2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
25 #include <trace/events/block.h>
27 #include <linux/blk-mq.h>
30 #include "blk-mq-tag.h"
32 static DEFINE_MUTEX(all_q_mutex
);
33 static LIST_HEAD(all_q_list
);
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
);
38 * Check if any of the ctx's have pending work in this hardware queue
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
44 for (i
= 0; i
< hctx
->ctx_map
.map_size
; i
++)
45 if (hctx
->ctx_map
.map
[i
].word
)
51 static inline struct blk_align_bitmap
*get_bm(struct blk_mq_hw_ctx
*hctx
,
52 struct blk_mq_ctx
*ctx
)
54 return &hctx
->ctx_map
.map
[ctx
->index_hw
/ hctx
->ctx_map
.bits_per_word
];
57 #define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
61 * Mark this ctx as having pending work in this hardware queue
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
64 struct blk_mq_ctx
*ctx
)
66 struct blk_align_bitmap
*bm
= get_bm(hctx
, ctx
);
68 if (!test_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
))
69 set_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
);
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
73 struct blk_mq_ctx
*ctx
)
75 struct blk_align_bitmap
*bm
= get_bm(hctx
, ctx
);
77 clear_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
);
80 static int blk_mq_queue_enter(struct request_queue
*q
)
85 if (percpu_ref_tryget_live(&q
->mq_usage_counter
))
88 ret
= wait_event_interruptible(q
->mq_freeze_wq
,
89 !q
->mq_freeze_depth
|| blk_queue_dying(q
));
90 if (blk_queue_dying(q
))
97 static void blk_mq_queue_exit(struct request_queue
*q
)
99 percpu_ref_put(&q
->mq_usage_counter
);
102 static void blk_mq_usage_counter_release(struct percpu_ref
*ref
)
104 struct request_queue
*q
=
105 container_of(ref
, struct request_queue
, mq_usage_counter
);
107 wake_up_all(&q
->mq_freeze_wq
);
111 * Guarantee no request is in use, so we can change any data structure of
112 * the queue afterward.
114 void blk_mq_freeze_queue(struct request_queue
*q
)
118 spin_lock_irq(q
->queue_lock
);
119 freeze
= !q
->mq_freeze_depth
++;
120 spin_unlock_irq(q
->queue_lock
);
123 percpu_ref_kill(&q
->mq_usage_counter
);
124 blk_mq_run_queues(q
, false);
126 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->mq_usage_counter
));
129 static void blk_mq_unfreeze_queue(struct request_queue
*q
)
133 spin_lock_irq(q
->queue_lock
);
134 wake
= !--q
->mq_freeze_depth
;
135 WARN_ON_ONCE(q
->mq_freeze_depth
< 0);
136 spin_unlock_irq(q
->queue_lock
);
138 percpu_ref_reinit(&q
->mq_usage_counter
);
139 wake_up_all(&q
->mq_freeze_wq
);
143 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
145 return blk_mq_has_free_tags(hctx
->tags
);
147 EXPORT_SYMBOL(blk_mq_can_queue
);
149 static void blk_mq_rq_ctx_init(struct request_queue
*q
, struct blk_mq_ctx
*ctx
,
150 struct request
*rq
, unsigned int rw_flags
)
152 if (blk_queue_io_stat(q
))
153 rw_flags
|= REQ_IO_STAT
;
155 INIT_LIST_HEAD(&rq
->queuelist
);
156 /* csd/requeue_work/fifo_time is initialized before use */
159 rq
->cmd_flags
|= rw_flags
;
160 /* do not touch atomic flags, it needs atomic ops against the timer */
162 INIT_HLIST_NODE(&rq
->hash
);
163 RB_CLEAR_NODE(&rq
->rb_node
);
166 rq
->start_time
= jiffies
;
167 #ifdef CONFIG_BLK_CGROUP
169 set_start_time_ns(rq
);
170 rq
->io_start_time_ns
= 0;
172 rq
->nr_phys_segments
= 0;
173 #if defined(CONFIG_BLK_DEV_INTEGRITY)
174 rq
->nr_integrity_segments
= 0;
177 /* tag was already set */
187 INIT_LIST_HEAD(&rq
->timeout_list
);
191 rq
->end_io_data
= NULL
;
194 ctx
->rq_dispatched
[rw_is_sync(rw_flags
)]++;
197 static struct request
*
198 __blk_mq_alloc_request(struct blk_mq_alloc_data
*data
, int rw
)
203 tag
= blk_mq_get_tag(data
);
204 if (tag
!= BLK_MQ_TAG_FAIL
) {
205 rq
= data
->hctx
->tags
->rqs
[tag
];
207 if (blk_mq_tag_busy(data
->hctx
)) {
208 rq
->cmd_flags
= REQ_MQ_INFLIGHT
;
209 atomic_inc(&data
->hctx
->nr_active
);
213 blk_mq_rq_ctx_init(data
->q
, data
->ctx
, rq
, rw
);
220 struct request
*blk_mq_alloc_request(struct request_queue
*q
, int rw
, gfp_t gfp
,
223 struct blk_mq_ctx
*ctx
;
224 struct blk_mq_hw_ctx
*hctx
;
226 struct blk_mq_alloc_data alloc_data
;
229 ret
= blk_mq_queue_enter(q
);
233 ctx
= blk_mq_get_ctx(q
);
234 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
235 blk_mq_set_alloc_data(&alloc_data
, q
, gfp
& ~__GFP_WAIT
,
236 reserved
, ctx
, hctx
);
238 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
239 if (!rq
&& (gfp
& __GFP_WAIT
)) {
240 __blk_mq_run_hw_queue(hctx
);
243 ctx
= blk_mq_get_ctx(q
);
244 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
245 blk_mq_set_alloc_data(&alloc_data
, q
, gfp
, reserved
, ctx
,
247 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
248 ctx
= alloc_data
.ctx
;
252 return ERR_PTR(-EWOULDBLOCK
);
255 EXPORT_SYMBOL(blk_mq_alloc_request
);
257 static void __blk_mq_free_request(struct blk_mq_hw_ctx
*hctx
,
258 struct blk_mq_ctx
*ctx
, struct request
*rq
)
260 const int tag
= rq
->tag
;
261 struct request_queue
*q
= rq
->q
;
263 if (rq
->cmd_flags
& REQ_MQ_INFLIGHT
)
264 atomic_dec(&hctx
->nr_active
);
267 clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
268 blk_mq_put_tag(hctx
, tag
, &ctx
->last_tag
);
269 blk_mq_queue_exit(q
);
272 void blk_mq_free_request(struct request
*rq
)
274 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
275 struct blk_mq_hw_ctx
*hctx
;
276 struct request_queue
*q
= rq
->q
;
278 ctx
->rq_completed
[rq_is_sync(rq
)]++;
280 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
281 __blk_mq_free_request(hctx
, ctx
, rq
);
284 inline void __blk_mq_end_request(struct request
*rq
, int error
)
286 blk_account_io_done(rq
);
289 rq
->end_io(rq
, error
);
291 if (unlikely(blk_bidi_rq(rq
)))
292 blk_mq_free_request(rq
->next_rq
);
293 blk_mq_free_request(rq
);
296 EXPORT_SYMBOL(__blk_mq_end_request
);
298 void blk_mq_end_request(struct request
*rq
, int error
)
300 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
302 __blk_mq_end_request(rq
, error
);
304 EXPORT_SYMBOL(blk_mq_end_request
);
306 static void __blk_mq_complete_request_remote(void *data
)
308 struct request
*rq
= data
;
310 rq
->q
->softirq_done_fn(rq
);
313 static void blk_mq_ipi_complete_request(struct request
*rq
)
315 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
319 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
320 rq
->q
->softirq_done_fn(rq
);
325 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
326 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
328 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
329 rq
->csd
.func
= __blk_mq_complete_request_remote
;
332 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
334 rq
->q
->softirq_done_fn(rq
);
339 void __blk_mq_complete_request(struct request
*rq
)
341 struct request_queue
*q
= rq
->q
;
343 if (!q
->softirq_done_fn
)
344 blk_mq_end_request(rq
, rq
->errors
);
346 blk_mq_ipi_complete_request(rq
);
350 * blk_mq_complete_request - end I/O on a request
351 * @rq: the request being processed
354 * Ends all I/O on a request. It does not handle partial completions.
355 * The actual completion happens out-of-order, through a IPI handler.
357 void blk_mq_complete_request(struct request
*rq
)
359 struct request_queue
*q
= rq
->q
;
361 if (unlikely(blk_should_fake_timeout(q
)))
363 if (!blk_mark_rq_complete(rq
))
364 __blk_mq_complete_request(rq
);
366 EXPORT_SYMBOL(blk_mq_complete_request
);
368 void blk_mq_start_request(struct request
*rq
)
370 struct request_queue
*q
= rq
->q
;
372 trace_block_rq_issue(q
, rq
);
374 rq
->resid_len
= blk_rq_bytes(rq
);
375 if (unlikely(blk_bidi_rq(rq
)))
376 rq
->next_rq
->resid_len
= blk_rq_bytes(rq
->next_rq
);
381 * Ensure that ->deadline is visible before set the started
382 * flag and clear the completed flag.
384 smp_mb__before_atomic();
387 * Mark us as started and clear complete. Complete might have been
388 * set if requeue raced with timeout, which then marked it as
389 * complete. So be sure to clear complete again when we start
390 * the request, otherwise we'll ignore the completion event.
392 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
393 set_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
394 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
395 clear_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
);
397 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
399 * Make sure space for the drain appears. We know we can do
400 * this because max_hw_segments has been adjusted to be one
401 * fewer than the device can handle.
403 rq
->nr_phys_segments
++;
406 EXPORT_SYMBOL(blk_mq_start_request
);
408 static void __blk_mq_requeue_request(struct request
*rq
)
410 struct request_queue
*q
= rq
->q
;
412 trace_block_rq_requeue(q
, rq
);
414 if (test_and_clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
415 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
416 rq
->nr_phys_segments
--;
420 void blk_mq_requeue_request(struct request
*rq
)
422 __blk_mq_requeue_request(rq
);
424 BUG_ON(blk_queued_rq(rq
));
425 blk_mq_add_to_requeue_list(rq
, true);
427 EXPORT_SYMBOL(blk_mq_requeue_request
);
429 static void blk_mq_requeue_work(struct work_struct
*work
)
431 struct request_queue
*q
=
432 container_of(work
, struct request_queue
, requeue_work
);
434 struct request
*rq
, *next
;
437 spin_lock_irqsave(&q
->requeue_lock
, flags
);
438 list_splice_init(&q
->requeue_list
, &rq_list
);
439 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
441 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
442 if (!(rq
->cmd_flags
& REQ_SOFTBARRIER
))
445 rq
->cmd_flags
&= ~REQ_SOFTBARRIER
;
446 list_del_init(&rq
->queuelist
);
447 blk_mq_insert_request(rq
, true, false, false);
450 while (!list_empty(&rq_list
)) {
451 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
452 list_del_init(&rq
->queuelist
);
453 blk_mq_insert_request(rq
, false, false, false);
457 * Use the start variant of queue running here, so that running
458 * the requeue work will kick stopped queues.
460 blk_mq_start_hw_queues(q
);
463 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
)
465 struct request_queue
*q
= rq
->q
;
469 * We abuse this flag that is otherwise used by the I/O scheduler to
470 * request head insertation from the workqueue.
472 BUG_ON(rq
->cmd_flags
& REQ_SOFTBARRIER
);
474 spin_lock_irqsave(&q
->requeue_lock
, flags
);
476 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
477 list_add(&rq
->queuelist
, &q
->requeue_list
);
479 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
481 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
483 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
485 void blk_mq_kick_requeue_list(struct request_queue
*q
)
487 kblockd_schedule_work(&q
->requeue_work
);
489 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
491 static inline bool is_flush_request(struct request
*rq
,
492 struct blk_flush_queue
*fq
, unsigned int tag
)
494 return ((rq
->cmd_flags
& REQ_FLUSH_SEQ
) &&
495 fq
->flush_rq
->tag
== tag
);
498 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
500 struct request
*rq
= tags
->rqs
[tag
];
501 /* mq_ctx of flush rq is always cloned from the corresponding req */
502 struct blk_flush_queue
*fq
= blk_get_flush_queue(rq
->q
, rq
->mq_ctx
);
504 if (!is_flush_request(rq
, fq
, tag
))
509 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
511 struct blk_mq_timeout_data
{
513 unsigned int next_set
;
516 void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
518 struct blk_mq_ops
*ops
= req
->q
->mq_ops
;
519 enum blk_eh_timer_return ret
= BLK_EH_RESET_TIMER
;
522 * We know that complete is set at this point. If STARTED isn't set
523 * anymore, then the request isn't active and the "timeout" should
524 * just be ignored. This can happen due to the bitflag ordering.
525 * Timeout first checks if STARTED is set, and if it is, assumes
526 * the request is active. But if we race with completion, then
527 * we both flags will get cleared. So check here again, and ignore
528 * a timeout event with a request that isn't active.
530 if (!test_bit(REQ_ATOM_STARTED
, &req
->atomic_flags
))
534 ret
= ops
->timeout(req
, reserved
);
538 __blk_mq_complete_request(req
);
540 case BLK_EH_RESET_TIMER
:
542 blk_clear_rq_complete(req
);
544 case BLK_EH_NOT_HANDLED
:
547 printk(KERN_ERR
"block: bad eh return: %d\n", ret
);
552 static void blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
553 struct request
*rq
, void *priv
, bool reserved
)
555 struct blk_mq_timeout_data
*data
= priv
;
557 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
560 if (time_after_eq(jiffies
, rq
->deadline
)) {
561 if (!blk_mark_rq_complete(rq
))
562 blk_mq_rq_timed_out(rq
, reserved
);
563 } else if (!data
->next_set
|| time_after(data
->next
, rq
->deadline
)) {
564 data
->next
= rq
->deadline
;
569 static void blk_mq_rq_timer(unsigned long priv
)
571 struct request_queue
*q
= (struct request_queue
*)priv
;
572 struct blk_mq_timeout_data data
= {
576 struct blk_mq_hw_ctx
*hctx
;
579 queue_for_each_hw_ctx(q
, hctx
, i
) {
581 * If not software queues are currently mapped to this
582 * hardware queue, there's nothing to check
584 if (!hctx
->nr_ctx
|| !hctx
->tags
)
587 blk_mq_tag_busy_iter(hctx
, blk_mq_check_expired
, &data
);
591 data
.next
= blk_rq_timeout(round_jiffies_up(data
.next
));
592 mod_timer(&q
->timeout
, data
.next
);
594 queue_for_each_hw_ctx(q
, hctx
, i
)
595 blk_mq_tag_idle(hctx
);
600 * Reverse check our software queue for entries that we could potentially
601 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
602 * too much time checking for merges.
604 static bool blk_mq_attempt_merge(struct request_queue
*q
,
605 struct blk_mq_ctx
*ctx
, struct bio
*bio
)
610 list_for_each_entry_reverse(rq
, &ctx
->rq_list
, queuelist
) {
616 if (!blk_rq_merge_ok(rq
, bio
))
619 el_ret
= blk_try_merge(rq
, bio
);
620 if (el_ret
== ELEVATOR_BACK_MERGE
) {
621 if (bio_attempt_back_merge(q
, rq
, bio
)) {
626 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
627 if (bio_attempt_front_merge(q
, rq
, bio
)) {
639 * Process software queues that have been marked busy, splicing them
640 * to the for-dispatch
642 static void flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
644 struct blk_mq_ctx
*ctx
;
647 for (i
= 0; i
< hctx
->ctx_map
.map_size
; i
++) {
648 struct blk_align_bitmap
*bm
= &hctx
->ctx_map
.map
[i
];
649 unsigned int off
, bit
;
655 off
= i
* hctx
->ctx_map
.bits_per_word
;
657 bit
= find_next_bit(&bm
->word
, bm
->depth
, bit
);
658 if (bit
>= bm
->depth
)
661 ctx
= hctx
->ctxs
[bit
+ off
];
662 clear_bit(bit
, &bm
->word
);
663 spin_lock(&ctx
->lock
);
664 list_splice_tail_init(&ctx
->rq_list
, list
);
665 spin_unlock(&ctx
->lock
);
673 * Run this hardware queue, pulling any software queues mapped to it in.
674 * Note that this function currently has various problems around ordering
675 * of IO. In particular, we'd like FIFO behaviour on handling existing
676 * items on the hctx->dispatch list. Ignore that for now.
678 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
680 struct request_queue
*q
= hctx
->queue
;
685 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
));
687 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
)))
693 * Touch any software queue that has pending entries.
695 flush_busy_ctxs(hctx
, &rq_list
);
698 * If we have previous entries on our dispatch list, grab them
699 * and stuff them at the front for more fair dispatch.
701 if (!list_empty_careful(&hctx
->dispatch
)) {
702 spin_lock(&hctx
->lock
);
703 if (!list_empty(&hctx
->dispatch
))
704 list_splice_init(&hctx
->dispatch
, &rq_list
);
705 spin_unlock(&hctx
->lock
);
709 * Now process all the entries, sending them to the driver.
712 while (!list_empty(&rq_list
)) {
715 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
716 list_del_init(&rq
->queuelist
);
718 ret
= q
->mq_ops
->queue_rq(hctx
, rq
, list_empty(&rq_list
));
720 case BLK_MQ_RQ_QUEUE_OK
:
723 case BLK_MQ_RQ_QUEUE_BUSY
:
724 list_add(&rq
->queuelist
, &rq_list
);
725 __blk_mq_requeue_request(rq
);
728 pr_err("blk-mq: bad return on queue: %d\n", ret
);
729 case BLK_MQ_RQ_QUEUE_ERROR
:
731 blk_mq_end_request(rq
, rq
->errors
);
735 if (ret
== BLK_MQ_RQ_QUEUE_BUSY
)
740 hctx
->dispatched
[0]++;
741 else if (queued
< (1 << (BLK_MQ_MAX_DISPATCH_ORDER
- 1)))
742 hctx
->dispatched
[ilog2(queued
) + 1]++;
745 * Any items that need requeuing? Stuff them into hctx->dispatch,
746 * that is where we will continue on next queue run.
748 if (!list_empty(&rq_list
)) {
749 spin_lock(&hctx
->lock
);
750 list_splice(&rq_list
, &hctx
->dispatch
);
751 spin_unlock(&hctx
->lock
);
756 * It'd be great if the workqueue API had a way to pass
757 * in a mask and had some smarts for more clever placement.
758 * For now we just round-robin here, switching for every
759 * BLK_MQ_CPU_WORK_BATCH queued items.
761 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
763 int cpu
= hctx
->next_cpu
;
765 if (--hctx
->next_cpu_batch
<= 0) {
768 next_cpu
= cpumask_next(hctx
->next_cpu
, hctx
->cpumask
);
769 if (next_cpu
>= nr_cpu_ids
)
770 next_cpu
= cpumask_first(hctx
->cpumask
);
772 hctx
->next_cpu
= next_cpu
;
773 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
779 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
781 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
)))
784 if (!async
&& cpumask_test_cpu(smp_processor_id(), hctx
->cpumask
))
785 __blk_mq_run_hw_queue(hctx
);
786 else if (hctx
->queue
->nr_hw_queues
== 1)
787 kblockd_schedule_delayed_work(&hctx
->run_work
, 0);
791 cpu
= blk_mq_hctx_next_cpu(hctx
);
792 kblockd_schedule_delayed_work_on(cpu
, &hctx
->run_work
, 0);
796 void blk_mq_run_queues(struct request_queue
*q
, bool async
)
798 struct blk_mq_hw_ctx
*hctx
;
801 queue_for_each_hw_ctx(q
, hctx
, i
) {
802 if ((!blk_mq_hctx_has_pending(hctx
) &&
803 list_empty_careful(&hctx
->dispatch
)) ||
804 test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
808 blk_mq_run_hw_queue(hctx
, async
);
812 EXPORT_SYMBOL(blk_mq_run_queues
);
814 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
816 cancel_delayed_work(&hctx
->run_work
);
817 cancel_delayed_work(&hctx
->delay_work
);
818 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
820 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
822 void blk_mq_stop_hw_queues(struct request_queue
*q
)
824 struct blk_mq_hw_ctx
*hctx
;
827 queue_for_each_hw_ctx(q
, hctx
, i
)
828 blk_mq_stop_hw_queue(hctx
);
830 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
832 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
834 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
837 blk_mq_run_hw_queue(hctx
, false);
840 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
842 void blk_mq_start_hw_queues(struct request_queue
*q
)
844 struct blk_mq_hw_ctx
*hctx
;
847 queue_for_each_hw_ctx(q
, hctx
, i
)
848 blk_mq_start_hw_queue(hctx
);
850 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
853 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
855 struct blk_mq_hw_ctx
*hctx
;
858 queue_for_each_hw_ctx(q
, hctx
, i
) {
859 if (!test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
862 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
864 blk_mq_run_hw_queue(hctx
, async
);
868 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
870 static void blk_mq_run_work_fn(struct work_struct
*work
)
872 struct blk_mq_hw_ctx
*hctx
;
874 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
876 __blk_mq_run_hw_queue(hctx
);
879 static void blk_mq_delay_work_fn(struct work_struct
*work
)
881 struct blk_mq_hw_ctx
*hctx
;
883 hctx
= container_of(work
, struct blk_mq_hw_ctx
, delay_work
.work
);
885 if (test_and_clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
886 __blk_mq_run_hw_queue(hctx
);
889 void blk_mq_delay_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
891 unsigned long tmo
= msecs_to_jiffies(msecs
);
893 if (hctx
->queue
->nr_hw_queues
== 1)
894 kblockd_schedule_delayed_work(&hctx
->delay_work
, tmo
);
898 cpu
= blk_mq_hctx_next_cpu(hctx
);
899 kblockd_schedule_delayed_work_on(cpu
, &hctx
->delay_work
, tmo
);
902 EXPORT_SYMBOL(blk_mq_delay_queue
);
904 static void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
,
905 struct request
*rq
, bool at_head
)
907 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
909 trace_block_rq_insert(hctx
->queue
, rq
);
912 list_add(&rq
->queuelist
, &ctx
->rq_list
);
914 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
916 blk_mq_hctx_mark_pending(hctx
, ctx
);
919 void blk_mq_insert_request(struct request
*rq
, bool at_head
, bool run_queue
,
922 struct request_queue
*q
= rq
->q
;
923 struct blk_mq_hw_ctx
*hctx
;
924 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
, *current_ctx
;
926 current_ctx
= blk_mq_get_ctx(q
);
927 if (!cpu_online(ctx
->cpu
))
928 rq
->mq_ctx
= ctx
= current_ctx
;
930 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
932 spin_lock(&ctx
->lock
);
933 __blk_mq_insert_request(hctx
, rq
, at_head
);
934 spin_unlock(&ctx
->lock
);
937 blk_mq_run_hw_queue(hctx
, async
);
939 blk_mq_put_ctx(current_ctx
);
942 static void blk_mq_insert_requests(struct request_queue
*q
,
943 struct blk_mq_ctx
*ctx
,
944 struct list_head
*list
,
949 struct blk_mq_hw_ctx
*hctx
;
950 struct blk_mq_ctx
*current_ctx
;
952 trace_block_unplug(q
, depth
, !from_schedule
);
954 current_ctx
= blk_mq_get_ctx(q
);
956 if (!cpu_online(ctx
->cpu
))
958 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
961 * preemption doesn't flush plug list, so it's possible ctx->cpu is
964 spin_lock(&ctx
->lock
);
965 while (!list_empty(list
)) {
968 rq
= list_first_entry(list
, struct request
, queuelist
);
969 list_del_init(&rq
->queuelist
);
971 __blk_mq_insert_request(hctx
, rq
, false);
973 spin_unlock(&ctx
->lock
);
975 blk_mq_run_hw_queue(hctx
, from_schedule
);
976 blk_mq_put_ctx(current_ctx
);
979 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
981 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
982 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
984 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
985 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
986 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
989 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
991 struct blk_mq_ctx
*this_ctx
;
992 struct request_queue
*this_q
;
998 list_splice_init(&plug
->mq_list
, &list
);
1000 list_sort(NULL
, &list
, plug_ctx_cmp
);
1006 while (!list_empty(&list
)) {
1007 rq
= list_entry_rq(list
.next
);
1008 list_del_init(&rq
->queuelist
);
1010 if (rq
->mq_ctx
!= this_ctx
) {
1012 blk_mq_insert_requests(this_q
, this_ctx
,
1017 this_ctx
= rq
->mq_ctx
;
1023 list_add_tail(&rq
->queuelist
, &ctx_list
);
1027 * If 'this_ctx' is set, we know we have entries to complete
1028 * on 'ctx_list'. Do those.
1031 blk_mq_insert_requests(this_q
, this_ctx
, &ctx_list
, depth
,
1036 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1038 init_request_from_bio(rq
, bio
);
1040 if (blk_do_io_stat(rq
))
1041 blk_account_io_start(rq
, 1);
1044 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx
*hctx
)
1046 return (hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
) &&
1047 !blk_queue_nomerges(hctx
->queue
);
1050 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx
*hctx
,
1051 struct blk_mq_ctx
*ctx
,
1052 struct request
*rq
, struct bio
*bio
)
1054 if (!hctx_allow_merges(hctx
)) {
1055 blk_mq_bio_to_request(rq
, bio
);
1056 spin_lock(&ctx
->lock
);
1058 __blk_mq_insert_request(hctx
, rq
, false);
1059 spin_unlock(&ctx
->lock
);
1062 struct request_queue
*q
= hctx
->queue
;
1064 spin_lock(&ctx
->lock
);
1065 if (!blk_mq_attempt_merge(q
, ctx
, bio
)) {
1066 blk_mq_bio_to_request(rq
, bio
);
1070 spin_unlock(&ctx
->lock
);
1071 __blk_mq_free_request(hctx
, ctx
, rq
);
1076 struct blk_map_ctx
{
1077 struct blk_mq_hw_ctx
*hctx
;
1078 struct blk_mq_ctx
*ctx
;
1081 static struct request
*blk_mq_map_request(struct request_queue
*q
,
1083 struct blk_map_ctx
*data
)
1085 struct blk_mq_hw_ctx
*hctx
;
1086 struct blk_mq_ctx
*ctx
;
1088 int rw
= bio_data_dir(bio
);
1089 struct blk_mq_alloc_data alloc_data
;
1091 if (unlikely(blk_mq_queue_enter(q
))) {
1092 bio_endio(bio
, -EIO
);
1096 ctx
= blk_mq_get_ctx(q
);
1097 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1099 if (rw_is_sync(bio
->bi_rw
))
1102 trace_block_getrq(q
, bio
, rw
);
1103 blk_mq_set_alloc_data(&alloc_data
, q
, GFP_ATOMIC
, false, ctx
,
1105 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
1106 if (unlikely(!rq
)) {
1107 __blk_mq_run_hw_queue(hctx
);
1108 blk_mq_put_ctx(ctx
);
1109 trace_block_sleeprq(q
, bio
, rw
);
1111 ctx
= blk_mq_get_ctx(q
);
1112 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1113 blk_mq_set_alloc_data(&alloc_data
, q
,
1114 __GFP_WAIT
|GFP_ATOMIC
, false, ctx
, hctx
);
1115 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
1116 ctx
= alloc_data
.ctx
;
1117 hctx
= alloc_data
.hctx
;
1127 * Multiple hardware queue variant. This will not use per-process plugs,
1128 * but will attempt to bypass the hctx queueing if we can go straight to
1129 * hardware for SYNC IO.
1131 static void blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1133 const int is_sync
= rw_is_sync(bio
->bi_rw
);
1134 const int is_flush_fua
= bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
);
1135 struct blk_map_ctx data
;
1138 blk_queue_bounce(q
, &bio
);
1140 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1141 bio_endio(bio
, -EIO
);
1145 rq
= blk_mq_map_request(q
, bio
, &data
);
1149 if (unlikely(is_flush_fua
)) {
1150 blk_mq_bio_to_request(rq
, bio
);
1151 blk_insert_flush(rq
);
1158 blk_mq_bio_to_request(rq
, bio
);
1161 * For OK queue, we are done. For error, kill it. Any other
1162 * error (busy), just add it to our list as we previously
1165 ret
= q
->mq_ops
->queue_rq(data
.hctx
, rq
, true);
1166 if (ret
== BLK_MQ_RQ_QUEUE_OK
)
1169 __blk_mq_requeue_request(rq
);
1171 if (ret
== BLK_MQ_RQ_QUEUE_ERROR
) {
1173 blk_mq_end_request(rq
, rq
->errors
);
1179 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1181 * For a SYNC request, send it to the hardware immediately. For
1182 * an ASYNC request, just ensure that we run it later on. The
1183 * latter allows for merging opportunities and more efficient
1187 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1190 blk_mq_put_ctx(data
.ctx
);
1194 * Single hardware queue variant. This will attempt to use any per-process
1195 * plug for merging and IO deferral.
1197 static void blk_sq_make_request(struct request_queue
*q
, struct bio
*bio
)
1199 const int is_sync
= rw_is_sync(bio
->bi_rw
);
1200 const int is_flush_fua
= bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
);
1201 unsigned int use_plug
, request_count
= 0;
1202 struct blk_map_ctx data
;
1206 * If we have multiple hardware queues, just go directly to
1207 * one of those for sync IO.
1209 use_plug
= !is_flush_fua
&& !is_sync
;
1211 blk_queue_bounce(q
, &bio
);
1213 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1214 bio_endio(bio
, -EIO
);
1218 if (use_plug
&& !blk_queue_nomerges(q
) &&
1219 blk_attempt_plug_merge(q
, bio
, &request_count
))
1222 rq
= blk_mq_map_request(q
, bio
, &data
);
1226 if (unlikely(is_flush_fua
)) {
1227 blk_mq_bio_to_request(rq
, bio
);
1228 blk_insert_flush(rq
);
1233 * A task plug currently exists. Since this is completely lockless,
1234 * utilize that to temporarily store requests until the task is
1235 * either done or scheduled away.
1238 struct blk_plug
*plug
= current
->plug
;
1241 blk_mq_bio_to_request(rq
, bio
);
1242 if (list_empty(&plug
->mq_list
))
1243 trace_block_plug(q
);
1244 else if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1245 blk_flush_plug_list(plug
, false);
1246 trace_block_plug(q
);
1248 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1249 blk_mq_put_ctx(data
.ctx
);
1254 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1256 * For a SYNC request, send it to the hardware immediately. For
1257 * an ASYNC request, just ensure that we run it later on. The
1258 * latter allows for merging opportunities and more efficient
1262 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1265 blk_mq_put_ctx(data
.ctx
);
1269 * Default mapping to a software queue, since we use one per CPU.
1271 struct blk_mq_hw_ctx
*blk_mq_map_queue(struct request_queue
*q
, const int cpu
)
1273 return q
->queue_hw_ctx
[q
->mq_map
[cpu
]];
1275 EXPORT_SYMBOL(blk_mq_map_queue
);
1277 static void blk_mq_free_rq_map(struct blk_mq_tag_set
*set
,
1278 struct blk_mq_tags
*tags
, unsigned int hctx_idx
)
1282 if (tags
->rqs
&& set
->ops
->exit_request
) {
1285 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1288 set
->ops
->exit_request(set
->driver_data
, tags
->rqs
[i
],
1290 tags
->rqs
[i
] = NULL
;
1294 while (!list_empty(&tags
->page_list
)) {
1295 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1296 list_del_init(&page
->lru
);
1297 __free_pages(page
, page
->private);
1302 blk_mq_free_tags(tags
);
1305 static size_t order_to_size(unsigned int order
)
1307 return (size_t)PAGE_SIZE
<< order
;
1310 static struct blk_mq_tags
*blk_mq_init_rq_map(struct blk_mq_tag_set
*set
,
1311 unsigned int hctx_idx
)
1313 struct blk_mq_tags
*tags
;
1314 unsigned int i
, j
, entries_per_page
, max_order
= 4;
1315 size_t rq_size
, left
;
1317 tags
= blk_mq_init_tags(set
->queue_depth
, set
->reserved_tags
,
1322 INIT_LIST_HEAD(&tags
->page_list
);
1324 tags
->rqs
= kzalloc_node(set
->queue_depth
* sizeof(struct request
*),
1325 GFP_KERNEL
| __GFP_NOWARN
| __GFP_NORETRY
,
1328 blk_mq_free_tags(tags
);
1333 * rq_size is the size of the request plus driver payload, rounded
1334 * to the cacheline size
1336 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
1338 left
= rq_size
* set
->queue_depth
;
1340 for (i
= 0; i
< set
->queue_depth
; ) {
1341 int this_order
= max_order
;
1346 while (left
< order_to_size(this_order
- 1) && this_order
)
1350 page
= alloc_pages_node(set
->numa_node
,
1351 GFP_KERNEL
| __GFP_NOWARN
| __GFP_NORETRY
,
1357 if (order_to_size(this_order
) < rq_size
)
1364 page
->private = this_order
;
1365 list_add_tail(&page
->lru
, &tags
->page_list
);
1367 p
= page_address(page
);
1368 entries_per_page
= order_to_size(this_order
) / rq_size
;
1369 to_do
= min(entries_per_page
, set
->queue_depth
- i
);
1370 left
-= to_do
* rq_size
;
1371 for (j
= 0; j
< to_do
; j
++) {
1373 tags
->rqs
[i
]->atomic_flags
= 0;
1374 tags
->rqs
[i
]->cmd_flags
= 0;
1375 if (set
->ops
->init_request
) {
1376 if (set
->ops
->init_request(set
->driver_data
,
1377 tags
->rqs
[i
], hctx_idx
, i
,
1379 tags
->rqs
[i
] = NULL
;
1392 blk_mq_free_rq_map(set
, tags
, hctx_idx
);
1396 static void blk_mq_free_bitmap(struct blk_mq_ctxmap
*bitmap
)
1401 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap
*bitmap
, int node
)
1403 unsigned int bpw
= 8, total
, num_maps
, i
;
1405 bitmap
->bits_per_word
= bpw
;
1407 num_maps
= ALIGN(nr_cpu_ids
, bpw
) / bpw
;
1408 bitmap
->map
= kzalloc_node(num_maps
* sizeof(struct blk_align_bitmap
),
1413 bitmap
->map_size
= num_maps
;
1416 for (i
= 0; i
< num_maps
; i
++) {
1417 bitmap
->map
[i
].depth
= min(total
, bitmap
->bits_per_word
);
1418 total
-= bitmap
->map
[i
].depth
;
1424 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx
*hctx
, int cpu
)
1426 struct request_queue
*q
= hctx
->queue
;
1427 struct blk_mq_ctx
*ctx
;
1431 * Move ctx entries to new CPU, if this one is going away.
1433 ctx
= __blk_mq_get_ctx(q
, cpu
);
1435 spin_lock(&ctx
->lock
);
1436 if (!list_empty(&ctx
->rq_list
)) {
1437 list_splice_init(&ctx
->rq_list
, &tmp
);
1438 blk_mq_hctx_clear_pending(hctx
, ctx
);
1440 spin_unlock(&ctx
->lock
);
1442 if (list_empty(&tmp
))
1445 ctx
= blk_mq_get_ctx(q
);
1446 spin_lock(&ctx
->lock
);
1448 while (!list_empty(&tmp
)) {
1451 rq
= list_first_entry(&tmp
, struct request
, queuelist
);
1453 list_move_tail(&rq
->queuelist
, &ctx
->rq_list
);
1456 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1457 blk_mq_hctx_mark_pending(hctx
, ctx
);
1459 spin_unlock(&ctx
->lock
);
1461 blk_mq_run_hw_queue(hctx
, true);
1462 blk_mq_put_ctx(ctx
);
1466 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx
*hctx
, int cpu
)
1468 struct request_queue
*q
= hctx
->queue
;
1469 struct blk_mq_tag_set
*set
= q
->tag_set
;
1471 if (set
->tags
[hctx
->queue_num
])
1474 set
->tags
[hctx
->queue_num
] = blk_mq_init_rq_map(set
, hctx
->queue_num
);
1475 if (!set
->tags
[hctx
->queue_num
])
1478 hctx
->tags
= set
->tags
[hctx
->queue_num
];
1482 static int blk_mq_hctx_notify(void *data
, unsigned long action
,
1485 struct blk_mq_hw_ctx
*hctx
= data
;
1487 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
1488 return blk_mq_hctx_cpu_offline(hctx
, cpu
);
1489 else if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
)
1490 return blk_mq_hctx_cpu_online(hctx
, cpu
);
1495 static void blk_mq_exit_hctx(struct request_queue
*q
,
1496 struct blk_mq_tag_set
*set
,
1497 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
1499 unsigned flush_start_tag
= set
->queue_depth
;
1501 blk_mq_tag_idle(hctx
);
1503 if (set
->ops
->exit_request
)
1504 set
->ops
->exit_request(set
->driver_data
,
1505 hctx
->fq
->flush_rq
, hctx_idx
,
1506 flush_start_tag
+ hctx_idx
);
1508 if (set
->ops
->exit_hctx
)
1509 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1511 blk_mq_unregister_cpu_notifier(&hctx
->cpu_notifier
);
1512 blk_free_flush_queue(hctx
->fq
);
1514 blk_mq_free_bitmap(&hctx
->ctx_map
);
1517 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
1518 struct blk_mq_tag_set
*set
, int nr_queue
)
1520 struct blk_mq_hw_ctx
*hctx
;
1523 queue_for_each_hw_ctx(q
, hctx
, i
) {
1526 blk_mq_exit_hctx(q
, set
, hctx
, i
);
1530 static void blk_mq_free_hw_queues(struct request_queue
*q
,
1531 struct blk_mq_tag_set
*set
)
1533 struct blk_mq_hw_ctx
*hctx
;
1536 queue_for_each_hw_ctx(q
, hctx
, i
) {
1537 free_cpumask_var(hctx
->cpumask
);
1542 static int blk_mq_init_hctx(struct request_queue
*q
,
1543 struct blk_mq_tag_set
*set
,
1544 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
1547 unsigned flush_start_tag
= set
->queue_depth
;
1549 node
= hctx
->numa_node
;
1550 if (node
== NUMA_NO_NODE
)
1551 node
= hctx
->numa_node
= set
->numa_node
;
1553 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
1554 INIT_DELAYED_WORK(&hctx
->delay_work
, blk_mq_delay_work_fn
);
1555 spin_lock_init(&hctx
->lock
);
1556 INIT_LIST_HEAD(&hctx
->dispatch
);
1558 hctx
->queue_num
= hctx_idx
;
1559 hctx
->flags
= set
->flags
;
1560 hctx
->cmd_size
= set
->cmd_size
;
1562 blk_mq_init_cpu_notifier(&hctx
->cpu_notifier
,
1563 blk_mq_hctx_notify
, hctx
);
1564 blk_mq_register_cpu_notifier(&hctx
->cpu_notifier
);
1566 hctx
->tags
= set
->tags
[hctx_idx
];
1569 * Allocate space for all possible cpus to avoid allocation at
1572 hctx
->ctxs
= kmalloc_node(nr_cpu_ids
* sizeof(void *),
1575 goto unregister_cpu_notifier
;
1577 if (blk_mq_alloc_bitmap(&hctx
->ctx_map
, node
))
1582 if (set
->ops
->init_hctx
&&
1583 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
1586 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
);
1590 if (set
->ops
->init_request
&&
1591 set
->ops
->init_request(set
->driver_data
,
1592 hctx
->fq
->flush_rq
, hctx_idx
,
1593 flush_start_tag
+ hctx_idx
, node
))
1601 if (set
->ops
->exit_hctx
)
1602 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1604 blk_mq_free_bitmap(&hctx
->ctx_map
);
1607 unregister_cpu_notifier
:
1608 blk_mq_unregister_cpu_notifier(&hctx
->cpu_notifier
);
1613 static int blk_mq_init_hw_queues(struct request_queue
*q
,
1614 struct blk_mq_tag_set
*set
)
1616 struct blk_mq_hw_ctx
*hctx
;
1620 * Initialize hardware queues
1622 queue_for_each_hw_ctx(q
, hctx
, i
) {
1623 if (blk_mq_init_hctx(q
, set
, hctx
, i
))
1627 if (i
== q
->nr_hw_queues
)
1633 blk_mq_exit_hw_queues(q
, set
, i
);
1638 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
1639 unsigned int nr_hw_queues
)
1643 for_each_possible_cpu(i
) {
1644 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
1645 struct blk_mq_hw_ctx
*hctx
;
1647 memset(__ctx
, 0, sizeof(*__ctx
));
1649 spin_lock_init(&__ctx
->lock
);
1650 INIT_LIST_HEAD(&__ctx
->rq_list
);
1653 /* If the cpu isn't online, the cpu is mapped to first hctx */
1657 hctx
= q
->mq_ops
->map_queue(q
, i
);
1658 cpumask_set_cpu(i
, hctx
->cpumask
);
1662 * Set local node, IFF we have more than one hw queue. If
1663 * not, we remain on the home node of the device
1665 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
1666 hctx
->numa_node
= cpu_to_node(i
);
1670 static void blk_mq_map_swqueue(struct request_queue
*q
)
1673 struct blk_mq_hw_ctx
*hctx
;
1674 struct blk_mq_ctx
*ctx
;
1676 queue_for_each_hw_ctx(q
, hctx
, i
) {
1677 cpumask_clear(hctx
->cpumask
);
1682 * Map software to hardware queues
1684 queue_for_each_ctx(q
, ctx
, i
) {
1685 /* If the cpu isn't online, the cpu is mapped to first hctx */
1689 hctx
= q
->mq_ops
->map_queue(q
, i
);
1690 cpumask_set_cpu(i
, hctx
->cpumask
);
1691 ctx
->index_hw
= hctx
->nr_ctx
;
1692 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
1695 queue_for_each_hw_ctx(q
, hctx
, i
) {
1697 * If no software queues are mapped to this hardware queue,
1698 * disable it and free the request entries.
1700 if (!hctx
->nr_ctx
) {
1701 struct blk_mq_tag_set
*set
= q
->tag_set
;
1704 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
1705 set
->tags
[i
] = NULL
;
1712 * Initialize batch roundrobin counts
1714 hctx
->next_cpu
= cpumask_first(hctx
->cpumask
);
1715 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1719 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
)
1721 struct blk_mq_hw_ctx
*hctx
;
1722 struct request_queue
*q
;
1726 if (set
->tag_list
.next
== set
->tag_list
.prev
)
1731 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
1732 blk_mq_freeze_queue(q
);
1734 queue_for_each_hw_ctx(q
, hctx
, i
) {
1736 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
1738 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
1740 blk_mq_unfreeze_queue(q
);
1744 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
1746 struct blk_mq_tag_set
*set
= q
->tag_set
;
1748 mutex_lock(&set
->tag_list_lock
);
1749 list_del_init(&q
->tag_set_list
);
1750 blk_mq_update_tag_set_depth(set
);
1751 mutex_unlock(&set
->tag_list_lock
);
1754 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
1755 struct request_queue
*q
)
1759 mutex_lock(&set
->tag_list_lock
);
1760 list_add_tail(&q
->tag_set_list
, &set
->tag_list
);
1761 blk_mq_update_tag_set_depth(set
);
1762 mutex_unlock(&set
->tag_list_lock
);
1765 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
1767 struct blk_mq_hw_ctx
**hctxs
;
1768 struct blk_mq_ctx __percpu
*ctx
;
1769 struct request_queue
*q
;
1773 ctx
= alloc_percpu(struct blk_mq_ctx
);
1775 return ERR_PTR(-ENOMEM
);
1778 * If a crashdump is active, then we are potentially in a very
1779 * memory constrained environment. Limit us to 1 queue and
1780 * 64 tags to prevent using too much memory.
1782 if (is_kdump_kernel()) {
1783 set
->nr_hw_queues
= 1;
1784 set
->queue_depth
= min(64U, set
->queue_depth
);
1787 hctxs
= kmalloc_node(set
->nr_hw_queues
* sizeof(*hctxs
), GFP_KERNEL
,
1793 map
= blk_mq_make_queue_map(set
);
1797 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
1798 int node
= blk_mq_hw_queue_to_node(map
, i
);
1800 hctxs
[i
] = kzalloc_node(sizeof(struct blk_mq_hw_ctx
),
1805 if (!zalloc_cpumask_var_node(&hctxs
[i
]->cpumask
, GFP_KERNEL
,
1809 atomic_set(&hctxs
[i
]->nr_active
, 0);
1810 hctxs
[i
]->numa_node
= node
;
1811 hctxs
[i
]->queue_num
= i
;
1814 q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
);
1819 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1820 * See blk_register_queue() for details.
1822 if (percpu_ref_init(&q
->mq_usage_counter
, blk_mq_usage_counter_release
,
1823 PERCPU_REF_INIT_ATOMIC
, GFP_KERNEL
))
1826 setup_timer(&q
->timeout
, blk_mq_rq_timer
, (unsigned long) q
);
1827 blk_queue_rq_timeout(q
, 30000);
1829 q
->nr_queues
= nr_cpu_ids
;
1830 q
->nr_hw_queues
= set
->nr_hw_queues
;
1834 q
->queue_hw_ctx
= hctxs
;
1836 q
->mq_ops
= set
->ops
;
1837 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
1839 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
1840 q
->queue_flags
|= 1 << QUEUE_FLAG_NO_SG_MERGE
;
1842 q
->sg_reserved_size
= INT_MAX
;
1844 INIT_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
1845 INIT_LIST_HEAD(&q
->requeue_list
);
1846 spin_lock_init(&q
->requeue_lock
);
1848 if (q
->nr_hw_queues
> 1)
1849 blk_queue_make_request(q
, blk_mq_make_request
);
1851 blk_queue_make_request(q
, blk_sq_make_request
);
1854 blk_queue_rq_timeout(q
, set
->timeout
);
1857 * Do this after blk_queue_make_request() overrides it...
1859 q
->nr_requests
= set
->queue_depth
;
1861 if (set
->ops
->complete
)
1862 blk_queue_softirq_done(q
, set
->ops
->complete
);
1864 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
1866 if (blk_mq_init_hw_queues(q
, set
))
1869 mutex_lock(&all_q_mutex
);
1870 list_add_tail(&q
->all_q_node
, &all_q_list
);
1871 mutex_unlock(&all_q_mutex
);
1873 blk_mq_add_queue_tag_set(set
, q
);
1875 blk_mq_map_swqueue(q
);
1880 blk_cleanup_queue(q
);
1883 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
1886 free_cpumask_var(hctxs
[i
]->cpumask
);
1893 return ERR_PTR(-ENOMEM
);
1895 EXPORT_SYMBOL(blk_mq_init_queue
);
1897 void blk_mq_free_queue(struct request_queue
*q
)
1899 struct blk_mq_tag_set
*set
= q
->tag_set
;
1901 blk_mq_del_queue_tag_set(q
);
1903 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
1904 blk_mq_free_hw_queues(q
, set
);
1906 percpu_ref_exit(&q
->mq_usage_counter
);
1908 free_percpu(q
->queue_ctx
);
1909 kfree(q
->queue_hw_ctx
);
1912 q
->queue_ctx
= NULL
;
1913 q
->queue_hw_ctx
= NULL
;
1916 mutex_lock(&all_q_mutex
);
1917 list_del_init(&q
->all_q_node
);
1918 mutex_unlock(&all_q_mutex
);
1921 /* Basically redo blk_mq_init_queue with queue frozen */
1922 static void blk_mq_queue_reinit(struct request_queue
*q
)
1924 blk_mq_freeze_queue(q
);
1926 blk_mq_sysfs_unregister(q
);
1928 blk_mq_update_queue_map(q
->mq_map
, q
->nr_hw_queues
);
1931 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1932 * we should change hctx numa_node according to new topology (this
1933 * involves free and re-allocate memory, worthy doing?)
1936 blk_mq_map_swqueue(q
);
1938 blk_mq_sysfs_register(q
);
1940 blk_mq_unfreeze_queue(q
);
1943 static int blk_mq_queue_reinit_notify(struct notifier_block
*nb
,
1944 unsigned long action
, void *hcpu
)
1946 struct request_queue
*q
;
1949 * Before new mappings are established, hotadded cpu might already
1950 * start handling requests. This doesn't break anything as we map
1951 * offline CPUs to first hardware queue. We will re-init the queue
1952 * below to get optimal settings.
1954 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
&&
1955 action
!= CPU_ONLINE
&& action
!= CPU_ONLINE_FROZEN
)
1958 mutex_lock(&all_q_mutex
);
1959 list_for_each_entry(q
, &all_q_list
, all_q_node
)
1960 blk_mq_queue_reinit(q
);
1961 mutex_unlock(&all_q_mutex
);
1965 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
1969 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
1970 set
->tags
[i
] = blk_mq_init_rq_map(set
, i
);
1979 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
1985 * Allocate the request maps associated with this tag_set. Note that this
1986 * may reduce the depth asked for, if memory is tight. set->queue_depth
1987 * will be updated to reflect the allocated depth.
1989 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
1994 depth
= set
->queue_depth
;
1996 err
= __blk_mq_alloc_rq_maps(set
);
2000 set
->queue_depth
>>= 1;
2001 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2005 } while (set
->queue_depth
);
2007 if (!set
->queue_depth
|| err
) {
2008 pr_err("blk-mq: failed to allocate request map\n");
2012 if (depth
!= set
->queue_depth
)
2013 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2014 depth
, set
->queue_depth
);
2020 * Alloc a tag set to be associated with one or more request queues.
2021 * May fail with EINVAL for various error conditions. May adjust the
2022 * requested depth down, if if it too large. In that case, the set
2023 * value will be stored in set->queue_depth.
2025 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
2027 if (!set
->nr_hw_queues
)
2029 if (!set
->queue_depth
)
2031 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
2034 if (!set
->nr_hw_queues
|| !set
->ops
->queue_rq
|| !set
->ops
->map_queue
)
2037 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
2038 pr_info("blk-mq: reduced tag depth to %u\n",
2040 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
2043 set
->tags
= kmalloc_node(set
->nr_hw_queues
*
2044 sizeof(struct blk_mq_tags
*),
2045 GFP_KERNEL
, set
->numa_node
);
2049 if (blk_mq_alloc_rq_maps(set
))
2052 mutex_init(&set
->tag_list_lock
);
2053 INIT_LIST_HEAD(&set
->tag_list
);
2061 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2063 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2067 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2069 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2075 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2077 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2079 struct blk_mq_tag_set
*set
= q
->tag_set
;
2080 struct blk_mq_hw_ctx
*hctx
;
2083 if (!set
|| nr
> set
->queue_depth
)
2087 queue_for_each_hw_ctx(q
, hctx
, i
) {
2088 ret
= blk_mq_tag_update_depth(hctx
->tags
, nr
);
2094 q
->nr_requests
= nr
;
2099 void blk_mq_disable_hotplug(void)
2101 mutex_lock(&all_q_mutex
);
2104 void blk_mq_enable_hotplug(void)
2106 mutex_unlock(&all_q_mutex
);
2109 static int __init
blk_mq_init(void)
2113 hotcpu_notifier(blk_mq_queue_reinit_notify
, 0);
2117 subsys_initcall(blk_mq_init
);