ARM: OMAP2+: Prepare to move GPMC to drivers by platform data header
[linux/fpc-iii.git] / block / blk-mq.c
blob68929bad9a6a4048151f485cc1e44db2d655fc0f
1 /*
2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
25 #include <trace/events/block.h>
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
38 * Check if any of the ctx's have pending work in this hardware queue
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 unsigned int i;
44 for (i = 0; i < hctx->ctx_map.map_size; i++)
45 if (hctx->ctx_map.map[i].word)
46 return true;
48 return false;
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
57 #define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
61 * Mark this ctx as having pending work in this hardware queue
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
80 static int blk_mq_queue_enter(struct request_queue *q)
82 while (true) {
83 int ret;
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
88 ret = wait_event_interruptible(q->mq_freeze_wq,
89 !q->mq_freeze_depth || blk_queue_dying(q));
90 if (blk_queue_dying(q))
91 return -ENODEV;
92 if (ret)
93 return ret;
97 static void blk_mq_queue_exit(struct request_queue *q)
99 percpu_ref_put(&q->mq_usage_counter);
102 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
104 struct request_queue *q =
105 container_of(ref, struct request_queue, mq_usage_counter);
107 wake_up_all(&q->mq_freeze_wq);
111 * Guarantee no request is in use, so we can change any data structure of
112 * the queue afterward.
114 void blk_mq_freeze_queue(struct request_queue *q)
116 bool freeze;
118 spin_lock_irq(q->queue_lock);
119 freeze = !q->mq_freeze_depth++;
120 spin_unlock_irq(q->queue_lock);
122 if (freeze) {
123 percpu_ref_kill(&q->mq_usage_counter);
124 blk_mq_run_queues(q, false);
126 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
129 static void blk_mq_unfreeze_queue(struct request_queue *q)
131 bool wake;
133 spin_lock_irq(q->queue_lock);
134 wake = !--q->mq_freeze_depth;
135 WARN_ON_ONCE(q->mq_freeze_depth < 0);
136 spin_unlock_irq(q->queue_lock);
137 if (wake) {
138 percpu_ref_reinit(&q->mq_usage_counter);
139 wake_up_all(&q->mq_freeze_wq);
143 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
145 return blk_mq_has_free_tags(hctx->tags);
147 EXPORT_SYMBOL(blk_mq_can_queue);
149 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
150 struct request *rq, unsigned int rw_flags)
152 if (blk_queue_io_stat(q))
153 rw_flags |= REQ_IO_STAT;
155 INIT_LIST_HEAD(&rq->queuelist);
156 /* csd/requeue_work/fifo_time is initialized before use */
157 rq->q = q;
158 rq->mq_ctx = ctx;
159 rq->cmd_flags |= rw_flags;
160 /* do not touch atomic flags, it needs atomic ops against the timer */
161 rq->cpu = -1;
162 INIT_HLIST_NODE(&rq->hash);
163 RB_CLEAR_NODE(&rq->rb_node);
164 rq->rq_disk = NULL;
165 rq->part = NULL;
166 rq->start_time = jiffies;
167 #ifdef CONFIG_BLK_CGROUP
168 rq->rl = NULL;
169 set_start_time_ns(rq);
170 rq->io_start_time_ns = 0;
171 #endif
172 rq->nr_phys_segments = 0;
173 #if defined(CONFIG_BLK_DEV_INTEGRITY)
174 rq->nr_integrity_segments = 0;
175 #endif
176 rq->special = NULL;
177 /* tag was already set */
178 rq->errors = 0;
180 rq->cmd = rq->__cmd;
182 rq->extra_len = 0;
183 rq->sense_len = 0;
184 rq->resid_len = 0;
185 rq->sense = NULL;
187 INIT_LIST_HEAD(&rq->timeout_list);
188 rq->timeout = 0;
190 rq->end_io = NULL;
191 rq->end_io_data = NULL;
192 rq->next_rq = NULL;
194 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
197 static struct request *
198 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
200 struct request *rq;
201 unsigned int tag;
203 tag = blk_mq_get_tag(data);
204 if (tag != BLK_MQ_TAG_FAIL) {
205 rq = data->hctx->tags->rqs[tag];
207 if (blk_mq_tag_busy(data->hctx)) {
208 rq->cmd_flags = REQ_MQ_INFLIGHT;
209 atomic_inc(&data->hctx->nr_active);
212 rq->tag = tag;
213 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
214 return rq;
217 return NULL;
220 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
221 bool reserved)
223 struct blk_mq_ctx *ctx;
224 struct blk_mq_hw_ctx *hctx;
225 struct request *rq;
226 struct blk_mq_alloc_data alloc_data;
227 int ret;
229 ret = blk_mq_queue_enter(q);
230 if (ret)
231 return ERR_PTR(ret);
233 ctx = blk_mq_get_ctx(q);
234 hctx = q->mq_ops->map_queue(q, ctx->cpu);
235 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
236 reserved, ctx, hctx);
238 rq = __blk_mq_alloc_request(&alloc_data, rw);
239 if (!rq && (gfp & __GFP_WAIT)) {
240 __blk_mq_run_hw_queue(hctx);
241 blk_mq_put_ctx(ctx);
243 ctx = blk_mq_get_ctx(q);
244 hctx = q->mq_ops->map_queue(q, ctx->cpu);
245 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
246 hctx);
247 rq = __blk_mq_alloc_request(&alloc_data, rw);
248 ctx = alloc_data.ctx;
250 blk_mq_put_ctx(ctx);
251 if (!rq)
252 return ERR_PTR(-EWOULDBLOCK);
253 return rq;
255 EXPORT_SYMBOL(blk_mq_alloc_request);
257 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
258 struct blk_mq_ctx *ctx, struct request *rq)
260 const int tag = rq->tag;
261 struct request_queue *q = rq->q;
263 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
264 atomic_dec(&hctx->nr_active);
265 rq->cmd_flags = 0;
267 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
268 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
269 blk_mq_queue_exit(q);
272 void blk_mq_free_request(struct request *rq)
274 struct blk_mq_ctx *ctx = rq->mq_ctx;
275 struct blk_mq_hw_ctx *hctx;
276 struct request_queue *q = rq->q;
278 ctx->rq_completed[rq_is_sync(rq)]++;
280 hctx = q->mq_ops->map_queue(q, ctx->cpu);
281 __blk_mq_free_request(hctx, ctx, rq);
284 inline void __blk_mq_end_request(struct request *rq, int error)
286 blk_account_io_done(rq);
288 if (rq->end_io) {
289 rq->end_io(rq, error);
290 } else {
291 if (unlikely(blk_bidi_rq(rq)))
292 blk_mq_free_request(rq->next_rq);
293 blk_mq_free_request(rq);
296 EXPORT_SYMBOL(__blk_mq_end_request);
298 void blk_mq_end_request(struct request *rq, int error)
300 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
301 BUG();
302 __blk_mq_end_request(rq, error);
304 EXPORT_SYMBOL(blk_mq_end_request);
306 static void __blk_mq_complete_request_remote(void *data)
308 struct request *rq = data;
310 rq->q->softirq_done_fn(rq);
313 static void blk_mq_ipi_complete_request(struct request *rq)
315 struct blk_mq_ctx *ctx = rq->mq_ctx;
316 bool shared = false;
317 int cpu;
319 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
320 rq->q->softirq_done_fn(rq);
321 return;
324 cpu = get_cpu();
325 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
326 shared = cpus_share_cache(cpu, ctx->cpu);
328 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
329 rq->csd.func = __blk_mq_complete_request_remote;
330 rq->csd.info = rq;
331 rq->csd.flags = 0;
332 smp_call_function_single_async(ctx->cpu, &rq->csd);
333 } else {
334 rq->q->softirq_done_fn(rq);
336 put_cpu();
339 void __blk_mq_complete_request(struct request *rq)
341 struct request_queue *q = rq->q;
343 if (!q->softirq_done_fn)
344 blk_mq_end_request(rq, rq->errors);
345 else
346 blk_mq_ipi_complete_request(rq);
350 * blk_mq_complete_request - end I/O on a request
351 * @rq: the request being processed
353 * Description:
354 * Ends all I/O on a request. It does not handle partial completions.
355 * The actual completion happens out-of-order, through a IPI handler.
357 void blk_mq_complete_request(struct request *rq)
359 struct request_queue *q = rq->q;
361 if (unlikely(blk_should_fake_timeout(q)))
362 return;
363 if (!blk_mark_rq_complete(rq))
364 __blk_mq_complete_request(rq);
366 EXPORT_SYMBOL(blk_mq_complete_request);
368 void blk_mq_start_request(struct request *rq)
370 struct request_queue *q = rq->q;
372 trace_block_rq_issue(q, rq);
374 rq->resid_len = blk_rq_bytes(rq);
375 if (unlikely(blk_bidi_rq(rq)))
376 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
378 blk_add_timer(rq);
381 * Ensure that ->deadline is visible before set the started
382 * flag and clear the completed flag.
384 smp_mb__before_atomic();
387 * Mark us as started and clear complete. Complete might have been
388 * set if requeue raced with timeout, which then marked it as
389 * complete. So be sure to clear complete again when we start
390 * the request, otherwise we'll ignore the completion event.
392 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
393 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
394 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
395 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
397 if (q->dma_drain_size && blk_rq_bytes(rq)) {
399 * Make sure space for the drain appears. We know we can do
400 * this because max_hw_segments has been adjusted to be one
401 * fewer than the device can handle.
403 rq->nr_phys_segments++;
406 EXPORT_SYMBOL(blk_mq_start_request);
408 static void __blk_mq_requeue_request(struct request *rq)
410 struct request_queue *q = rq->q;
412 trace_block_rq_requeue(q, rq);
414 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
415 if (q->dma_drain_size && blk_rq_bytes(rq))
416 rq->nr_phys_segments--;
420 void blk_mq_requeue_request(struct request *rq)
422 __blk_mq_requeue_request(rq);
424 BUG_ON(blk_queued_rq(rq));
425 blk_mq_add_to_requeue_list(rq, true);
427 EXPORT_SYMBOL(blk_mq_requeue_request);
429 static void blk_mq_requeue_work(struct work_struct *work)
431 struct request_queue *q =
432 container_of(work, struct request_queue, requeue_work);
433 LIST_HEAD(rq_list);
434 struct request *rq, *next;
435 unsigned long flags;
437 spin_lock_irqsave(&q->requeue_lock, flags);
438 list_splice_init(&q->requeue_list, &rq_list);
439 spin_unlock_irqrestore(&q->requeue_lock, flags);
441 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
442 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
443 continue;
445 rq->cmd_flags &= ~REQ_SOFTBARRIER;
446 list_del_init(&rq->queuelist);
447 blk_mq_insert_request(rq, true, false, false);
450 while (!list_empty(&rq_list)) {
451 rq = list_entry(rq_list.next, struct request, queuelist);
452 list_del_init(&rq->queuelist);
453 blk_mq_insert_request(rq, false, false, false);
457 * Use the start variant of queue running here, so that running
458 * the requeue work will kick stopped queues.
460 blk_mq_start_hw_queues(q);
463 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
465 struct request_queue *q = rq->q;
466 unsigned long flags;
469 * We abuse this flag that is otherwise used by the I/O scheduler to
470 * request head insertation from the workqueue.
472 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
474 spin_lock_irqsave(&q->requeue_lock, flags);
475 if (at_head) {
476 rq->cmd_flags |= REQ_SOFTBARRIER;
477 list_add(&rq->queuelist, &q->requeue_list);
478 } else {
479 list_add_tail(&rq->queuelist, &q->requeue_list);
481 spin_unlock_irqrestore(&q->requeue_lock, flags);
483 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
485 void blk_mq_kick_requeue_list(struct request_queue *q)
487 kblockd_schedule_work(&q->requeue_work);
489 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
491 static inline bool is_flush_request(struct request *rq,
492 struct blk_flush_queue *fq, unsigned int tag)
494 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
495 fq->flush_rq->tag == tag);
498 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
500 struct request *rq = tags->rqs[tag];
501 /* mq_ctx of flush rq is always cloned from the corresponding req */
502 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
504 if (!is_flush_request(rq, fq, tag))
505 return rq;
507 return fq->flush_rq;
509 EXPORT_SYMBOL(blk_mq_tag_to_rq);
511 struct blk_mq_timeout_data {
512 unsigned long next;
513 unsigned int next_set;
516 void blk_mq_rq_timed_out(struct request *req, bool reserved)
518 struct blk_mq_ops *ops = req->q->mq_ops;
519 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
522 * We know that complete is set at this point. If STARTED isn't set
523 * anymore, then the request isn't active and the "timeout" should
524 * just be ignored. This can happen due to the bitflag ordering.
525 * Timeout first checks if STARTED is set, and if it is, assumes
526 * the request is active. But if we race with completion, then
527 * we both flags will get cleared. So check here again, and ignore
528 * a timeout event with a request that isn't active.
530 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
531 return;
533 if (ops->timeout)
534 ret = ops->timeout(req, reserved);
536 switch (ret) {
537 case BLK_EH_HANDLED:
538 __blk_mq_complete_request(req);
539 break;
540 case BLK_EH_RESET_TIMER:
541 blk_add_timer(req);
542 blk_clear_rq_complete(req);
543 break;
544 case BLK_EH_NOT_HANDLED:
545 break;
546 default:
547 printk(KERN_ERR "block: bad eh return: %d\n", ret);
548 break;
552 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
553 struct request *rq, void *priv, bool reserved)
555 struct blk_mq_timeout_data *data = priv;
557 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
558 return;
560 if (time_after_eq(jiffies, rq->deadline)) {
561 if (!blk_mark_rq_complete(rq))
562 blk_mq_rq_timed_out(rq, reserved);
563 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
564 data->next = rq->deadline;
565 data->next_set = 1;
569 static void blk_mq_rq_timer(unsigned long priv)
571 struct request_queue *q = (struct request_queue *)priv;
572 struct blk_mq_timeout_data data = {
573 .next = 0,
574 .next_set = 0,
576 struct blk_mq_hw_ctx *hctx;
577 int i;
579 queue_for_each_hw_ctx(q, hctx, i) {
581 * If not software queues are currently mapped to this
582 * hardware queue, there's nothing to check
584 if (!hctx->nr_ctx || !hctx->tags)
585 continue;
587 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
590 if (data.next_set) {
591 data.next = blk_rq_timeout(round_jiffies_up(data.next));
592 mod_timer(&q->timeout, data.next);
593 } else {
594 queue_for_each_hw_ctx(q, hctx, i)
595 blk_mq_tag_idle(hctx);
600 * Reverse check our software queue for entries that we could potentially
601 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
602 * too much time checking for merges.
604 static bool blk_mq_attempt_merge(struct request_queue *q,
605 struct blk_mq_ctx *ctx, struct bio *bio)
607 struct request *rq;
608 int checked = 8;
610 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
611 int el_ret;
613 if (!checked--)
614 break;
616 if (!blk_rq_merge_ok(rq, bio))
617 continue;
619 el_ret = blk_try_merge(rq, bio);
620 if (el_ret == ELEVATOR_BACK_MERGE) {
621 if (bio_attempt_back_merge(q, rq, bio)) {
622 ctx->rq_merged++;
623 return true;
625 break;
626 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
627 if (bio_attempt_front_merge(q, rq, bio)) {
628 ctx->rq_merged++;
629 return true;
631 break;
635 return false;
639 * Process software queues that have been marked busy, splicing them
640 * to the for-dispatch
642 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
644 struct blk_mq_ctx *ctx;
645 int i;
647 for (i = 0; i < hctx->ctx_map.map_size; i++) {
648 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
649 unsigned int off, bit;
651 if (!bm->word)
652 continue;
654 bit = 0;
655 off = i * hctx->ctx_map.bits_per_word;
656 do {
657 bit = find_next_bit(&bm->word, bm->depth, bit);
658 if (bit >= bm->depth)
659 break;
661 ctx = hctx->ctxs[bit + off];
662 clear_bit(bit, &bm->word);
663 spin_lock(&ctx->lock);
664 list_splice_tail_init(&ctx->rq_list, list);
665 spin_unlock(&ctx->lock);
667 bit++;
668 } while (1);
673 * Run this hardware queue, pulling any software queues mapped to it in.
674 * Note that this function currently has various problems around ordering
675 * of IO. In particular, we'd like FIFO behaviour on handling existing
676 * items on the hctx->dispatch list. Ignore that for now.
678 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
680 struct request_queue *q = hctx->queue;
681 struct request *rq;
682 LIST_HEAD(rq_list);
683 int queued;
685 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
687 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
688 return;
690 hctx->run++;
693 * Touch any software queue that has pending entries.
695 flush_busy_ctxs(hctx, &rq_list);
698 * If we have previous entries on our dispatch list, grab them
699 * and stuff them at the front for more fair dispatch.
701 if (!list_empty_careful(&hctx->dispatch)) {
702 spin_lock(&hctx->lock);
703 if (!list_empty(&hctx->dispatch))
704 list_splice_init(&hctx->dispatch, &rq_list);
705 spin_unlock(&hctx->lock);
709 * Now process all the entries, sending them to the driver.
711 queued = 0;
712 while (!list_empty(&rq_list)) {
713 int ret;
715 rq = list_first_entry(&rq_list, struct request, queuelist);
716 list_del_init(&rq->queuelist);
718 ret = q->mq_ops->queue_rq(hctx, rq, list_empty(&rq_list));
719 switch (ret) {
720 case BLK_MQ_RQ_QUEUE_OK:
721 queued++;
722 continue;
723 case BLK_MQ_RQ_QUEUE_BUSY:
724 list_add(&rq->queuelist, &rq_list);
725 __blk_mq_requeue_request(rq);
726 break;
727 default:
728 pr_err("blk-mq: bad return on queue: %d\n", ret);
729 case BLK_MQ_RQ_QUEUE_ERROR:
730 rq->errors = -EIO;
731 blk_mq_end_request(rq, rq->errors);
732 break;
735 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
736 break;
739 if (!queued)
740 hctx->dispatched[0]++;
741 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
742 hctx->dispatched[ilog2(queued) + 1]++;
745 * Any items that need requeuing? Stuff them into hctx->dispatch,
746 * that is where we will continue on next queue run.
748 if (!list_empty(&rq_list)) {
749 spin_lock(&hctx->lock);
750 list_splice(&rq_list, &hctx->dispatch);
751 spin_unlock(&hctx->lock);
756 * It'd be great if the workqueue API had a way to pass
757 * in a mask and had some smarts for more clever placement.
758 * For now we just round-robin here, switching for every
759 * BLK_MQ_CPU_WORK_BATCH queued items.
761 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
763 int cpu = hctx->next_cpu;
765 if (--hctx->next_cpu_batch <= 0) {
766 int next_cpu;
768 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
769 if (next_cpu >= nr_cpu_ids)
770 next_cpu = cpumask_first(hctx->cpumask);
772 hctx->next_cpu = next_cpu;
773 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
776 return cpu;
779 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
781 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
782 return;
784 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
785 __blk_mq_run_hw_queue(hctx);
786 else if (hctx->queue->nr_hw_queues == 1)
787 kblockd_schedule_delayed_work(&hctx->run_work, 0);
788 else {
789 unsigned int cpu;
791 cpu = blk_mq_hctx_next_cpu(hctx);
792 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
796 void blk_mq_run_queues(struct request_queue *q, bool async)
798 struct blk_mq_hw_ctx *hctx;
799 int i;
801 queue_for_each_hw_ctx(q, hctx, i) {
802 if ((!blk_mq_hctx_has_pending(hctx) &&
803 list_empty_careful(&hctx->dispatch)) ||
804 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
805 continue;
807 preempt_disable();
808 blk_mq_run_hw_queue(hctx, async);
809 preempt_enable();
812 EXPORT_SYMBOL(blk_mq_run_queues);
814 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
816 cancel_delayed_work(&hctx->run_work);
817 cancel_delayed_work(&hctx->delay_work);
818 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
820 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
822 void blk_mq_stop_hw_queues(struct request_queue *q)
824 struct blk_mq_hw_ctx *hctx;
825 int i;
827 queue_for_each_hw_ctx(q, hctx, i)
828 blk_mq_stop_hw_queue(hctx);
830 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
832 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
834 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
836 preempt_disable();
837 blk_mq_run_hw_queue(hctx, false);
838 preempt_enable();
840 EXPORT_SYMBOL(blk_mq_start_hw_queue);
842 void blk_mq_start_hw_queues(struct request_queue *q)
844 struct blk_mq_hw_ctx *hctx;
845 int i;
847 queue_for_each_hw_ctx(q, hctx, i)
848 blk_mq_start_hw_queue(hctx);
850 EXPORT_SYMBOL(blk_mq_start_hw_queues);
853 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
855 struct blk_mq_hw_ctx *hctx;
856 int i;
858 queue_for_each_hw_ctx(q, hctx, i) {
859 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
860 continue;
862 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
863 preempt_disable();
864 blk_mq_run_hw_queue(hctx, async);
865 preempt_enable();
868 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
870 static void blk_mq_run_work_fn(struct work_struct *work)
872 struct blk_mq_hw_ctx *hctx;
874 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
876 __blk_mq_run_hw_queue(hctx);
879 static void blk_mq_delay_work_fn(struct work_struct *work)
881 struct blk_mq_hw_ctx *hctx;
883 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
885 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
886 __blk_mq_run_hw_queue(hctx);
889 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
891 unsigned long tmo = msecs_to_jiffies(msecs);
893 if (hctx->queue->nr_hw_queues == 1)
894 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
895 else {
896 unsigned int cpu;
898 cpu = blk_mq_hctx_next_cpu(hctx);
899 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
902 EXPORT_SYMBOL(blk_mq_delay_queue);
904 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
905 struct request *rq, bool at_head)
907 struct blk_mq_ctx *ctx = rq->mq_ctx;
909 trace_block_rq_insert(hctx->queue, rq);
911 if (at_head)
912 list_add(&rq->queuelist, &ctx->rq_list);
913 else
914 list_add_tail(&rq->queuelist, &ctx->rq_list);
916 blk_mq_hctx_mark_pending(hctx, ctx);
919 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
920 bool async)
922 struct request_queue *q = rq->q;
923 struct blk_mq_hw_ctx *hctx;
924 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
926 current_ctx = blk_mq_get_ctx(q);
927 if (!cpu_online(ctx->cpu))
928 rq->mq_ctx = ctx = current_ctx;
930 hctx = q->mq_ops->map_queue(q, ctx->cpu);
932 spin_lock(&ctx->lock);
933 __blk_mq_insert_request(hctx, rq, at_head);
934 spin_unlock(&ctx->lock);
936 if (run_queue)
937 blk_mq_run_hw_queue(hctx, async);
939 blk_mq_put_ctx(current_ctx);
942 static void blk_mq_insert_requests(struct request_queue *q,
943 struct blk_mq_ctx *ctx,
944 struct list_head *list,
945 int depth,
946 bool from_schedule)
949 struct blk_mq_hw_ctx *hctx;
950 struct blk_mq_ctx *current_ctx;
952 trace_block_unplug(q, depth, !from_schedule);
954 current_ctx = blk_mq_get_ctx(q);
956 if (!cpu_online(ctx->cpu))
957 ctx = current_ctx;
958 hctx = q->mq_ops->map_queue(q, ctx->cpu);
961 * preemption doesn't flush plug list, so it's possible ctx->cpu is
962 * offline now
964 spin_lock(&ctx->lock);
965 while (!list_empty(list)) {
966 struct request *rq;
968 rq = list_first_entry(list, struct request, queuelist);
969 list_del_init(&rq->queuelist);
970 rq->mq_ctx = ctx;
971 __blk_mq_insert_request(hctx, rq, false);
973 spin_unlock(&ctx->lock);
975 blk_mq_run_hw_queue(hctx, from_schedule);
976 blk_mq_put_ctx(current_ctx);
979 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
981 struct request *rqa = container_of(a, struct request, queuelist);
982 struct request *rqb = container_of(b, struct request, queuelist);
984 return !(rqa->mq_ctx < rqb->mq_ctx ||
985 (rqa->mq_ctx == rqb->mq_ctx &&
986 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
989 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
991 struct blk_mq_ctx *this_ctx;
992 struct request_queue *this_q;
993 struct request *rq;
994 LIST_HEAD(list);
995 LIST_HEAD(ctx_list);
996 unsigned int depth;
998 list_splice_init(&plug->mq_list, &list);
1000 list_sort(NULL, &list, plug_ctx_cmp);
1002 this_q = NULL;
1003 this_ctx = NULL;
1004 depth = 0;
1006 while (!list_empty(&list)) {
1007 rq = list_entry_rq(list.next);
1008 list_del_init(&rq->queuelist);
1009 BUG_ON(!rq->q);
1010 if (rq->mq_ctx != this_ctx) {
1011 if (this_ctx) {
1012 blk_mq_insert_requests(this_q, this_ctx,
1013 &ctx_list, depth,
1014 from_schedule);
1017 this_ctx = rq->mq_ctx;
1018 this_q = rq->q;
1019 depth = 0;
1022 depth++;
1023 list_add_tail(&rq->queuelist, &ctx_list);
1027 * If 'this_ctx' is set, we know we have entries to complete
1028 * on 'ctx_list'. Do those.
1030 if (this_ctx) {
1031 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1032 from_schedule);
1036 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1038 init_request_from_bio(rq, bio);
1040 if (blk_do_io_stat(rq))
1041 blk_account_io_start(rq, 1);
1044 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1046 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1047 !blk_queue_nomerges(hctx->queue);
1050 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1051 struct blk_mq_ctx *ctx,
1052 struct request *rq, struct bio *bio)
1054 if (!hctx_allow_merges(hctx)) {
1055 blk_mq_bio_to_request(rq, bio);
1056 spin_lock(&ctx->lock);
1057 insert_rq:
1058 __blk_mq_insert_request(hctx, rq, false);
1059 spin_unlock(&ctx->lock);
1060 return false;
1061 } else {
1062 struct request_queue *q = hctx->queue;
1064 spin_lock(&ctx->lock);
1065 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1066 blk_mq_bio_to_request(rq, bio);
1067 goto insert_rq;
1070 spin_unlock(&ctx->lock);
1071 __blk_mq_free_request(hctx, ctx, rq);
1072 return true;
1076 struct blk_map_ctx {
1077 struct blk_mq_hw_ctx *hctx;
1078 struct blk_mq_ctx *ctx;
1081 static struct request *blk_mq_map_request(struct request_queue *q,
1082 struct bio *bio,
1083 struct blk_map_ctx *data)
1085 struct blk_mq_hw_ctx *hctx;
1086 struct blk_mq_ctx *ctx;
1087 struct request *rq;
1088 int rw = bio_data_dir(bio);
1089 struct blk_mq_alloc_data alloc_data;
1091 if (unlikely(blk_mq_queue_enter(q))) {
1092 bio_endio(bio, -EIO);
1093 return NULL;
1096 ctx = blk_mq_get_ctx(q);
1097 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1099 if (rw_is_sync(bio->bi_rw))
1100 rw |= REQ_SYNC;
1102 trace_block_getrq(q, bio, rw);
1103 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1104 hctx);
1105 rq = __blk_mq_alloc_request(&alloc_data, rw);
1106 if (unlikely(!rq)) {
1107 __blk_mq_run_hw_queue(hctx);
1108 blk_mq_put_ctx(ctx);
1109 trace_block_sleeprq(q, bio, rw);
1111 ctx = blk_mq_get_ctx(q);
1112 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1113 blk_mq_set_alloc_data(&alloc_data, q,
1114 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1115 rq = __blk_mq_alloc_request(&alloc_data, rw);
1116 ctx = alloc_data.ctx;
1117 hctx = alloc_data.hctx;
1120 hctx->queued++;
1121 data->hctx = hctx;
1122 data->ctx = ctx;
1123 return rq;
1127 * Multiple hardware queue variant. This will not use per-process plugs,
1128 * but will attempt to bypass the hctx queueing if we can go straight to
1129 * hardware for SYNC IO.
1131 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1133 const int is_sync = rw_is_sync(bio->bi_rw);
1134 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1135 struct blk_map_ctx data;
1136 struct request *rq;
1138 blk_queue_bounce(q, &bio);
1140 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1141 bio_endio(bio, -EIO);
1142 return;
1145 rq = blk_mq_map_request(q, bio, &data);
1146 if (unlikely(!rq))
1147 return;
1149 if (unlikely(is_flush_fua)) {
1150 blk_mq_bio_to_request(rq, bio);
1151 blk_insert_flush(rq);
1152 goto run_queue;
1155 if (is_sync) {
1156 int ret;
1158 blk_mq_bio_to_request(rq, bio);
1161 * For OK queue, we are done. For error, kill it. Any other
1162 * error (busy), just add it to our list as we previously
1163 * would have done
1165 ret = q->mq_ops->queue_rq(data.hctx, rq, true);
1166 if (ret == BLK_MQ_RQ_QUEUE_OK)
1167 goto done;
1168 else {
1169 __blk_mq_requeue_request(rq);
1171 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1172 rq->errors = -EIO;
1173 blk_mq_end_request(rq, rq->errors);
1174 goto done;
1179 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1181 * For a SYNC request, send it to the hardware immediately. For
1182 * an ASYNC request, just ensure that we run it later on. The
1183 * latter allows for merging opportunities and more efficient
1184 * dispatching.
1186 run_queue:
1187 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1189 done:
1190 blk_mq_put_ctx(data.ctx);
1194 * Single hardware queue variant. This will attempt to use any per-process
1195 * plug for merging and IO deferral.
1197 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1199 const int is_sync = rw_is_sync(bio->bi_rw);
1200 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1201 unsigned int use_plug, request_count = 0;
1202 struct blk_map_ctx data;
1203 struct request *rq;
1206 * If we have multiple hardware queues, just go directly to
1207 * one of those for sync IO.
1209 use_plug = !is_flush_fua && !is_sync;
1211 blk_queue_bounce(q, &bio);
1213 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1214 bio_endio(bio, -EIO);
1215 return;
1218 if (use_plug && !blk_queue_nomerges(q) &&
1219 blk_attempt_plug_merge(q, bio, &request_count))
1220 return;
1222 rq = blk_mq_map_request(q, bio, &data);
1223 if (unlikely(!rq))
1224 return;
1226 if (unlikely(is_flush_fua)) {
1227 blk_mq_bio_to_request(rq, bio);
1228 blk_insert_flush(rq);
1229 goto run_queue;
1233 * A task plug currently exists. Since this is completely lockless,
1234 * utilize that to temporarily store requests until the task is
1235 * either done or scheduled away.
1237 if (use_plug) {
1238 struct blk_plug *plug = current->plug;
1240 if (plug) {
1241 blk_mq_bio_to_request(rq, bio);
1242 if (list_empty(&plug->mq_list))
1243 trace_block_plug(q);
1244 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1245 blk_flush_plug_list(plug, false);
1246 trace_block_plug(q);
1248 list_add_tail(&rq->queuelist, &plug->mq_list);
1249 blk_mq_put_ctx(data.ctx);
1250 return;
1254 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1256 * For a SYNC request, send it to the hardware immediately. For
1257 * an ASYNC request, just ensure that we run it later on. The
1258 * latter allows for merging opportunities and more efficient
1259 * dispatching.
1261 run_queue:
1262 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1265 blk_mq_put_ctx(data.ctx);
1269 * Default mapping to a software queue, since we use one per CPU.
1271 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1273 return q->queue_hw_ctx[q->mq_map[cpu]];
1275 EXPORT_SYMBOL(blk_mq_map_queue);
1277 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1278 struct blk_mq_tags *tags, unsigned int hctx_idx)
1280 struct page *page;
1282 if (tags->rqs && set->ops->exit_request) {
1283 int i;
1285 for (i = 0; i < tags->nr_tags; i++) {
1286 if (!tags->rqs[i])
1287 continue;
1288 set->ops->exit_request(set->driver_data, tags->rqs[i],
1289 hctx_idx, i);
1290 tags->rqs[i] = NULL;
1294 while (!list_empty(&tags->page_list)) {
1295 page = list_first_entry(&tags->page_list, struct page, lru);
1296 list_del_init(&page->lru);
1297 __free_pages(page, page->private);
1300 kfree(tags->rqs);
1302 blk_mq_free_tags(tags);
1305 static size_t order_to_size(unsigned int order)
1307 return (size_t)PAGE_SIZE << order;
1310 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1311 unsigned int hctx_idx)
1313 struct blk_mq_tags *tags;
1314 unsigned int i, j, entries_per_page, max_order = 4;
1315 size_t rq_size, left;
1317 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1318 set->numa_node);
1319 if (!tags)
1320 return NULL;
1322 INIT_LIST_HEAD(&tags->page_list);
1324 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1325 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1326 set->numa_node);
1327 if (!tags->rqs) {
1328 blk_mq_free_tags(tags);
1329 return NULL;
1333 * rq_size is the size of the request plus driver payload, rounded
1334 * to the cacheline size
1336 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1337 cache_line_size());
1338 left = rq_size * set->queue_depth;
1340 for (i = 0; i < set->queue_depth; ) {
1341 int this_order = max_order;
1342 struct page *page;
1343 int to_do;
1344 void *p;
1346 while (left < order_to_size(this_order - 1) && this_order)
1347 this_order--;
1349 do {
1350 page = alloc_pages_node(set->numa_node,
1351 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1352 this_order);
1353 if (page)
1354 break;
1355 if (!this_order--)
1356 break;
1357 if (order_to_size(this_order) < rq_size)
1358 break;
1359 } while (1);
1361 if (!page)
1362 goto fail;
1364 page->private = this_order;
1365 list_add_tail(&page->lru, &tags->page_list);
1367 p = page_address(page);
1368 entries_per_page = order_to_size(this_order) / rq_size;
1369 to_do = min(entries_per_page, set->queue_depth - i);
1370 left -= to_do * rq_size;
1371 for (j = 0; j < to_do; j++) {
1372 tags->rqs[i] = p;
1373 tags->rqs[i]->atomic_flags = 0;
1374 tags->rqs[i]->cmd_flags = 0;
1375 if (set->ops->init_request) {
1376 if (set->ops->init_request(set->driver_data,
1377 tags->rqs[i], hctx_idx, i,
1378 set->numa_node)) {
1379 tags->rqs[i] = NULL;
1380 goto fail;
1384 p += rq_size;
1385 i++;
1389 return tags;
1391 fail:
1392 blk_mq_free_rq_map(set, tags, hctx_idx);
1393 return NULL;
1396 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1398 kfree(bitmap->map);
1401 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1403 unsigned int bpw = 8, total, num_maps, i;
1405 bitmap->bits_per_word = bpw;
1407 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1408 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1409 GFP_KERNEL, node);
1410 if (!bitmap->map)
1411 return -ENOMEM;
1413 bitmap->map_size = num_maps;
1415 total = nr_cpu_ids;
1416 for (i = 0; i < num_maps; i++) {
1417 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1418 total -= bitmap->map[i].depth;
1421 return 0;
1424 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1426 struct request_queue *q = hctx->queue;
1427 struct blk_mq_ctx *ctx;
1428 LIST_HEAD(tmp);
1431 * Move ctx entries to new CPU, if this one is going away.
1433 ctx = __blk_mq_get_ctx(q, cpu);
1435 spin_lock(&ctx->lock);
1436 if (!list_empty(&ctx->rq_list)) {
1437 list_splice_init(&ctx->rq_list, &tmp);
1438 blk_mq_hctx_clear_pending(hctx, ctx);
1440 spin_unlock(&ctx->lock);
1442 if (list_empty(&tmp))
1443 return NOTIFY_OK;
1445 ctx = blk_mq_get_ctx(q);
1446 spin_lock(&ctx->lock);
1448 while (!list_empty(&tmp)) {
1449 struct request *rq;
1451 rq = list_first_entry(&tmp, struct request, queuelist);
1452 rq->mq_ctx = ctx;
1453 list_move_tail(&rq->queuelist, &ctx->rq_list);
1456 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1457 blk_mq_hctx_mark_pending(hctx, ctx);
1459 spin_unlock(&ctx->lock);
1461 blk_mq_run_hw_queue(hctx, true);
1462 blk_mq_put_ctx(ctx);
1463 return NOTIFY_OK;
1466 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1468 struct request_queue *q = hctx->queue;
1469 struct blk_mq_tag_set *set = q->tag_set;
1471 if (set->tags[hctx->queue_num])
1472 return NOTIFY_OK;
1474 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1475 if (!set->tags[hctx->queue_num])
1476 return NOTIFY_STOP;
1478 hctx->tags = set->tags[hctx->queue_num];
1479 return NOTIFY_OK;
1482 static int blk_mq_hctx_notify(void *data, unsigned long action,
1483 unsigned int cpu)
1485 struct blk_mq_hw_ctx *hctx = data;
1487 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1488 return blk_mq_hctx_cpu_offline(hctx, cpu);
1489 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1490 return blk_mq_hctx_cpu_online(hctx, cpu);
1492 return NOTIFY_OK;
1495 static void blk_mq_exit_hctx(struct request_queue *q,
1496 struct blk_mq_tag_set *set,
1497 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1499 unsigned flush_start_tag = set->queue_depth;
1501 blk_mq_tag_idle(hctx);
1503 if (set->ops->exit_request)
1504 set->ops->exit_request(set->driver_data,
1505 hctx->fq->flush_rq, hctx_idx,
1506 flush_start_tag + hctx_idx);
1508 if (set->ops->exit_hctx)
1509 set->ops->exit_hctx(hctx, hctx_idx);
1511 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1512 blk_free_flush_queue(hctx->fq);
1513 kfree(hctx->ctxs);
1514 blk_mq_free_bitmap(&hctx->ctx_map);
1517 static void blk_mq_exit_hw_queues(struct request_queue *q,
1518 struct blk_mq_tag_set *set, int nr_queue)
1520 struct blk_mq_hw_ctx *hctx;
1521 unsigned int i;
1523 queue_for_each_hw_ctx(q, hctx, i) {
1524 if (i == nr_queue)
1525 break;
1526 blk_mq_exit_hctx(q, set, hctx, i);
1530 static void blk_mq_free_hw_queues(struct request_queue *q,
1531 struct blk_mq_tag_set *set)
1533 struct blk_mq_hw_ctx *hctx;
1534 unsigned int i;
1536 queue_for_each_hw_ctx(q, hctx, i) {
1537 free_cpumask_var(hctx->cpumask);
1538 kfree(hctx);
1542 static int blk_mq_init_hctx(struct request_queue *q,
1543 struct blk_mq_tag_set *set,
1544 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1546 int node;
1547 unsigned flush_start_tag = set->queue_depth;
1549 node = hctx->numa_node;
1550 if (node == NUMA_NO_NODE)
1551 node = hctx->numa_node = set->numa_node;
1553 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1554 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1555 spin_lock_init(&hctx->lock);
1556 INIT_LIST_HEAD(&hctx->dispatch);
1557 hctx->queue = q;
1558 hctx->queue_num = hctx_idx;
1559 hctx->flags = set->flags;
1560 hctx->cmd_size = set->cmd_size;
1562 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1563 blk_mq_hctx_notify, hctx);
1564 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1566 hctx->tags = set->tags[hctx_idx];
1569 * Allocate space for all possible cpus to avoid allocation at
1570 * runtime
1572 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1573 GFP_KERNEL, node);
1574 if (!hctx->ctxs)
1575 goto unregister_cpu_notifier;
1577 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1578 goto free_ctxs;
1580 hctx->nr_ctx = 0;
1582 if (set->ops->init_hctx &&
1583 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1584 goto free_bitmap;
1586 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1587 if (!hctx->fq)
1588 goto exit_hctx;
1590 if (set->ops->init_request &&
1591 set->ops->init_request(set->driver_data,
1592 hctx->fq->flush_rq, hctx_idx,
1593 flush_start_tag + hctx_idx, node))
1594 goto free_fq;
1596 return 0;
1598 free_fq:
1599 kfree(hctx->fq);
1600 exit_hctx:
1601 if (set->ops->exit_hctx)
1602 set->ops->exit_hctx(hctx, hctx_idx);
1603 free_bitmap:
1604 blk_mq_free_bitmap(&hctx->ctx_map);
1605 free_ctxs:
1606 kfree(hctx->ctxs);
1607 unregister_cpu_notifier:
1608 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1610 return -1;
1613 static int blk_mq_init_hw_queues(struct request_queue *q,
1614 struct blk_mq_tag_set *set)
1616 struct blk_mq_hw_ctx *hctx;
1617 unsigned int i;
1620 * Initialize hardware queues
1622 queue_for_each_hw_ctx(q, hctx, i) {
1623 if (blk_mq_init_hctx(q, set, hctx, i))
1624 break;
1627 if (i == q->nr_hw_queues)
1628 return 0;
1631 * Init failed
1633 blk_mq_exit_hw_queues(q, set, i);
1635 return 1;
1638 static void blk_mq_init_cpu_queues(struct request_queue *q,
1639 unsigned int nr_hw_queues)
1641 unsigned int i;
1643 for_each_possible_cpu(i) {
1644 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1645 struct blk_mq_hw_ctx *hctx;
1647 memset(__ctx, 0, sizeof(*__ctx));
1648 __ctx->cpu = i;
1649 spin_lock_init(&__ctx->lock);
1650 INIT_LIST_HEAD(&__ctx->rq_list);
1651 __ctx->queue = q;
1653 /* If the cpu isn't online, the cpu is mapped to first hctx */
1654 if (!cpu_online(i))
1655 continue;
1657 hctx = q->mq_ops->map_queue(q, i);
1658 cpumask_set_cpu(i, hctx->cpumask);
1659 hctx->nr_ctx++;
1662 * Set local node, IFF we have more than one hw queue. If
1663 * not, we remain on the home node of the device
1665 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1666 hctx->numa_node = cpu_to_node(i);
1670 static void blk_mq_map_swqueue(struct request_queue *q)
1672 unsigned int i;
1673 struct blk_mq_hw_ctx *hctx;
1674 struct blk_mq_ctx *ctx;
1676 queue_for_each_hw_ctx(q, hctx, i) {
1677 cpumask_clear(hctx->cpumask);
1678 hctx->nr_ctx = 0;
1682 * Map software to hardware queues
1684 queue_for_each_ctx(q, ctx, i) {
1685 /* If the cpu isn't online, the cpu is mapped to first hctx */
1686 if (!cpu_online(i))
1687 continue;
1689 hctx = q->mq_ops->map_queue(q, i);
1690 cpumask_set_cpu(i, hctx->cpumask);
1691 ctx->index_hw = hctx->nr_ctx;
1692 hctx->ctxs[hctx->nr_ctx++] = ctx;
1695 queue_for_each_hw_ctx(q, hctx, i) {
1697 * If no software queues are mapped to this hardware queue,
1698 * disable it and free the request entries.
1700 if (!hctx->nr_ctx) {
1701 struct blk_mq_tag_set *set = q->tag_set;
1703 if (set->tags[i]) {
1704 blk_mq_free_rq_map(set, set->tags[i], i);
1705 set->tags[i] = NULL;
1706 hctx->tags = NULL;
1708 continue;
1712 * Initialize batch roundrobin counts
1714 hctx->next_cpu = cpumask_first(hctx->cpumask);
1715 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1719 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1721 struct blk_mq_hw_ctx *hctx;
1722 struct request_queue *q;
1723 bool shared;
1724 int i;
1726 if (set->tag_list.next == set->tag_list.prev)
1727 shared = false;
1728 else
1729 shared = true;
1731 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1732 blk_mq_freeze_queue(q);
1734 queue_for_each_hw_ctx(q, hctx, i) {
1735 if (shared)
1736 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1737 else
1738 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1740 blk_mq_unfreeze_queue(q);
1744 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1746 struct blk_mq_tag_set *set = q->tag_set;
1748 mutex_lock(&set->tag_list_lock);
1749 list_del_init(&q->tag_set_list);
1750 blk_mq_update_tag_set_depth(set);
1751 mutex_unlock(&set->tag_list_lock);
1754 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1755 struct request_queue *q)
1757 q->tag_set = set;
1759 mutex_lock(&set->tag_list_lock);
1760 list_add_tail(&q->tag_set_list, &set->tag_list);
1761 blk_mq_update_tag_set_depth(set);
1762 mutex_unlock(&set->tag_list_lock);
1765 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1767 struct blk_mq_hw_ctx **hctxs;
1768 struct blk_mq_ctx __percpu *ctx;
1769 struct request_queue *q;
1770 unsigned int *map;
1771 int i;
1773 ctx = alloc_percpu(struct blk_mq_ctx);
1774 if (!ctx)
1775 return ERR_PTR(-ENOMEM);
1778 * If a crashdump is active, then we are potentially in a very
1779 * memory constrained environment. Limit us to 1 queue and
1780 * 64 tags to prevent using too much memory.
1782 if (is_kdump_kernel()) {
1783 set->nr_hw_queues = 1;
1784 set->queue_depth = min(64U, set->queue_depth);
1787 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1788 set->numa_node);
1790 if (!hctxs)
1791 goto err_percpu;
1793 map = blk_mq_make_queue_map(set);
1794 if (!map)
1795 goto err_map;
1797 for (i = 0; i < set->nr_hw_queues; i++) {
1798 int node = blk_mq_hw_queue_to_node(map, i);
1800 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1801 GFP_KERNEL, node);
1802 if (!hctxs[i])
1803 goto err_hctxs;
1805 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1806 node))
1807 goto err_hctxs;
1809 atomic_set(&hctxs[i]->nr_active, 0);
1810 hctxs[i]->numa_node = node;
1811 hctxs[i]->queue_num = i;
1814 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1815 if (!q)
1816 goto err_hctxs;
1819 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1820 * See blk_register_queue() for details.
1822 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1823 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1824 goto err_map;
1826 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1827 blk_queue_rq_timeout(q, 30000);
1829 q->nr_queues = nr_cpu_ids;
1830 q->nr_hw_queues = set->nr_hw_queues;
1831 q->mq_map = map;
1833 q->queue_ctx = ctx;
1834 q->queue_hw_ctx = hctxs;
1836 q->mq_ops = set->ops;
1837 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1839 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1840 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1842 q->sg_reserved_size = INT_MAX;
1844 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1845 INIT_LIST_HEAD(&q->requeue_list);
1846 spin_lock_init(&q->requeue_lock);
1848 if (q->nr_hw_queues > 1)
1849 blk_queue_make_request(q, blk_mq_make_request);
1850 else
1851 blk_queue_make_request(q, blk_sq_make_request);
1853 if (set->timeout)
1854 blk_queue_rq_timeout(q, set->timeout);
1857 * Do this after blk_queue_make_request() overrides it...
1859 q->nr_requests = set->queue_depth;
1861 if (set->ops->complete)
1862 blk_queue_softirq_done(q, set->ops->complete);
1864 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1866 if (blk_mq_init_hw_queues(q, set))
1867 goto err_hw;
1869 mutex_lock(&all_q_mutex);
1870 list_add_tail(&q->all_q_node, &all_q_list);
1871 mutex_unlock(&all_q_mutex);
1873 blk_mq_add_queue_tag_set(set, q);
1875 blk_mq_map_swqueue(q);
1877 return q;
1879 err_hw:
1880 blk_cleanup_queue(q);
1881 err_hctxs:
1882 kfree(map);
1883 for (i = 0; i < set->nr_hw_queues; i++) {
1884 if (!hctxs[i])
1885 break;
1886 free_cpumask_var(hctxs[i]->cpumask);
1887 kfree(hctxs[i]);
1889 err_map:
1890 kfree(hctxs);
1891 err_percpu:
1892 free_percpu(ctx);
1893 return ERR_PTR(-ENOMEM);
1895 EXPORT_SYMBOL(blk_mq_init_queue);
1897 void blk_mq_free_queue(struct request_queue *q)
1899 struct blk_mq_tag_set *set = q->tag_set;
1901 blk_mq_del_queue_tag_set(q);
1903 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1904 blk_mq_free_hw_queues(q, set);
1906 percpu_ref_exit(&q->mq_usage_counter);
1908 free_percpu(q->queue_ctx);
1909 kfree(q->queue_hw_ctx);
1910 kfree(q->mq_map);
1912 q->queue_ctx = NULL;
1913 q->queue_hw_ctx = NULL;
1914 q->mq_map = NULL;
1916 mutex_lock(&all_q_mutex);
1917 list_del_init(&q->all_q_node);
1918 mutex_unlock(&all_q_mutex);
1921 /* Basically redo blk_mq_init_queue with queue frozen */
1922 static void blk_mq_queue_reinit(struct request_queue *q)
1924 blk_mq_freeze_queue(q);
1926 blk_mq_sysfs_unregister(q);
1928 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1931 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1932 * we should change hctx numa_node according to new topology (this
1933 * involves free and re-allocate memory, worthy doing?)
1936 blk_mq_map_swqueue(q);
1938 blk_mq_sysfs_register(q);
1940 blk_mq_unfreeze_queue(q);
1943 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1944 unsigned long action, void *hcpu)
1946 struct request_queue *q;
1949 * Before new mappings are established, hotadded cpu might already
1950 * start handling requests. This doesn't break anything as we map
1951 * offline CPUs to first hardware queue. We will re-init the queue
1952 * below to get optimal settings.
1954 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1955 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1956 return NOTIFY_OK;
1958 mutex_lock(&all_q_mutex);
1959 list_for_each_entry(q, &all_q_list, all_q_node)
1960 blk_mq_queue_reinit(q);
1961 mutex_unlock(&all_q_mutex);
1962 return NOTIFY_OK;
1965 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1967 int i;
1969 for (i = 0; i < set->nr_hw_queues; i++) {
1970 set->tags[i] = blk_mq_init_rq_map(set, i);
1971 if (!set->tags[i])
1972 goto out_unwind;
1975 return 0;
1977 out_unwind:
1978 while (--i >= 0)
1979 blk_mq_free_rq_map(set, set->tags[i], i);
1981 return -ENOMEM;
1985 * Allocate the request maps associated with this tag_set. Note that this
1986 * may reduce the depth asked for, if memory is tight. set->queue_depth
1987 * will be updated to reflect the allocated depth.
1989 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1991 unsigned int depth;
1992 int err;
1994 depth = set->queue_depth;
1995 do {
1996 err = __blk_mq_alloc_rq_maps(set);
1997 if (!err)
1998 break;
2000 set->queue_depth >>= 1;
2001 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2002 err = -ENOMEM;
2003 break;
2005 } while (set->queue_depth);
2007 if (!set->queue_depth || err) {
2008 pr_err("blk-mq: failed to allocate request map\n");
2009 return -ENOMEM;
2012 if (depth != set->queue_depth)
2013 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2014 depth, set->queue_depth);
2016 return 0;
2020 * Alloc a tag set to be associated with one or more request queues.
2021 * May fail with EINVAL for various error conditions. May adjust the
2022 * requested depth down, if if it too large. In that case, the set
2023 * value will be stored in set->queue_depth.
2025 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2027 if (!set->nr_hw_queues)
2028 return -EINVAL;
2029 if (!set->queue_depth)
2030 return -EINVAL;
2031 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2032 return -EINVAL;
2034 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2035 return -EINVAL;
2037 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2038 pr_info("blk-mq: reduced tag depth to %u\n",
2039 BLK_MQ_MAX_DEPTH);
2040 set->queue_depth = BLK_MQ_MAX_DEPTH;
2043 set->tags = kmalloc_node(set->nr_hw_queues *
2044 sizeof(struct blk_mq_tags *),
2045 GFP_KERNEL, set->numa_node);
2046 if (!set->tags)
2047 return -ENOMEM;
2049 if (blk_mq_alloc_rq_maps(set))
2050 goto enomem;
2052 mutex_init(&set->tag_list_lock);
2053 INIT_LIST_HEAD(&set->tag_list);
2055 return 0;
2056 enomem:
2057 kfree(set->tags);
2058 set->tags = NULL;
2059 return -ENOMEM;
2061 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2063 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2065 int i;
2067 for (i = 0; i < set->nr_hw_queues; i++) {
2068 if (set->tags[i])
2069 blk_mq_free_rq_map(set, set->tags[i], i);
2072 kfree(set->tags);
2073 set->tags = NULL;
2075 EXPORT_SYMBOL(blk_mq_free_tag_set);
2077 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2079 struct blk_mq_tag_set *set = q->tag_set;
2080 struct blk_mq_hw_ctx *hctx;
2081 int i, ret;
2083 if (!set || nr > set->queue_depth)
2084 return -EINVAL;
2086 ret = 0;
2087 queue_for_each_hw_ctx(q, hctx, i) {
2088 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2089 if (ret)
2090 break;
2093 if (!ret)
2094 q->nr_requests = nr;
2096 return ret;
2099 void blk_mq_disable_hotplug(void)
2101 mutex_lock(&all_q_mutex);
2104 void blk_mq_enable_hotplug(void)
2106 mutex_unlock(&all_q_mutex);
2109 static int __init blk_mq_init(void)
2111 blk_mq_cpu_init();
2113 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2115 return 0;
2117 subsys_initcall(blk_mq_init);