1 // SPDX-License-Identifier: GPL-2.0-only
5 * (C) Copyright Al Viro 2000, 2001
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/task_work.h>
29 #include <linux/sched/task.h>
30 #include <uapi/linux/mount.h>
31 #include <linux/fs_context.h>
36 /* Maximum number of mounts in a mount namespace */
37 unsigned int sysctl_mount_max __read_mostly
= 100000;
39 static unsigned int m_hash_mask __read_mostly
;
40 static unsigned int m_hash_shift __read_mostly
;
41 static unsigned int mp_hash_mask __read_mostly
;
42 static unsigned int mp_hash_shift __read_mostly
;
44 static __initdata
unsigned long mhash_entries
;
45 static int __init
set_mhash_entries(char *str
)
49 mhash_entries
= simple_strtoul(str
, &str
, 0);
52 __setup("mhash_entries=", set_mhash_entries
);
54 static __initdata
unsigned long mphash_entries
;
55 static int __init
set_mphash_entries(char *str
)
59 mphash_entries
= simple_strtoul(str
, &str
, 0);
62 __setup("mphash_entries=", set_mphash_entries
);
65 static DEFINE_IDA(mnt_id_ida
);
66 static DEFINE_IDA(mnt_group_ida
);
68 static struct hlist_head
*mount_hashtable __read_mostly
;
69 static struct hlist_head
*mountpoint_hashtable __read_mostly
;
70 static struct kmem_cache
*mnt_cache __read_mostly
;
71 static DECLARE_RWSEM(namespace_sem
);
74 struct kobject
*fs_kobj
;
75 EXPORT_SYMBOL_GPL(fs_kobj
);
78 * vfsmount lock may be taken for read to prevent changes to the
79 * vfsmount hash, ie. during mountpoint lookups or walking back
82 * It should be taken for write in all cases where the vfsmount
83 * tree or hash is modified or when a vfsmount structure is modified.
85 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(mount_lock
);
87 static inline struct hlist_head
*m_hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
89 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
90 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
91 tmp
= tmp
+ (tmp
>> m_hash_shift
);
92 return &mount_hashtable
[tmp
& m_hash_mask
];
95 static inline struct hlist_head
*mp_hash(struct dentry
*dentry
)
97 unsigned long tmp
= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
98 tmp
= tmp
+ (tmp
>> mp_hash_shift
);
99 return &mountpoint_hashtable
[tmp
& mp_hash_mask
];
102 static int mnt_alloc_id(struct mount
*mnt
)
104 int res
= ida_alloc(&mnt_id_ida
, GFP_KERNEL
);
112 static void mnt_free_id(struct mount
*mnt
)
114 ida_free(&mnt_id_ida
, mnt
->mnt_id
);
118 * Allocate a new peer group ID
120 static int mnt_alloc_group_id(struct mount
*mnt
)
122 int res
= ida_alloc_min(&mnt_group_ida
, 1, GFP_KERNEL
);
126 mnt
->mnt_group_id
= res
;
131 * Release a peer group ID
133 void mnt_release_group_id(struct mount
*mnt
)
135 ida_free(&mnt_group_ida
, mnt
->mnt_group_id
);
136 mnt
->mnt_group_id
= 0;
140 * vfsmount lock must be held for read
142 static inline void mnt_add_count(struct mount
*mnt
, int n
)
145 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, n
);
154 * vfsmount lock must be held for write
156 unsigned int mnt_get_count(struct mount
*mnt
)
159 unsigned int count
= 0;
162 for_each_possible_cpu(cpu
) {
163 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_count
;
168 return mnt
->mnt_count
;
172 static void drop_mountpoint(struct fs_pin
*p
)
174 struct mount
*m
= container_of(p
, struct mount
, mnt_umount
);
175 dput(m
->mnt_ex_mountpoint
);
180 static struct mount
*alloc_vfsmnt(const char *name
)
182 struct mount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
186 err
= mnt_alloc_id(mnt
);
191 mnt
->mnt_devname
= kstrdup_const(name
, GFP_KERNEL
);
192 if (!mnt
->mnt_devname
)
197 mnt
->mnt_pcp
= alloc_percpu(struct mnt_pcp
);
199 goto out_free_devname
;
201 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, 1);
204 mnt
->mnt_writers
= 0;
207 INIT_HLIST_NODE(&mnt
->mnt_hash
);
208 INIT_LIST_HEAD(&mnt
->mnt_child
);
209 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
210 INIT_LIST_HEAD(&mnt
->mnt_list
);
211 INIT_LIST_HEAD(&mnt
->mnt_expire
);
212 INIT_LIST_HEAD(&mnt
->mnt_share
);
213 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
214 INIT_LIST_HEAD(&mnt
->mnt_slave
);
215 INIT_HLIST_NODE(&mnt
->mnt_mp_list
);
216 INIT_LIST_HEAD(&mnt
->mnt_umounting
);
217 init_fs_pin(&mnt
->mnt_umount
, drop_mountpoint
);
223 kfree_const(mnt
->mnt_devname
);
228 kmem_cache_free(mnt_cache
, mnt
);
233 * Most r/o checks on a fs are for operations that take
234 * discrete amounts of time, like a write() or unlink().
235 * We must keep track of when those operations start
236 * (for permission checks) and when they end, so that
237 * we can determine when writes are able to occur to
241 * __mnt_is_readonly: check whether a mount is read-only
242 * @mnt: the mount to check for its write status
244 * This shouldn't be used directly ouside of the VFS.
245 * It does not guarantee that the filesystem will stay
246 * r/w, just that it is right *now*. This can not and
247 * should not be used in place of IS_RDONLY(inode).
248 * mnt_want/drop_write() will _keep_ the filesystem
251 bool __mnt_is_readonly(struct vfsmount
*mnt
)
253 return (mnt
->mnt_flags
& MNT_READONLY
) || sb_rdonly(mnt
->mnt_sb
);
255 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
257 static inline void mnt_inc_writers(struct mount
*mnt
)
260 this_cpu_inc(mnt
->mnt_pcp
->mnt_writers
);
266 static inline void mnt_dec_writers(struct mount
*mnt
)
269 this_cpu_dec(mnt
->mnt_pcp
->mnt_writers
);
275 static unsigned int mnt_get_writers(struct mount
*mnt
)
278 unsigned int count
= 0;
281 for_each_possible_cpu(cpu
) {
282 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_writers
;
287 return mnt
->mnt_writers
;
291 static int mnt_is_readonly(struct vfsmount
*mnt
)
293 if (mnt
->mnt_sb
->s_readonly_remount
)
295 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
297 return __mnt_is_readonly(mnt
);
301 * Most r/o & frozen checks on a fs are for operations that take discrete
302 * amounts of time, like a write() or unlink(). We must keep track of when
303 * those operations start (for permission checks) and when they end, so that we
304 * can determine when writes are able to occur to a filesystem.
307 * __mnt_want_write - get write access to a mount without freeze protection
308 * @m: the mount on which to take a write
310 * This tells the low-level filesystem that a write is about to be performed to
311 * it, and makes sure that writes are allowed (mnt it read-write) before
312 * returning success. This operation does not protect against filesystem being
313 * frozen. When the write operation is finished, __mnt_drop_write() must be
314 * called. This is effectively a refcount.
316 int __mnt_want_write(struct vfsmount
*m
)
318 struct mount
*mnt
= real_mount(m
);
322 mnt_inc_writers(mnt
);
324 * The store to mnt_inc_writers must be visible before we pass
325 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
326 * incremented count after it has set MNT_WRITE_HOLD.
329 while (READ_ONCE(mnt
->mnt
.mnt_flags
) & MNT_WRITE_HOLD
)
332 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
333 * be set to match its requirements. So we must not load that until
334 * MNT_WRITE_HOLD is cleared.
337 if (mnt_is_readonly(m
)) {
338 mnt_dec_writers(mnt
);
347 * mnt_want_write - get write access to a mount
348 * @m: the mount on which to take a write
350 * This tells the low-level filesystem that a write is about to be performed to
351 * it, and makes sure that writes are allowed (mount is read-write, filesystem
352 * is not frozen) before returning success. When the write operation is
353 * finished, mnt_drop_write() must be called. This is effectively a refcount.
355 int mnt_want_write(struct vfsmount
*m
)
359 sb_start_write(m
->mnt_sb
);
360 ret
= __mnt_want_write(m
);
362 sb_end_write(m
->mnt_sb
);
365 EXPORT_SYMBOL_GPL(mnt_want_write
);
368 * mnt_clone_write - get write access to a mount
369 * @mnt: the mount on which to take a write
371 * This is effectively like mnt_want_write, except
372 * it must only be used to take an extra write reference
373 * on a mountpoint that we already know has a write reference
374 * on it. This allows some optimisation.
376 * After finished, mnt_drop_write must be called as usual to
377 * drop the reference.
379 int mnt_clone_write(struct vfsmount
*mnt
)
381 /* superblock may be r/o */
382 if (__mnt_is_readonly(mnt
))
385 mnt_inc_writers(real_mount(mnt
));
389 EXPORT_SYMBOL_GPL(mnt_clone_write
);
392 * __mnt_want_write_file - get write access to a file's mount
393 * @file: the file who's mount on which to take a write
395 * This is like __mnt_want_write, but it takes a file and can
396 * do some optimisations if the file is open for write already
398 int __mnt_want_write_file(struct file
*file
)
400 if (!(file
->f_mode
& FMODE_WRITER
))
401 return __mnt_want_write(file
->f_path
.mnt
);
403 return mnt_clone_write(file
->f_path
.mnt
);
407 * mnt_want_write_file - get write access to a file's mount
408 * @file: the file who's mount on which to take a write
410 * This is like mnt_want_write, but it takes a file and can
411 * do some optimisations if the file is open for write already
413 int mnt_want_write_file(struct file
*file
)
417 sb_start_write(file_inode(file
)->i_sb
);
418 ret
= __mnt_want_write_file(file
);
420 sb_end_write(file_inode(file
)->i_sb
);
423 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
426 * __mnt_drop_write - give up write access to a mount
427 * @mnt: the mount on which to give up write access
429 * Tells the low-level filesystem that we are done
430 * performing writes to it. Must be matched with
431 * __mnt_want_write() call above.
433 void __mnt_drop_write(struct vfsmount
*mnt
)
436 mnt_dec_writers(real_mount(mnt
));
441 * mnt_drop_write - give up write access to a mount
442 * @mnt: the mount on which to give up write access
444 * Tells the low-level filesystem that we are done performing writes to it and
445 * also allows filesystem to be frozen again. Must be matched with
446 * mnt_want_write() call above.
448 void mnt_drop_write(struct vfsmount
*mnt
)
450 __mnt_drop_write(mnt
);
451 sb_end_write(mnt
->mnt_sb
);
453 EXPORT_SYMBOL_GPL(mnt_drop_write
);
455 void __mnt_drop_write_file(struct file
*file
)
457 __mnt_drop_write(file
->f_path
.mnt
);
460 void mnt_drop_write_file(struct file
*file
)
462 __mnt_drop_write_file(file
);
463 sb_end_write(file_inode(file
)->i_sb
);
465 EXPORT_SYMBOL(mnt_drop_write_file
);
467 static int mnt_make_readonly(struct mount
*mnt
)
472 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
474 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
475 * should be visible before we do.
480 * With writers on hold, if this value is zero, then there are
481 * definitely no active writers (although held writers may subsequently
482 * increment the count, they'll have to wait, and decrement it after
483 * seeing MNT_READONLY).
485 * It is OK to have counter incremented on one CPU and decremented on
486 * another: the sum will add up correctly. The danger would be when we
487 * sum up each counter, if we read a counter before it is incremented,
488 * but then read another CPU's count which it has been subsequently
489 * decremented from -- we would see more decrements than we should.
490 * MNT_WRITE_HOLD protects against this scenario, because
491 * mnt_want_write first increments count, then smp_mb, then spins on
492 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
493 * we're counting up here.
495 if (mnt_get_writers(mnt
) > 0)
498 mnt
->mnt
.mnt_flags
|= MNT_READONLY
;
500 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
501 * that become unheld will see MNT_READONLY.
504 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
509 static int __mnt_unmake_readonly(struct mount
*mnt
)
512 mnt
->mnt
.mnt_flags
&= ~MNT_READONLY
;
517 int sb_prepare_remount_readonly(struct super_block
*sb
)
522 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
523 if (atomic_long_read(&sb
->s_remove_count
))
527 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
528 if (!(mnt
->mnt
.mnt_flags
& MNT_READONLY
)) {
529 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
531 if (mnt_get_writers(mnt
) > 0) {
537 if (!err
&& atomic_long_read(&sb
->s_remove_count
))
541 sb
->s_readonly_remount
= 1;
544 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
545 if (mnt
->mnt
.mnt_flags
& MNT_WRITE_HOLD
)
546 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
553 static void free_vfsmnt(struct mount
*mnt
)
555 kfree_const(mnt
->mnt_devname
);
557 free_percpu(mnt
->mnt_pcp
);
559 kmem_cache_free(mnt_cache
, mnt
);
562 static void delayed_free_vfsmnt(struct rcu_head
*head
)
564 free_vfsmnt(container_of(head
, struct mount
, mnt_rcu
));
567 /* call under rcu_read_lock */
568 int __legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
571 if (read_seqretry(&mount_lock
, seq
))
575 mnt
= real_mount(bastard
);
576 mnt_add_count(mnt
, 1);
577 smp_mb(); // see mntput_no_expire()
578 if (likely(!read_seqretry(&mount_lock
, seq
)))
580 if (bastard
->mnt_flags
& MNT_SYNC_UMOUNT
) {
581 mnt_add_count(mnt
, -1);
585 if (unlikely(bastard
->mnt_flags
& MNT_DOOMED
)) {
586 mnt_add_count(mnt
, -1);
591 /* caller will mntput() */
595 /* call under rcu_read_lock */
596 bool legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
598 int res
= __legitimize_mnt(bastard
, seq
);
601 if (unlikely(res
< 0)) {
610 * find the first mount at @dentry on vfsmount @mnt.
611 * call under rcu_read_lock()
613 struct mount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
)
615 struct hlist_head
*head
= m_hash(mnt
, dentry
);
618 hlist_for_each_entry_rcu(p
, head
, mnt_hash
)
619 if (&p
->mnt_parent
->mnt
== mnt
&& p
->mnt_mountpoint
== dentry
)
625 * lookup_mnt - Return the first child mount mounted at path
627 * "First" means first mounted chronologically. If you create the
630 * mount /dev/sda1 /mnt
631 * mount /dev/sda2 /mnt
632 * mount /dev/sda3 /mnt
634 * Then lookup_mnt() on the base /mnt dentry in the root mount will
635 * return successively the root dentry and vfsmount of /dev/sda1, then
636 * /dev/sda2, then /dev/sda3, then NULL.
638 * lookup_mnt takes a reference to the found vfsmount.
640 struct vfsmount
*lookup_mnt(const struct path
*path
)
642 struct mount
*child_mnt
;
648 seq
= read_seqbegin(&mount_lock
);
649 child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
);
650 m
= child_mnt
? &child_mnt
->mnt
: NULL
;
651 } while (!legitimize_mnt(m
, seq
));
657 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
658 * current mount namespace.
660 * The common case is dentries are not mountpoints at all and that
661 * test is handled inline. For the slow case when we are actually
662 * dealing with a mountpoint of some kind, walk through all of the
663 * mounts in the current mount namespace and test to see if the dentry
666 * The mount_hashtable is not usable in the context because we
667 * need to identify all mounts that may be in the current mount
668 * namespace not just a mount that happens to have some specified
671 bool __is_local_mountpoint(struct dentry
*dentry
)
673 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
675 bool is_covered
= false;
677 if (!d_mountpoint(dentry
))
680 down_read(&namespace_sem
);
681 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
682 is_covered
= (mnt
->mnt_mountpoint
== dentry
);
686 up_read(&namespace_sem
);
691 static struct mountpoint
*lookup_mountpoint(struct dentry
*dentry
)
693 struct hlist_head
*chain
= mp_hash(dentry
);
694 struct mountpoint
*mp
;
696 hlist_for_each_entry(mp
, chain
, m_hash
) {
697 if (mp
->m_dentry
== dentry
) {
705 static struct mountpoint
*get_mountpoint(struct dentry
*dentry
)
707 struct mountpoint
*mp
, *new = NULL
;
710 if (d_mountpoint(dentry
)) {
711 /* might be worth a WARN_ON() */
712 if (d_unlinked(dentry
))
713 return ERR_PTR(-ENOENT
);
715 read_seqlock_excl(&mount_lock
);
716 mp
= lookup_mountpoint(dentry
);
717 read_sequnlock_excl(&mount_lock
);
723 new = kmalloc(sizeof(struct mountpoint
), GFP_KERNEL
);
725 return ERR_PTR(-ENOMEM
);
728 /* Exactly one processes may set d_mounted */
729 ret
= d_set_mounted(dentry
);
731 /* Someone else set d_mounted? */
735 /* The dentry is not available as a mountpoint? */
740 /* Add the new mountpoint to the hash table */
741 read_seqlock_excl(&mount_lock
);
742 new->m_dentry
= dentry
;
744 hlist_add_head(&new->m_hash
, mp_hash(dentry
));
745 INIT_HLIST_HEAD(&new->m_list
);
746 read_sequnlock_excl(&mount_lock
);
755 static void put_mountpoint(struct mountpoint
*mp
)
757 if (!--mp
->m_count
) {
758 struct dentry
*dentry
= mp
->m_dentry
;
759 BUG_ON(!hlist_empty(&mp
->m_list
));
760 spin_lock(&dentry
->d_lock
);
761 dentry
->d_flags
&= ~DCACHE_MOUNTED
;
762 spin_unlock(&dentry
->d_lock
);
763 hlist_del(&mp
->m_hash
);
768 static inline int check_mnt(struct mount
*mnt
)
770 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
774 * vfsmount lock must be held for write
776 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
780 wake_up_interruptible(&ns
->poll
);
785 * vfsmount lock must be held for write
787 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
789 if (ns
&& ns
->event
!= event
) {
791 wake_up_interruptible(&ns
->poll
);
796 * vfsmount lock must be held for write
798 static void unhash_mnt(struct mount
*mnt
)
800 mnt
->mnt_parent
= mnt
;
801 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
802 list_del_init(&mnt
->mnt_child
);
803 hlist_del_init_rcu(&mnt
->mnt_hash
);
804 hlist_del_init(&mnt
->mnt_mp_list
);
805 put_mountpoint(mnt
->mnt_mp
);
810 * vfsmount lock must be held for write
812 static void detach_mnt(struct mount
*mnt
, struct path
*old_path
)
814 old_path
->dentry
= mnt
->mnt_mountpoint
;
815 old_path
->mnt
= &mnt
->mnt_parent
->mnt
;
820 * vfsmount lock must be held for write
822 static void umount_mnt(struct mount
*mnt
)
824 /* old mountpoint will be dropped when we can do that */
825 mnt
->mnt_ex_mountpoint
= mnt
->mnt_mountpoint
;
830 * vfsmount lock must be held for write
832 void mnt_set_mountpoint(struct mount
*mnt
,
833 struct mountpoint
*mp
,
834 struct mount
*child_mnt
)
837 mnt_add_count(mnt
, 1); /* essentially, that's mntget */
838 child_mnt
->mnt_mountpoint
= dget(mp
->m_dentry
);
839 child_mnt
->mnt_parent
= mnt
;
840 child_mnt
->mnt_mp
= mp
;
841 hlist_add_head(&child_mnt
->mnt_mp_list
, &mp
->m_list
);
844 static void __attach_mnt(struct mount
*mnt
, struct mount
*parent
)
846 hlist_add_head_rcu(&mnt
->mnt_hash
,
847 m_hash(&parent
->mnt
, mnt
->mnt_mountpoint
));
848 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
852 * vfsmount lock must be held for write
854 static void attach_mnt(struct mount
*mnt
,
855 struct mount
*parent
,
856 struct mountpoint
*mp
)
858 mnt_set_mountpoint(parent
, mp
, mnt
);
859 __attach_mnt(mnt
, parent
);
862 void mnt_change_mountpoint(struct mount
*parent
, struct mountpoint
*mp
, struct mount
*mnt
)
864 struct mountpoint
*old_mp
= mnt
->mnt_mp
;
865 struct dentry
*old_mountpoint
= mnt
->mnt_mountpoint
;
866 struct mount
*old_parent
= mnt
->mnt_parent
;
868 list_del_init(&mnt
->mnt_child
);
869 hlist_del_init(&mnt
->mnt_mp_list
);
870 hlist_del_init_rcu(&mnt
->mnt_hash
);
872 attach_mnt(mnt
, parent
, mp
);
874 put_mountpoint(old_mp
);
877 * Safely avoid even the suggestion this code might sleep or
878 * lock the mount hash by taking advantage of the knowledge that
879 * mnt_change_mountpoint will not release the final reference
882 * During mounting, the mount passed in as the parent mount will
883 * continue to use the old mountpoint and during unmounting, the
884 * old mountpoint will continue to exist until namespace_unlock,
885 * which happens well after mnt_change_mountpoint.
887 spin_lock(&old_mountpoint
->d_lock
);
888 old_mountpoint
->d_lockref
.count
--;
889 spin_unlock(&old_mountpoint
->d_lock
);
891 mnt_add_count(old_parent
, -1);
895 * vfsmount lock must be held for write
897 static void commit_tree(struct mount
*mnt
)
899 struct mount
*parent
= mnt
->mnt_parent
;
902 struct mnt_namespace
*n
= parent
->mnt_ns
;
904 BUG_ON(parent
== mnt
);
906 list_add_tail(&head
, &mnt
->mnt_list
);
907 list_for_each_entry(m
, &head
, mnt_list
)
910 list_splice(&head
, n
->list
.prev
);
912 n
->mounts
+= n
->pending_mounts
;
913 n
->pending_mounts
= 0;
915 __attach_mnt(mnt
, parent
);
916 touch_mnt_namespace(n
);
919 static struct mount
*next_mnt(struct mount
*p
, struct mount
*root
)
921 struct list_head
*next
= p
->mnt_mounts
.next
;
922 if (next
== &p
->mnt_mounts
) {
926 next
= p
->mnt_child
.next
;
927 if (next
!= &p
->mnt_parent
->mnt_mounts
)
932 return list_entry(next
, struct mount
, mnt_child
);
935 static struct mount
*skip_mnt_tree(struct mount
*p
)
937 struct list_head
*prev
= p
->mnt_mounts
.prev
;
938 while (prev
!= &p
->mnt_mounts
) {
939 p
= list_entry(prev
, struct mount
, mnt_child
);
940 prev
= p
->mnt_mounts
.prev
;
946 * vfs_create_mount - Create a mount for a configured superblock
947 * @fc: The configuration context with the superblock attached
949 * Create a mount to an already configured superblock. If necessary, the
950 * caller should invoke vfs_get_tree() before calling this.
952 * Note that this does not attach the mount to anything.
954 struct vfsmount
*vfs_create_mount(struct fs_context
*fc
)
959 return ERR_PTR(-EINVAL
);
961 mnt
= alloc_vfsmnt(fc
->source
?: "none");
963 return ERR_PTR(-ENOMEM
);
965 if (fc
->sb_flags
& SB_KERNMOUNT
)
966 mnt
->mnt
.mnt_flags
= MNT_INTERNAL
;
968 atomic_inc(&fc
->root
->d_sb
->s_active
);
969 mnt
->mnt
.mnt_sb
= fc
->root
->d_sb
;
970 mnt
->mnt
.mnt_root
= dget(fc
->root
);
971 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
972 mnt
->mnt_parent
= mnt
;
975 list_add_tail(&mnt
->mnt_instance
, &mnt
->mnt
.mnt_sb
->s_mounts
);
979 EXPORT_SYMBOL(vfs_create_mount
);
981 struct vfsmount
*fc_mount(struct fs_context
*fc
)
983 int err
= vfs_get_tree(fc
);
985 up_write(&fc
->root
->d_sb
->s_umount
);
986 return vfs_create_mount(fc
);
990 EXPORT_SYMBOL(fc_mount
);
992 struct vfsmount
*vfs_kern_mount(struct file_system_type
*type
,
993 int flags
, const char *name
,
996 struct fs_context
*fc
;
997 struct vfsmount
*mnt
;
1001 return ERR_PTR(-EINVAL
);
1003 fc
= fs_context_for_mount(type
, flags
);
1005 return ERR_CAST(fc
);
1008 ret
= vfs_parse_fs_string(fc
, "source",
1009 name
, strlen(name
));
1011 ret
= parse_monolithic_mount_data(fc
, data
);
1020 EXPORT_SYMBOL_GPL(vfs_kern_mount
);
1023 vfs_submount(const struct dentry
*mountpoint
, struct file_system_type
*type
,
1024 const char *name
, void *data
)
1026 /* Until it is worked out how to pass the user namespace
1027 * through from the parent mount to the submount don't support
1028 * unprivileged mounts with submounts.
1030 if (mountpoint
->d_sb
->s_user_ns
!= &init_user_ns
)
1031 return ERR_PTR(-EPERM
);
1033 return vfs_kern_mount(type
, SB_SUBMOUNT
, name
, data
);
1035 EXPORT_SYMBOL_GPL(vfs_submount
);
1037 static struct mount
*clone_mnt(struct mount
*old
, struct dentry
*root
,
1040 struct super_block
*sb
= old
->mnt
.mnt_sb
;
1044 mnt
= alloc_vfsmnt(old
->mnt_devname
);
1046 return ERR_PTR(-ENOMEM
);
1048 if (flag
& (CL_SLAVE
| CL_PRIVATE
| CL_SHARED_TO_SLAVE
))
1049 mnt
->mnt_group_id
= 0; /* not a peer of original */
1051 mnt
->mnt_group_id
= old
->mnt_group_id
;
1053 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
1054 err
= mnt_alloc_group_id(mnt
);
1059 mnt
->mnt
.mnt_flags
= old
->mnt
.mnt_flags
;
1060 mnt
->mnt
.mnt_flags
&= ~(MNT_WRITE_HOLD
|MNT_MARKED
|MNT_INTERNAL
);
1062 atomic_inc(&sb
->s_active
);
1063 mnt
->mnt
.mnt_sb
= sb
;
1064 mnt
->mnt
.mnt_root
= dget(root
);
1065 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
1066 mnt
->mnt_parent
= mnt
;
1068 list_add_tail(&mnt
->mnt_instance
, &sb
->s_mounts
);
1069 unlock_mount_hash();
1071 if ((flag
& CL_SLAVE
) ||
1072 ((flag
& CL_SHARED_TO_SLAVE
) && IS_MNT_SHARED(old
))) {
1073 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
1074 mnt
->mnt_master
= old
;
1075 CLEAR_MNT_SHARED(mnt
);
1076 } else if (!(flag
& CL_PRIVATE
)) {
1077 if ((flag
& CL_MAKE_SHARED
) || IS_MNT_SHARED(old
))
1078 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
1079 if (IS_MNT_SLAVE(old
))
1080 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
1081 mnt
->mnt_master
= old
->mnt_master
;
1083 CLEAR_MNT_SHARED(mnt
);
1085 if (flag
& CL_MAKE_SHARED
)
1086 set_mnt_shared(mnt
);
1088 /* stick the duplicate mount on the same expiry list
1089 * as the original if that was on one */
1090 if (flag
& CL_EXPIRE
) {
1091 if (!list_empty(&old
->mnt_expire
))
1092 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
1100 return ERR_PTR(err
);
1103 static void cleanup_mnt(struct mount
*mnt
)
1106 * This probably indicates that somebody messed
1107 * up a mnt_want/drop_write() pair. If this
1108 * happens, the filesystem was probably unable
1109 * to make r/w->r/o transitions.
1112 * The locking used to deal with mnt_count decrement provides barriers,
1113 * so mnt_get_writers() below is safe.
1115 WARN_ON(mnt_get_writers(mnt
));
1116 if (unlikely(mnt
->mnt_pins
.first
))
1118 fsnotify_vfsmount_delete(&mnt
->mnt
);
1119 dput(mnt
->mnt
.mnt_root
);
1120 deactivate_super(mnt
->mnt
.mnt_sb
);
1122 call_rcu(&mnt
->mnt_rcu
, delayed_free_vfsmnt
);
1125 static void __cleanup_mnt(struct rcu_head
*head
)
1127 cleanup_mnt(container_of(head
, struct mount
, mnt_rcu
));
1130 static LLIST_HEAD(delayed_mntput_list
);
1131 static void delayed_mntput(struct work_struct
*unused
)
1133 struct llist_node
*node
= llist_del_all(&delayed_mntput_list
);
1134 struct mount
*m
, *t
;
1136 llist_for_each_entry_safe(m
, t
, node
, mnt_llist
)
1139 static DECLARE_DELAYED_WORK(delayed_mntput_work
, delayed_mntput
);
1141 static void mntput_no_expire(struct mount
*mnt
)
1144 if (likely(READ_ONCE(mnt
->mnt_ns
))) {
1146 * Since we don't do lock_mount_hash() here,
1147 * ->mnt_ns can change under us. However, if it's
1148 * non-NULL, then there's a reference that won't
1149 * be dropped until after an RCU delay done after
1150 * turning ->mnt_ns NULL. So if we observe it
1151 * non-NULL under rcu_read_lock(), the reference
1152 * we are dropping is not the final one.
1154 mnt_add_count(mnt
, -1);
1160 * make sure that if __legitimize_mnt() has not seen us grab
1161 * mount_lock, we'll see their refcount increment here.
1164 mnt_add_count(mnt
, -1);
1165 if (mnt_get_count(mnt
)) {
1167 unlock_mount_hash();
1170 if (unlikely(mnt
->mnt
.mnt_flags
& MNT_DOOMED
)) {
1172 unlock_mount_hash();
1175 mnt
->mnt
.mnt_flags
|= MNT_DOOMED
;
1178 list_del(&mnt
->mnt_instance
);
1180 if (unlikely(!list_empty(&mnt
->mnt_mounts
))) {
1181 struct mount
*p
, *tmp
;
1182 list_for_each_entry_safe(p
, tmp
, &mnt
->mnt_mounts
, mnt_child
) {
1186 unlock_mount_hash();
1188 if (likely(!(mnt
->mnt
.mnt_flags
& MNT_INTERNAL
))) {
1189 struct task_struct
*task
= current
;
1190 if (likely(!(task
->flags
& PF_KTHREAD
))) {
1191 init_task_work(&mnt
->mnt_rcu
, __cleanup_mnt
);
1192 if (!task_work_add(task
, &mnt
->mnt_rcu
, true))
1195 if (llist_add(&mnt
->mnt_llist
, &delayed_mntput_list
))
1196 schedule_delayed_work(&delayed_mntput_work
, 1);
1202 void mntput(struct vfsmount
*mnt
)
1205 struct mount
*m
= real_mount(mnt
);
1206 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1207 if (unlikely(m
->mnt_expiry_mark
))
1208 m
->mnt_expiry_mark
= 0;
1209 mntput_no_expire(m
);
1212 EXPORT_SYMBOL(mntput
);
1214 struct vfsmount
*mntget(struct vfsmount
*mnt
)
1217 mnt_add_count(real_mount(mnt
), 1);
1220 EXPORT_SYMBOL(mntget
);
1222 /* path_is_mountpoint() - Check if path is a mount in the current
1225 * d_mountpoint() can only be used reliably to establish if a dentry is
1226 * not mounted in any namespace and that common case is handled inline.
1227 * d_mountpoint() isn't aware of the possibility there may be multiple
1228 * mounts using a given dentry in a different namespace. This function
1229 * checks if the passed in path is a mountpoint rather than the dentry
1232 bool path_is_mountpoint(const struct path
*path
)
1237 if (!d_mountpoint(path
->dentry
))
1242 seq
= read_seqbegin(&mount_lock
);
1243 res
= __path_is_mountpoint(path
);
1244 } while (read_seqretry(&mount_lock
, seq
));
1249 EXPORT_SYMBOL(path_is_mountpoint
);
1251 struct vfsmount
*mnt_clone_internal(const struct path
*path
)
1254 p
= clone_mnt(real_mount(path
->mnt
), path
->dentry
, CL_PRIVATE
);
1257 p
->mnt
.mnt_flags
|= MNT_INTERNAL
;
1261 #ifdef CONFIG_PROC_FS
1262 /* iterator; we want it to have access to namespace_sem, thus here... */
1263 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
1265 struct proc_mounts
*p
= m
->private;
1267 down_read(&namespace_sem
);
1268 if (p
->cached_event
== p
->ns
->event
) {
1269 void *v
= p
->cached_mount
;
1270 if (*pos
== p
->cached_index
)
1272 if (*pos
== p
->cached_index
+ 1) {
1273 v
= seq_list_next(v
, &p
->ns
->list
, &p
->cached_index
);
1274 return p
->cached_mount
= v
;
1278 p
->cached_event
= p
->ns
->event
;
1279 p
->cached_mount
= seq_list_start(&p
->ns
->list
, *pos
);
1280 p
->cached_index
= *pos
;
1281 return p
->cached_mount
;
1284 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1286 struct proc_mounts
*p
= m
->private;
1288 p
->cached_mount
= seq_list_next(v
, &p
->ns
->list
, pos
);
1289 p
->cached_index
= *pos
;
1290 return p
->cached_mount
;
1293 static void m_stop(struct seq_file
*m
, void *v
)
1295 up_read(&namespace_sem
);
1298 static int m_show(struct seq_file
*m
, void *v
)
1300 struct proc_mounts
*p
= m
->private;
1301 struct mount
*r
= list_entry(v
, struct mount
, mnt_list
);
1302 return p
->show(m
, &r
->mnt
);
1305 const struct seq_operations mounts_op
= {
1311 #endif /* CONFIG_PROC_FS */
1314 * may_umount_tree - check if a mount tree is busy
1315 * @mnt: root of mount tree
1317 * This is called to check if a tree of mounts has any
1318 * open files, pwds, chroots or sub mounts that are
1321 int may_umount_tree(struct vfsmount
*m
)
1323 struct mount
*mnt
= real_mount(m
);
1324 int actual_refs
= 0;
1325 int minimum_refs
= 0;
1329 /* write lock needed for mnt_get_count */
1331 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1332 actual_refs
+= mnt_get_count(p
);
1335 unlock_mount_hash();
1337 if (actual_refs
> minimum_refs
)
1343 EXPORT_SYMBOL(may_umount_tree
);
1346 * may_umount - check if a mount point is busy
1347 * @mnt: root of mount
1349 * This is called to check if a mount point has any
1350 * open files, pwds, chroots or sub mounts. If the
1351 * mount has sub mounts this will return busy
1352 * regardless of whether the sub mounts are busy.
1354 * Doesn't take quota and stuff into account. IOW, in some cases it will
1355 * give false negatives. The main reason why it's here is that we need
1356 * a non-destructive way to look for easily umountable filesystems.
1358 int may_umount(struct vfsmount
*mnt
)
1361 down_read(&namespace_sem
);
1363 if (propagate_mount_busy(real_mount(mnt
), 2))
1365 unlock_mount_hash();
1366 up_read(&namespace_sem
);
1370 EXPORT_SYMBOL(may_umount
);
1372 static HLIST_HEAD(unmounted
); /* protected by namespace_sem */
1374 static void namespace_unlock(void)
1376 struct hlist_head head
;
1378 hlist_move_list(&unmounted
, &head
);
1380 up_write(&namespace_sem
);
1382 if (likely(hlist_empty(&head
)))
1385 synchronize_rcu_expedited();
1387 group_pin_kill(&head
);
1390 static inline void namespace_lock(void)
1392 down_write(&namespace_sem
);
1395 enum umount_tree_flags
{
1397 UMOUNT_PROPAGATE
= 2,
1398 UMOUNT_CONNECTED
= 4,
1401 static bool disconnect_mount(struct mount
*mnt
, enum umount_tree_flags how
)
1403 /* Leaving mounts connected is only valid for lazy umounts */
1404 if (how
& UMOUNT_SYNC
)
1407 /* A mount without a parent has nothing to be connected to */
1408 if (!mnt_has_parent(mnt
))
1411 /* Because the reference counting rules change when mounts are
1412 * unmounted and connected, umounted mounts may not be
1413 * connected to mounted mounts.
1415 if (!(mnt
->mnt_parent
->mnt
.mnt_flags
& MNT_UMOUNT
))
1418 /* Has it been requested that the mount remain connected? */
1419 if (how
& UMOUNT_CONNECTED
)
1422 /* Is the mount locked such that it needs to remain connected? */
1423 if (IS_MNT_LOCKED(mnt
))
1426 /* By default disconnect the mount */
1431 * mount_lock must be held
1432 * namespace_sem must be held for write
1434 static void umount_tree(struct mount
*mnt
, enum umount_tree_flags how
)
1436 LIST_HEAD(tmp_list
);
1439 if (how
& UMOUNT_PROPAGATE
)
1440 propagate_mount_unlock(mnt
);
1442 /* Gather the mounts to umount */
1443 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1444 p
->mnt
.mnt_flags
|= MNT_UMOUNT
;
1445 list_move(&p
->mnt_list
, &tmp_list
);
1448 /* Hide the mounts from mnt_mounts */
1449 list_for_each_entry(p
, &tmp_list
, mnt_list
) {
1450 list_del_init(&p
->mnt_child
);
1453 /* Add propogated mounts to the tmp_list */
1454 if (how
& UMOUNT_PROPAGATE
)
1455 propagate_umount(&tmp_list
);
1457 while (!list_empty(&tmp_list
)) {
1458 struct mnt_namespace
*ns
;
1460 p
= list_first_entry(&tmp_list
, struct mount
, mnt_list
);
1461 list_del_init(&p
->mnt_expire
);
1462 list_del_init(&p
->mnt_list
);
1466 __touch_mnt_namespace(ns
);
1469 if (how
& UMOUNT_SYNC
)
1470 p
->mnt
.mnt_flags
|= MNT_SYNC_UMOUNT
;
1472 disconnect
= disconnect_mount(p
, how
);
1474 pin_insert_group(&p
->mnt_umount
, &p
->mnt_parent
->mnt
,
1475 disconnect
? &unmounted
: NULL
);
1476 if (mnt_has_parent(p
)) {
1477 mnt_add_count(p
->mnt_parent
, -1);
1479 /* Don't forget about p */
1480 list_add_tail(&p
->mnt_child
, &p
->mnt_parent
->mnt_mounts
);
1485 change_mnt_propagation(p
, MS_PRIVATE
);
1489 static void shrink_submounts(struct mount
*mnt
);
1491 static int do_umount_root(struct super_block
*sb
)
1495 down_write(&sb
->s_umount
);
1496 if (!sb_rdonly(sb
)) {
1497 struct fs_context
*fc
;
1499 fc
= fs_context_for_reconfigure(sb
->s_root
, SB_RDONLY
,
1504 ret
= parse_monolithic_mount_data(fc
, NULL
);
1506 ret
= reconfigure_super(fc
);
1510 up_write(&sb
->s_umount
);
1514 static int do_umount(struct mount
*mnt
, int flags
)
1516 struct super_block
*sb
= mnt
->mnt
.mnt_sb
;
1519 retval
= security_sb_umount(&mnt
->mnt
, flags
);
1524 * Allow userspace to request a mountpoint be expired rather than
1525 * unmounting unconditionally. Unmount only happens if:
1526 * (1) the mark is already set (the mark is cleared by mntput())
1527 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1529 if (flags
& MNT_EXPIRE
) {
1530 if (&mnt
->mnt
== current
->fs
->root
.mnt
||
1531 flags
& (MNT_FORCE
| MNT_DETACH
))
1535 * probably don't strictly need the lock here if we examined
1536 * all race cases, but it's a slowpath.
1539 if (mnt_get_count(mnt
) != 2) {
1540 unlock_mount_hash();
1543 unlock_mount_hash();
1545 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1550 * If we may have to abort operations to get out of this
1551 * mount, and they will themselves hold resources we must
1552 * allow the fs to do things. In the Unix tradition of
1553 * 'Gee thats tricky lets do it in userspace' the umount_begin
1554 * might fail to complete on the first run through as other tasks
1555 * must return, and the like. Thats for the mount program to worry
1556 * about for the moment.
1559 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1560 sb
->s_op
->umount_begin(sb
);
1564 * No sense to grab the lock for this test, but test itself looks
1565 * somewhat bogus. Suggestions for better replacement?
1566 * Ho-hum... In principle, we might treat that as umount + switch
1567 * to rootfs. GC would eventually take care of the old vfsmount.
1568 * Actually it makes sense, especially if rootfs would contain a
1569 * /reboot - static binary that would close all descriptors and
1570 * call reboot(9). Then init(8) could umount root and exec /reboot.
1572 if (&mnt
->mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1574 * Special case for "unmounting" root ...
1575 * we just try to remount it readonly.
1577 if (!ns_capable(sb
->s_user_ns
, CAP_SYS_ADMIN
))
1579 return do_umount_root(sb
);
1585 /* Recheck MNT_LOCKED with the locks held */
1587 if (mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
1591 if (flags
& MNT_DETACH
) {
1592 if (!list_empty(&mnt
->mnt_list
))
1593 umount_tree(mnt
, UMOUNT_PROPAGATE
);
1596 shrink_submounts(mnt
);
1598 if (!propagate_mount_busy(mnt
, 2)) {
1599 if (!list_empty(&mnt
->mnt_list
))
1600 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
1605 unlock_mount_hash();
1611 * __detach_mounts - lazily unmount all mounts on the specified dentry
1613 * During unlink, rmdir, and d_drop it is possible to loose the path
1614 * to an existing mountpoint, and wind up leaking the mount.
1615 * detach_mounts allows lazily unmounting those mounts instead of
1618 * The caller may hold dentry->d_inode->i_mutex.
1620 void __detach_mounts(struct dentry
*dentry
)
1622 struct mountpoint
*mp
;
1627 mp
= lookup_mountpoint(dentry
);
1628 if (IS_ERR_OR_NULL(mp
))
1632 while (!hlist_empty(&mp
->m_list
)) {
1633 mnt
= hlist_entry(mp
->m_list
.first
, struct mount
, mnt_mp_list
);
1634 if (mnt
->mnt
.mnt_flags
& MNT_UMOUNT
) {
1635 hlist_add_head(&mnt
->mnt_umount
.s_list
, &unmounted
);
1638 else umount_tree(mnt
, UMOUNT_CONNECTED
);
1642 unlock_mount_hash();
1647 * Is the caller allowed to modify his namespace?
1649 static inline bool may_mount(void)
1651 return ns_capable(current
->nsproxy
->mnt_ns
->user_ns
, CAP_SYS_ADMIN
);
1654 static inline bool may_mandlock(void)
1656 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1659 return capable(CAP_SYS_ADMIN
);
1663 * Now umount can handle mount points as well as block devices.
1664 * This is important for filesystems which use unnamed block devices.
1666 * We now support a flag for forced unmount like the other 'big iron'
1667 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1670 int ksys_umount(char __user
*name
, int flags
)
1675 int lookup_flags
= 0;
1677 if (flags
& ~(MNT_FORCE
| MNT_DETACH
| MNT_EXPIRE
| UMOUNT_NOFOLLOW
))
1683 if (!(flags
& UMOUNT_NOFOLLOW
))
1684 lookup_flags
|= LOOKUP_FOLLOW
;
1686 lookup_flags
|= LOOKUP_NO_EVAL
;
1688 retval
= user_path_mountpoint_at(AT_FDCWD
, name
, lookup_flags
, &path
);
1691 mnt
= real_mount(path
.mnt
);
1693 if (path
.dentry
!= path
.mnt
->mnt_root
)
1695 if (!check_mnt(mnt
))
1697 if (mnt
->mnt
.mnt_flags
& MNT_LOCKED
) /* Check optimistically */
1700 if (flags
& MNT_FORCE
&& !capable(CAP_SYS_ADMIN
))
1703 retval
= do_umount(mnt
, flags
);
1705 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1707 mntput_no_expire(mnt
);
1712 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1714 return ksys_umount(name
, flags
);
1717 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1720 * The 2.0 compatible umount. No flags.
1722 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1724 return ksys_umount(name
, 0);
1729 static bool is_mnt_ns_file(struct dentry
*dentry
)
1731 /* Is this a proxy for a mount namespace? */
1732 return dentry
->d_op
== &ns_dentry_operations
&&
1733 dentry
->d_fsdata
== &mntns_operations
;
1736 struct mnt_namespace
*to_mnt_ns(struct ns_common
*ns
)
1738 return container_of(ns
, struct mnt_namespace
, ns
);
1741 static bool mnt_ns_loop(struct dentry
*dentry
)
1743 /* Could bind mounting the mount namespace inode cause a
1744 * mount namespace loop?
1746 struct mnt_namespace
*mnt_ns
;
1747 if (!is_mnt_ns_file(dentry
))
1750 mnt_ns
= to_mnt_ns(get_proc_ns(dentry
->d_inode
));
1751 return current
->nsproxy
->mnt_ns
->seq
>= mnt_ns
->seq
;
1754 struct mount
*copy_tree(struct mount
*mnt
, struct dentry
*dentry
,
1757 struct mount
*res
, *p
, *q
, *r
, *parent
;
1759 if (!(flag
& CL_COPY_UNBINDABLE
) && IS_MNT_UNBINDABLE(mnt
))
1760 return ERR_PTR(-EINVAL
);
1762 if (!(flag
& CL_COPY_MNT_NS_FILE
) && is_mnt_ns_file(dentry
))
1763 return ERR_PTR(-EINVAL
);
1765 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1769 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1772 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1774 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1777 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1778 if (!(flag
& CL_COPY_UNBINDABLE
) &&
1779 IS_MNT_UNBINDABLE(s
)) {
1780 if (s
->mnt
.mnt_flags
& MNT_LOCKED
) {
1781 /* Both unbindable and locked. */
1782 q
= ERR_PTR(-EPERM
);
1785 s
= skip_mnt_tree(s
);
1789 if (!(flag
& CL_COPY_MNT_NS_FILE
) &&
1790 is_mnt_ns_file(s
->mnt
.mnt_root
)) {
1791 s
= skip_mnt_tree(s
);
1794 while (p
!= s
->mnt_parent
) {
1800 q
= clone_mnt(p
, p
->mnt
.mnt_root
, flag
);
1804 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1805 attach_mnt(q
, parent
, p
->mnt_mp
);
1806 unlock_mount_hash();
1813 umount_tree(res
, UMOUNT_SYNC
);
1814 unlock_mount_hash();
1819 /* Caller should check returned pointer for errors */
1821 struct vfsmount
*collect_mounts(const struct path
*path
)
1825 if (!check_mnt(real_mount(path
->mnt
)))
1826 tree
= ERR_PTR(-EINVAL
);
1828 tree
= copy_tree(real_mount(path
->mnt
), path
->dentry
,
1829 CL_COPY_ALL
| CL_PRIVATE
);
1832 return ERR_CAST(tree
);
1836 static void free_mnt_ns(struct mnt_namespace
*);
1837 static struct mnt_namespace
*alloc_mnt_ns(struct user_namespace
*, bool);
1839 void dissolve_on_fput(struct vfsmount
*mnt
)
1841 struct mnt_namespace
*ns
;
1844 ns
= real_mount(mnt
)->mnt_ns
;
1847 umount_tree(real_mount(mnt
), UMOUNT_CONNECTED
);
1851 unlock_mount_hash();
1857 void drop_collected_mounts(struct vfsmount
*mnt
)
1861 umount_tree(real_mount(mnt
), 0);
1862 unlock_mount_hash();
1867 * clone_private_mount - create a private clone of a path
1869 * This creates a new vfsmount, which will be the clone of @path. The new will
1870 * not be attached anywhere in the namespace and will be private (i.e. changes
1871 * to the originating mount won't be propagated into this).
1873 * Release with mntput().
1875 struct vfsmount
*clone_private_mount(const struct path
*path
)
1877 struct mount
*old_mnt
= real_mount(path
->mnt
);
1878 struct mount
*new_mnt
;
1880 if (IS_MNT_UNBINDABLE(old_mnt
))
1881 return ERR_PTR(-EINVAL
);
1883 new_mnt
= clone_mnt(old_mnt
, path
->dentry
, CL_PRIVATE
);
1884 if (IS_ERR(new_mnt
))
1885 return ERR_CAST(new_mnt
);
1887 return &new_mnt
->mnt
;
1889 EXPORT_SYMBOL_GPL(clone_private_mount
);
1891 int iterate_mounts(int (*f
)(struct vfsmount
*, void *), void *arg
,
1892 struct vfsmount
*root
)
1895 int res
= f(root
, arg
);
1898 list_for_each_entry(mnt
, &real_mount(root
)->mnt_list
, mnt_list
) {
1899 res
= f(&mnt
->mnt
, arg
);
1906 static void lock_mnt_tree(struct mount
*mnt
)
1910 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1911 int flags
= p
->mnt
.mnt_flags
;
1912 /* Don't allow unprivileged users to change mount flags */
1913 flags
|= MNT_LOCK_ATIME
;
1915 if (flags
& MNT_READONLY
)
1916 flags
|= MNT_LOCK_READONLY
;
1918 if (flags
& MNT_NODEV
)
1919 flags
|= MNT_LOCK_NODEV
;
1921 if (flags
& MNT_NOSUID
)
1922 flags
|= MNT_LOCK_NOSUID
;
1924 if (flags
& MNT_NOEXEC
)
1925 flags
|= MNT_LOCK_NOEXEC
;
1926 /* Don't allow unprivileged users to reveal what is under a mount */
1927 if (list_empty(&p
->mnt_expire
))
1928 flags
|= MNT_LOCKED
;
1929 p
->mnt
.mnt_flags
= flags
;
1933 static void cleanup_group_ids(struct mount
*mnt
, struct mount
*end
)
1937 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1938 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1939 mnt_release_group_id(p
);
1943 static int invent_group_ids(struct mount
*mnt
, bool recurse
)
1947 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1948 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1949 int err
= mnt_alloc_group_id(p
);
1951 cleanup_group_ids(mnt
, p
);
1960 int count_mounts(struct mnt_namespace
*ns
, struct mount
*mnt
)
1962 unsigned int max
= READ_ONCE(sysctl_mount_max
);
1963 unsigned int mounts
= 0, old
, pending
, sum
;
1966 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1970 pending
= ns
->pending_mounts
;
1971 sum
= old
+ pending
;
1975 (mounts
> (max
- sum
)))
1978 ns
->pending_mounts
= pending
+ mounts
;
1983 * @source_mnt : mount tree to be attached
1984 * @nd : place the mount tree @source_mnt is attached
1985 * @parent_nd : if non-null, detach the source_mnt from its parent and
1986 * store the parent mount and mountpoint dentry.
1987 * (done when source_mnt is moved)
1989 * NOTE: in the table below explains the semantics when a source mount
1990 * of a given type is attached to a destination mount of a given type.
1991 * ---------------------------------------------------------------------------
1992 * | BIND MOUNT OPERATION |
1993 * |**************************************************************************
1994 * | source-->| shared | private | slave | unbindable |
1998 * |**************************************************************************
1999 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2001 * |non-shared| shared (+) | private | slave (*) | invalid |
2002 * ***************************************************************************
2003 * A bind operation clones the source mount and mounts the clone on the
2004 * destination mount.
2006 * (++) the cloned mount is propagated to all the mounts in the propagation
2007 * tree of the destination mount and the cloned mount is added to
2008 * the peer group of the source mount.
2009 * (+) the cloned mount is created under the destination mount and is marked
2010 * as shared. The cloned mount is added to the peer group of the source
2012 * (+++) the mount is propagated to all the mounts in the propagation tree
2013 * of the destination mount and the cloned mount is made slave
2014 * of the same master as that of the source mount. The cloned mount
2015 * is marked as 'shared and slave'.
2016 * (*) the cloned mount is made a slave of the same master as that of the
2019 * ---------------------------------------------------------------------------
2020 * | MOVE MOUNT OPERATION |
2021 * |**************************************************************************
2022 * | source-->| shared | private | slave | unbindable |
2026 * |**************************************************************************
2027 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2029 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2030 * ***************************************************************************
2032 * (+) the mount is moved to the destination. And is then propagated to
2033 * all the mounts in the propagation tree of the destination mount.
2034 * (+*) the mount is moved to the destination.
2035 * (+++) the mount is moved to the destination and is then propagated to
2036 * all the mounts belonging to the destination mount's propagation tree.
2037 * the mount is marked as 'shared and slave'.
2038 * (*) the mount continues to be a slave at the new location.
2040 * if the source mount is a tree, the operations explained above is
2041 * applied to each mount in the tree.
2042 * Must be called without spinlocks held, since this function can sleep
2045 static int attach_recursive_mnt(struct mount
*source_mnt
,
2046 struct mount
*dest_mnt
,
2047 struct mountpoint
*dest_mp
,
2048 struct path
*parent_path
)
2050 struct user_namespace
*user_ns
= current
->nsproxy
->mnt_ns
->user_ns
;
2051 HLIST_HEAD(tree_list
);
2052 struct mnt_namespace
*ns
= dest_mnt
->mnt_ns
;
2053 struct mountpoint
*smp
;
2054 struct mount
*child
, *p
;
2055 struct hlist_node
*n
;
2058 /* Preallocate a mountpoint in case the new mounts need
2059 * to be tucked under other mounts.
2061 smp
= get_mountpoint(source_mnt
->mnt
.mnt_root
);
2063 return PTR_ERR(smp
);
2065 /* Is there space to add these mounts to the mount namespace? */
2067 err
= count_mounts(ns
, source_mnt
);
2072 if (IS_MNT_SHARED(dest_mnt
)) {
2073 err
= invent_group_ids(source_mnt
, true);
2076 err
= propagate_mnt(dest_mnt
, dest_mp
, source_mnt
, &tree_list
);
2079 goto out_cleanup_ids
;
2080 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
2086 detach_mnt(source_mnt
, parent_path
);
2087 attach_mnt(source_mnt
, dest_mnt
, dest_mp
);
2088 touch_mnt_namespace(source_mnt
->mnt_ns
);
2090 if (source_mnt
->mnt_ns
) {
2091 /* move from anon - the caller will destroy */
2092 list_del_init(&source_mnt
->mnt_ns
->list
);
2094 mnt_set_mountpoint(dest_mnt
, dest_mp
, source_mnt
);
2095 commit_tree(source_mnt
);
2098 hlist_for_each_entry_safe(child
, n
, &tree_list
, mnt_hash
) {
2100 hlist_del_init(&child
->mnt_hash
);
2101 q
= __lookup_mnt(&child
->mnt_parent
->mnt
,
2102 child
->mnt_mountpoint
);
2104 mnt_change_mountpoint(child
, smp
, q
);
2105 /* Notice when we are propagating across user namespaces */
2106 if (child
->mnt_parent
->mnt_ns
->user_ns
!= user_ns
)
2107 lock_mnt_tree(child
);
2110 put_mountpoint(smp
);
2111 unlock_mount_hash();
2116 while (!hlist_empty(&tree_list
)) {
2117 child
= hlist_entry(tree_list
.first
, struct mount
, mnt_hash
);
2118 child
->mnt_parent
->mnt_ns
->pending_mounts
= 0;
2119 umount_tree(child
, UMOUNT_SYNC
);
2121 unlock_mount_hash();
2122 cleanup_group_ids(source_mnt
, NULL
);
2124 ns
->pending_mounts
= 0;
2126 read_seqlock_excl(&mount_lock
);
2127 put_mountpoint(smp
);
2128 read_sequnlock_excl(&mount_lock
);
2133 static struct mountpoint
*lock_mount(struct path
*path
)
2135 struct vfsmount
*mnt
;
2136 struct dentry
*dentry
= path
->dentry
;
2138 inode_lock(dentry
->d_inode
);
2139 if (unlikely(cant_mount(dentry
))) {
2140 inode_unlock(dentry
->d_inode
);
2141 return ERR_PTR(-ENOENT
);
2144 mnt
= lookup_mnt(path
);
2146 struct mountpoint
*mp
= get_mountpoint(dentry
);
2149 inode_unlock(dentry
->d_inode
);
2155 inode_unlock(path
->dentry
->d_inode
);
2158 dentry
= path
->dentry
= dget(mnt
->mnt_root
);
2162 static void unlock_mount(struct mountpoint
*where
)
2164 struct dentry
*dentry
= where
->m_dentry
;
2166 read_seqlock_excl(&mount_lock
);
2167 put_mountpoint(where
);
2168 read_sequnlock_excl(&mount_lock
);
2171 inode_unlock(dentry
->d_inode
);
2174 static int graft_tree(struct mount
*mnt
, struct mount
*p
, struct mountpoint
*mp
)
2176 if (mnt
->mnt
.mnt_sb
->s_flags
& SB_NOUSER
)
2179 if (d_is_dir(mp
->m_dentry
) !=
2180 d_is_dir(mnt
->mnt
.mnt_root
))
2183 return attach_recursive_mnt(mnt
, p
, mp
, NULL
);
2187 * Sanity check the flags to change_mnt_propagation.
2190 static int flags_to_propagation_type(int ms_flags
)
2192 int type
= ms_flags
& ~(MS_REC
| MS_SILENT
);
2194 /* Fail if any non-propagation flags are set */
2195 if (type
& ~(MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2197 /* Only one propagation flag should be set */
2198 if (!is_power_of_2(type
))
2204 * recursively change the type of the mountpoint.
2206 static int do_change_type(struct path
*path
, int ms_flags
)
2209 struct mount
*mnt
= real_mount(path
->mnt
);
2210 int recurse
= ms_flags
& MS_REC
;
2214 if (path
->dentry
!= path
->mnt
->mnt_root
)
2217 type
= flags_to_propagation_type(ms_flags
);
2222 if (type
== MS_SHARED
) {
2223 err
= invent_group_ids(mnt
, recurse
);
2229 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
2230 change_mnt_propagation(m
, type
);
2231 unlock_mount_hash();
2238 static bool has_locked_children(struct mount
*mnt
, struct dentry
*dentry
)
2240 struct mount
*child
;
2241 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
2242 if (!is_subdir(child
->mnt_mountpoint
, dentry
))
2245 if (child
->mnt
.mnt_flags
& MNT_LOCKED
)
2251 static struct mount
*__do_loopback(struct path
*old_path
, int recurse
)
2253 struct mount
*mnt
= ERR_PTR(-EINVAL
), *old
= real_mount(old_path
->mnt
);
2255 if (IS_MNT_UNBINDABLE(old
))
2258 if (!check_mnt(old
) && old_path
->dentry
->d_op
!= &ns_dentry_operations
)
2261 if (!recurse
&& has_locked_children(old
, old_path
->dentry
))
2265 mnt
= copy_tree(old
, old_path
->dentry
, CL_COPY_MNT_NS_FILE
);
2267 mnt
= clone_mnt(old
, old_path
->dentry
, 0);
2270 mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
2276 * do loopback mount.
2278 static int do_loopback(struct path
*path
, const char *old_name
,
2281 struct path old_path
;
2282 struct mount
*mnt
= NULL
, *parent
;
2283 struct mountpoint
*mp
;
2285 if (!old_name
|| !*old_name
)
2287 err
= kern_path(old_name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &old_path
);
2292 if (mnt_ns_loop(old_path
.dentry
))
2295 mp
= lock_mount(path
);
2301 parent
= real_mount(path
->mnt
);
2302 if (!check_mnt(parent
))
2305 mnt
= __do_loopback(&old_path
, recurse
);
2311 err
= graft_tree(mnt
, parent
, mp
);
2314 umount_tree(mnt
, UMOUNT_SYNC
);
2315 unlock_mount_hash();
2320 path_put(&old_path
);
2324 static struct file
*open_detached_copy(struct path
*path
, bool recursive
)
2326 struct user_namespace
*user_ns
= current
->nsproxy
->mnt_ns
->user_ns
;
2327 struct mnt_namespace
*ns
= alloc_mnt_ns(user_ns
, true);
2328 struct mount
*mnt
, *p
;
2332 return ERR_CAST(ns
);
2335 mnt
= __do_loopback(path
, recursive
);
2339 return ERR_CAST(mnt
);
2343 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
2348 list_add_tail(&ns
->list
, &mnt
->mnt_list
);
2350 unlock_mount_hash();
2354 path
->mnt
= &mnt
->mnt
;
2355 file
= dentry_open(path
, O_PATH
, current_cred());
2357 dissolve_on_fput(path
->mnt
);
2359 file
->f_mode
|= FMODE_NEED_UNMOUNT
;
2363 SYSCALL_DEFINE3(open_tree
, int, dfd
, const char *, filename
, unsigned, flags
)
2367 int lookup_flags
= LOOKUP_AUTOMOUNT
| LOOKUP_FOLLOW
;
2368 bool detached
= flags
& OPEN_TREE_CLONE
;
2372 BUILD_BUG_ON(OPEN_TREE_CLOEXEC
!= O_CLOEXEC
);
2374 if (flags
& ~(AT_EMPTY_PATH
| AT_NO_AUTOMOUNT
| AT_RECURSIVE
|
2375 AT_SYMLINK_NOFOLLOW
| OPEN_TREE_CLONE
|
2379 if ((flags
& (AT_RECURSIVE
| OPEN_TREE_CLONE
)) == AT_RECURSIVE
)
2382 if (flags
& AT_NO_AUTOMOUNT
)
2383 lookup_flags
&= ~LOOKUP_AUTOMOUNT
;
2384 if (flags
& AT_SYMLINK_NOFOLLOW
)
2385 lookup_flags
&= ~LOOKUP_FOLLOW
;
2386 if (flags
& AT_EMPTY_PATH
)
2387 lookup_flags
|= LOOKUP_EMPTY
;
2389 if (detached
&& !may_mount())
2392 fd
= get_unused_fd_flags(flags
& O_CLOEXEC
);
2396 error
= user_path_at(dfd
, filename
, lookup_flags
, &path
);
2397 if (unlikely(error
)) {
2398 file
= ERR_PTR(error
);
2401 file
= open_detached_copy(&path
, flags
& AT_RECURSIVE
);
2403 file
= dentry_open(&path
, O_PATH
, current_cred());
2408 return PTR_ERR(file
);
2410 fd_install(fd
, file
);
2415 * Don't allow locked mount flags to be cleared.
2417 * No locks need to be held here while testing the various MNT_LOCK
2418 * flags because those flags can never be cleared once they are set.
2420 static bool can_change_locked_flags(struct mount
*mnt
, unsigned int mnt_flags
)
2422 unsigned int fl
= mnt
->mnt
.mnt_flags
;
2424 if ((fl
& MNT_LOCK_READONLY
) &&
2425 !(mnt_flags
& MNT_READONLY
))
2428 if ((fl
& MNT_LOCK_NODEV
) &&
2429 !(mnt_flags
& MNT_NODEV
))
2432 if ((fl
& MNT_LOCK_NOSUID
) &&
2433 !(mnt_flags
& MNT_NOSUID
))
2436 if ((fl
& MNT_LOCK_NOEXEC
) &&
2437 !(mnt_flags
& MNT_NOEXEC
))
2440 if ((fl
& MNT_LOCK_ATIME
) &&
2441 ((fl
& MNT_ATIME_MASK
) != (mnt_flags
& MNT_ATIME_MASK
)))
2447 static int change_mount_ro_state(struct mount
*mnt
, unsigned int mnt_flags
)
2449 bool readonly_request
= (mnt_flags
& MNT_READONLY
);
2451 if (readonly_request
== __mnt_is_readonly(&mnt
->mnt
))
2454 if (readonly_request
)
2455 return mnt_make_readonly(mnt
);
2457 return __mnt_unmake_readonly(mnt
);
2461 * Update the user-settable attributes on a mount. The caller must hold
2462 * sb->s_umount for writing.
2464 static void set_mount_attributes(struct mount
*mnt
, unsigned int mnt_flags
)
2467 mnt_flags
|= mnt
->mnt
.mnt_flags
& ~MNT_USER_SETTABLE_MASK
;
2468 mnt
->mnt
.mnt_flags
= mnt_flags
;
2469 touch_mnt_namespace(mnt
->mnt_ns
);
2470 unlock_mount_hash();
2474 * Handle reconfiguration of the mountpoint only without alteration of the
2475 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2478 static int do_reconfigure_mnt(struct path
*path
, unsigned int mnt_flags
)
2480 struct super_block
*sb
= path
->mnt
->mnt_sb
;
2481 struct mount
*mnt
= real_mount(path
->mnt
);
2484 if (!check_mnt(mnt
))
2487 if (path
->dentry
!= mnt
->mnt
.mnt_root
)
2490 if (!can_change_locked_flags(mnt
, mnt_flags
))
2493 down_write(&sb
->s_umount
);
2494 ret
= change_mount_ro_state(mnt
, mnt_flags
);
2496 set_mount_attributes(mnt
, mnt_flags
);
2497 up_write(&sb
->s_umount
);
2502 * change filesystem flags. dir should be a physical root of filesystem.
2503 * If you've mounted a non-root directory somewhere and want to do remount
2504 * on it - tough luck.
2506 static int do_remount(struct path
*path
, int ms_flags
, int sb_flags
,
2507 int mnt_flags
, void *data
)
2510 struct super_block
*sb
= path
->mnt
->mnt_sb
;
2511 struct mount
*mnt
= real_mount(path
->mnt
);
2512 struct fs_context
*fc
;
2514 if (!check_mnt(mnt
))
2517 if (path
->dentry
!= path
->mnt
->mnt_root
)
2520 if (!can_change_locked_flags(mnt
, mnt_flags
))
2523 fc
= fs_context_for_reconfigure(path
->dentry
, sb_flags
, MS_RMT_MASK
);
2527 err
= parse_monolithic_mount_data(fc
, data
);
2529 down_write(&sb
->s_umount
);
2531 if (ns_capable(sb
->s_user_ns
, CAP_SYS_ADMIN
)) {
2532 err
= reconfigure_super(fc
);
2534 set_mount_attributes(mnt
, mnt_flags
);
2536 up_write(&sb
->s_umount
);
2542 static inline int tree_contains_unbindable(struct mount
*mnt
)
2545 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
2546 if (IS_MNT_UNBINDABLE(p
))
2553 * Check that there aren't references to earlier/same mount namespaces in the
2554 * specified subtree. Such references can act as pins for mount namespaces
2555 * that aren't checked by the mount-cycle checking code, thereby allowing
2556 * cycles to be made.
2558 static bool check_for_nsfs_mounts(struct mount
*subtree
)
2564 for (p
= subtree
; p
; p
= next_mnt(p
, subtree
))
2565 if (mnt_ns_loop(p
->mnt
.mnt_root
))
2570 unlock_mount_hash();
2574 static int do_move_mount(struct path
*old_path
, struct path
*new_path
)
2576 struct path parent_path
= {.mnt
= NULL
, .dentry
= NULL
};
2577 struct mnt_namespace
*ns
;
2580 struct mountpoint
*mp
;
2584 mp
= lock_mount(new_path
);
2588 old
= real_mount(old_path
->mnt
);
2589 p
= real_mount(new_path
->mnt
);
2590 attached
= mnt_has_parent(old
);
2594 /* The mountpoint must be in our namespace. */
2598 /* The thing moved should be either ours or completely unattached. */
2599 if (attached
&& !check_mnt(old
))
2602 if (!attached
&& !(ns
&& is_anon_ns(ns
)))
2605 if (old
->mnt
.mnt_flags
& MNT_LOCKED
)
2608 if (old_path
->dentry
!= old_path
->mnt
->mnt_root
)
2611 if (d_is_dir(new_path
->dentry
) !=
2612 d_is_dir(old_path
->dentry
))
2615 * Don't move a mount residing in a shared parent.
2617 if (attached
&& IS_MNT_SHARED(old
->mnt_parent
))
2620 * Don't move a mount tree containing unbindable mounts to a destination
2621 * mount which is shared.
2623 if (IS_MNT_SHARED(p
) && tree_contains_unbindable(old
))
2626 if (!check_for_nsfs_mounts(old
))
2628 for (; mnt_has_parent(p
); p
= p
->mnt_parent
)
2632 err
= attach_recursive_mnt(old
, real_mount(new_path
->mnt
), mp
,
2633 attached
? &parent_path
: NULL
);
2637 /* if the mount is moved, it should no longer be expire
2639 list_del_init(&old
->mnt_expire
);
2643 path_put(&parent_path
);
2650 static int do_move_mount_old(struct path
*path
, const char *old_name
)
2652 struct path old_path
;
2655 if (!old_name
|| !*old_name
)
2658 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
2662 err
= do_move_mount(&old_path
, path
);
2663 path_put(&old_path
);
2668 * add a mount into a namespace's mount tree
2670 static int do_add_mount(struct mount
*newmnt
, struct path
*path
, int mnt_flags
)
2672 struct mountpoint
*mp
;
2673 struct mount
*parent
;
2676 mnt_flags
&= ~MNT_INTERNAL_FLAGS
;
2678 mp
= lock_mount(path
);
2682 parent
= real_mount(path
->mnt
);
2684 if (unlikely(!check_mnt(parent
))) {
2685 /* that's acceptable only for automounts done in private ns */
2686 if (!(mnt_flags
& MNT_SHRINKABLE
))
2688 /* ... and for those we'd better have mountpoint still alive */
2689 if (!parent
->mnt_ns
)
2693 /* Refuse the same filesystem on the same mount point */
2695 if (path
->mnt
->mnt_sb
== newmnt
->mnt
.mnt_sb
&&
2696 path
->mnt
->mnt_root
== path
->dentry
)
2700 if (d_is_symlink(newmnt
->mnt
.mnt_root
))
2703 newmnt
->mnt
.mnt_flags
= mnt_flags
;
2704 err
= graft_tree(newmnt
, parent
, mp
);
2711 static bool mount_too_revealing(const struct super_block
*sb
, int *new_mnt_flags
);
2714 * Create a new mount using a superblock configuration and request it
2715 * be added to the namespace tree.
2717 static int do_new_mount_fc(struct fs_context
*fc
, struct path
*mountpoint
,
2718 unsigned int mnt_flags
)
2720 struct vfsmount
*mnt
;
2721 struct super_block
*sb
= fc
->root
->d_sb
;
2724 error
= security_sb_kern_mount(sb
);
2725 if (!error
&& mount_too_revealing(sb
, &mnt_flags
))
2728 if (unlikely(error
)) {
2733 up_write(&sb
->s_umount
);
2735 mnt
= vfs_create_mount(fc
);
2737 return PTR_ERR(mnt
);
2739 error
= do_add_mount(real_mount(mnt
), mountpoint
, mnt_flags
);
2746 * create a new mount for userspace and request it to be added into the
2749 static int do_new_mount(struct path
*path
, const char *fstype
, int sb_flags
,
2750 int mnt_flags
, const char *name
, void *data
)
2752 struct file_system_type
*type
;
2753 struct fs_context
*fc
;
2754 const char *subtype
= NULL
;
2760 type
= get_fs_type(fstype
);
2764 if (type
->fs_flags
& FS_HAS_SUBTYPE
) {
2765 subtype
= strchr(fstype
, '.');
2769 put_filesystem(type
);
2777 fc
= fs_context_for_mount(type
, sb_flags
);
2778 put_filesystem(type
);
2783 err
= vfs_parse_fs_string(fc
, "subtype",
2784 subtype
, strlen(subtype
));
2786 err
= vfs_parse_fs_string(fc
, "source", name
, strlen(name
));
2788 err
= parse_monolithic_mount_data(fc
, data
);
2790 err
= vfs_get_tree(fc
);
2792 err
= do_new_mount_fc(fc
, path
, mnt_flags
);
2798 int finish_automount(struct vfsmount
*m
, struct path
*path
)
2800 struct mount
*mnt
= real_mount(m
);
2802 /* The new mount record should have at least 2 refs to prevent it being
2803 * expired before we get a chance to add it
2805 BUG_ON(mnt_get_count(mnt
) < 2);
2807 if (m
->mnt_sb
== path
->mnt
->mnt_sb
&&
2808 m
->mnt_root
== path
->dentry
) {
2813 err
= do_add_mount(mnt
, path
, path
->mnt
->mnt_flags
| MNT_SHRINKABLE
);
2817 /* remove m from any expiration list it may be on */
2818 if (!list_empty(&mnt
->mnt_expire
)) {
2820 list_del_init(&mnt
->mnt_expire
);
2829 * mnt_set_expiry - Put a mount on an expiration list
2830 * @mnt: The mount to list.
2831 * @expiry_list: The list to add the mount to.
2833 void mnt_set_expiry(struct vfsmount
*mnt
, struct list_head
*expiry_list
)
2837 list_add_tail(&real_mount(mnt
)->mnt_expire
, expiry_list
);
2841 EXPORT_SYMBOL(mnt_set_expiry
);
2844 * process a list of expirable mountpoints with the intent of discarding any
2845 * mountpoints that aren't in use and haven't been touched since last we came
2848 void mark_mounts_for_expiry(struct list_head
*mounts
)
2850 struct mount
*mnt
, *next
;
2851 LIST_HEAD(graveyard
);
2853 if (list_empty(mounts
))
2859 /* extract from the expiration list every vfsmount that matches the
2860 * following criteria:
2861 * - only referenced by its parent vfsmount
2862 * - still marked for expiry (marked on the last call here; marks are
2863 * cleared by mntput())
2865 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
2866 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
2867 propagate_mount_busy(mnt
, 1))
2869 list_move(&mnt
->mnt_expire
, &graveyard
);
2871 while (!list_empty(&graveyard
)) {
2872 mnt
= list_first_entry(&graveyard
, struct mount
, mnt_expire
);
2873 touch_mnt_namespace(mnt
->mnt_ns
);
2874 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2876 unlock_mount_hash();
2880 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
2883 * Ripoff of 'select_parent()'
2885 * search the list of submounts for a given mountpoint, and move any
2886 * shrinkable submounts to the 'graveyard' list.
2888 static int select_submounts(struct mount
*parent
, struct list_head
*graveyard
)
2890 struct mount
*this_parent
= parent
;
2891 struct list_head
*next
;
2895 next
= this_parent
->mnt_mounts
.next
;
2897 while (next
!= &this_parent
->mnt_mounts
) {
2898 struct list_head
*tmp
= next
;
2899 struct mount
*mnt
= list_entry(tmp
, struct mount
, mnt_child
);
2902 if (!(mnt
->mnt
.mnt_flags
& MNT_SHRINKABLE
))
2905 * Descend a level if the d_mounts list is non-empty.
2907 if (!list_empty(&mnt
->mnt_mounts
)) {
2912 if (!propagate_mount_busy(mnt
, 1)) {
2913 list_move_tail(&mnt
->mnt_expire
, graveyard
);
2918 * All done at this level ... ascend and resume the search
2920 if (this_parent
!= parent
) {
2921 next
= this_parent
->mnt_child
.next
;
2922 this_parent
= this_parent
->mnt_parent
;
2929 * process a list of expirable mountpoints with the intent of discarding any
2930 * submounts of a specific parent mountpoint
2932 * mount_lock must be held for write
2934 static void shrink_submounts(struct mount
*mnt
)
2936 LIST_HEAD(graveyard
);
2939 /* extract submounts of 'mountpoint' from the expiration list */
2940 while (select_submounts(mnt
, &graveyard
)) {
2941 while (!list_empty(&graveyard
)) {
2942 m
= list_first_entry(&graveyard
, struct mount
,
2944 touch_mnt_namespace(m
->mnt_ns
);
2945 umount_tree(m
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2951 * Some copy_from_user() implementations do not return the exact number of
2952 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2953 * Note that this function differs from copy_from_user() in that it will oops
2954 * on bad values of `to', rather than returning a short copy.
2956 static long exact_copy_from_user(void *to
, const void __user
* from
,
2960 const char __user
*f
= from
;
2963 if (!access_ok(from
, n
))
2967 if (__get_user(c
, f
)) {
2978 void *copy_mount_options(const void __user
* data
)
2987 copy
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2989 return ERR_PTR(-ENOMEM
);
2991 /* We only care that *some* data at the address the user
2992 * gave us is valid. Just in case, we'll zero
2993 * the remainder of the page.
2995 /* copy_from_user cannot cross TASK_SIZE ! */
2996 size
= TASK_SIZE
- (unsigned long)data
;
2997 if (size
> PAGE_SIZE
)
3000 i
= size
- exact_copy_from_user(copy
, data
, size
);
3003 return ERR_PTR(-EFAULT
);
3006 memset(copy
+ i
, 0, PAGE_SIZE
- i
);
3010 char *copy_mount_string(const void __user
*data
)
3012 return data
? strndup_user(data
, PATH_MAX
) : NULL
;
3016 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3017 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3019 * data is a (void *) that can point to any structure up to
3020 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3021 * information (or be NULL).
3023 * Pre-0.97 versions of mount() didn't have a flags word.
3024 * When the flags word was introduced its top half was required
3025 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3026 * Therefore, if this magic number is present, it carries no information
3027 * and must be discarded.
3029 long do_mount(const char *dev_name
, const char __user
*dir_name
,
3030 const char *type_page
, unsigned long flags
, void *data_page
)
3033 unsigned int mnt_flags
= 0, sb_flags
;
3037 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
3038 flags
&= ~MS_MGC_MSK
;
3040 /* Basic sanity checks */
3042 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
3044 if (flags
& MS_NOUSER
)
3047 /* ... and get the mountpoint */
3048 retval
= user_path(dir_name
, &path
);
3052 retval
= security_sb_mount(dev_name
, &path
,
3053 type_page
, flags
, data_page
);
3054 if (!retval
&& !may_mount())
3056 if (!retval
&& (flags
& SB_MANDLOCK
) && !may_mandlock())
3061 /* Default to relatime unless overriden */
3062 if (!(flags
& MS_NOATIME
))
3063 mnt_flags
|= MNT_RELATIME
;
3065 /* Separate the per-mountpoint flags */
3066 if (flags
& MS_NOSUID
)
3067 mnt_flags
|= MNT_NOSUID
;
3068 if (flags
& MS_NODEV
)
3069 mnt_flags
|= MNT_NODEV
;
3070 if (flags
& MS_NOEXEC
)
3071 mnt_flags
|= MNT_NOEXEC
;
3072 if (flags
& MS_NOATIME
)
3073 mnt_flags
|= MNT_NOATIME
;
3074 if (flags
& MS_NODIRATIME
)
3075 mnt_flags
|= MNT_NODIRATIME
;
3076 if (flags
& MS_STRICTATIME
)
3077 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
3078 if (flags
& MS_RDONLY
)
3079 mnt_flags
|= MNT_READONLY
;
3081 /* The default atime for remount is preservation */
3082 if ((flags
& MS_REMOUNT
) &&
3083 ((flags
& (MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
|
3084 MS_STRICTATIME
)) == 0)) {
3085 mnt_flags
&= ~MNT_ATIME_MASK
;
3086 mnt_flags
|= path
.mnt
->mnt_flags
& MNT_ATIME_MASK
;
3089 sb_flags
= flags
& (SB_RDONLY
|
3098 if ((flags
& (MS_REMOUNT
| MS_BIND
)) == (MS_REMOUNT
| MS_BIND
))
3099 retval
= do_reconfigure_mnt(&path
, mnt_flags
);
3100 else if (flags
& MS_REMOUNT
)
3101 retval
= do_remount(&path
, flags
, sb_flags
, mnt_flags
,
3103 else if (flags
& MS_BIND
)
3104 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
3105 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
3106 retval
= do_change_type(&path
, flags
);
3107 else if (flags
& MS_MOVE
)
3108 retval
= do_move_mount_old(&path
, dev_name
);
3110 retval
= do_new_mount(&path
, type_page
, sb_flags
, mnt_flags
,
3111 dev_name
, data_page
);
3117 static struct ucounts
*inc_mnt_namespaces(struct user_namespace
*ns
)
3119 return inc_ucount(ns
, current_euid(), UCOUNT_MNT_NAMESPACES
);
3122 static void dec_mnt_namespaces(struct ucounts
*ucounts
)
3124 dec_ucount(ucounts
, UCOUNT_MNT_NAMESPACES
);
3127 static void free_mnt_ns(struct mnt_namespace
*ns
)
3129 if (!is_anon_ns(ns
))
3130 ns_free_inum(&ns
->ns
);
3131 dec_mnt_namespaces(ns
->ucounts
);
3132 put_user_ns(ns
->user_ns
);
3137 * Assign a sequence number so we can detect when we attempt to bind
3138 * mount a reference to an older mount namespace into the current
3139 * mount namespace, preventing reference counting loops. A 64bit
3140 * number incrementing at 10Ghz will take 12,427 years to wrap which
3141 * is effectively never, so we can ignore the possibility.
3143 static atomic64_t mnt_ns_seq
= ATOMIC64_INIT(1);
3145 static struct mnt_namespace
*alloc_mnt_ns(struct user_namespace
*user_ns
, bool anon
)
3147 struct mnt_namespace
*new_ns
;
3148 struct ucounts
*ucounts
;
3151 ucounts
= inc_mnt_namespaces(user_ns
);
3153 return ERR_PTR(-ENOSPC
);
3155 new_ns
= kzalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
3157 dec_mnt_namespaces(ucounts
);
3158 return ERR_PTR(-ENOMEM
);
3161 ret
= ns_alloc_inum(&new_ns
->ns
);
3164 dec_mnt_namespaces(ucounts
);
3165 return ERR_PTR(ret
);
3168 new_ns
->ns
.ops
= &mntns_operations
;
3170 new_ns
->seq
= atomic64_add_return(1, &mnt_ns_seq
);
3171 atomic_set(&new_ns
->count
, 1);
3172 INIT_LIST_HEAD(&new_ns
->list
);
3173 init_waitqueue_head(&new_ns
->poll
);
3174 new_ns
->user_ns
= get_user_ns(user_ns
);
3175 new_ns
->ucounts
= ucounts
;
3180 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
3181 struct user_namespace
*user_ns
, struct fs_struct
*new_fs
)
3183 struct mnt_namespace
*new_ns
;
3184 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
3185 struct mount
*p
, *q
;
3192 if (likely(!(flags
& CLONE_NEWNS
))) {
3199 new_ns
= alloc_mnt_ns(user_ns
, false);
3204 /* First pass: copy the tree topology */
3205 copy_flags
= CL_COPY_UNBINDABLE
| CL_EXPIRE
;
3206 if (user_ns
!= ns
->user_ns
)
3207 copy_flags
|= CL_SHARED_TO_SLAVE
;
3208 new = copy_tree(old
, old
->mnt
.mnt_root
, copy_flags
);
3211 free_mnt_ns(new_ns
);
3212 return ERR_CAST(new);
3214 if (user_ns
!= ns
->user_ns
) {
3217 unlock_mount_hash();
3220 list_add_tail(&new_ns
->list
, &new->mnt_list
);
3223 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3224 * as belonging to new namespace. We have already acquired a private
3225 * fs_struct, so tsk->fs->lock is not needed.
3233 if (&p
->mnt
== new_fs
->root
.mnt
) {
3234 new_fs
->root
.mnt
= mntget(&q
->mnt
);
3237 if (&p
->mnt
== new_fs
->pwd
.mnt
) {
3238 new_fs
->pwd
.mnt
= mntget(&q
->mnt
);
3242 p
= next_mnt(p
, old
);
3243 q
= next_mnt(q
, new);
3246 while (p
->mnt
.mnt_root
!= q
->mnt
.mnt_root
)
3247 p
= next_mnt(p
, old
);
3259 struct dentry
*mount_subtree(struct vfsmount
*m
, const char *name
)
3261 struct mount
*mnt
= real_mount(m
);
3262 struct mnt_namespace
*ns
;
3263 struct super_block
*s
;
3267 ns
= alloc_mnt_ns(&init_user_ns
, true);
3270 return ERR_CAST(ns
);
3275 list_add(&mnt
->mnt_list
, &ns
->list
);
3277 err
= vfs_path_lookup(m
->mnt_root
, m
,
3278 name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &path
);
3283 return ERR_PTR(err
);
3285 /* trade a vfsmount reference for active sb one */
3286 s
= path
.mnt
->mnt_sb
;
3287 atomic_inc(&s
->s_active
);
3289 /* lock the sucker */
3290 down_write(&s
->s_umount
);
3291 /* ... and return the root of (sub)tree on it */
3294 EXPORT_SYMBOL(mount_subtree
);
3296 int ksys_mount(char __user
*dev_name
, char __user
*dir_name
, char __user
*type
,
3297 unsigned long flags
, void __user
*data
)
3304 kernel_type
= copy_mount_string(type
);
3305 ret
= PTR_ERR(kernel_type
);
3306 if (IS_ERR(kernel_type
))
3309 kernel_dev
= copy_mount_string(dev_name
);
3310 ret
= PTR_ERR(kernel_dev
);
3311 if (IS_ERR(kernel_dev
))
3314 options
= copy_mount_options(data
);
3315 ret
= PTR_ERR(options
);
3316 if (IS_ERR(options
))
3319 ret
= do_mount(kernel_dev
, dir_name
, kernel_type
, flags
, options
);
3330 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
3331 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
3333 return ksys_mount(dev_name
, dir_name
, type
, flags
, data
);
3337 * Create a kernel mount representation for a new, prepared superblock
3338 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3340 SYSCALL_DEFINE3(fsmount
, int, fs_fd
, unsigned int, flags
,
3341 unsigned int, attr_flags
)
3343 struct mnt_namespace
*ns
;
3344 struct fs_context
*fc
;
3346 struct path newmount
;
3349 unsigned int mnt_flags
= 0;
3355 if ((flags
& ~(FSMOUNT_CLOEXEC
)) != 0)
3358 if (attr_flags
& ~(MOUNT_ATTR_RDONLY
|
3363 MOUNT_ATTR_NODIRATIME
))
3366 if (attr_flags
& MOUNT_ATTR_RDONLY
)
3367 mnt_flags
|= MNT_READONLY
;
3368 if (attr_flags
& MOUNT_ATTR_NOSUID
)
3369 mnt_flags
|= MNT_NOSUID
;
3370 if (attr_flags
& MOUNT_ATTR_NODEV
)
3371 mnt_flags
|= MNT_NODEV
;
3372 if (attr_flags
& MOUNT_ATTR_NOEXEC
)
3373 mnt_flags
|= MNT_NOEXEC
;
3374 if (attr_flags
& MOUNT_ATTR_NODIRATIME
)
3375 mnt_flags
|= MNT_NODIRATIME
;
3377 switch (attr_flags
& MOUNT_ATTR__ATIME
) {
3378 case MOUNT_ATTR_STRICTATIME
:
3380 case MOUNT_ATTR_NOATIME
:
3381 mnt_flags
|= MNT_NOATIME
;
3383 case MOUNT_ATTR_RELATIME
:
3384 mnt_flags
|= MNT_RELATIME
;
3395 if (f
.file
->f_op
!= &fscontext_fops
)
3398 fc
= f
.file
->private_data
;
3400 ret
= mutex_lock_interruptible(&fc
->uapi_mutex
);
3404 /* There must be a valid superblock or we can't mount it */
3410 if (mount_too_revealing(fc
->root
->d_sb
, &mnt_flags
)) {
3411 pr_warn("VFS: Mount too revealing\n");
3416 if (fc
->phase
!= FS_CONTEXT_AWAITING_MOUNT
)
3420 if ((fc
->sb_flags
& SB_MANDLOCK
) && !may_mandlock())
3423 newmount
.mnt
= vfs_create_mount(fc
);
3424 if (IS_ERR(newmount
.mnt
)) {
3425 ret
= PTR_ERR(newmount
.mnt
);
3428 newmount
.dentry
= dget(fc
->root
);
3429 newmount
.mnt
->mnt_flags
= mnt_flags
;
3431 /* We've done the mount bit - now move the file context into more or
3432 * less the same state as if we'd done an fspick(). We don't want to
3433 * do any memory allocation or anything like that at this point as we
3434 * don't want to have to handle any errors incurred.
3436 vfs_clean_context(fc
);
3438 ns
= alloc_mnt_ns(current
->nsproxy
->mnt_ns
->user_ns
, true);
3443 mnt
= real_mount(newmount
.mnt
);
3447 list_add(&mnt
->mnt_list
, &ns
->list
);
3449 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3450 * it, not just simply put it.
3452 file
= dentry_open(&newmount
, O_PATH
, fc
->cred
);
3454 dissolve_on_fput(newmount
.mnt
);
3455 ret
= PTR_ERR(file
);
3458 file
->f_mode
|= FMODE_NEED_UNMOUNT
;
3460 ret
= get_unused_fd_flags((flags
& FSMOUNT_CLOEXEC
) ? O_CLOEXEC
: 0);
3462 fd_install(ret
, file
);
3467 path_put(&newmount
);
3469 mutex_unlock(&fc
->uapi_mutex
);
3476 * Move a mount from one place to another. In combination with
3477 * fsopen()/fsmount() this is used to install a new mount and in combination
3478 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3481 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3483 SYSCALL_DEFINE5(move_mount
,
3484 int, from_dfd
, const char *, from_pathname
,
3485 int, to_dfd
, const char *, to_pathname
,
3486 unsigned int, flags
)
3488 struct path from_path
, to_path
;
3489 unsigned int lflags
;
3495 if (flags
& ~MOVE_MOUNT__MASK
)
3498 /* If someone gives a pathname, they aren't permitted to move
3499 * from an fd that requires unmount as we can't get at the flag
3500 * to clear it afterwards.
3503 if (flags
& MOVE_MOUNT_F_SYMLINKS
) lflags
|= LOOKUP_FOLLOW
;
3504 if (flags
& MOVE_MOUNT_F_AUTOMOUNTS
) lflags
|= LOOKUP_AUTOMOUNT
;
3505 if (flags
& MOVE_MOUNT_F_EMPTY_PATH
) lflags
|= LOOKUP_EMPTY
;
3507 ret
= user_path_at(from_dfd
, from_pathname
, lflags
, &from_path
);
3512 if (flags
& MOVE_MOUNT_T_SYMLINKS
) lflags
|= LOOKUP_FOLLOW
;
3513 if (flags
& MOVE_MOUNT_T_AUTOMOUNTS
) lflags
|= LOOKUP_AUTOMOUNT
;
3514 if (flags
& MOVE_MOUNT_T_EMPTY_PATH
) lflags
|= LOOKUP_EMPTY
;
3516 ret
= user_path_at(to_dfd
, to_pathname
, lflags
, &to_path
);
3520 ret
= security_move_mount(&from_path
, &to_path
);
3524 ret
= do_move_mount(&from_path
, &to_path
);
3529 path_put(&from_path
);
3534 * Return true if path is reachable from root
3536 * namespace_sem or mount_lock is held
3538 bool is_path_reachable(struct mount
*mnt
, struct dentry
*dentry
,
3539 const struct path
*root
)
3541 while (&mnt
->mnt
!= root
->mnt
&& mnt_has_parent(mnt
)) {
3542 dentry
= mnt
->mnt_mountpoint
;
3543 mnt
= mnt
->mnt_parent
;
3545 return &mnt
->mnt
== root
->mnt
&& is_subdir(dentry
, root
->dentry
);
3548 bool path_is_under(const struct path
*path1
, const struct path
*path2
)
3551 read_seqlock_excl(&mount_lock
);
3552 res
= is_path_reachable(real_mount(path1
->mnt
), path1
->dentry
, path2
);
3553 read_sequnlock_excl(&mount_lock
);
3556 EXPORT_SYMBOL(path_is_under
);
3559 * pivot_root Semantics:
3560 * Moves the root file system of the current process to the directory put_old,
3561 * makes new_root as the new root file system of the current process, and sets
3562 * root/cwd of all processes which had them on the current root to new_root.
3565 * The new_root and put_old must be directories, and must not be on the
3566 * same file system as the current process root. The put_old must be
3567 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3568 * pointed to by put_old must yield the same directory as new_root. No other
3569 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3571 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3572 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3573 * in this situation.
3576 * - we don't move root/cwd if they are not at the root (reason: if something
3577 * cared enough to change them, it's probably wrong to force them elsewhere)
3578 * - it's okay to pick a root that isn't the root of a file system, e.g.
3579 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3580 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3583 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
3584 const char __user
*, put_old
)
3586 struct path
new, old
, parent_path
, root_parent
, root
;
3587 struct mount
*new_mnt
, *root_mnt
, *old_mnt
;
3588 struct mountpoint
*old_mp
, *root_mp
;
3594 error
= user_path_dir(new_root
, &new);
3598 error
= user_path_dir(put_old
, &old
);
3602 error
= security_sb_pivotroot(&old
, &new);
3606 get_fs_root(current
->fs
, &root
);
3607 old_mp
= lock_mount(&old
);
3608 error
= PTR_ERR(old_mp
);
3613 new_mnt
= real_mount(new.mnt
);
3614 root_mnt
= real_mount(root
.mnt
);
3615 old_mnt
= real_mount(old
.mnt
);
3616 if (IS_MNT_SHARED(old_mnt
) ||
3617 IS_MNT_SHARED(new_mnt
->mnt_parent
) ||
3618 IS_MNT_SHARED(root_mnt
->mnt_parent
))
3620 if (!check_mnt(root_mnt
) || !check_mnt(new_mnt
))
3622 if (new_mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
3625 if (d_unlinked(new.dentry
))
3628 if (new_mnt
== root_mnt
|| old_mnt
== root_mnt
)
3629 goto out4
; /* loop, on the same file system */
3631 if (root
.mnt
->mnt_root
!= root
.dentry
)
3632 goto out4
; /* not a mountpoint */
3633 if (!mnt_has_parent(root_mnt
))
3634 goto out4
; /* not attached */
3635 root_mp
= root_mnt
->mnt_mp
;
3636 if (new.mnt
->mnt_root
!= new.dentry
)
3637 goto out4
; /* not a mountpoint */
3638 if (!mnt_has_parent(new_mnt
))
3639 goto out4
; /* not attached */
3640 /* make sure we can reach put_old from new_root */
3641 if (!is_path_reachable(old_mnt
, old
.dentry
, &new))
3643 /* make certain new is below the root */
3644 if (!is_path_reachable(new_mnt
, new.dentry
, &root
))
3646 root_mp
->m_count
++; /* pin it so it won't go away */
3648 detach_mnt(new_mnt
, &parent_path
);
3649 detach_mnt(root_mnt
, &root_parent
);
3650 if (root_mnt
->mnt
.mnt_flags
& MNT_LOCKED
) {
3651 new_mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
3652 root_mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
3654 /* mount old root on put_old */
3655 attach_mnt(root_mnt
, old_mnt
, old_mp
);
3656 /* mount new_root on / */
3657 attach_mnt(new_mnt
, real_mount(root_parent
.mnt
), root_mp
);
3658 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
3659 /* A moved mount should not expire automatically */
3660 list_del_init(&new_mnt
->mnt_expire
);
3661 put_mountpoint(root_mp
);
3662 unlock_mount_hash();
3663 chroot_fs_refs(&root
, &new);
3666 unlock_mount(old_mp
);
3668 path_put(&root_parent
);
3669 path_put(&parent_path
);
3681 static void __init
init_mount_tree(void)
3683 struct vfsmount
*mnt
;
3685 struct mnt_namespace
*ns
;
3687 struct file_system_type
*type
;
3689 type
= get_fs_type("rootfs");
3691 panic("Can't find rootfs type");
3692 mnt
= vfs_kern_mount(type
, 0, "rootfs", NULL
);
3693 put_filesystem(type
);
3695 panic("Can't create rootfs");
3697 ns
= alloc_mnt_ns(&init_user_ns
, false);
3699 panic("Can't allocate initial namespace");
3700 m
= real_mount(mnt
);
3704 list_add(&m
->mnt_list
, &ns
->list
);
3705 init_task
.nsproxy
->mnt_ns
= ns
;
3709 root
.dentry
= mnt
->mnt_root
;
3710 mnt
->mnt_flags
|= MNT_LOCKED
;
3712 set_fs_pwd(current
->fs
, &root
);
3713 set_fs_root(current
->fs
, &root
);
3716 void __init
mnt_init(void)
3720 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct mount
),
3721 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3723 mount_hashtable
= alloc_large_system_hash("Mount-cache",
3724 sizeof(struct hlist_head
),
3727 &m_hash_shift
, &m_hash_mask
, 0, 0);
3728 mountpoint_hashtable
= alloc_large_system_hash("Mountpoint-cache",
3729 sizeof(struct hlist_head
),
3732 &mp_hash_shift
, &mp_hash_mask
, 0, 0);
3734 if (!mount_hashtable
|| !mountpoint_hashtable
)
3735 panic("Failed to allocate mount hash table\n");
3741 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
3743 fs_kobj
= kobject_create_and_add("fs", NULL
);
3745 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
3750 void put_mnt_ns(struct mnt_namespace
*ns
)
3752 if (!atomic_dec_and_test(&ns
->count
))
3754 drop_collected_mounts(&ns
->root
->mnt
);
3758 struct vfsmount
*kern_mount(struct file_system_type
*type
)
3760 struct vfsmount
*mnt
;
3761 mnt
= vfs_kern_mount(type
, SB_KERNMOUNT
, type
->name
, NULL
);
3764 * it is a longterm mount, don't release mnt until
3765 * we unmount before file sys is unregistered
3767 real_mount(mnt
)->mnt_ns
= MNT_NS_INTERNAL
;
3771 EXPORT_SYMBOL_GPL(kern_mount
);
3773 void kern_unmount(struct vfsmount
*mnt
)
3775 /* release long term mount so mount point can be released */
3776 if (!IS_ERR_OR_NULL(mnt
)) {
3777 real_mount(mnt
)->mnt_ns
= NULL
;
3778 synchronize_rcu(); /* yecchhh... */
3782 EXPORT_SYMBOL(kern_unmount
);
3784 bool our_mnt(struct vfsmount
*mnt
)
3786 return check_mnt(real_mount(mnt
));
3789 bool current_chrooted(void)
3791 /* Does the current process have a non-standard root */
3792 struct path ns_root
;
3793 struct path fs_root
;
3796 /* Find the namespace root */
3797 ns_root
.mnt
= ¤t
->nsproxy
->mnt_ns
->root
->mnt
;
3798 ns_root
.dentry
= ns_root
.mnt
->mnt_root
;
3800 while (d_mountpoint(ns_root
.dentry
) && follow_down_one(&ns_root
))
3803 get_fs_root(current
->fs
, &fs_root
);
3805 chrooted
= !path_equal(&fs_root
, &ns_root
);
3813 static bool mnt_already_visible(struct mnt_namespace
*ns
,
3814 const struct super_block
*sb
,
3817 int new_flags
= *new_mnt_flags
;
3819 bool visible
= false;
3821 down_read(&namespace_sem
);
3822 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
3823 struct mount
*child
;
3826 if (mnt
->mnt
.mnt_sb
->s_type
!= sb
->s_type
)
3829 /* This mount is not fully visible if it's root directory
3830 * is not the root directory of the filesystem.
3832 if (mnt
->mnt
.mnt_root
!= mnt
->mnt
.mnt_sb
->s_root
)
3835 /* A local view of the mount flags */
3836 mnt_flags
= mnt
->mnt
.mnt_flags
;
3838 /* Don't miss readonly hidden in the superblock flags */
3839 if (sb_rdonly(mnt
->mnt
.mnt_sb
))
3840 mnt_flags
|= MNT_LOCK_READONLY
;
3842 /* Verify the mount flags are equal to or more permissive
3843 * than the proposed new mount.
3845 if ((mnt_flags
& MNT_LOCK_READONLY
) &&
3846 !(new_flags
& MNT_READONLY
))
3848 if ((mnt_flags
& MNT_LOCK_ATIME
) &&
3849 ((mnt_flags
& MNT_ATIME_MASK
) != (new_flags
& MNT_ATIME_MASK
)))
3852 /* This mount is not fully visible if there are any
3853 * locked child mounts that cover anything except for
3854 * empty directories.
3856 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
3857 struct inode
*inode
= child
->mnt_mountpoint
->d_inode
;
3858 /* Only worry about locked mounts */
3859 if (!(child
->mnt
.mnt_flags
& MNT_LOCKED
))
3861 /* Is the directory permanetly empty? */
3862 if (!is_empty_dir_inode(inode
))
3865 /* Preserve the locked attributes */
3866 *new_mnt_flags
|= mnt_flags
& (MNT_LOCK_READONLY
| \
3873 up_read(&namespace_sem
);
3877 static bool mount_too_revealing(const struct super_block
*sb
, int *new_mnt_flags
)
3879 const unsigned long required_iflags
= SB_I_NOEXEC
| SB_I_NODEV
;
3880 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
3881 unsigned long s_iflags
;
3883 if (ns
->user_ns
== &init_user_ns
)
3886 /* Can this filesystem be too revealing? */
3887 s_iflags
= sb
->s_iflags
;
3888 if (!(s_iflags
& SB_I_USERNS_VISIBLE
))
3891 if ((s_iflags
& required_iflags
) != required_iflags
) {
3892 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3897 return !mnt_already_visible(ns
, sb
, new_mnt_flags
);
3900 bool mnt_may_suid(struct vfsmount
*mnt
)
3903 * Foreign mounts (accessed via fchdir or through /proc
3904 * symlinks) are always treated as if they are nosuid. This
3905 * prevents namespaces from trusting potentially unsafe
3906 * suid/sgid bits, file caps, or security labels that originate
3907 * in other namespaces.
3909 return !(mnt
->mnt_flags
& MNT_NOSUID
) && check_mnt(real_mount(mnt
)) &&
3910 current_in_userns(mnt
->mnt_sb
->s_user_ns
);
3913 static struct ns_common
*mntns_get(struct task_struct
*task
)
3915 struct ns_common
*ns
= NULL
;
3916 struct nsproxy
*nsproxy
;
3919 nsproxy
= task
->nsproxy
;
3921 ns
= &nsproxy
->mnt_ns
->ns
;
3922 get_mnt_ns(to_mnt_ns(ns
));
3929 static void mntns_put(struct ns_common
*ns
)
3931 put_mnt_ns(to_mnt_ns(ns
));
3934 static int mntns_install(struct nsproxy
*nsproxy
, struct ns_common
*ns
)
3936 struct fs_struct
*fs
= current
->fs
;
3937 struct mnt_namespace
*mnt_ns
= to_mnt_ns(ns
), *old_mnt_ns
;
3941 if (!ns_capable(mnt_ns
->user_ns
, CAP_SYS_ADMIN
) ||
3942 !ns_capable(current_user_ns(), CAP_SYS_CHROOT
) ||
3943 !ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
3946 if (is_anon_ns(mnt_ns
))
3953 old_mnt_ns
= nsproxy
->mnt_ns
;
3954 nsproxy
->mnt_ns
= mnt_ns
;
3957 err
= vfs_path_lookup(mnt_ns
->root
->mnt
.mnt_root
, &mnt_ns
->root
->mnt
,
3958 "/", LOOKUP_DOWN
, &root
);
3960 /* revert to old namespace */
3961 nsproxy
->mnt_ns
= old_mnt_ns
;
3966 put_mnt_ns(old_mnt_ns
);
3968 /* Update the pwd and root */
3969 set_fs_pwd(fs
, &root
);
3970 set_fs_root(fs
, &root
);
3976 static struct user_namespace
*mntns_owner(struct ns_common
*ns
)
3978 return to_mnt_ns(ns
)->user_ns
;
3981 const struct proc_ns_operations mntns_operations
= {
3983 .type
= CLONE_NEWNS
,
3986 .install
= mntns_install
,
3987 .owner
= mntns_owner
,