4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
33 int sysctl_unprivileged_userfaultfd __read_mostly
= 1;
35 static struct kmem_cache
*userfaultfd_ctx_cachep __read_mostly
;
37 enum userfaultfd_state
{
43 * Start with fault_pending_wqh and fault_wqh so they're more likely
44 * to be in the same cacheline.
46 struct userfaultfd_ctx
{
47 /* waitqueue head for the pending (i.e. not read) userfaults */
48 wait_queue_head_t fault_pending_wqh
;
49 /* waitqueue head for the userfaults */
50 wait_queue_head_t fault_wqh
;
51 /* waitqueue head for the pseudo fd to wakeup poll/read */
52 wait_queue_head_t fd_wqh
;
53 /* waitqueue head for events */
54 wait_queue_head_t event_wqh
;
55 /* a refile sequence protected by fault_pending_wqh lock */
56 struct seqcount refile_seq
;
57 /* pseudo fd refcounting */
59 /* userfaultfd syscall flags */
61 /* features requested from the userspace */
62 unsigned int features
;
64 enum userfaultfd_state state
;
67 /* memory mappings are changing because of non-cooperative event */
69 /* mm with one ore more vmas attached to this userfaultfd_ctx */
73 struct userfaultfd_fork_ctx
{
74 struct userfaultfd_ctx
*orig
;
75 struct userfaultfd_ctx
*new;
76 struct list_head list
;
79 struct userfaultfd_unmap_ctx
{
80 struct userfaultfd_ctx
*ctx
;
83 struct list_head list
;
86 struct userfaultfd_wait_queue
{
88 wait_queue_entry_t wq
;
89 struct userfaultfd_ctx
*ctx
;
93 struct userfaultfd_wake_range
{
98 static int userfaultfd_wake_function(wait_queue_entry_t
*wq
, unsigned mode
,
99 int wake_flags
, void *key
)
101 struct userfaultfd_wake_range
*range
= key
;
103 struct userfaultfd_wait_queue
*uwq
;
104 unsigned long start
, len
;
106 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
108 /* len == 0 means wake all */
109 start
= range
->start
;
111 if (len
&& (start
> uwq
->msg
.arg
.pagefault
.address
||
112 start
+ len
<= uwq
->msg
.arg
.pagefault
.address
))
114 WRITE_ONCE(uwq
->waken
, true);
116 * The Program-Order guarantees provided by the scheduler
117 * ensure uwq->waken is visible before the task is woken.
119 ret
= wake_up_state(wq
->private, mode
);
122 * Wake only once, autoremove behavior.
124 * After the effect of list_del_init is visible to the other
125 * CPUs, the waitqueue may disappear from under us, see the
126 * !list_empty_careful() in handle_userfault().
128 * try_to_wake_up() has an implicit smp_mb(), and the
129 * wq->private is read before calling the extern function
130 * "wake_up_state" (which in turns calls try_to_wake_up).
132 list_del_init(&wq
->entry
);
139 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
141 * @ctx: [in] Pointer to the userfaultfd context.
143 static void userfaultfd_ctx_get(struct userfaultfd_ctx
*ctx
)
145 refcount_inc(&ctx
->refcount
);
149 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
151 * @ctx: [in] Pointer to userfaultfd context.
153 * The userfaultfd context reference must have been previously acquired either
154 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
156 static void userfaultfd_ctx_put(struct userfaultfd_ctx
*ctx
)
158 if (refcount_dec_and_test(&ctx
->refcount
)) {
159 VM_BUG_ON(spin_is_locked(&ctx
->fault_pending_wqh
.lock
));
160 VM_BUG_ON(waitqueue_active(&ctx
->fault_pending_wqh
));
161 VM_BUG_ON(spin_is_locked(&ctx
->fault_wqh
.lock
));
162 VM_BUG_ON(waitqueue_active(&ctx
->fault_wqh
));
163 VM_BUG_ON(spin_is_locked(&ctx
->event_wqh
.lock
));
164 VM_BUG_ON(waitqueue_active(&ctx
->event_wqh
));
165 VM_BUG_ON(spin_is_locked(&ctx
->fd_wqh
.lock
));
166 VM_BUG_ON(waitqueue_active(&ctx
->fd_wqh
));
168 kmem_cache_free(userfaultfd_ctx_cachep
, ctx
);
172 static inline void msg_init(struct uffd_msg
*msg
)
174 BUILD_BUG_ON(sizeof(struct uffd_msg
) != 32);
176 * Must use memset to zero out the paddings or kernel data is
177 * leaked to userland.
179 memset(msg
, 0, sizeof(struct uffd_msg
));
182 static inline struct uffd_msg
userfault_msg(unsigned long address
,
184 unsigned long reason
,
185 unsigned int features
)
189 msg
.event
= UFFD_EVENT_PAGEFAULT
;
190 msg
.arg
.pagefault
.address
= address
;
191 if (flags
& FAULT_FLAG_WRITE
)
193 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
194 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
195 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
196 * was a read fault, otherwise if set it means it's
199 msg
.arg
.pagefault
.flags
|= UFFD_PAGEFAULT_FLAG_WRITE
;
200 if (reason
& VM_UFFD_WP
)
202 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
203 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
204 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
205 * a missing fault, otherwise if set it means it's a
206 * write protect fault.
208 msg
.arg
.pagefault
.flags
|= UFFD_PAGEFAULT_FLAG_WP
;
209 if (features
& UFFD_FEATURE_THREAD_ID
)
210 msg
.arg
.pagefault
.feat
.ptid
= task_pid_vnr(current
);
214 #ifdef CONFIG_HUGETLB_PAGE
216 * Same functionality as userfaultfd_must_wait below with modifications for
219 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx
*ctx
,
220 struct vm_area_struct
*vma
,
221 unsigned long address
,
223 unsigned long reason
)
225 struct mm_struct
*mm
= ctx
->mm
;
229 VM_BUG_ON(!rwsem_is_locked(&mm
->mmap_sem
));
231 ptep
= huge_pte_offset(mm
, address
, vma_mmu_pagesize(vma
));
237 pte
= huge_ptep_get(ptep
);
240 * Lockless access: we're in a wait_event so it's ok if it
243 if (huge_pte_none(pte
))
245 if (!huge_pte_write(pte
) && (reason
& VM_UFFD_WP
))
251 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx
*ctx
,
252 struct vm_area_struct
*vma
,
253 unsigned long address
,
255 unsigned long reason
)
257 return false; /* should never get here */
259 #endif /* CONFIG_HUGETLB_PAGE */
262 * Verify the pagetables are still not ok after having reigstered into
263 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
264 * userfault that has already been resolved, if userfaultfd_read and
265 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
268 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx
*ctx
,
269 unsigned long address
,
271 unsigned long reason
)
273 struct mm_struct
*mm
= ctx
->mm
;
281 VM_BUG_ON(!rwsem_is_locked(&mm
->mmap_sem
));
283 pgd
= pgd_offset(mm
, address
);
284 if (!pgd_present(*pgd
))
286 p4d
= p4d_offset(pgd
, address
);
287 if (!p4d_present(*p4d
))
289 pud
= pud_offset(p4d
, address
);
290 if (!pud_present(*pud
))
292 pmd
= pmd_offset(pud
, address
);
294 * READ_ONCE must function as a barrier with narrower scope
295 * and it must be equivalent to:
296 * _pmd = *pmd; barrier();
298 * This is to deal with the instability (as in
299 * pmd_trans_unstable) of the pmd.
301 _pmd
= READ_ONCE(*pmd
);
306 if (!pmd_present(_pmd
))
309 if (pmd_trans_huge(_pmd
))
313 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
314 * and use the standard pte_offset_map() instead of parsing _pmd.
316 pte
= pte_offset_map(pmd
, address
);
318 * Lockless access: we're in a wait_event so it's ok if it
330 * The locking rules involved in returning VM_FAULT_RETRY depending on
331 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
332 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
333 * recommendation in __lock_page_or_retry is not an understatement.
335 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
336 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
339 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
340 * set, VM_FAULT_RETRY can still be returned if and only if there are
341 * fatal_signal_pending()s, and the mmap_sem must be released before
344 vm_fault_t
handle_userfault(struct vm_fault
*vmf
, unsigned long reason
)
346 struct mm_struct
*mm
= vmf
->vma
->vm_mm
;
347 struct userfaultfd_ctx
*ctx
;
348 struct userfaultfd_wait_queue uwq
;
349 vm_fault_t ret
= VM_FAULT_SIGBUS
;
350 bool must_wait
, return_to_userland
;
354 * We don't do userfault handling for the final child pid update.
356 * We also don't do userfault handling during
357 * coredumping. hugetlbfs has the special
358 * follow_hugetlb_page() to skip missing pages in the
359 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
360 * the no_page_table() helper in follow_page_mask(), but the
361 * shmem_vm_ops->fault method is invoked even during
362 * coredumping without mmap_sem and it ends up here.
364 if (current
->flags
& (PF_EXITING
|PF_DUMPCORE
))
368 * Coredumping runs without mmap_sem so we can only check that
369 * the mmap_sem is held, if PF_DUMPCORE was not set.
371 WARN_ON_ONCE(!rwsem_is_locked(&mm
->mmap_sem
));
373 ctx
= vmf
->vma
->vm_userfaultfd_ctx
.ctx
;
377 BUG_ON(ctx
->mm
!= mm
);
379 VM_BUG_ON(reason
& ~(VM_UFFD_MISSING
|VM_UFFD_WP
));
380 VM_BUG_ON(!(reason
& VM_UFFD_MISSING
) ^ !!(reason
& VM_UFFD_WP
));
382 if (ctx
->features
& UFFD_FEATURE_SIGBUS
)
386 * If it's already released don't get it. This avoids to loop
387 * in __get_user_pages if userfaultfd_release waits on the
388 * caller of handle_userfault to release the mmap_sem.
390 if (unlikely(READ_ONCE(ctx
->released
))) {
392 * Don't return VM_FAULT_SIGBUS in this case, so a non
393 * cooperative manager can close the uffd after the
394 * last UFFDIO_COPY, without risking to trigger an
395 * involuntary SIGBUS if the process was starting the
396 * userfaultfd while the userfaultfd was still armed
397 * (but after the last UFFDIO_COPY). If the uffd
398 * wasn't already closed when the userfault reached
399 * this point, that would normally be solved by
400 * userfaultfd_must_wait returning 'false'.
402 * If we were to return VM_FAULT_SIGBUS here, the non
403 * cooperative manager would be instead forced to
404 * always call UFFDIO_UNREGISTER before it can safely
407 ret
= VM_FAULT_NOPAGE
;
412 * Check that we can return VM_FAULT_RETRY.
414 * NOTE: it should become possible to return VM_FAULT_RETRY
415 * even if FAULT_FLAG_TRIED is set without leading to gup()
416 * -EBUSY failures, if the userfaultfd is to be extended for
417 * VM_UFFD_WP tracking and we intend to arm the userfault
418 * without first stopping userland access to the memory. For
419 * VM_UFFD_MISSING userfaults this is enough for now.
421 if (unlikely(!(vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
))) {
423 * Validate the invariant that nowait must allow retry
424 * to be sure not to return SIGBUS erroneously on
425 * nowait invocations.
427 BUG_ON(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
);
428 #ifdef CONFIG_DEBUG_VM
429 if (printk_ratelimit()) {
431 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
440 * Handle nowait, not much to do other than tell it to retry
443 ret
= VM_FAULT_RETRY
;
444 if (vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)
447 /* take the reference before dropping the mmap_sem */
448 userfaultfd_ctx_get(ctx
);
450 init_waitqueue_func_entry(&uwq
.wq
, userfaultfd_wake_function
);
451 uwq
.wq
.private = current
;
452 uwq
.msg
= userfault_msg(vmf
->address
, vmf
->flags
, reason
,
458 (vmf
->flags
& (FAULT_FLAG_USER
|FAULT_FLAG_KILLABLE
)) ==
459 (FAULT_FLAG_USER
|FAULT_FLAG_KILLABLE
);
460 blocking_state
= return_to_userland
? TASK_INTERRUPTIBLE
:
463 spin_lock(&ctx
->fault_pending_wqh
.lock
);
465 * After the __add_wait_queue the uwq is visible to userland
466 * through poll/read().
468 __add_wait_queue(&ctx
->fault_pending_wqh
, &uwq
.wq
);
470 * The smp_mb() after __set_current_state prevents the reads
471 * following the spin_unlock to happen before the list_add in
474 set_current_state(blocking_state
);
475 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
477 if (!is_vm_hugetlb_page(vmf
->vma
))
478 must_wait
= userfaultfd_must_wait(ctx
, vmf
->address
, vmf
->flags
,
481 must_wait
= userfaultfd_huge_must_wait(ctx
, vmf
->vma
,
484 up_read(&mm
->mmap_sem
);
486 if (likely(must_wait
&& !READ_ONCE(ctx
->released
) &&
487 (return_to_userland
? !signal_pending(current
) :
488 !fatal_signal_pending(current
)))) {
489 wake_up_poll(&ctx
->fd_wqh
, EPOLLIN
);
491 ret
|= VM_FAULT_MAJOR
;
494 * False wakeups can orginate even from rwsem before
495 * up_read() however userfaults will wait either for a
496 * targeted wakeup on the specific uwq waitqueue from
497 * wake_userfault() or for signals or for uffd
500 while (!READ_ONCE(uwq
.waken
)) {
502 * This needs the full smp_store_mb()
503 * guarantee as the state write must be
504 * visible to other CPUs before reading
505 * uwq.waken from other CPUs.
507 set_current_state(blocking_state
);
508 if (READ_ONCE(uwq
.waken
) ||
509 READ_ONCE(ctx
->released
) ||
510 (return_to_userland
? signal_pending(current
) :
511 fatal_signal_pending(current
)))
517 __set_current_state(TASK_RUNNING
);
519 if (return_to_userland
) {
520 if (signal_pending(current
) &&
521 !fatal_signal_pending(current
)) {
523 * If we got a SIGSTOP or SIGCONT and this is
524 * a normal userland page fault, just let
525 * userland return so the signal will be
526 * handled and gdb debugging works. The page
527 * fault code immediately after we return from
528 * this function is going to release the
529 * mmap_sem and it's not depending on it
530 * (unlike gup would if we were not to return
533 * If a fatal signal is pending we still take
534 * the streamlined VM_FAULT_RETRY failure path
535 * and there's no need to retake the mmap_sem
538 down_read(&mm
->mmap_sem
);
539 ret
= VM_FAULT_NOPAGE
;
544 * Here we race with the list_del; list_add in
545 * userfaultfd_ctx_read(), however because we don't ever run
546 * list_del_init() to refile across the two lists, the prev
547 * and next pointers will never point to self. list_add also
548 * would never let any of the two pointers to point to
549 * self. So list_empty_careful won't risk to see both pointers
550 * pointing to self at any time during the list refile. The
551 * only case where list_del_init() is called is the full
552 * removal in the wake function and there we don't re-list_add
553 * and it's fine not to block on the spinlock. The uwq on this
554 * kernel stack can be released after the list_del_init.
556 if (!list_empty_careful(&uwq
.wq
.entry
)) {
557 spin_lock(&ctx
->fault_pending_wqh
.lock
);
559 * No need of list_del_init(), the uwq on the stack
560 * will be freed shortly anyway.
562 list_del(&uwq
.wq
.entry
);
563 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
567 * ctx may go away after this if the userfault pseudo fd is
570 userfaultfd_ctx_put(ctx
);
576 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx
*ctx
,
577 struct userfaultfd_wait_queue
*ewq
)
579 struct userfaultfd_ctx
*release_new_ctx
;
581 if (WARN_ON_ONCE(current
->flags
& PF_EXITING
))
585 init_waitqueue_entry(&ewq
->wq
, current
);
586 release_new_ctx
= NULL
;
588 spin_lock(&ctx
->event_wqh
.lock
);
590 * After the __add_wait_queue the uwq is visible to userland
591 * through poll/read().
593 __add_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
595 set_current_state(TASK_KILLABLE
);
596 if (ewq
->msg
.event
== 0)
598 if (READ_ONCE(ctx
->released
) ||
599 fatal_signal_pending(current
)) {
601 * &ewq->wq may be queued in fork_event, but
602 * __remove_wait_queue ignores the head
603 * parameter. It would be a problem if it
606 __remove_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
607 if (ewq
->msg
.event
== UFFD_EVENT_FORK
) {
608 struct userfaultfd_ctx
*new;
610 new = (struct userfaultfd_ctx
*)
612 ewq
->msg
.arg
.reserved
.reserved1
;
613 release_new_ctx
= new;
618 spin_unlock(&ctx
->event_wqh
.lock
);
620 wake_up_poll(&ctx
->fd_wqh
, EPOLLIN
);
623 spin_lock(&ctx
->event_wqh
.lock
);
625 __set_current_state(TASK_RUNNING
);
626 spin_unlock(&ctx
->event_wqh
.lock
);
628 if (release_new_ctx
) {
629 struct vm_area_struct
*vma
;
630 struct mm_struct
*mm
= release_new_ctx
->mm
;
632 /* the various vma->vm_userfaultfd_ctx still points to it */
633 down_write(&mm
->mmap_sem
);
634 /* no task can run (and in turn coredump) yet */
635 VM_WARN_ON(!mmget_still_valid(mm
));
636 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
637 if (vma
->vm_userfaultfd_ctx
.ctx
== release_new_ctx
) {
638 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
639 vma
->vm_flags
&= ~(VM_UFFD_WP
| VM_UFFD_MISSING
);
641 up_write(&mm
->mmap_sem
);
643 userfaultfd_ctx_put(release_new_ctx
);
647 * ctx may go away after this if the userfault pseudo fd is
651 WRITE_ONCE(ctx
->mmap_changing
, false);
652 userfaultfd_ctx_put(ctx
);
655 static void userfaultfd_event_complete(struct userfaultfd_ctx
*ctx
,
656 struct userfaultfd_wait_queue
*ewq
)
659 wake_up_locked(&ctx
->event_wqh
);
660 __remove_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
663 int dup_userfaultfd(struct vm_area_struct
*vma
, struct list_head
*fcs
)
665 struct userfaultfd_ctx
*ctx
= NULL
, *octx
;
666 struct userfaultfd_fork_ctx
*fctx
;
668 octx
= vma
->vm_userfaultfd_ctx
.ctx
;
669 if (!octx
|| !(octx
->features
& UFFD_FEATURE_EVENT_FORK
)) {
670 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
671 vma
->vm_flags
&= ~(VM_UFFD_WP
| VM_UFFD_MISSING
);
675 list_for_each_entry(fctx
, fcs
, list
)
676 if (fctx
->orig
== octx
) {
682 fctx
= kmalloc(sizeof(*fctx
), GFP_KERNEL
);
686 ctx
= kmem_cache_alloc(userfaultfd_ctx_cachep
, GFP_KERNEL
);
692 refcount_set(&ctx
->refcount
, 1);
693 ctx
->flags
= octx
->flags
;
694 ctx
->state
= UFFD_STATE_RUNNING
;
695 ctx
->features
= octx
->features
;
696 ctx
->released
= false;
697 ctx
->mmap_changing
= false;
698 ctx
->mm
= vma
->vm_mm
;
701 userfaultfd_ctx_get(octx
);
702 WRITE_ONCE(octx
->mmap_changing
, true);
705 list_add_tail(&fctx
->list
, fcs
);
708 vma
->vm_userfaultfd_ctx
.ctx
= ctx
;
712 static void dup_fctx(struct userfaultfd_fork_ctx
*fctx
)
714 struct userfaultfd_ctx
*ctx
= fctx
->orig
;
715 struct userfaultfd_wait_queue ewq
;
719 ewq
.msg
.event
= UFFD_EVENT_FORK
;
720 ewq
.msg
.arg
.reserved
.reserved1
= (unsigned long)fctx
->new;
722 userfaultfd_event_wait_completion(ctx
, &ewq
);
725 void dup_userfaultfd_complete(struct list_head
*fcs
)
727 struct userfaultfd_fork_ctx
*fctx
, *n
;
729 list_for_each_entry_safe(fctx
, n
, fcs
, list
) {
731 list_del(&fctx
->list
);
736 void mremap_userfaultfd_prep(struct vm_area_struct
*vma
,
737 struct vm_userfaultfd_ctx
*vm_ctx
)
739 struct userfaultfd_ctx
*ctx
;
741 ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
746 if (ctx
->features
& UFFD_FEATURE_EVENT_REMAP
) {
748 userfaultfd_ctx_get(ctx
);
749 WRITE_ONCE(ctx
->mmap_changing
, true);
751 /* Drop uffd context if remap feature not enabled */
752 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
753 vma
->vm_flags
&= ~(VM_UFFD_WP
| VM_UFFD_MISSING
);
757 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx
*vm_ctx
,
758 unsigned long from
, unsigned long to
,
761 struct userfaultfd_ctx
*ctx
= vm_ctx
->ctx
;
762 struct userfaultfd_wait_queue ewq
;
767 if (to
& ~PAGE_MASK
) {
768 userfaultfd_ctx_put(ctx
);
774 ewq
.msg
.event
= UFFD_EVENT_REMAP
;
775 ewq
.msg
.arg
.remap
.from
= from
;
776 ewq
.msg
.arg
.remap
.to
= to
;
777 ewq
.msg
.arg
.remap
.len
= len
;
779 userfaultfd_event_wait_completion(ctx
, &ewq
);
782 bool userfaultfd_remove(struct vm_area_struct
*vma
,
783 unsigned long start
, unsigned long end
)
785 struct mm_struct
*mm
= vma
->vm_mm
;
786 struct userfaultfd_ctx
*ctx
;
787 struct userfaultfd_wait_queue ewq
;
789 ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
790 if (!ctx
|| !(ctx
->features
& UFFD_FEATURE_EVENT_REMOVE
))
793 userfaultfd_ctx_get(ctx
);
794 WRITE_ONCE(ctx
->mmap_changing
, true);
795 up_read(&mm
->mmap_sem
);
799 ewq
.msg
.event
= UFFD_EVENT_REMOVE
;
800 ewq
.msg
.arg
.remove
.start
= start
;
801 ewq
.msg
.arg
.remove
.end
= end
;
803 userfaultfd_event_wait_completion(ctx
, &ewq
);
808 static bool has_unmap_ctx(struct userfaultfd_ctx
*ctx
, struct list_head
*unmaps
,
809 unsigned long start
, unsigned long end
)
811 struct userfaultfd_unmap_ctx
*unmap_ctx
;
813 list_for_each_entry(unmap_ctx
, unmaps
, list
)
814 if (unmap_ctx
->ctx
== ctx
&& unmap_ctx
->start
== start
&&
815 unmap_ctx
->end
== end
)
821 int userfaultfd_unmap_prep(struct vm_area_struct
*vma
,
822 unsigned long start
, unsigned long end
,
823 struct list_head
*unmaps
)
825 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
) {
826 struct userfaultfd_unmap_ctx
*unmap_ctx
;
827 struct userfaultfd_ctx
*ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
829 if (!ctx
|| !(ctx
->features
& UFFD_FEATURE_EVENT_UNMAP
) ||
830 has_unmap_ctx(ctx
, unmaps
, start
, end
))
833 unmap_ctx
= kzalloc(sizeof(*unmap_ctx
), GFP_KERNEL
);
837 userfaultfd_ctx_get(ctx
);
838 WRITE_ONCE(ctx
->mmap_changing
, true);
839 unmap_ctx
->ctx
= ctx
;
840 unmap_ctx
->start
= start
;
841 unmap_ctx
->end
= end
;
842 list_add_tail(&unmap_ctx
->list
, unmaps
);
848 void userfaultfd_unmap_complete(struct mm_struct
*mm
, struct list_head
*uf
)
850 struct userfaultfd_unmap_ctx
*ctx
, *n
;
851 struct userfaultfd_wait_queue ewq
;
853 list_for_each_entry_safe(ctx
, n
, uf
, list
) {
856 ewq
.msg
.event
= UFFD_EVENT_UNMAP
;
857 ewq
.msg
.arg
.remove
.start
= ctx
->start
;
858 ewq
.msg
.arg
.remove
.end
= ctx
->end
;
860 userfaultfd_event_wait_completion(ctx
->ctx
, &ewq
);
862 list_del(&ctx
->list
);
867 static int userfaultfd_release(struct inode
*inode
, struct file
*file
)
869 struct userfaultfd_ctx
*ctx
= file
->private_data
;
870 struct mm_struct
*mm
= ctx
->mm
;
871 struct vm_area_struct
*vma
, *prev
;
872 /* len == 0 means wake all */
873 struct userfaultfd_wake_range range
= { .len
= 0, };
874 unsigned long new_flags
;
876 WRITE_ONCE(ctx
->released
, true);
878 if (!mmget_not_zero(mm
))
882 * Flush page faults out of all CPUs. NOTE: all page faults
883 * must be retried without returning VM_FAULT_SIGBUS if
884 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
885 * changes while handle_userfault released the mmap_sem. So
886 * it's critical that released is set to true (above), before
887 * taking the mmap_sem for writing.
889 down_write(&mm
->mmap_sem
);
890 if (!mmget_still_valid(mm
))
893 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
895 BUG_ON(!!vma
->vm_userfaultfd_ctx
.ctx
^
896 !!(vma
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
897 if (vma
->vm_userfaultfd_ctx
.ctx
!= ctx
) {
901 new_flags
= vma
->vm_flags
& ~(VM_UFFD_MISSING
| VM_UFFD_WP
);
902 prev
= vma_merge(mm
, prev
, vma
->vm_start
, vma
->vm_end
,
903 new_flags
, vma
->anon_vma
,
904 vma
->vm_file
, vma
->vm_pgoff
,
911 vma
->vm_flags
= new_flags
;
912 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
915 up_write(&mm
->mmap_sem
);
919 * After no new page faults can wait on this fault_*wqh, flush
920 * the last page faults that may have been already waiting on
923 spin_lock(&ctx
->fault_pending_wqh
.lock
);
924 __wake_up_locked_key(&ctx
->fault_pending_wqh
, TASK_NORMAL
, &range
);
925 __wake_up(&ctx
->fault_wqh
, TASK_NORMAL
, 1, &range
);
926 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
928 /* Flush pending events that may still wait on event_wqh */
929 wake_up_all(&ctx
->event_wqh
);
931 wake_up_poll(&ctx
->fd_wqh
, EPOLLHUP
);
932 userfaultfd_ctx_put(ctx
);
936 /* fault_pending_wqh.lock must be hold by the caller */
937 static inline struct userfaultfd_wait_queue
*find_userfault_in(
938 wait_queue_head_t
*wqh
)
940 wait_queue_entry_t
*wq
;
941 struct userfaultfd_wait_queue
*uwq
;
943 lockdep_assert_held(&wqh
->lock
);
946 if (!waitqueue_active(wqh
))
948 /* walk in reverse to provide FIFO behavior to read userfaults */
949 wq
= list_last_entry(&wqh
->head
, typeof(*wq
), entry
);
950 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
955 static inline struct userfaultfd_wait_queue
*find_userfault(
956 struct userfaultfd_ctx
*ctx
)
958 return find_userfault_in(&ctx
->fault_pending_wqh
);
961 static inline struct userfaultfd_wait_queue
*find_userfault_evt(
962 struct userfaultfd_ctx
*ctx
)
964 return find_userfault_in(&ctx
->event_wqh
);
967 static __poll_t
userfaultfd_poll(struct file
*file
, poll_table
*wait
)
969 struct userfaultfd_ctx
*ctx
= file
->private_data
;
972 poll_wait(file
, &ctx
->fd_wqh
, wait
);
974 switch (ctx
->state
) {
975 case UFFD_STATE_WAIT_API
:
977 case UFFD_STATE_RUNNING
:
979 * poll() never guarantees that read won't block.
980 * userfaults can be waken before they're read().
982 if (unlikely(!(file
->f_flags
& O_NONBLOCK
)))
985 * lockless access to see if there are pending faults
986 * __pollwait last action is the add_wait_queue but
987 * the spin_unlock would allow the waitqueue_active to
988 * pass above the actual list_add inside
989 * add_wait_queue critical section. So use a full
990 * memory barrier to serialize the list_add write of
991 * add_wait_queue() with the waitqueue_active read
996 if (waitqueue_active(&ctx
->fault_pending_wqh
))
998 else if (waitqueue_active(&ctx
->event_wqh
))
1008 static const struct file_operations userfaultfd_fops
;
1010 static int resolve_userfault_fork(struct userfaultfd_ctx
*ctx
,
1011 struct userfaultfd_ctx
*new,
1012 struct uffd_msg
*msg
)
1016 fd
= anon_inode_getfd("[userfaultfd]", &userfaultfd_fops
, new,
1017 O_RDWR
| (new->flags
& UFFD_SHARED_FCNTL_FLAGS
));
1021 msg
->arg
.reserved
.reserved1
= 0;
1022 msg
->arg
.fork
.ufd
= fd
;
1026 static ssize_t
userfaultfd_ctx_read(struct userfaultfd_ctx
*ctx
, int no_wait
,
1027 struct uffd_msg
*msg
)
1030 DECLARE_WAITQUEUE(wait
, current
);
1031 struct userfaultfd_wait_queue
*uwq
;
1033 * Handling fork event requires sleeping operations, so
1034 * we drop the event_wqh lock, then do these ops, then
1035 * lock it back and wake up the waiter. While the lock is
1036 * dropped the ewq may go away so we keep track of it
1039 LIST_HEAD(fork_event
);
1040 struct userfaultfd_ctx
*fork_nctx
= NULL
;
1042 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1043 spin_lock_irq(&ctx
->fd_wqh
.lock
);
1044 __add_wait_queue(&ctx
->fd_wqh
, &wait
);
1046 set_current_state(TASK_INTERRUPTIBLE
);
1047 spin_lock(&ctx
->fault_pending_wqh
.lock
);
1048 uwq
= find_userfault(ctx
);
1051 * Use a seqcount to repeat the lockless check
1052 * in wake_userfault() to avoid missing
1053 * wakeups because during the refile both
1054 * waitqueue could become empty if this is the
1057 write_seqcount_begin(&ctx
->refile_seq
);
1060 * The fault_pending_wqh.lock prevents the uwq
1061 * to disappear from under us.
1063 * Refile this userfault from
1064 * fault_pending_wqh to fault_wqh, it's not
1065 * pending anymore after we read it.
1067 * Use list_del() by hand (as
1068 * userfaultfd_wake_function also uses
1069 * list_del_init() by hand) to be sure nobody
1070 * changes __remove_wait_queue() to use
1071 * list_del_init() in turn breaking the
1072 * !list_empty_careful() check in
1073 * handle_userfault(). The uwq->wq.head list
1074 * must never be empty at any time during the
1075 * refile, or the waitqueue could disappear
1076 * from under us. The "wait_queue_head_t"
1077 * parameter of __remove_wait_queue() is unused
1080 list_del(&uwq
->wq
.entry
);
1081 add_wait_queue(&ctx
->fault_wqh
, &uwq
->wq
);
1083 write_seqcount_end(&ctx
->refile_seq
);
1085 /* careful to always initialize msg if ret == 0 */
1087 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1091 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1093 spin_lock(&ctx
->event_wqh
.lock
);
1094 uwq
= find_userfault_evt(ctx
);
1098 if (uwq
->msg
.event
== UFFD_EVENT_FORK
) {
1099 fork_nctx
= (struct userfaultfd_ctx
*)
1101 uwq
->msg
.arg
.reserved
.reserved1
;
1102 list_move(&uwq
->wq
.entry
, &fork_event
);
1104 * fork_nctx can be freed as soon as
1105 * we drop the lock, unless we take a
1108 userfaultfd_ctx_get(fork_nctx
);
1109 spin_unlock(&ctx
->event_wqh
.lock
);
1114 userfaultfd_event_complete(ctx
, uwq
);
1115 spin_unlock(&ctx
->event_wqh
.lock
);
1119 spin_unlock(&ctx
->event_wqh
.lock
);
1121 if (signal_pending(current
)) {
1129 spin_unlock_irq(&ctx
->fd_wqh
.lock
);
1131 spin_lock_irq(&ctx
->fd_wqh
.lock
);
1133 __remove_wait_queue(&ctx
->fd_wqh
, &wait
);
1134 __set_current_state(TASK_RUNNING
);
1135 spin_unlock_irq(&ctx
->fd_wqh
.lock
);
1137 if (!ret
&& msg
->event
== UFFD_EVENT_FORK
) {
1138 ret
= resolve_userfault_fork(ctx
, fork_nctx
, msg
);
1139 spin_lock(&ctx
->event_wqh
.lock
);
1140 if (!list_empty(&fork_event
)) {
1142 * The fork thread didn't abort, so we can
1143 * drop the temporary refcount.
1145 userfaultfd_ctx_put(fork_nctx
);
1147 uwq
= list_first_entry(&fork_event
,
1151 * If fork_event list wasn't empty and in turn
1152 * the event wasn't already released by fork
1153 * (the event is allocated on fork kernel
1154 * stack), put the event back to its place in
1155 * the event_wq. fork_event head will be freed
1156 * as soon as we return so the event cannot
1157 * stay queued there no matter the current
1160 list_del(&uwq
->wq
.entry
);
1161 __add_wait_queue(&ctx
->event_wqh
, &uwq
->wq
);
1164 * Leave the event in the waitqueue and report
1165 * error to userland if we failed to resolve
1166 * the userfault fork.
1169 userfaultfd_event_complete(ctx
, uwq
);
1172 * Here the fork thread aborted and the
1173 * refcount from the fork thread on fork_nctx
1174 * has already been released. We still hold
1175 * the reference we took before releasing the
1176 * lock above. If resolve_userfault_fork
1177 * failed we've to drop it because the
1178 * fork_nctx has to be freed in such case. If
1179 * it succeeded we'll hold it because the new
1180 * uffd references it.
1183 userfaultfd_ctx_put(fork_nctx
);
1185 spin_unlock(&ctx
->event_wqh
.lock
);
1191 static ssize_t
userfaultfd_read(struct file
*file
, char __user
*buf
,
1192 size_t count
, loff_t
*ppos
)
1194 struct userfaultfd_ctx
*ctx
= file
->private_data
;
1195 ssize_t _ret
, ret
= 0;
1196 struct uffd_msg msg
;
1197 int no_wait
= file
->f_flags
& O_NONBLOCK
;
1199 if (ctx
->state
== UFFD_STATE_WAIT_API
)
1203 if (count
< sizeof(msg
))
1204 return ret
? ret
: -EINVAL
;
1205 _ret
= userfaultfd_ctx_read(ctx
, no_wait
, &msg
);
1207 return ret
? ret
: _ret
;
1208 if (copy_to_user((__u64 __user
*) buf
, &msg
, sizeof(msg
)))
1209 return ret
? ret
: -EFAULT
;
1212 count
-= sizeof(msg
);
1214 * Allow to read more than one fault at time but only
1215 * block if waiting for the very first one.
1217 no_wait
= O_NONBLOCK
;
1221 static void __wake_userfault(struct userfaultfd_ctx
*ctx
,
1222 struct userfaultfd_wake_range
*range
)
1224 spin_lock(&ctx
->fault_pending_wqh
.lock
);
1225 /* wake all in the range and autoremove */
1226 if (waitqueue_active(&ctx
->fault_pending_wqh
))
1227 __wake_up_locked_key(&ctx
->fault_pending_wqh
, TASK_NORMAL
,
1229 if (waitqueue_active(&ctx
->fault_wqh
))
1230 __wake_up(&ctx
->fault_wqh
, TASK_NORMAL
, 1, range
);
1231 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1234 static __always_inline
void wake_userfault(struct userfaultfd_ctx
*ctx
,
1235 struct userfaultfd_wake_range
*range
)
1241 * To be sure waitqueue_active() is not reordered by the CPU
1242 * before the pagetable update, use an explicit SMP memory
1243 * barrier here. PT lock release or up_read(mmap_sem) still
1244 * have release semantics that can allow the
1245 * waitqueue_active() to be reordered before the pte update.
1250 * Use waitqueue_active because it's very frequent to
1251 * change the address space atomically even if there are no
1252 * userfaults yet. So we take the spinlock only when we're
1253 * sure we've userfaults to wake.
1256 seq
= read_seqcount_begin(&ctx
->refile_seq
);
1257 need_wakeup
= waitqueue_active(&ctx
->fault_pending_wqh
) ||
1258 waitqueue_active(&ctx
->fault_wqh
);
1260 } while (read_seqcount_retry(&ctx
->refile_seq
, seq
));
1262 __wake_userfault(ctx
, range
);
1265 static __always_inline
int validate_range(struct mm_struct
*mm
,
1266 __u64 start
, __u64 len
)
1268 __u64 task_size
= mm
->task_size
;
1270 if (start
& ~PAGE_MASK
)
1272 if (len
& ~PAGE_MASK
)
1276 if (start
< mmap_min_addr
)
1278 if (start
>= task_size
)
1280 if (len
> task_size
- start
)
1285 static inline bool vma_can_userfault(struct vm_area_struct
*vma
)
1287 return vma_is_anonymous(vma
) || is_vm_hugetlb_page(vma
) ||
1291 static int userfaultfd_register(struct userfaultfd_ctx
*ctx
,
1294 struct mm_struct
*mm
= ctx
->mm
;
1295 struct vm_area_struct
*vma
, *prev
, *cur
;
1297 struct uffdio_register uffdio_register
;
1298 struct uffdio_register __user
*user_uffdio_register
;
1299 unsigned long vm_flags
, new_flags
;
1302 unsigned long start
, end
, vma_end
;
1304 user_uffdio_register
= (struct uffdio_register __user
*) arg
;
1307 if (copy_from_user(&uffdio_register
, user_uffdio_register
,
1308 sizeof(uffdio_register
)-sizeof(__u64
)))
1312 if (!uffdio_register
.mode
)
1314 if (uffdio_register
.mode
& ~(UFFDIO_REGISTER_MODE_MISSING
|
1315 UFFDIO_REGISTER_MODE_WP
))
1318 if (uffdio_register
.mode
& UFFDIO_REGISTER_MODE_MISSING
)
1319 vm_flags
|= VM_UFFD_MISSING
;
1320 if (uffdio_register
.mode
& UFFDIO_REGISTER_MODE_WP
) {
1321 vm_flags
|= VM_UFFD_WP
;
1323 * FIXME: remove the below error constraint by
1324 * implementing the wprotect tracking mode.
1330 ret
= validate_range(mm
, uffdio_register
.range
.start
,
1331 uffdio_register
.range
.len
);
1335 start
= uffdio_register
.range
.start
;
1336 end
= start
+ uffdio_register
.range
.len
;
1339 if (!mmget_not_zero(mm
))
1342 down_write(&mm
->mmap_sem
);
1343 if (!mmget_still_valid(mm
))
1345 vma
= find_vma_prev(mm
, start
, &prev
);
1349 /* check that there's at least one vma in the range */
1351 if (vma
->vm_start
>= end
)
1355 * If the first vma contains huge pages, make sure start address
1356 * is aligned to huge page size.
1358 if (is_vm_hugetlb_page(vma
)) {
1359 unsigned long vma_hpagesize
= vma_kernel_pagesize(vma
);
1361 if (start
& (vma_hpagesize
- 1))
1366 * Search for not compatible vmas.
1369 basic_ioctls
= false;
1370 for (cur
= vma
; cur
&& cur
->vm_start
< end
; cur
= cur
->vm_next
) {
1373 BUG_ON(!!cur
->vm_userfaultfd_ctx
.ctx
^
1374 !!(cur
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
1376 /* check not compatible vmas */
1378 if (!vma_can_userfault(cur
))
1382 * UFFDIO_COPY will fill file holes even without
1383 * PROT_WRITE. This check enforces that if this is a
1384 * MAP_SHARED, the process has write permission to the backing
1385 * file. If VM_MAYWRITE is set it also enforces that on a
1386 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1387 * F_WRITE_SEAL can be taken until the vma is destroyed.
1390 if (unlikely(!(cur
->vm_flags
& VM_MAYWRITE
)))
1394 * If this vma contains ending address, and huge pages
1397 if (is_vm_hugetlb_page(cur
) && end
<= cur
->vm_end
&&
1398 end
> cur
->vm_start
) {
1399 unsigned long vma_hpagesize
= vma_kernel_pagesize(cur
);
1403 if (end
& (vma_hpagesize
- 1))
1408 * Check that this vma isn't already owned by a
1409 * different userfaultfd. We can't allow more than one
1410 * userfaultfd to own a single vma simultaneously or we
1411 * wouldn't know which one to deliver the userfaults to.
1414 if (cur
->vm_userfaultfd_ctx
.ctx
&&
1415 cur
->vm_userfaultfd_ctx
.ctx
!= ctx
)
1419 * Note vmas containing huge pages
1421 if (is_vm_hugetlb_page(cur
))
1422 basic_ioctls
= true;
1428 if (vma
->vm_start
< start
)
1435 BUG_ON(!vma_can_userfault(vma
));
1436 BUG_ON(vma
->vm_userfaultfd_ctx
.ctx
&&
1437 vma
->vm_userfaultfd_ctx
.ctx
!= ctx
);
1438 WARN_ON(!(vma
->vm_flags
& VM_MAYWRITE
));
1441 * Nothing to do: this vma is already registered into this
1442 * userfaultfd and with the right tracking mode too.
1444 if (vma
->vm_userfaultfd_ctx
.ctx
== ctx
&&
1445 (vma
->vm_flags
& vm_flags
) == vm_flags
)
1448 if (vma
->vm_start
> start
)
1449 start
= vma
->vm_start
;
1450 vma_end
= min(end
, vma
->vm_end
);
1452 new_flags
= (vma
->vm_flags
& ~vm_flags
) | vm_flags
;
1453 prev
= vma_merge(mm
, prev
, start
, vma_end
, new_flags
,
1454 vma
->anon_vma
, vma
->vm_file
, vma
->vm_pgoff
,
1456 ((struct vm_userfaultfd_ctx
){ ctx
}));
1461 if (vma
->vm_start
< start
) {
1462 ret
= split_vma(mm
, vma
, start
, 1);
1466 if (vma
->vm_end
> end
) {
1467 ret
= split_vma(mm
, vma
, end
, 0);
1473 * In the vma_merge() successful mprotect-like case 8:
1474 * the next vma was merged into the current one and
1475 * the current one has not been updated yet.
1477 vma
->vm_flags
= new_flags
;
1478 vma
->vm_userfaultfd_ctx
.ctx
= ctx
;
1482 start
= vma
->vm_end
;
1484 } while (vma
&& vma
->vm_start
< end
);
1486 up_write(&mm
->mmap_sem
);
1490 * Now that we scanned all vmas we can already tell
1491 * userland which ioctls methods are guaranteed to
1492 * succeed on this range.
1494 if (put_user(basic_ioctls
? UFFD_API_RANGE_IOCTLS_BASIC
:
1495 UFFD_API_RANGE_IOCTLS
,
1496 &user_uffdio_register
->ioctls
))
1503 static int userfaultfd_unregister(struct userfaultfd_ctx
*ctx
,
1506 struct mm_struct
*mm
= ctx
->mm
;
1507 struct vm_area_struct
*vma
, *prev
, *cur
;
1509 struct uffdio_range uffdio_unregister
;
1510 unsigned long new_flags
;
1512 unsigned long start
, end
, vma_end
;
1513 const void __user
*buf
= (void __user
*)arg
;
1516 if (copy_from_user(&uffdio_unregister
, buf
, sizeof(uffdio_unregister
)))
1519 ret
= validate_range(mm
, uffdio_unregister
.start
,
1520 uffdio_unregister
.len
);
1524 start
= uffdio_unregister
.start
;
1525 end
= start
+ uffdio_unregister
.len
;
1528 if (!mmget_not_zero(mm
))
1531 down_write(&mm
->mmap_sem
);
1532 if (!mmget_still_valid(mm
))
1534 vma
= find_vma_prev(mm
, start
, &prev
);
1538 /* check that there's at least one vma in the range */
1540 if (vma
->vm_start
>= end
)
1544 * If the first vma contains huge pages, make sure start address
1545 * is aligned to huge page size.
1547 if (is_vm_hugetlb_page(vma
)) {
1548 unsigned long vma_hpagesize
= vma_kernel_pagesize(vma
);
1550 if (start
& (vma_hpagesize
- 1))
1555 * Search for not compatible vmas.
1559 for (cur
= vma
; cur
&& cur
->vm_start
< end
; cur
= cur
->vm_next
) {
1562 BUG_ON(!!cur
->vm_userfaultfd_ctx
.ctx
^
1563 !!(cur
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
1566 * Check not compatible vmas, not strictly required
1567 * here as not compatible vmas cannot have an
1568 * userfaultfd_ctx registered on them, but this
1569 * provides for more strict behavior to notice
1570 * unregistration errors.
1572 if (!vma_can_userfault(cur
))
1579 if (vma
->vm_start
< start
)
1586 BUG_ON(!vma_can_userfault(vma
));
1589 * Nothing to do: this vma is already registered into this
1590 * userfaultfd and with the right tracking mode too.
1592 if (!vma
->vm_userfaultfd_ctx
.ctx
)
1595 WARN_ON(!(vma
->vm_flags
& VM_MAYWRITE
));
1597 if (vma
->vm_start
> start
)
1598 start
= vma
->vm_start
;
1599 vma_end
= min(end
, vma
->vm_end
);
1601 if (userfaultfd_missing(vma
)) {
1603 * Wake any concurrent pending userfault while
1604 * we unregister, so they will not hang
1605 * permanently and it avoids userland to call
1606 * UFFDIO_WAKE explicitly.
1608 struct userfaultfd_wake_range range
;
1609 range
.start
= start
;
1610 range
.len
= vma_end
- start
;
1611 wake_userfault(vma
->vm_userfaultfd_ctx
.ctx
, &range
);
1614 new_flags
= vma
->vm_flags
& ~(VM_UFFD_MISSING
| VM_UFFD_WP
);
1615 prev
= vma_merge(mm
, prev
, start
, vma_end
, new_flags
,
1616 vma
->anon_vma
, vma
->vm_file
, vma
->vm_pgoff
,
1623 if (vma
->vm_start
< start
) {
1624 ret
= split_vma(mm
, vma
, start
, 1);
1628 if (vma
->vm_end
> end
) {
1629 ret
= split_vma(mm
, vma
, end
, 0);
1635 * In the vma_merge() successful mprotect-like case 8:
1636 * the next vma was merged into the current one and
1637 * the current one has not been updated yet.
1639 vma
->vm_flags
= new_flags
;
1640 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
1644 start
= vma
->vm_end
;
1646 } while (vma
&& vma
->vm_start
< end
);
1648 up_write(&mm
->mmap_sem
);
1655 * userfaultfd_wake may be used in combination with the
1656 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1658 static int userfaultfd_wake(struct userfaultfd_ctx
*ctx
,
1662 struct uffdio_range uffdio_wake
;
1663 struct userfaultfd_wake_range range
;
1664 const void __user
*buf
= (void __user
*)arg
;
1667 if (copy_from_user(&uffdio_wake
, buf
, sizeof(uffdio_wake
)))
1670 ret
= validate_range(ctx
->mm
, uffdio_wake
.start
, uffdio_wake
.len
);
1674 range
.start
= uffdio_wake
.start
;
1675 range
.len
= uffdio_wake
.len
;
1678 * len == 0 means wake all and we don't want to wake all here,
1679 * so check it again to be sure.
1681 VM_BUG_ON(!range
.len
);
1683 wake_userfault(ctx
, &range
);
1690 static int userfaultfd_copy(struct userfaultfd_ctx
*ctx
,
1694 struct uffdio_copy uffdio_copy
;
1695 struct uffdio_copy __user
*user_uffdio_copy
;
1696 struct userfaultfd_wake_range range
;
1698 user_uffdio_copy
= (struct uffdio_copy __user
*) arg
;
1701 if (READ_ONCE(ctx
->mmap_changing
))
1705 if (copy_from_user(&uffdio_copy
, user_uffdio_copy
,
1706 /* don't copy "copy" last field */
1707 sizeof(uffdio_copy
)-sizeof(__s64
)))
1710 ret
= validate_range(ctx
->mm
, uffdio_copy
.dst
, uffdio_copy
.len
);
1714 * double check for wraparound just in case. copy_from_user()
1715 * will later check uffdio_copy.src + uffdio_copy.len to fit
1716 * in the userland range.
1719 if (uffdio_copy
.src
+ uffdio_copy
.len
<= uffdio_copy
.src
)
1721 if (uffdio_copy
.mode
& ~UFFDIO_COPY_MODE_DONTWAKE
)
1723 if (mmget_not_zero(ctx
->mm
)) {
1724 ret
= mcopy_atomic(ctx
->mm
, uffdio_copy
.dst
, uffdio_copy
.src
,
1725 uffdio_copy
.len
, &ctx
->mmap_changing
);
1730 if (unlikely(put_user(ret
, &user_uffdio_copy
->copy
)))
1735 /* len == 0 would wake all */
1737 if (!(uffdio_copy
.mode
& UFFDIO_COPY_MODE_DONTWAKE
)) {
1738 range
.start
= uffdio_copy
.dst
;
1739 wake_userfault(ctx
, &range
);
1741 ret
= range
.len
== uffdio_copy
.len
? 0 : -EAGAIN
;
1746 static int userfaultfd_zeropage(struct userfaultfd_ctx
*ctx
,
1750 struct uffdio_zeropage uffdio_zeropage
;
1751 struct uffdio_zeropage __user
*user_uffdio_zeropage
;
1752 struct userfaultfd_wake_range range
;
1754 user_uffdio_zeropage
= (struct uffdio_zeropage __user
*) arg
;
1757 if (READ_ONCE(ctx
->mmap_changing
))
1761 if (copy_from_user(&uffdio_zeropage
, user_uffdio_zeropage
,
1762 /* don't copy "zeropage" last field */
1763 sizeof(uffdio_zeropage
)-sizeof(__s64
)))
1766 ret
= validate_range(ctx
->mm
, uffdio_zeropage
.range
.start
,
1767 uffdio_zeropage
.range
.len
);
1771 if (uffdio_zeropage
.mode
& ~UFFDIO_ZEROPAGE_MODE_DONTWAKE
)
1774 if (mmget_not_zero(ctx
->mm
)) {
1775 ret
= mfill_zeropage(ctx
->mm
, uffdio_zeropage
.range
.start
,
1776 uffdio_zeropage
.range
.len
,
1777 &ctx
->mmap_changing
);
1782 if (unlikely(put_user(ret
, &user_uffdio_zeropage
->zeropage
)))
1786 /* len == 0 would wake all */
1789 if (!(uffdio_zeropage
.mode
& UFFDIO_ZEROPAGE_MODE_DONTWAKE
)) {
1790 range
.start
= uffdio_zeropage
.range
.start
;
1791 wake_userfault(ctx
, &range
);
1793 ret
= range
.len
== uffdio_zeropage
.range
.len
? 0 : -EAGAIN
;
1798 static inline unsigned int uffd_ctx_features(__u64 user_features
)
1801 * For the current set of features the bits just coincide
1803 return (unsigned int)user_features
;
1807 * userland asks for a certain API version and we return which bits
1808 * and ioctl commands are implemented in this kernel for such API
1809 * version or -EINVAL if unknown.
1811 static int userfaultfd_api(struct userfaultfd_ctx
*ctx
,
1814 struct uffdio_api uffdio_api
;
1815 void __user
*buf
= (void __user
*)arg
;
1820 if (ctx
->state
!= UFFD_STATE_WAIT_API
)
1823 if (copy_from_user(&uffdio_api
, buf
, sizeof(uffdio_api
)))
1825 features
= uffdio_api
.features
;
1826 if (uffdio_api
.api
!= UFFD_API
|| (features
& ~UFFD_API_FEATURES
)) {
1827 memset(&uffdio_api
, 0, sizeof(uffdio_api
));
1828 if (copy_to_user(buf
, &uffdio_api
, sizeof(uffdio_api
)))
1833 /* report all available features and ioctls to userland */
1834 uffdio_api
.features
= UFFD_API_FEATURES
;
1835 uffdio_api
.ioctls
= UFFD_API_IOCTLS
;
1837 if (copy_to_user(buf
, &uffdio_api
, sizeof(uffdio_api
)))
1839 ctx
->state
= UFFD_STATE_RUNNING
;
1840 /* only enable the requested features for this uffd context */
1841 ctx
->features
= uffd_ctx_features(features
);
1847 static long userfaultfd_ioctl(struct file
*file
, unsigned cmd
,
1851 struct userfaultfd_ctx
*ctx
= file
->private_data
;
1853 if (cmd
!= UFFDIO_API
&& ctx
->state
== UFFD_STATE_WAIT_API
)
1858 ret
= userfaultfd_api(ctx
, arg
);
1860 case UFFDIO_REGISTER
:
1861 ret
= userfaultfd_register(ctx
, arg
);
1863 case UFFDIO_UNREGISTER
:
1864 ret
= userfaultfd_unregister(ctx
, arg
);
1867 ret
= userfaultfd_wake(ctx
, arg
);
1870 ret
= userfaultfd_copy(ctx
, arg
);
1872 case UFFDIO_ZEROPAGE
:
1873 ret
= userfaultfd_zeropage(ctx
, arg
);
1879 #ifdef CONFIG_PROC_FS
1880 static void userfaultfd_show_fdinfo(struct seq_file
*m
, struct file
*f
)
1882 struct userfaultfd_ctx
*ctx
= f
->private_data
;
1883 wait_queue_entry_t
*wq
;
1884 unsigned long pending
= 0, total
= 0;
1886 spin_lock(&ctx
->fault_pending_wqh
.lock
);
1887 list_for_each_entry(wq
, &ctx
->fault_pending_wqh
.head
, entry
) {
1891 list_for_each_entry(wq
, &ctx
->fault_wqh
.head
, entry
) {
1894 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1897 * If more protocols will be added, there will be all shown
1898 * separated by a space. Like this:
1899 * protocols: aa:... bb:...
1901 seq_printf(m
, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1902 pending
, total
, UFFD_API
, ctx
->features
,
1903 UFFD_API_IOCTLS
|UFFD_API_RANGE_IOCTLS
);
1907 static const struct file_operations userfaultfd_fops
= {
1908 #ifdef CONFIG_PROC_FS
1909 .show_fdinfo
= userfaultfd_show_fdinfo
,
1911 .release
= userfaultfd_release
,
1912 .poll
= userfaultfd_poll
,
1913 .read
= userfaultfd_read
,
1914 .unlocked_ioctl
= userfaultfd_ioctl
,
1915 .compat_ioctl
= userfaultfd_ioctl
,
1916 .llseek
= noop_llseek
,
1919 static void init_once_userfaultfd_ctx(void *mem
)
1921 struct userfaultfd_ctx
*ctx
= (struct userfaultfd_ctx
*) mem
;
1923 init_waitqueue_head(&ctx
->fault_pending_wqh
);
1924 init_waitqueue_head(&ctx
->fault_wqh
);
1925 init_waitqueue_head(&ctx
->event_wqh
);
1926 init_waitqueue_head(&ctx
->fd_wqh
);
1927 seqcount_init(&ctx
->refile_seq
);
1930 SYSCALL_DEFINE1(userfaultfd
, int, flags
)
1932 struct userfaultfd_ctx
*ctx
;
1935 if (!sysctl_unprivileged_userfaultfd
&& !capable(CAP_SYS_PTRACE
))
1938 BUG_ON(!current
->mm
);
1940 /* Check the UFFD_* constants for consistency. */
1941 BUILD_BUG_ON(UFFD_CLOEXEC
!= O_CLOEXEC
);
1942 BUILD_BUG_ON(UFFD_NONBLOCK
!= O_NONBLOCK
);
1944 if (flags
& ~UFFD_SHARED_FCNTL_FLAGS
)
1947 ctx
= kmem_cache_alloc(userfaultfd_ctx_cachep
, GFP_KERNEL
);
1951 refcount_set(&ctx
->refcount
, 1);
1954 ctx
->state
= UFFD_STATE_WAIT_API
;
1955 ctx
->released
= false;
1956 ctx
->mmap_changing
= false;
1957 ctx
->mm
= current
->mm
;
1958 /* prevent the mm struct to be freed */
1961 fd
= anon_inode_getfd("[userfaultfd]", &userfaultfd_fops
, ctx
,
1962 O_RDWR
| (flags
& UFFD_SHARED_FCNTL_FLAGS
));
1965 kmem_cache_free(userfaultfd_ctx_cachep
, ctx
);
1970 static int __init
userfaultfd_init(void)
1972 userfaultfd_ctx_cachep
= kmem_cache_create("userfaultfd_ctx_cache",
1973 sizeof(struct userfaultfd_ctx
),
1975 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
1976 init_once_userfaultfd_ctx
);
1979 __initcall(userfaultfd_init
);