m68k: Skip futex_atomic_cmpxchg_inatomic() test
[linux/fpc-iii.git] / fs / namei.c
blobd580df2e6804d0863d555234388a34397387c3e6
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
39 #include "internal.h"
40 #include "mount.h"
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
90 * [10-Sep-98 Alan Modra] Another symlink change.
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
120 void final_putname(struct filename *name)
122 if (name->separate) {
123 __putname(name->name);
124 kfree(name);
125 } else {
126 __putname(name);
130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
135 struct filename *result, *err;
136 int len;
137 long max;
138 char *kname;
140 result = audit_reusename(filename);
141 if (result)
142 return result;
144 result = __getname();
145 if (unlikely(!result))
146 return ERR_PTR(-ENOMEM);
149 * First, try to embed the struct filename inside the names_cache
150 * allocation
152 kname = (char *)result + sizeof(*result);
153 result->name = kname;
154 result->separate = false;
155 max = EMBEDDED_NAME_MAX;
157 recopy:
158 len = strncpy_from_user(kname, filename, max);
159 if (unlikely(len < 0)) {
160 err = ERR_PTR(len);
161 goto error;
165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 * separate struct filename so we can dedicate the entire
167 * names_cache allocation for the pathname, and re-do the copy from
168 * userland.
170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 kname = (char *)result;
173 result = kzalloc(sizeof(*result), GFP_KERNEL);
174 if (!result) {
175 err = ERR_PTR(-ENOMEM);
176 result = (struct filename *)kname;
177 goto error;
179 result->name = kname;
180 result->separate = true;
181 max = PATH_MAX;
182 goto recopy;
185 /* The empty path is special. */
186 if (unlikely(!len)) {
187 if (empty)
188 *empty = 1;
189 err = ERR_PTR(-ENOENT);
190 if (!(flags & LOOKUP_EMPTY))
191 goto error;
194 err = ERR_PTR(-ENAMETOOLONG);
195 if (unlikely(len >= PATH_MAX))
196 goto error;
198 result->uptr = filename;
199 audit_getname(result);
200 return result;
202 error:
203 final_putname(result);
204 return err;
207 struct filename *
208 getname(const char __user * filename)
210 return getname_flags(filename, 0, NULL);
213 #ifdef CONFIG_AUDITSYSCALL
214 void putname(struct filename *name)
216 if (unlikely(!audit_dummy_context()))
217 return audit_putname(name);
218 final_putname(name);
220 #endif
222 static int check_acl(struct inode *inode, int mask)
224 #ifdef CONFIG_FS_POSIX_ACL
225 struct posix_acl *acl;
227 if (mask & MAY_NOT_BLOCK) {
228 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
229 if (!acl)
230 return -EAGAIN;
231 /* no ->get_acl() calls in RCU mode... */
232 if (acl == ACL_NOT_CACHED)
233 return -ECHILD;
234 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
237 acl = get_acl(inode, ACL_TYPE_ACCESS);
238 if (IS_ERR(acl))
239 return PTR_ERR(acl);
240 if (acl) {
241 int error = posix_acl_permission(inode, acl, mask);
242 posix_acl_release(acl);
243 return error;
245 #endif
247 return -EAGAIN;
251 * This does the basic permission checking
253 static int acl_permission_check(struct inode *inode, int mask)
255 unsigned int mode = inode->i_mode;
257 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
258 mode >>= 6;
259 else {
260 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
261 int error = check_acl(inode, mask);
262 if (error != -EAGAIN)
263 return error;
266 if (in_group_p(inode->i_gid))
267 mode >>= 3;
271 * If the DACs are ok we don't need any capability check.
273 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
274 return 0;
275 return -EACCES;
279 * generic_permission - check for access rights on a Posix-like filesystem
280 * @inode: inode to check access rights for
281 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
283 * Used to check for read/write/execute permissions on a file.
284 * We use "fsuid" for this, letting us set arbitrary permissions
285 * for filesystem access without changing the "normal" uids which
286 * are used for other things.
288 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
289 * request cannot be satisfied (eg. requires blocking or too much complexity).
290 * It would then be called again in ref-walk mode.
292 int generic_permission(struct inode *inode, int mask)
294 int ret;
297 * Do the basic permission checks.
299 ret = acl_permission_check(inode, mask);
300 if (ret != -EACCES)
301 return ret;
303 if (S_ISDIR(inode->i_mode)) {
304 /* DACs are overridable for directories */
305 if (inode_capable(inode, CAP_DAC_OVERRIDE))
306 return 0;
307 if (!(mask & MAY_WRITE))
308 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
309 return 0;
310 return -EACCES;
313 * Read/write DACs are always overridable.
314 * Executable DACs are overridable when there is
315 * at least one exec bit set.
317 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
318 if (inode_capable(inode, CAP_DAC_OVERRIDE))
319 return 0;
322 * Searching includes executable on directories, else just read.
324 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
325 if (mask == MAY_READ)
326 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
327 return 0;
329 return -EACCES;
333 * We _really_ want to just do "generic_permission()" without
334 * even looking at the inode->i_op values. So we keep a cache
335 * flag in inode->i_opflags, that says "this has not special
336 * permission function, use the fast case".
338 static inline int do_inode_permission(struct inode *inode, int mask)
340 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
341 if (likely(inode->i_op->permission))
342 return inode->i_op->permission(inode, mask);
344 /* This gets set once for the inode lifetime */
345 spin_lock(&inode->i_lock);
346 inode->i_opflags |= IOP_FASTPERM;
347 spin_unlock(&inode->i_lock);
349 return generic_permission(inode, mask);
353 * __inode_permission - Check for access rights to a given inode
354 * @inode: Inode to check permission on
355 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
357 * Check for read/write/execute permissions on an inode.
359 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
361 * This does not check for a read-only file system. You probably want
362 * inode_permission().
364 int __inode_permission(struct inode *inode, int mask)
366 int retval;
368 if (unlikely(mask & MAY_WRITE)) {
370 * Nobody gets write access to an immutable file.
372 if (IS_IMMUTABLE(inode))
373 return -EACCES;
376 retval = do_inode_permission(inode, mask);
377 if (retval)
378 return retval;
380 retval = devcgroup_inode_permission(inode, mask);
381 if (retval)
382 return retval;
384 return security_inode_permission(inode, mask);
388 * sb_permission - Check superblock-level permissions
389 * @sb: Superblock of inode to check permission on
390 * @inode: Inode to check permission on
391 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
393 * Separate out file-system wide checks from inode-specific permission checks.
395 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
397 if (unlikely(mask & MAY_WRITE)) {
398 umode_t mode = inode->i_mode;
400 /* Nobody gets write access to a read-only fs. */
401 if ((sb->s_flags & MS_RDONLY) &&
402 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
403 return -EROFS;
405 return 0;
409 * inode_permission - Check for access rights to a given inode
410 * @inode: Inode to check permission on
411 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
413 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
414 * this, letting us set arbitrary permissions for filesystem access without
415 * changing the "normal" UIDs which are used for other things.
417 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
419 int inode_permission(struct inode *inode, int mask)
421 int retval;
423 retval = sb_permission(inode->i_sb, inode, mask);
424 if (retval)
425 return retval;
426 return __inode_permission(inode, mask);
430 * path_get - get a reference to a path
431 * @path: path to get the reference to
433 * Given a path increment the reference count to the dentry and the vfsmount.
435 void path_get(const struct path *path)
437 mntget(path->mnt);
438 dget(path->dentry);
440 EXPORT_SYMBOL(path_get);
443 * path_put - put a reference to a path
444 * @path: path to put the reference to
446 * Given a path decrement the reference count to the dentry and the vfsmount.
448 void path_put(const struct path *path)
450 dput(path->dentry);
451 mntput(path->mnt);
453 EXPORT_SYMBOL(path_put);
456 * Path walking has 2 modes, rcu-walk and ref-walk (see
457 * Documentation/filesystems/path-lookup.txt). In situations when we can't
458 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
459 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
460 * mode. Refcounts are grabbed at the last known good point before rcu-walk
461 * got stuck, so ref-walk may continue from there. If this is not successful
462 * (eg. a seqcount has changed), then failure is returned and it's up to caller
463 * to restart the path walk from the beginning in ref-walk mode.
467 * unlazy_walk - try to switch to ref-walk mode.
468 * @nd: nameidata pathwalk data
469 * @dentry: child of nd->path.dentry or NULL
470 * Returns: 0 on success, -ECHILD on failure
472 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
473 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
474 * @nd or NULL. Must be called from rcu-walk context.
476 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
478 struct fs_struct *fs = current->fs;
479 struct dentry *parent = nd->path.dentry;
481 BUG_ON(!(nd->flags & LOOKUP_RCU));
484 * After legitimizing the bastards, terminate_walk()
485 * will do the right thing for non-RCU mode, and all our
486 * subsequent exit cases should rcu_read_unlock()
487 * before returning. Do vfsmount first; if dentry
488 * can't be legitimized, just set nd->path.dentry to NULL
489 * and rely on dput(NULL) being a no-op.
491 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
492 return -ECHILD;
493 nd->flags &= ~LOOKUP_RCU;
495 if (!lockref_get_not_dead(&parent->d_lockref)) {
496 nd->path.dentry = NULL;
497 goto out;
501 * For a negative lookup, the lookup sequence point is the parents
502 * sequence point, and it only needs to revalidate the parent dentry.
504 * For a positive lookup, we need to move both the parent and the
505 * dentry from the RCU domain to be properly refcounted. And the
506 * sequence number in the dentry validates *both* dentry counters,
507 * since we checked the sequence number of the parent after we got
508 * the child sequence number. So we know the parent must still
509 * be valid if the child sequence number is still valid.
511 if (!dentry) {
512 if (read_seqcount_retry(&parent->d_seq, nd->seq))
513 goto out;
514 BUG_ON(nd->inode != parent->d_inode);
515 } else {
516 if (!lockref_get_not_dead(&dentry->d_lockref))
517 goto out;
518 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
519 goto drop_dentry;
523 * Sequence counts matched. Now make sure that the root is
524 * still valid and get it if required.
526 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
527 spin_lock(&fs->lock);
528 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
529 goto unlock_and_drop_dentry;
530 path_get(&nd->root);
531 spin_unlock(&fs->lock);
534 rcu_read_unlock();
535 return 0;
537 unlock_and_drop_dentry:
538 spin_unlock(&fs->lock);
539 drop_dentry:
540 rcu_read_unlock();
541 dput(dentry);
542 goto drop_root_mnt;
543 out:
544 rcu_read_unlock();
545 drop_root_mnt:
546 if (!(nd->flags & LOOKUP_ROOT))
547 nd->root.mnt = NULL;
548 return -ECHILD;
551 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
553 return dentry->d_op->d_revalidate(dentry, flags);
557 * complete_walk - successful completion of path walk
558 * @nd: pointer nameidata
560 * If we had been in RCU mode, drop out of it and legitimize nd->path.
561 * Revalidate the final result, unless we'd already done that during
562 * the path walk or the filesystem doesn't ask for it. Return 0 on
563 * success, -error on failure. In case of failure caller does not
564 * need to drop nd->path.
566 static int complete_walk(struct nameidata *nd)
568 struct dentry *dentry = nd->path.dentry;
569 int status;
571 if (nd->flags & LOOKUP_RCU) {
572 nd->flags &= ~LOOKUP_RCU;
573 if (!(nd->flags & LOOKUP_ROOT))
574 nd->root.mnt = NULL;
576 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
577 rcu_read_unlock();
578 return -ECHILD;
580 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
581 rcu_read_unlock();
582 mntput(nd->path.mnt);
583 return -ECHILD;
585 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
586 rcu_read_unlock();
587 dput(dentry);
588 mntput(nd->path.mnt);
589 return -ECHILD;
591 rcu_read_unlock();
594 if (likely(!(nd->flags & LOOKUP_JUMPED)))
595 return 0;
597 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
598 return 0;
600 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
601 if (status > 0)
602 return 0;
604 if (!status)
605 status = -ESTALE;
607 path_put(&nd->path);
608 return status;
611 static __always_inline void set_root(struct nameidata *nd)
613 if (!nd->root.mnt)
614 get_fs_root(current->fs, &nd->root);
617 static int link_path_walk(const char *, struct nameidata *);
619 static __always_inline void set_root_rcu(struct nameidata *nd)
621 if (!nd->root.mnt) {
622 struct fs_struct *fs = current->fs;
623 unsigned seq;
625 do {
626 seq = read_seqcount_begin(&fs->seq);
627 nd->root = fs->root;
628 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
629 } while (read_seqcount_retry(&fs->seq, seq));
633 static void path_put_conditional(struct path *path, struct nameidata *nd)
635 dput(path->dentry);
636 if (path->mnt != nd->path.mnt)
637 mntput(path->mnt);
640 static inline void path_to_nameidata(const struct path *path,
641 struct nameidata *nd)
643 if (!(nd->flags & LOOKUP_RCU)) {
644 dput(nd->path.dentry);
645 if (nd->path.mnt != path->mnt)
646 mntput(nd->path.mnt);
648 nd->path.mnt = path->mnt;
649 nd->path.dentry = path->dentry;
653 * Helper to directly jump to a known parsed path from ->follow_link,
654 * caller must have taken a reference to path beforehand.
656 void nd_jump_link(struct nameidata *nd, struct path *path)
658 path_put(&nd->path);
660 nd->path = *path;
661 nd->inode = nd->path.dentry->d_inode;
662 nd->flags |= LOOKUP_JUMPED;
665 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
667 struct inode *inode = link->dentry->d_inode;
668 if (inode->i_op->put_link)
669 inode->i_op->put_link(link->dentry, nd, cookie);
670 path_put(link);
673 int sysctl_protected_symlinks __read_mostly = 0;
674 int sysctl_protected_hardlinks __read_mostly = 0;
677 * may_follow_link - Check symlink following for unsafe situations
678 * @link: The path of the symlink
679 * @nd: nameidata pathwalk data
681 * In the case of the sysctl_protected_symlinks sysctl being enabled,
682 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
683 * in a sticky world-writable directory. This is to protect privileged
684 * processes from failing races against path names that may change out
685 * from under them by way of other users creating malicious symlinks.
686 * It will permit symlinks to be followed only when outside a sticky
687 * world-writable directory, or when the uid of the symlink and follower
688 * match, or when the directory owner matches the symlink's owner.
690 * Returns 0 if following the symlink is allowed, -ve on error.
692 static inline int may_follow_link(struct path *link, struct nameidata *nd)
694 const struct inode *inode;
695 const struct inode *parent;
697 if (!sysctl_protected_symlinks)
698 return 0;
700 /* Allowed if owner and follower match. */
701 inode = link->dentry->d_inode;
702 if (uid_eq(current_cred()->fsuid, inode->i_uid))
703 return 0;
705 /* Allowed if parent directory not sticky and world-writable. */
706 parent = nd->path.dentry->d_inode;
707 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
708 return 0;
710 /* Allowed if parent directory and link owner match. */
711 if (uid_eq(parent->i_uid, inode->i_uid))
712 return 0;
714 audit_log_link_denied("follow_link", link);
715 path_put_conditional(link, nd);
716 path_put(&nd->path);
717 return -EACCES;
721 * safe_hardlink_source - Check for safe hardlink conditions
722 * @inode: the source inode to hardlink from
724 * Return false if at least one of the following conditions:
725 * - inode is not a regular file
726 * - inode is setuid
727 * - inode is setgid and group-exec
728 * - access failure for read and write
730 * Otherwise returns true.
732 static bool safe_hardlink_source(struct inode *inode)
734 umode_t mode = inode->i_mode;
736 /* Special files should not get pinned to the filesystem. */
737 if (!S_ISREG(mode))
738 return false;
740 /* Setuid files should not get pinned to the filesystem. */
741 if (mode & S_ISUID)
742 return false;
744 /* Executable setgid files should not get pinned to the filesystem. */
745 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
746 return false;
748 /* Hardlinking to unreadable or unwritable sources is dangerous. */
749 if (inode_permission(inode, MAY_READ | MAY_WRITE))
750 return false;
752 return true;
756 * may_linkat - Check permissions for creating a hardlink
757 * @link: the source to hardlink from
759 * Block hardlink when all of:
760 * - sysctl_protected_hardlinks enabled
761 * - fsuid does not match inode
762 * - hardlink source is unsafe (see safe_hardlink_source() above)
763 * - not CAP_FOWNER
765 * Returns 0 if successful, -ve on error.
767 static int may_linkat(struct path *link)
769 const struct cred *cred;
770 struct inode *inode;
772 if (!sysctl_protected_hardlinks)
773 return 0;
775 cred = current_cred();
776 inode = link->dentry->d_inode;
778 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
779 * otherwise, it must be a safe source.
781 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
782 capable(CAP_FOWNER))
783 return 0;
785 audit_log_link_denied("linkat", link);
786 return -EPERM;
789 static __always_inline int
790 follow_link(struct path *link, struct nameidata *nd, void **p)
792 struct dentry *dentry = link->dentry;
793 int error;
794 char *s;
796 BUG_ON(nd->flags & LOOKUP_RCU);
798 if (link->mnt == nd->path.mnt)
799 mntget(link->mnt);
801 error = -ELOOP;
802 if (unlikely(current->total_link_count >= 40))
803 goto out_put_nd_path;
805 cond_resched();
806 current->total_link_count++;
808 touch_atime(link);
809 nd_set_link(nd, NULL);
811 error = security_inode_follow_link(link->dentry, nd);
812 if (error)
813 goto out_put_nd_path;
815 nd->last_type = LAST_BIND;
816 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
817 error = PTR_ERR(*p);
818 if (IS_ERR(*p))
819 goto out_put_nd_path;
821 error = 0;
822 s = nd_get_link(nd);
823 if (s) {
824 if (unlikely(IS_ERR(s))) {
825 path_put(&nd->path);
826 put_link(nd, link, *p);
827 return PTR_ERR(s);
829 if (*s == '/') {
830 set_root(nd);
831 path_put(&nd->path);
832 nd->path = nd->root;
833 path_get(&nd->root);
834 nd->flags |= LOOKUP_JUMPED;
836 nd->inode = nd->path.dentry->d_inode;
837 error = link_path_walk(s, nd);
838 if (unlikely(error))
839 put_link(nd, link, *p);
842 return error;
844 out_put_nd_path:
845 *p = NULL;
846 path_put(&nd->path);
847 path_put(link);
848 return error;
851 static int follow_up_rcu(struct path *path)
853 struct mount *mnt = real_mount(path->mnt);
854 struct mount *parent;
855 struct dentry *mountpoint;
857 parent = mnt->mnt_parent;
858 if (&parent->mnt == path->mnt)
859 return 0;
860 mountpoint = mnt->mnt_mountpoint;
861 path->dentry = mountpoint;
862 path->mnt = &parent->mnt;
863 return 1;
867 * follow_up - Find the mountpoint of path's vfsmount
869 * Given a path, find the mountpoint of its source file system.
870 * Replace @path with the path of the mountpoint in the parent mount.
871 * Up is towards /.
873 * Return 1 if we went up a level and 0 if we were already at the
874 * root.
876 int follow_up(struct path *path)
878 struct mount *mnt = real_mount(path->mnt);
879 struct mount *parent;
880 struct dentry *mountpoint;
882 read_seqlock_excl(&mount_lock);
883 parent = mnt->mnt_parent;
884 if (parent == mnt) {
885 read_sequnlock_excl(&mount_lock);
886 return 0;
888 mntget(&parent->mnt);
889 mountpoint = dget(mnt->mnt_mountpoint);
890 read_sequnlock_excl(&mount_lock);
891 dput(path->dentry);
892 path->dentry = mountpoint;
893 mntput(path->mnt);
894 path->mnt = &parent->mnt;
895 return 1;
899 * Perform an automount
900 * - return -EISDIR to tell follow_managed() to stop and return the path we
901 * were called with.
903 static int follow_automount(struct path *path, unsigned flags,
904 bool *need_mntput)
906 struct vfsmount *mnt;
907 int err;
909 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
910 return -EREMOTE;
912 /* We don't want to mount if someone's just doing a stat -
913 * unless they're stat'ing a directory and appended a '/' to
914 * the name.
916 * We do, however, want to mount if someone wants to open or
917 * create a file of any type under the mountpoint, wants to
918 * traverse through the mountpoint or wants to open the
919 * mounted directory. Also, autofs may mark negative dentries
920 * as being automount points. These will need the attentions
921 * of the daemon to instantiate them before they can be used.
923 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
924 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
925 path->dentry->d_inode)
926 return -EISDIR;
928 current->total_link_count++;
929 if (current->total_link_count >= 40)
930 return -ELOOP;
932 mnt = path->dentry->d_op->d_automount(path);
933 if (IS_ERR(mnt)) {
935 * The filesystem is allowed to return -EISDIR here to indicate
936 * it doesn't want to automount. For instance, autofs would do
937 * this so that its userspace daemon can mount on this dentry.
939 * However, we can only permit this if it's a terminal point in
940 * the path being looked up; if it wasn't then the remainder of
941 * the path is inaccessible and we should say so.
943 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
944 return -EREMOTE;
945 return PTR_ERR(mnt);
948 if (!mnt) /* mount collision */
949 return 0;
951 if (!*need_mntput) {
952 /* lock_mount() may release path->mnt on error */
953 mntget(path->mnt);
954 *need_mntput = true;
956 err = finish_automount(mnt, path);
958 switch (err) {
959 case -EBUSY:
960 /* Someone else made a mount here whilst we were busy */
961 return 0;
962 case 0:
963 path_put(path);
964 path->mnt = mnt;
965 path->dentry = dget(mnt->mnt_root);
966 return 0;
967 default:
968 return err;
974 * Handle a dentry that is managed in some way.
975 * - Flagged for transit management (autofs)
976 * - Flagged as mountpoint
977 * - Flagged as automount point
979 * This may only be called in refwalk mode.
981 * Serialization is taken care of in namespace.c
983 static int follow_managed(struct path *path, unsigned flags)
985 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
986 unsigned managed;
987 bool need_mntput = false;
988 int ret = 0;
990 /* Given that we're not holding a lock here, we retain the value in a
991 * local variable for each dentry as we look at it so that we don't see
992 * the components of that value change under us */
993 while (managed = ACCESS_ONCE(path->dentry->d_flags),
994 managed &= DCACHE_MANAGED_DENTRY,
995 unlikely(managed != 0)) {
996 /* Allow the filesystem to manage the transit without i_mutex
997 * being held. */
998 if (managed & DCACHE_MANAGE_TRANSIT) {
999 BUG_ON(!path->dentry->d_op);
1000 BUG_ON(!path->dentry->d_op->d_manage);
1001 ret = path->dentry->d_op->d_manage(path->dentry, false);
1002 if (ret < 0)
1003 break;
1006 /* Transit to a mounted filesystem. */
1007 if (managed & DCACHE_MOUNTED) {
1008 struct vfsmount *mounted = lookup_mnt(path);
1009 if (mounted) {
1010 dput(path->dentry);
1011 if (need_mntput)
1012 mntput(path->mnt);
1013 path->mnt = mounted;
1014 path->dentry = dget(mounted->mnt_root);
1015 need_mntput = true;
1016 continue;
1019 /* Something is mounted on this dentry in another
1020 * namespace and/or whatever was mounted there in this
1021 * namespace got unmounted before lookup_mnt() could
1022 * get it */
1025 /* Handle an automount point */
1026 if (managed & DCACHE_NEED_AUTOMOUNT) {
1027 ret = follow_automount(path, flags, &need_mntput);
1028 if (ret < 0)
1029 break;
1030 continue;
1033 /* We didn't change the current path point */
1034 break;
1037 if (need_mntput && path->mnt == mnt)
1038 mntput(path->mnt);
1039 if (ret == -EISDIR)
1040 ret = 0;
1041 return ret < 0 ? ret : need_mntput;
1044 int follow_down_one(struct path *path)
1046 struct vfsmount *mounted;
1048 mounted = lookup_mnt(path);
1049 if (mounted) {
1050 dput(path->dentry);
1051 mntput(path->mnt);
1052 path->mnt = mounted;
1053 path->dentry = dget(mounted->mnt_root);
1054 return 1;
1056 return 0;
1059 static inline bool managed_dentry_might_block(struct dentry *dentry)
1061 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1062 dentry->d_op->d_manage(dentry, true) < 0);
1066 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1067 * we meet a managed dentry that would need blocking.
1069 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1070 struct inode **inode)
1072 for (;;) {
1073 struct mount *mounted;
1075 * Don't forget we might have a non-mountpoint managed dentry
1076 * that wants to block transit.
1078 if (unlikely(managed_dentry_might_block(path->dentry)))
1079 return false;
1081 if (!d_mountpoint(path->dentry))
1082 break;
1084 mounted = __lookup_mnt(path->mnt, path->dentry);
1085 if (!mounted)
1086 break;
1087 path->mnt = &mounted->mnt;
1088 path->dentry = mounted->mnt.mnt_root;
1089 nd->flags |= LOOKUP_JUMPED;
1090 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1092 * Update the inode too. We don't need to re-check the
1093 * dentry sequence number here after this d_inode read,
1094 * because a mount-point is always pinned.
1096 *inode = path->dentry->d_inode;
1098 return true;
1101 static void follow_mount_rcu(struct nameidata *nd)
1103 while (d_mountpoint(nd->path.dentry)) {
1104 struct mount *mounted;
1105 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1106 if (!mounted)
1107 break;
1108 nd->path.mnt = &mounted->mnt;
1109 nd->path.dentry = mounted->mnt.mnt_root;
1110 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1114 static int follow_dotdot_rcu(struct nameidata *nd)
1116 set_root_rcu(nd);
1118 while (1) {
1119 if (nd->path.dentry == nd->root.dentry &&
1120 nd->path.mnt == nd->root.mnt) {
1121 break;
1123 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1124 struct dentry *old = nd->path.dentry;
1125 struct dentry *parent = old->d_parent;
1126 unsigned seq;
1128 seq = read_seqcount_begin(&parent->d_seq);
1129 if (read_seqcount_retry(&old->d_seq, nd->seq))
1130 goto failed;
1131 nd->path.dentry = parent;
1132 nd->seq = seq;
1133 break;
1135 if (!follow_up_rcu(&nd->path))
1136 break;
1137 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1139 follow_mount_rcu(nd);
1140 nd->inode = nd->path.dentry->d_inode;
1141 return 0;
1143 failed:
1144 nd->flags &= ~LOOKUP_RCU;
1145 if (!(nd->flags & LOOKUP_ROOT))
1146 nd->root.mnt = NULL;
1147 rcu_read_unlock();
1148 return -ECHILD;
1152 * Follow down to the covering mount currently visible to userspace. At each
1153 * point, the filesystem owning that dentry may be queried as to whether the
1154 * caller is permitted to proceed or not.
1156 int follow_down(struct path *path)
1158 unsigned managed;
1159 int ret;
1161 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1162 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1163 /* Allow the filesystem to manage the transit without i_mutex
1164 * being held.
1166 * We indicate to the filesystem if someone is trying to mount
1167 * something here. This gives autofs the chance to deny anyone
1168 * other than its daemon the right to mount on its
1169 * superstructure.
1171 * The filesystem may sleep at this point.
1173 if (managed & DCACHE_MANAGE_TRANSIT) {
1174 BUG_ON(!path->dentry->d_op);
1175 BUG_ON(!path->dentry->d_op->d_manage);
1176 ret = path->dentry->d_op->d_manage(
1177 path->dentry, false);
1178 if (ret < 0)
1179 return ret == -EISDIR ? 0 : ret;
1182 /* Transit to a mounted filesystem. */
1183 if (managed & DCACHE_MOUNTED) {
1184 struct vfsmount *mounted = lookup_mnt(path);
1185 if (!mounted)
1186 break;
1187 dput(path->dentry);
1188 mntput(path->mnt);
1189 path->mnt = mounted;
1190 path->dentry = dget(mounted->mnt_root);
1191 continue;
1194 /* Don't handle automount points here */
1195 break;
1197 return 0;
1201 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1203 static void follow_mount(struct path *path)
1205 while (d_mountpoint(path->dentry)) {
1206 struct vfsmount *mounted = lookup_mnt(path);
1207 if (!mounted)
1208 break;
1209 dput(path->dentry);
1210 mntput(path->mnt);
1211 path->mnt = mounted;
1212 path->dentry = dget(mounted->mnt_root);
1216 static void follow_dotdot(struct nameidata *nd)
1218 set_root(nd);
1220 while(1) {
1221 struct dentry *old = nd->path.dentry;
1223 if (nd->path.dentry == nd->root.dentry &&
1224 nd->path.mnt == nd->root.mnt) {
1225 break;
1227 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1228 /* rare case of legitimate dget_parent()... */
1229 nd->path.dentry = dget_parent(nd->path.dentry);
1230 dput(old);
1231 break;
1233 if (!follow_up(&nd->path))
1234 break;
1236 follow_mount(&nd->path);
1237 nd->inode = nd->path.dentry->d_inode;
1241 * This looks up the name in dcache, possibly revalidates the old dentry and
1242 * allocates a new one if not found or not valid. In the need_lookup argument
1243 * returns whether i_op->lookup is necessary.
1245 * dir->d_inode->i_mutex must be held
1247 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1248 unsigned int flags, bool *need_lookup)
1250 struct dentry *dentry;
1251 int error;
1253 *need_lookup = false;
1254 dentry = d_lookup(dir, name);
1255 if (dentry) {
1256 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1257 error = d_revalidate(dentry, flags);
1258 if (unlikely(error <= 0)) {
1259 if (error < 0) {
1260 dput(dentry);
1261 return ERR_PTR(error);
1262 } else if (!d_invalidate(dentry)) {
1263 dput(dentry);
1264 dentry = NULL;
1270 if (!dentry) {
1271 dentry = d_alloc(dir, name);
1272 if (unlikely(!dentry))
1273 return ERR_PTR(-ENOMEM);
1275 *need_lookup = true;
1277 return dentry;
1281 * Call i_op->lookup on the dentry. The dentry must be negative and
1282 * unhashed.
1284 * dir->d_inode->i_mutex must be held
1286 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1287 unsigned int flags)
1289 struct dentry *old;
1291 /* Don't create child dentry for a dead directory. */
1292 if (unlikely(IS_DEADDIR(dir))) {
1293 dput(dentry);
1294 return ERR_PTR(-ENOENT);
1297 old = dir->i_op->lookup(dir, dentry, flags);
1298 if (unlikely(old)) {
1299 dput(dentry);
1300 dentry = old;
1302 return dentry;
1305 static struct dentry *__lookup_hash(struct qstr *name,
1306 struct dentry *base, unsigned int flags)
1308 bool need_lookup;
1309 struct dentry *dentry;
1311 dentry = lookup_dcache(name, base, flags, &need_lookup);
1312 if (!need_lookup)
1313 return dentry;
1315 return lookup_real(base->d_inode, dentry, flags);
1319 * It's more convoluted than I'd like it to be, but... it's still fairly
1320 * small and for now I'd prefer to have fast path as straight as possible.
1321 * It _is_ time-critical.
1323 static int lookup_fast(struct nameidata *nd,
1324 struct path *path, struct inode **inode)
1326 struct vfsmount *mnt = nd->path.mnt;
1327 struct dentry *dentry, *parent = nd->path.dentry;
1328 int need_reval = 1;
1329 int status = 1;
1330 int err;
1333 * Rename seqlock is not required here because in the off chance
1334 * of a false negative due to a concurrent rename, we're going to
1335 * do the non-racy lookup, below.
1337 if (nd->flags & LOOKUP_RCU) {
1338 unsigned seq;
1339 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1340 if (!dentry)
1341 goto unlazy;
1344 * This sequence count validates that the inode matches
1345 * the dentry name information from lookup.
1347 *inode = dentry->d_inode;
1348 if (read_seqcount_retry(&dentry->d_seq, seq))
1349 return -ECHILD;
1352 * This sequence count validates that the parent had no
1353 * changes while we did the lookup of the dentry above.
1355 * The memory barrier in read_seqcount_begin of child is
1356 * enough, we can use __read_seqcount_retry here.
1358 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1359 return -ECHILD;
1360 nd->seq = seq;
1362 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1363 status = d_revalidate(dentry, nd->flags);
1364 if (unlikely(status <= 0)) {
1365 if (status != -ECHILD)
1366 need_reval = 0;
1367 goto unlazy;
1370 path->mnt = mnt;
1371 path->dentry = dentry;
1372 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1373 goto unlazy;
1374 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1375 goto unlazy;
1376 return 0;
1377 unlazy:
1378 if (unlazy_walk(nd, dentry))
1379 return -ECHILD;
1380 } else {
1381 dentry = __d_lookup(parent, &nd->last);
1384 if (unlikely(!dentry))
1385 goto need_lookup;
1387 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1388 status = d_revalidate(dentry, nd->flags);
1389 if (unlikely(status <= 0)) {
1390 if (status < 0) {
1391 dput(dentry);
1392 return status;
1394 if (!d_invalidate(dentry)) {
1395 dput(dentry);
1396 goto need_lookup;
1400 path->mnt = mnt;
1401 path->dentry = dentry;
1402 err = follow_managed(path, nd->flags);
1403 if (unlikely(err < 0)) {
1404 path_put_conditional(path, nd);
1405 return err;
1407 if (err)
1408 nd->flags |= LOOKUP_JUMPED;
1409 *inode = path->dentry->d_inode;
1410 return 0;
1412 need_lookup:
1413 return 1;
1416 /* Fast lookup failed, do it the slow way */
1417 static int lookup_slow(struct nameidata *nd, struct path *path)
1419 struct dentry *dentry, *parent;
1420 int err;
1422 parent = nd->path.dentry;
1423 BUG_ON(nd->inode != parent->d_inode);
1425 mutex_lock(&parent->d_inode->i_mutex);
1426 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1427 mutex_unlock(&parent->d_inode->i_mutex);
1428 if (IS_ERR(dentry))
1429 return PTR_ERR(dentry);
1430 path->mnt = nd->path.mnt;
1431 path->dentry = dentry;
1432 err = follow_managed(path, nd->flags);
1433 if (unlikely(err < 0)) {
1434 path_put_conditional(path, nd);
1435 return err;
1437 if (err)
1438 nd->flags |= LOOKUP_JUMPED;
1439 return 0;
1442 static inline int may_lookup(struct nameidata *nd)
1444 if (nd->flags & LOOKUP_RCU) {
1445 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1446 if (err != -ECHILD)
1447 return err;
1448 if (unlazy_walk(nd, NULL))
1449 return -ECHILD;
1451 return inode_permission(nd->inode, MAY_EXEC);
1454 static inline int handle_dots(struct nameidata *nd, int type)
1456 if (type == LAST_DOTDOT) {
1457 if (nd->flags & LOOKUP_RCU) {
1458 if (follow_dotdot_rcu(nd))
1459 return -ECHILD;
1460 } else
1461 follow_dotdot(nd);
1463 return 0;
1466 static void terminate_walk(struct nameidata *nd)
1468 if (!(nd->flags & LOOKUP_RCU)) {
1469 path_put(&nd->path);
1470 } else {
1471 nd->flags &= ~LOOKUP_RCU;
1472 if (!(nd->flags & LOOKUP_ROOT))
1473 nd->root.mnt = NULL;
1474 rcu_read_unlock();
1479 * Do we need to follow links? We _really_ want to be able
1480 * to do this check without having to look at inode->i_op,
1481 * so we keep a cache of "no, this doesn't need follow_link"
1482 * for the common case.
1484 static inline int should_follow_link(struct dentry *dentry, int follow)
1486 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1489 static inline int walk_component(struct nameidata *nd, struct path *path,
1490 int follow)
1492 struct inode *inode;
1493 int err;
1495 * "." and ".." are special - ".." especially so because it has
1496 * to be able to know about the current root directory and
1497 * parent relationships.
1499 if (unlikely(nd->last_type != LAST_NORM))
1500 return handle_dots(nd, nd->last_type);
1501 err = lookup_fast(nd, path, &inode);
1502 if (unlikely(err)) {
1503 if (err < 0)
1504 goto out_err;
1506 err = lookup_slow(nd, path);
1507 if (err < 0)
1508 goto out_err;
1510 inode = path->dentry->d_inode;
1512 err = -ENOENT;
1513 if (!inode)
1514 goto out_path_put;
1516 if (should_follow_link(path->dentry, follow)) {
1517 if (nd->flags & LOOKUP_RCU) {
1518 if (unlikely(unlazy_walk(nd, path->dentry))) {
1519 err = -ECHILD;
1520 goto out_err;
1523 BUG_ON(inode != path->dentry->d_inode);
1524 return 1;
1526 path_to_nameidata(path, nd);
1527 nd->inode = inode;
1528 return 0;
1530 out_path_put:
1531 path_to_nameidata(path, nd);
1532 out_err:
1533 terminate_walk(nd);
1534 return err;
1538 * This limits recursive symlink follows to 8, while
1539 * limiting consecutive symlinks to 40.
1541 * Without that kind of total limit, nasty chains of consecutive
1542 * symlinks can cause almost arbitrarily long lookups.
1544 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1546 int res;
1548 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1549 path_put_conditional(path, nd);
1550 path_put(&nd->path);
1551 return -ELOOP;
1553 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1555 nd->depth++;
1556 current->link_count++;
1558 do {
1559 struct path link = *path;
1560 void *cookie;
1562 res = follow_link(&link, nd, &cookie);
1563 if (res)
1564 break;
1565 res = walk_component(nd, path, LOOKUP_FOLLOW);
1566 put_link(nd, &link, cookie);
1567 } while (res > 0);
1569 current->link_count--;
1570 nd->depth--;
1571 return res;
1575 * We can do the critical dentry name comparison and hashing
1576 * operations one word at a time, but we are limited to:
1578 * - Architectures with fast unaligned word accesses. We could
1579 * do a "get_unaligned()" if this helps and is sufficiently
1580 * fast.
1582 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1583 * do not trap on the (extremely unlikely) case of a page
1584 * crossing operation.
1586 * - Furthermore, we need an efficient 64-bit compile for the
1587 * 64-bit case in order to generate the "number of bytes in
1588 * the final mask". Again, that could be replaced with a
1589 * efficient population count instruction or similar.
1591 #ifdef CONFIG_DCACHE_WORD_ACCESS
1593 #include <asm/word-at-a-time.h>
1595 #ifdef CONFIG_64BIT
1597 static inline unsigned int fold_hash(unsigned long hash)
1599 hash += hash >> (8*sizeof(int));
1600 return hash;
1603 #else /* 32-bit case */
1605 #define fold_hash(x) (x)
1607 #endif
1609 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1611 unsigned long a, mask;
1612 unsigned long hash = 0;
1614 for (;;) {
1615 a = load_unaligned_zeropad(name);
1616 if (len < sizeof(unsigned long))
1617 break;
1618 hash += a;
1619 hash *= 9;
1620 name += sizeof(unsigned long);
1621 len -= sizeof(unsigned long);
1622 if (!len)
1623 goto done;
1625 mask = bytemask_from_count(len);
1626 hash += mask & a;
1627 done:
1628 return fold_hash(hash);
1630 EXPORT_SYMBOL(full_name_hash);
1633 * Calculate the length and hash of the path component, and
1634 * return the length of the component;
1636 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1638 unsigned long a, b, adata, bdata, mask, hash, len;
1639 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1641 hash = a = 0;
1642 len = -sizeof(unsigned long);
1643 do {
1644 hash = (hash + a) * 9;
1645 len += sizeof(unsigned long);
1646 a = load_unaligned_zeropad(name+len);
1647 b = a ^ REPEAT_BYTE('/');
1648 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1650 adata = prep_zero_mask(a, adata, &constants);
1651 bdata = prep_zero_mask(b, bdata, &constants);
1653 mask = create_zero_mask(adata | bdata);
1655 hash += a & zero_bytemask(mask);
1656 *hashp = fold_hash(hash);
1658 return len + find_zero(mask);
1661 #else
1663 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1665 unsigned long hash = init_name_hash();
1666 while (len--)
1667 hash = partial_name_hash(*name++, hash);
1668 return end_name_hash(hash);
1670 EXPORT_SYMBOL(full_name_hash);
1673 * We know there's a real path component here of at least
1674 * one character.
1676 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1678 unsigned long hash = init_name_hash();
1679 unsigned long len = 0, c;
1681 c = (unsigned char)*name;
1682 do {
1683 len++;
1684 hash = partial_name_hash(c, hash);
1685 c = (unsigned char)name[len];
1686 } while (c && c != '/');
1687 *hashp = end_name_hash(hash);
1688 return len;
1691 #endif
1694 * Name resolution.
1695 * This is the basic name resolution function, turning a pathname into
1696 * the final dentry. We expect 'base' to be positive and a directory.
1698 * Returns 0 and nd will have valid dentry and mnt on success.
1699 * Returns error and drops reference to input namei data on failure.
1701 static int link_path_walk(const char *name, struct nameidata *nd)
1703 struct path next;
1704 int err;
1706 while (*name=='/')
1707 name++;
1708 if (!*name)
1709 return 0;
1711 /* At this point we know we have a real path component. */
1712 for(;;) {
1713 struct qstr this;
1714 long len;
1715 int type;
1717 err = may_lookup(nd);
1718 if (err)
1719 break;
1721 len = hash_name(name, &this.hash);
1722 this.name = name;
1723 this.len = len;
1725 type = LAST_NORM;
1726 if (name[0] == '.') switch (len) {
1727 case 2:
1728 if (name[1] == '.') {
1729 type = LAST_DOTDOT;
1730 nd->flags |= LOOKUP_JUMPED;
1732 break;
1733 case 1:
1734 type = LAST_DOT;
1736 if (likely(type == LAST_NORM)) {
1737 struct dentry *parent = nd->path.dentry;
1738 nd->flags &= ~LOOKUP_JUMPED;
1739 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1740 err = parent->d_op->d_hash(parent, &this);
1741 if (err < 0)
1742 break;
1746 nd->last = this;
1747 nd->last_type = type;
1749 if (!name[len])
1750 return 0;
1752 * If it wasn't NUL, we know it was '/'. Skip that
1753 * slash, and continue until no more slashes.
1755 do {
1756 len++;
1757 } while (unlikely(name[len] == '/'));
1758 if (!name[len])
1759 return 0;
1761 name += len;
1763 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1764 if (err < 0)
1765 return err;
1767 if (err) {
1768 err = nested_symlink(&next, nd);
1769 if (err)
1770 return err;
1772 if (!d_is_directory(nd->path.dentry)) {
1773 err = -ENOTDIR;
1774 break;
1777 terminate_walk(nd);
1778 return err;
1781 static int path_init(int dfd, const char *name, unsigned int flags,
1782 struct nameidata *nd, struct file **fp)
1784 int retval = 0;
1786 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1787 nd->flags = flags | LOOKUP_JUMPED;
1788 nd->depth = 0;
1789 if (flags & LOOKUP_ROOT) {
1790 struct dentry *root = nd->root.dentry;
1791 struct inode *inode = root->d_inode;
1792 if (*name) {
1793 if (!d_is_directory(root))
1794 return -ENOTDIR;
1795 retval = inode_permission(inode, MAY_EXEC);
1796 if (retval)
1797 return retval;
1799 nd->path = nd->root;
1800 nd->inode = inode;
1801 if (flags & LOOKUP_RCU) {
1802 rcu_read_lock();
1803 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1804 nd->m_seq = read_seqbegin(&mount_lock);
1805 } else {
1806 path_get(&nd->path);
1808 return 0;
1811 nd->root.mnt = NULL;
1813 nd->m_seq = read_seqbegin(&mount_lock);
1814 if (*name=='/') {
1815 if (flags & LOOKUP_RCU) {
1816 rcu_read_lock();
1817 set_root_rcu(nd);
1818 } else {
1819 set_root(nd);
1820 path_get(&nd->root);
1822 nd->path = nd->root;
1823 } else if (dfd == AT_FDCWD) {
1824 if (flags & LOOKUP_RCU) {
1825 struct fs_struct *fs = current->fs;
1826 unsigned seq;
1828 rcu_read_lock();
1830 do {
1831 seq = read_seqcount_begin(&fs->seq);
1832 nd->path = fs->pwd;
1833 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1834 } while (read_seqcount_retry(&fs->seq, seq));
1835 } else {
1836 get_fs_pwd(current->fs, &nd->path);
1838 } else {
1839 /* Caller must check execute permissions on the starting path component */
1840 struct fd f = fdget_raw(dfd);
1841 struct dentry *dentry;
1843 if (!f.file)
1844 return -EBADF;
1846 dentry = f.file->f_path.dentry;
1848 if (*name) {
1849 if (!d_is_directory(dentry)) {
1850 fdput(f);
1851 return -ENOTDIR;
1855 nd->path = f.file->f_path;
1856 if (flags & LOOKUP_RCU) {
1857 if (f.need_put)
1858 *fp = f.file;
1859 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1860 rcu_read_lock();
1861 } else {
1862 path_get(&nd->path);
1863 fdput(f);
1867 nd->inode = nd->path.dentry->d_inode;
1868 return 0;
1871 static inline int lookup_last(struct nameidata *nd, struct path *path)
1873 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1874 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1876 nd->flags &= ~LOOKUP_PARENT;
1877 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1880 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1881 static int path_lookupat(int dfd, const char *name,
1882 unsigned int flags, struct nameidata *nd)
1884 struct file *base = NULL;
1885 struct path path;
1886 int err;
1889 * Path walking is largely split up into 2 different synchronisation
1890 * schemes, rcu-walk and ref-walk (explained in
1891 * Documentation/filesystems/path-lookup.txt). These share much of the
1892 * path walk code, but some things particularly setup, cleanup, and
1893 * following mounts are sufficiently divergent that functions are
1894 * duplicated. Typically there is a function foo(), and its RCU
1895 * analogue, foo_rcu().
1897 * -ECHILD is the error number of choice (just to avoid clashes) that
1898 * is returned if some aspect of an rcu-walk fails. Such an error must
1899 * be handled by restarting a traditional ref-walk (which will always
1900 * be able to complete).
1902 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1904 if (unlikely(err))
1905 return err;
1907 current->total_link_count = 0;
1908 err = link_path_walk(name, nd);
1910 if (!err && !(flags & LOOKUP_PARENT)) {
1911 err = lookup_last(nd, &path);
1912 while (err > 0) {
1913 void *cookie;
1914 struct path link = path;
1915 err = may_follow_link(&link, nd);
1916 if (unlikely(err))
1917 break;
1918 nd->flags |= LOOKUP_PARENT;
1919 err = follow_link(&link, nd, &cookie);
1920 if (err)
1921 break;
1922 err = lookup_last(nd, &path);
1923 put_link(nd, &link, cookie);
1927 if (!err)
1928 err = complete_walk(nd);
1930 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1931 if (!d_is_directory(nd->path.dentry)) {
1932 path_put(&nd->path);
1933 err = -ENOTDIR;
1937 if (base)
1938 fput(base);
1940 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1941 path_put(&nd->root);
1942 nd->root.mnt = NULL;
1944 return err;
1947 static int filename_lookup(int dfd, struct filename *name,
1948 unsigned int flags, struct nameidata *nd)
1950 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
1951 if (unlikely(retval == -ECHILD))
1952 retval = path_lookupat(dfd, name->name, flags, nd);
1953 if (unlikely(retval == -ESTALE))
1954 retval = path_lookupat(dfd, name->name,
1955 flags | LOOKUP_REVAL, nd);
1957 if (likely(!retval))
1958 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
1959 return retval;
1962 static int do_path_lookup(int dfd, const char *name,
1963 unsigned int flags, struct nameidata *nd)
1965 struct filename filename = { .name = name };
1967 return filename_lookup(dfd, &filename, flags, nd);
1970 /* does lookup, returns the object with parent locked */
1971 struct dentry *kern_path_locked(const char *name, struct path *path)
1973 struct nameidata nd;
1974 struct dentry *d;
1975 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
1976 if (err)
1977 return ERR_PTR(err);
1978 if (nd.last_type != LAST_NORM) {
1979 path_put(&nd.path);
1980 return ERR_PTR(-EINVAL);
1982 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1983 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
1984 if (IS_ERR(d)) {
1985 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
1986 path_put(&nd.path);
1987 return d;
1989 *path = nd.path;
1990 return d;
1993 int kern_path(const char *name, unsigned int flags, struct path *path)
1995 struct nameidata nd;
1996 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1997 if (!res)
1998 *path = nd.path;
1999 return res;
2003 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2004 * @dentry: pointer to dentry of the base directory
2005 * @mnt: pointer to vfs mount of the base directory
2006 * @name: pointer to file name
2007 * @flags: lookup flags
2008 * @path: pointer to struct path to fill
2010 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2011 const char *name, unsigned int flags,
2012 struct path *path)
2014 struct nameidata nd;
2015 int err;
2016 nd.root.dentry = dentry;
2017 nd.root.mnt = mnt;
2018 BUG_ON(flags & LOOKUP_PARENT);
2019 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2020 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2021 if (!err)
2022 *path = nd.path;
2023 return err;
2027 * Restricted form of lookup. Doesn't follow links, single-component only,
2028 * needs parent already locked. Doesn't follow mounts.
2029 * SMP-safe.
2031 static struct dentry *lookup_hash(struct nameidata *nd)
2033 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2037 * lookup_one_len - filesystem helper to lookup single pathname component
2038 * @name: pathname component to lookup
2039 * @base: base directory to lookup from
2040 * @len: maximum length @len should be interpreted to
2042 * Note that this routine is purely a helper for filesystem usage and should
2043 * not be called by generic code. Also note that by using this function the
2044 * nameidata argument is passed to the filesystem methods and a filesystem
2045 * using this helper needs to be prepared for that.
2047 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2049 struct qstr this;
2050 unsigned int c;
2051 int err;
2053 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2055 this.name = name;
2056 this.len = len;
2057 this.hash = full_name_hash(name, len);
2058 if (!len)
2059 return ERR_PTR(-EACCES);
2061 if (unlikely(name[0] == '.')) {
2062 if (len < 2 || (len == 2 && name[1] == '.'))
2063 return ERR_PTR(-EACCES);
2066 while (len--) {
2067 c = *(const unsigned char *)name++;
2068 if (c == '/' || c == '\0')
2069 return ERR_PTR(-EACCES);
2072 * See if the low-level filesystem might want
2073 * to use its own hash..
2075 if (base->d_flags & DCACHE_OP_HASH) {
2076 int err = base->d_op->d_hash(base, &this);
2077 if (err < 0)
2078 return ERR_PTR(err);
2081 err = inode_permission(base->d_inode, MAY_EXEC);
2082 if (err)
2083 return ERR_PTR(err);
2085 return __lookup_hash(&this, base, 0);
2088 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2089 struct path *path, int *empty)
2091 struct nameidata nd;
2092 struct filename *tmp = getname_flags(name, flags, empty);
2093 int err = PTR_ERR(tmp);
2094 if (!IS_ERR(tmp)) {
2096 BUG_ON(flags & LOOKUP_PARENT);
2098 err = filename_lookup(dfd, tmp, flags, &nd);
2099 putname(tmp);
2100 if (!err)
2101 *path = nd.path;
2103 return err;
2106 int user_path_at(int dfd, const char __user *name, unsigned flags,
2107 struct path *path)
2109 return user_path_at_empty(dfd, name, flags, path, NULL);
2113 * NB: most callers don't do anything directly with the reference to the
2114 * to struct filename, but the nd->last pointer points into the name string
2115 * allocated by getname. So we must hold the reference to it until all
2116 * path-walking is complete.
2118 static struct filename *
2119 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2120 unsigned int flags)
2122 struct filename *s = getname(path);
2123 int error;
2125 /* only LOOKUP_REVAL is allowed in extra flags */
2126 flags &= LOOKUP_REVAL;
2128 if (IS_ERR(s))
2129 return s;
2131 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2132 if (error) {
2133 putname(s);
2134 return ERR_PTR(error);
2137 return s;
2141 * mountpoint_last - look up last component for umount
2142 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2143 * @path: pointer to container for result
2145 * This is a special lookup_last function just for umount. In this case, we
2146 * need to resolve the path without doing any revalidation.
2148 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2149 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2150 * in almost all cases, this lookup will be served out of the dcache. The only
2151 * cases where it won't are if nd->last refers to a symlink or the path is
2152 * bogus and it doesn't exist.
2154 * Returns:
2155 * -error: if there was an error during lookup. This includes -ENOENT if the
2156 * lookup found a negative dentry. The nd->path reference will also be
2157 * put in this case.
2159 * 0: if we successfully resolved nd->path and found it to not to be a
2160 * symlink that needs to be followed. "path" will also be populated.
2161 * The nd->path reference will also be put.
2163 * 1: if we successfully resolved nd->last and found it to be a symlink
2164 * that needs to be followed. "path" will be populated with the path
2165 * to the link, and nd->path will *not* be put.
2167 static int
2168 mountpoint_last(struct nameidata *nd, struct path *path)
2170 int error = 0;
2171 struct dentry *dentry;
2172 struct dentry *dir = nd->path.dentry;
2174 /* If we're in rcuwalk, drop out of it to handle last component */
2175 if (nd->flags & LOOKUP_RCU) {
2176 if (unlazy_walk(nd, NULL)) {
2177 error = -ECHILD;
2178 goto out;
2182 nd->flags &= ~LOOKUP_PARENT;
2184 if (unlikely(nd->last_type != LAST_NORM)) {
2185 error = handle_dots(nd, nd->last_type);
2186 if (error)
2187 goto out;
2188 dentry = dget(nd->path.dentry);
2189 goto done;
2192 mutex_lock(&dir->d_inode->i_mutex);
2193 dentry = d_lookup(dir, &nd->last);
2194 if (!dentry) {
2196 * No cached dentry. Mounted dentries are pinned in the cache,
2197 * so that means that this dentry is probably a symlink or the
2198 * path doesn't actually point to a mounted dentry.
2200 dentry = d_alloc(dir, &nd->last);
2201 if (!dentry) {
2202 error = -ENOMEM;
2203 mutex_unlock(&dir->d_inode->i_mutex);
2204 goto out;
2206 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2207 error = PTR_ERR(dentry);
2208 if (IS_ERR(dentry)) {
2209 mutex_unlock(&dir->d_inode->i_mutex);
2210 goto out;
2213 mutex_unlock(&dir->d_inode->i_mutex);
2215 done:
2216 if (!dentry->d_inode) {
2217 error = -ENOENT;
2218 dput(dentry);
2219 goto out;
2221 path->dentry = dentry;
2222 path->mnt = mntget(nd->path.mnt);
2223 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2224 return 1;
2225 follow_mount(path);
2226 error = 0;
2227 out:
2228 terminate_walk(nd);
2229 return error;
2233 * path_mountpoint - look up a path to be umounted
2234 * @dfd: directory file descriptor to start walk from
2235 * @name: full pathname to walk
2236 * @path: pointer to container for result
2237 * @flags: lookup flags
2239 * Look up the given name, but don't attempt to revalidate the last component.
2240 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2242 static int
2243 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2245 struct file *base = NULL;
2246 struct nameidata nd;
2247 int err;
2249 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2250 if (unlikely(err))
2251 return err;
2253 current->total_link_count = 0;
2254 err = link_path_walk(name, &nd);
2255 if (err)
2256 goto out;
2258 err = mountpoint_last(&nd, path);
2259 while (err > 0) {
2260 void *cookie;
2261 struct path link = *path;
2262 err = may_follow_link(&link, &nd);
2263 if (unlikely(err))
2264 break;
2265 nd.flags |= LOOKUP_PARENT;
2266 err = follow_link(&link, &nd, &cookie);
2267 if (err)
2268 break;
2269 err = mountpoint_last(&nd, path);
2270 put_link(&nd, &link, cookie);
2272 out:
2273 if (base)
2274 fput(base);
2276 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2277 path_put(&nd.root);
2279 return err;
2282 static int
2283 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2284 unsigned int flags)
2286 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2287 if (unlikely(error == -ECHILD))
2288 error = path_mountpoint(dfd, s->name, path, flags);
2289 if (unlikely(error == -ESTALE))
2290 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2291 if (likely(!error))
2292 audit_inode(s, path->dentry, 0);
2293 return error;
2297 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2298 * @dfd: directory file descriptor
2299 * @name: pathname from userland
2300 * @flags: lookup flags
2301 * @path: pointer to container to hold result
2303 * A umount is a special case for path walking. We're not actually interested
2304 * in the inode in this situation, and ESTALE errors can be a problem. We
2305 * simply want track down the dentry and vfsmount attached at the mountpoint
2306 * and avoid revalidating the last component.
2308 * Returns 0 and populates "path" on success.
2311 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2312 struct path *path)
2314 struct filename *s = getname(name);
2315 int error;
2316 if (IS_ERR(s))
2317 return PTR_ERR(s);
2318 error = filename_mountpoint(dfd, s, path, flags);
2319 putname(s);
2320 return error;
2324 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2325 unsigned int flags)
2327 struct filename s = {.name = name};
2328 return filename_mountpoint(dfd, &s, path, flags);
2330 EXPORT_SYMBOL(kern_path_mountpoint);
2333 * It's inline, so penalty for filesystems that don't use sticky bit is
2334 * minimal.
2336 static inline int check_sticky(struct inode *dir, struct inode *inode)
2338 kuid_t fsuid = current_fsuid();
2340 if (!(dir->i_mode & S_ISVTX))
2341 return 0;
2342 if (uid_eq(inode->i_uid, fsuid))
2343 return 0;
2344 if (uid_eq(dir->i_uid, fsuid))
2345 return 0;
2346 return !inode_capable(inode, CAP_FOWNER);
2350 * Check whether we can remove a link victim from directory dir, check
2351 * whether the type of victim is right.
2352 * 1. We can't do it if dir is read-only (done in permission())
2353 * 2. We should have write and exec permissions on dir
2354 * 3. We can't remove anything from append-only dir
2355 * 4. We can't do anything with immutable dir (done in permission())
2356 * 5. If the sticky bit on dir is set we should either
2357 * a. be owner of dir, or
2358 * b. be owner of victim, or
2359 * c. have CAP_FOWNER capability
2360 * 6. If the victim is append-only or immutable we can't do antyhing with
2361 * links pointing to it.
2362 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2363 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2364 * 9. We can't remove a root or mountpoint.
2365 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2366 * nfs_async_unlink().
2368 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2370 struct inode *inode = victim->d_inode;
2371 int error;
2373 if (d_is_negative(victim))
2374 return -ENOENT;
2375 BUG_ON(!inode);
2377 BUG_ON(victim->d_parent->d_inode != dir);
2378 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2380 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2381 if (error)
2382 return error;
2383 if (IS_APPEND(dir))
2384 return -EPERM;
2386 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2387 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2388 return -EPERM;
2389 if (isdir) {
2390 if (!d_is_directory(victim) && !d_is_autodir(victim))
2391 return -ENOTDIR;
2392 if (IS_ROOT(victim))
2393 return -EBUSY;
2394 } else if (d_is_directory(victim) || d_is_autodir(victim))
2395 return -EISDIR;
2396 if (IS_DEADDIR(dir))
2397 return -ENOENT;
2398 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2399 return -EBUSY;
2400 return 0;
2403 /* Check whether we can create an object with dentry child in directory
2404 * dir.
2405 * 1. We can't do it if child already exists (open has special treatment for
2406 * this case, but since we are inlined it's OK)
2407 * 2. We can't do it if dir is read-only (done in permission())
2408 * 3. We should have write and exec permissions on dir
2409 * 4. We can't do it if dir is immutable (done in permission())
2411 static inline int may_create(struct inode *dir, struct dentry *child)
2413 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2414 if (child->d_inode)
2415 return -EEXIST;
2416 if (IS_DEADDIR(dir))
2417 return -ENOENT;
2418 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2422 * p1 and p2 should be directories on the same fs.
2424 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2426 struct dentry *p;
2428 if (p1 == p2) {
2429 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2430 return NULL;
2433 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2435 p = d_ancestor(p2, p1);
2436 if (p) {
2437 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2438 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2439 return p;
2442 p = d_ancestor(p1, p2);
2443 if (p) {
2444 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2445 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2446 return p;
2449 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2450 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2451 return NULL;
2454 void unlock_rename(struct dentry *p1, struct dentry *p2)
2456 mutex_unlock(&p1->d_inode->i_mutex);
2457 if (p1 != p2) {
2458 mutex_unlock(&p2->d_inode->i_mutex);
2459 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2463 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2464 bool want_excl)
2466 int error = may_create(dir, dentry);
2467 if (error)
2468 return error;
2470 if (!dir->i_op->create)
2471 return -EACCES; /* shouldn't it be ENOSYS? */
2472 mode &= S_IALLUGO;
2473 mode |= S_IFREG;
2474 error = security_inode_create(dir, dentry, mode);
2475 if (error)
2476 return error;
2477 error = dir->i_op->create(dir, dentry, mode, want_excl);
2478 if (!error)
2479 fsnotify_create(dir, dentry);
2480 return error;
2483 static int may_open(struct path *path, int acc_mode, int flag)
2485 struct dentry *dentry = path->dentry;
2486 struct inode *inode = dentry->d_inode;
2487 int error;
2489 /* O_PATH? */
2490 if (!acc_mode)
2491 return 0;
2493 if (!inode)
2494 return -ENOENT;
2496 switch (inode->i_mode & S_IFMT) {
2497 case S_IFLNK:
2498 return -ELOOP;
2499 case S_IFDIR:
2500 if (acc_mode & MAY_WRITE)
2501 return -EISDIR;
2502 break;
2503 case S_IFBLK:
2504 case S_IFCHR:
2505 if (path->mnt->mnt_flags & MNT_NODEV)
2506 return -EACCES;
2507 /*FALLTHRU*/
2508 case S_IFIFO:
2509 case S_IFSOCK:
2510 flag &= ~O_TRUNC;
2511 break;
2514 error = inode_permission(inode, acc_mode);
2515 if (error)
2516 return error;
2519 * An append-only file must be opened in append mode for writing.
2521 if (IS_APPEND(inode)) {
2522 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2523 return -EPERM;
2524 if (flag & O_TRUNC)
2525 return -EPERM;
2528 /* O_NOATIME can only be set by the owner or superuser */
2529 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2530 return -EPERM;
2532 return 0;
2535 static int handle_truncate(struct file *filp)
2537 struct path *path = &filp->f_path;
2538 struct inode *inode = path->dentry->d_inode;
2539 int error = get_write_access(inode);
2540 if (error)
2541 return error;
2543 * Refuse to truncate files with mandatory locks held on them.
2545 error = locks_verify_locked(inode);
2546 if (!error)
2547 error = security_path_truncate(path);
2548 if (!error) {
2549 error = do_truncate(path->dentry, 0,
2550 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2551 filp);
2553 put_write_access(inode);
2554 return error;
2557 static inline int open_to_namei_flags(int flag)
2559 if ((flag & O_ACCMODE) == 3)
2560 flag--;
2561 return flag;
2564 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2566 int error = security_path_mknod(dir, dentry, mode, 0);
2567 if (error)
2568 return error;
2570 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2571 if (error)
2572 return error;
2574 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2578 * Attempt to atomically look up, create and open a file from a negative
2579 * dentry.
2581 * Returns 0 if successful. The file will have been created and attached to
2582 * @file by the filesystem calling finish_open().
2584 * Returns 1 if the file was looked up only or didn't need creating. The
2585 * caller will need to perform the open themselves. @path will have been
2586 * updated to point to the new dentry. This may be negative.
2588 * Returns an error code otherwise.
2590 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2591 struct path *path, struct file *file,
2592 const struct open_flags *op,
2593 bool got_write, bool need_lookup,
2594 int *opened)
2596 struct inode *dir = nd->path.dentry->d_inode;
2597 unsigned open_flag = open_to_namei_flags(op->open_flag);
2598 umode_t mode;
2599 int error;
2600 int acc_mode;
2601 int create_error = 0;
2602 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2603 bool excl;
2605 BUG_ON(dentry->d_inode);
2607 /* Don't create child dentry for a dead directory. */
2608 if (unlikely(IS_DEADDIR(dir))) {
2609 error = -ENOENT;
2610 goto out;
2613 mode = op->mode;
2614 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2615 mode &= ~current_umask();
2617 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2618 if (excl)
2619 open_flag &= ~O_TRUNC;
2622 * Checking write permission is tricky, bacuse we don't know if we are
2623 * going to actually need it: O_CREAT opens should work as long as the
2624 * file exists. But checking existence breaks atomicity. The trick is
2625 * to check access and if not granted clear O_CREAT from the flags.
2627 * Another problem is returing the "right" error value (e.g. for an
2628 * O_EXCL open we want to return EEXIST not EROFS).
2630 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2631 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2632 if (!(open_flag & O_CREAT)) {
2634 * No O_CREATE -> atomicity not a requirement -> fall
2635 * back to lookup + open
2637 goto no_open;
2638 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2639 /* Fall back and fail with the right error */
2640 create_error = -EROFS;
2641 goto no_open;
2642 } else {
2643 /* No side effects, safe to clear O_CREAT */
2644 create_error = -EROFS;
2645 open_flag &= ~O_CREAT;
2649 if (open_flag & O_CREAT) {
2650 error = may_o_create(&nd->path, dentry, mode);
2651 if (error) {
2652 create_error = error;
2653 if (open_flag & O_EXCL)
2654 goto no_open;
2655 open_flag &= ~O_CREAT;
2659 if (nd->flags & LOOKUP_DIRECTORY)
2660 open_flag |= O_DIRECTORY;
2662 file->f_path.dentry = DENTRY_NOT_SET;
2663 file->f_path.mnt = nd->path.mnt;
2664 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2665 opened);
2666 if (error < 0) {
2667 if (create_error && error == -ENOENT)
2668 error = create_error;
2669 goto out;
2672 if (error) { /* returned 1, that is */
2673 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2674 error = -EIO;
2675 goto out;
2677 if (file->f_path.dentry) {
2678 dput(dentry);
2679 dentry = file->f_path.dentry;
2681 if (*opened & FILE_CREATED)
2682 fsnotify_create(dir, dentry);
2683 if (!dentry->d_inode) {
2684 WARN_ON(*opened & FILE_CREATED);
2685 if (create_error) {
2686 error = create_error;
2687 goto out;
2689 } else {
2690 if (excl && !(*opened & FILE_CREATED)) {
2691 error = -EEXIST;
2692 goto out;
2695 goto looked_up;
2699 * We didn't have the inode before the open, so check open permission
2700 * here.
2702 acc_mode = op->acc_mode;
2703 if (*opened & FILE_CREATED) {
2704 WARN_ON(!(open_flag & O_CREAT));
2705 fsnotify_create(dir, dentry);
2706 acc_mode = MAY_OPEN;
2708 error = may_open(&file->f_path, acc_mode, open_flag);
2709 if (error)
2710 fput(file);
2712 out:
2713 dput(dentry);
2714 return error;
2716 no_open:
2717 if (need_lookup) {
2718 dentry = lookup_real(dir, dentry, nd->flags);
2719 if (IS_ERR(dentry))
2720 return PTR_ERR(dentry);
2722 if (create_error) {
2723 int open_flag = op->open_flag;
2725 error = create_error;
2726 if ((open_flag & O_EXCL)) {
2727 if (!dentry->d_inode)
2728 goto out;
2729 } else if (!dentry->d_inode) {
2730 goto out;
2731 } else if ((open_flag & O_TRUNC) &&
2732 S_ISREG(dentry->d_inode->i_mode)) {
2733 goto out;
2735 /* will fail later, go on to get the right error */
2738 looked_up:
2739 path->dentry = dentry;
2740 path->mnt = nd->path.mnt;
2741 return 1;
2745 * Look up and maybe create and open the last component.
2747 * Must be called with i_mutex held on parent.
2749 * Returns 0 if the file was successfully atomically created (if necessary) and
2750 * opened. In this case the file will be returned attached to @file.
2752 * Returns 1 if the file was not completely opened at this time, though lookups
2753 * and creations will have been performed and the dentry returned in @path will
2754 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2755 * specified then a negative dentry may be returned.
2757 * An error code is returned otherwise.
2759 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2760 * cleared otherwise prior to returning.
2762 static int lookup_open(struct nameidata *nd, struct path *path,
2763 struct file *file,
2764 const struct open_flags *op,
2765 bool got_write, int *opened)
2767 struct dentry *dir = nd->path.dentry;
2768 struct inode *dir_inode = dir->d_inode;
2769 struct dentry *dentry;
2770 int error;
2771 bool need_lookup;
2773 *opened &= ~FILE_CREATED;
2774 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2775 if (IS_ERR(dentry))
2776 return PTR_ERR(dentry);
2778 /* Cached positive dentry: will open in f_op->open */
2779 if (!need_lookup && dentry->d_inode)
2780 goto out_no_open;
2782 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2783 return atomic_open(nd, dentry, path, file, op, got_write,
2784 need_lookup, opened);
2787 if (need_lookup) {
2788 BUG_ON(dentry->d_inode);
2790 dentry = lookup_real(dir_inode, dentry, nd->flags);
2791 if (IS_ERR(dentry))
2792 return PTR_ERR(dentry);
2795 /* Negative dentry, just create the file */
2796 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2797 umode_t mode = op->mode;
2798 if (!IS_POSIXACL(dir->d_inode))
2799 mode &= ~current_umask();
2801 * This write is needed to ensure that a
2802 * rw->ro transition does not occur between
2803 * the time when the file is created and when
2804 * a permanent write count is taken through
2805 * the 'struct file' in finish_open().
2807 if (!got_write) {
2808 error = -EROFS;
2809 goto out_dput;
2811 *opened |= FILE_CREATED;
2812 error = security_path_mknod(&nd->path, dentry, mode, 0);
2813 if (error)
2814 goto out_dput;
2815 error = vfs_create(dir->d_inode, dentry, mode,
2816 nd->flags & LOOKUP_EXCL);
2817 if (error)
2818 goto out_dput;
2820 out_no_open:
2821 path->dentry = dentry;
2822 path->mnt = nd->path.mnt;
2823 return 1;
2825 out_dput:
2826 dput(dentry);
2827 return error;
2831 * Handle the last step of open()
2833 static int do_last(struct nameidata *nd, struct path *path,
2834 struct file *file, const struct open_flags *op,
2835 int *opened, struct filename *name)
2837 struct dentry *dir = nd->path.dentry;
2838 int open_flag = op->open_flag;
2839 bool will_truncate = (open_flag & O_TRUNC) != 0;
2840 bool got_write = false;
2841 int acc_mode = op->acc_mode;
2842 struct inode *inode;
2843 bool symlink_ok = false;
2844 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2845 bool retried = false;
2846 int error;
2848 nd->flags &= ~LOOKUP_PARENT;
2849 nd->flags |= op->intent;
2851 if (nd->last_type != LAST_NORM) {
2852 error = handle_dots(nd, nd->last_type);
2853 if (error)
2854 return error;
2855 goto finish_open;
2858 if (!(open_flag & O_CREAT)) {
2859 if (nd->last.name[nd->last.len])
2860 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2861 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2862 symlink_ok = true;
2863 /* we _can_ be in RCU mode here */
2864 error = lookup_fast(nd, path, &inode);
2865 if (likely(!error))
2866 goto finish_lookup;
2868 if (error < 0)
2869 goto out;
2871 BUG_ON(nd->inode != dir->d_inode);
2872 } else {
2873 /* create side of things */
2875 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2876 * has been cleared when we got to the last component we are
2877 * about to look up
2879 error = complete_walk(nd);
2880 if (error)
2881 return error;
2883 audit_inode(name, dir, LOOKUP_PARENT);
2884 error = -EISDIR;
2885 /* trailing slashes? */
2886 if (nd->last.name[nd->last.len])
2887 goto out;
2890 retry_lookup:
2891 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2892 error = mnt_want_write(nd->path.mnt);
2893 if (!error)
2894 got_write = true;
2896 * do _not_ fail yet - we might not need that or fail with
2897 * a different error; let lookup_open() decide; we'll be
2898 * dropping this one anyway.
2901 mutex_lock(&dir->d_inode->i_mutex);
2902 error = lookup_open(nd, path, file, op, got_write, opened);
2903 mutex_unlock(&dir->d_inode->i_mutex);
2905 if (error <= 0) {
2906 if (error)
2907 goto out;
2909 if ((*opened & FILE_CREATED) ||
2910 !S_ISREG(file_inode(file)->i_mode))
2911 will_truncate = false;
2913 audit_inode(name, file->f_path.dentry, 0);
2914 goto opened;
2917 if (*opened & FILE_CREATED) {
2918 /* Don't check for write permission, don't truncate */
2919 open_flag &= ~O_TRUNC;
2920 will_truncate = false;
2921 acc_mode = MAY_OPEN;
2922 path_to_nameidata(path, nd);
2923 goto finish_open_created;
2927 * create/update audit record if it already exists.
2929 if (d_is_positive(path->dentry))
2930 audit_inode(name, path->dentry, 0);
2933 * If atomic_open() acquired write access it is dropped now due to
2934 * possible mount and symlink following (this might be optimized away if
2935 * necessary...)
2937 if (got_write) {
2938 mnt_drop_write(nd->path.mnt);
2939 got_write = false;
2942 error = -EEXIST;
2943 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2944 goto exit_dput;
2946 error = follow_managed(path, nd->flags);
2947 if (error < 0)
2948 goto exit_dput;
2950 if (error)
2951 nd->flags |= LOOKUP_JUMPED;
2953 BUG_ON(nd->flags & LOOKUP_RCU);
2954 inode = path->dentry->d_inode;
2955 finish_lookup:
2956 /* we _can_ be in RCU mode here */
2957 error = -ENOENT;
2958 if (d_is_negative(path->dentry)) {
2959 path_to_nameidata(path, nd);
2960 goto out;
2963 if (should_follow_link(path->dentry, !symlink_ok)) {
2964 if (nd->flags & LOOKUP_RCU) {
2965 if (unlikely(unlazy_walk(nd, path->dentry))) {
2966 error = -ECHILD;
2967 goto out;
2970 BUG_ON(inode != path->dentry->d_inode);
2971 return 1;
2974 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2975 path_to_nameidata(path, nd);
2976 } else {
2977 save_parent.dentry = nd->path.dentry;
2978 save_parent.mnt = mntget(path->mnt);
2979 nd->path.dentry = path->dentry;
2982 nd->inode = inode;
2983 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2984 finish_open:
2985 error = complete_walk(nd);
2986 if (error) {
2987 path_put(&save_parent);
2988 return error;
2990 audit_inode(name, nd->path.dentry, 0);
2991 error = -EISDIR;
2992 if ((open_flag & O_CREAT) &&
2993 (d_is_directory(nd->path.dentry) || d_is_autodir(nd->path.dentry)))
2994 goto out;
2995 error = -ENOTDIR;
2996 if ((nd->flags & LOOKUP_DIRECTORY) && !d_is_directory(nd->path.dentry))
2997 goto out;
2998 if (!S_ISREG(nd->inode->i_mode))
2999 will_truncate = false;
3001 if (will_truncate) {
3002 error = mnt_want_write(nd->path.mnt);
3003 if (error)
3004 goto out;
3005 got_write = true;
3007 finish_open_created:
3008 error = may_open(&nd->path, acc_mode, open_flag);
3009 if (error)
3010 goto out;
3011 file->f_path.mnt = nd->path.mnt;
3012 error = finish_open(file, nd->path.dentry, NULL, opened);
3013 if (error) {
3014 if (error == -EOPENSTALE)
3015 goto stale_open;
3016 goto out;
3018 opened:
3019 error = open_check_o_direct(file);
3020 if (error)
3021 goto exit_fput;
3022 error = ima_file_check(file, op->acc_mode);
3023 if (error)
3024 goto exit_fput;
3026 if (will_truncate) {
3027 error = handle_truncate(file);
3028 if (error)
3029 goto exit_fput;
3031 out:
3032 if (got_write)
3033 mnt_drop_write(nd->path.mnt);
3034 path_put(&save_parent);
3035 terminate_walk(nd);
3036 return error;
3038 exit_dput:
3039 path_put_conditional(path, nd);
3040 goto out;
3041 exit_fput:
3042 fput(file);
3043 goto out;
3045 stale_open:
3046 /* If no saved parent or already retried then can't retry */
3047 if (!save_parent.dentry || retried)
3048 goto out;
3050 BUG_ON(save_parent.dentry != dir);
3051 path_put(&nd->path);
3052 nd->path = save_parent;
3053 nd->inode = dir->d_inode;
3054 save_parent.mnt = NULL;
3055 save_parent.dentry = NULL;
3056 if (got_write) {
3057 mnt_drop_write(nd->path.mnt);
3058 got_write = false;
3060 retried = true;
3061 goto retry_lookup;
3064 static int do_tmpfile(int dfd, struct filename *pathname,
3065 struct nameidata *nd, int flags,
3066 const struct open_flags *op,
3067 struct file *file, int *opened)
3069 static const struct qstr name = QSTR_INIT("/", 1);
3070 struct dentry *dentry, *child;
3071 struct inode *dir;
3072 int error = path_lookupat(dfd, pathname->name,
3073 flags | LOOKUP_DIRECTORY, nd);
3074 if (unlikely(error))
3075 return error;
3076 error = mnt_want_write(nd->path.mnt);
3077 if (unlikely(error))
3078 goto out;
3079 /* we want directory to be writable */
3080 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3081 if (error)
3082 goto out2;
3083 dentry = nd->path.dentry;
3084 dir = dentry->d_inode;
3085 if (!dir->i_op->tmpfile) {
3086 error = -EOPNOTSUPP;
3087 goto out2;
3089 child = d_alloc(dentry, &name);
3090 if (unlikely(!child)) {
3091 error = -ENOMEM;
3092 goto out2;
3094 nd->flags &= ~LOOKUP_DIRECTORY;
3095 nd->flags |= op->intent;
3096 dput(nd->path.dentry);
3097 nd->path.dentry = child;
3098 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3099 if (error)
3100 goto out2;
3101 audit_inode(pathname, nd->path.dentry, 0);
3102 error = may_open(&nd->path, op->acc_mode, op->open_flag);
3103 if (error)
3104 goto out2;
3105 file->f_path.mnt = nd->path.mnt;
3106 error = finish_open(file, nd->path.dentry, NULL, opened);
3107 if (error)
3108 goto out2;
3109 error = open_check_o_direct(file);
3110 if (error) {
3111 fput(file);
3112 } else if (!(op->open_flag & O_EXCL)) {
3113 struct inode *inode = file_inode(file);
3114 spin_lock(&inode->i_lock);
3115 inode->i_state |= I_LINKABLE;
3116 spin_unlock(&inode->i_lock);
3118 out2:
3119 mnt_drop_write(nd->path.mnt);
3120 out:
3121 path_put(&nd->path);
3122 return error;
3125 static struct file *path_openat(int dfd, struct filename *pathname,
3126 struct nameidata *nd, const struct open_flags *op, int flags)
3128 struct file *base = NULL;
3129 struct file *file;
3130 struct path path;
3131 int opened = 0;
3132 int error;
3134 file = get_empty_filp();
3135 if (IS_ERR(file))
3136 return file;
3138 file->f_flags = op->open_flag;
3140 if (unlikely(file->f_flags & __O_TMPFILE)) {
3141 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3142 goto out;
3145 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3146 if (unlikely(error))
3147 goto out;
3149 current->total_link_count = 0;
3150 error = link_path_walk(pathname->name, nd);
3151 if (unlikely(error))
3152 goto out;
3154 error = do_last(nd, &path, file, op, &opened, pathname);
3155 while (unlikely(error > 0)) { /* trailing symlink */
3156 struct path link = path;
3157 void *cookie;
3158 if (!(nd->flags & LOOKUP_FOLLOW)) {
3159 path_put_conditional(&path, nd);
3160 path_put(&nd->path);
3161 error = -ELOOP;
3162 break;
3164 error = may_follow_link(&link, nd);
3165 if (unlikely(error))
3166 break;
3167 nd->flags |= LOOKUP_PARENT;
3168 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3169 error = follow_link(&link, nd, &cookie);
3170 if (unlikely(error))
3171 break;
3172 error = do_last(nd, &path, file, op, &opened, pathname);
3173 put_link(nd, &link, cookie);
3175 out:
3176 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3177 path_put(&nd->root);
3178 if (base)
3179 fput(base);
3180 if (!(opened & FILE_OPENED)) {
3181 BUG_ON(!error);
3182 put_filp(file);
3184 if (unlikely(error)) {
3185 if (error == -EOPENSTALE) {
3186 if (flags & LOOKUP_RCU)
3187 error = -ECHILD;
3188 else
3189 error = -ESTALE;
3191 file = ERR_PTR(error);
3193 return file;
3196 struct file *do_filp_open(int dfd, struct filename *pathname,
3197 const struct open_flags *op)
3199 struct nameidata nd;
3200 int flags = op->lookup_flags;
3201 struct file *filp;
3203 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3204 if (unlikely(filp == ERR_PTR(-ECHILD)))
3205 filp = path_openat(dfd, pathname, &nd, op, flags);
3206 if (unlikely(filp == ERR_PTR(-ESTALE)))
3207 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3208 return filp;
3211 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3212 const char *name, const struct open_flags *op)
3214 struct nameidata nd;
3215 struct file *file;
3216 struct filename filename = { .name = name };
3217 int flags = op->lookup_flags | LOOKUP_ROOT;
3219 nd.root.mnt = mnt;
3220 nd.root.dentry = dentry;
3222 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3223 return ERR_PTR(-ELOOP);
3225 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3226 if (unlikely(file == ERR_PTR(-ECHILD)))
3227 file = path_openat(-1, &filename, &nd, op, flags);
3228 if (unlikely(file == ERR_PTR(-ESTALE)))
3229 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3230 return file;
3233 struct dentry *kern_path_create(int dfd, const char *pathname,
3234 struct path *path, unsigned int lookup_flags)
3236 struct dentry *dentry = ERR_PTR(-EEXIST);
3237 struct nameidata nd;
3238 int err2;
3239 int error;
3240 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3243 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3244 * other flags passed in are ignored!
3246 lookup_flags &= LOOKUP_REVAL;
3248 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3249 if (error)
3250 return ERR_PTR(error);
3253 * Yucky last component or no last component at all?
3254 * (foo/., foo/.., /////)
3256 if (nd.last_type != LAST_NORM)
3257 goto out;
3258 nd.flags &= ~LOOKUP_PARENT;
3259 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3261 /* don't fail immediately if it's r/o, at least try to report other errors */
3262 err2 = mnt_want_write(nd.path.mnt);
3264 * Do the final lookup.
3266 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3267 dentry = lookup_hash(&nd);
3268 if (IS_ERR(dentry))
3269 goto unlock;
3271 error = -EEXIST;
3272 if (d_is_positive(dentry))
3273 goto fail;
3276 * Special case - lookup gave negative, but... we had foo/bar/
3277 * From the vfs_mknod() POV we just have a negative dentry -
3278 * all is fine. Let's be bastards - you had / on the end, you've
3279 * been asking for (non-existent) directory. -ENOENT for you.
3281 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3282 error = -ENOENT;
3283 goto fail;
3285 if (unlikely(err2)) {
3286 error = err2;
3287 goto fail;
3289 *path = nd.path;
3290 return dentry;
3291 fail:
3292 dput(dentry);
3293 dentry = ERR_PTR(error);
3294 unlock:
3295 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3296 if (!err2)
3297 mnt_drop_write(nd.path.mnt);
3298 out:
3299 path_put(&nd.path);
3300 return dentry;
3302 EXPORT_SYMBOL(kern_path_create);
3304 void done_path_create(struct path *path, struct dentry *dentry)
3306 dput(dentry);
3307 mutex_unlock(&path->dentry->d_inode->i_mutex);
3308 mnt_drop_write(path->mnt);
3309 path_put(path);
3311 EXPORT_SYMBOL(done_path_create);
3313 struct dentry *user_path_create(int dfd, const char __user *pathname,
3314 struct path *path, unsigned int lookup_flags)
3316 struct filename *tmp = getname(pathname);
3317 struct dentry *res;
3318 if (IS_ERR(tmp))
3319 return ERR_CAST(tmp);
3320 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3321 putname(tmp);
3322 return res;
3324 EXPORT_SYMBOL(user_path_create);
3326 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3328 int error = may_create(dir, dentry);
3330 if (error)
3331 return error;
3333 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3334 return -EPERM;
3336 if (!dir->i_op->mknod)
3337 return -EPERM;
3339 error = devcgroup_inode_mknod(mode, dev);
3340 if (error)
3341 return error;
3343 error = security_inode_mknod(dir, dentry, mode, dev);
3344 if (error)
3345 return error;
3347 error = dir->i_op->mknod(dir, dentry, mode, dev);
3348 if (!error)
3349 fsnotify_create(dir, dentry);
3350 return error;
3353 static int may_mknod(umode_t mode)
3355 switch (mode & S_IFMT) {
3356 case S_IFREG:
3357 case S_IFCHR:
3358 case S_IFBLK:
3359 case S_IFIFO:
3360 case S_IFSOCK:
3361 case 0: /* zero mode translates to S_IFREG */
3362 return 0;
3363 case S_IFDIR:
3364 return -EPERM;
3365 default:
3366 return -EINVAL;
3370 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3371 unsigned, dev)
3373 struct dentry *dentry;
3374 struct path path;
3375 int error;
3376 unsigned int lookup_flags = 0;
3378 error = may_mknod(mode);
3379 if (error)
3380 return error;
3381 retry:
3382 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3383 if (IS_ERR(dentry))
3384 return PTR_ERR(dentry);
3386 if (!IS_POSIXACL(path.dentry->d_inode))
3387 mode &= ~current_umask();
3388 error = security_path_mknod(&path, dentry, mode, dev);
3389 if (error)
3390 goto out;
3391 switch (mode & S_IFMT) {
3392 case 0: case S_IFREG:
3393 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3394 break;
3395 case S_IFCHR: case S_IFBLK:
3396 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3397 new_decode_dev(dev));
3398 break;
3399 case S_IFIFO: case S_IFSOCK:
3400 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3401 break;
3403 out:
3404 done_path_create(&path, dentry);
3405 if (retry_estale(error, lookup_flags)) {
3406 lookup_flags |= LOOKUP_REVAL;
3407 goto retry;
3409 return error;
3412 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3414 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3417 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3419 int error = may_create(dir, dentry);
3420 unsigned max_links = dir->i_sb->s_max_links;
3422 if (error)
3423 return error;
3425 if (!dir->i_op->mkdir)
3426 return -EPERM;
3428 mode &= (S_IRWXUGO|S_ISVTX);
3429 error = security_inode_mkdir(dir, dentry, mode);
3430 if (error)
3431 return error;
3433 if (max_links && dir->i_nlink >= max_links)
3434 return -EMLINK;
3436 error = dir->i_op->mkdir(dir, dentry, mode);
3437 if (!error)
3438 fsnotify_mkdir(dir, dentry);
3439 return error;
3442 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3444 struct dentry *dentry;
3445 struct path path;
3446 int error;
3447 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3449 retry:
3450 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3451 if (IS_ERR(dentry))
3452 return PTR_ERR(dentry);
3454 if (!IS_POSIXACL(path.dentry->d_inode))
3455 mode &= ~current_umask();
3456 error = security_path_mkdir(&path, dentry, mode);
3457 if (!error)
3458 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3459 done_path_create(&path, dentry);
3460 if (retry_estale(error, lookup_flags)) {
3461 lookup_flags |= LOOKUP_REVAL;
3462 goto retry;
3464 return error;
3467 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3469 return sys_mkdirat(AT_FDCWD, pathname, mode);
3473 * The dentry_unhash() helper will try to drop the dentry early: we
3474 * should have a usage count of 1 if we're the only user of this
3475 * dentry, and if that is true (possibly after pruning the dcache),
3476 * then we drop the dentry now.
3478 * A low-level filesystem can, if it choses, legally
3479 * do a
3481 * if (!d_unhashed(dentry))
3482 * return -EBUSY;
3484 * if it cannot handle the case of removing a directory
3485 * that is still in use by something else..
3487 void dentry_unhash(struct dentry *dentry)
3489 shrink_dcache_parent(dentry);
3490 spin_lock(&dentry->d_lock);
3491 if (dentry->d_lockref.count == 1)
3492 __d_drop(dentry);
3493 spin_unlock(&dentry->d_lock);
3496 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3498 int error = may_delete(dir, dentry, 1);
3500 if (error)
3501 return error;
3503 if (!dir->i_op->rmdir)
3504 return -EPERM;
3506 dget(dentry);
3507 mutex_lock(&dentry->d_inode->i_mutex);
3509 error = -EBUSY;
3510 if (d_mountpoint(dentry))
3511 goto out;
3513 error = security_inode_rmdir(dir, dentry);
3514 if (error)
3515 goto out;
3517 shrink_dcache_parent(dentry);
3518 error = dir->i_op->rmdir(dir, dentry);
3519 if (error)
3520 goto out;
3522 dentry->d_inode->i_flags |= S_DEAD;
3523 dont_mount(dentry);
3525 out:
3526 mutex_unlock(&dentry->d_inode->i_mutex);
3527 dput(dentry);
3528 if (!error)
3529 d_delete(dentry);
3530 return error;
3533 static long do_rmdir(int dfd, const char __user *pathname)
3535 int error = 0;
3536 struct filename *name;
3537 struct dentry *dentry;
3538 struct nameidata nd;
3539 unsigned int lookup_flags = 0;
3540 retry:
3541 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3542 if (IS_ERR(name))
3543 return PTR_ERR(name);
3545 switch(nd.last_type) {
3546 case LAST_DOTDOT:
3547 error = -ENOTEMPTY;
3548 goto exit1;
3549 case LAST_DOT:
3550 error = -EINVAL;
3551 goto exit1;
3552 case LAST_ROOT:
3553 error = -EBUSY;
3554 goto exit1;
3557 nd.flags &= ~LOOKUP_PARENT;
3558 error = mnt_want_write(nd.path.mnt);
3559 if (error)
3560 goto exit1;
3562 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3563 dentry = lookup_hash(&nd);
3564 error = PTR_ERR(dentry);
3565 if (IS_ERR(dentry))
3566 goto exit2;
3567 if (!dentry->d_inode) {
3568 error = -ENOENT;
3569 goto exit3;
3571 error = security_path_rmdir(&nd.path, dentry);
3572 if (error)
3573 goto exit3;
3574 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3575 exit3:
3576 dput(dentry);
3577 exit2:
3578 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3579 mnt_drop_write(nd.path.mnt);
3580 exit1:
3581 path_put(&nd.path);
3582 putname(name);
3583 if (retry_estale(error, lookup_flags)) {
3584 lookup_flags |= LOOKUP_REVAL;
3585 goto retry;
3587 return error;
3590 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3592 return do_rmdir(AT_FDCWD, pathname);
3596 * vfs_unlink - unlink a filesystem object
3597 * @dir: parent directory
3598 * @dentry: victim
3599 * @delegated_inode: returns victim inode, if the inode is delegated.
3601 * The caller must hold dir->i_mutex.
3603 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3604 * return a reference to the inode in delegated_inode. The caller
3605 * should then break the delegation on that inode and retry. Because
3606 * breaking a delegation may take a long time, the caller should drop
3607 * dir->i_mutex before doing so.
3609 * Alternatively, a caller may pass NULL for delegated_inode. This may
3610 * be appropriate for callers that expect the underlying filesystem not
3611 * to be NFS exported.
3613 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3615 struct inode *target = dentry->d_inode;
3616 int error = may_delete(dir, dentry, 0);
3618 if (error)
3619 return error;
3621 if (!dir->i_op->unlink)
3622 return -EPERM;
3624 mutex_lock(&target->i_mutex);
3625 if (d_mountpoint(dentry))
3626 error = -EBUSY;
3627 else {
3628 error = security_inode_unlink(dir, dentry);
3629 if (!error) {
3630 error = try_break_deleg(target, delegated_inode);
3631 if (error)
3632 goto out;
3633 error = dir->i_op->unlink(dir, dentry);
3634 if (!error)
3635 dont_mount(dentry);
3638 out:
3639 mutex_unlock(&target->i_mutex);
3641 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3642 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3643 fsnotify_link_count(target);
3644 d_delete(dentry);
3647 return error;
3651 * Make sure that the actual truncation of the file will occur outside its
3652 * directory's i_mutex. Truncate can take a long time if there is a lot of
3653 * writeout happening, and we don't want to prevent access to the directory
3654 * while waiting on the I/O.
3656 static long do_unlinkat(int dfd, const char __user *pathname)
3658 int error;
3659 struct filename *name;
3660 struct dentry *dentry;
3661 struct nameidata nd;
3662 struct inode *inode = NULL;
3663 struct inode *delegated_inode = NULL;
3664 unsigned int lookup_flags = 0;
3665 retry:
3666 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3667 if (IS_ERR(name))
3668 return PTR_ERR(name);
3670 error = -EISDIR;
3671 if (nd.last_type != LAST_NORM)
3672 goto exit1;
3674 nd.flags &= ~LOOKUP_PARENT;
3675 error = mnt_want_write(nd.path.mnt);
3676 if (error)
3677 goto exit1;
3678 retry_deleg:
3679 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3680 dentry = lookup_hash(&nd);
3681 error = PTR_ERR(dentry);
3682 if (!IS_ERR(dentry)) {
3683 /* Why not before? Because we want correct error value */
3684 if (nd.last.name[nd.last.len])
3685 goto slashes;
3686 inode = dentry->d_inode;
3687 if (d_is_negative(dentry))
3688 goto slashes;
3689 ihold(inode);
3690 error = security_path_unlink(&nd.path, dentry);
3691 if (error)
3692 goto exit2;
3693 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3694 exit2:
3695 dput(dentry);
3697 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3698 if (inode)
3699 iput(inode); /* truncate the inode here */
3700 inode = NULL;
3701 if (delegated_inode) {
3702 error = break_deleg_wait(&delegated_inode);
3703 if (!error)
3704 goto retry_deleg;
3706 mnt_drop_write(nd.path.mnt);
3707 exit1:
3708 path_put(&nd.path);
3709 putname(name);
3710 if (retry_estale(error, lookup_flags)) {
3711 lookup_flags |= LOOKUP_REVAL;
3712 inode = NULL;
3713 goto retry;
3715 return error;
3717 slashes:
3718 if (d_is_negative(dentry))
3719 error = -ENOENT;
3720 else if (d_is_directory(dentry) || d_is_autodir(dentry))
3721 error = -EISDIR;
3722 else
3723 error = -ENOTDIR;
3724 goto exit2;
3727 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3729 if ((flag & ~AT_REMOVEDIR) != 0)
3730 return -EINVAL;
3732 if (flag & AT_REMOVEDIR)
3733 return do_rmdir(dfd, pathname);
3735 return do_unlinkat(dfd, pathname);
3738 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3740 return do_unlinkat(AT_FDCWD, pathname);
3743 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3745 int error = may_create(dir, dentry);
3747 if (error)
3748 return error;
3750 if (!dir->i_op->symlink)
3751 return -EPERM;
3753 error = security_inode_symlink(dir, dentry, oldname);
3754 if (error)
3755 return error;
3757 error = dir->i_op->symlink(dir, dentry, oldname);
3758 if (!error)
3759 fsnotify_create(dir, dentry);
3760 return error;
3763 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3764 int, newdfd, const char __user *, newname)
3766 int error;
3767 struct filename *from;
3768 struct dentry *dentry;
3769 struct path path;
3770 unsigned int lookup_flags = 0;
3772 from = getname(oldname);
3773 if (IS_ERR(from))
3774 return PTR_ERR(from);
3775 retry:
3776 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3777 error = PTR_ERR(dentry);
3778 if (IS_ERR(dentry))
3779 goto out_putname;
3781 error = security_path_symlink(&path, dentry, from->name);
3782 if (!error)
3783 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3784 done_path_create(&path, dentry);
3785 if (retry_estale(error, lookup_flags)) {
3786 lookup_flags |= LOOKUP_REVAL;
3787 goto retry;
3789 out_putname:
3790 putname(from);
3791 return error;
3794 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3796 return sys_symlinkat(oldname, AT_FDCWD, newname);
3800 * vfs_link - create a new link
3801 * @old_dentry: object to be linked
3802 * @dir: new parent
3803 * @new_dentry: where to create the new link
3804 * @delegated_inode: returns inode needing a delegation break
3806 * The caller must hold dir->i_mutex
3808 * If vfs_link discovers a delegation on the to-be-linked file in need
3809 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3810 * inode in delegated_inode. The caller should then break the delegation
3811 * and retry. Because breaking a delegation may take a long time, the
3812 * caller should drop the i_mutex before doing so.
3814 * Alternatively, a caller may pass NULL for delegated_inode. This may
3815 * be appropriate for callers that expect the underlying filesystem not
3816 * to be NFS exported.
3818 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3820 struct inode *inode = old_dentry->d_inode;
3821 unsigned max_links = dir->i_sb->s_max_links;
3822 int error;
3824 if (!inode)
3825 return -ENOENT;
3827 error = may_create(dir, new_dentry);
3828 if (error)
3829 return error;
3831 if (dir->i_sb != inode->i_sb)
3832 return -EXDEV;
3835 * A link to an append-only or immutable file cannot be created.
3837 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3838 return -EPERM;
3839 if (!dir->i_op->link)
3840 return -EPERM;
3841 if (S_ISDIR(inode->i_mode))
3842 return -EPERM;
3844 error = security_inode_link(old_dentry, dir, new_dentry);
3845 if (error)
3846 return error;
3848 mutex_lock(&inode->i_mutex);
3849 /* Make sure we don't allow creating hardlink to an unlinked file */
3850 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3851 error = -ENOENT;
3852 else if (max_links && inode->i_nlink >= max_links)
3853 error = -EMLINK;
3854 else {
3855 error = try_break_deleg(inode, delegated_inode);
3856 if (!error)
3857 error = dir->i_op->link(old_dentry, dir, new_dentry);
3860 if (!error && (inode->i_state & I_LINKABLE)) {
3861 spin_lock(&inode->i_lock);
3862 inode->i_state &= ~I_LINKABLE;
3863 spin_unlock(&inode->i_lock);
3865 mutex_unlock(&inode->i_mutex);
3866 if (!error)
3867 fsnotify_link(dir, inode, new_dentry);
3868 return error;
3872 * Hardlinks are often used in delicate situations. We avoid
3873 * security-related surprises by not following symlinks on the
3874 * newname. --KAB
3876 * We don't follow them on the oldname either to be compatible
3877 * with linux 2.0, and to avoid hard-linking to directories
3878 * and other special files. --ADM
3880 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3881 int, newdfd, const char __user *, newname, int, flags)
3883 struct dentry *new_dentry;
3884 struct path old_path, new_path;
3885 struct inode *delegated_inode = NULL;
3886 int how = 0;
3887 int error;
3889 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3890 return -EINVAL;
3892 * To use null names we require CAP_DAC_READ_SEARCH
3893 * This ensures that not everyone will be able to create
3894 * handlink using the passed filedescriptor.
3896 if (flags & AT_EMPTY_PATH) {
3897 if (!capable(CAP_DAC_READ_SEARCH))
3898 return -ENOENT;
3899 how = LOOKUP_EMPTY;
3902 if (flags & AT_SYMLINK_FOLLOW)
3903 how |= LOOKUP_FOLLOW;
3904 retry:
3905 error = user_path_at(olddfd, oldname, how, &old_path);
3906 if (error)
3907 return error;
3909 new_dentry = user_path_create(newdfd, newname, &new_path,
3910 (how & LOOKUP_REVAL));
3911 error = PTR_ERR(new_dentry);
3912 if (IS_ERR(new_dentry))
3913 goto out;
3915 error = -EXDEV;
3916 if (old_path.mnt != new_path.mnt)
3917 goto out_dput;
3918 error = may_linkat(&old_path);
3919 if (unlikely(error))
3920 goto out_dput;
3921 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3922 if (error)
3923 goto out_dput;
3924 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
3925 out_dput:
3926 done_path_create(&new_path, new_dentry);
3927 if (delegated_inode) {
3928 error = break_deleg_wait(&delegated_inode);
3929 if (!error) {
3930 path_put(&old_path);
3931 goto retry;
3934 if (retry_estale(error, how)) {
3935 path_put(&old_path);
3936 how |= LOOKUP_REVAL;
3937 goto retry;
3939 out:
3940 path_put(&old_path);
3942 return error;
3945 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3947 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3951 * The worst of all namespace operations - renaming directory. "Perverted"
3952 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3953 * Problems:
3954 * a) we can get into loop creation. Check is done in is_subdir().
3955 * b) race potential - two innocent renames can create a loop together.
3956 * That's where 4.4 screws up. Current fix: serialization on
3957 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3958 * story.
3959 * c) we have to lock _four_ objects - parents and victim (if it exists),
3960 * and source (if it is not a directory).
3961 * And that - after we got ->i_mutex on parents (until then we don't know
3962 * whether the target exists). Solution: try to be smart with locking
3963 * order for inodes. We rely on the fact that tree topology may change
3964 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3965 * move will be locked. Thus we can rank directories by the tree
3966 * (ancestors first) and rank all non-directories after them.
3967 * That works since everybody except rename does "lock parent, lookup,
3968 * lock child" and rename is under ->s_vfs_rename_mutex.
3969 * HOWEVER, it relies on the assumption that any object with ->lookup()
3970 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3971 * we'd better make sure that there's no link(2) for them.
3972 * d) conversion from fhandle to dentry may come in the wrong moment - when
3973 * we are removing the target. Solution: we will have to grab ->i_mutex
3974 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3975 * ->i_mutex on parents, which works but leads to some truly excessive
3976 * locking].
3978 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3979 struct inode *new_dir, struct dentry *new_dentry)
3981 int error = 0;
3982 struct inode *target = new_dentry->d_inode;
3983 unsigned max_links = new_dir->i_sb->s_max_links;
3986 * If we are going to change the parent - check write permissions,
3987 * we'll need to flip '..'.
3989 if (new_dir != old_dir) {
3990 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3991 if (error)
3992 return error;
3995 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3996 if (error)
3997 return error;
3999 dget(new_dentry);
4000 if (target)
4001 mutex_lock(&target->i_mutex);
4003 error = -EBUSY;
4004 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
4005 goto out;
4007 error = -EMLINK;
4008 if (max_links && !target && new_dir != old_dir &&
4009 new_dir->i_nlink >= max_links)
4010 goto out;
4012 if (target)
4013 shrink_dcache_parent(new_dentry);
4014 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4015 if (error)
4016 goto out;
4018 if (target) {
4019 target->i_flags |= S_DEAD;
4020 dont_mount(new_dentry);
4022 out:
4023 if (target)
4024 mutex_unlock(&target->i_mutex);
4025 dput(new_dentry);
4026 if (!error)
4027 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4028 d_move(old_dentry,new_dentry);
4029 return error;
4032 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
4033 struct inode *new_dir, struct dentry *new_dentry,
4034 struct inode **delegated_inode)
4036 struct inode *target = new_dentry->d_inode;
4037 struct inode *source = old_dentry->d_inode;
4038 int error;
4040 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
4041 if (error)
4042 return error;
4044 dget(new_dentry);
4045 lock_two_nondirectories(source, target);
4047 error = -EBUSY;
4048 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
4049 goto out;
4051 error = try_break_deleg(source, delegated_inode);
4052 if (error)
4053 goto out;
4054 if (target) {
4055 error = try_break_deleg(target, delegated_inode);
4056 if (error)
4057 goto out;
4059 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4060 if (error)
4061 goto out;
4063 if (target)
4064 dont_mount(new_dentry);
4065 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4066 d_move(old_dentry, new_dentry);
4067 out:
4068 unlock_two_nondirectories(source, target);
4069 dput(new_dentry);
4070 return error;
4074 * vfs_rename - rename a filesystem object
4075 * @old_dir: parent of source
4076 * @old_dentry: source
4077 * @new_dir: parent of destination
4078 * @new_dentry: destination
4079 * @delegated_inode: returns an inode needing a delegation break
4081 * The caller must hold multiple mutexes--see lock_rename()).
4083 * If vfs_rename discovers a delegation in need of breaking at either
4084 * the source or destination, it will return -EWOULDBLOCK and return a
4085 * reference to the inode in delegated_inode. The caller should then
4086 * break the delegation and retry. Because breaking a delegation may
4087 * take a long time, the caller should drop all locks before doing
4088 * so.
4090 * Alternatively, a caller may pass NULL for delegated_inode. This may
4091 * be appropriate for callers that expect the underlying filesystem not
4092 * to be NFS exported.
4094 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4095 struct inode *new_dir, struct dentry *new_dentry,
4096 struct inode **delegated_inode)
4098 int error;
4099 int is_dir = d_is_directory(old_dentry) || d_is_autodir(old_dentry);
4100 const unsigned char *old_name;
4102 if (old_dentry->d_inode == new_dentry->d_inode)
4103 return 0;
4105 error = may_delete(old_dir, old_dentry, is_dir);
4106 if (error)
4107 return error;
4109 if (!new_dentry->d_inode)
4110 error = may_create(new_dir, new_dentry);
4111 else
4112 error = may_delete(new_dir, new_dentry, is_dir);
4113 if (error)
4114 return error;
4116 if (!old_dir->i_op->rename)
4117 return -EPERM;
4119 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4121 if (is_dir)
4122 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
4123 else
4124 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry,delegated_inode);
4125 if (!error)
4126 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4127 new_dentry->d_inode, old_dentry);
4128 fsnotify_oldname_free(old_name);
4130 return error;
4133 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4134 int, newdfd, const char __user *, newname)
4136 struct dentry *old_dir, *new_dir;
4137 struct dentry *old_dentry, *new_dentry;
4138 struct dentry *trap;
4139 struct nameidata oldnd, newnd;
4140 struct inode *delegated_inode = NULL;
4141 struct filename *from;
4142 struct filename *to;
4143 unsigned int lookup_flags = 0;
4144 bool should_retry = false;
4145 int error;
4146 retry:
4147 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4148 if (IS_ERR(from)) {
4149 error = PTR_ERR(from);
4150 goto exit;
4153 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4154 if (IS_ERR(to)) {
4155 error = PTR_ERR(to);
4156 goto exit1;
4159 error = -EXDEV;
4160 if (oldnd.path.mnt != newnd.path.mnt)
4161 goto exit2;
4163 old_dir = oldnd.path.dentry;
4164 error = -EBUSY;
4165 if (oldnd.last_type != LAST_NORM)
4166 goto exit2;
4168 new_dir = newnd.path.dentry;
4169 if (newnd.last_type != LAST_NORM)
4170 goto exit2;
4172 error = mnt_want_write(oldnd.path.mnt);
4173 if (error)
4174 goto exit2;
4176 oldnd.flags &= ~LOOKUP_PARENT;
4177 newnd.flags &= ~LOOKUP_PARENT;
4178 newnd.flags |= LOOKUP_RENAME_TARGET;
4180 retry_deleg:
4181 trap = lock_rename(new_dir, old_dir);
4183 old_dentry = lookup_hash(&oldnd);
4184 error = PTR_ERR(old_dentry);
4185 if (IS_ERR(old_dentry))
4186 goto exit3;
4187 /* source must exist */
4188 error = -ENOENT;
4189 if (d_is_negative(old_dentry))
4190 goto exit4;
4191 /* unless the source is a directory trailing slashes give -ENOTDIR */
4192 if (!d_is_directory(old_dentry) && !d_is_autodir(old_dentry)) {
4193 error = -ENOTDIR;
4194 if (oldnd.last.name[oldnd.last.len])
4195 goto exit4;
4196 if (newnd.last.name[newnd.last.len])
4197 goto exit4;
4199 /* source should not be ancestor of target */
4200 error = -EINVAL;
4201 if (old_dentry == trap)
4202 goto exit4;
4203 new_dentry = lookup_hash(&newnd);
4204 error = PTR_ERR(new_dentry);
4205 if (IS_ERR(new_dentry))
4206 goto exit4;
4207 /* target should not be an ancestor of source */
4208 error = -ENOTEMPTY;
4209 if (new_dentry == trap)
4210 goto exit5;
4212 error = security_path_rename(&oldnd.path, old_dentry,
4213 &newnd.path, new_dentry);
4214 if (error)
4215 goto exit5;
4216 error = vfs_rename(old_dir->d_inode, old_dentry,
4217 new_dir->d_inode, new_dentry,
4218 &delegated_inode);
4219 exit5:
4220 dput(new_dentry);
4221 exit4:
4222 dput(old_dentry);
4223 exit3:
4224 unlock_rename(new_dir, old_dir);
4225 if (delegated_inode) {
4226 error = break_deleg_wait(&delegated_inode);
4227 if (!error)
4228 goto retry_deleg;
4230 mnt_drop_write(oldnd.path.mnt);
4231 exit2:
4232 if (retry_estale(error, lookup_flags))
4233 should_retry = true;
4234 path_put(&newnd.path);
4235 putname(to);
4236 exit1:
4237 path_put(&oldnd.path);
4238 putname(from);
4239 if (should_retry) {
4240 should_retry = false;
4241 lookup_flags |= LOOKUP_REVAL;
4242 goto retry;
4244 exit:
4245 return error;
4248 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4250 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
4253 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
4255 int len;
4257 len = PTR_ERR(link);
4258 if (IS_ERR(link))
4259 goto out;
4261 len = strlen(link);
4262 if (len > (unsigned) buflen)
4263 len = buflen;
4264 if (copy_to_user(buffer, link, len))
4265 len = -EFAULT;
4266 out:
4267 return len;
4271 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4272 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4273 * using) it for any given inode is up to filesystem.
4275 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4277 struct nameidata nd;
4278 void *cookie;
4279 int res;
4281 nd.depth = 0;
4282 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4283 if (IS_ERR(cookie))
4284 return PTR_ERR(cookie);
4286 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
4287 if (dentry->d_inode->i_op->put_link)
4288 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4289 return res;
4292 /* get the link contents into pagecache */
4293 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4295 char *kaddr;
4296 struct page *page;
4297 struct address_space *mapping = dentry->d_inode->i_mapping;
4298 page = read_mapping_page(mapping, 0, NULL);
4299 if (IS_ERR(page))
4300 return (char*)page;
4301 *ppage = page;
4302 kaddr = kmap(page);
4303 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4304 return kaddr;
4307 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4309 struct page *page = NULL;
4310 char *s = page_getlink(dentry, &page);
4311 int res = vfs_readlink(dentry,buffer,buflen,s);
4312 if (page) {
4313 kunmap(page);
4314 page_cache_release(page);
4316 return res;
4319 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4321 struct page *page = NULL;
4322 nd_set_link(nd, page_getlink(dentry, &page));
4323 return page;
4326 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4328 struct page *page = cookie;
4330 if (page) {
4331 kunmap(page);
4332 page_cache_release(page);
4337 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4339 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4341 struct address_space *mapping = inode->i_mapping;
4342 struct page *page;
4343 void *fsdata;
4344 int err;
4345 char *kaddr;
4346 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4347 if (nofs)
4348 flags |= AOP_FLAG_NOFS;
4350 retry:
4351 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4352 flags, &page, &fsdata);
4353 if (err)
4354 goto fail;
4356 kaddr = kmap_atomic(page);
4357 memcpy(kaddr, symname, len-1);
4358 kunmap_atomic(kaddr);
4360 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4361 page, fsdata);
4362 if (err < 0)
4363 goto fail;
4364 if (err < len-1)
4365 goto retry;
4367 mark_inode_dirty(inode);
4368 return 0;
4369 fail:
4370 return err;
4373 int page_symlink(struct inode *inode, const char *symname, int len)
4375 return __page_symlink(inode, symname, len,
4376 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4379 const struct inode_operations page_symlink_inode_operations = {
4380 .readlink = generic_readlink,
4381 .follow_link = page_follow_link_light,
4382 .put_link = page_put_link,
4385 EXPORT_SYMBOL(user_path_at);
4386 EXPORT_SYMBOL(follow_down_one);
4387 EXPORT_SYMBOL(follow_down);
4388 EXPORT_SYMBOL(follow_up);
4389 EXPORT_SYMBOL(get_write_access); /* nfsd */
4390 EXPORT_SYMBOL(lock_rename);
4391 EXPORT_SYMBOL(lookup_one_len);
4392 EXPORT_SYMBOL(page_follow_link_light);
4393 EXPORT_SYMBOL(page_put_link);
4394 EXPORT_SYMBOL(page_readlink);
4395 EXPORT_SYMBOL(__page_symlink);
4396 EXPORT_SYMBOL(page_symlink);
4397 EXPORT_SYMBOL(page_symlink_inode_operations);
4398 EXPORT_SYMBOL(kern_path);
4399 EXPORT_SYMBOL(vfs_path_lookup);
4400 EXPORT_SYMBOL(inode_permission);
4401 EXPORT_SYMBOL(unlock_rename);
4402 EXPORT_SYMBOL(vfs_create);
4403 EXPORT_SYMBOL(vfs_link);
4404 EXPORT_SYMBOL(vfs_mkdir);
4405 EXPORT_SYMBOL(vfs_mknod);
4406 EXPORT_SYMBOL(generic_permission);
4407 EXPORT_SYMBOL(vfs_readlink);
4408 EXPORT_SYMBOL(vfs_rename);
4409 EXPORT_SYMBOL(vfs_rmdir);
4410 EXPORT_SYMBOL(vfs_symlink);
4411 EXPORT_SYMBOL(vfs_unlink);
4412 EXPORT_SYMBOL(dentry_unhash);
4413 EXPORT_SYMBOL(generic_readlink);