2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
61 #include <asm/tlbflush.h>
65 static struct kmem_cache
*anon_vma_cachep
;
66 static struct kmem_cache
*anon_vma_chain_cachep
;
68 static inline struct anon_vma
*anon_vma_alloc(void)
70 struct anon_vma
*anon_vma
;
72 anon_vma
= kmem_cache_alloc(anon_vma_cachep
, GFP_KERNEL
);
74 atomic_set(&anon_vma
->refcount
, 1);
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
79 anon_vma
->root
= anon_vma
;
85 static inline void anon_vma_free(struct anon_vma
*anon_vma
)
87 VM_BUG_ON(atomic_read(&anon_vma
->refcount
));
90 * Synchronize against page_lock_anon_vma_read() such that
91 * we can safely hold the lock without the anon_vma getting
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
96 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
98 * page_lock_anon_vma_read() VS put_anon_vma()
99 * down_read_trylock() atomic_dec_and_test()
101 * atomic_read() rwsem_is_locked()
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
106 if (rwsem_is_locked(&anon_vma
->root
->rwsem
)) {
107 anon_vma_lock_write(anon_vma
);
108 anon_vma_unlock_write(anon_vma
);
111 kmem_cache_free(anon_vma_cachep
, anon_vma
);
114 static inline struct anon_vma_chain
*anon_vma_chain_alloc(gfp_t gfp
)
116 return kmem_cache_alloc(anon_vma_chain_cachep
, gfp
);
119 static void anon_vma_chain_free(struct anon_vma_chain
*anon_vma_chain
)
121 kmem_cache_free(anon_vma_chain_cachep
, anon_vma_chain
);
124 static void anon_vma_chain_link(struct vm_area_struct
*vma
,
125 struct anon_vma_chain
*avc
,
126 struct anon_vma
*anon_vma
)
129 avc
->anon_vma
= anon_vma
;
130 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
131 anon_vma_interval_tree_insert(avc
, &anon_vma
->rb_root
);
135 * anon_vma_prepare - attach an anon_vma to a memory region
136 * @vma: the memory region in question
138 * This makes sure the memory mapping described by 'vma' has
139 * an 'anon_vma' attached to it, so that we can associate the
140 * anonymous pages mapped into it with that anon_vma.
142 * The common case will be that we already have one, but if
143 * not we either need to find an adjacent mapping that we
144 * can re-use the anon_vma from (very common when the only
145 * reason for splitting a vma has been mprotect()), or we
146 * allocate a new one.
148 * Anon-vma allocations are very subtle, because we may have
149 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
150 * and that may actually touch the spinlock even in the newly
151 * allocated vma (it depends on RCU to make sure that the
152 * anon_vma isn't actually destroyed).
154 * As a result, we need to do proper anon_vma locking even
155 * for the new allocation. At the same time, we do not want
156 * to do any locking for the common case of already having
159 * This must be called with the mmap_sem held for reading.
161 int anon_vma_prepare(struct vm_area_struct
*vma
)
163 struct anon_vma
*anon_vma
= vma
->anon_vma
;
164 struct anon_vma_chain
*avc
;
167 if (unlikely(!anon_vma
)) {
168 struct mm_struct
*mm
= vma
->vm_mm
;
169 struct anon_vma
*allocated
;
171 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
175 anon_vma
= find_mergeable_anon_vma(vma
);
178 anon_vma
= anon_vma_alloc();
179 if (unlikely(!anon_vma
))
180 goto out_enomem_free_avc
;
181 allocated
= anon_vma
;
184 anon_vma_lock_write(anon_vma
);
185 /* page_table_lock to protect against threads */
186 spin_lock(&mm
->page_table_lock
);
187 if (likely(!vma
->anon_vma
)) {
188 vma
->anon_vma
= anon_vma
;
189 anon_vma_chain_link(vma
, avc
, anon_vma
);
193 spin_unlock(&mm
->page_table_lock
);
194 anon_vma_unlock_write(anon_vma
);
196 if (unlikely(allocated
))
197 put_anon_vma(allocated
);
199 anon_vma_chain_free(avc
);
204 anon_vma_chain_free(avc
);
210 * This is a useful helper function for locking the anon_vma root as
211 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
214 * Such anon_vma's should have the same root, so you'd expect to see
215 * just a single mutex_lock for the whole traversal.
217 static inline struct anon_vma
*lock_anon_vma_root(struct anon_vma
*root
, struct anon_vma
*anon_vma
)
219 struct anon_vma
*new_root
= anon_vma
->root
;
220 if (new_root
!= root
) {
221 if (WARN_ON_ONCE(root
))
222 up_write(&root
->rwsem
);
224 down_write(&root
->rwsem
);
229 static inline void unlock_anon_vma_root(struct anon_vma
*root
)
232 up_write(&root
->rwsem
);
236 * Attach the anon_vmas from src to dst.
237 * Returns 0 on success, -ENOMEM on failure.
239 int anon_vma_clone(struct vm_area_struct
*dst
, struct vm_area_struct
*src
)
241 struct anon_vma_chain
*avc
, *pavc
;
242 struct anon_vma
*root
= NULL
;
244 list_for_each_entry_reverse(pavc
, &src
->anon_vma_chain
, same_vma
) {
245 struct anon_vma
*anon_vma
;
247 avc
= anon_vma_chain_alloc(GFP_NOWAIT
| __GFP_NOWARN
);
248 if (unlikely(!avc
)) {
249 unlock_anon_vma_root(root
);
251 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
255 anon_vma
= pavc
->anon_vma
;
256 root
= lock_anon_vma_root(root
, anon_vma
);
257 anon_vma_chain_link(dst
, avc
, anon_vma
);
259 unlock_anon_vma_root(root
);
263 unlink_anon_vmas(dst
);
268 * Attach vma to its own anon_vma, as well as to the anon_vmas that
269 * the corresponding VMA in the parent process is attached to.
270 * Returns 0 on success, non-zero on failure.
272 int anon_vma_fork(struct vm_area_struct
*vma
, struct vm_area_struct
*pvma
)
274 struct anon_vma_chain
*avc
;
275 struct anon_vma
*anon_vma
;
277 /* Don't bother if the parent process has no anon_vma here. */
282 * First, attach the new VMA to the parent VMA's anon_vmas,
283 * so rmap can find non-COWed pages in child processes.
285 if (anon_vma_clone(vma
, pvma
))
288 /* Then add our own anon_vma. */
289 anon_vma
= anon_vma_alloc();
292 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
294 goto out_error_free_anon_vma
;
297 * The root anon_vma's spinlock is the lock actually used when we
298 * lock any of the anon_vmas in this anon_vma tree.
300 anon_vma
->root
= pvma
->anon_vma
->root
;
302 * With refcounts, an anon_vma can stay around longer than the
303 * process it belongs to. The root anon_vma needs to be pinned until
304 * this anon_vma is freed, because the lock lives in the root.
306 get_anon_vma(anon_vma
->root
);
307 /* Mark this anon_vma as the one where our new (COWed) pages go. */
308 vma
->anon_vma
= anon_vma
;
309 anon_vma_lock_write(anon_vma
);
310 anon_vma_chain_link(vma
, avc
, anon_vma
);
311 anon_vma_unlock_write(anon_vma
);
315 out_error_free_anon_vma
:
316 put_anon_vma(anon_vma
);
318 unlink_anon_vmas(vma
);
322 void unlink_anon_vmas(struct vm_area_struct
*vma
)
324 struct anon_vma_chain
*avc
, *next
;
325 struct anon_vma
*root
= NULL
;
328 * Unlink each anon_vma chained to the VMA. This list is ordered
329 * from newest to oldest, ensuring the root anon_vma gets freed last.
331 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
332 struct anon_vma
*anon_vma
= avc
->anon_vma
;
334 root
= lock_anon_vma_root(root
, anon_vma
);
335 anon_vma_interval_tree_remove(avc
, &anon_vma
->rb_root
);
338 * Leave empty anon_vmas on the list - we'll need
339 * to free them outside the lock.
341 if (RB_EMPTY_ROOT(&anon_vma
->rb_root
))
344 list_del(&avc
->same_vma
);
345 anon_vma_chain_free(avc
);
347 unlock_anon_vma_root(root
);
350 * Iterate the list once more, it now only contains empty and unlinked
351 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
352 * needing to write-acquire the anon_vma->root->rwsem.
354 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
355 struct anon_vma
*anon_vma
= avc
->anon_vma
;
357 put_anon_vma(anon_vma
);
359 list_del(&avc
->same_vma
);
360 anon_vma_chain_free(avc
);
364 static void anon_vma_ctor(void *data
)
366 struct anon_vma
*anon_vma
= data
;
368 init_rwsem(&anon_vma
->rwsem
);
369 atomic_set(&anon_vma
->refcount
, 0);
370 anon_vma
->rb_root
= RB_ROOT
;
373 void __init
anon_vma_init(void)
375 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
376 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
377 anon_vma_chain_cachep
= KMEM_CACHE(anon_vma_chain
, SLAB_PANIC
);
381 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
383 * Since there is no serialization what so ever against page_remove_rmap()
384 * the best this function can do is return a locked anon_vma that might
385 * have been relevant to this page.
387 * The page might have been remapped to a different anon_vma or the anon_vma
388 * returned may already be freed (and even reused).
390 * In case it was remapped to a different anon_vma, the new anon_vma will be a
391 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
392 * ensure that any anon_vma obtained from the page will still be valid for as
393 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
395 * All users of this function must be very careful when walking the anon_vma
396 * chain and verify that the page in question is indeed mapped in it
397 * [ something equivalent to page_mapped_in_vma() ].
399 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
400 * that the anon_vma pointer from page->mapping is valid if there is a
401 * mapcount, we can dereference the anon_vma after observing those.
403 struct anon_vma
*page_get_anon_vma(struct page
*page
)
405 struct anon_vma
*anon_vma
= NULL
;
406 unsigned long anon_mapping
;
409 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
410 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
412 if (!page_mapped(page
))
415 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
416 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
422 * If this page is still mapped, then its anon_vma cannot have been
423 * freed. But if it has been unmapped, we have no security against the
424 * anon_vma structure being freed and reused (for another anon_vma:
425 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
426 * above cannot corrupt).
428 if (!page_mapped(page
)) {
429 put_anon_vma(anon_vma
);
439 * Similar to page_get_anon_vma() except it locks the anon_vma.
441 * Its a little more complex as it tries to keep the fast path to a single
442 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
443 * reference like with page_get_anon_vma() and then block on the mutex.
445 struct anon_vma
*page_lock_anon_vma_read(struct page
*page
)
447 struct anon_vma
*anon_vma
= NULL
;
448 struct anon_vma
*root_anon_vma
;
449 unsigned long anon_mapping
;
452 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
453 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
455 if (!page_mapped(page
))
458 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
459 root_anon_vma
= ACCESS_ONCE(anon_vma
->root
);
460 if (down_read_trylock(&root_anon_vma
->rwsem
)) {
462 * If the page is still mapped, then this anon_vma is still
463 * its anon_vma, and holding the mutex ensures that it will
464 * not go away, see anon_vma_free().
466 if (!page_mapped(page
)) {
467 up_read(&root_anon_vma
->rwsem
);
473 /* trylock failed, we got to sleep */
474 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
479 if (!page_mapped(page
)) {
480 put_anon_vma(anon_vma
);
485 /* we pinned the anon_vma, its safe to sleep */
487 anon_vma_lock_read(anon_vma
);
489 if (atomic_dec_and_test(&anon_vma
->refcount
)) {
491 * Oops, we held the last refcount, release the lock
492 * and bail -- can't simply use put_anon_vma() because
493 * we'll deadlock on the anon_vma_lock_write() recursion.
495 anon_vma_unlock_read(anon_vma
);
496 __put_anon_vma(anon_vma
);
507 void page_unlock_anon_vma_read(struct anon_vma
*anon_vma
)
509 anon_vma_unlock_read(anon_vma
);
513 * At what user virtual address is page expected in @vma?
515 static inline unsigned long
516 __vma_address(struct page
*page
, struct vm_area_struct
*vma
)
518 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
520 if (unlikely(is_vm_hugetlb_page(vma
)))
521 pgoff
= page
->index
<< huge_page_order(page_hstate(page
));
523 return vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
527 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
529 unsigned long address
= __vma_address(page
, vma
);
531 /* page should be within @vma mapping range */
532 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
538 * At what user virtual address is page expected in vma?
539 * Caller should check the page is actually part of the vma.
541 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
543 unsigned long address
;
544 if (PageAnon(page
)) {
545 struct anon_vma
*page__anon_vma
= page_anon_vma(page
);
547 * Note: swapoff's unuse_vma() is more efficient with this
548 * check, and needs it to match anon_vma when KSM is active.
550 if (!vma
->anon_vma
|| !page__anon_vma
||
551 vma
->anon_vma
->root
!= page__anon_vma
->root
)
553 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
555 vma
->vm_file
->f_mapping
!= page
->mapping
)
559 address
= __vma_address(page
, vma
);
560 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
565 pmd_t
*mm_find_pmd(struct mm_struct
*mm
, unsigned long address
)
571 pgd
= pgd_offset(mm
, address
);
572 if (!pgd_present(*pgd
))
575 pud
= pud_offset(pgd
, address
);
576 if (!pud_present(*pud
))
579 pmd
= pmd_offset(pud
, address
);
580 if (!pmd_present(*pmd
))
587 * Check that @page is mapped at @address into @mm.
589 * If @sync is false, page_check_address may perform a racy check to avoid
590 * the page table lock when the pte is not present (helpful when reclaiming
591 * highly shared pages).
593 * On success returns with pte mapped and locked.
595 pte_t
*__page_check_address(struct page
*page
, struct mm_struct
*mm
,
596 unsigned long address
, spinlock_t
**ptlp
, int sync
)
602 if (unlikely(PageHuge(page
))) {
603 /* when pud is not present, pte will be NULL */
604 pte
= huge_pte_offset(mm
, address
);
608 ptl
= huge_pte_lockptr(page_hstate(page
), mm
, pte
);
612 pmd
= mm_find_pmd(mm
, address
);
616 if (pmd_trans_huge(*pmd
))
619 pte
= pte_offset_map(pmd
, address
);
620 /* Make a quick check before getting the lock */
621 if (!sync
&& !pte_present(*pte
)) {
626 ptl
= pte_lockptr(mm
, pmd
);
629 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
633 pte_unmap_unlock(pte
, ptl
);
638 * page_mapped_in_vma - check whether a page is really mapped in a VMA
639 * @page: the page to test
640 * @vma: the VMA to test
642 * Returns 1 if the page is mapped into the page tables of the VMA, 0
643 * if the page is not mapped into the page tables of this VMA. Only
644 * valid for normal file or anonymous VMAs.
646 int page_mapped_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
648 unsigned long address
;
652 address
= __vma_address(page
, vma
);
653 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
655 pte
= page_check_address(page
, vma
->vm_mm
, address
, &ptl
, 1);
656 if (!pte
) /* the page is not in this mm */
658 pte_unmap_unlock(pte
, ptl
);
663 struct page_referenced_arg
{
666 unsigned long vm_flags
;
667 struct mem_cgroup
*memcg
;
670 * arg: page_referenced_arg will be passed
672 int page_referenced_one(struct page
*page
, struct vm_area_struct
*vma
,
673 unsigned long address
, void *arg
)
675 struct mm_struct
*mm
= vma
->vm_mm
;
678 struct page_referenced_arg
*pra
= arg
;
680 if (unlikely(PageTransHuge(page
))) {
684 * rmap might return false positives; we must filter
685 * these out using page_check_address_pmd().
687 pmd
= page_check_address_pmd(page
, mm
, address
,
688 PAGE_CHECK_ADDRESS_PMD_FLAG
, &ptl
);
692 if (vma
->vm_flags
& VM_LOCKED
) {
694 pra
->vm_flags
|= VM_LOCKED
;
695 return SWAP_FAIL
; /* To break the loop */
698 /* go ahead even if the pmd is pmd_trans_splitting() */
699 if (pmdp_clear_flush_young_notify(vma
, address
, pmd
))
706 * rmap might return false positives; we must filter
707 * these out using page_check_address().
709 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
713 if (vma
->vm_flags
& VM_LOCKED
) {
714 pte_unmap_unlock(pte
, ptl
);
715 pra
->vm_flags
|= VM_LOCKED
;
716 return SWAP_FAIL
; /* To break the loop */
719 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
721 * Don't treat a reference through a sequentially read
722 * mapping as such. If the page has been used in
723 * another mapping, we will catch it; if this other
724 * mapping is already gone, the unmap path will have
725 * set PG_referenced or activated the page.
727 if (likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
730 pte_unmap_unlock(pte
, ptl
);
735 pra
->vm_flags
|= vma
->vm_flags
;
740 return SWAP_SUCCESS
; /* To break the loop */
745 static bool invalid_page_referenced_vma(struct vm_area_struct
*vma
, void *arg
)
747 struct page_referenced_arg
*pra
= arg
;
748 struct mem_cgroup
*memcg
= pra
->memcg
;
750 if (!mm_match_cgroup(vma
->vm_mm
, memcg
))
757 * page_referenced - test if the page was referenced
758 * @page: the page to test
759 * @is_locked: caller holds lock on the page
760 * @memcg: target memory cgroup
761 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
763 * Quick test_and_clear_referenced for all mappings to a page,
764 * returns the number of ptes which referenced the page.
766 int page_referenced(struct page
*page
,
768 struct mem_cgroup
*memcg
,
769 unsigned long *vm_flags
)
773 struct page_referenced_arg pra
= {
774 .mapcount
= page_mapcount(page
),
777 struct rmap_walk_control rwc
= {
778 .rmap_one
= page_referenced_one
,
780 .anon_lock
= page_lock_anon_vma_read
,
784 if (!page_mapped(page
))
787 if (!page_rmapping(page
))
790 if (!is_locked
&& (!PageAnon(page
) || PageKsm(page
))) {
791 we_locked
= trylock_page(page
);
797 * If we are reclaiming on behalf of a cgroup, skip
798 * counting on behalf of references from different
802 rwc
.invalid_vma
= invalid_page_referenced_vma
;
805 ret
= rmap_walk(page
, &rwc
);
806 *vm_flags
= pra
.vm_flags
;
811 return pra
.referenced
;
814 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
,
815 unsigned long address
, void *arg
)
817 struct mm_struct
*mm
= vma
->vm_mm
;
823 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
827 if (pte_dirty(*pte
) || pte_write(*pte
)) {
830 flush_cache_page(vma
, address
, pte_pfn(*pte
));
831 entry
= ptep_clear_flush(vma
, address
, pte
);
832 entry
= pte_wrprotect(entry
);
833 entry
= pte_mkclean(entry
);
834 set_pte_at(mm
, address
, pte
, entry
);
838 pte_unmap_unlock(pte
, ptl
);
841 mmu_notifier_invalidate_page(mm
, address
);
848 static bool invalid_mkclean_vma(struct vm_area_struct
*vma
, void *arg
)
850 if (vma
->vm_flags
& VM_SHARED
)
856 int page_mkclean(struct page
*page
)
859 struct address_space
*mapping
;
860 struct rmap_walk_control rwc
= {
861 .arg
= (void *)&cleaned
,
862 .rmap_one
= page_mkclean_one
,
863 .invalid_vma
= invalid_mkclean_vma
,
866 BUG_ON(!PageLocked(page
));
868 if (!page_mapped(page
))
871 mapping
= page_mapping(page
);
875 rmap_walk(page
, &rwc
);
879 EXPORT_SYMBOL_GPL(page_mkclean
);
882 * page_move_anon_rmap - move a page to our anon_vma
883 * @page: the page to move to our anon_vma
884 * @vma: the vma the page belongs to
885 * @address: the user virtual address mapped
887 * When a page belongs exclusively to one process after a COW event,
888 * that page can be moved into the anon_vma that belongs to just that
889 * process, so the rmap code will not search the parent or sibling
892 void page_move_anon_rmap(struct page
*page
,
893 struct vm_area_struct
*vma
, unsigned long address
)
895 struct anon_vma
*anon_vma
= vma
->anon_vma
;
897 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
898 VM_BUG_ON(!anon_vma
);
899 VM_BUG_ON_PAGE(page
->index
!= linear_page_index(vma
, address
), page
);
901 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
902 page
->mapping
= (struct address_space
*) anon_vma
;
906 * __page_set_anon_rmap - set up new anonymous rmap
907 * @page: Page to add to rmap
908 * @vma: VM area to add page to.
909 * @address: User virtual address of the mapping
910 * @exclusive: the page is exclusively owned by the current process
912 static void __page_set_anon_rmap(struct page
*page
,
913 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
915 struct anon_vma
*anon_vma
= vma
->anon_vma
;
923 * If the page isn't exclusively mapped into this vma,
924 * we must use the _oldest_ possible anon_vma for the
928 anon_vma
= anon_vma
->root
;
930 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
931 page
->mapping
= (struct address_space
*) anon_vma
;
932 page
->index
= linear_page_index(vma
, address
);
936 * __page_check_anon_rmap - sanity check anonymous rmap addition
937 * @page: the page to add the mapping to
938 * @vma: the vm area in which the mapping is added
939 * @address: the user virtual address mapped
941 static void __page_check_anon_rmap(struct page
*page
,
942 struct vm_area_struct
*vma
, unsigned long address
)
944 #ifdef CONFIG_DEBUG_VM
946 * The page's anon-rmap details (mapping and index) are guaranteed to
947 * be set up correctly at this point.
949 * We have exclusion against page_add_anon_rmap because the caller
950 * always holds the page locked, except if called from page_dup_rmap,
951 * in which case the page is already known to be setup.
953 * We have exclusion against page_add_new_anon_rmap because those pages
954 * are initially only visible via the pagetables, and the pte is locked
955 * over the call to page_add_new_anon_rmap.
957 BUG_ON(page_anon_vma(page
)->root
!= vma
->anon_vma
->root
);
958 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
963 * page_add_anon_rmap - add pte mapping to an anonymous page
964 * @page: the page to add the mapping to
965 * @vma: the vm area in which the mapping is added
966 * @address: the user virtual address mapped
968 * The caller needs to hold the pte lock, and the page must be locked in
969 * the anon_vma case: to serialize mapping,index checking after setting,
970 * and to ensure that PageAnon is not being upgraded racily to PageKsm
971 * (but PageKsm is never downgraded to PageAnon).
973 void page_add_anon_rmap(struct page
*page
,
974 struct vm_area_struct
*vma
, unsigned long address
)
976 do_page_add_anon_rmap(page
, vma
, address
, 0);
980 * Special version of the above for do_swap_page, which often runs
981 * into pages that are exclusively owned by the current process.
982 * Everybody else should continue to use page_add_anon_rmap above.
984 void do_page_add_anon_rmap(struct page
*page
,
985 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
987 int first
= atomic_inc_and_test(&page
->_mapcount
);
989 if (PageTransHuge(page
))
990 __inc_zone_page_state(page
,
991 NR_ANON_TRANSPARENT_HUGEPAGES
);
992 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
993 hpage_nr_pages(page
));
995 if (unlikely(PageKsm(page
)))
998 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
999 /* address might be in next vma when migration races vma_adjust */
1001 __page_set_anon_rmap(page
, vma
, address
, exclusive
);
1003 __page_check_anon_rmap(page
, vma
, address
);
1007 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1008 * @page: the page to add the mapping to
1009 * @vma: the vm area in which the mapping is added
1010 * @address: the user virtual address mapped
1012 * Same as page_add_anon_rmap but must only be called on *new* pages.
1013 * This means the inc-and-test can be bypassed.
1014 * Page does not have to be locked.
1016 void page_add_new_anon_rmap(struct page
*page
,
1017 struct vm_area_struct
*vma
, unsigned long address
)
1019 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1020 SetPageSwapBacked(page
);
1021 atomic_set(&page
->_mapcount
, 0); /* increment count (starts at -1) */
1022 if (PageTransHuge(page
))
1023 __inc_zone_page_state(page
, NR_ANON_TRANSPARENT_HUGEPAGES
);
1024 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1025 hpage_nr_pages(page
));
1026 __page_set_anon_rmap(page
, vma
, address
, 1);
1027 if (!mlocked_vma_newpage(vma
, page
)) {
1028 SetPageActive(page
);
1029 lru_cache_add(page
);
1031 add_page_to_unevictable_list(page
);
1035 * page_add_file_rmap - add pte mapping to a file page
1036 * @page: the page to add the mapping to
1038 * The caller needs to hold the pte lock.
1040 void page_add_file_rmap(struct page
*page
)
1043 unsigned long flags
;
1045 mem_cgroup_begin_update_page_stat(page
, &locked
, &flags
);
1046 if (atomic_inc_and_test(&page
->_mapcount
)) {
1047 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
1048 mem_cgroup_inc_page_stat(page
, MEM_CGROUP_STAT_FILE_MAPPED
);
1050 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1054 * page_remove_rmap - take down pte mapping from a page
1055 * @page: page to remove mapping from
1057 * The caller needs to hold the pte lock.
1059 void page_remove_rmap(struct page
*page
)
1061 bool anon
= PageAnon(page
);
1063 unsigned long flags
;
1066 * The anon case has no mem_cgroup page_stat to update; but may
1067 * uncharge_page() below, where the lock ordering can deadlock if
1068 * we hold the lock against page_stat move: so avoid it on anon.
1071 mem_cgroup_begin_update_page_stat(page
, &locked
, &flags
);
1073 /* page still mapped by someone else? */
1074 if (!atomic_add_negative(-1, &page
->_mapcount
))
1078 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1079 * and not charged by memcg for now.
1081 if (unlikely(PageHuge(page
)))
1084 mem_cgroup_uncharge_page(page
);
1085 if (PageTransHuge(page
))
1086 __dec_zone_page_state(page
,
1087 NR_ANON_TRANSPARENT_HUGEPAGES
);
1088 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1089 -hpage_nr_pages(page
));
1091 __dec_zone_page_state(page
, NR_FILE_MAPPED
);
1092 mem_cgroup_dec_page_stat(page
, MEM_CGROUP_STAT_FILE_MAPPED
);
1093 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1095 if (unlikely(PageMlocked(page
)))
1096 clear_page_mlock(page
);
1098 * It would be tidy to reset the PageAnon mapping here,
1099 * but that might overwrite a racing page_add_anon_rmap
1100 * which increments mapcount after us but sets mapping
1101 * before us: so leave the reset to free_hot_cold_page,
1102 * and remember that it's only reliable while mapped.
1103 * Leaving it set also helps swapoff to reinstate ptes
1104 * faster for those pages still in swapcache.
1109 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1113 * @arg: enum ttu_flags will be passed to this argument
1115 int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
1116 unsigned long address
, void *arg
)
1118 struct mm_struct
*mm
= vma
->vm_mm
;
1122 int ret
= SWAP_AGAIN
;
1123 enum ttu_flags flags
= (enum ttu_flags
)arg
;
1125 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
1130 * If the page is mlock()d, we cannot swap it out.
1131 * If it's recently referenced (perhaps page_referenced
1132 * skipped over this mm) then we should reactivate it.
1134 if (!(flags
& TTU_IGNORE_MLOCK
)) {
1135 if (vma
->vm_flags
& VM_LOCKED
)
1138 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
1141 if (!(flags
& TTU_IGNORE_ACCESS
)) {
1142 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
1148 /* Nuke the page table entry. */
1149 flush_cache_page(vma
, address
, page_to_pfn(page
));
1150 pteval
= ptep_clear_flush(vma
, address
, pte
);
1152 /* Move the dirty bit to the physical page now the pte is gone. */
1153 if (pte_dirty(pteval
))
1154 set_page_dirty(page
);
1156 /* Update high watermark before we lower rss */
1157 update_hiwater_rss(mm
);
1159 if (PageHWPoison(page
) && !(flags
& TTU_IGNORE_HWPOISON
)) {
1160 if (!PageHuge(page
)) {
1162 dec_mm_counter(mm
, MM_ANONPAGES
);
1164 dec_mm_counter(mm
, MM_FILEPAGES
);
1166 set_pte_at(mm
, address
, pte
,
1167 swp_entry_to_pte(make_hwpoison_entry(page
)));
1168 } else if (pte_unused(pteval
)) {
1170 * The guest indicated that the page content is of no
1171 * interest anymore. Simply discard the pte, vmscan
1172 * will take care of the rest.
1175 dec_mm_counter(mm
, MM_ANONPAGES
);
1177 dec_mm_counter(mm
, MM_FILEPAGES
);
1178 } else if (PageAnon(page
)) {
1179 swp_entry_t entry
= { .val
= page_private(page
) };
1182 if (PageSwapCache(page
)) {
1184 * Store the swap location in the pte.
1185 * See handle_pte_fault() ...
1187 if (swap_duplicate(entry
) < 0) {
1188 set_pte_at(mm
, address
, pte
, pteval
);
1192 if (list_empty(&mm
->mmlist
)) {
1193 spin_lock(&mmlist_lock
);
1194 if (list_empty(&mm
->mmlist
))
1195 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
1196 spin_unlock(&mmlist_lock
);
1198 dec_mm_counter(mm
, MM_ANONPAGES
);
1199 inc_mm_counter(mm
, MM_SWAPENTS
);
1200 } else if (IS_ENABLED(CONFIG_MIGRATION
)) {
1202 * Store the pfn of the page in a special migration
1203 * pte. do_swap_page() will wait until the migration
1204 * pte is removed and then restart fault handling.
1206 BUG_ON(TTU_ACTION(flags
) != TTU_MIGRATION
);
1207 entry
= make_migration_entry(page
, pte_write(pteval
));
1209 swp_pte
= swp_entry_to_pte(entry
);
1210 if (pte_soft_dirty(pteval
))
1211 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
1212 set_pte_at(mm
, address
, pte
, swp_pte
);
1213 BUG_ON(pte_file(*pte
));
1214 } else if (IS_ENABLED(CONFIG_MIGRATION
) &&
1215 (TTU_ACTION(flags
) == TTU_MIGRATION
)) {
1216 /* Establish migration entry for a file page */
1218 entry
= make_migration_entry(page
, pte_write(pteval
));
1219 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
1221 dec_mm_counter(mm
, MM_FILEPAGES
);
1223 page_remove_rmap(page
);
1224 page_cache_release(page
);
1227 pte_unmap_unlock(pte
, ptl
);
1228 if (ret
!= SWAP_FAIL
)
1229 mmu_notifier_invalidate_page(mm
, address
);
1234 pte_unmap_unlock(pte
, ptl
);
1238 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1239 * unstable result and race. Plus, We can't wait here because
1240 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1241 * if trylock failed, the page remain in evictable lru and later
1242 * vmscan could retry to move the page to unevictable lru if the
1243 * page is actually mlocked.
1245 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1246 if (vma
->vm_flags
& VM_LOCKED
) {
1247 mlock_vma_page(page
);
1250 up_read(&vma
->vm_mm
->mmap_sem
);
1256 * objrmap doesn't work for nonlinear VMAs because the assumption that
1257 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1258 * Consequently, given a particular page and its ->index, we cannot locate the
1259 * ptes which are mapping that page without an exhaustive linear search.
1261 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1262 * maps the file to which the target page belongs. The ->vm_private_data field
1263 * holds the current cursor into that scan. Successive searches will circulate
1264 * around the vma's virtual address space.
1266 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1267 * more scanning pressure is placed against them as well. Eventually pages
1268 * will become fully unmapped and are eligible for eviction.
1270 * For very sparsely populated VMAs this is a little inefficient - chances are
1271 * there there won't be many ptes located within the scan cluster. In this case
1272 * maybe we could scan further - to the end of the pte page, perhaps.
1274 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1275 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1276 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1277 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1279 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1280 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1282 static int try_to_unmap_cluster(unsigned long cursor
, unsigned int *mapcount
,
1283 struct vm_area_struct
*vma
, struct page
*check_page
)
1285 struct mm_struct
*mm
= vma
->vm_mm
;
1291 unsigned long address
;
1292 unsigned long mmun_start
; /* For mmu_notifiers */
1293 unsigned long mmun_end
; /* For mmu_notifiers */
1295 int ret
= SWAP_AGAIN
;
1298 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
1299 end
= address
+ CLUSTER_SIZE
;
1300 if (address
< vma
->vm_start
)
1301 address
= vma
->vm_start
;
1302 if (end
> vma
->vm_end
)
1305 pmd
= mm_find_pmd(mm
, address
);
1309 mmun_start
= address
;
1311 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1314 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1315 * keep the sem while scanning the cluster for mlocking pages.
1317 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1318 locked_vma
= (vma
->vm_flags
& VM_LOCKED
);
1320 up_read(&vma
->vm_mm
->mmap_sem
); /* don't need it */
1323 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1325 /* Update high watermark before we lower rss */
1326 update_hiwater_rss(mm
);
1328 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
1329 if (!pte_present(*pte
))
1331 page
= vm_normal_page(vma
, address
, *pte
);
1332 BUG_ON(!page
|| PageAnon(page
));
1335 mlock_vma_page(page
); /* no-op if already mlocked */
1336 if (page
== check_page
)
1338 continue; /* don't unmap */
1341 if (ptep_clear_flush_young_notify(vma
, address
, pte
))
1344 /* Nuke the page table entry. */
1345 flush_cache_page(vma
, address
, pte_pfn(*pte
));
1346 pteval
= ptep_clear_flush(vma
, address
, pte
);
1348 /* If nonlinear, store the file page offset in the pte. */
1349 if (page
->index
!= linear_page_index(vma
, address
)) {
1350 pte_t ptfile
= pgoff_to_pte(page
->index
);
1351 if (pte_soft_dirty(pteval
))
1352 pte_file_mksoft_dirty(ptfile
);
1353 set_pte_at(mm
, address
, pte
, ptfile
);
1356 /* Move the dirty bit to the physical page now the pte is gone. */
1357 if (pte_dirty(pteval
))
1358 set_page_dirty(page
);
1360 page_remove_rmap(page
);
1361 page_cache_release(page
);
1362 dec_mm_counter(mm
, MM_FILEPAGES
);
1365 pte_unmap_unlock(pte
- 1, ptl
);
1366 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1368 up_read(&vma
->vm_mm
->mmap_sem
);
1372 static int try_to_unmap_nonlinear(struct page
*page
,
1373 struct address_space
*mapping
, void *arg
)
1375 struct vm_area_struct
*vma
;
1376 int ret
= SWAP_AGAIN
;
1377 unsigned long cursor
;
1378 unsigned long max_nl_cursor
= 0;
1379 unsigned long max_nl_size
= 0;
1380 unsigned int mapcount
;
1382 list_for_each_entry(vma
,
1383 &mapping
->i_mmap_nonlinear
, shared
.nonlinear
) {
1385 cursor
= (unsigned long) vma
->vm_private_data
;
1386 if (cursor
> max_nl_cursor
)
1387 max_nl_cursor
= cursor
;
1388 cursor
= vma
->vm_end
- vma
->vm_start
;
1389 if (cursor
> max_nl_size
)
1390 max_nl_size
= cursor
;
1393 if (max_nl_size
== 0) { /* all nonlinears locked or reserved ? */
1398 * We don't try to search for this page in the nonlinear vmas,
1399 * and page_referenced wouldn't have found it anyway. Instead
1400 * just walk the nonlinear vmas trying to age and unmap some.
1401 * The mapcount of the page we came in with is irrelevant,
1402 * but even so use it as a guide to how hard we should try?
1404 mapcount
= page_mapcount(page
);
1410 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
1411 if (max_nl_cursor
== 0)
1412 max_nl_cursor
= CLUSTER_SIZE
;
1415 list_for_each_entry(vma
,
1416 &mapping
->i_mmap_nonlinear
, shared
.nonlinear
) {
1418 cursor
= (unsigned long) vma
->vm_private_data
;
1419 while (cursor
< max_nl_cursor
&&
1420 cursor
< vma
->vm_end
- vma
->vm_start
) {
1421 if (try_to_unmap_cluster(cursor
, &mapcount
,
1422 vma
, page
) == SWAP_MLOCK
)
1424 cursor
+= CLUSTER_SIZE
;
1425 vma
->vm_private_data
= (void *) cursor
;
1426 if ((int)mapcount
<= 0)
1429 vma
->vm_private_data
= (void *) max_nl_cursor
;
1432 max_nl_cursor
+= CLUSTER_SIZE
;
1433 } while (max_nl_cursor
<= max_nl_size
);
1436 * Don't loop forever (perhaps all the remaining pages are
1437 * in locked vmas). Reset cursor on all unreserved nonlinear
1438 * vmas, now forgetting on which ones it had fallen behind.
1440 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.nonlinear
)
1441 vma
->vm_private_data
= NULL
;
1446 bool is_vma_temporary_stack(struct vm_area_struct
*vma
)
1448 int maybe_stack
= vma
->vm_flags
& (VM_GROWSDOWN
| VM_GROWSUP
);
1453 if ((vma
->vm_flags
& VM_STACK_INCOMPLETE_SETUP
) ==
1454 VM_STACK_INCOMPLETE_SETUP
)
1460 static bool invalid_migration_vma(struct vm_area_struct
*vma
, void *arg
)
1462 return is_vma_temporary_stack(vma
);
1465 static int page_not_mapped(struct page
*page
)
1467 return !page_mapped(page
);
1471 * try_to_unmap - try to remove all page table mappings to a page
1472 * @page: the page to get unmapped
1473 * @flags: action and flags
1475 * Tries to remove all the page table entries which are mapping this
1476 * page, used in the pageout path. Caller must hold the page lock.
1477 * Return values are:
1479 * SWAP_SUCCESS - we succeeded in removing all mappings
1480 * SWAP_AGAIN - we missed a mapping, try again later
1481 * SWAP_FAIL - the page is unswappable
1482 * SWAP_MLOCK - page is mlocked.
1484 int try_to_unmap(struct page
*page
, enum ttu_flags flags
)
1487 struct rmap_walk_control rwc
= {
1488 .rmap_one
= try_to_unmap_one
,
1489 .arg
= (void *)flags
,
1490 .done
= page_not_mapped
,
1491 .file_nonlinear
= try_to_unmap_nonlinear
,
1492 .anon_lock
= page_lock_anon_vma_read
,
1495 VM_BUG_ON_PAGE(!PageHuge(page
) && PageTransHuge(page
), page
);
1498 * During exec, a temporary VMA is setup and later moved.
1499 * The VMA is moved under the anon_vma lock but not the
1500 * page tables leading to a race where migration cannot
1501 * find the migration ptes. Rather than increasing the
1502 * locking requirements of exec(), migration skips
1503 * temporary VMAs until after exec() completes.
1505 if (flags
& TTU_MIGRATION
&& !PageKsm(page
) && PageAnon(page
))
1506 rwc
.invalid_vma
= invalid_migration_vma
;
1508 ret
= rmap_walk(page
, &rwc
);
1510 if (ret
!= SWAP_MLOCK
&& !page_mapped(page
))
1516 * try_to_munlock - try to munlock a page
1517 * @page: the page to be munlocked
1519 * Called from munlock code. Checks all of the VMAs mapping the page
1520 * to make sure nobody else has this page mlocked. The page will be
1521 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1523 * Return values are:
1525 * SWAP_AGAIN - no vma is holding page mlocked, or,
1526 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1527 * SWAP_FAIL - page cannot be located at present
1528 * SWAP_MLOCK - page is now mlocked.
1530 int try_to_munlock(struct page
*page
)
1533 struct rmap_walk_control rwc
= {
1534 .rmap_one
= try_to_unmap_one
,
1535 .arg
= (void *)TTU_MUNLOCK
,
1536 .done
= page_not_mapped
,
1538 * We don't bother to try to find the munlocked page in
1539 * nonlinears. It's costly. Instead, later, page reclaim logic
1540 * may call try_to_unmap() and recover PG_mlocked lazily.
1542 .file_nonlinear
= NULL
,
1543 .anon_lock
= page_lock_anon_vma_read
,
1547 VM_BUG_ON_PAGE(!PageLocked(page
) || PageLRU(page
), page
);
1549 ret
= rmap_walk(page
, &rwc
);
1553 void __put_anon_vma(struct anon_vma
*anon_vma
)
1555 struct anon_vma
*root
= anon_vma
->root
;
1557 if (root
!= anon_vma
&& atomic_dec_and_test(&root
->refcount
))
1558 anon_vma_free(root
);
1560 anon_vma_free(anon_vma
);
1563 static struct anon_vma
*rmap_walk_anon_lock(struct page
*page
,
1564 struct rmap_walk_control
*rwc
)
1566 struct anon_vma
*anon_vma
;
1569 return rwc
->anon_lock(page
);
1572 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1573 * because that depends on page_mapped(); but not all its usages
1574 * are holding mmap_sem. Users without mmap_sem are required to
1575 * take a reference count to prevent the anon_vma disappearing
1577 anon_vma
= page_anon_vma(page
);
1581 anon_vma_lock_read(anon_vma
);
1586 * rmap_walk_anon - do something to anonymous page using the object-based
1588 * @page: the page to be handled
1589 * @rwc: control variable according to each walk type
1591 * Find all the mappings of a page using the mapping pointer and the vma chains
1592 * contained in the anon_vma struct it points to.
1594 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1595 * where the page was found will be held for write. So, we won't recheck
1596 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1599 static int rmap_walk_anon(struct page
*page
, struct rmap_walk_control
*rwc
)
1601 struct anon_vma
*anon_vma
;
1602 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1603 struct anon_vma_chain
*avc
;
1604 int ret
= SWAP_AGAIN
;
1606 anon_vma
= rmap_walk_anon_lock(page
, rwc
);
1610 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1611 struct vm_area_struct
*vma
= avc
->vma
;
1612 unsigned long address
= vma_address(page
, vma
);
1614 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
1617 ret
= rwc
->rmap_one(page
, vma
, address
, rwc
->arg
);
1618 if (ret
!= SWAP_AGAIN
)
1620 if (rwc
->done
&& rwc
->done(page
))
1623 anon_vma_unlock_read(anon_vma
);
1628 * rmap_walk_file - do something to file page using the object-based rmap method
1629 * @page: the page to be handled
1630 * @rwc: control variable according to each walk type
1632 * Find all the mappings of a page using the mapping pointer and the vma chains
1633 * contained in the address_space struct it points to.
1635 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1636 * where the page was found will be held for write. So, we won't recheck
1637 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1640 static int rmap_walk_file(struct page
*page
, struct rmap_walk_control
*rwc
)
1642 struct address_space
*mapping
= page
->mapping
;
1643 pgoff_t pgoff
= page
->index
<< compound_order(page
);
1644 struct vm_area_struct
*vma
;
1645 int ret
= SWAP_AGAIN
;
1648 * The page lock not only makes sure that page->mapping cannot
1649 * suddenly be NULLified by truncation, it makes sure that the
1650 * structure at mapping cannot be freed and reused yet,
1651 * so we can safely take mapping->i_mmap_mutex.
1653 VM_BUG_ON(!PageLocked(page
));
1657 mutex_lock(&mapping
->i_mmap_mutex
);
1658 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1659 unsigned long address
= vma_address(page
, vma
);
1661 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
1664 ret
= rwc
->rmap_one(page
, vma
, address
, rwc
->arg
);
1665 if (ret
!= SWAP_AGAIN
)
1667 if (rwc
->done
&& rwc
->done(page
))
1671 if (!rwc
->file_nonlinear
)
1674 if (list_empty(&mapping
->i_mmap_nonlinear
))
1677 ret
= rwc
->file_nonlinear(page
, mapping
, rwc
->arg
);
1680 mutex_unlock(&mapping
->i_mmap_mutex
);
1684 int rmap_walk(struct page
*page
, struct rmap_walk_control
*rwc
)
1686 if (unlikely(PageKsm(page
)))
1687 return rmap_walk_ksm(page
, rwc
);
1688 else if (PageAnon(page
))
1689 return rmap_walk_anon(page
, rwc
);
1691 return rmap_walk_file(page
, rwc
);
1694 #ifdef CONFIG_HUGETLB_PAGE
1696 * The following three functions are for anonymous (private mapped) hugepages.
1697 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1698 * and no lru code, because we handle hugepages differently from common pages.
1700 static void __hugepage_set_anon_rmap(struct page
*page
,
1701 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1703 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1710 anon_vma
= anon_vma
->root
;
1712 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1713 page
->mapping
= (struct address_space
*) anon_vma
;
1714 page
->index
= linear_page_index(vma
, address
);
1717 void hugepage_add_anon_rmap(struct page
*page
,
1718 struct vm_area_struct
*vma
, unsigned long address
)
1720 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1723 BUG_ON(!PageLocked(page
));
1725 /* address might be in next vma when migration races vma_adjust */
1726 first
= atomic_inc_and_test(&page
->_mapcount
);
1728 __hugepage_set_anon_rmap(page
, vma
, address
, 0);
1731 void hugepage_add_new_anon_rmap(struct page
*page
,
1732 struct vm_area_struct
*vma
, unsigned long address
)
1734 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1735 atomic_set(&page
->_mapcount
, 0);
1736 __hugepage_set_anon_rmap(page
, vma
, address
, 1);
1738 #endif /* CONFIG_HUGETLB_PAGE */