
1566 err = -ENOMEM;
1567 goto error;
1569 q->pi_state = NULL;
1571 down_read(&current->mm->mmap_sem);
1572 err = get_futex_key(uaddr, &q->key);
1574 if (unlikely(err != 0)) {
1575 up_read(&current->mm->mmap_sem);
1576 kfree(q);
1577 goto error;
1581 * queue_me() must be called before releasing mmap_sem, because
1582 * key->shared.inode needs to be referenced while holding it.
1584 filp->private_data = q;
1586 queue_me(q, ret, filp);
1587 up_read(&current->mm->mmap_sem);
1589 /* Now we map fd to filp, so userspace can access it */
1590 fd_install(ret, filp);
1591 out:
1592 return ret;
1593 error:
1594 put_unused_fd(ret);
1595 put_filp(filp);
1596 ret = err;
1597 goto out;
1601 * Support for robust futexes: the kernel cleans up held futexes at
1602 * thread exit time.
1604 * Implementation: user-space maintains a per-thread list of locks it
1605 * is holding. Upon do_exit(), the kernel carefully walks this list,
1606 * and marks all locks that are owned by this thread with the
1607 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1608 * always manipulated with the lock held, so the list is private and
1609 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1610 * field, to allow the kernel to clean up if the thread dies after
1611 * acquiring the lock, but just before it could have added itself to
1612 * the list. There can only be one such pending lock.
1616 * sys_set_robust_list - set the robust-futex list head of a task
1617 * @head: pointer to the list-head
1618 * @len: length of the list-head, as userspace expects
1620 asmlinkage long
1621 sys_set_robust_list(struct robust_list_head __user *head,
1622 size_t len)
1625 * The kernel knows only one size for now:
1627 if (unlikely(len != sizeof(*head)))
1628 return -EINVAL;
1630 current->robust_list = head;
1632 return 0;
1636 * sys_get_robust_list - get the robust-futex list head of a task
1637 * @pid: pid of the process [zero for current task]
1638 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1639 * @len_ptr: pointer to a length field, the kernel fills in the header size
1641 asmlinkage long
1642 sys_get_robust_list(int pid, struct robust_list_head __user **head_ptr,
1643 size_t __user *len_ptr)
1645 struct robust_list_head *head;
1646 unsigned long ret;
1648 if (!pid)
1649 head = current->robust_list;
1650 else {
1651 struct task_struct *p;
1653 ret = -ESRCH;
1654 read_lock(&tasklist_lock);
1655 p = find_task_by_pid(pid);
1656 if (!p)
1657 goto err_unlock;
1658 ret = -EPERM;
1659 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1660 !capable(CAP_SYS_PTRACE))
1661 goto err_unlock;
1662 head = p->robust_list;
1663 read_unlock(&tasklist_lock);
1666 if (put_user(sizeof(*head), len_ptr))
1667 return -EFAULT;
1668 return put_user(head, head_ptr);
1670 err_unlock:
1671 read_unlock(&tasklist_lock);
1673 return ret;
1677 * Process a futex-list entry, check whether it's owned by the
1678 * dying task, and do notification if so:
1680 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr)
1682 u32 uval, nval;
1684 retry:
1685 if (get_user(uval, uaddr))
1686 return -1;
1688 if ((uval & FUTEX_TID_MASK) == curr->pid) {
1690 * Ok, this dying thread is truly holding a futex
1691 * of interest. Set the OWNER_DIED bit atomically
1692 * via cmpxchg, and if the value had FUTEX_WAITERS
1693 * set, wake up a waiter (if any). (We have to do a
1694 * futex_wake() even if OWNER_DIED is already set -
1695 * to handle the rare but possible case of recursive
1696 * thread-death.) The rest of the cleanup is done in
1697 * userspace.
1699 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval,
1700 uval | FUTEX_OWNER_DIED);
1701 if (nval == -EFAULT)
1702 return -1;
1704 if (nval != uval)
1705 goto retry;
1707 if (uval & FUTEX_WAITERS)
1708 futex_wake(uaddr, 1);
1710 return 0;
1714 * Walk curr->robust_list (very carefully, it's a userspace list!)
1715 * and mark any locks found there dead, and notify any waiters.
1717 * We silently return on any sign of list-walking problem.
1719 void exit_robust_list(struct task_struct *curr)
1721 struct robust_list_head __user *head = curr->robust_list;
1722 struct robust_list __user *entry, *pending;
1723 unsigned int limit = ROBUST_LIST_LIMIT;
1724 unsigned long futex_offset;
1727 * Fetch the list head (which was registered earlier, via
1728 * sys_set_robust_list()):
1730 if (get_user(entry, &head->list.next))
1731 return;
1733 * Fetch the relative futex offset:
1735 if (get_user(futex_offset, &head->futex_offset))
1736 return;
1738 * Fetch any possibly pending lock-add first, and handle it
1739 * if it exists:
1741 if (get_user(pending, &head->list_op_pending))
1742 return;
1743 if (pending)
1744 handle_futex_death((void *)pending + futex_offset, curr);
1746 while (entry != &head->list) {
1748 * A pending lock might already be on the list, so
1749 * don't process it twice:
1751 if (entry != pending)
1752 if (handle_futex_death((void *)entry + futex_offset,
1753 curr))
1754 return;
1756 * Fetch the next entry in the list:
1758 if (get_user(entry, &entry->next))
1759 return;
1761 * Avoid excessively long or circular lists:
1763 if (!--limit)
1764 break;
1766 cond_resched();
1770 long do_futex(u32 __user *uaddr, int op, u32 val, unsigned long timeout,
1771 u32 __user *uaddr2, u32 val2, u32 val3)
1773 int ret;
1775 switch (op) {
1776 case FUTEX_WAIT:
1777 ret = futex_wait(uaddr, val, timeout);
1778 break;
1779 case FUTEX_WAKE:
1780 ret = futex_wake(uaddr, val);
1781 break;
1782 case FUTEX_FD:
1783 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
1784 ret = futex_fd(uaddr, val);
1785 break;
1786 case FUTEX_REQUEUE:
1787 ret = futex_requeue(uaddr, uaddr2, val, val2, NULL);
1788 break;
1789 case FUTEX_CMP_REQUEUE:
1790 ret = futex_requeue(uaddr, uaddr2, val, val2, &val3);
1791 break;
1792 case FUTEX_WAKE_OP:
1793 ret = futex_wake_op(uaddr, uaddr2, val, val2, val3);
1794 break;
1795 case FUTEX_LOCK_PI:
1796 ret = futex_lock_pi(uaddr, val, timeout, val2, 0);
1797 break;
1798 case FUTEX_UNLOCK_PI:
1799 ret = futex_unlock_pi(uaddr);
1800 break;
1801 case FUTEX_TRYLOCK_PI:
1802 ret = futex_lock_pi(uaddr, 0, timeout, val2, 1);
1803 break;
1804 default:
1805 ret = -ENOSYS;
1807 return ret;
1811 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1812 struct timespec __user *utime, u32 __user *uaddr2,
1813 u32 val3)
1815 struct timespec t;
1816 unsigned long timeout = MAX_SCHEDULE_TIMEOUT;
1817 u32 val2 = 0;
1819 if (utime && (op == FUTEX_WAIT || op == FUTEX_LOCK_PI)) {
1820 if (copy_from_user(&t, utime, sizeof(t)) != 0)
1821 return -EFAULT;
1822 if (!timespec_valid(&t))
1823 return -EINVAL;
1824 if (op == FUTEX_WAIT)
1825 timeout = timespec_to_jiffies(&t) + 1;
1826 else {
1827 timeout = t.tv_sec;
1828 val2 = t.tv_nsec;
1832 * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
1834 if (op == FUTEX_REQUEUE || op == FUTEX_CMP_REQUEUE)
1835 val2 = (u32) (unsigned long) utime;
1837 return do_futex(uaddr, op, val, timeout, uaddr2, val2, val3);
1840 static int futexfs_get_sb(struct file_system_type *fs_type,
1841 int flags, const char *dev_name, void *data,
1842 struct vfsmount *mnt)
1844 return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA, mnt);
1847 static struct file_system_type futex_fs_type = {
1848 .name = "futexfs",
1849 .get_sb = futexfs_get_sb,
1850 .kill_sb = kill_anon_super,
1853 static int __init init(void)
1855 unsigned int i;
1857 register_filesystem(&futex_fs_type);
1858 futex_mnt = kern_mount(&futex_fs_type);
1860 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
1861 INIT_LIST_HEAD(&futex_queues[i].chain);
1862 spin_lock_init(&futex_queues[i].lock);
1864 return 0;
1866 __initcall(init);