ALSA: hda - restore BCLK M/N value as per CDCLK for HSW/BDW display HDA controller
[linux/fpc-iii.git] / lib / idr.c
blob39158abebad175453b7f9f5a520300c4ac57edd8
1 /*
2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com
3 * Copyright (C) 2002 by Concurrent Computer Corporation
4 * Distributed under the GNU GPL license version 2.
6 * Modified by George Anzinger to reuse immediately and to use
7 * find bit instructions. Also removed _irq on spinlocks.
9 * Modified by Nadia Derbey to make it RCU safe.
11 * Small id to pointer translation service.
13 * It uses a radix tree like structure as a sparse array indexed
14 * by the id to obtain the pointer. The bitmap makes allocating
15 * a new id quick.
17 * You call it to allocate an id (an int) an associate with that id a
18 * pointer or what ever, we treat it as a (void *). You can pass this
19 * id to a user for him to pass back at a later time. You then pass
20 * that id to this code and it returns your pointer.
23 #ifndef TEST // to test in user space...
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/export.h>
27 #endif
28 #include <linux/err.h>
29 #include <linux/string.h>
30 #include <linux/idr.h>
31 #include <linux/spinlock.h>
32 #include <linux/percpu.h>
33 #include <linux/hardirq.h>
35 #define MAX_IDR_SHIFT (sizeof(int) * 8 - 1)
36 #define MAX_IDR_BIT (1U << MAX_IDR_SHIFT)
38 /* Leave the possibility of an incomplete final layer */
39 #define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)
41 /* Number of id_layer structs to leave in free list */
42 #define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)
44 static struct kmem_cache *idr_layer_cache;
45 static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head);
46 static DEFINE_PER_CPU(int, idr_preload_cnt);
47 static DEFINE_SPINLOCK(simple_ida_lock);
49 /* the maximum ID which can be allocated given idr->layers */
50 static int idr_max(int layers)
52 int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT);
54 return (1 << bits) - 1;
58 * Prefix mask for an idr_layer at @layer. For layer 0, the prefix mask is
59 * all bits except for the lower IDR_BITS. For layer 1, 2 * IDR_BITS, and
60 * so on.
62 static int idr_layer_prefix_mask(int layer)
64 return ~idr_max(layer + 1);
67 static struct idr_layer *get_from_free_list(struct idr *idp)
69 struct idr_layer *p;
70 unsigned long flags;
72 spin_lock_irqsave(&idp->lock, flags);
73 if ((p = idp->id_free)) {
74 idp->id_free = p->ary[0];
75 idp->id_free_cnt--;
76 p->ary[0] = NULL;
78 spin_unlock_irqrestore(&idp->lock, flags);
79 return(p);
82 /**
83 * idr_layer_alloc - allocate a new idr_layer
84 * @gfp_mask: allocation mask
85 * @layer_idr: optional idr to allocate from
87 * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
88 * one from the per-cpu preload buffer. If @layer_idr is not %NULL, fetch
89 * an idr_layer from @idr->id_free.
91 * @layer_idr is to maintain backward compatibility with the old alloc
92 * interface - idr_pre_get() and idr_get_new*() - and will be removed
93 * together with per-pool preload buffer.
95 static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr)
97 struct idr_layer *new;
99 /* this is the old path, bypass to get_from_free_list() */
100 if (layer_idr)
101 return get_from_free_list(layer_idr);
104 * Try to allocate directly from kmem_cache. We want to try this
105 * before preload buffer; otherwise, non-preloading idr_alloc()
106 * users will end up taking advantage of preloading ones. As the
107 * following is allowed to fail for preloaded cases, suppress
108 * warning this time.
110 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask | __GFP_NOWARN);
111 if (new)
112 return new;
115 * Try to fetch one from the per-cpu preload buffer if in process
116 * context. See idr_preload() for details.
118 if (!in_interrupt()) {
119 preempt_disable();
120 new = __this_cpu_read(idr_preload_head);
121 if (new) {
122 __this_cpu_write(idr_preload_head, new->ary[0]);
123 __this_cpu_dec(idr_preload_cnt);
124 new->ary[0] = NULL;
126 preempt_enable();
127 if (new)
128 return new;
132 * Both failed. Try kmem_cache again w/o adding __GFP_NOWARN so
133 * that memory allocation failure warning is printed as intended.
135 return kmem_cache_zalloc(idr_layer_cache, gfp_mask);
138 static void idr_layer_rcu_free(struct rcu_head *head)
140 struct idr_layer *layer;
142 layer = container_of(head, struct idr_layer, rcu_head);
143 kmem_cache_free(idr_layer_cache, layer);
146 static inline void free_layer(struct idr *idr, struct idr_layer *p)
148 if (idr->hint == p)
149 RCU_INIT_POINTER(idr->hint, NULL);
150 call_rcu(&p->rcu_head, idr_layer_rcu_free);
153 /* only called when idp->lock is held */
154 static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
156 p->ary[0] = idp->id_free;
157 idp->id_free = p;
158 idp->id_free_cnt++;
161 static void move_to_free_list(struct idr *idp, struct idr_layer *p)
163 unsigned long flags;
166 * Depends on the return element being zeroed.
168 spin_lock_irqsave(&idp->lock, flags);
169 __move_to_free_list(idp, p);
170 spin_unlock_irqrestore(&idp->lock, flags);
173 static void idr_mark_full(struct idr_layer **pa, int id)
175 struct idr_layer *p = pa[0];
176 int l = 0;
178 __set_bit(id & IDR_MASK, p->bitmap);
180 * If this layer is full mark the bit in the layer above to
181 * show that this part of the radix tree is full. This may
182 * complete the layer above and require walking up the radix
183 * tree.
185 while (bitmap_full(p->bitmap, IDR_SIZE)) {
186 if (!(p = pa[++l]))
187 break;
188 id = id >> IDR_BITS;
189 __set_bit((id & IDR_MASK), p->bitmap);
193 static int __idr_pre_get(struct idr *idp, gfp_t gfp_mask)
195 while (idp->id_free_cnt < MAX_IDR_FREE) {
196 struct idr_layer *new;
197 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
198 if (new == NULL)
199 return (0);
200 move_to_free_list(idp, new);
202 return 1;
206 * sub_alloc - try to allocate an id without growing the tree depth
207 * @idp: idr handle
208 * @starting_id: id to start search at
209 * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
210 * @gfp_mask: allocation mask for idr_layer_alloc()
211 * @layer_idr: optional idr passed to idr_layer_alloc()
213 * Allocate an id in range [@starting_id, INT_MAX] from @idp without
214 * growing its depth. Returns
216 * the allocated id >= 0 if successful,
217 * -EAGAIN if the tree needs to grow for allocation to succeed,
218 * -ENOSPC if the id space is exhausted,
219 * -ENOMEM if more idr_layers need to be allocated.
221 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa,
222 gfp_t gfp_mask, struct idr *layer_idr)
224 int n, m, sh;
225 struct idr_layer *p, *new;
226 int l, id, oid;
228 id = *starting_id;
229 restart:
230 p = idp->top;
231 l = idp->layers;
232 pa[l--] = NULL;
233 while (1) {
235 * We run around this while until we reach the leaf node...
237 n = (id >> (IDR_BITS*l)) & IDR_MASK;
238 m = find_next_zero_bit(p->bitmap, IDR_SIZE, n);
239 if (m == IDR_SIZE) {
240 /* no space available go back to previous layer. */
241 l++;
242 oid = id;
243 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
245 /* if already at the top layer, we need to grow */
246 if (id > idr_max(idp->layers)) {
247 *starting_id = id;
248 return -EAGAIN;
250 p = pa[l];
251 BUG_ON(!p);
253 /* If we need to go up one layer, continue the
254 * loop; otherwise, restart from the top.
256 sh = IDR_BITS * (l + 1);
257 if (oid >> sh == id >> sh)
258 continue;
259 else
260 goto restart;
262 if (m != n) {
263 sh = IDR_BITS*l;
264 id = ((id >> sh) ^ n ^ m) << sh;
266 if ((id >= MAX_IDR_BIT) || (id < 0))
267 return -ENOSPC;
268 if (l == 0)
269 break;
271 * Create the layer below if it is missing.
273 if (!p->ary[m]) {
274 new = idr_layer_alloc(gfp_mask, layer_idr);
275 if (!new)
276 return -ENOMEM;
277 new->layer = l-1;
278 new->prefix = id & idr_layer_prefix_mask(new->layer);
279 rcu_assign_pointer(p->ary[m], new);
280 p->count++;
282 pa[l--] = p;
283 p = p->ary[m];
286 pa[l] = p;
287 return id;
290 static int idr_get_empty_slot(struct idr *idp, int starting_id,
291 struct idr_layer **pa, gfp_t gfp_mask,
292 struct idr *layer_idr)
294 struct idr_layer *p, *new;
295 int layers, v, id;
296 unsigned long flags;
298 id = starting_id;
299 build_up:
300 p = idp->top;
301 layers = idp->layers;
302 if (unlikely(!p)) {
303 if (!(p = idr_layer_alloc(gfp_mask, layer_idr)))
304 return -ENOMEM;
305 p->layer = 0;
306 layers = 1;
309 * Add a new layer to the top of the tree if the requested
310 * id is larger than the currently allocated space.
312 while (id > idr_max(layers)) {
313 layers++;
314 if (!p->count) {
315 /* special case: if the tree is currently empty,
316 * then we grow the tree by moving the top node
317 * upwards.
319 p->layer++;
320 WARN_ON_ONCE(p->prefix);
321 continue;
323 if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) {
325 * The allocation failed. If we built part of
326 * the structure tear it down.
328 spin_lock_irqsave(&idp->lock, flags);
329 for (new = p; p && p != idp->top; new = p) {
330 p = p->ary[0];
331 new->ary[0] = NULL;
332 new->count = 0;
333 bitmap_clear(new->bitmap, 0, IDR_SIZE);
334 __move_to_free_list(idp, new);
336 spin_unlock_irqrestore(&idp->lock, flags);
337 return -ENOMEM;
339 new->ary[0] = p;
340 new->count = 1;
341 new->layer = layers-1;
342 new->prefix = id & idr_layer_prefix_mask(new->layer);
343 if (bitmap_full(p->bitmap, IDR_SIZE))
344 __set_bit(0, new->bitmap);
345 p = new;
347 rcu_assign_pointer(idp->top, p);
348 idp->layers = layers;
349 v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr);
350 if (v == -EAGAIN)
351 goto build_up;
352 return(v);
356 * @id and @pa are from a successful allocation from idr_get_empty_slot().
357 * Install the user pointer @ptr and mark the slot full.
359 static void idr_fill_slot(struct idr *idr, void *ptr, int id,
360 struct idr_layer **pa)
362 /* update hint used for lookup, cleared from free_layer() */
363 rcu_assign_pointer(idr->hint, pa[0]);
365 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr);
366 pa[0]->count++;
367 idr_mark_full(pa, id);
372 * idr_preload - preload for idr_alloc()
373 * @gfp_mask: allocation mask to use for preloading
375 * Preload per-cpu layer buffer for idr_alloc(). Can only be used from
376 * process context and each idr_preload() invocation should be matched with
377 * idr_preload_end(). Note that preemption is disabled while preloaded.
379 * The first idr_alloc() in the preloaded section can be treated as if it
380 * were invoked with @gfp_mask used for preloading. This allows using more
381 * permissive allocation masks for idrs protected by spinlocks.
383 * For example, if idr_alloc() below fails, the failure can be treated as
384 * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
386 * idr_preload(GFP_KERNEL);
387 * spin_lock(lock);
389 * id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
391 * spin_unlock(lock);
392 * idr_preload_end();
393 * if (id < 0)
394 * error;
396 void idr_preload(gfp_t gfp_mask)
399 * Consuming preload buffer from non-process context breaks preload
400 * allocation guarantee. Disallow usage from those contexts.
402 WARN_ON_ONCE(in_interrupt());
403 might_sleep_if(gfp_mask & __GFP_WAIT);
405 preempt_disable();
408 * idr_alloc() is likely to succeed w/o full idr_layer buffer and
409 * return value from idr_alloc() needs to be checked for failure
410 * anyway. Silently give up if allocation fails. The caller can
411 * treat failures from idr_alloc() as if idr_alloc() were called
412 * with @gfp_mask which should be enough.
414 while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) {
415 struct idr_layer *new;
417 preempt_enable();
418 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
419 preempt_disable();
420 if (!new)
421 break;
423 /* link the new one to per-cpu preload list */
424 new->ary[0] = __this_cpu_read(idr_preload_head);
425 __this_cpu_write(idr_preload_head, new);
426 __this_cpu_inc(idr_preload_cnt);
429 EXPORT_SYMBOL(idr_preload);
432 * idr_alloc - allocate new idr entry
433 * @idr: the (initialized) idr
434 * @ptr: pointer to be associated with the new id
435 * @start: the minimum id (inclusive)
436 * @end: the maximum id (exclusive, <= 0 for max)
437 * @gfp_mask: memory allocation flags
439 * Allocate an id in [start, end) and associate it with @ptr. If no ID is
440 * available in the specified range, returns -ENOSPC. On memory allocation
441 * failure, returns -ENOMEM.
443 * Note that @end is treated as max when <= 0. This is to always allow
444 * using @start + N as @end as long as N is inside integer range.
446 * The user is responsible for exclusively synchronizing all operations
447 * which may modify @idr. However, read-only accesses such as idr_find()
448 * or iteration can be performed under RCU read lock provided the user
449 * destroys @ptr in RCU-safe way after removal from idr.
451 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
453 int max = end > 0 ? end - 1 : INT_MAX; /* inclusive upper limit */
454 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
455 int id;
457 might_sleep_if(gfp_mask & __GFP_WAIT);
459 /* sanity checks */
460 if (WARN_ON_ONCE(start < 0))
461 return -EINVAL;
462 if (unlikely(max < start))
463 return -ENOSPC;
465 /* allocate id */
466 id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL);
467 if (unlikely(id < 0))
468 return id;
469 if (unlikely(id > max))
470 return -ENOSPC;
472 idr_fill_slot(idr, ptr, id, pa);
473 return id;
475 EXPORT_SYMBOL_GPL(idr_alloc);
478 * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion
479 * @idr: the (initialized) idr
480 * @ptr: pointer to be associated with the new id
481 * @start: the minimum id (inclusive)
482 * @end: the maximum id (exclusive, <= 0 for max)
483 * @gfp_mask: memory allocation flags
485 * Essentially the same as idr_alloc, but prefers to allocate progressively
486 * higher ids if it can. If the "cur" counter wraps, then it will start again
487 * at the "start" end of the range and allocate one that has already been used.
489 int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end,
490 gfp_t gfp_mask)
492 int id;
494 id = idr_alloc(idr, ptr, max(start, idr->cur), end, gfp_mask);
495 if (id == -ENOSPC)
496 id = idr_alloc(idr, ptr, start, end, gfp_mask);
498 if (likely(id >= 0))
499 idr->cur = id + 1;
500 return id;
502 EXPORT_SYMBOL(idr_alloc_cyclic);
504 static void idr_remove_warning(int id)
506 WARN(1, "idr_remove called for id=%d which is not allocated.\n", id);
509 static void sub_remove(struct idr *idp, int shift, int id)
511 struct idr_layer *p = idp->top;
512 struct idr_layer **pa[MAX_IDR_LEVEL + 1];
513 struct idr_layer ***paa = &pa[0];
514 struct idr_layer *to_free;
515 int n;
517 *paa = NULL;
518 *++paa = &idp->top;
520 while ((shift > 0) && p) {
521 n = (id >> shift) & IDR_MASK;
522 __clear_bit(n, p->bitmap);
523 *++paa = &p->ary[n];
524 p = p->ary[n];
525 shift -= IDR_BITS;
527 n = id & IDR_MASK;
528 if (likely(p != NULL && test_bit(n, p->bitmap))) {
529 __clear_bit(n, p->bitmap);
530 RCU_INIT_POINTER(p->ary[n], NULL);
531 to_free = NULL;
532 while(*paa && ! --((**paa)->count)){
533 if (to_free)
534 free_layer(idp, to_free);
535 to_free = **paa;
536 **paa-- = NULL;
538 if (!*paa)
539 idp->layers = 0;
540 if (to_free)
541 free_layer(idp, to_free);
542 } else
543 idr_remove_warning(id);
547 * idr_remove - remove the given id and free its slot
548 * @idp: idr handle
549 * @id: unique key
551 void idr_remove(struct idr *idp, int id)
553 struct idr_layer *p;
554 struct idr_layer *to_free;
556 if (id < 0)
557 return;
559 if (id > idr_max(idp->layers)) {
560 idr_remove_warning(id);
561 return;
564 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
565 if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
566 idp->top->ary[0]) {
568 * Single child at leftmost slot: we can shrink the tree.
569 * This level is not needed anymore since when layers are
570 * inserted, they are inserted at the top of the existing
571 * tree.
573 to_free = idp->top;
574 p = idp->top->ary[0];
575 rcu_assign_pointer(idp->top, p);
576 --idp->layers;
577 to_free->count = 0;
578 bitmap_clear(to_free->bitmap, 0, IDR_SIZE);
579 free_layer(idp, to_free);
582 EXPORT_SYMBOL(idr_remove);
584 static void __idr_remove_all(struct idr *idp)
586 int n, id, max;
587 int bt_mask;
588 struct idr_layer *p;
589 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
590 struct idr_layer **paa = &pa[0];
592 n = idp->layers * IDR_BITS;
593 p = idp->top;
594 RCU_INIT_POINTER(idp->top, NULL);
595 max = idr_max(idp->layers);
597 id = 0;
598 while (id >= 0 && id <= max) {
599 while (n > IDR_BITS && p) {
600 n -= IDR_BITS;
601 *paa++ = p;
602 p = p->ary[(id >> n) & IDR_MASK];
605 bt_mask = id;
606 id += 1 << n;
607 /* Get the highest bit that the above add changed from 0->1. */
608 while (n < fls(id ^ bt_mask)) {
609 if (p)
610 free_layer(idp, p);
611 n += IDR_BITS;
612 p = *--paa;
615 idp->layers = 0;
619 * idr_destroy - release all cached layers within an idr tree
620 * @idp: idr handle
622 * Free all id mappings and all idp_layers. After this function, @idp is
623 * completely unused and can be freed / recycled. The caller is
624 * responsible for ensuring that no one else accesses @idp during or after
625 * idr_destroy().
627 * A typical clean-up sequence for objects stored in an idr tree will use
628 * idr_for_each() to free all objects, if necessay, then idr_destroy() to
629 * free up the id mappings and cached idr_layers.
631 void idr_destroy(struct idr *idp)
633 __idr_remove_all(idp);
635 while (idp->id_free_cnt) {
636 struct idr_layer *p = get_from_free_list(idp);
637 kmem_cache_free(idr_layer_cache, p);
640 EXPORT_SYMBOL(idr_destroy);
642 void *idr_find_slowpath(struct idr *idp, int id)
644 int n;
645 struct idr_layer *p;
647 if (id < 0)
648 return NULL;
650 p = rcu_dereference_raw(idp->top);
651 if (!p)
652 return NULL;
653 n = (p->layer+1) * IDR_BITS;
655 if (id > idr_max(p->layer + 1))
656 return NULL;
657 BUG_ON(n == 0);
659 while (n > 0 && p) {
660 n -= IDR_BITS;
661 BUG_ON(n != p->layer*IDR_BITS);
662 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
664 return((void *)p);
666 EXPORT_SYMBOL(idr_find_slowpath);
669 * idr_for_each - iterate through all stored pointers
670 * @idp: idr handle
671 * @fn: function to be called for each pointer
672 * @data: data passed back to callback function
674 * Iterate over the pointers registered with the given idr. The
675 * callback function will be called for each pointer currently
676 * registered, passing the id, the pointer and the data pointer passed
677 * to this function. It is not safe to modify the idr tree while in
678 * the callback, so functions such as idr_get_new and idr_remove are
679 * not allowed.
681 * We check the return of @fn each time. If it returns anything other
682 * than %0, we break out and return that value.
684 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
686 int idr_for_each(struct idr *idp,
687 int (*fn)(int id, void *p, void *data), void *data)
689 int n, id, max, error = 0;
690 struct idr_layer *p;
691 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
692 struct idr_layer **paa = &pa[0];
694 n = idp->layers * IDR_BITS;
695 p = rcu_dereference_raw(idp->top);
696 max = idr_max(idp->layers);
698 id = 0;
699 while (id >= 0 && id <= max) {
700 while (n > 0 && p) {
701 n -= IDR_BITS;
702 *paa++ = p;
703 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
706 if (p) {
707 error = fn(id, (void *)p, data);
708 if (error)
709 break;
712 id += 1 << n;
713 while (n < fls(id)) {
714 n += IDR_BITS;
715 p = *--paa;
719 return error;
721 EXPORT_SYMBOL(idr_for_each);
724 * idr_get_next - lookup next object of id to given id.
725 * @idp: idr handle
726 * @nextidp: pointer to lookup key
728 * Returns pointer to registered object with id, which is next number to
729 * given id. After being looked up, *@nextidp will be updated for the next
730 * iteration.
732 * This function can be called under rcu_read_lock(), given that the leaf
733 * pointers lifetimes are correctly managed.
735 void *idr_get_next(struct idr *idp, int *nextidp)
737 struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1];
738 struct idr_layer **paa = &pa[0];
739 int id = *nextidp;
740 int n, max;
742 /* find first ent */
743 p = rcu_dereference_raw(idp->top);
744 if (!p)
745 return NULL;
746 n = (p->layer + 1) * IDR_BITS;
747 max = idr_max(p->layer + 1);
749 while (id >= 0 && id <= max) {
750 while (n > 0 && p) {
751 n -= IDR_BITS;
752 *paa++ = p;
753 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
756 if (p) {
757 *nextidp = id;
758 return p;
762 * Proceed to the next layer at the current level. Unlike
763 * idr_for_each(), @id isn't guaranteed to be aligned to
764 * layer boundary at this point and adding 1 << n may
765 * incorrectly skip IDs. Make sure we jump to the
766 * beginning of the next layer using round_up().
768 id = round_up(id + 1, 1 << n);
769 while (n < fls(id)) {
770 n += IDR_BITS;
771 p = *--paa;
774 return NULL;
776 EXPORT_SYMBOL(idr_get_next);
780 * idr_replace - replace pointer for given id
781 * @idp: idr handle
782 * @ptr: pointer you want associated with the id
783 * @id: lookup key
785 * Replace the pointer registered with an id and return the old value.
786 * A %-ENOENT return indicates that @id was not found.
787 * A %-EINVAL return indicates that @id was not within valid constraints.
789 * The caller must serialize with writers.
791 void *idr_replace(struct idr *idp, void *ptr, int id)
793 int n;
794 struct idr_layer *p, *old_p;
796 if (id < 0)
797 return ERR_PTR(-EINVAL);
799 p = idp->top;
800 if (!p)
801 return ERR_PTR(-ENOENT);
803 if (id > idr_max(p->layer + 1))
804 return ERR_PTR(-ENOENT);
806 n = p->layer * IDR_BITS;
807 while ((n > 0) && p) {
808 p = p->ary[(id >> n) & IDR_MASK];
809 n -= IDR_BITS;
812 n = id & IDR_MASK;
813 if (unlikely(p == NULL || !test_bit(n, p->bitmap)))
814 return ERR_PTR(-ENOENT);
816 old_p = p->ary[n];
817 rcu_assign_pointer(p->ary[n], ptr);
819 return old_p;
821 EXPORT_SYMBOL(idr_replace);
823 void __init idr_init_cache(void)
825 idr_layer_cache = kmem_cache_create("idr_layer_cache",
826 sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
830 * idr_init - initialize idr handle
831 * @idp: idr handle
833 * This function is use to set up the handle (@idp) that you will pass
834 * to the rest of the functions.
836 void idr_init(struct idr *idp)
838 memset(idp, 0, sizeof(struct idr));
839 spin_lock_init(&idp->lock);
841 EXPORT_SYMBOL(idr_init);
843 static int idr_has_entry(int id, void *p, void *data)
845 return 1;
848 bool idr_is_empty(struct idr *idp)
850 return !idr_for_each(idp, idr_has_entry, NULL);
852 EXPORT_SYMBOL(idr_is_empty);
855 * DOC: IDA description
856 * IDA - IDR based ID allocator
858 * This is id allocator without id -> pointer translation. Memory
859 * usage is much lower than full blown idr because each id only
860 * occupies a bit. ida uses a custom leaf node which contains
861 * IDA_BITMAP_BITS slots.
863 * 2007-04-25 written by Tejun Heo <htejun@gmail.com>
866 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
868 unsigned long flags;
870 if (!ida->free_bitmap) {
871 spin_lock_irqsave(&ida->idr.lock, flags);
872 if (!ida->free_bitmap) {
873 ida->free_bitmap = bitmap;
874 bitmap = NULL;
876 spin_unlock_irqrestore(&ida->idr.lock, flags);
879 kfree(bitmap);
883 * ida_pre_get - reserve resources for ida allocation
884 * @ida: ida handle
885 * @gfp_mask: memory allocation flag
887 * This function should be called prior to locking and calling the
888 * following function. It preallocates enough memory to satisfy the
889 * worst possible allocation.
891 * If the system is REALLY out of memory this function returns %0,
892 * otherwise %1.
894 int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
896 /* allocate idr_layers */
897 if (!__idr_pre_get(&ida->idr, gfp_mask))
898 return 0;
900 /* allocate free_bitmap */
901 if (!ida->free_bitmap) {
902 struct ida_bitmap *bitmap;
904 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
905 if (!bitmap)
906 return 0;
908 free_bitmap(ida, bitmap);
911 return 1;
913 EXPORT_SYMBOL(ida_pre_get);
916 * ida_get_new_above - allocate new ID above or equal to a start id
917 * @ida: ida handle
918 * @starting_id: id to start search at
919 * @p_id: pointer to the allocated handle
921 * Allocate new ID above or equal to @starting_id. It should be called
922 * with any required locks.
924 * If memory is required, it will return %-EAGAIN, you should unlock
925 * and go back to the ida_pre_get() call. If the ida is full, it will
926 * return %-ENOSPC.
928 * @p_id returns a value in the range @starting_id ... %0x7fffffff.
930 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
932 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
933 struct ida_bitmap *bitmap;
934 unsigned long flags;
935 int idr_id = starting_id / IDA_BITMAP_BITS;
936 int offset = starting_id % IDA_BITMAP_BITS;
937 int t, id;
939 restart:
940 /* get vacant slot */
941 t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr);
942 if (t < 0)
943 return t == -ENOMEM ? -EAGAIN : t;
945 if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
946 return -ENOSPC;
948 if (t != idr_id)
949 offset = 0;
950 idr_id = t;
952 /* if bitmap isn't there, create a new one */
953 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
954 if (!bitmap) {
955 spin_lock_irqsave(&ida->idr.lock, flags);
956 bitmap = ida->free_bitmap;
957 ida->free_bitmap = NULL;
958 spin_unlock_irqrestore(&ida->idr.lock, flags);
960 if (!bitmap)
961 return -EAGAIN;
963 memset(bitmap, 0, sizeof(struct ida_bitmap));
964 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
965 (void *)bitmap);
966 pa[0]->count++;
969 /* lookup for empty slot */
970 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
971 if (t == IDA_BITMAP_BITS) {
972 /* no empty slot after offset, continue to the next chunk */
973 idr_id++;
974 offset = 0;
975 goto restart;
978 id = idr_id * IDA_BITMAP_BITS + t;
979 if (id >= MAX_IDR_BIT)
980 return -ENOSPC;
982 __set_bit(t, bitmap->bitmap);
983 if (++bitmap->nr_busy == IDA_BITMAP_BITS)
984 idr_mark_full(pa, idr_id);
986 *p_id = id;
988 /* Each leaf node can handle nearly a thousand slots and the
989 * whole idea of ida is to have small memory foot print.
990 * Throw away extra resources one by one after each successful
991 * allocation.
993 if (ida->idr.id_free_cnt || ida->free_bitmap) {
994 struct idr_layer *p = get_from_free_list(&ida->idr);
995 if (p)
996 kmem_cache_free(idr_layer_cache, p);
999 return 0;
1001 EXPORT_SYMBOL(ida_get_new_above);
1004 * ida_remove - remove the given ID
1005 * @ida: ida handle
1006 * @id: ID to free
1008 void ida_remove(struct ida *ida, int id)
1010 struct idr_layer *p = ida->idr.top;
1011 int shift = (ida->idr.layers - 1) * IDR_BITS;
1012 int idr_id = id / IDA_BITMAP_BITS;
1013 int offset = id % IDA_BITMAP_BITS;
1014 int n;
1015 struct ida_bitmap *bitmap;
1017 if (idr_id > idr_max(ida->idr.layers))
1018 goto err;
1020 /* clear full bits while looking up the leaf idr_layer */
1021 while ((shift > 0) && p) {
1022 n = (idr_id >> shift) & IDR_MASK;
1023 __clear_bit(n, p->bitmap);
1024 p = p->ary[n];
1025 shift -= IDR_BITS;
1028 if (p == NULL)
1029 goto err;
1031 n = idr_id & IDR_MASK;
1032 __clear_bit(n, p->bitmap);
1034 bitmap = (void *)p->ary[n];
1035 if (!bitmap || !test_bit(offset, bitmap->bitmap))
1036 goto err;
1038 /* update bitmap and remove it if empty */
1039 __clear_bit(offset, bitmap->bitmap);
1040 if (--bitmap->nr_busy == 0) {
1041 __set_bit(n, p->bitmap); /* to please idr_remove() */
1042 idr_remove(&ida->idr, idr_id);
1043 free_bitmap(ida, bitmap);
1046 return;
1048 err:
1049 WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
1051 EXPORT_SYMBOL(ida_remove);
1054 * ida_destroy - release all cached layers within an ida tree
1055 * @ida: ida handle
1057 void ida_destroy(struct ida *ida)
1059 idr_destroy(&ida->idr);
1060 kfree(ida->free_bitmap);
1062 EXPORT_SYMBOL(ida_destroy);
1065 * ida_simple_get - get a new id.
1066 * @ida: the (initialized) ida.
1067 * @start: the minimum id (inclusive, < 0x8000000)
1068 * @end: the maximum id (exclusive, < 0x8000000 or 0)
1069 * @gfp_mask: memory allocation flags
1071 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
1072 * On memory allocation failure, returns -ENOMEM.
1074 * Use ida_simple_remove() to get rid of an id.
1076 int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
1077 gfp_t gfp_mask)
1079 int ret, id;
1080 unsigned int max;
1081 unsigned long flags;
1083 BUG_ON((int)start < 0);
1084 BUG_ON((int)end < 0);
1086 if (end == 0)
1087 max = 0x80000000;
1088 else {
1089 BUG_ON(end < start);
1090 max = end - 1;
1093 again:
1094 if (!ida_pre_get(ida, gfp_mask))
1095 return -ENOMEM;
1097 spin_lock_irqsave(&simple_ida_lock, flags);
1098 ret = ida_get_new_above(ida, start, &id);
1099 if (!ret) {
1100 if (id > max) {
1101 ida_remove(ida, id);
1102 ret = -ENOSPC;
1103 } else {
1104 ret = id;
1107 spin_unlock_irqrestore(&simple_ida_lock, flags);
1109 if (unlikely(ret == -EAGAIN))
1110 goto again;
1112 return ret;
1114 EXPORT_SYMBOL(ida_simple_get);
1117 * ida_simple_remove - remove an allocated id.
1118 * @ida: the (initialized) ida.
1119 * @id: the id returned by ida_simple_get.
1121 void ida_simple_remove(struct ida *ida, unsigned int id)
1123 unsigned long flags;
1125 BUG_ON((int)id < 0);
1126 spin_lock_irqsave(&simple_ida_lock, flags);
1127 ida_remove(ida, id);
1128 spin_unlock_irqrestore(&simple_ida_lock, flags);
1130 EXPORT_SYMBOL(ida_simple_remove);
1133 * ida_init - initialize ida handle
1134 * @ida: ida handle
1136 * This function is use to set up the handle (@ida) that you will pass
1137 * to the rest of the functions.
1139 void ida_init(struct ida *ida)
1141 memset(ida, 0, sizeof(struct ida));
1142 idr_init(&ida->idr);
1145 EXPORT_SYMBOL(ida_init);