perf intel-pt: Factor out intel_pt_8b_tsc()
[linux/fpc-iii.git] / drivers / virtio / virtio_ring.c
blobc8be1c4f5b5566929d9dc1601bd8b05b6552402e
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Virtio ring implementation.
4 * Copyright 2007 Rusty Russell IBM Corporation
5 */
6 #include <linux/virtio.h>
7 #include <linux/virtio_ring.h>
8 #include <linux/virtio_config.h>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/hrtimer.h>
13 #include <linux/dma-mapping.h>
14 #include <xen/xen.h>
16 #ifdef DEBUG
17 /* For development, we want to crash whenever the ring is screwed. */
18 #define BAD_RING(_vq, fmt, args...) \
19 do { \
20 dev_err(&(_vq)->vq.vdev->dev, \
21 "%s:"fmt, (_vq)->vq.name, ##args); \
22 BUG(); \
23 } while (0)
24 /* Caller is supposed to guarantee no reentry. */
25 #define START_USE(_vq) \
26 do { \
27 if ((_vq)->in_use) \
28 panic("%s:in_use = %i\n", \
29 (_vq)->vq.name, (_vq)->in_use); \
30 (_vq)->in_use = __LINE__; \
31 } while (0)
32 #define END_USE(_vq) \
33 do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0)
34 #define LAST_ADD_TIME_UPDATE(_vq) \
35 do { \
36 ktime_t now = ktime_get(); \
38 /* No kick or get, with .1 second between? Warn. */ \
39 if ((_vq)->last_add_time_valid) \
40 WARN_ON(ktime_to_ms(ktime_sub(now, \
41 (_vq)->last_add_time)) > 100); \
42 (_vq)->last_add_time = now; \
43 (_vq)->last_add_time_valid = true; \
44 } while (0)
45 #define LAST_ADD_TIME_CHECK(_vq) \
46 do { \
47 if ((_vq)->last_add_time_valid) { \
48 WARN_ON(ktime_to_ms(ktime_sub(ktime_get(), \
49 (_vq)->last_add_time)) > 100); \
50 } \
51 } while (0)
52 #define LAST_ADD_TIME_INVALID(_vq) \
53 ((_vq)->last_add_time_valid = false)
54 #else
55 #define BAD_RING(_vq, fmt, args...) \
56 do { \
57 dev_err(&_vq->vq.vdev->dev, \
58 "%s:"fmt, (_vq)->vq.name, ##args); \
59 (_vq)->broken = true; \
60 } while (0)
61 #define START_USE(vq)
62 #define END_USE(vq)
63 #define LAST_ADD_TIME_UPDATE(vq)
64 #define LAST_ADD_TIME_CHECK(vq)
65 #define LAST_ADD_TIME_INVALID(vq)
66 #endif
68 struct vring_desc_state_split {
69 void *data; /* Data for callback. */
70 struct vring_desc *indir_desc; /* Indirect descriptor, if any. */
73 struct vring_desc_state_packed {
74 void *data; /* Data for callback. */
75 struct vring_packed_desc *indir_desc; /* Indirect descriptor, if any. */
76 u16 num; /* Descriptor list length. */
77 u16 next; /* The next desc state in a list. */
78 u16 last; /* The last desc state in a list. */
81 struct vring_desc_extra_packed {
82 dma_addr_t addr; /* Buffer DMA addr. */
83 u32 len; /* Buffer length. */
84 u16 flags; /* Descriptor flags. */
87 struct vring_virtqueue {
88 struct virtqueue vq;
90 /* Is this a packed ring? */
91 bool packed_ring;
93 /* Is DMA API used? */
94 bool use_dma_api;
96 /* Can we use weak barriers? */
97 bool weak_barriers;
99 /* Other side has made a mess, don't try any more. */
100 bool broken;
102 /* Host supports indirect buffers */
103 bool indirect;
105 /* Host publishes avail event idx */
106 bool event;
108 /* Head of free buffer list. */
109 unsigned int free_head;
110 /* Number we've added since last sync. */
111 unsigned int num_added;
113 /* Last used index we've seen. */
114 u16 last_used_idx;
116 union {
117 /* Available for split ring */
118 struct {
119 /* Actual memory layout for this queue. */
120 struct vring vring;
122 /* Last written value to avail->flags */
123 u16 avail_flags_shadow;
126 * Last written value to avail->idx in
127 * guest byte order.
129 u16 avail_idx_shadow;
131 /* Per-descriptor state. */
132 struct vring_desc_state_split *desc_state;
134 /* DMA address and size information */
135 dma_addr_t queue_dma_addr;
136 size_t queue_size_in_bytes;
137 } split;
139 /* Available for packed ring */
140 struct {
141 /* Actual memory layout for this queue. */
142 struct {
143 unsigned int num;
144 struct vring_packed_desc *desc;
145 struct vring_packed_desc_event *driver;
146 struct vring_packed_desc_event *device;
147 } vring;
149 /* Driver ring wrap counter. */
150 bool avail_wrap_counter;
152 /* Device ring wrap counter. */
153 bool used_wrap_counter;
155 /* Avail used flags. */
156 u16 avail_used_flags;
158 /* Index of the next avail descriptor. */
159 u16 next_avail_idx;
162 * Last written value to driver->flags in
163 * guest byte order.
165 u16 event_flags_shadow;
167 /* Per-descriptor state. */
168 struct vring_desc_state_packed *desc_state;
169 struct vring_desc_extra_packed *desc_extra;
171 /* DMA address and size information */
172 dma_addr_t ring_dma_addr;
173 dma_addr_t driver_event_dma_addr;
174 dma_addr_t device_event_dma_addr;
175 size_t ring_size_in_bytes;
176 size_t event_size_in_bytes;
177 } packed;
180 /* How to notify other side. FIXME: commonalize hcalls! */
181 bool (*notify)(struct virtqueue *vq);
183 /* DMA, allocation, and size information */
184 bool we_own_ring;
186 #ifdef DEBUG
187 /* They're supposed to lock for us. */
188 unsigned int in_use;
190 /* Figure out if their kicks are too delayed. */
191 bool last_add_time_valid;
192 ktime_t last_add_time;
193 #endif
198 * Helpers.
201 #define to_vvq(_vq) container_of(_vq, struct vring_virtqueue, vq)
203 static inline bool virtqueue_use_indirect(struct virtqueue *_vq,
204 unsigned int total_sg)
206 struct vring_virtqueue *vq = to_vvq(_vq);
209 * If the host supports indirect descriptor tables, and we have multiple
210 * buffers, then go indirect. FIXME: tune this threshold
212 return (vq->indirect && total_sg > 1 && vq->vq.num_free);
216 * Modern virtio devices have feature bits to specify whether they need a
217 * quirk and bypass the IOMMU. If not there, just use the DMA API.
219 * If there, the interaction between virtio and DMA API is messy.
221 * On most systems with virtio, physical addresses match bus addresses,
222 * and it doesn't particularly matter whether we use the DMA API.
224 * On some systems, including Xen and any system with a physical device
225 * that speaks virtio behind a physical IOMMU, we must use the DMA API
226 * for virtio DMA to work at all.
228 * On other systems, including SPARC and PPC64, virtio-pci devices are
229 * enumerated as though they are behind an IOMMU, but the virtio host
230 * ignores the IOMMU, so we must either pretend that the IOMMU isn't
231 * there or somehow map everything as the identity.
233 * For the time being, we preserve historic behavior and bypass the DMA
234 * API.
236 * TODO: install a per-device DMA ops structure that does the right thing
237 * taking into account all the above quirks, and use the DMA API
238 * unconditionally on data path.
241 static bool vring_use_dma_api(struct virtio_device *vdev)
243 if (!virtio_has_iommu_quirk(vdev))
244 return true;
246 /* Otherwise, we are left to guess. */
248 * In theory, it's possible to have a buggy QEMU-supposed
249 * emulated Q35 IOMMU and Xen enabled at the same time. On
250 * such a configuration, virtio has never worked and will
251 * not work without an even larger kludge. Instead, enable
252 * the DMA API if we're a Xen guest, which at least allows
253 * all of the sensible Xen configurations to work correctly.
255 if (xen_domain())
256 return true;
258 return false;
261 size_t virtio_max_dma_size(struct virtio_device *vdev)
263 size_t max_segment_size = SIZE_MAX;
265 if (vring_use_dma_api(vdev))
266 max_segment_size = dma_max_mapping_size(&vdev->dev);
268 return max_segment_size;
270 EXPORT_SYMBOL_GPL(virtio_max_dma_size);
272 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size,
273 dma_addr_t *dma_handle, gfp_t flag)
275 if (vring_use_dma_api(vdev)) {
276 return dma_alloc_coherent(vdev->dev.parent, size,
277 dma_handle, flag);
278 } else {
279 void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag);
281 if (queue) {
282 phys_addr_t phys_addr = virt_to_phys(queue);
283 *dma_handle = (dma_addr_t)phys_addr;
286 * Sanity check: make sure we dind't truncate
287 * the address. The only arches I can find that
288 * have 64-bit phys_addr_t but 32-bit dma_addr_t
289 * are certain non-highmem MIPS and x86
290 * configurations, but these configurations
291 * should never allocate physical pages above 32
292 * bits, so this is fine. Just in case, throw a
293 * warning and abort if we end up with an
294 * unrepresentable address.
296 if (WARN_ON_ONCE(*dma_handle != phys_addr)) {
297 free_pages_exact(queue, PAGE_ALIGN(size));
298 return NULL;
301 return queue;
305 static void vring_free_queue(struct virtio_device *vdev, size_t size,
306 void *queue, dma_addr_t dma_handle)
308 if (vring_use_dma_api(vdev))
309 dma_free_coherent(vdev->dev.parent, size, queue, dma_handle);
310 else
311 free_pages_exact(queue, PAGE_ALIGN(size));
315 * The DMA ops on various arches are rather gnarly right now, and
316 * making all of the arch DMA ops work on the vring device itself
317 * is a mess. For now, we use the parent device for DMA ops.
319 static inline struct device *vring_dma_dev(const struct vring_virtqueue *vq)
321 return vq->vq.vdev->dev.parent;
324 /* Map one sg entry. */
325 static dma_addr_t vring_map_one_sg(const struct vring_virtqueue *vq,
326 struct scatterlist *sg,
327 enum dma_data_direction direction)
329 if (!vq->use_dma_api)
330 return (dma_addr_t)sg_phys(sg);
333 * We can't use dma_map_sg, because we don't use scatterlists in
334 * the way it expects (we don't guarantee that the scatterlist
335 * will exist for the lifetime of the mapping).
337 return dma_map_page(vring_dma_dev(vq),
338 sg_page(sg), sg->offset, sg->length,
339 direction);
342 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq,
343 void *cpu_addr, size_t size,
344 enum dma_data_direction direction)
346 if (!vq->use_dma_api)
347 return (dma_addr_t)virt_to_phys(cpu_addr);
349 return dma_map_single(vring_dma_dev(vq),
350 cpu_addr, size, direction);
353 static int vring_mapping_error(const struct vring_virtqueue *vq,
354 dma_addr_t addr)
356 if (!vq->use_dma_api)
357 return 0;
359 return dma_mapping_error(vring_dma_dev(vq), addr);
364 * Split ring specific functions - *_split().
367 static void vring_unmap_one_split(const struct vring_virtqueue *vq,
368 struct vring_desc *desc)
370 u16 flags;
372 if (!vq->use_dma_api)
373 return;
375 flags = virtio16_to_cpu(vq->vq.vdev, desc->flags);
377 if (flags & VRING_DESC_F_INDIRECT) {
378 dma_unmap_single(vring_dma_dev(vq),
379 virtio64_to_cpu(vq->vq.vdev, desc->addr),
380 virtio32_to_cpu(vq->vq.vdev, desc->len),
381 (flags & VRING_DESC_F_WRITE) ?
382 DMA_FROM_DEVICE : DMA_TO_DEVICE);
383 } else {
384 dma_unmap_page(vring_dma_dev(vq),
385 virtio64_to_cpu(vq->vq.vdev, desc->addr),
386 virtio32_to_cpu(vq->vq.vdev, desc->len),
387 (flags & VRING_DESC_F_WRITE) ?
388 DMA_FROM_DEVICE : DMA_TO_DEVICE);
392 static struct vring_desc *alloc_indirect_split(struct virtqueue *_vq,
393 unsigned int total_sg,
394 gfp_t gfp)
396 struct vring_desc *desc;
397 unsigned int i;
400 * We require lowmem mappings for the descriptors because
401 * otherwise virt_to_phys will give us bogus addresses in the
402 * virtqueue.
404 gfp &= ~__GFP_HIGHMEM;
406 desc = kmalloc_array(total_sg, sizeof(struct vring_desc), gfp);
407 if (!desc)
408 return NULL;
410 for (i = 0; i < total_sg; i++)
411 desc[i].next = cpu_to_virtio16(_vq->vdev, i + 1);
412 return desc;
415 static inline int virtqueue_add_split(struct virtqueue *_vq,
416 struct scatterlist *sgs[],
417 unsigned int total_sg,
418 unsigned int out_sgs,
419 unsigned int in_sgs,
420 void *data,
421 void *ctx,
422 gfp_t gfp)
424 struct vring_virtqueue *vq = to_vvq(_vq);
425 struct scatterlist *sg;
426 struct vring_desc *desc;
427 unsigned int i, n, avail, descs_used, uninitialized_var(prev), err_idx;
428 int head;
429 bool indirect;
431 START_USE(vq);
433 BUG_ON(data == NULL);
434 BUG_ON(ctx && vq->indirect);
436 if (unlikely(vq->broken)) {
437 END_USE(vq);
438 return -EIO;
441 LAST_ADD_TIME_UPDATE(vq);
443 BUG_ON(total_sg == 0);
445 head = vq->free_head;
447 if (virtqueue_use_indirect(_vq, total_sg))
448 desc = alloc_indirect_split(_vq, total_sg, gfp);
449 else {
450 desc = NULL;
451 WARN_ON_ONCE(total_sg > vq->split.vring.num && !vq->indirect);
454 if (desc) {
455 /* Use a single buffer which doesn't continue */
456 indirect = true;
457 /* Set up rest to use this indirect table. */
458 i = 0;
459 descs_used = 1;
460 } else {
461 indirect = false;
462 desc = vq->split.vring.desc;
463 i = head;
464 descs_used = total_sg;
467 if (vq->vq.num_free < descs_used) {
468 pr_debug("Can't add buf len %i - avail = %i\n",
469 descs_used, vq->vq.num_free);
470 /* FIXME: for historical reasons, we force a notify here if
471 * there are outgoing parts to the buffer. Presumably the
472 * host should service the ring ASAP. */
473 if (out_sgs)
474 vq->notify(&vq->vq);
475 if (indirect)
476 kfree(desc);
477 END_USE(vq);
478 return -ENOSPC;
481 for (n = 0; n < out_sgs; n++) {
482 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
483 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_TO_DEVICE);
484 if (vring_mapping_error(vq, addr))
485 goto unmap_release;
487 desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT);
488 desc[i].addr = cpu_to_virtio64(_vq->vdev, addr);
489 desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length);
490 prev = i;
491 i = virtio16_to_cpu(_vq->vdev, desc[i].next);
494 for (; n < (out_sgs + in_sgs); n++) {
495 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
496 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_FROM_DEVICE);
497 if (vring_mapping_error(vq, addr))
498 goto unmap_release;
500 desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT | VRING_DESC_F_WRITE);
501 desc[i].addr = cpu_to_virtio64(_vq->vdev, addr);
502 desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length);
503 prev = i;
504 i = virtio16_to_cpu(_vq->vdev, desc[i].next);
507 /* Last one doesn't continue. */
508 desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT);
510 if (indirect) {
511 /* Now that the indirect table is filled in, map it. */
512 dma_addr_t addr = vring_map_single(
513 vq, desc, total_sg * sizeof(struct vring_desc),
514 DMA_TO_DEVICE);
515 if (vring_mapping_error(vq, addr))
516 goto unmap_release;
518 vq->split.vring.desc[head].flags = cpu_to_virtio16(_vq->vdev,
519 VRING_DESC_F_INDIRECT);
520 vq->split.vring.desc[head].addr = cpu_to_virtio64(_vq->vdev,
521 addr);
523 vq->split.vring.desc[head].len = cpu_to_virtio32(_vq->vdev,
524 total_sg * sizeof(struct vring_desc));
527 /* We're using some buffers from the free list. */
528 vq->vq.num_free -= descs_used;
530 /* Update free pointer */
531 if (indirect)
532 vq->free_head = virtio16_to_cpu(_vq->vdev,
533 vq->split.vring.desc[head].next);
534 else
535 vq->free_head = i;
537 /* Store token and indirect buffer state. */
538 vq->split.desc_state[head].data = data;
539 if (indirect)
540 vq->split.desc_state[head].indir_desc = desc;
541 else
542 vq->split.desc_state[head].indir_desc = ctx;
544 /* Put entry in available array (but don't update avail->idx until they
545 * do sync). */
546 avail = vq->split.avail_idx_shadow & (vq->split.vring.num - 1);
547 vq->split.vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head);
549 /* Descriptors and available array need to be set before we expose the
550 * new available array entries. */
551 virtio_wmb(vq->weak_barriers);
552 vq->split.avail_idx_shadow++;
553 vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
554 vq->split.avail_idx_shadow);
555 vq->num_added++;
557 pr_debug("Added buffer head %i to %p\n", head, vq);
558 END_USE(vq);
560 /* This is very unlikely, but theoretically possible. Kick
561 * just in case. */
562 if (unlikely(vq->num_added == (1 << 16) - 1))
563 virtqueue_kick(_vq);
565 return 0;
567 unmap_release:
568 err_idx = i;
569 i = head;
571 for (n = 0; n < total_sg; n++) {
572 if (i == err_idx)
573 break;
574 vring_unmap_one_split(vq, &desc[i]);
575 i = virtio16_to_cpu(_vq->vdev, vq->split.vring.desc[i].next);
578 if (indirect)
579 kfree(desc);
581 END_USE(vq);
582 return -EIO;
585 static bool virtqueue_kick_prepare_split(struct virtqueue *_vq)
587 struct vring_virtqueue *vq = to_vvq(_vq);
588 u16 new, old;
589 bool needs_kick;
591 START_USE(vq);
592 /* We need to expose available array entries before checking avail
593 * event. */
594 virtio_mb(vq->weak_barriers);
596 old = vq->split.avail_idx_shadow - vq->num_added;
597 new = vq->split.avail_idx_shadow;
598 vq->num_added = 0;
600 LAST_ADD_TIME_CHECK(vq);
601 LAST_ADD_TIME_INVALID(vq);
603 if (vq->event) {
604 needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev,
605 vring_avail_event(&vq->split.vring)),
606 new, old);
607 } else {
608 needs_kick = !(vq->split.vring.used->flags &
609 cpu_to_virtio16(_vq->vdev,
610 VRING_USED_F_NO_NOTIFY));
612 END_USE(vq);
613 return needs_kick;
616 static void detach_buf_split(struct vring_virtqueue *vq, unsigned int head,
617 void **ctx)
619 unsigned int i, j;
620 __virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT);
622 /* Clear data ptr. */
623 vq->split.desc_state[head].data = NULL;
625 /* Put back on free list: unmap first-level descriptors and find end */
626 i = head;
628 while (vq->split.vring.desc[i].flags & nextflag) {
629 vring_unmap_one_split(vq, &vq->split.vring.desc[i]);
630 i = virtio16_to_cpu(vq->vq.vdev, vq->split.vring.desc[i].next);
631 vq->vq.num_free++;
634 vring_unmap_one_split(vq, &vq->split.vring.desc[i]);
635 vq->split.vring.desc[i].next = cpu_to_virtio16(vq->vq.vdev,
636 vq->free_head);
637 vq->free_head = head;
639 /* Plus final descriptor */
640 vq->vq.num_free++;
642 if (vq->indirect) {
643 struct vring_desc *indir_desc =
644 vq->split.desc_state[head].indir_desc;
645 u32 len;
647 /* Free the indirect table, if any, now that it's unmapped. */
648 if (!indir_desc)
649 return;
651 len = virtio32_to_cpu(vq->vq.vdev,
652 vq->split.vring.desc[head].len);
654 BUG_ON(!(vq->split.vring.desc[head].flags &
655 cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_INDIRECT)));
656 BUG_ON(len == 0 || len % sizeof(struct vring_desc));
658 for (j = 0; j < len / sizeof(struct vring_desc); j++)
659 vring_unmap_one_split(vq, &indir_desc[j]);
661 kfree(indir_desc);
662 vq->split.desc_state[head].indir_desc = NULL;
663 } else if (ctx) {
664 *ctx = vq->split.desc_state[head].indir_desc;
668 static inline bool more_used_split(const struct vring_virtqueue *vq)
670 return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev,
671 vq->split.vring.used->idx);
674 static void *virtqueue_get_buf_ctx_split(struct virtqueue *_vq,
675 unsigned int *len,
676 void **ctx)
678 struct vring_virtqueue *vq = to_vvq(_vq);
679 void *ret;
680 unsigned int i;
681 u16 last_used;
683 START_USE(vq);
685 if (unlikely(vq->broken)) {
686 END_USE(vq);
687 return NULL;
690 if (!more_used_split(vq)) {
691 pr_debug("No more buffers in queue\n");
692 END_USE(vq);
693 return NULL;
696 /* Only get used array entries after they have been exposed by host. */
697 virtio_rmb(vq->weak_barriers);
699 last_used = (vq->last_used_idx & (vq->split.vring.num - 1));
700 i = virtio32_to_cpu(_vq->vdev,
701 vq->split.vring.used->ring[last_used].id);
702 *len = virtio32_to_cpu(_vq->vdev,
703 vq->split.vring.used->ring[last_used].len);
705 if (unlikely(i >= vq->split.vring.num)) {
706 BAD_RING(vq, "id %u out of range\n", i);
707 return NULL;
709 if (unlikely(!vq->split.desc_state[i].data)) {
710 BAD_RING(vq, "id %u is not a head!\n", i);
711 return NULL;
714 /* detach_buf_split clears data, so grab it now. */
715 ret = vq->split.desc_state[i].data;
716 detach_buf_split(vq, i, ctx);
717 vq->last_used_idx++;
718 /* If we expect an interrupt for the next entry, tell host
719 * by writing event index and flush out the write before
720 * the read in the next get_buf call. */
721 if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT))
722 virtio_store_mb(vq->weak_barriers,
723 &vring_used_event(&vq->split.vring),
724 cpu_to_virtio16(_vq->vdev, vq->last_used_idx));
726 LAST_ADD_TIME_INVALID(vq);
728 END_USE(vq);
729 return ret;
732 static void virtqueue_disable_cb_split(struct virtqueue *_vq)
734 struct vring_virtqueue *vq = to_vvq(_vq);
736 if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) {
737 vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
738 if (!vq->event)
739 vq->split.vring.avail->flags =
740 cpu_to_virtio16(_vq->vdev,
741 vq->split.avail_flags_shadow);
745 static unsigned virtqueue_enable_cb_prepare_split(struct virtqueue *_vq)
747 struct vring_virtqueue *vq = to_vvq(_vq);
748 u16 last_used_idx;
750 START_USE(vq);
752 /* We optimistically turn back on interrupts, then check if there was
753 * more to do. */
754 /* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to
755 * either clear the flags bit or point the event index at the next
756 * entry. Always do both to keep code simple. */
757 if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
758 vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
759 if (!vq->event)
760 vq->split.vring.avail->flags =
761 cpu_to_virtio16(_vq->vdev,
762 vq->split.avail_flags_shadow);
764 vring_used_event(&vq->split.vring) = cpu_to_virtio16(_vq->vdev,
765 last_used_idx = vq->last_used_idx);
766 END_USE(vq);
767 return last_used_idx;
770 static bool virtqueue_poll_split(struct virtqueue *_vq, unsigned last_used_idx)
772 struct vring_virtqueue *vq = to_vvq(_vq);
774 return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev,
775 vq->split.vring.used->idx);
778 static bool virtqueue_enable_cb_delayed_split(struct virtqueue *_vq)
780 struct vring_virtqueue *vq = to_vvq(_vq);
781 u16 bufs;
783 START_USE(vq);
785 /* We optimistically turn back on interrupts, then check if there was
786 * more to do. */
787 /* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to
788 * either clear the flags bit or point the event index at the next
789 * entry. Always update the event index to keep code simple. */
790 if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
791 vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
792 if (!vq->event)
793 vq->split.vring.avail->flags =
794 cpu_to_virtio16(_vq->vdev,
795 vq->split.avail_flags_shadow);
797 /* TODO: tune this threshold */
798 bufs = (u16)(vq->split.avail_idx_shadow - vq->last_used_idx) * 3 / 4;
800 virtio_store_mb(vq->weak_barriers,
801 &vring_used_event(&vq->split.vring),
802 cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs));
804 if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->split.vring.used->idx)
805 - vq->last_used_idx) > bufs)) {
806 END_USE(vq);
807 return false;
810 END_USE(vq);
811 return true;
814 static void *virtqueue_detach_unused_buf_split(struct virtqueue *_vq)
816 struct vring_virtqueue *vq = to_vvq(_vq);
817 unsigned int i;
818 void *buf;
820 START_USE(vq);
822 for (i = 0; i < vq->split.vring.num; i++) {
823 if (!vq->split.desc_state[i].data)
824 continue;
825 /* detach_buf_split clears data, so grab it now. */
826 buf = vq->split.desc_state[i].data;
827 detach_buf_split(vq, i, NULL);
828 vq->split.avail_idx_shadow--;
829 vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
830 vq->split.avail_idx_shadow);
831 END_USE(vq);
832 return buf;
834 /* That should have freed everything. */
835 BUG_ON(vq->vq.num_free != vq->split.vring.num);
837 END_USE(vq);
838 return NULL;
841 static struct virtqueue *vring_create_virtqueue_split(
842 unsigned int index,
843 unsigned int num,
844 unsigned int vring_align,
845 struct virtio_device *vdev,
846 bool weak_barriers,
847 bool may_reduce_num,
848 bool context,
849 bool (*notify)(struct virtqueue *),
850 void (*callback)(struct virtqueue *),
851 const char *name)
853 struct virtqueue *vq;
854 void *queue = NULL;
855 dma_addr_t dma_addr;
856 size_t queue_size_in_bytes;
857 struct vring vring;
859 /* We assume num is a power of 2. */
860 if (num & (num - 1)) {
861 dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num);
862 return NULL;
865 /* TODO: allocate each queue chunk individually */
866 for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) {
867 queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
868 &dma_addr,
869 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
870 if (queue)
871 break;
872 if (!may_reduce_num)
873 return NULL;
876 if (!num)
877 return NULL;
879 if (!queue) {
880 /* Try to get a single page. You are my only hope! */
881 queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
882 &dma_addr, GFP_KERNEL|__GFP_ZERO);
884 if (!queue)
885 return NULL;
887 queue_size_in_bytes = vring_size(num, vring_align);
888 vring_init(&vring, num, queue, vring_align);
890 vq = __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
891 notify, callback, name);
892 if (!vq) {
893 vring_free_queue(vdev, queue_size_in_bytes, queue,
894 dma_addr);
895 return NULL;
898 to_vvq(vq)->split.queue_dma_addr = dma_addr;
899 to_vvq(vq)->split.queue_size_in_bytes = queue_size_in_bytes;
900 to_vvq(vq)->we_own_ring = true;
902 return vq;
907 * Packed ring specific functions - *_packed().
910 static void vring_unmap_state_packed(const struct vring_virtqueue *vq,
911 struct vring_desc_extra_packed *state)
913 u16 flags;
915 if (!vq->use_dma_api)
916 return;
918 flags = state->flags;
920 if (flags & VRING_DESC_F_INDIRECT) {
921 dma_unmap_single(vring_dma_dev(vq),
922 state->addr, state->len,
923 (flags & VRING_DESC_F_WRITE) ?
924 DMA_FROM_DEVICE : DMA_TO_DEVICE);
925 } else {
926 dma_unmap_page(vring_dma_dev(vq),
927 state->addr, state->len,
928 (flags & VRING_DESC_F_WRITE) ?
929 DMA_FROM_DEVICE : DMA_TO_DEVICE);
933 static void vring_unmap_desc_packed(const struct vring_virtqueue *vq,
934 struct vring_packed_desc *desc)
936 u16 flags;
938 if (!vq->use_dma_api)
939 return;
941 flags = le16_to_cpu(desc->flags);
943 if (flags & VRING_DESC_F_INDIRECT) {
944 dma_unmap_single(vring_dma_dev(vq),
945 le64_to_cpu(desc->addr),
946 le32_to_cpu(desc->len),
947 (flags & VRING_DESC_F_WRITE) ?
948 DMA_FROM_DEVICE : DMA_TO_DEVICE);
949 } else {
950 dma_unmap_page(vring_dma_dev(vq),
951 le64_to_cpu(desc->addr),
952 le32_to_cpu(desc->len),
953 (flags & VRING_DESC_F_WRITE) ?
954 DMA_FROM_DEVICE : DMA_TO_DEVICE);
958 static struct vring_packed_desc *alloc_indirect_packed(unsigned int total_sg,
959 gfp_t gfp)
961 struct vring_packed_desc *desc;
964 * We require lowmem mappings for the descriptors because
965 * otherwise virt_to_phys will give us bogus addresses in the
966 * virtqueue.
968 gfp &= ~__GFP_HIGHMEM;
970 desc = kmalloc_array(total_sg, sizeof(struct vring_packed_desc), gfp);
972 return desc;
975 static int virtqueue_add_indirect_packed(struct vring_virtqueue *vq,
976 struct scatterlist *sgs[],
977 unsigned int total_sg,
978 unsigned int out_sgs,
979 unsigned int in_sgs,
980 void *data,
981 gfp_t gfp)
983 struct vring_packed_desc *desc;
984 struct scatterlist *sg;
985 unsigned int i, n, err_idx;
986 u16 head, id;
987 dma_addr_t addr;
989 head = vq->packed.next_avail_idx;
990 desc = alloc_indirect_packed(total_sg, gfp);
992 if (unlikely(vq->vq.num_free < 1)) {
993 pr_debug("Can't add buf len 1 - avail = 0\n");
994 kfree(desc);
995 END_USE(vq);
996 return -ENOSPC;
999 i = 0;
1000 id = vq->free_head;
1001 BUG_ON(id == vq->packed.vring.num);
1003 for (n = 0; n < out_sgs + in_sgs; n++) {
1004 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1005 addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1006 DMA_TO_DEVICE : DMA_FROM_DEVICE);
1007 if (vring_mapping_error(vq, addr))
1008 goto unmap_release;
1010 desc[i].flags = cpu_to_le16(n < out_sgs ?
1011 0 : VRING_DESC_F_WRITE);
1012 desc[i].addr = cpu_to_le64(addr);
1013 desc[i].len = cpu_to_le32(sg->length);
1014 i++;
1018 /* Now that the indirect table is filled in, map it. */
1019 addr = vring_map_single(vq, desc,
1020 total_sg * sizeof(struct vring_packed_desc),
1021 DMA_TO_DEVICE);
1022 if (vring_mapping_error(vq, addr))
1023 goto unmap_release;
1025 vq->packed.vring.desc[head].addr = cpu_to_le64(addr);
1026 vq->packed.vring.desc[head].len = cpu_to_le32(total_sg *
1027 sizeof(struct vring_packed_desc));
1028 vq->packed.vring.desc[head].id = cpu_to_le16(id);
1030 if (vq->use_dma_api) {
1031 vq->packed.desc_extra[id].addr = addr;
1032 vq->packed.desc_extra[id].len = total_sg *
1033 sizeof(struct vring_packed_desc);
1034 vq->packed.desc_extra[id].flags = VRING_DESC_F_INDIRECT |
1035 vq->packed.avail_used_flags;
1039 * A driver MUST NOT make the first descriptor in the list
1040 * available before all subsequent descriptors comprising
1041 * the list are made available.
1043 virtio_wmb(vq->weak_barriers);
1044 vq->packed.vring.desc[head].flags = cpu_to_le16(VRING_DESC_F_INDIRECT |
1045 vq->packed.avail_used_flags);
1047 /* We're using some buffers from the free list. */
1048 vq->vq.num_free -= 1;
1050 /* Update free pointer */
1051 n = head + 1;
1052 if (n >= vq->packed.vring.num) {
1053 n = 0;
1054 vq->packed.avail_wrap_counter ^= 1;
1055 vq->packed.avail_used_flags ^=
1056 1 << VRING_PACKED_DESC_F_AVAIL |
1057 1 << VRING_PACKED_DESC_F_USED;
1059 vq->packed.next_avail_idx = n;
1060 vq->free_head = vq->packed.desc_state[id].next;
1062 /* Store token and indirect buffer state. */
1063 vq->packed.desc_state[id].num = 1;
1064 vq->packed.desc_state[id].data = data;
1065 vq->packed.desc_state[id].indir_desc = desc;
1066 vq->packed.desc_state[id].last = id;
1068 vq->num_added += 1;
1070 pr_debug("Added buffer head %i to %p\n", head, vq);
1071 END_USE(vq);
1073 return 0;
1075 unmap_release:
1076 err_idx = i;
1078 for (i = 0; i < err_idx; i++)
1079 vring_unmap_desc_packed(vq, &desc[i]);
1081 kfree(desc);
1083 END_USE(vq);
1084 return -EIO;
1087 static inline int virtqueue_add_packed(struct virtqueue *_vq,
1088 struct scatterlist *sgs[],
1089 unsigned int total_sg,
1090 unsigned int out_sgs,
1091 unsigned int in_sgs,
1092 void *data,
1093 void *ctx,
1094 gfp_t gfp)
1096 struct vring_virtqueue *vq = to_vvq(_vq);
1097 struct vring_packed_desc *desc;
1098 struct scatterlist *sg;
1099 unsigned int i, n, c, descs_used, err_idx;
1100 __le16 uninitialized_var(head_flags), flags;
1101 u16 head, id, uninitialized_var(prev), curr, avail_used_flags;
1103 START_USE(vq);
1105 BUG_ON(data == NULL);
1106 BUG_ON(ctx && vq->indirect);
1108 if (unlikely(vq->broken)) {
1109 END_USE(vq);
1110 return -EIO;
1113 LAST_ADD_TIME_UPDATE(vq);
1115 BUG_ON(total_sg == 0);
1117 if (virtqueue_use_indirect(_vq, total_sg))
1118 return virtqueue_add_indirect_packed(vq, sgs, total_sg,
1119 out_sgs, in_sgs, data, gfp);
1121 head = vq->packed.next_avail_idx;
1122 avail_used_flags = vq->packed.avail_used_flags;
1124 WARN_ON_ONCE(total_sg > vq->packed.vring.num && !vq->indirect);
1126 desc = vq->packed.vring.desc;
1127 i = head;
1128 descs_used = total_sg;
1130 if (unlikely(vq->vq.num_free < descs_used)) {
1131 pr_debug("Can't add buf len %i - avail = %i\n",
1132 descs_used, vq->vq.num_free);
1133 END_USE(vq);
1134 return -ENOSPC;
1137 id = vq->free_head;
1138 BUG_ON(id == vq->packed.vring.num);
1140 curr = id;
1141 c = 0;
1142 for (n = 0; n < out_sgs + in_sgs; n++) {
1143 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1144 dma_addr_t addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1145 DMA_TO_DEVICE : DMA_FROM_DEVICE);
1146 if (vring_mapping_error(vq, addr))
1147 goto unmap_release;
1149 flags = cpu_to_le16(vq->packed.avail_used_flags |
1150 (++c == total_sg ? 0 : VRING_DESC_F_NEXT) |
1151 (n < out_sgs ? 0 : VRING_DESC_F_WRITE));
1152 if (i == head)
1153 head_flags = flags;
1154 else
1155 desc[i].flags = flags;
1157 desc[i].addr = cpu_to_le64(addr);
1158 desc[i].len = cpu_to_le32(sg->length);
1159 desc[i].id = cpu_to_le16(id);
1161 if (unlikely(vq->use_dma_api)) {
1162 vq->packed.desc_extra[curr].addr = addr;
1163 vq->packed.desc_extra[curr].len = sg->length;
1164 vq->packed.desc_extra[curr].flags =
1165 le16_to_cpu(flags);
1167 prev = curr;
1168 curr = vq->packed.desc_state[curr].next;
1170 if ((unlikely(++i >= vq->packed.vring.num))) {
1171 i = 0;
1172 vq->packed.avail_used_flags ^=
1173 1 << VRING_PACKED_DESC_F_AVAIL |
1174 1 << VRING_PACKED_DESC_F_USED;
1179 if (i < head)
1180 vq->packed.avail_wrap_counter ^= 1;
1182 /* We're using some buffers from the free list. */
1183 vq->vq.num_free -= descs_used;
1185 /* Update free pointer */
1186 vq->packed.next_avail_idx = i;
1187 vq->free_head = curr;
1189 /* Store token. */
1190 vq->packed.desc_state[id].num = descs_used;
1191 vq->packed.desc_state[id].data = data;
1192 vq->packed.desc_state[id].indir_desc = ctx;
1193 vq->packed.desc_state[id].last = prev;
1196 * A driver MUST NOT make the first descriptor in the list
1197 * available before all subsequent descriptors comprising
1198 * the list are made available.
1200 virtio_wmb(vq->weak_barriers);
1201 vq->packed.vring.desc[head].flags = head_flags;
1202 vq->num_added += descs_used;
1204 pr_debug("Added buffer head %i to %p\n", head, vq);
1205 END_USE(vq);
1207 return 0;
1209 unmap_release:
1210 err_idx = i;
1211 i = head;
1213 vq->packed.avail_used_flags = avail_used_flags;
1215 for (n = 0; n < total_sg; n++) {
1216 if (i == err_idx)
1217 break;
1218 vring_unmap_desc_packed(vq, &desc[i]);
1219 i++;
1220 if (i >= vq->packed.vring.num)
1221 i = 0;
1224 END_USE(vq);
1225 return -EIO;
1228 static bool virtqueue_kick_prepare_packed(struct virtqueue *_vq)
1230 struct vring_virtqueue *vq = to_vvq(_vq);
1231 u16 new, old, off_wrap, flags, wrap_counter, event_idx;
1232 bool needs_kick;
1233 union {
1234 struct {
1235 __le16 off_wrap;
1236 __le16 flags;
1238 u32 u32;
1239 } snapshot;
1241 START_USE(vq);
1244 * We need to expose the new flags value before checking notification
1245 * suppressions.
1247 virtio_mb(vq->weak_barriers);
1249 old = vq->packed.next_avail_idx - vq->num_added;
1250 new = vq->packed.next_avail_idx;
1251 vq->num_added = 0;
1253 snapshot.u32 = *(u32 *)vq->packed.vring.device;
1254 flags = le16_to_cpu(snapshot.flags);
1256 LAST_ADD_TIME_CHECK(vq);
1257 LAST_ADD_TIME_INVALID(vq);
1259 if (flags != VRING_PACKED_EVENT_FLAG_DESC) {
1260 needs_kick = (flags != VRING_PACKED_EVENT_FLAG_DISABLE);
1261 goto out;
1264 off_wrap = le16_to_cpu(snapshot.off_wrap);
1266 wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1267 event_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1268 if (wrap_counter != vq->packed.avail_wrap_counter)
1269 event_idx -= vq->packed.vring.num;
1271 needs_kick = vring_need_event(event_idx, new, old);
1272 out:
1273 END_USE(vq);
1274 return needs_kick;
1277 static void detach_buf_packed(struct vring_virtqueue *vq,
1278 unsigned int id, void **ctx)
1280 struct vring_desc_state_packed *state = NULL;
1281 struct vring_packed_desc *desc;
1282 unsigned int i, curr;
1284 state = &vq->packed.desc_state[id];
1286 /* Clear data ptr. */
1287 state->data = NULL;
1289 vq->packed.desc_state[state->last].next = vq->free_head;
1290 vq->free_head = id;
1291 vq->vq.num_free += state->num;
1293 if (unlikely(vq->use_dma_api)) {
1294 curr = id;
1295 for (i = 0; i < state->num; i++) {
1296 vring_unmap_state_packed(vq,
1297 &vq->packed.desc_extra[curr]);
1298 curr = vq->packed.desc_state[curr].next;
1302 if (vq->indirect) {
1303 u32 len;
1305 /* Free the indirect table, if any, now that it's unmapped. */
1306 desc = state->indir_desc;
1307 if (!desc)
1308 return;
1310 if (vq->use_dma_api) {
1311 len = vq->packed.desc_extra[id].len;
1312 for (i = 0; i < len / sizeof(struct vring_packed_desc);
1313 i++)
1314 vring_unmap_desc_packed(vq, &desc[i]);
1316 kfree(desc);
1317 state->indir_desc = NULL;
1318 } else if (ctx) {
1319 *ctx = state->indir_desc;
1323 static inline bool is_used_desc_packed(const struct vring_virtqueue *vq,
1324 u16 idx, bool used_wrap_counter)
1326 bool avail, used;
1327 u16 flags;
1329 flags = le16_to_cpu(vq->packed.vring.desc[idx].flags);
1330 avail = !!(flags & (1 << VRING_PACKED_DESC_F_AVAIL));
1331 used = !!(flags & (1 << VRING_PACKED_DESC_F_USED));
1333 return avail == used && used == used_wrap_counter;
1336 static inline bool more_used_packed(const struct vring_virtqueue *vq)
1338 return is_used_desc_packed(vq, vq->last_used_idx,
1339 vq->packed.used_wrap_counter);
1342 static void *virtqueue_get_buf_ctx_packed(struct virtqueue *_vq,
1343 unsigned int *len,
1344 void **ctx)
1346 struct vring_virtqueue *vq = to_vvq(_vq);
1347 u16 last_used, id;
1348 void *ret;
1350 START_USE(vq);
1352 if (unlikely(vq->broken)) {
1353 END_USE(vq);
1354 return NULL;
1357 if (!more_used_packed(vq)) {
1358 pr_debug("No more buffers in queue\n");
1359 END_USE(vq);
1360 return NULL;
1363 /* Only get used elements after they have been exposed by host. */
1364 virtio_rmb(vq->weak_barriers);
1366 last_used = vq->last_used_idx;
1367 id = le16_to_cpu(vq->packed.vring.desc[last_used].id);
1368 *len = le32_to_cpu(vq->packed.vring.desc[last_used].len);
1370 if (unlikely(id >= vq->packed.vring.num)) {
1371 BAD_RING(vq, "id %u out of range\n", id);
1372 return NULL;
1374 if (unlikely(!vq->packed.desc_state[id].data)) {
1375 BAD_RING(vq, "id %u is not a head!\n", id);
1376 return NULL;
1379 /* detach_buf_packed clears data, so grab it now. */
1380 ret = vq->packed.desc_state[id].data;
1381 detach_buf_packed(vq, id, ctx);
1383 vq->last_used_idx += vq->packed.desc_state[id].num;
1384 if (unlikely(vq->last_used_idx >= vq->packed.vring.num)) {
1385 vq->last_used_idx -= vq->packed.vring.num;
1386 vq->packed.used_wrap_counter ^= 1;
1390 * If we expect an interrupt for the next entry, tell host
1391 * by writing event index and flush out the write before
1392 * the read in the next get_buf call.
1394 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DESC)
1395 virtio_store_mb(vq->weak_barriers,
1396 &vq->packed.vring.driver->off_wrap,
1397 cpu_to_le16(vq->last_used_idx |
1398 (vq->packed.used_wrap_counter <<
1399 VRING_PACKED_EVENT_F_WRAP_CTR)));
1401 LAST_ADD_TIME_INVALID(vq);
1403 END_USE(vq);
1404 return ret;
1407 static void virtqueue_disable_cb_packed(struct virtqueue *_vq)
1409 struct vring_virtqueue *vq = to_vvq(_vq);
1411 if (vq->packed.event_flags_shadow != VRING_PACKED_EVENT_FLAG_DISABLE) {
1412 vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1413 vq->packed.vring.driver->flags =
1414 cpu_to_le16(vq->packed.event_flags_shadow);
1418 static unsigned virtqueue_enable_cb_prepare_packed(struct virtqueue *_vq)
1420 struct vring_virtqueue *vq = to_vvq(_vq);
1422 START_USE(vq);
1425 * We optimistically turn back on interrupts, then check if there was
1426 * more to do.
1429 if (vq->event) {
1430 vq->packed.vring.driver->off_wrap =
1431 cpu_to_le16(vq->last_used_idx |
1432 (vq->packed.used_wrap_counter <<
1433 VRING_PACKED_EVENT_F_WRAP_CTR));
1435 * We need to update event offset and event wrap
1436 * counter first before updating event flags.
1438 virtio_wmb(vq->weak_barriers);
1441 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1442 vq->packed.event_flags_shadow = vq->event ?
1443 VRING_PACKED_EVENT_FLAG_DESC :
1444 VRING_PACKED_EVENT_FLAG_ENABLE;
1445 vq->packed.vring.driver->flags =
1446 cpu_to_le16(vq->packed.event_flags_shadow);
1449 END_USE(vq);
1450 return vq->last_used_idx | ((u16)vq->packed.used_wrap_counter <<
1451 VRING_PACKED_EVENT_F_WRAP_CTR);
1454 static bool virtqueue_poll_packed(struct virtqueue *_vq, u16 off_wrap)
1456 struct vring_virtqueue *vq = to_vvq(_vq);
1457 bool wrap_counter;
1458 u16 used_idx;
1460 wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1461 used_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1463 return is_used_desc_packed(vq, used_idx, wrap_counter);
1466 static bool virtqueue_enable_cb_delayed_packed(struct virtqueue *_vq)
1468 struct vring_virtqueue *vq = to_vvq(_vq);
1469 u16 used_idx, wrap_counter;
1470 u16 bufs;
1472 START_USE(vq);
1475 * We optimistically turn back on interrupts, then check if there was
1476 * more to do.
1479 if (vq->event) {
1480 /* TODO: tune this threshold */
1481 bufs = (vq->packed.vring.num - vq->vq.num_free) * 3 / 4;
1482 wrap_counter = vq->packed.used_wrap_counter;
1484 used_idx = vq->last_used_idx + bufs;
1485 if (used_idx >= vq->packed.vring.num) {
1486 used_idx -= vq->packed.vring.num;
1487 wrap_counter ^= 1;
1490 vq->packed.vring.driver->off_wrap = cpu_to_le16(used_idx |
1491 (wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1494 * We need to update event offset and event wrap
1495 * counter first before updating event flags.
1497 virtio_wmb(vq->weak_barriers);
1498 } else {
1499 used_idx = vq->last_used_idx;
1500 wrap_counter = vq->packed.used_wrap_counter;
1503 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1504 vq->packed.event_flags_shadow = vq->event ?
1505 VRING_PACKED_EVENT_FLAG_DESC :
1506 VRING_PACKED_EVENT_FLAG_ENABLE;
1507 vq->packed.vring.driver->flags =
1508 cpu_to_le16(vq->packed.event_flags_shadow);
1512 * We need to update event suppression structure first
1513 * before re-checking for more used buffers.
1515 virtio_mb(vq->weak_barriers);
1517 if (is_used_desc_packed(vq, used_idx, wrap_counter)) {
1518 END_USE(vq);
1519 return false;
1522 END_USE(vq);
1523 return true;
1526 static void *virtqueue_detach_unused_buf_packed(struct virtqueue *_vq)
1528 struct vring_virtqueue *vq = to_vvq(_vq);
1529 unsigned int i;
1530 void *buf;
1532 START_USE(vq);
1534 for (i = 0; i < vq->packed.vring.num; i++) {
1535 if (!vq->packed.desc_state[i].data)
1536 continue;
1537 /* detach_buf clears data, so grab it now. */
1538 buf = vq->packed.desc_state[i].data;
1539 detach_buf_packed(vq, i, NULL);
1540 END_USE(vq);
1541 return buf;
1543 /* That should have freed everything. */
1544 BUG_ON(vq->vq.num_free != vq->packed.vring.num);
1546 END_USE(vq);
1547 return NULL;
1550 static struct virtqueue *vring_create_virtqueue_packed(
1551 unsigned int index,
1552 unsigned int num,
1553 unsigned int vring_align,
1554 struct virtio_device *vdev,
1555 bool weak_barriers,
1556 bool may_reduce_num,
1557 bool context,
1558 bool (*notify)(struct virtqueue *),
1559 void (*callback)(struct virtqueue *),
1560 const char *name)
1562 struct vring_virtqueue *vq;
1563 struct vring_packed_desc *ring;
1564 struct vring_packed_desc_event *driver, *device;
1565 dma_addr_t ring_dma_addr, driver_event_dma_addr, device_event_dma_addr;
1566 size_t ring_size_in_bytes, event_size_in_bytes;
1567 unsigned int i;
1569 ring_size_in_bytes = num * sizeof(struct vring_packed_desc);
1571 ring = vring_alloc_queue(vdev, ring_size_in_bytes,
1572 &ring_dma_addr,
1573 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1574 if (!ring)
1575 goto err_ring;
1577 event_size_in_bytes = sizeof(struct vring_packed_desc_event);
1579 driver = vring_alloc_queue(vdev, event_size_in_bytes,
1580 &driver_event_dma_addr,
1581 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1582 if (!driver)
1583 goto err_driver;
1585 device = vring_alloc_queue(vdev, event_size_in_bytes,
1586 &device_event_dma_addr,
1587 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1588 if (!device)
1589 goto err_device;
1591 vq = kmalloc(sizeof(*vq), GFP_KERNEL);
1592 if (!vq)
1593 goto err_vq;
1595 vq->vq.callback = callback;
1596 vq->vq.vdev = vdev;
1597 vq->vq.name = name;
1598 vq->vq.num_free = num;
1599 vq->vq.index = index;
1600 vq->we_own_ring = true;
1601 vq->notify = notify;
1602 vq->weak_barriers = weak_barriers;
1603 vq->broken = false;
1604 vq->last_used_idx = 0;
1605 vq->num_added = 0;
1606 vq->packed_ring = true;
1607 vq->use_dma_api = vring_use_dma_api(vdev);
1608 list_add_tail(&vq->vq.list, &vdev->vqs);
1609 #ifdef DEBUG
1610 vq->in_use = false;
1611 vq->last_add_time_valid = false;
1612 #endif
1614 vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
1615 !context;
1616 vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
1618 if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
1619 vq->weak_barriers = false;
1621 vq->packed.ring_dma_addr = ring_dma_addr;
1622 vq->packed.driver_event_dma_addr = driver_event_dma_addr;
1623 vq->packed.device_event_dma_addr = device_event_dma_addr;
1625 vq->packed.ring_size_in_bytes = ring_size_in_bytes;
1626 vq->packed.event_size_in_bytes = event_size_in_bytes;
1628 vq->packed.vring.num = num;
1629 vq->packed.vring.desc = ring;
1630 vq->packed.vring.driver = driver;
1631 vq->packed.vring.device = device;
1633 vq->packed.next_avail_idx = 0;
1634 vq->packed.avail_wrap_counter = 1;
1635 vq->packed.used_wrap_counter = 1;
1636 vq->packed.event_flags_shadow = 0;
1637 vq->packed.avail_used_flags = 1 << VRING_PACKED_DESC_F_AVAIL;
1639 vq->packed.desc_state = kmalloc_array(num,
1640 sizeof(struct vring_desc_state_packed),
1641 GFP_KERNEL);
1642 if (!vq->packed.desc_state)
1643 goto err_desc_state;
1645 memset(vq->packed.desc_state, 0,
1646 num * sizeof(struct vring_desc_state_packed));
1648 /* Put everything in free lists. */
1649 vq->free_head = 0;
1650 for (i = 0; i < num-1; i++)
1651 vq->packed.desc_state[i].next = i + 1;
1653 vq->packed.desc_extra = kmalloc_array(num,
1654 sizeof(struct vring_desc_extra_packed),
1655 GFP_KERNEL);
1656 if (!vq->packed.desc_extra)
1657 goto err_desc_extra;
1659 memset(vq->packed.desc_extra, 0,
1660 num * sizeof(struct vring_desc_extra_packed));
1662 /* No callback? Tell other side not to bother us. */
1663 if (!callback) {
1664 vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1665 vq->packed.vring.driver->flags =
1666 cpu_to_le16(vq->packed.event_flags_shadow);
1669 return &vq->vq;
1671 err_desc_extra:
1672 kfree(vq->packed.desc_state);
1673 err_desc_state:
1674 kfree(vq);
1675 err_vq:
1676 vring_free_queue(vdev, event_size_in_bytes, device, ring_dma_addr);
1677 err_device:
1678 vring_free_queue(vdev, event_size_in_bytes, driver, ring_dma_addr);
1679 err_driver:
1680 vring_free_queue(vdev, ring_size_in_bytes, ring, ring_dma_addr);
1681 err_ring:
1682 return NULL;
1687 * Generic functions and exported symbols.
1690 static inline int virtqueue_add(struct virtqueue *_vq,
1691 struct scatterlist *sgs[],
1692 unsigned int total_sg,
1693 unsigned int out_sgs,
1694 unsigned int in_sgs,
1695 void *data,
1696 void *ctx,
1697 gfp_t gfp)
1699 struct vring_virtqueue *vq = to_vvq(_vq);
1701 return vq->packed_ring ? virtqueue_add_packed(_vq, sgs, total_sg,
1702 out_sgs, in_sgs, data, ctx, gfp) :
1703 virtqueue_add_split(_vq, sgs, total_sg,
1704 out_sgs, in_sgs, data, ctx, gfp);
1708 * virtqueue_add_sgs - expose buffers to other end
1709 * @_vq: the struct virtqueue we're talking about.
1710 * @sgs: array of terminated scatterlists.
1711 * @out_sgs: the number of scatterlists readable by other side
1712 * @in_sgs: the number of scatterlists which are writable (after readable ones)
1713 * @data: the token identifying the buffer.
1714 * @gfp: how to do memory allocations (if necessary).
1716 * Caller must ensure we don't call this with other virtqueue operations
1717 * at the same time (except where noted).
1719 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1721 int virtqueue_add_sgs(struct virtqueue *_vq,
1722 struct scatterlist *sgs[],
1723 unsigned int out_sgs,
1724 unsigned int in_sgs,
1725 void *data,
1726 gfp_t gfp)
1728 unsigned int i, total_sg = 0;
1730 /* Count them first. */
1731 for (i = 0; i < out_sgs + in_sgs; i++) {
1732 struct scatterlist *sg;
1734 for (sg = sgs[i]; sg; sg = sg_next(sg))
1735 total_sg++;
1737 return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs,
1738 data, NULL, gfp);
1740 EXPORT_SYMBOL_GPL(virtqueue_add_sgs);
1743 * virtqueue_add_outbuf - expose output buffers to other end
1744 * @vq: the struct virtqueue we're talking about.
1745 * @sg: scatterlist (must be well-formed and terminated!)
1746 * @num: the number of entries in @sg readable by other side
1747 * @data: the token identifying the buffer.
1748 * @gfp: how to do memory allocations (if necessary).
1750 * Caller must ensure we don't call this with other virtqueue operations
1751 * at the same time (except where noted).
1753 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1755 int virtqueue_add_outbuf(struct virtqueue *vq,
1756 struct scatterlist *sg, unsigned int num,
1757 void *data,
1758 gfp_t gfp)
1760 return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, gfp);
1762 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf);
1765 * virtqueue_add_inbuf - expose input buffers to other end
1766 * @vq: the struct virtqueue we're talking about.
1767 * @sg: scatterlist (must be well-formed and terminated!)
1768 * @num: the number of entries in @sg writable by other side
1769 * @data: the token identifying the buffer.
1770 * @gfp: how to do memory allocations (if necessary).
1772 * Caller must ensure we don't call this with other virtqueue operations
1773 * at the same time (except where noted).
1775 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1777 int virtqueue_add_inbuf(struct virtqueue *vq,
1778 struct scatterlist *sg, unsigned int num,
1779 void *data,
1780 gfp_t gfp)
1782 return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, gfp);
1784 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf);
1787 * virtqueue_add_inbuf_ctx - expose input buffers to other end
1788 * @vq: the struct virtqueue we're talking about.
1789 * @sg: scatterlist (must be well-formed and terminated!)
1790 * @num: the number of entries in @sg writable by other side
1791 * @data: the token identifying the buffer.
1792 * @ctx: extra context for the token
1793 * @gfp: how to do memory allocations (if necessary).
1795 * Caller must ensure we don't call this with other virtqueue operations
1796 * at the same time (except where noted).
1798 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1800 int virtqueue_add_inbuf_ctx(struct virtqueue *vq,
1801 struct scatterlist *sg, unsigned int num,
1802 void *data,
1803 void *ctx,
1804 gfp_t gfp)
1806 return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, gfp);
1808 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx);
1811 * virtqueue_kick_prepare - first half of split virtqueue_kick call.
1812 * @_vq: the struct virtqueue
1814 * Instead of virtqueue_kick(), you can do:
1815 * if (virtqueue_kick_prepare(vq))
1816 * virtqueue_notify(vq);
1818 * This is sometimes useful because the virtqueue_kick_prepare() needs
1819 * to be serialized, but the actual virtqueue_notify() call does not.
1821 bool virtqueue_kick_prepare(struct virtqueue *_vq)
1823 struct vring_virtqueue *vq = to_vvq(_vq);
1825 return vq->packed_ring ? virtqueue_kick_prepare_packed(_vq) :
1826 virtqueue_kick_prepare_split(_vq);
1828 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare);
1831 * virtqueue_notify - second half of split virtqueue_kick call.
1832 * @_vq: the struct virtqueue
1834 * This does not need to be serialized.
1836 * Returns false if host notify failed or queue is broken, otherwise true.
1838 bool virtqueue_notify(struct virtqueue *_vq)
1840 struct vring_virtqueue *vq = to_vvq(_vq);
1842 if (unlikely(vq->broken))
1843 return false;
1845 /* Prod other side to tell it about changes. */
1846 if (!vq->notify(_vq)) {
1847 vq->broken = true;
1848 return false;
1850 return true;
1852 EXPORT_SYMBOL_GPL(virtqueue_notify);
1855 * virtqueue_kick - update after add_buf
1856 * @vq: the struct virtqueue
1858 * After one or more virtqueue_add_* calls, invoke this to kick
1859 * the other side.
1861 * Caller must ensure we don't call this with other virtqueue
1862 * operations at the same time (except where noted).
1864 * Returns false if kick failed, otherwise true.
1866 bool virtqueue_kick(struct virtqueue *vq)
1868 if (virtqueue_kick_prepare(vq))
1869 return virtqueue_notify(vq);
1870 return true;
1872 EXPORT_SYMBOL_GPL(virtqueue_kick);
1875 * virtqueue_get_buf - get the next used buffer
1876 * @_vq: the struct virtqueue we're talking about.
1877 * @len: the length written into the buffer
1878 * @ctx: extra context for the token
1880 * If the device wrote data into the buffer, @len will be set to the
1881 * amount written. This means you don't need to clear the buffer
1882 * beforehand to ensure there's no data leakage in the case of short
1883 * writes.
1885 * Caller must ensure we don't call this with other virtqueue
1886 * operations at the same time (except where noted).
1888 * Returns NULL if there are no used buffers, or the "data" token
1889 * handed to virtqueue_add_*().
1891 void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len,
1892 void **ctx)
1894 struct vring_virtqueue *vq = to_vvq(_vq);
1896 return vq->packed_ring ? virtqueue_get_buf_ctx_packed(_vq, len, ctx) :
1897 virtqueue_get_buf_ctx_split(_vq, len, ctx);
1899 EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx);
1901 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len)
1903 return virtqueue_get_buf_ctx(_vq, len, NULL);
1905 EXPORT_SYMBOL_GPL(virtqueue_get_buf);
1907 * virtqueue_disable_cb - disable callbacks
1908 * @_vq: the struct virtqueue we're talking about.
1910 * Note that this is not necessarily synchronous, hence unreliable and only
1911 * useful as an optimization.
1913 * Unlike other operations, this need not be serialized.
1915 void virtqueue_disable_cb(struct virtqueue *_vq)
1917 struct vring_virtqueue *vq = to_vvq(_vq);
1919 if (vq->packed_ring)
1920 virtqueue_disable_cb_packed(_vq);
1921 else
1922 virtqueue_disable_cb_split(_vq);
1924 EXPORT_SYMBOL_GPL(virtqueue_disable_cb);
1927 * virtqueue_enable_cb_prepare - restart callbacks after disable_cb
1928 * @_vq: the struct virtqueue we're talking about.
1930 * This re-enables callbacks; it returns current queue state
1931 * in an opaque unsigned value. This value should be later tested by
1932 * virtqueue_poll, to detect a possible race between the driver checking for
1933 * more work, and enabling callbacks.
1935 * Caller must ensure we don't call this with other virtqueue
1936 * operations at the same time (except where noted).
1938 unsigned virtqueue_enable_cb_prepare(struct virtqueue *_vq)
1940 struct vring_virtqueue *vq = to_vvq(_vq);
1942 return vq->packed_ring ? virtqueue_enable_cb_prepare_packed(_vq) :
1943 virtqueue_enable_cb_prepare_split(_vq);
1945 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare);
1948 * virtqueue_poll - query pending used buffers
1949 * @_vq: the struct virtqueue we're talking about.
1950 * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare).
1952 * Returns "true" if there are pending used buffers in the queue.
1954 * This does not need to be serialized.
1956 bool virtqueue_poll(struct virtqueue *_vq, unsigned last_used_idx)
1958 struct vring_virtqueue *vq = to_vvq(_vq);
1960 virtio_mb(vq->weak_barriers);
1961 return vq->packed_ring ? virtqueue_poll_packed(_vq, last_used_idx) :
1962 virtqueue_poll_split(_vq, last_used_idx);
1964 EXPORT_SYMBOL_GPL(virtqueue_poll);
1967 * virtqueue_enable_cb - restart callbacks after disable_cb.
1968 * @_vq: the struct virtqueue we're talking about.
1970 * This re-enables callbacks; it returns "false" if there are pending
1971 * buffers in the queue, to detect a possible race between the driver
1972 * checking for more work, and enabling callbacks.
1974 * Caller must ensure we don't call this with other virtqueue
1975 * operations at the same time (except where noted).
1977 bool virtqueue_enable_cb(struct virtqueue *_vq)
1979 unsigned last_used_idx = virtqueue_enable_cb_prepare(_vq);
1981 return !virtqueue_poll(_vq, last_used_idx);
1983 EXPORT_SYMBOL_GPL(virtqueue_enable_cb);
1986 * virtqueue_enable_cb_delayed - restart callbacks after disable_cb.
1987 * @_vq: the struct virtqueue we're talking about.
1989 * This re-enables callbacks but hints to the other side to delay
1990 * interrupts until most of the available buffers have been processed;
1991 * it returns "false" if there are many pending buffers in the queue,
1992 * to detect a possible race between the driver checking for more work,
1993 * and enabling callbacks.
1995 * Caller must ensure we don't call this with other virtqueue
1996 * operations at the same time (except where noted).
1998 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq)
2000 struct vring_virtqueue *vq = to_vvq(_vq);
2002 return vq->packed_ring ? virtqueue_enable_cb_delayed_packed(_vq) :
2003 virtqueue_enable_cb_delayed_split(_vq);
2005 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed);
2008 * virtqueue_detach_unused_buf - detach first unused buffer
2009 * @_vq: the struct virtqueue we're talking about.
2011 * Returns NULL or the "data" token handed to virtqueue_add_*().
2012 * This is not valid on an active queue; it is useful only for device
2013 * shutdown.
2015 void *virtqueue_detach_unused_buf(struct virtqueue *_vq)
2017 struct vring_virtqueue *vq = to_vvq(_vq);
2019 return vq->packed_ring ? virtqueue_detach_unused_buf_packed(_vq) :
2020 virtqueue_detach_unused_buf_split(_vq);
2022 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf);
2024 static inline bool more_used(const struct vring_virtqueue *vq)
2026 return vq->packed_ring ? more_used_packed(vq) : more_used_split(vq);
2029 irqreturn_t vring_interrupt(int irq, void *_vq)
2031 struct vring_virtqueue *vq = to_vvq(_vq);
2033 if (!more_used(vq)) {
2034 pr_debug("virtqueue interrupt with no work for %p\n", vq);
2035 return IRQ_NONE;
2038 if (unlikely(vq->broken))
2039 return IRQ_HANDLED;
2041 pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback);
2042 if (vq->vq.callback)
2043 vq->vq.callback(&vq->vq);
2045 return IRQ_HANDLED;
2047 EXPORT_SYMBOL_GPL(vring_interrupt);
2049 /* Only available for split ring */
2050 struct virtqueue *__vring_new_virtqueue(unsigned int index,
2051 struct vring vring,
2052 struct virtio_device *vdev,
2053 bool weak_barriers,
2054 bool context,
2055 bool (*notify)(struct virtqueue *),
2056 void (*callback)(struct virtqueue *),
2057 const char *name)
2059 unsigned int i;
2060 struct vring_virtqueue *vq;
2062 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2063 return NULL;
2065 vq = kmalloc(sizeof(*vq), GFP_KERNEL);
2066 if (!vq)
2067 return NULL;
2069 vq->packed_ring = false;
2070 vq->vq.callback = callback;
2071 vq->vq.vdev = vdev;
2072 vq->vq.name = name;
2073 vq->vq.num_free = vring.num;
2074 vq->vq.index = index;
2075 vq->we_own_ring = false;
2076 vq->notify = notify;
2077 vq->weak_barriers = weak_barriers;
2078 vq->broken = false;
2079 vq->last_used_idx = 0;
2080 vq->num_added = 0;
2081 vq->use_dma_api = vring_use_dma_api(vdev);
2082 list_add_tail(&vq->vq.list, &vdev->vqs);
2083 #ifdef DEBUG
2084 vq->in_use = false;
2085 vq->last_add_time_valid = false;
2086 #endif
2088 vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
2089 !context;
2090 vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
2092 if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
2093 vq->weak_barriers = false;
2095 vq->split.queue_dma_addr = 0;
2096 vq->split.queue_size_in_bytes = 0;
2098 vq->split.vring = vring;
2099 vq->split.avail_flags_shadow = 0;
2100 vq->split.avail_idx_shadow = 0;
2102 /* No callback? Tell other side not to bother us. */
2103 if (!callback) {
2104 vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
2105 if (!vq->event)
2106 vq->split.vring.avail->flags = cpu_to_virtio16(vdev,
2107 vq->split.avail_flags_shadow);
2110 vq->split.desc_state = kmalloc_array(vring.num,
2111 sizeof(struct vring_desc_state_split), GFP_KERNEL);
2112 if (!vq->split.desc_state) {
2113 kfree(vq);
2114 return NULL;
2117 /* Put everything in free lists. */
2118 vq->free_head = 0;
2119 for (i = 0; i < vring.num-1; i++)
2120 vq->split.vring.desc[i].next = cpu_to_virtio16(vdev, i + 1);
2121 memset(vq->split.desc_state, 0, vring.num *
2122 sizeof(struct vring_desc_state_split));
2124 return &vq->vq;
2126 EXPORT_SYMBOL_GPL(__vring_new_virtqueue);
2128 struct virtqueue *vring_create_virtqueue(
2129 unsigned int index,
2130 unsigned int num,
2131 unsigned int vring_align,
2132 struct virtio_device *vdev,
2133 bool weak_barriers,
2134 bool may_reduce_num,
2135 bool context,
2136 bool (*notify)(struct virtqueue *),
2137 void (*callback)(struct virtqueue *),
2138 const char *name)
2141 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2142 return vring_create_virtqueue_packed(index, num, vring_align,
2143 vdev, weak_barriers, may_reduce_num,
2144 context, notify, callback, name);
2146 return vring_create_virtqueue_split(index, num, vring_align,
2147 vdev, weak_barriers, may_reduce_num,
2148 context, notify, callback, name);
2150 EXPORT_SYMBOL_GPL(vring_create_virtqueue);
2152 /* Only available for split ring */
2153 struct virtqueue *vring_new_virtqueue(unsigned int index,
2154 unsigned int num,
2155 unsigned int vring_align,
2156 struct virtio_device *vdev,
2157 bool weak_barriers,
2158 bool context,
2159 void *pages,
2160 bool (*notify)(struct virtqueue *vq),
2161 void (*callback)(struct virtqueue *vq),
2162 const char *name)
2164 struct vring vring;
2166 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2167 return NULL;
2169 vring_init(&vring, num, pages, vring_align);
2170 return __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
2171 notify, callback, name);
2173 EXPORT_SYMBOL_GPL(vring_new_virtqueue);
2175 void vring_del_virtqueue(struct virtqueue *_vq)
2177 struct vring_virtqueue *vq = to_vvq(_vq);
2179 if (vq->we_own_ring) {
2180 if (vq->packed_ring) {
2181 vring_free_queue(vq->vq.vdev,
2182 vq->packed.ring_size_in_bytes,
2183 vq->packed.vring.desc,
2184 vq->packed.ring_dma_addr);
2186 vring_free_queue(vq->vq.vdev,
2187 vq->packed.event_size_in_bytes,
2188 vq->packed.vring.driver,
2189 vq->packed.driver_event_dma_addr);
2191 vring_free_queue(vq->vq.vdev,
2192 vq->packed.event_size_in_bytes,
2193 vq->packed.vring.device,
2194 vq->packed.device_event_dma_addr);
2196 kfree(vq->packed.desc_state);
2197 kfree(vq->packed.desc_extra);
2198 } else {
2199 vring_free_queue(vq->vq.vdev,
2200 vq->split.queue_size_in_bytes,
2201 vq->split.vring.desc,
2202 vq->split.queue_dma_addr);
2204 kfree(vq->split.desc_state);
2207 list_del(&_vq->list);
2208 kfree(vq);
2210 EXPORT_SYMBOL_GPL(vring_del_virtqueue);
2212 /* Manipulates transport-specific feature bits. */
2213 void vring_transport_features(struct virtio_device *vdev)
2215 unsigned int i;
2217 for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) {
2218 switch (i) {
2219 case VIRTIO_RING_F_INDIRECT_DESC:
2220 break;
2221 case VIRTIO_RING_F_EVENT_IDX:
2222 break;
2223 case VIRTIO_F_VERSION_1:
2224 break;
2225 case VIRTIO_F_IOMMU_PLATFORM:
2226 break;
2227 case VIRTIO_F_RING_PACKED:
2228 break;
2229 case VIRTIO_F_ORDER_PLATFORM:
2230 break;
2231 default:
2232 /* We don't understand this bit. */
2233 __virtio_clear_bit(vdev, i);
2237 EXPORT_SYMBOL_GPL(vring_transport_features);
2240 * virtqueue_get_vring_size - return the size of the virtqueue's vring
2241 * @_vq: the struct virtqueue containing the vring of interest.
2243 * Returns the size of the vring. This is mainly used for boasting to
2244 * userspace. Unlike other operations, this need not be serialized.
2246 unsigned int virtqueue_get_vring_size(struct virtqueue *_vq)
2249 struct vring_virtqueue *vq = to_vvq(_vq);
2251 return vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num;
2253 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size);
2255 bool virtqueue_is_broken(struct virtqueue *_vq)
2257 struct vring_virtqueue *vq = to_vvq(_vq);
2259 return vq->broken;
2261 EXPORT_SYMBOL_GPL(virtqueue_is_broken);
2264 * This should prevent the device from being used, allowing drivers to
2265 * recover. You may need to grab appropriate locks to flush.
2267 void virtio_break_device(struct virtio_device *dev)
2269 struct virtqueue *_vq;
2271 list_for_each_entry(_vq, &dev->vqs, list) {
2272 struct vring_virtqueue *vq = to_vvq(_vq);
2273 vq->broken = true;
2276 EXPORT_SYMBOL_GPL(virtio_break_device);
2278 dma_addr_t virtqueue_get_desc_addr(struct virtqueue *_vq)
2280 struct vring_virtqueue *vq = to_vvq(_vq);
2282 BUG_ON(!vq->we_own_ring);
2284 if (vq->packed_ring)
2285 return vq->packed.ring_dma_addr;
2287 return vq->split.queue_dma_addr;
2289 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr);
2291 dma_addr_t virtqueue_get_avail_addr(struct virtqueue *_vq)
2293 struct vring_virtqueue *vq = to_vvq(_vq);
2295 BUG_ON(!vq->we_own_ring);
2297 if (vq->packed_ring)
2298 return vq->packed.driver_event_dma_addr;
2300 return vq->split.queue_dma_addr +
2301 ((char *)vq->split.vring.avail - (char *)vq->split.vring.desc);
2303 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr);
2305 dma_addr_t virtqueue_get_used_addr(struct virtqueue *_vq)
2307 struct vring_virtqueue *vq = to_vvq(_vq);
2309 BUG_ON(!vq->we_own_ring);
2311 if (vq->packed_ring)
2312 return vq->packed.device_event_dma_addr;
2314 return vq->split.queue_dma_addr +
2315 ((char *)vq->split.vring.used - (char *)vq->split.vring.desc);
2317 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr);
2319 /* Only available for split ring */
2320 const struct vring *virtqueue_get_vring(struct virtqueue *vq)
2322 return &to_vvq(vq)->split.vring;
2324 EXPORT_SYMBOL_GPL(virtqueue_get_vring);
2326 MODULE_LICENSE("GPL");