2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly
;
113 unsigned int sysctl_net_busy_poll __read_mostly
;
116 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
);
117 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
);
118 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
120 static int sock_close(struct inode
*inode
, struct file
*file
);
121 static unsigned int sock_poll(struct file
*file
,
122 struct poll_table_struct
*wait
);
123 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
125 static long compat_sock_ioctl(struct file
*file
,
126 unsigned int cmd
, unsigned long arg
);
128 static int sock_fasync(int fd
, struct file
*filp
, int on
);
129 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
130 int offset
, size_t size
, loff_t
*ppos
, int more
);
131 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
132 struct pipe_inode_info
*pipe
, size_t len
,
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
140 static const struct file_operations socket_file_ops
= {
141 .owner
= THIS_MODULE
,
143 .read_iter
= sock_read_iter
,
144 .write_iter
= sock_write_iter
,
146 .unlocked_ioctl
= sock_ioctl
,
148 .compat_ioctl
= compat_sock_ioctl
,
151 .release
= sock_close
,
152 .fasync
= sock_fasync
,
153 .sendpage
= sock_sendpage
,
154 .splice_write
= generic_splice_sendpage
,
155 .splice_read
= sock_splice_read
,
159 * The protocol list. Each protocol is registered in here.
162 static DEFINE_SPINLOCK(net_family_lock
);
163 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
166 * Statistics counters of the socket lists
169 static DEFINE_PER_CPU(int, sockets_in_use
);
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
188 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr_storage
*kaddr
)
190 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
194 if (copy_from_user(kaddr
, uaddr
, ulen
))
196 return audit_sockaddr(ulen
, kaddr
);
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
216 static int move_addr_to_user(struct sockaddr_storage
*kaddr
, int klen
,
217 void __user
*uaddr
, int __user
*ulen
)
222 BUG_ON(klen
> sizeof(struct sockaddr_storage
));
223 err
= get_user(len
, ulen
);
231 if (audit_sockaddr(klen
, kaddr
))
233 if (copy_to_user(uaddr
, kaddr
, len
))
237 * "fromlen shall refer to the value before truncation.."
240 return __put_user(klen
, ulen
);
243 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
245 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
247 struct socket_alloc
*ei
;
248 struct socket_wq
*wq
;
250 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
253 wq
= kmalloc(sizeof(*wq
), GFP_KERNEL
);
255 kmem_cache_free(sock_inode_cachep
, ei
);
258 init_waitqueue_head(&wq
->wait
);
259 wq
->fasync_list
= NULL
;
261 RCU_INIT_POINTER(ei
->socket
.wq
, wq
);
263 ei
->socket
.state
= SS_UNCONNECTED
;
264 ei
->socket
.flags
= 0;
265 ei
->socket
.ops
= NULL
;
266 ei
->socket
.sk
= NULL
;
267 ei
->socket
.file
= NULL
;
269 return &ei
->vfs_inode
;
272 static void sock_destroy_inode(struct inode
*inode
)
274 struct socket_alloc
*ei
;
275 struct socket_wq
*wq
;
277 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
278 wq
= rcu_dereference_protected(ei
->socket
.wq
, 1);
280 kmem_cache_free(sock_inode_cachep
, ei
);
283 static void init_once(void *foo
)
285 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
287 inode_init_once(&ei
->vfs_inode
);
290 static void init_inodecache(void)
292 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc
),
295 (SLAB_HWCACHE_ALIGN
|
296 SLAB_RECLAIM_ACCOUNT
|
297 SLAB_MEM_SPREAD
| SLAB_ACCOUNT
),
299 BUG_ON(sock_inode_cachep
== NULL
);
302 static const struct super_operations sockfs_ops
= {
303 .alloc_inode
= sock_alloc_inode
,
304 .destroy_inode
= sock_destroy_inode
,
305 .statfs
= simple_statfs
,
309 * sockfs_dname() is called from d_path().
311 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
313 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
314 d_inode(dentry
)->i_ino
);
317 static const struct dentry_operations sockfs_dentry_operations
= {
318 .d_dname
= sockfs_dname
,
321 static int sockfs_xattr_get(const struct xattr_handler
*handler
,
322 struct dentry
*dentry
, struct inode
*inode
,
323 const char *suffix
, void *value
, size_t size
)
326 if (dentry
->d_name
.len
+ 1 > size
)
328 memcpy(value
, dentry
->d_name
.name
, dentry
->d_name
.len
+ 1);
330 return dentry
->d_name
.len
+ 1;
333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
337 static const struct xattr_handler sockfs_xattr_handler
= {
338 .name
= XATTR_NAME_SOCKPROTONAME
,
339 .get
= sockfs_xattr_get
,
342 static int sockfs_security_xattr_set(const struct xattr_handler
*handler
,
343 struct dentry
*dentry
, struct inode
*inode
,
344 const char *suffix
, const void *value
,
345 size_t size
, int flags
)
347 /* Handled by LSM. */
351 static const struct xattr_handler sockfs_security_xattr_handler
= {
352 .prefix
= XATTR_SECURITY_PREFIX
,
353 .set
= sockfs_security_xattr_set
,
356 static const struct xattr_handler
*sockfs_xattr_handlers
[] = {
357 &sockfs_xattr_handler
,
358 &sockfs_security_xattr_handler
,
362 static struct dentry
*sockfs_mount(struct file_system_type
*fs_type
,
363 int flags
, const char *dev_name
, void *data
)
365 return mount_pseudo_xattr(fs_type
, "socket:", &sockfs_ops
,
366 sockfs_xattr_handlers
,
367 &sockfs_dentry_operations
, SOCKFS_MAGIC
);
370 static struct vfsmount
*sock_mnt __read_mostly
;
372 static struct file_system_type sock_fs_type
= {
374 .mount
= sockfs_mount
,
375 .kill_sb
= kill_anon_super
,
379 * Obtains the first available file descriptor and sets it up for use.
381 * These functions create file structures and maps them to fd space
382 * of the current process. On success it returns file descriptor
383 * and file struct implicitly stored in sock->file.
384 * Note that another thread may close file descriptor before we return
385 * from this function. We use the fact that now we do not refer
386 * to socket after mapping. If one day we will need it, this
387 * function will increment ref. count on file by 1.
389 * In any case returned fd MAY BE not valid!
390 * This race condition is unavoidable
391 * with shared fd spaces, we cannot solve it inside kernel,
392 * but we take care of internal coherence yet.
395 struct file
*sock_alloc_file(struct socket
*sock
, int flags
, const char *dname
)
397 struct qstr name
= { .name
= "" };
403 name
.len
= strlen(name
.name
);
404 } else if (sock
->sk
) {
405 name
.name
= sock
->sk
->sk_prot_creator
->name
;
406 name
.len
= strlen(name
.name
);
408 path
.dentry
= d_alloc_pseudo(sock_mnt
->mnt_sb
, &name
);
409 if (unlikely(!path
.dentry
))
410 return ERR_PTR(-ENOMEM
);
411 path
.mnt
= mntget(sock_mnt
);
413 d_instantiate(path
.dentry
, SOCK_INODE(sock
));
415 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
,
418 /* drop dentry, keep inode */
419 ihold(d_inode(path
.dentry
));
425 file
->f_flags
= O_RDWR
| (flags
& O_NONBLOCK
);
426 file
->private_data
= sock
;
429 EXPORT_SYMBOL(sock_alloc_file
);
431 static int sock_map_fd(struct socket
*sock
, int flags
)
433 struct file
*newfile
;
434 int fd
= get_unused_fd_flags(flags
);
435 if (unlikely(fd
< 0))
438 newfile
= sock_alloc_file(sock
, flags
, NULL
);
439 if (likely(!IS_ERR(newfile
))) {
440 fd_install(fd
, newfile
);
445 return PTR_ERR(newfile
);
448 struct socket
*sock_from_file(struct file
*file
, int *err
)
450 if (file
->f_op
== &socket_file_ops
)
451 return file
->private_data
; /* set in sock_map_fd */
456 EXPORT_SYMBOL(sock_from_file
);
459 * sockfd_lookup - Go from a file number to its socket slot
461 * @err: pointer to an error code return
463 * The file handle passed in is locked and the socket it is bound
464 * too is returned. If an error occurs the err pointer is overwritten
465 * with a negative errno code and NULL is returned. The function checks
466 * for both invalid handles and passing a handle which is not a socket.
468 * On a success the socket object pointer is returned.
471 struct socket
*sockfd_lookup(int fd
, int *err
)
482 sock
= sock_from_file(file
, err
);
487 EXPORT_SYMBOL(sockfd_lookup
);
489 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
491 struct fd f
= fdget(fd
);
496 sock
= sock_from_file(f
.file
, err
);
498 *fput_needed
= f
.flags
;
506 static ssize_t
sockfs_listxattr(struct dentry
*dentry
, char *buffer
,
512 len
= security_inode_listsecurity(d_inode(dentry
), buffer
, size
);
522 len
= (XATTR_NAME_SOCKPROTONAME_LEN
+ 1);
527 memcpy(buffer
, XATTR_NAME_SOCKPROTONAME
, len
);
534 static int sockfs_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
536 int err
= simple_setattr(dentry
, iattr
);
538 if (!err
&& (iattr
->ia_valid
& ATTR_UID
)) {
539 struct socket
*sock
= SOCKET_I(d_inode(dentry
));
541 sock
->sk
->sk_uid
= iattr
->ia_uid
;
547 static const struct inode_operations sockfs_inode_ops
= {
548 .listxattr
= sockfs_listxattr
,
549 .setattr
= sockfs_setattr
,
553 * sock_alloc - allocate a socket
555 * Allocate a new inode and socket object. The two are bound together
556 * and initialised. The socket is then returned. If we are out of inodes
560 struct socket
*sock_alloc(void)
565 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
569 sock
= SOCKET_I(inode
);
571 kmemcheck_annotate_bitfield(sock
, type
);
572 inode
->i_ino
= get_next_ino();
573 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
574 inode
->i_uid
= current_fsuid();
575 inode
->i_gid
= current_fsgid();
576 inode
->i_op
= &sockfs_inode_ops
;
578 this_cpu_add(sockets_in_use
, 1);
581 EXPORT_SYMBOL(sock_alloc
);
584 * sock_release - close a socket
585 * @sock: socket to close
587 * The socket is released from the protocol stack if it has a release
588 * callback, and the inode is then released if the socket is bound to
589 * an inode not a file.
592 void sock_release(struct socket
*sock
)
595 struct module
*owner
= sock
->ops
->owner
;
597 sock
->ops
->release(sock
);
602 if (rcu_dereference_protected(sock
->wq
, 1)->fasync_list
)
603 pr_err("%s: fasync list not empty!\n", __func__
);
605 this_cpu_sub(sockets_in_use
, 1);
607 iput(SOCK_INODE(sock
));
612 EXPORT_SYMBOL(sock_release
);
614 void __sock_tx_timestamp(__u16 tsflags
, __u8
*tx_flags
)
616 u8 flags
= *tx_flags
;
618 if (tsflags
& SOF_TIMESTAMPING_TX_HARDWARE
)
619 flags
|= SKBTX_HW_TSTAMP
;
621 if (tsflags
& SOF_TIMESTAMPING_TX_SOFTWARE
)
622 flags
|= SKBTX_SW_TSTAMP
;
624 if (tsflags
& SOF_TIMESTAMPING_TX_SCHED
)
625 flags
|= SKBTX_SCHED_TSTAMP
;
629 EXPORT_SYMBOL(__sock_tx_timestamp
);
631 static inline int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
)
633 int ret
= sock
->ops
->sendmsg(sock
, msg
, msg_data_left(msg
));
634 BUG_ON(ret
== -EIOCBQUEUED
);
638 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
)
640 int err
= security_socket_sendmsg(sock
, msg
,
643 return err
?: sock_sendmsg_nosec(sock
, msg
);
645 EXPORT_SYMBOL(sock_sendmsg
);
647 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
648 struct kvec
*vec
, size_t num
, size_t size
)
650 iov_iter_kvec(&msg
->msg_iter
, WRITE
| ITER_KVEC
, vec
, num
, size
);
651 return sock_sendmsg(sock
, msg
);
653 EXPORT_SYMBOL(kernel_sendmsg
);
655 static bool skb_is_err_queue(const struct sk_buff
*skb
)
657 /* pkt_type of skbs enqueued on the error queue are set to
658 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
659 * in recvmsg, since skbs received on a local socket will never
660 * have a pkt_type of PACKET_OUTGOING.
662 return skb
->pkt_type
== PACKET_OUTGOING
;
666 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
668 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
671 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
672 struct scm_timestamping tss
;
674 struct skb_shared_hwtstamps
*shhwtstamps
=
677 /* Race occurred between timestamp enabling and packet
678 receiving. Fill in the current time for now. */
679 if (need_software_tstamp
&& skb
->tstamp
== 0)
680 __net_timestamp(skb
);
682 if (need_software_tstamp
) {
683 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
685 skb_get_timestamp(skb
, &tv
);
686 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
690 skb_get_timestampns(skb
, &ts
);
691 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
696 memset(&tss
, 0, sizeof(tss
));
697 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_SOFTWARE
) &&
698 ktime_to_timespec_cond(skb
->tstamp
, tss
.ts
+ 0))
701 (sk
->sk_tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
) &&
702 ktime_to_timespec_cond(shhwtstamps
->hwtstamp
, tss
.ts
+ 2))
705 put_cmsg(msg
, SOL_SOCKET
,
706 SCM_TIMESTAMPING
, sizeof(tss
), &tss
);
708 if (skb_is_err_queue(skb
) && skb
->len
&&
709 SKB_EXT_ERR(skb
)->opt_stats
)
710 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_OPT_STATS
,
711 skb
->len
, skb
->data
);
714 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
716 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
721 if (!sock_flag(sk
, SOCK_WIFI_STATUS
))
723 if (!skb
->wifi_acked_valid
)
726 ack
= skb
->wifi_acked
;
728 put_cmsg(msg
, SOL_SOCKET
, SCM_WIFI_STATUS
, sizeof(ack
), &ack
);
730 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status
);
732 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
735 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& SOCK_SKB_CB(skb
)->dropcount
)
736 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
737 sizeof(__u32
), &SOCK_SKB_CB(skb
)->dropcount
);
740 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
743 sock_recv_timestamp(msg
, sk
, skb
);
744 sock_recv_drops(msg
, sk
, skb
);
746 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
748 static inline int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
751 return sock
->ops
->recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
754 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
, int flags
)
756 int err
= security_socket_recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
758 return err
?: sock_recvmsg_nosec(sock
, msg
, flags
);
760 EXPORT_SYMBOL(sock_recvmsg
);
763 * kernel_recvmsg - Receive a message from a socket (kernel space)
764 * @sock: The socket to receive the message from
765 * @msg: Received message
766 * @vec: Input s/g array for message data
767 * @num: Size of input s/g array
768 * @size: Number of bytes to read
769 * @flags: Message flags (MSG_DONTWAIT, etc...)
771 * On return the msg structure contains the scatter/gather array passed in the
772 * vec argument. The array is modified so that it consists of the unfilled
773 * portion of the original array.
775 * The returned value is the total number of bytes received, or an error.
777 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
778 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
780 mm_segment_t oldfs
= get_fs();
783 iov_iter_kvec(&msg
->msg_iter
, READ
| ITER_KVEC
, vec
, num
, size
);
785 result
= sock_recvmsg(sock
, msg
, flags
);
789 EXPORT_SYMBOL(kernel_recvmsg
);
791 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
792 int offset
, size_t size
, loff_t
*ppos
, int more
)
797 sock
= file
->private_data
;
799 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
800 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
803 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
806 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
807 struct pipe_inode_info
*pipe
, size_t len
,
810 struct socket
*sock
= file
->private_data
;
812 if (unlikely(!sock
->ops
->splice_read
))
815 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
818 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
820 struct file
*file
= iocb
->ki_filp
;
821 struct socket
*sock
= file
->private_data
;
822 struct msghdr msg
= {.msg_iter
= *to
,
826 if (file
->f_flags
& O_NONBLOCK
)
827 msg
.msg_flags
= MSG_DONTWAIT
;
829 if (iocb
->ki_pos
!= 0)
832 if (!iov_iter_count(to
)) /* Match SYS5 behaviour */
835 res
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
840 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
842 struct file
*file
= iocb
->ki_filp
;
843 struct socket
*sock
= file
->private_data
;
844 struct msghdr msg
= {.msg_iter
= *from
,
848 if (iocb
->ki_pos
!= 0)
851 if (file
->f_flags
& O_NONBLOCK
)
852 msg
.msg_flags
= MSG_DONTWAIT
;
854 if (sock
->type
== SOCK_SEQPACKET
)
855 msg
.msg_flags
|= MSG_EOR
;
857 res
= sock_sendmsg(sock
, &msg
);
858 *from
= msg
.msg_iter
;
863 * Atomic setting of ioctl hooks to avoid race
864 * with module unload.
867 static DEFINE_MUTEX(br_ioctl_mutex
);
868 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
870 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
872 mutex_lock(&br_ioctl_mutex
);
873 br_ioctl_hook
= hook
;
874 mutex_unlock(&br_ioctl_mutex
);
876 EXPORT_SYMBOL(brioctl_set
);
878 static DEFINE_MUTEX(vlan_ioctl_mutex
);
879 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
881 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
883 mutex_lock(&vlan_ioctl_mutex
);
884 vlan_ioctl_hook
= hook
;
885 mutex_unlock(&vlan_ioctl_mutex
);
887 EXPORT_SYMBOL(vlan_ioctl_set
);
889 static DEFINE_MUTEX(dlci_ioctl_mutex
);
890 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
892 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
894 mutex_lock(&dlci_ioctl_mutex
);
895 dlci_ioctl_hook
= hook
;
896 mutex_unlock(&dlci_ioctl_mutex
);
898 EXPORT_SYMBOL(dlci_ioctl_set
);
900 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
901 unsigned int cmd
, unsigned long arg
)
904 void __user
*argp
= (void __user
*)arg
;
906 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
909 * If this ioctl is unknown try to hand it down
912 if (err
== -ENOIOCTLCMD
)
913 err
= dev_ioctl(net
, cmd
, argp
);
919 * With an ioctl, arg may well be a user mode pointer, but we don't know
920 * what to do with it - that's up to the protocol still.
923 static struct ns_common
*get_net_ns(struct ns_common
*ns
)
925 return &get_net(container_of(ns
, struct net
, ns
))->ns
;
928 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
932 void __user
*argp
= (void __user
*)arg
;
936 sock
= file
->private_data
;
939 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
940 err
= dev_ioctl(net
, cmd
, argp
);
942 #ifdef CONFIG_WEXT_CORE
943 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
944 err
= dev_ioctl(net
, cmd
, argp
);
951 if (get_user(pid
, (int __user
*)argp
))
953 f_setown(sock
->file
, pid
, 1);
958 err
= put_user(f_getown(sock
->file
),
967 request_module("bridge");
969 mutex_lock(&br_ioctl_mutex
);
971 err
= br_ioctl_hook(net
, cmd
, argp
);
972 mutex_unlock(&br_ioctl_mutex
);
977 if (!vlan_ioctl_hook
)
978 request_module("8021q");
980 mutex_lock(&vlan_ioctl_mutex
);
982 err
= vlan_ioctl_hook(net
, argp
);
983 mutex_unlock(&vlan_ioctl_mutex
);
988 if (!dlci_ioctl_hook
)
989 request_module("dlci");
991 mutex_lock(&dlci_ioctl_mutex
);
993 err
= dlci_ioctl_hook(cmd
, argp
);
994 mutex_unlock(&dlci_ioctl_mutex
);
998 if (!ns_capable(net
->user_ns
, CAP_NET_ADMIN
))
1001 err
= open_related_ns(&net
->ns
, get_net_ns
);
1004 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
1010 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
1013 struct socket
*sock
= NULL
;
1015 err
= security_socket_create(family
, type
, protocol
, 1);
1019 sock
= sock_alloc();
1026 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1038 EXPORT_SYMBOL(sock_create_lite
);
1040 /* No kernel lock held - perfect */
1041 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
1043 unsigned int busy_flag
= 0;
1044 struct socket
*sock
;
1047 * We can't return errors to poll, so it's either yes or no.
1049 sock
= file
->private_data
;
1051 if (sk_can_busy_loop(sock
->sk
)) {
1052 /* this socket can poll_ll so tell the system call */
1053 busy_flag
= POLL_BUSY_LOOP
;
1055 /* once, only if requested by syscall */
1056 if (wait
&& (wait
->_key
& POLL_BUSY_LOOP
))
1057 sk_busy_loop(sock
->sk
, 1);
1060 return busy_flag
| sock
->ops
->poll(file
, sock
, wait
);
1063 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1065 struct socket
*sock
= file
->private_data
;
1067 return sock
->ops
->mmap(file
, sock
, vma
);
1070 static int sock_close(struct inode
*inode
, struct file
*filp
)
1072 sock_release(SOCKET_I(inode
));
1077 * Update the socket async list
1079 * Fasync_list locking strategy.
1081 * 1. fasync_list is modified only under process context socket lock
1082 * i.e. under semaphore.
1083 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1084 * or under socket lock
1087 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1089 struct socket
*sock
= filp
->private_data
;
1090 struct sock
*sk
= sock
->sk
;
1091 struct socket_wq
*wq
;
1097 wq
= rcu_dereference_protected(sock
->wq
, lockdep_sock_is_held(sk
));
1098 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1100 if (!wq
->fasync_list
)
1101 sock_reset_flag(sk
, SOCK_FASYNC
);
1103 sock_set_flag(sk
, SOCK_FASYNC
);
1109 /* This function may be called only under rcu_lock */
1111 int sock_wake_async(struct socket_wq
*wq
, int how
, int band
)
1113 if (!wq
|| !wq
->fasync_list
)
1117 case SOCK_WAKE_WAITD
:
1118 if (test_bit(SOCKWQ_ASYNC_WAITDATA
, &wq
->flags
))
1121 case SOCK_WAKE_SPACE
:
1122 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE
, &wq
->flags
))
1127 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1130 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1135 EXPORT_SYMBOL(sock_wake_async
);
1137 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1138 struct socket
**res
, int kern
)
1141 struct socket
*sock
;
1142 const struct net_proto_family
*pf
;
1145 * Check protocol is in range
1147 if (family
< 0 || family
>= NPROTO
)
1148 return -EAFNOSUPPORT
;
1149 if (type
< 0 || type
>= SOCK_MAX
)
1154 This uglymoron is moved from INET layer to here to avoid
1155 deadlock in module load.
1157 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1158 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1163 err
= security_socket_create(family
, type
, protocol
, kern
);
1168 * Allocate the socket and allow the family to set things up. if
1169 * the protocol is 0, the family is instructed to select an appropriate
1172 sock
= sock_alloc();
1174 net_warn_ratelimited("socket: no more sockets\n");
1175 return -ENFILE
; /* Not exactly a match, but its the
1176 closest posix thing */
1181 #ifdef CONFIG_MODULES
1182 /* Attempt to load a protocol module if the find failed.
1184 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1185 * requested real, full-featured networking support upon configuration.
1186 * Otherwise module support will break!
1188 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1189 request_module("net-pf-%d", family
);
1193 pf
= rcu_dereference(net_families
[family
]);
1194 err
= -EAFNOSUPPORT
;
1199 * We will call the ->create function, that possibly is in a loadable
1200 * module, so we have to bump that loadable module refcnt first.
1202 if (!try_module_get(pf
->owner
))
1205 /* Now protected by module ref count */
1208 err
= pf
->create(net
, sock
, protocol
, kern
);
1210 goto out_module_put
;
1213 * Now to bump the refcnt of the [loadable] module that owns this
1214 * socket at sock_release time we decrement its refcnt.
1216 if (!try_module_get(sock
->ops
->owner
))
1217 goto out_module_busy
;
1220 * Now that we're done with the ->create function, the [loadable]
1221 * module can have its refcnt decremented
1223 module_put(pf
->owner
);
1224 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1226 goto out_sock_release
;
1232 err
= -EAFNOSUPPORT
;
1235 module_put(pf
->owner
);
1242 goto out_sock_release
;
1244 EXPORT_SYMBOL(__sock_create
);
1246 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1248 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1250 EXPORT_SYMBOL(sock_create
);
1252 int sock_create_kern(struct net
*net
, int family
, int type
, int protocol
, struct socket
**res
)
1254 return __sock_create(net
, family
, type
, protocol
, res
, 1);
1256 EXPORT_SYMBOL(sock_create_kern
);
1258 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1261 struct socket
*sock
;
1264 /* Check the SOCK_* constants for consistency. */
1265 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1266 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1267 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1268 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1270 flags
= type
& ~SOCK_TYPE_MASK
;
1271 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1273 type
&= SOCK_TYPE_MASK
;
1275 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1276 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1278 retval
= sock_create(family
, type
, protocol
, &sock
);
1282 retval
= sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1287 /* It may be already another descriptor 8) Not kernel problem. */
1296 * Create a pair of connected sockets.
1299 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1300 int __user
*, usockvec
)
1302 struct socket
*sock1
, *sock2
;
1304 struct file
*newfile1
, *newfile2
;
1307 flags
= type
& ~SOCK_TYPE_MASK
;
1308 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1310 type
&= SOCK_TYPE_MASK
;
1312 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1313 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1316 * Obtain the first socket and check if the underlying protocol
1317 * supports the socketpair call.
1320 err
= sock_create(family
, type
, protocol
, &sock1
);
1324 err
= sock_create(family
, type
, protocol
, &sock2
);
1328 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1330 goto out_release_both
;
1332 fd1
= get_unused_fd_flags(flags
);
1333 if (unlikely(fd1
< 0)) {
1335 goto out_release_both
;
1338 fd2
= get_unused_fd_flags(flags
);
1339 if (unlikely(fd2
< 0)) {
1341 goto out_put_unused_1
;
1344 newfile1
= sock_alloc_file(sock1
, flags
, NULL
);
1345 if (IS_ERR(newfile1
)) {
1346 err
= PTR_ERR(newfile1
);
1347 goto out_put_unused_both
;
1350 newfile2
= sock_alloc_file(sock2
, flags
, NULL
);
1351 if (IS_ERR(newfile2
)) {
1352 err
= PTR_ERR(newfile2
);
1356 err
= put_user(fd1
, &usockvec
[0]);
1360 err
= put_user(fd2
, &usockvec
[1]);
1364 audit_fd_pair(fd1
, fd2
);
1366 fd_install(fd1
, newfile1
);
1367 fd_install(fd2
, newfile2
);
1368 /* fd1 and fd2 may be already another descriptors.
1369 * Not kernel problem.
1385 sock_release(sock2
);
1388 out_put_unused_both
:
1393 sock_release(sock2
);
1395 sock_release(sock1
);
1401 * Bind a name to a socket. Nothing much to do here since it's
1402 * the protocol's responsibility to handle the local address.
1404 * We move the socket address to kernel space before we call
1405 * the protocol layer (having also checked the address is ok).
1408 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1410 struct socket
*sock
;
1411 struct sockaddr_storage address
;
1412 int err
, fput_needed
;
1414 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1416 err
= move_addr_to_kernel(umyaddr
, addrlen
, &address
);
1418 err
= security_socket_bind(sock
,
1419 (struct sockaddr
*)&address
,
1422 err
= sock
->ops
->bind(sock
,
1426 fput_light(sock
->file
, fput_needed
);
1432 * Perform a listen. Basically, we allow the protocol to do anything
1433 * necessary for a listen, and if that works, we mark the socket as
1434 * ready for listening.
1437 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1439 struct socket
*sock
;
1440 int err
, fput_needed
;
1443 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1445 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1446 if ((unsigned int)backlog
> somaxconn
)
1447 backlog
= somaxconn
;
1449 err
= security_socket_listen(sock
, backlog
);
1451 err
= sock
->ops
->listen(sock
, backlog
);
1453 fput_light(sock
->file
, fput_needed
);
1459 * For accept, we attempt to create a new socket, set up the link
1460 * with the client, wake up the client, then return the new
1461 * connected fd. We collect the address of the connector in kernel
1462 * space and move it to user at the very end. This is unclean because
1463 * we open the socket then return an error.
1465 * 1003.1g adds the ability to recvmsg() to query connection pending
1466 * status to recvmsg. We need to add that support in a way thats
1467 * clean when we restucture accept also.
1470 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1471 int __user
*, upeer_addrlen
, int, flags
)
1473 struct socket
*sock
, *newsock
;
1474 struct file
*newfile
;
1475 int err
, len
, newfd
, fput_needed
;
1476 struct sockaddr_storage address
;
1478 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1481 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1482 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1484 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1489 newsock
= sock_alloc();
1493 newsock
->type
= sock
->type
;
1494 newsock
->ops
= sock
->ops
;
1497 * We don't need try_module_get here, as the listening socket (sock)
1498 * has the protocol module (sock->ops->owner) held.
1500 __module_get(newsock
->ops
->owner
);
1502 newfd
= get_unused_fd_flags(flags
);
1503 if (unlikely(newfd
< 0)) {
1505 sock_release(newsock
);
1508 newfile
= sock_alloc_file(newsock
, flags
, sock
->sk
->sk_prot_creator
->name
);
1509 if (IS_ERR(newfile
)) {
1510 err
= PTR_ERR(newfile
);
1511 put_unused_fd(newfd
);
1512 sock_release(newsock
);
1516 err
= security_socket_accept(sock
, newsock
);
1520 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
, false);
1524 if (upeer_sockaddr
) {
1525 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)&address
,
1527 err
= -ECONNABORTED
;
1530 err
= move_addr_to_user(&address
,
1531 len
, upeer_sockaddr
, upeer_addrlen
);
1536 /* File flags are not inherited via accept() unlike another OSes. */
1538 fd_install(newfd
, newfile
);
1542 fput_light(sock
->file
, fput_needed
);
1547 put_unused_fd(newfd
);
1551 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1552 int __user
*, upeer_addrlen
)
1554 return sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1558 * Attempt to connect to a socket with the server address. The address
1559 * is in user space so we verify it is OK and move it to kernel space.
1561 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1564 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1565 * other SEQPACKET protocols that take time to connect() as it doesn't
1566 * include the -EINPROGRESS status for such sockets.
1569 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1572 struct socket
*sock
;
1573 struct sockaddr_storage address
;
1574 int err
, fput_needed
;
1576 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1579 err
= move_addr_to_kernel(uservaddr
, addrlen
, &address
);
1584 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1588 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1589 sock
->file
->f_flags
);
1591 fput_light(sock
->file
, fput_needed
);
1597 * Get the local address ('name') of a socket object. Move the obtained
1598 * name to user space.
1601 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1602 int __user
*, usockaddr_len
)
1604 struct socket
*sock
;
1605 struct sockaddr_storage address
;
1606 int len
, err
, fput_needed
;
1608 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1612 err
= security_socket_getsockname(sock
);
1616 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
, 0);
1619 err
= move_addr_to_user(&address
, len
, usockaddr
, usockaddr_len
);
1622 fput_light(sock
->file
, fput_needed
);
1628 * Get the remote address ('name') of a socket object. Move the obtained
1629 * name to user space.
1632 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1633 int __user
*, usockaddr_len
)
1635 struct socket
*sock
;
1636 struct sockaddr_storage address
;
1637 int len
, err
, fput_needed
;
1639 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1641 err
= security_socket_getpeername(sock
);
1643 fput_light(sock
->file
, fput_needed
);
1648 sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
,
1651 err
= move_addr_to_user(&address
, len
, usockaddr
,
1653 fput_light(sock
->file
, fput_needed
);
1659 * Send a datagram to a given address. We move the address into kernel
1660 * space and check the user space data area is readable before invoking
1664 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1665 unsigned int, flags
, struct sockaddr __user
*, addr
,
1668 struct socket
*sock
;
1669 struct sockaddr_storage address
;
1675 err
= import_single_range(WRITE
, buff
, len
, &iov
, &msg
.msg_iter
);
1678 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1682 msg
.msg_name
= NULL
;
1683 msg
.msg_control
= NULL
;
1684 msg
.msg_controllen
= 0;
1685 msg
.msg_namelen
= 0;
1687 err
= move_addr_to_kernel(addr
, addr_len
, &address
);
1690 msg
.msg_name
= (struct sockaddr
*)&address
;
1691 msg
.msg_namelen
= addr_len
;
1693 if (sock
->file
->f_flags
& O_NONBLOCK
)
1694 flags
|= MSG_DONTWAIT
;
1695 msg
.msg_flags
= flags
;
1696 err
= sock_sendmsg(sock
, &msg
);
1699 fput_light(sock
->file
, fput_needed
);
1705 * Send a datagram down a socket.
1708 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1709 unsigned int, flags
)
1711 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1715 * Receive a frame from the socket and optionally record the address of the
1716 * sender. We verify the buffers are writable and if needed move the
1717 * sender address from kernel to user space.
1720 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1721 unsigned int, flags
, struct sockaddr __user
*, addr
,
1722 int __user
*, addr_len
)
1724 struct socket
*sock
;
1727 struct sockaddr_storage address
;
1731 err
= import_single_range(READ
, ubuf
, size
, &iov
, &msg
.msg_iter
);
1734 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1738 msg
.msg_control
= NULL
;
1739 msg
.msg_controllen
= 0;
1740 /* Save some cycles and don't copy the address if not needed */
1741 msg
.msg_name
= addr
? (struct sockaddr
*)&address
: NULL
;
1742 /* We assume all kernel code knows the size of sockaddr_storage */
1743 msg
.msg_namelen
= 0;
1744 msg
.msg_iocb
= NULL
;
1746 if (sock
->file
->f_flags
& O_NONBLOCK
)
1747 flags
|= MSG_DONTWAIT
;
1748 err
= sock_recvmsg(sock
, &msg
, flags
);
1750 if (err
>= 0 && addr
!= NULL
) {
1751 err2
= move_addr_to_user(&address
,
1752 msg
.msg_namelen
, addr
, addr_len
);
1757 fput_light(sock
->file
, fput_needed
);
1763 * Receive a datagram from a socket.
1766 SYSCALL_DEFINE4(recv
, int, fd
, void __user
*, ubuf
, size_t, size
,
1767 unsigned int, flags
)
1769 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1773 * Set a socket option. Because we don't know the option lengths we have
1774 * to pass the user mode parameter for the protocols to sort out.
1777 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1778 char __user
*, optval
, int, optlen
)
1780 int err
, fput_needed
;
1781 struct socket
*sock
;
1786 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1788 err
= security_socket_setsockopt(sock
, level
, optname
);
1792 if (level
== SOL_SOCKET
)
1794 sock_setsockopt(sock
, level
, optname
, optval
,
1798 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1801 fput_light(sock
->file
, fput_needed
);
1807 * Get a socket option. Because we don't know the option lengths we have
1808 * to pass a user mode parameter for the protocols to sort out.
1811 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1812 char __user
*, optval
, int __user
*, optlen
)
1814 int err
, fput_needed
;
1815 struct socket
*sock
;
1817 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1819 err
= security_socket_getsockopt(sock
, level
, optname
);
1823 if (level
== SOL_SOCKET
)
1825 sock_getsockopt(sock
, level
, optname
, optval
,
1829 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1832 fput_light(sock
->file
, fput_needed
);
1838 * Shutdown a socket.
1841 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1843 int err
, fput_needed
;
1844 struct socket
*sock
;
1846 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1848 err
= security_socket_shutdown(sock
, how
);
1850 err
= sock
->ops
->shutdown(sock
, how
);
1851 fput_light(sock
->file
, fput_needed
);
1856 /* A couple of helpful macros for getting the address of the 32/64 bit
1857 * fields which are the same type (int / unsigned) on our platforms.
1859 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1860 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1861 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1863 struct used_address
{
1864 struct sockaddr_storage name
;
1865 unsigned int name_len
;
1868 static int copy_msghdr_from_user(struct msghdr
*kmsg
,
1869 struct user_msghdr __user
*umsg
,
1870 struct sockaddr __user
**save_addr
,
1873 struct sockaddr __user
*uaddr
;
1874 struct iovec __user
*uiov
;
1878 if (!access_ok(VERIFY_READ
, umsg
, sizeof(*umsg
)) ||
1879 __get_user(uaddr
, &umsg
->msg_name
) ||
1880 __get_user(kmsg
->msg_namelen
, &umsg
->msg_namelen
) ||
1881 __get_user(uiov
, &umsg
->msg_iov
) ||
1882 __get_user(nr_segs
, &umsg
->msg_iovlen
) ||
1883 __get_user(kmsg
->msg_control
, &umsg
->msg_control
) ||
1884 __get_user(kmsg
->msg_controllen
, &umsg
->msg_controllen
) ||
1885 __get_user(kmsg
->msg_flags
, &umsg
->msg_flags
))
1889 kmsg
->msg_namelen
= 0;
1891 if (kmsg
->msg_namelen
< 0)
1894 if (kmsg
->msg_namelen
> sizeof(struct sockaddr_storage
))
1895 kmsg
->msg_namelen
= sizeof(struct sockaddr_storage
);
1900 if (uaddr
&& kmsg
->msg_namelen
) {
1902 err
= move_addr_to_kernel(uaddr
, kmsg
->msg_namelen
,
1908 kmsg
->msg_name
= NULL
;
1909 kmsg
->msg_namelen
= 0;
1912 if (nr_segs
> UIO_MAXIOV
)
1915 kmsg
->msg_iocb
= NULL
;
1917 return import_iovec(save_addr
? READ
: WRITE
, uiov
, nr_segs
,
1918 UIO_FASTIOV
, iov
, &kmsg
->msg_iter
);
1921 static int ___sys_sendmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
1922 struct msghdr
*msg_sys
, unsigned int flags
,
1923 struct used_address
*used_address
,
1924 unsigned int allowed_msghdr_flags
)
1926 struct compat_msghdr __user
*msg_compat
=
1927 (struct compat_msghdr __user
*)msg
;
1928 struct sockaddr_storage address
;
1929 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1930 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1931 __aligned(sizeof(__kernel_size_t
));
1932 /* 20 is size of ipv6_pktinfo */
1933 unsigned char *ctl_buf
= ctl
;
1937 msg_sys
->msg_name
= &address
;
1939 if (MSG_CMSG_COMPAT
& flags
)
1940 err
= get_compat_msghdr(msg_sys
, msg_compat
, NULL
, &iov
);
1942 err
= copy_msghdr_from_user(msg_sys
, msg
, NULL
, &iov
);
1948 if (msg_sys
->msg_controllen
> INT_MAX
)
1950 flags
|= (msg_sys
->msg_flags
& allowed_msghdr_flags
);
1951 ctl_len
= msg_sys
->msg_controllen
;
1952 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
1954 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
1958 ctl_buf
= msg_sys
->msg_control
;
1959 ctl_len
= msg_sys
->msg_controllen
;
1960 } else if (ctl_len
) {
1961 BUILD_BUG_ON(sizeof(struct cmsghdr
) !=
1962 CMSG_ALIGN(sizeof(struct cmsghdr
)));
1963 if (ctl_len
> sizeof(ctl
)) {
1964 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
1965 if (ctl_buf
== NULL
)
1970 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1971 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1972 * checking falls down on this.
1974 if (copy_from_user(ctl_buf
,
1975 (void __user __force
*)msg_sys
->msg_control
,
1978 msg_sys
->msg_control
= ctl_buf
;
1980 msg_sys
->msg_flags
= flags
;
1982 if (sock
->file
->f_flags
& O_NONBLOCK
)
1983 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
1985 * If this is sendmmsg() and current destination address is same as
1986 * previously succeeded address, omit asking LSM's decision.
1987 * used_address->name_len is initialized to UINT_MAX so that the first
1988 * destination address never matches.
1990 if (used_address
&& msg_sys
->msg_name
&&
1991 used_address
->name_len
== msg_sys
->msg_namelen
&&
1992 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
1993 used_address
->name_len
)) {
1994 err
= sock_sendmsg_nosec(sock
, msg_sys
);
1997 err
= sock_sendmsg(sock
, msg_sys
);
1999 * If this is sendmmsg() and sending to current destination address was
2000 * successful, remember it.
2002 if (used_address
&& err
>= 0) {
2003 used_address
->name_len
= msg_sys
->msg_namelen
;
2004 if (msg_sys
->msg_name
)
2005 memcpy(&used_address
->name
, msg_sys
->msg_name
,
2006 used_address
->name_len
);
2011 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
2018 * BSD sendmsg interface
2021 long __sys_sendmsg(int fd
, struct user_msghdr __user
*msg
, unsigned flags
)
2023 int fput_needed
, err
;
2024 struct msghdr msg_sys
;
2025 struct socket
*sock
;
2027 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2031 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
, 0);
2033 fput_light(sock
->file
, fput_needed
);
2038 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct user_msghdr __user
*, msg
, unsigned int, flags
)
2040 if (flags
& MSG_CMSG_COMPAT
)
2042 return __sys_sendmsg(fd
, msg
, flags
);
2046 * Linux sendmmsg interface
2049 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2052 int fput_needed
, err
, datagrams
;
2053 struct socket
*sock
;
2054 struct mmsghdr __user
*entry
;
2055 struct compat_mmsghdr __user
*compat_entry
;
2056 struct msghdr msg_sys
;
2057 struct used_address used_address
;
2058 unsigned int oflags
= flags
;
2060 if (vlen
> UIO_MAXIOV
)
2065 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2069 used_address
.name_len
= UINT_MAX
;
2071 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2075 while (datagrams
< vlen
) {
2076 if (datagrams
== vlen
- 1)
2079 if (MSG_CMSG_COMPAT
& flags
) {
2080 err
= ___sys_sendmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2081 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2084 err
= __put_user(err
, &compat_entry
->msg_len
);
2087 err
= ___sys_sendmsg(sock
,
2088 (struct user_msghdr __user
*)entry
,
2089 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2092 err
= put_user(err
, &entry
->msg_len
);
2099 if (msg_data_left(&msg_sys
))
2104 fput_light(sock
->file
, fput_needed
);
2106 /* We only return an error if no datagrams were able to be sent */
2113 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2114 unsigned int, vlen
, unsigned int, flags
)
2116 if (flags
& MSG_CMSG_COMPAT
)
2118 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
);
2121 static int ___sys_recvmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2122 struct msghdr
*msg_sys
, unsigned int flags
, int nosec
)
2124 struct compat_msghdr __user
*msg_compat
=
2125 (struct compat_msghdr __user
*)msg
;
2126 struct iovec iovstack
[UIO_FASTIOV
];
2127 struct iovec
*iov
= iovstack
;
2128 unsigned long cmsg_ptr
;
2132 /* kernel mode address */
2133 struct sockaddr_storage addr
;
2135 /* user mode address pointers */
2136 struct sockaddr __user
*uaddr
;
2137 int __user
*uaddr_len
= COMPAT_NAMELEN(msg
);
2139 msg_sys
->msg_name
= &addr
;
2141 if (MSG_CMSG_COMPAT
& flags
)
2142 err
= get_compat_msghdr(msg_sys
, msg_compat
, &uaddr
, &iov
);
2144 err
= copy_msghdr_from_user(msg_sys
, msg
, &uaddr
, &iov
);
2148 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2149 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2151 /* We assume all kernel code knows the size of sockaddr_storage */
2152 msg_sys
->msg_namelen
= 0;
2154 if (sock
->file
->f_flags
& O_NONBLOCK
)
2155 flags
|= MSG_DONTWAIT
;
2156 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
, flags
);
2161 if (uaddr
!= NULL
) {
2162 err
= move_addr_to_user(&addr
,
2163 msg_sys
->msg_namelen
, uaddr
,
2168 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2172 if (MSG_CMSG_COMPAT
& flags
)
2173 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2174 &msg_compat
->msg_controllen
);
2176 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2177 &msg
->msg_controllen
);
2188 * BSD recvmsg interface
2191 long __sys_recvmsg(int fd
, struct user_msghdr __user
*msg
, unsigned flags
)
2193 int fput_needed
, err
;
2194 struct msghdr msg_sys
;
2195 struct socket
*sock
;
2197 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2201 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2203 fput_light(sock
->file
, fput_needed
);
2208 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct user_msghdr __user
*, msg
,
2209 unsigned int, flags
)
2211 if (flags
& MSG_CMSG_COMPAT
)
2213 return __sys_recvmsg(fd
, msg
, flags
);
2217 * Linux recvmmsg interface
2220 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2221 unsigned int flags
, struct timespec
*timeout
)
2223 int fput_needed
, err
, datagrams
;
2224 struct socket
*sock
;
2225 struct mmsghdr __user
*entry
;
2226 struct compat_mmsghdr __user
*compat_entry
;
2227 struct msghdr msg_sys
;
2228 struct timespec64 end_time
;
2229 struct timespec64 timeout64
;
2232 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2238 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2242 err
= sock_error(sock
->sk
);
2249 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2251 while (datagrams
< vlen
) {
2253 * No need to ask LSM for more than the first datagram.
2255 if (MSG_CMSG_COMPAT
& flags
) {
2256 err
= ___sys_recvmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2257 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2261 err
= __put_user(err
, &compat_entry
->msg_len
);
2264 err
= ___sys_recvmsg(sock
,
2265 (struct user_msghdr __user
*)entry
,
2266 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2270 err
= put_user(err
, &entry
->msg_len
);
2278 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2279 if (flags
& MSG_WAITFORONE
)
2280 flags
|= MSG_DONTWAIT
;
2283 ktime_get_ts64(&timeout64
);
2284 *timeout
= timespec64_to_timespec(
2285 timespec64_sub(end_time
, timeout64
));
2286 if (timeout
->tv_sec
< 0) {
2287 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2291 /* Timeout, return less than vlen datagrams */
2292 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2296 /* Out of band data, return right away */
2297 if (msg_sys
.msg_flags
& MSG_OOB
)
2305 if (datagrams
== 0) {
2311 * We may return less entries than requested (vlen) if the
2312 * sock is non block and there aren't enough datagrams...
2314 if (err
!= -EAGAIN
) {
2316 * ... or if recvmsg returns an error after we
2317 * received some datagrams, where we record the
2318 * error to return on the next call or if the
2319 * app asks about it using getsockopt(SO_ERROR).
2321 sock
->sk
->sk_err
= -err
;
2324 fput_light(sock
->file
, fput_needed
);
2329 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2330 unsigned int, vlen
, unsigned int, flags
,
2331 struct timespec __user
*, timeout
)
2334 struct timespec timeout_sys
;
2336 if (flags
& MSG_CMSG_COMPAT
)
2340 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2342 if (copy_from_user(&timeout_sys
, timeout
, sizeof(timeout_sys
)))
2345 datagrams
= __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2347 if (datagrams
> 0 &&
2348 copy_to_user(timeout
, &timeout_sys
, sizeof(timeout_sys
)))
2349 datagrams
= -EFAULT
;
2354 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2355 /* Argument list sizes for sys_socketcall */
2356 #define AL(x) ((x) * sizeof(unsigned long))
2357 static const unsigned char nargs
[21] = {
2358 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2359 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2360 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2367 * System call vectors.
2369 * Argument checking cleaned up. Saved 20% in size.
2370 * This function doesn't need to set the kernel lock because
2371 * it is set by the callees.
2374 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2376 unsigned long a
[AUDITSC_ARGS
];
2377 unsigned long a0
, a1
;
2381 if (call
< 1 || call
> SYS_SENDMMSG
)
2385 if (len
> sizeof(a
))
2388 /* copy_from_user should be SMP safe. */
2389 if (copy_from_user(a
, args
, len
))
2392 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2401 err
= sys_socket(a0
, a1
, a
[2]);
2404 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2407 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2410 err
= sys_listen(a0
, a1
);
2413 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2414 (int __user
*)a
[2], 0);
2416 case SYS_GETSOCKNAME
:
2418 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2419 (int __user
*)a
[2]);
2421 case SYS_GETPEERNAME
:
2423 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2424 (int __user
*)a
[2]);
2426 case SYS_SOCKETPAIR
:
2427 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2430 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2433 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2434 (struct sockaddr __user
*)a
[4], a
[5]);
2437 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2440 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2441 (struct sockaddr __user
*)a
[4],
2442 (int __user
*)a
[5]);
2445 err
= sys_shutdown(a0
, a1
);
2447 case SYS_SETSOCKOPT
:
2448 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2450 case SYS_GETSOCKOPT
:
2452 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2453 (int __user
*)a
[4]);
2456 err
= sys_sendmsg(a0
, (struct user_msghdr __user
*)a1
, a
[2]);
2459 err
= sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3]);
2462 err
= sys_recvmsg(a0
, (struct user_msghdr __user
*)a1
, a
[2]);
2465 err
= sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3],
2466 (struct timespec __user
*)a
[4]);
2469 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2470 (int __user
*)a
[2], a
[3]);
2479 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2482 * sock_register - add a socket protocol handler
2483 * @ops: description of protocol
2485 * This function is called by a protocol handler that wants to
2486 * advertise its address family, and have it linked into the
2487 * socket interface. The value ops->family corresponds to the
2488 * socket system call protocol family.
2490 int sock_register(const struct net_proto_family
*ops
)
2494 if (ops
->family
>= NPROTO
) {
2495 pr_crit("protocol %d >= NPROTO(%d)\n", ops
->family
, NPROTO
);
2499 spin_lock(&net_family_lock
);
2500 if (rcu_dereference_protected(net_families
[ops
->family
],
2501 lockdep_is_held(&net_family_lock
)))
2504 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2507 spin_unlock(&net_family_lock
);
2509 pr_info("NET: Registered protocol family %d\n", ops
->family
);
2512 EXPORT_SYMBOL(sock_register
);
2515 * sock_unregister - remove a protocol handler
2516 * @family: protocol family to remove
2518 * This function is called by a protocol handler that wants to
2519 * remove its address family, and have it unlinked from the
2520 * new socket creation.
2522 * If protocol handler is a module, then it can use module reference
2523 * counts to protect against new references. If protocol handler is not
2524 * a module then it needs to provide its own protection in
2525 * the ops->create routine.
2527 void sock_unregister(int family
)
2529 BUG_ON(family
< 0 || family
>= NPROTO
);
2531 spin_lock(&net_family_lock
);
2532 RCU_INIT_POINTER(net_families
[family
], NULL
);
2533 spin_unlock(&net_family_lock
);
2537 pr_info("NET: Unregistered protocol family %d\n", family
);
2539 EXPORT_SYMBOL(sock_unregister
);
2541 static int __init
sock_init(void)
2545 * Initialize the network sysctl infrastructure.
2547 err
= net_sysctl_init();
2552 * Initialize skbuff SLAB cache
2557 * Initialize the protocols module.
2562 err
= register_filesystem(&sock_fs_type
);
2565 sock_mnt
= kern_mount(&sock_fs_type
);
2566 if (IS_ERR(sock_mnt
)) {
2567 err
= PTR_ERR(sock_mnt
);
2571 /* The real protocol initialization is performed in later initcalls.
2574 #ifdef CONFIG_NETFILTER
2575 err
= netfilter_init();
2580 ptp_classifier_init();
2586 unregister_filesystem(&sock_fs_type
);
2591 core_initcall(sock_init
); /* early initcall */
2593 #ifdef CONFIG_PROC_FS
2594 void socket_seq_show(struct seq_file
*seq
)
2599 for_each_possible_cpu(cpu
)
2600 counter
+= per_cpu(sockets_in_use
, cpu
);
2602 /* It can be negative, by the way. 8) */
2606 seq_printf(seq
, "sockets: used %d\n", counter
);
2608 #endif /* CONFIG_PROC_FS */
2610 #ifdef CONFIG_COMPAT
2611 static int do_siocgstamp(struct net
*net
, struct socket
*sock
,
2612 unsigned int cmd
, void __user
*up
)
2614 mm_segment_t old_fs
= get_fs();
2619 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&ktv
);
2622 err
= compat_put_timeval(&ktv
, up
);
2627 static int do_siocgstampns(struct net
*net
, struct socket
*sock
,
2628 unsigned int cmd
, void __user
*up
)
2630 mm_segment_t old_fs
= get_fs();
2631 struct timespec kts
;
2635 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&kts
);
2638 err
= compat_put_timespec(&kts
, up
);
2643 static int dev_ifname32(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2645 struct ifreq __user
*uifr
;
2648 uifr
= compat_alloc_user_space(sizeof(struct ifreq
));
2649 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2652 err
= dev_ioctl(net
, SIOCGIFNAME
, uifr
);
2656 if (copy_in_user(uifr32
, uifr
, sizeof(struct compat_ifreq
)))
2662 static int dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2664 struct compat_ifconf ifc32
;
2666 struct ifconf __user
*uifc
;
2667 struct compat_ifreq __user
*ifr32
;
2668 struct ifreq __user
*ifr
;
2672 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2675 memset(&ifc
, 0, sizeof(ifc
));
2676 if (ifc32
.ifcbuf
== 0) {
2680 uifc
= compat_alloc_user_space(sizeof(struct ifconf
));
2682 size_t len
= ((ifc32
.ifc_len
/ sizeof(struct compat_ifreq
)) + 1) *
2683 sizeof(struct ifreq
);
2684 uifc
= compat_alloc_user_space(sizeof(struct ifconf
) + len
);
2686 ifr
= ifc
.ifc_req
= (void __user
*)(uifc
+ 1);
2687 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2688 for (i
= 0; i
< ifc32
.ifc_len
; i
+= sizeof(struct compat_ifreq
)) {
2689 if (copy_in_user(ifr
, ifr32
, sizeof(struct compat_ifreq
)))
2695 if (copy_to_user(uifc
, &ifc
, sizeof(struct ifconf
)))
2698 err
= dev_ioctl(net
, SIOCGIFCONF
, uifc
);
2702 if (copy_from_user(&ifc
, uifc
, sizeof(struct ifconf
)))
2706 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2708 i
+ sizeof(struct compat_ifreq
) <= ifc32
.ifc_len
&& j
< ifc
.ifc_len
;
2709 i
+= sizeof(struct compat_ifreq
), j
+= sizeof(struct ifreq
)) {
2710 if (copy_in_user(ifr32
, ifr
, sizeof(struct compat_ifreq
)))
2716 if (ifc32
.ifcbuf
== 0) {
2717 /* Translate from 64-bit structure multiple to
2721 i
= ((i
/ sizeof(struct ifreq
)) * sizeof(struct compat_ifreq
));
2726 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
2732 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
2734 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
2735 bool convert_in
= false, convert_out
= false;
2736 size_t buf_size
= ALIGN(sizeof(struct ifreq
), 8);
2737 struct ethtool_rxnfc __user
*rxnfc
;
2738 struct ifreq __user
*ifr
;
2739 u32 rule_cnt
= 0, actual_rule_cnt
;
2744 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2747 compat_rxnfc
= compat_ptr(data
);
2749 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
2752 /* Most ethtool structures are defined without padding.
2753 * Unfortunately struct ethtool_rxnfc is an exception.
2758 case ETHTOOL_GRXCLSRLALL
:
2759 /* Buffer size is variable */
2760 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
2762 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
2764 buf_size
+= rule_cnt
* sizeof(u32
);
2766 case ETHTOOL_GRXRINGS
:
2767 case ETHTOOL_GRXCLSRLCNT
:
2768 case ETHTOOL_GRXCLSRULE
:
2769 case ETHTOOL_SRXCLSRLINS
:
2772 case ETHTOOL_SRXCLSRLDEL
:
2773 buf_size
+= sizeof(struct ethtool_rxnfc
);
2778 ifr
= compat_alloc_user_space(buf_size
);
2779 rxnfc
= (void __user
*)ifr
+ ALIGN(sizeof(struct ifreq
), 8);
2781 if (copy_in_user(&ifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2784 if (put_user(convert_in
? rxnfc
: compat_ptr(data
),
2785 &ifr
->ifr_ifru
.ifru_data
))
2789 /* We expect there to be holes between fs.m_ext and
2790 * fs.ring_cookie and at the end of fs, but nowhere else.
2792 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
2793 sizeof(compat_rxnfc
->fs
.m_ext
) !=
2794 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
2795 sizeof(rxnfc
->fs
.m_ext
));
2797 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
2798 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
2799 offsetof(struct ethtool_rxnfc
, fs
.location
) -
2800 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
2802 if (copy_in_user(rxnfc
, compat_rxnfc
,
2803 (void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2804 (void __user
*)rxnfc
) ||
2805 copy_in_user(&rxnfc
->fs
.ring_cookie
,
2806 &compat_rxnfc
->fs
.ring_cookie
,
2807 (void __user
*)(&rxnfc
->fs
.location
+ 1) -
2808 (void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2809 copy_in_user(&rxnfc
->rule_cnt
, &compat_rxnfc
->rule_cnt
,
2810 sizeof(rxnfc
->rule_cnt
)))
2814 ret
= dev_ioctl(net
, SIOCETHTOOL
, ifr
);
2819 if (copy_in_user(compat_rxnfc
, rxnfc
,
2820 (const void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2821 (const void __user
*)rxnfc
) ||
2822 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
2823 &rxnfc
->fs
.ring_cookie
,
2824 (const void __user
*)(&rxnfc
->fs
.location
+ 1) -
2825 (const void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2826 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
2827 sizeof(rxnfc
->rule_cnt
)))
2830 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2831 /* As an optimisation, we only copy the actual
2832 * number of rules that the underlying
2833 * function returned. Since Mallory might
2834 * change the rule count in user memory, we
2835 * check that it is less than the rule count
2836 * originally given (as the user buffer size),
2837 * which has been range-checked.
2839 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
2841 if (actual_rule_cnt
< rule_cnt
)
2842 rule_cnt
= actual_rule_cnt
;
2843 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
2844 &rxnfc
->rule_locs
[0],
2845 rule_cnt
* sizeof(u32
)))
2853 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2856 compat_uptr_t uptr32
;
2857 struct ifreq __user
*uifr
;
2859 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2860 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2863 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
2866 uptr
= compat_ptr(uptr32
);
2868 if (put_user(uptr
, &uifr
->ifr_settings
.ifs_ifsu
.raw_hdlc
))
2871 return dev_ioctl(net
, SIOCWANDEV
, uifr
);
2874 static int bond_ioctl(struct net
*net
, unsigned int cmd
,
2875 struct compat_ifreq __user
*ifr32
)
2878 mm_segment_t old_fs
;
2882 case SIOCBONDENSLAVE
:
2883 case SIOCBONDRELEASE
:
2884 case SIOCBONDSETHWADDR
:
2885 case SIOCBONDCHANGEACTIVE
:
2886 if (copy_from_user(&kifr
, ifr32
, sizeof(struct compat_ifreq
)))
2891 err
= dev_ioctl(net
, cmd
,
2892 (struct ifreq __user __force
*) &kifr
);
2897 return -ENOIOCTLCMD
;
2901 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2902 static int compat_ifr_data_ioctl(struct net
*net
, unsigned int cmd
,
2903 struct compat_ifreq __user
*u_ifreq32
)
2905 struct ifreq __user
*u_ifreq64
;
2906 char tmp_buf
[IFNAMSIZ
];
2907 void __user
*data64
;
2910 if (copy_from_user(&tmp_buf
[0], &(u_ifreq32
->ifr_ifrn
.ifrn_name
[0]),
2913 if (get_user(data32
, &u_ifreq32
->ifr_ifru
.ifru_data
))
2915 data64
= compat_ptr(data32
);
2917 u_ifreq64
= compat_alloc_user_space(sizeof(*u_ifreq64
));
2919 if (copy_to_user(&u_ifreq64
->ifr_ifrn
.ifrn_name
[0], &tmp_buf
[0],
2922 if (put_user(data64
, &u_ifreq64
->ifr_ifru
.ifru_data
))
2925 return dev_ioctl(net
, cmd
, u_ifreq64
);
2928 static int dev_ifsioc(struct net
*net
, struct socket
*sock
,
2929 unsigned int cmd
, struct compat_ifreq __user
*uifr32
)
2931 struct ifreq __user
*uifr
;
2934 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2935 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
2938 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
2949 case SIOCGIFBRDADDR
:
2950 case SIOCGIFDSTADDR
:
2951 case SIOCGIFNETMASK
:
2956 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
2964 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
2965 struct compat_ifreq __user
*uifr32
)
2968 struct compat_ifmap __user
*uifmap32
;
2969 mm_segment_t old_fs
;
2972 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
2973 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
2974 err
|= get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
2975 err
|= get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
2976 err
|= get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
2977 err
|= get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
2978 err
|= get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
2979 err
|= get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
2985 err
= dev_ioctl(net
, cmd
, (void __user __force
*)&ifr
);
2988 if (cmd
== SIOCGIFMAP
&& !err
) {
2989 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
2990 err
|= put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
2991 err
|= put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
2992 err
|= put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
2993 err
|= put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
2994 err
|= put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
2995 err
|= put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3004 struct sockaddr rt_dst
; /* target address */
3005 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
3006 struct sockaddr rt_genmask
; /* target network mask (IP) */
3007 unsigned short rt_flags
;
3010 unsigned char rt_tos
;
3011 unsigned char rt_class
;
3013 short rt_metric
; /* +1 for binary compatibility! */
3014 /* char * */ u32 rt_dev
; /* forcing the device at add */
3015 u32 rt_mtu
; /* per route MTU/Window */
3016 u32 rt_window
; /* Window clamping */
3017 unsigned short rt_irtt
; /* Initial RTT */
3020 struct in6_rtmsg32
{
3021 struct in6_addr rtmsg_dst
;
3022 struct in6_addr rtmsg_src
;
3023 struct in6_addr rtmsg_gateway
;
3033 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
3034 unsigned int cmd
, void __user
*argp
)
3038 struct in6_rtmsg r6
;
3042 mm_segment_t old_fs
= get_fs();
3044 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
3045 struct in6_rtmsg32 __user
*ur6
= argp
;
3046 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
3047 3 * sizeof(struct in6_addr
));
3048 ret
|= get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
3049 ret
|= get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
3050 ret
|= get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
3051 ret
|= get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
3052 ret
|= get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
3053 ret
|= get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
3054 ret
|= get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
3058 struct rtentry32 __user
*ur4
= argp
;
3059 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
3060 3 * sizeof(struct sockaddr
));
3061 ret
|= get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
3062 ret
|= get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
3063 ret
|= get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
3064 ret
|= get_user(r4
.rt_window
, &(ur4
->rt_window
));
3065 ret
|= get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
3066 ret
|= get_user(rtdev
, &(ur4
->rt_dev
));
3068 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
3069 r4
.rt_dev
= (char __user __force
*)devname
;
3083 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
3090 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3091 * for some operations; this forces use of the newer bridge-utils that
3092 * use compatible ioctls
3094 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3098 if (get_user(tmp
, argp
))
3100 if (tmp
== BRCTL_GET_VERSION
)
3101 return BRCTL_VERSION
+ 1;
3105 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3106 unsigned int cmd
, unsigned long arg
)
3108 void __user
*argp
= compat_ptr(arg
);
3109 struct sock
*sk
= sock
->sk
;
3110 struct net
*net
= sock_net(sk
);
3112 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3113 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3118 return old_bridge_ioctl(argp
);
3120 return dev_ifname32(net
, argp
);
3122 return dev_ifconf(net
, argp
);
3124 return ethtool_ioctl(net
, argp
);
3126 return compat_siocwandev(net
, argp
);
3129 return compat_sioc_ifmap(net
, cmd
, argp
);
3130 case SIOCBONDENSLAVE
:
3131 case SIOCBONDRELEASE
:
3132 case SIOCBONDSETHWADDR
:
3133 case SIOCBONDCHANGEACTIVE
:
3134 return bond_ioctl(net
, cmd
, argp
);
3137 return routing_ioctl(net
, sock
, cmd
, argp
);
3139 return do_siocgstamp(net
, sock
, cmd
, argp
);
3141 return do_siocgstampns(net
, sock
, cmd
, argp
);
3142 case SIOCBONDSLAVEINFOQUERY
:
3143 case SIOCBONDINFOQUERY
:
3146 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3159 return sock_ioctl(file
, cmd
, arg
);
3176 case SIOCSIFHWBROADCAST
:
3178 case SIOCGIFBRDADDR
:
3179 case SIOCSIFBRDADDR
:
3180 case SIOCGIFDSTADDR
:
3181 case SIOCSIFDSTADDR
:
3182 case SIOCGIFNETMASK
:
3183 case SIOCSIFNETMASK
:
3194 return dev_ifsioc(net
, sock
, cmd
, argp
);
3200 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3203 return -ENOIOCTLCMD
;
3206 static long compat_sock_ioctl(struct file
*file
, unsigned int cmd
,
3209 struct socket
*sock
= file
->private_data
;
3210 int ret
= -ENOIOCTLCMD
;
3217 if (sock
->ops
->compat_ioctl
)
3218 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3220 if (ret
== -ENOIOCTLCMD
&&
3221 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3222 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3224 if (ret
== -ENOIOCTLCMD
)
3225 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3231 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3233 return sock
->ops
->bind(sock
, addr
, addrlen
);
3235 EXPORT_SYMBOL(kernel_bind
);
3237 int kernel_listen(struct socket
*sock
, int backlog
)
3239 return sock
->ops
->listen(sock
, backlog
);
3241 EXPORT_SYMBOL(kernel_listen
);
3243 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3245 struct sock
*sk
= sock
->sk
;
3248 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3253 err
= sock
->ops
->accept(sock
, *newsock
, flags
, true);
3255 sock_release(*newsock
);
3260 (*newsock
)->ops
= sock
->ops
;
3261 __module_get((*newsock
)->ops
->owner
);
3266 EXPORT_SYMBOL(kernel_accept
);
3268 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3271 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3273 EXPORT_SYMBOL(kernel_connect
);
3275 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
3278 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
3280 EXPORT_SYMBOL(kernel_getsockname
);
3282 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
3285 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
3287 EXPORT_SYMBOL(kernel_getpeername
);
3289 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3290 char *optval
, int *optlen
)
3292 mm_segment_t oldfs
= get_fs();
3293 char __user
*uoptval
;
3294 int __user
*uoptlen
;
3297 uoptval
= (char __user __force
*) optval
;
3298 uoptlen
= (int __user __force
*) optlen
;
3301 if (level
== SOL_SOCKET
)
3302 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3304 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3309 EXPORT_SYMBOL(kernel_getsockopt
);
3311 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3312 char *optval
, unsigned int optlen
)
3314 mm_segment_t oldfs
= get_fs();
3315 char __user
*uoptval
;
3318 uoptval
= (char __user __force
*) optval
;
3321 if (level
== SOL_SOCKET
)
3322 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3324 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3329 EXPORT_SYMBOL(kernel_setsockopt
);
3331 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3332 size_t size
, int flags
)
3334 if (sock
->ops
->sendpage
)
3335 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3337 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3339 EXPORT_SYMBOL(kernel_sendpage
);
3341 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
3343 mm_segment_t oldfs
= get_fs();
3347 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
3352 EXPORT_SYMBOL(kernel_sock_ioctl
);
3354 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3356 return sock
->ops
->shutdown(sock
, how
);
3358 EXPORT_SYMBOL(kernel_sock_shutdown
);
3360 /* This routine returns the IP overhead imposed by a socket i.e.
3361 * the length of the underlying IP header, depending on whether
3362 * this is an IPv4 or IPv6 socket and the length from IP options turned
3363 * on at the socket. Assumes that the caller has a lock on the socket.
3365 u32
kernel_sock_ip_overhead(struct sock
*sk
)
3367 struct inet_sock
*inet
;
3368 struct ip_options_rcu
*opt
;
3371 #if IS_ENABLED(CONFIG_IPV6)
3372 struct ipv6_pinfo
*np
;
3373 struct ipv6_txoptions
*optv6
= NULL
;
3374 #endif /* IS_ENABLED(CONFIG_IPV6) */
3379 owned_by_user
= sock_owned_by_user(sk
);
3380 switch (sk
->sk_family
) {
3383 overhead
+= sizeof(struct iphdr
);
3384 opt
= rcu_dereference_protected(inet
->inet_opt
,
3387 overhead
+= opt
->opt
.optlen
;
3389 #if IS_ENABLED(CONFIG_IPV6)
3392 overhead
+= sizeof(struct ipv6hdr
);
3394 optv6
= rcu_dereference_protected(np
->opt
,
3397 overhead
+= (optv6
->opt_flen
+ optv6
->opt_nflen
);
3399 #endif /* IS_ENABLED(CONFIG_IPV6) */
3400 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3404 EXPORT_SYMBOL(kernel_sock_ip_overhead
);