2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include <asm/pgalloc.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/fs_dax.h>
42 static inline unsigned int pe_order(enum page_entry_size pe_size
)
44 if (pe_size
== PE_SIZE_PTE
)
45 return PAGE_SHIFT
- PAGE_SHIFT
;
46 if (pe_size
== PE_SIZE_PMD
)
47 return PMD_SHIFT
- PAGE_SHIFT
;
48 if (pe_size
== PE_SIZE_PUD
)
49 return PUD_SHIFT
- PAGE_SHIFT
;
53 /* We choose 4096 entries - same as per-zone page wait tables */
54 #define DAX_WAIT_TABLE_BITS 12
55 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
57 /* The 'colour' (ie low bits) within a PMD of a page offset. */
58 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
59 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
61 /* The order of a PMD entry */
62 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
64 static wait_queue_head_t wait_table
[DAX_WAIT_TABLE_ENTRIES
];
66 static int __init
init_dax_wait_table(void)
70 for (i
= 0; i
< DAX_WAIT_TABLE_ENTRIES
; i
++)
71 init_waitqueue_head(wait_table
+ i
);
74 fs_initcall(init_dax_wait_table
);
77 * DAX pagecache entries use XArray value entries so they can't be mistaken
78 * for pages. We use one bit for locking, one bit for the entry size (PMD)
79 * and two more to tell us if the entry is a zero page or an empty entry that
80 * is just used for locking. In total four special bits.
82 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
83 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
87 #define DAX_LOCKED (1UL << 0)
88 #define DAX_PMD (1UL << 1)
89 #define DAX_ZERO_PAGE (1UL << 2)
90 #define DAX_EMPTY (1UL << 3)
92 static unsigned long dax_to_pfn(void *entry
)
94 return xa_to_value(entry
) >> DAX_SHIFT
;
97 static void *dax_make_entry(pfn_t pfn
, unsigned long flags
)
99 return xa_mk_value(flags
| (pfn_t_to_pfn(pfn
) << DAX_SHIFT
));
102 static bool dax_is_locked(void *entry
)
104 return xa_to_value(entry
) & DAX_LOCKED
;
107 static unsigned int dax_entry_order(void *entry
)
109 if (xa_to_value(entry
) & DAX_PMD
)
114 static unsigned long dax_is_pmd_entry(void *entry
)
116 return xa_to_value(entry
) & DAX_PMD
;
119 static bool dax_is_pte_entry(void *entry
)
121 return !(xa_to_value(entry
) & DAX_PMD
);
124 static int dax_is_zero_entry(void *entry
)
126 return xa_to_value(entry
) & DAX_ZERO_PAGE
;
129 static int dax_is_empty_entry(void *entry
)
131 return xa_to_value(entry
) & DAX_EMPTY
;
135 * DAX page cache entry locking
137 struct exceptional_entry_key
{
142 struct wait_exceptional_entry_queue
{
143 wait_queue_entry_t wait
;
144 struct exceptional_entry_key key
;
147 static wait_queue_head_t
*dax_entry_waitqueue(struct xa_state
*xas
,
148 void *entry
, struct exceptional_entry_key
*key
)
151 unsigned long index
= xas
->xa_index
;
154 * If 'entry' is a PMD, align the 'index' that we use for the wait
155 * queue to the start of that PMD. This ensures that all offsets in
156 * the range covered by the PMD map to the same bit lock.
158 if (dax_is_pmd_entry(entry
))
159 index
&= ~PG_PMD_COLOUR
;
161 key
->entry_start
= index
;
163 hash
= hash_long((unsigned long)xas
->xa
^ index
, DAX_WAIT_TABLE_BITS
);
164 return wait_table
+ hash
;
167 static int wake_exceptional_entry_func(wait_queue_entry_t
*wait
,
168 unsigned int mode
, int sync
, void *keyp
)
170 struct exceptional_entry_key
*key
= keyp
;
171 struct wait_exceptional_entry_queue
*ewait
=
172 container_of(wait
, struct wait_exceptional_entry_queue
, wait
);
174 if (key
->xa
!= ewait
->key
.xa
||
175 key
->entry_start
!= ewait
->key
.entry_start
)
177 return autoremove_wake_function(wait
, mode
, sync
, NULL
);
181 * @entry may no longer be the entry at the index in the mapping.
182 * The important information it's conveying is whether the entry at
183 * this index used to be a PMD entry.
185 static void dax_wake_entry(struct xa_state
*xas
, void *entry
, bool wake_all
)
187 struct exceptional_entry_key key
;
188 wait_queue_head_t
*wq
;
190 wq
= dax_entry_waitqueue(xas
, entry
, &key
);
193 * Checking for locked entry and prepare_to_wait_exclusive() happens
194 * under the i_pages lock, ditto for entry handling in our callers.
195 * So at this point all tasks that could have seen our entry locked
196 * must be in the waitqueue and the following check will see them.
198 if (waitqueue_active(wq
))
199 __wake_up(wq
, TASK_NORMAL
, wake_all
? 0 : 1, &key
);
203 * Look up entry in page cache, wait for it to become unlocked if it
204 * is a DAX entry and return it. The caller must subsequently call
205 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
208 * Must be called with the i_pages lock held.
210 static void *get_unlocked_entry(struct xa_state
*xas
)
213 struct wait_exceptional_entry_queue ewait
;
214 wait_queue_head_t
*wq
;
216 init_wait(&ewait
.wait
);
217 ewait
.wait
.func
= wake_exceptional_entry_func
;
220 entry
= xas_find_conflict(xas
);
221 if (!entry
|| WARN_ON_ONCE(!xa_is_value(entry
)) ||
222 !dax_is_locked(entry
))
225 wq
= dax_entry_waitqueue(xas
, entry
, &ewait
.key
);
226 prepare_to_wait_exclusive(wq
, &ewait
.wait
,
227 TASK_UNINTERRUPTIBLE
);
231 finish_wait(wq
, &ewait
.wait
);
237 * The only thing keeping the address space around is the i_pages lock
238 * (it's cycled in clear_inode() after removing the entries from i_pages)
239 * After we call xas_unlock_irq(), we cannot touch xas->xa.
241 static void wait_entry_unlocked(struct xa_state
*xas
, void *entry
)
243 struct wait_exceptional_entry_queue ewait
;
244 wait_queue_head_t
*wq
;
246 init_wait(&ewait
.wait
);
247 ewait
.wait
.func
= wake_exceptional_entry_func
;
249 wq
= dax_entry_waitqueue(xas
, entry
, &ewait
.key
);
251 * Unlike get_unlocked_entry() there is no guarantee that this
252 * path ever successfully retrieves an unlocked entry before an
253 * inode dies. Perform a non-exclusive wait in case this path
254 * never successfully performs its own wake up.
256 prepare_to_wait(wq
, &ewait
.wait
, TASK_UNINTERRUPTIBLE
);
259 finish_wait(wq
, &ewait
.wait
);
262 static void put_unlocked_entry(struct xa_state
*xas
, void *entry
)
264 /* If we were the only waiter woken, wake the next one */
266 dax_wake_entry(xas
, entry
, false);
270 * We used the xa_state to get the entry, but then we locked the entry and
271 * dropped the xa_lock, so we know the xa_state is stale and must be reset
274 static void dax_unlock_entry(struct xa_state
*xas
, void *entry
)
278 BUG_ON(dax_is_locked(entry
));
281 old
= xas_store(xas
, entry
);
283 BUG_ON(!dax_is_locked(old
));
284 dax_wake_entry(xas
, entry
, false);
288 * Return: The entry stored at this location before it was locked.
290 static void *dax_lock_entry(struct xa_state
*xas
, void *entry
)
292 unsigned long v
= xa_to_value(entry
);
293 return xas_store(xas
, xa_mk_value(v
| DAX_LOCKED
));
296 static unsigned long dax_entry_size(void *entry
)
298 if (dax_is_zero_entry(entry
))
300 else if (dax_is_empty_entry(entry
))
302 else if (dax_is_pmd_entry(entry
))
308 static unsigned long dax_end_pfn(void *entry
)
310 return dax_to_pfn(entry
) + dax_entry_size(entry
) / PAGE_SIZE
;
314 * Iterate through all mapped pfns represented by an entry, i.e. skip
315 * 'empty' and 'zero' entries.
317 #define for_each_mapped_pfn(entry, pfn) \
318 for (pfn = dax_to_pfn(entry); \
319 pfn < dax_end_pfn(entry); pfn++)
322 * TODO: for reflink+dax we need a way to associate a single page with
323 * multiple address_space instances at different linear_page_index()
326 static void dax_associate_entry(void *entry
, struct address_space
*mapping
,
327 struct vm_area_struct
*vma
, unsigned long address
)
329 unsigned long size
= dax_entry_size(entry
), pfn
, index
;
332 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED
))
335 index
= linear_page_index(vma
, address
& ~(size
- 1));
336 for_each_mapped_pfn(entry
, pfn
) {
337 struct page
*page
= pfn_to_page(pfn
);
339 WARN_ON_ONCE(page
->mapping
);
340 page
->mapping
= mapping
;
341 page
->index
= index
+ i
++;
345 static void dax_disassociate_entry(void *entry
, struct address_space
*mapping
,
350 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED
))
353 for_each_mapped_pfn(entry
, pfn
) {
354 struct page
*page
= pfn_to_page(pfn
);
356 WARN_ON_ONCE(trunc
&& page_ref_count(page
) > 1);
357 WARN_ON_ONCE(page
->mapping
&& page
->mapping
!= mapping
);
358 page
->mapping
= NULL
;
363 static struct page
*dax_busy_page(void *entry
)
367 for_each_mapped_pfn(entry
, pfn
) {
368 struct page
*page
= pfn_to_page(pfn
);
370 if (page_ref_count(page
) > 1)
377 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
378 * @page: The page whose entry we want to lock
380 * Context: Process context.
381 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
384 dax_entry_t
dax_lock_page(struct page
*page
)
386 XA_STATE(xas
, NULL
, 0);
389 /* Ensure page->mapping isn't freed while we look at it */
392 struct address_space
*mapping
= READ_ONCE(page
->mapping
);
395 if (!mapping
|| !dax_mapping(mapping
))
399 * In the device-dax case there's no need to lock, a
400 * struct dev_pagemap pin is sufficient to keep the
401 * inode alive, and we assume we have dev_pagemap pin
402 * otherwise we would not have a valid pfn_to_page()
405 entry
= (void *)~0UL;
406 if (S_ISCHR(mapping
->host
->i_mode
))
409 xas
.xa
= &mapping
->i_pages
;
411 if (mapping
!= page
->mapping
) {
412 xas_unlock_irq(&xas
);
415 xas_set(&xas
, page
->index
);
416 entry
= xas_load(&xas
);
417 if (dax_is_locked(entry
)) {
419 wait_entry_unlocked(&xas
, entry
);
423 dax_lock_entry(&xas
, entry
);
424 xas_unlock_irq(&xas
);
428 return (dax_entry_t
)entry
;
431 void dax_unlock_page(struct page
*page
, dax_entry_t cookie
)
433 struct address_space
*mapping
= page
->mapping
;
434 XA_STATE(xas
, &mapping
->i_pages
, page
->index
);
436 if (S_ISCHR(mapping
->host
->i_mode
))
439 dax_unlock_entry(&xas
, (void *)cookie
);
443 * Find page cache entry at given index. If it is a DAX entry, return it
444 * with the entry locked. If the page cache doesn't contain an entry at
445 * that index, add a locked empty entry.
447 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
448 * either return that locked entry or will return VM_FAULT_FALLBACK.
449 * This will happen if there are any PTE entries within the PMD range
450 * that we are requesting.
452 * We always favor PTE entries over PMD entries. There isn't a flow where we
453 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
454 * insertion will fail if it finds any PTE entries already in the tree, and a
455 * PTE insertion will cause an existing PMD entry to be unmapped and
456 * downgraded to PTE entries. This happens for both PMD zero pages as
457 * well as PMD empty entries.
459 * The exception to this downgrade path is for PMD entries that have
460 * real storage backing them. We will leave these real PMD entries in
461 * the tree, and PTE writes will simply dirty the entire PMD entry.
463 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
464 * persistent memory the benefit is doubtful. We can add that later if we can
467 * On error, this function does not return an ERR_PTR. Instead it returns
468 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
469 * overlap with xarray value entries.
471 static void *grab_mapping_entry(struct xa_state
*xas
,
472 struct address_space
*mapping
, unsigned long size_flag
)
474 unsigned long index
= xas
->xa_index
;
475 bool pmd_downgrade
= false; /* splitting PMD entry into PTE entries? */
480 entry
= get_unlocked_entry(xas
);
483 if (!xa_is_value(entry
)) {
484 xas_set_err(xas
, EIO
);
488 if (size_flag
& DAX_PMD
) {
489 if (dax_is_pte_entry(entry
)) {
490 put_unlocked_entry(xas
, entry
);
493 } else { /* trying to grab a PTE entry */
494 if (dax_is_pmd_entry(entry
) &&
495 (dax_is_zero_entry(entry
) ||
496 dax_is_empty_entry(entry
))) {
497 pmd_downgrade
= true;
504 * Make sure 'entry' remains valid while we drop
507 dax_lock_entry(xas
, entry
);
510 * Besides huge zero pages the only other thing that gets
511 * downgraded are empty entries which don't need to be
514 if (dax_is_zero_entry(entry
)) {
516 unmap_mapping_pages(mapping
,
517 xas
->xa_index
& ~PG_PMD_COLOUR
,
523 dax_disassociate_entry(entry
, mapping
, false);
524 xas_store(xas
, NULL
); /* undo the PMD join */
525 dax_wake_entry(xas
, entry
, true);
526 mapping
->nrexceptional
--;
532 dax_lock_entry(xas
, entry
);
534 entry
= dax_make_entry(pfn_to_pfn_t(0), size_flag
| DAX_EMPTY
);
535 dax_lock_entry(xas
, entry
);
538 mapping
->nrexceptional
++;
543 if (xas_nomem(xas
, mapping_gfp_mask(mapping
) & ~__GFP_HIGHMEM
))
545 if (xas
->xa_node
== XA_ERROR(-ENOMEM
))
546 return xa_mk_internal(VM_FAULT_OOM
);
548 return xa_mk_internal(VM_FAULT_SIGBUS
);
552 return xa_mk_internal(VM_FAULT_FALLBACK
);
556 * dax_layout_busy_page - find first pinned page in @mapping
557 * @mapping: address space to scan for a page with ref count > 1
559 * DAX requires ZONE_DEVICE mapped pages. These pages are never
560 * 'onlined' to the page allocator so they are considered idle when
561 * page->count == 1. A filesystem uses this interface to determine if
562 * any page in the mapping is busy, i.e. for DMA, or other
563 * get_user_pages() usages.
565 * It is expected that the filesystem is holding locks to block the
566 * establishment of new mappings in this address_space. I.e. it expects
567 * to be able to run unmap_mapping_range() and subsequently not race
568 * mapping_mapped() becoming true.
570 struct page
*dax_layout_busy_page(struct address_space
*mapping
)
572 XA_STATE(xas
, &mapping
->i_pages
, 0);
574 unsigned int scanned
= 0;
575 struct page
*page
= NULL
;
578 * In the 'limited' case get_user_pages() for dax is disabled.
580 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED
))
583 if (!dax_mapping(mapping
) || !mapping_mapped(mapping
))
587 * If we race get_user_pages_fast() here either we'll see the
588 * elevated page count in the iteration and wait, or
589 * get_user_pages_fast() will see that the page it took a reference
590 * against is no longer mapped in the page tables and bail to the
591 * get_user_pages() slow path. The slow path is protected by
592 * pte_lock() and pmd_lock(). New references are not taken without
593 * holding those locks, and unmap_mapping_range() will not zero the
594 * pte or pmd without holding the respective lock, so we are
595 * guaranteed to either see new references or prevent new
596 * references from being established.
598 unmap_mapping_range(mapping
, 0, 0, 1);
601 xas_for_each(&xas
, entry
, ULONG_MAX
) {
602 if (WARN_ON_ONCE(!xa_is_value(entry
)))
604 if (unlikely(dax_is_locked(entry
)))
605 entry
= get_unlocked_entry(&xas
);
607 page
= dax_busy_page(entry
);
608 put_unlocked_entry(&xas
, entry
);
611 if (++scanned
% XA_CHECK_SCHED
)
615 xas_unlock_irq(&xas
);
619 xas_unlock_irq(&xas
);
622 EXPORT_SYMBOL_GPL(dax_layout_busy_page
);
624 static int __dax_invalidate_entry(struct address_space
*mapping
,
625 pgoff_t index
, bool trunc
)
627 XA_STATE(xas
, &mapping
->i_pages
, index
);
632 entry
= get_unlocked_entry(&xas
);
633 if (!entry
|| WARN_ON_ONCE(!xa_is_value(entry
)))
636 (xas_get_mark(&xas
, PAGECACHE_TAG_DIRTY
) ||
637 xas_get_mark(&xas
, PAGECACHE_TAG_TOWRITE
)))
639 dax_disassociate_entry(entry
, mapping
, trunc
);
640 xas_store(&xas
, NULL
);
641 mapping
->nrexceptional
--;
644 put_unlocked_entry(&xas
, entry
);
645 xas_unlock_irq(&xas
);
650 * Delete DAX entry at @index from @mapping. Wait for it
651 * to be unlocked before deleting it.
653 int dax_delete_mapping_entry(struct address_space
*mapping
, pgoff_t index
)
655 int ret
= __dax_invalidate_entry(mapping
, index
, true);
658 * This gets called from truncate / punch_hole path. As such, the caller
659 * must hold locks protecting against concurrent modifications of the
660 * page cache (usually fs-private i_mmap_sem for writing). Since the
661 * caller has seen a DAX entry for this index, we better find it
662 * at that index as well...
669 * Invalidate DAX entry if it is clean.
671 int dax_invalidate_mapping_entry_sync(struct address_space
*mapping
,
674 return __dax_invalidate_entry(mapping
, index
, false);
677 static int copy_user_dax(struct block_device
*bdev
, struct dax_device
*dax_dev
,
678 sector_t sector
, size_t size
, struct page
*to
,
686 rc
= bdev_dax_pgoff(bdev
, sector
, size
, &pgoff
);
690 id
= dax_read_lock();
691 rc
= dax_direct_access(dax_dev
, pgoff
, PHYS_PFN(size
), &kaddr
, NULL
);
696 vto
= kmap_atomic(to
);
697 copy_user_page(vto
, (void __force
*)kaddr
, vaddr
, to
);
704 * By this point grab_mapping_entry() has ensured that we have a locked entry
705 * of the appropriate size so we don't have to worry about downgrading PMDs to
706 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
707 * already in the tree, we will skip the insertion and just dirty the PMD as
710 static void *dax_insert_entry(struct xa_state
*xas
,
711 struct address_space
*mapping
, struct vm_fault
*vmf
,
712 void *entry
, pfn_t pfn
, unsigned long flags
, bool dirty
)
714 void *new_entry
= dax_make_entry(pfn
, flags
);
717 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
719 if (dax_is_zero_entry(entry
) && !(flags
& DAX_ZERO_PAGE
)) {
720 unsigned long index
= xas
->xa_index
;
721 /* we are replacing a zero page with block mapping */
722 if (dax_is_pmd_entry(entry
))
723 unmap_mapping_pages(mapping
, index
& ~PG_PMD_COLOUR
,
726 unmap_mapping_pages(mapping
, index
, 1, false);
731 if (dax_entry_size(entry
) != dax_entry_size(new_entry
)) {
732 dax_disassociate_entry(entry
, mapping
, false);
733 dax_associate_entry(new_entry
, mapping
, vmf
->vma
, vmf
->address
);
736 if (dax_is_zero_entry(entry
) || dax_is_empty_entry(entry
)) {
738 * Only swap our new entry into the page cache if the current
739 * entry is a zero page or an empty entry. If a normal PTE or
740 * PMD entry is already in the cache, we leave it alone. This
741 * means that if we are trying to insert a PTE and the
742 * existing entry is a PMD, we will just leave the PMD in the
743 * tree and dirty it if necessary.
745 void *old
= dax_lock_entry(xas
, new_entry
);
746 WARN_ON_ONCE(old
!= xa_mk_value(xa_to_value(entry
) |
750 xas_load(xas
); /* Walk the xa_state */
754 xas_set_mark(xas
, PAGECACHE_TAG_DIRTY
);
761 unsigned long pgoff_address(pgoff_t pgoff
, struct vm_area_struct
*vma
)
763 unsigned long address
;
765 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
766 VM_BUG_ON_VMA(address
< vma
->vm_start
|| address
>= vma
->vm_end
, vma
);
770 /* Walk all mappings of a given index of a file and writeprotect them */
771 static void dax_entry_mkclean(struct address_space
*mapping
, pgoff_t index
,
774 struct vm_area_struct
*vma
;
775 pte_t pte
, *ptep
= NULL
;
779 i_mmap_lock_read(mapping
);
780 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, index
, index
) {
781 struct mmu_notifier_range range
;
782 unsigned long address
;
786 if (!(vma
->vm_flags
& VM_SHARED
))
789 address
= pgoff_address(index
, vma
);
792 * Note because we provide range to follow_pte_pmd it will
793 * call mmu_notifier_invalidate_range_start() on our behalf
794 * before taking any lock.
796 if (follow_pte_pmd(vma
->vm_mm
, address
, &range
,
801 * No need to call mmu_notifier_invalidate_range() as we are
802 * downgrading page table protection not changing it to point
805 * See Documentation/vm/mmu_notifier.rst
808 #ifdef CONFIG_FS_DAX_PMD
811 if (pfn
!= pmd_pfn(*pmdp
))
813 if (!pmd_dirty(*pmdp
) && !pmd_write(*pmdp
))
816 flush_cache_page(vma
, address
, pfn
);
817 pmd
= pmdp_invalidate(vma
, address
, pmdp
);
818 pmd
= pmd_wrprotect(pmd
);
819 pmd
= pmd_mkclean(pmd
);
820 set_pmd_at(vma
->vm_mm
, address
, pmdp
, pmd
);
825 if (pfn
!= pte_pfn(*ptep
))
827 if (!pte_dirty(*ptep
) && !pte_write(*ptep
))
830 flush_cache_page(vma
, address
, pfn
);
831 pte
= ptep_clear_flush(vma
, address
, ptep
);
832 pte
= pte_wrprotect(pte
);
833 pte
= pte_mkclean(pte
);
834 set_pte_at(vma
->vm_mm
, address
, ptep
, pte
);
836 pte_unmap_unlock(ptep
, ptl
);
839 mmu_notifier_invalidate_range_end(&range
);
841 i_mmap_unlock_read(mapping
);
844 static int dax_writeback_one(struct xa_state
*xas
, struct dax_device
*dax_dev
,
845 struct address_space
*mapping
, void *entry
)
847 unsigned long pfn
, index
, count
;
851 * A page got tagged dirty in DAX mapping? Something is seriously
854 if (WARN_ON(!xa_is_value(entry
)))
857 if (unlikely(dax_is_locked(entry
))) {
858 void *old_entry
= entry
;
860 entry
= get_unlocked_entry(xas
);
862 /* Entry got punched out / reallocated? */
863 if (!entry
|| WARN_ON_ONCE(!xa_is_value(entry
)))
866 * Entry got reallocated elsewhere? No need to writeback.
867 * We have to compare pfns as we must not bail out due to
868 * difference in lockbit or entry type.
870 if (dax_to_pfn(old_entry
) != dax_to_pfn(entry
))
872 if (WARN_ON_ONCE(dax_is_empty_entry(entry
) ||
873 dax_is_zero_entry(entry
))) {
878 /* Another fsync thread may have already done this entry */
879 if (!xas_get_mark(xas
, PAGECACHE_TAG_TOWRITE
))
883 /* Lock the entry to serialize with page faults */
884 dax_lock_entry(xas
, entry
);
887 * We can clear the tag now but we have to be careful so that concurrent
888 * dax_writeback_one() calls for the same index cannot finish before we
889 * actually flush the caches. This is achieved as the calls will look
890 * at the entry only under the i_pages lock and once they do that
891 * they will see the entry locked and wait for it to unlock.
893 xas_clear_mark(xas
, PAGECACHE_TAG_TOWRITE
);
897 * If dax_writeback_mapping_range() was given a wbc->range_start
898 * in the middle of a PMD, the 'index' we use needs to be
899 * aligned to the start of the PMD.
900 * This allows us to flush for PMD_SIZE and not have to worry about
901 * partial PMD writebacks.
903 pfn
= dax_to_pfn(entry
);
904 count
= 1UL << dax_entry_order(entry
);
905 index
= xas
->xa_index
& ~(count
- 1);
907 dax_entry_mkclean(mapping
, index
, pfn
);
908 dax_flush(dax_dev
, page_address(pfn_to_page(pfn
)), count
* PAGE_SIZE
);
910 * After we have flushed the cache, we can clear the dirty tag. There
911 * cannot be new dirty data in the pfn after the flush has completed as
912 * the pfn mappings are writeprotected and fault waits for mapping
917 xas_store(xas
, entry
);
918 xas_clear_mark(xas
, PAGECACHE_TAG_DIRTY
);
919 dax_wake_entry(xas
, entry
, false);
921 trace_dax_writeback_one(mapping
->host
, index
, count
);
925 put_unlocked_entry(xas
, entry
);
930 * Flush the mapping to the persistent domain within the byte range of [start,
931 * end]. This is required by data integrity operations to ensure file data is
932 * on persistent storage prior to completion of the operation.
934 int dax_writeback_mapping_range(struct address_space
*mapping
,
935 struct block_device
*bdev
, struct writeback_control
*wbc
)
937 XA_STATE(xas
, &mapping
->i_pages
, wbc
->range_start
>> PAGE_SHIFT
);
938 struct inode
*inode
= mapping
->host
;
939 pgoff_t end_index
= wbc
->range_end
>> PAGE_SHIFT
;
940 struct dax_device
*dax_dev
;
943 unsigned int scanned
= 0;
945 if (WARN_ON_ONCE(inode
->i_blkbits
!= PAGE_SHIFT
))
948 if (!mapping
->nrexceptional
|| wbc
->sync_mode
!= WB_SYNC_ALL
)
951 dax_dev
= dax_get_by_host(bdev
->bd_disk
->disk_name
);
955 trace_dax_writeback_range(inode
, xas
.xa_index
, end_index
);
957 tag_pages_for_writeback(mapping
, xas
.xa_index
, end_index
);
960 xas_for_each_marked(&xas
, entry
, end_index
, PAGECACHE_TAG_TOWRITE
) {
961 ret
= dax_writeback_one(&xas
, dax_dev
, mapping
, entry
);
963 mapping_set_error(mapping
, ret
);
966 if (++scanned
% XA_CHECK_SCHED
)
970 xas_unlock_irq(&xas
);
974 xas_unlock_irq(&xas
);
976 trace_dax_writeback_range_done(inode
, xas
.xa_index
, end_index
);
979 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range
);
981 static sector_t
dax_iomap_sector(struct iomap
*iomap
, loff_t pos
)
983 return (iomap
->addr
+ (pos
& PAGE_MASK
) - iomap
->offset
) >> 9;
986 static int dax_iomap_pfn(struct iomap
*iomap
, loff_t pos
, size_t size
,
989 const sector_t sector
= dax_iomap_sector(iomap
, pos
);
994 rc
= bdev_dax_pgoff(iomap
->bdev
, sector
, size
, &pgoff
);
997 id
= dax_read_lock();
998 length
= dax_direct_access(iomap
->dax_dev
, pgoff
, PHYS_PFN(size
),
1005 if (PFN_PHYS(length
) < size
)
1007 if (pfn_t_to_pfn(*pfnp
) & (PHYS_PFN(size
)-1))
1009 /* For larger pages we need devmap */
1010 if (length
> 1 && !pfn_t_devmap(*pfnp
))
1014 dax_read_unlock(id
);
1019 * The user has performed a load from a hole in the file. Allocating a new
1020 * page in the file would cause excessive storage usage for workloads with
1021 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1022 * If this page is ever written to we will re-fault and change the mapping to
1023 * point to real DAX storage instead.
1025 static vm_fault_t
dax_load_hole(struct xa_state
*xas
,
1026 struct address_space
*mapping
, void **entry
,
1027 struct vm_fault
*vmf
)
1029 struct inode
*inode
= mapping
->host
;
1030 unsigned long vaddr
= vmf
->address
;
1031 pfn_t pfn
= pfn_to_pfn_t(my_zero_pfn(vaddr
));
1034 *entry
= dax_insert_entry(xas
, mapping
, vmf
, *entry
, pfn
,
1035 DAX_ZERO_PAGE
, false);
1037 ret
= vmf_insert_mixed(vmf
->vma
, vaddr
, pfn
);
1038 trace_dax_load_hole(inode
, vmf
, ret
);
1042 static bool dax_range_is_aligned(struct block_device
*bdev
,
1043 unsigned int offset
, unsigned int length
)
1045 unsigned short sector_size
= bdev_logical_block_size(bdev
);
1047 if (!IS_ALIGNED(offset
, sector_size
))
1049 if (!IS_ALIGNED(length
, sector_size
))
1055 int __dax_zero_page_range(struct block_device
*bdev
,
1056 struct dax_device
*dax_dev
, sector_t sector
,
1057 unsigned int offset
, unsigned int size
)
1059 if (dax_range_is_aligned(bdev
, offset
, size
)) {
1060 sector_t start_sector
= sector
+ (offset
>> 9);
1062 return blkdev_issue_zeroout(bdev
, start_sector
,
1063 size
>> 9, GFP_NOFS
, 0);
1069 rc
= bdev_dax_pgoff(bdev
, sector
, PAGE_SIZE
, &pgoff
);
1073 id
= dax_read_lock();
1074 rc
= dax_direct_access(dax_dev
, pgoff
, 1, &kaddr
, NULL
);
1076 dax_read_unlock(id
);
1079 memset(kaddr
+ offset
, 0, size
);
1080 dax_flush(dax_dev
, kaddr
+ offset
, size
);
1081 dax_read_unlock(id
);
1085 EXPORT_SYMBOL_GPL(__dax_zero_page_range
);
1088 dax_iomap_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
1089 struct iomap
*iomap
)
1091 struct block_device
*bdev
= iomap
->bdev
;
1092 struct dax_device
*dax_dev
= iomap
->dax_dev
;
1093 struct iov_iter
*iter
= data
;
1094 loff_t end
= pos
+ length
, done
= 0;
1099 if (iov_iter_rw(iter
) == READ
) {
1100 end
= min(end
, i_size_read(inode
));
1104 if (iomap
->type
== IOMAP_HOLE
|| iomap
->type
== IOMAP_UNWRITTEN
)
1105 return iov_iter_zero(min(length
, end
- pos
), iter
);
1108 if (WARN_ON_ONCE(iomap
->type
!= IOMAP_MAPPED
))
1112 * Write can allocate block for an area which has a hole page mapped
1113 * into page tables. We have to tear down these mappings so that data
1114 * written by write(2) is visible in mmap.
1116 if (iomap
->flags
& IOMAP_F_NEW
) {
1117 invalidate_inode_pages2_range(inode
->i_mapping
,
1119 (end
- 1) >> PAGE_SHIFT
);
1122 id
= dax_read_lock();
1124 unsigned offset
= pos
& (PAGE_SIZE
- 1);
1125 const size_t size
= ALIGN(length
+ offset
, PAGE_SIZE
);
1126 const sector_t sector
= dax_iomap_sector(iomap
, pos
);
1131 if (fatal_signal_pending(current
)) {
1136 ret
= bdev_dax_pgoff(bdev
, sector
, size
, &pgoff
);
1140 map_len
= dax_direct_access(dax_dev
, pgoff
, PHYS_PFN(size
),
1147 map_len
= PFN_PHYS(map_len
);
1150 if (map_len
> end
- pos
)
1151 map_len
= end
- pos
;
1154 * The userspace address for the memory copy has already been
1155 * validated via access_ok() in either vfs_read() or
1156 * vfs_write(), depending on which operation we are doing.
1158 if (iov_iter_rw(iter
) == WRITE
)
1159 xfer
= dax_copy_from_iter(dax_dev
, pgoff
, kaddr
,
1162 xfer
= dax_copy_to_iter(dax_dev
, pgoff
, kaddr
,
1174 dax_read_unlock(id
);
1176 return done
? done
: ret
;
1180 * dax_iomap_rw - Perform I/O to a DAX file
1181 * @iocb: The control block for this I/O
1182 * @iter: The addresses to do I/O from or to
1183 * @ops: iomap ops passed from the file system
1185 * This function performs read and write operations to directly mapped
1186 * persistent memory. The callers needs to take care of read/write exclusion
1187 * and evicting any page cache pages in the region under I/O.
1190 dax_iomap_rw(struct kiocb
*iocb
, struct iov_iter
*iter
,
1191 const struct iomap_ops
*ops
)
1193 struct address_space
*mapping
= iocb
->ki_filp
->f_mapping
;
1194 struct inode
*inode
= mapping
->host
;
1195 loff_t pos
= iocb
->ki_pos
, ret
= 0, done
= 0;
1198 if (iov_iter_rw(iter
) == WRITE
) {
1199 lockdep_assert_held_exclusive(&inode
->i_rwsem
);
1200 flags
|= IOMAP_WRITE
;
1202 lockdep_assert_held(&inode
->i_rwsem
);
1205 while (iov_iter_count(iter
)) {
1206 ret
= iomap_apply(inode
, pos
, iov_iter_count(iter
), flags
, ops
,
1207 iter
, dax_iomap_actor
);
1214 iocb
->ki_pos
+= done
;
1215 return done
? done
: ret
;
1217 EXPORT_SYMBOL_GPL(dax_iomap_rw
);
1219 static vm_fault_t
dax_fault_return(int error
)
1222 return VM_FAULT_NOPAGE
;
1223 return vmf_error(error
);
1227 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1228 * flushed on write-faults (non-cow), but not read-faults.
1230 static bool dax_fault_is_synchronous(unsigned long flags
,
1231 struct vm_area_struct
*vma
, struct iomap
*iomap
)
1233 return (flags
& IOMAP_WRITE
) && (vma
->vm_flags
& VM_SYNC
)
1234 && (iomap
->flags
& IOMAP_F_DIRTY
);
1237 static vm_fault_t
dax_iomap_pte_fault(struct vm_fault
*vmf
, pfn_t
*pfnp
,
1238 int *iomap_errp
, const struct iomap_ops
*ops
)
1240 struct vm_area_struct
*vma
= vmf
->vma
;
1241 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1242 XA_STATE(xas
, &mapping
->i_pages
, vmf
->pgoff
);
1243 struct inode
*inode
= mapping
->host
;
1244 unsigned long vaddr
= vmf
->address
;
1245 loff_t pos
= (loff_t
)vmf
->pgoff
<< PAGE_SHIFT
;
1246 struct iomap iomap
= { 0 };
1247 unsigned flags
= IOMAP_FAULT
;
1248 int error
, major
= 0;
1249 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1255 trace_dax_pte_fault(inode
, vmf
, ret
);
1257 * Check whether offset isn't beyond end of file now. Caller is supposed
1258 * to hold locks serializing us with truncate / punch hole so this is
1261 if (pos
>= i_size_read(inode
)) {
1262 ret
= VM_FAULT_SIGBUS
;
1266 if (write
&& !vmf
->cow_page
)
1267 flags
|= IOMAP_WRITE
;
1269 entry
= grab_mapping_entry(&xas
, mapping
, 0);
1270 if (xa_is_internal(entry
)) {
1271 ret
= xa_to_internal(entry
);
1276 * It is possible, particularly with mixed reads & writes to private
1277 * mappings, that we have raced with a PMD fault that overlaps with
1278 * the PTE we need to set up. If so just return and the fault will be
1281 if (pmd_trans_huge(*vmf
->pmd
) || pmd_devmap(*vmf
->pmd
)) {
1282 ret
= VM_FAULT_NOPAGE
;
1287 * Note that we don't bother to use iomap_apply here: DAX required
1288 * the file system block size to be equal the page size, which means
1289 * that we never have to deal with more than a single extent here.
1291 error
= ops
->iomap_begin(inode
, pos
, PAGE_SIZE
, flags
, &iomap
);
1293 *iomap_errp
= error
;
1295 ret
= dax_fault_return(error
);
1298 if (WARN_ON_ONCE(iomap
.offset
+ iomap
.length
< pos
+ PAGE_SIZE
)) {
1299 error
= -EIO
; /* fs corruption? */
1300 goto error_finish_iomap
;
1303 if (vmf
->cow_page
) {
1304 sector_t sector
= dax_iomap_sector(&iomap
, pos
);
1306 switch (iomap
.type
) {
1308 case IOMAP_UNWRITTEN
:
1309 clear_user_highpage(vmf
->cow_page
, vaddr
);
1312 error
= copy_user_dax(iomap
.bdev
, iomap
.dax_dev
,
1313 sector
, PAGE_SIZE
, vmf
->cow_page
, vaddr
);
1322 goto error_finish_iomap
;
1324 __SetPageUptodate(vmf
->cow_page
);
1325 ret
= finish_fault(vmf
);
1327 ret
= VM_FAULT_DONE_COW
;
1331 sync
= dax_fault_is_synchronous(flags
, vma
, &iomap
);
1333 switch (iomap
.type
) {
1335 if (iomap
.flags
& IOMAP_F_NEW
) {
1336 count_vm_event(PGMAJFAULT
);
1337 count_memcg_event_mm(vma
->vm_mm
, PGMAJFAULT
);
1338 major
= VM_FAULT_MAJOR
;
1340 error
= dax_iomap_pfn(&iomap
, pos
, PAGE_SIZE
, &pfn
);
1342 goto error_finish_iomap
;
1344 entry
= dax_insert_entry(&xas
, mapping
, vmf
, entry
, pfn
,
1348 * If we are doing synchronous page fault and inode needs fsync,
1349 * we can insert PTE into page tables only after that happens.
1350 * Skip insertion for now and return the pfn so that caller can
1351 * insert it after fsync is done.
1354 if (WARN_ON_ONCE(!pfnp
)) {
1356 goto error_finish_iomap
;
1359 ret
= VM_FAULT_NEEDDSYNC
| major
;
1362 trace_dax_insert_mapping(inode
, vmf
, entry
);
1364 ret
= vmf_insert_mixed_mkwrite(vma
, vaddr
, pfn
);
1366 ret
= vmf_insert_mixed(vma
, vaddr
, pfn
);
1369 case IOMAP_UNWRITTEN
:
1372 ret
= dax_load_hole(&xas
, mapping
, &entry
, vmf
);
1383 ret
= dax_fault_return(error
);
1385 if (ops
->iomap_end
) {
1386 int copied
= PAGE_SIZE
;
1388 if (ret
& VM_FAULT_ERROR
)
1391 * The fault is done by now and there's no way back (other
1392 * thread may be already happily using PTE we have installed).
1393 * Just ignore error from ->iomap_end since we cannot do much
1396 ops
->iomap_end(inode
, pos
, PAGE_SIZE
, copied
, flags
, &iomap
);
1399 dax_unlock_entry(&xas
, entry
);
1401 trace_dax_pte_fault_done(inode
, vmf
, ret
);
1405 #ifdef CONFIG_FS_DAX_PMD
1406 static vm_fault_t
dax_pmd_load_hole(struct xa_state
*xas
, struct vm_fault
*vmf
,
1407 struct iomap
*iomap
, void **entry
)
1409 struct address_space
*mapping
= vmf
->vma
->vm_file
->f_mapping
;
1410 unsigned long pmd_addr
= vmf
->address
& PMD_MASK
;
1411 struct vm_area_struct
*vma
= vmf
->vma
;
1412 struct inode
*inode
= mapping
->host
;
1413 pgtable_t pgtable
= NULL
;
1414 struct page
*zero_page
;
1419 zero_page
= mm_get_huge_zero_page(vmf
->vma
->vm_mm
);
1421 if (unlikely(!zero_page
))
1424 pfn
= page_to_pfn_t(zero_page
);
1425 *entry
= dax_insert_entry(xas
, mapping
, vmf
, *entry
, pfn
,
1426 DAX_PMD
| DAX_ZERO_PAGE
, false);
1428 if (arch_needs_pgtable_deposit()) {
1429 pgtable
= pte_alloc_one(vma
->vm_mm
);
1431 return VM_FAULT_OOM
;
1434 ptl
= pmd_lock(vmf
->vma
->vm_mm
, vmf
->pmd
);
1435 if (!pmd_none(*(vmf
->pmd
))) {
1441 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, pgtable
);
1442 mm_inc_nr_ptes(vma
->vm_mm
);
1444 pmd_entry
= mk_pmd(zero_page
, vmf
->vma
->vm_page_prot
);
1445 pmd_entry
= pmd_mkhuge(pmd_entry
);
1446 set_pmd_at(vmf
->vma
->vm_mm
, pmd_addr
, vmf
->pmd
, pmd_entry
);
1448 trace_dax_pmd_load_hole(inode
, vmf
, zero_page
, *entry
);
1449 return VM_FAULT_NOPAGE
;
1453 pte_free(vma
->vm_mm
, pgtable
);
1454 trace_dax_pmd_load_hole_fallback(inode
, vmf
, zero_page
, *entry
);
1455 return VM_FAULT_FALLBACK
;
1458 static vm_fault_t
dax_iomap_pmd_fault(struct vm_fault
*vmf
, pfn_t
*pfnp
,
1459 const struct iomap_ops
*ops
)
1461 struct vm_area_struct
*vma
= vmf
->vma
;
1462 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1463 XA_STATE_ORDER(xas
, &mapping
->i_pages
, vmf
->pgoff
, PMD_ORDER
);
1464 unsigned long pmd_addr
= vmf
->address
& PMD_MASK
;
1465 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1467 unsigned int iomap_flags
= (write
? IOMAP_WRITE
: 0) | IOMAP_FAULT
;
1468 struct inode
*inode
= mapping
->host
;
1469 vm_fault_t result
= VM_FAULT_FALLBACK
;
1470 struct iomap iomap
= { 0 };
1478 * Check whether offset isn't beyond end of file now. Caller is
1479 * supposed to hold locks serializing us with truncate / punch hole so
1480 * this is a reliable test.
1482 max_pgoff
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
1484 trace_dax_pmd_fault(inode
, vmf
, max_pgoff
, 0);
1487 * Make sure that the faulting address's PMD offset (color) matches
1488 * the PMD offset from the start of the file. This is necessary so
1489 * that a PMD range in the page table overlaps exactly with a PMD
1490 * range in the page cache.
1492 if ((vmf
->pgoff
& PG_PMD_COLOUR
) !=
1493 ((vmf
->address
>> PAGE_SHIFT
) & PG_PMD_COLOUR
))
1496 /* Fall back to PTEs if we're going to COW */
1497 if (write
&& !(vma
->vm_flags
& VM_SHARED
))
1500 /* If the PMD would extend outside the VMA */
1501 if (pmd_addr
< vma
->vm_start
)
1503 if ((pmd_addr
+ PMD_SIZE
) > vma
->vm_end
)
1506 if (xas
.xa_index
>= max_pgoff
) {
1507 result
= VM_FAULT_SIGBUS
;
1511 /* If the PMD would extend beyond the file size */
1512 if ((xas
.xa_index
| PG_PMD_COLOUR
) >= max_pgoff
)
1516 * grab_mapping_entry() will make sure we get an empty PMD entry,
1517 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1518 * entry is already in the array, for instance), it will return
1519 * VM_FAULT_FALLBACK.
1521 entry
= grab_mapping_entry(&xas
, mapping
, DAX_PMD
);
1522 if (xa_is_internal(entry
)) {
1523 result
= xa_to_internal(entry
);
1528 * It is possible, particularly with mixed reads & writes to private
1529 * mappings, that we have raced with a PTE fault that overlaps with
1530 * the PMD we need to set up. If so just return and the fault will be
1533 if (!pmd_none(*vmf
->pmd
) && !pmd_trans_huge(*vmf
->pmd
) &&
1534 !pmd_devmap(*vmf
->pmd
)) {
1540 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1541 * setting up a mapping, so really we're using iomap_begin() as a way
1542 * to look up our filesystem block.
1544 pos
= (loff_t
)xas
.xa_index
<< PAGE_SHIFT
;
1545 error
= ops
->iomap_begin(inode
, pos
, PMD_SIZE
, iomap_flags
, &iomap
);
1549 if (iomap
.offset
+ iomap
.length
< pos
+ PMD_SIZE
)
1552 sync
= dax_fault_is_synchronous(iomap_flags
, vma
, &iomap
);
1554 switch (iomap
.type
) {
1556 error
= dax_iomap_pfn(&iomap
, pos
, PMD_SIZE
, &pfn
);
1560 entry
= dax_insert_entry(&xas
, mapping
, vmf
, entry
, pfn
,
1561 DAX_PMD
, write
&& !sync
);
1564 * If we are doing synchronous page fault and inode needs fsync,
1565 * we can insert PMD into page tables only after that happens.
1566 * Skip insertion for now and return the pfn so that caller can
1567 * insert it after fsync is done.
1570 if (WARN_ON_ONCE(!pfnp
))
1573 result
= VM_FAULT_NEEDDSYNC
;
1577 trace_dax_pmd_insert_mapping(inode
, vmf
, PMD_SIZE
, pfn
, entry
);
1578 result
= vmf_insert_pfn_pmd(vmf
, pfn
, write
);
1580 case IOMAP_UNWRITTEN
:
1582 if (WARN_ON_ONCE(write
))
1584 result
= dax_pmd_load_hole(&xas
, vmf
, &iomap
, &entry
);
1592 if (ops
->iomap_end
) {
1593 int copied
= PMD_SIZE
;
1595 if (result
== VM_FAULT_FALLBACK
)
1598 * The fault is done by now and there's no way back (other
1599 * thread may be already happily using PMD we have installed).
1600 * Just ignore error from ->iomap_end since we cannot do much
1603 ops
->iomap_end(inode
, pos
, PMD_SIZE
, copied
, iomap_flags
,
1607 dax_unlock_entry(&xas
, entry
);
1609 if (result
== VM_FAULT_FALLBACK
) {
1610 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1611 count_vm_event(THP_FAULT_FALLBACK
);
1614 trace_dax_pmd_fault_done(inode
, vmf
, max_pgoff
, result
);
1618 static vm_fault_t
dax_iomap_pmd_fault(struct vm_fault
*vmf
, pfn_t
*pfnp
,
1619 const struct iomap_ops
*ops
)
1621 return VM_FAULT_FALLBACK
;
1623 #endif /* CONFIG_FS_DAX_PMD */
1626 * dax_iomap_fault - handle a page fault on a DAX file
1627 * @vmf: The description of the fault
1628 * @pe_size: Size of the page to fault in
1629 * @pfnp: PFN to insert for synchronous faults if fsync is required
1630 * @iomap_errp: Storage for detailed error code in case of error
1631 * @ops: Iomap ops passed from the file system
1633 * When a page fault occurs, filesystems may call this helper in
1634 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1635 * has done all the necessary locking for page fault to proceed
1638 vm_fault_t
dax_iomap_fault(struct vm_fault
*vmf
, enum page_entry_size pe_size
,
1639 pfn_t
*pfnp
, int *iomap_errp
, const struct iomap_ops
*ops
)
1643 return dax_iomap_pte_fault(vmf
, pfnp
, iomap_errp
, ops
);
1645 return dax_iomap_pmd_fault(vmf
, pfnp
, ops
);
1647 return VM_FAULT_FALLBACK
;
1650 EXPORT_SYMBOL_GPL(dax_iomap_fault
);
1653 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1654 * @vmf: The description of the fault
1655 * @pfn: PFN to insert
1656 * @order: Order of entry to insert.
1658 * This function inserts a writeable PTE or PMD entry into the page tables
1659 * for an mmaped DAX file. It also marks the page cache entry as dirty.
1662 dax_insert_pfn_mkwrite(struct vm_fault
*vmf
, pfn_t pfn
, unsigned int order
)
1664 struct address_space
*mapping
= vmf
->vma
->vm_file
->f_mapping
;
1665 XA_STATE_ORDER(xas
, &mapping
->i_pages
, vmf
->pgoff
, order
);
1670 entry
= get_unlocked_entry(&xas
);
1671 /* Did we race with someone splitting entry or so? */
1673 (order
== 0 && !dax_is_pte_entry(entry
)) ||
1674 (order
== PMD_ORDER
&& !dax_is_pmd_entry(entry
))) {
1675 put_unlocked_entry(&xas
, entry
);
1676 xas_unlock_irq(&xas
);
1677 trace_dax_insert_pfn_mkwrite_no_entry(mapping
->host
, vmf
,
1679 return VM_FAULT_NOPAGE
;
1681 xas_set_mark(&xas
, PAGECACHE_TAG_DIRTY
);
1682 dax_lock_entry(&xas
, entry
);
1683 xas_unlock_irq(&xas
);
1685 ret
= vmf_insert_mixed_mkwrite(vmf
->vma
, vmf
->address
, pfn
);
1686 #ifdef CONFIG_FS_DAX_PMD
1687 else if (order
== PMD_ORDER
)
1688 ret
= vmf_insert_pfn_pmd(vmf
, pfn
, FAULT_FLAG_WRITE
);
1691 ret
= VM_FAULT_FALLBACK
;
1692 dax_unlock_entry(&xas
, entry
);
1693 trace_dax_insert_pfn_mkwrite(mapping
->host
, vmf
, ret
);
1698 * dax_finish_sync_fault - finish synchronous page fault
1699 * @vmf: The description of the fault
1700 * @pe_size: Size of entry to be inserted
1701 * @pfn: PFN to insert
1703 * This function ensures that the file range touched by the page fault is
1704 * stored persistently on the media and handles inserting of appropriate page
1707 vm_fault_t
dax_finish_sync_fault(struct vm_fault
*vmf
,
1708 enum page_entry_size pe_size
, pfn_t pfn
)
1711 loff_t start
= ((loff_t
)vmf
->pgoff
) << PAGE_SHIFT
;
1712 unsigned int order
= pe_order(pe_size
);
1713 size_t len
= PAGE_SIZE
<< order
;
1715 err
= vfs_fsync_range(vmf
->vma
->vm_file
, start
, start
+ len
- 1, 1);
1717 return VM_FAULT_SIGBUS
;
1718 return dax_insert_pfn_mkwrite(vmf
, pfn
, order
);
1720 EXPORT_SYMBOL_GPL(dax_finish_sync_fault
);