perf intel-pt: Factor out intel_pt_8b_tsc()
[linux/fpc-iii.git] / fs / userfaultfd.c
blob3b30301c90ec309ac17c608e1db2c7742e29c173
1 /*
2 * fs/userfaultfd.c
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
33 int sysctl_unprivileged_userfaultfd __read_mostly = 1;
35 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
37 enum userfaultfd_state {
38 UFFD_STATE_WAIT_API,
39 UFFD_STATE_RUNNING,
43 * Start with fault_pending_wqh and fault_wqh so they're more likely
44 * to be in the same cacheline.
46 struct userfaultfd_ctx {
47 /* waitqueue head for the pending (i.e. not read) userfaults */
48 wait_queue_head_t fault_pending_wqh;
49 /* waitqueue head for the userfaults */
50 wait_queue_head_t fault_wqh;
51 /* waitqueue head for the pseudo fd to wakeup poll/read */
52 wait_queue_head_t fd_wqh;
53 /* waitqueue head for events */
54 wait_queue_head_t event_wqh;
55 /* a refile sequence protected by fault_pending_wqh lock */
56 struct seqcount refile_seq;
57 /* pseudo fd refcounting */
58 refcount_t refcount;
59 /* userfaultfd syscall flags */
60 unsigned int flags;
61 /* features requested from the userspace */
62 unsigned int features;
63 /* state machine */
64 enum userfaultfd_state state;
65 /* released */
66 bool released;
67 /* memory mappings are changing because of non-cooperative event */
68 bool mmap_changing;
69 /* mm with one ore more vmas attached to this userfaultfd_ctx */
70 struct mm_struct *mm;
73 struct userfaultfd_fork_ctx {
74 struct userfaultfd_ctx *orig;
75 struct userfaultfd_ctx *new;
76 struct list_head list;
79 struct userfaultfd_unmap_ctx {
80 struct userfaultfd_ctx *ctx;
81 unsigned long start;
82 unsigned long end;
83 struct list_head list;
86 struct userfaultfd_wait_queue {
87 struct uffd_msg msg;
88 wait_queue_entry_t wq;
89 struct userfaultfd_ctx *ctx;
90 bool waken;
93 struct userfaultfd_wake_range {
94 unsigned long start;
95 unsigned long len;
98 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
99 int wake_flags, void *key)
101 struct userfaultfd_wake_range *range = key;
102 int ret;
103 struct userfaultfd_wait_queue *uwq;
104 unsigned long start, len;
106 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
107 ret = 0;
108 /* len == 0 means wake all */
109 start = range->start;
110 len = range->len;
111 if (len && (start > uwq->msg.arg.pagefault.address ||
112 start + len <= uwq->msg.arg.pagefault.address))
113 goto out;
114 WRITE_ONCE(uwq->waken, true);
116 * The Program-Order guarantees provided by the scheduler
117 * ensure uwq->waken is visible before the task is woken.
119 ret = wake_up_state(wq->private, mode);
120 if (ret) {
122 * Wake only once, autoremove behavior.
124 * After the effect of list_del_init is visible to the other
125 * CPUs, the waitqueue may disappear from under us, see the
126 * !list_empty_careful() in handle_userfault().
128 * try_to_wake_up() has an implicit smp_mb(), and the
129 * wq->private is read before calling the extern function
130 * "wake_up_state" (which in turns calls try_to_wake_up).
132 list_del_init(&wq->entry);
134 out:
135 return ret;
139 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
140 * context.
141 * @ctx: [in] Pointer to the userfaultfd context.
143 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
145 refcount_inc(&ctx->refcount);
149 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
150 * context.
151 * @ctx: [in] Pointer to userfaultfd context.
153 * The userfaultfd context reference must have been previously acquired either
154 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
156 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
158 if (refcount_dec_and_test(&ctx->refcount)) {
159 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
160 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
161 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
162 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
163 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
164 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
165 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
166 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
167 mmdrop(ctx->mm);
168 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
172 static inline void msg_init(struct uffd_msg *msg)
174 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
176 * Must use memset to zero out the paddings or kernel data is
177 * leaked to userland.
179 memset(msg, 0, sizeof(struct uffd_msg));
182 static inline struct uffd_msg userfault_msg(unsigned long address,
183 unsigned int flags,
184 unsigned long reason,
185 unsigned int features)
187 struct uffd_msg msg;
188 msg_init(&msg);
189 msg.event = UFFD_EVENT_PAGEFAULT;
190 msg.arg.pagefault.address = address;
191 if (flags & FAULT_FLAG_WRITE)
193 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
194 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
195 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
196 * was a read fault, otherwise if set it means it's
197 * a write fault.
199 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
200 if (reason & VM_UFFD_WP)
202 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
203 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
204 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
205 * a missing fault, otherwise if set it means it's a
206 * write protect fault.
208 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
209 if (features & UFFD_FEATURE_THREAD_ID)
210 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
211 return msg;
214 #ifdef CONFIG_HUGETLB_PAGE
216 * Same functionality as userfaultfd_must_wait below with modifications for
217 * hugepmd ranges.
219 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
220 struct vm_area_struct *vma,
221 unsigned long address,
222 unsigned long flags,
223 unsigned long reason)
225 struct mm_struct *mm = ctx->mm;
226 pte_t *ptep, pte;
227 bool ret = true;
229 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
231 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
233 if (!ptep)
234 goto out;
236 ret = false;
237 pte = huge_ptep_get(ptep);
240 * Lockless access: we're in a wait_event so it's ok if it
241 * changes under us.
243 if (huge_pte_none(pte))
244 ret = true;
245 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
246 ret = true;
247 out:
248 return ret;
250 #else
251 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
252 struct vm_area_struct *vma,
253 unsigned long address,
254 unsigned long flags,
255 unsigned long reason)
257 return false; /* should never get here */
259 #endif /* CONFIG_HUGETLB_PAGE */
262 * Verify the pagetables are still not ok after having reigstered into
263 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
264 * userfault that has already been resolved, if userfaultfd_read and
265 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
266 * threads.
268 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
269 unsigned long address,
270 unsigned long flags,
271 unsigned long reason)
273 struct mm_struct *mm = ctx->mm;
274 pgd_t *pgd;
275 p4d_t *p4d;
276 pud_t *pud;
277 pmd_t *pmd, _pmd;
278 pte_t *pte;
279 bool ret = true;
281 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
283 pgd = pgd_offset(mm, address);
284 if (!pgd_present(*pgd))
285 goto out;
286 p4d = p4d_offset(pgd, address);
287 if (!p4d_present(*p4d))
288 goto out;
289 pud = pud_offset(p4d, address);
290 if (!pud_present(*pud))
291 goto out;
292 pmd = pmd_offset(pud, address);
294 * READ_ONCE must function as a barrier with narrower scope
295 * and it must be equivalent to:
296 * _pmd = *pmd; barrier();
298 * This is to deal with the instability (as in
299 * pmd_trans_unstable) of the pmd.
301 _pmd = READ_ONCE(*pmd);
302 if (pmd_none(_pmd))
303 goto out;
305 ret = false;
306 if (!pmd_present(_pmd))
307 goto out;
309 if (pmd_trans_huge(_pmd))
310 goto out;
313 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
314 * and use the standard pte_offset_map() instead of parsing _pmd.
316 pte = pte_offset_map(pmd, address);
318 * Lockless access: we're in a wait_event so it's ok if it
319 * changes under us.
321 if (pte_none(*pte))
322 ret = true;
323 pte_unmap(pte);
325 out:
326 return ret;
330 * The locking rules involved in returning VM_FAULT_RETRY depending on
331 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
332 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
333 * recommendation in __lock_page_or_retry is not an understatement.
335 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
336 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
337 * not set.
339 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
340 * set, VM_FAULT_RETRY can still be returned if and only if there are
341 * fatal_signal_pending()s, and the mmap_sem must be released before
342 * returning it.
344 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
346 struct mm_struct *mm = vmf->vma->vm_mm;
347 struct userfaultfd_ctx *ctx;
348 struct userfaultfd_wait_queue uwq;
349 vm_fault_t ret = VM_FAULT_SIGBUS;
350 bool must_wait, return_to_userland;
351 long blocking_state;
354 * We don't do userfault handling for the final child pid update.
356 * We also don't do userfault handling during
357 * coredumping. hugetlbfs has the special
358 * follow_hugetlb_page() to skip missing pages in the
359 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
360 * the no_page_table() helper in follow_page_mask(), but the
361 * shmem_vm_ops->fault method is invoked even during
362 * coredumping without mmap_sem and it ends up here.
364 if (current->flags & (PF_EXITING|PF_DUMPCORE))
365 goto out;
368 * Coredumping runs without mmap_sem so we can only check that
369 * the mmap_sem is held, if PF_DUMPCORE was not set.
371 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
373 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
374 if (!ctx)
375 goto out;
377 BUG_ON(ctx->mm != mm);
379 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
380 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
382 if (ctx->features & UFFD_FEATURE_SIGBUS)
383 goto out;
386 * If it's already released don't get it. This avoids to loop
387 * in __get_user_pages if userfaultfd_release waits on the
388 * caller of handle_userfault to release the mmap_sem.
390 if (unlikely(READ_ONCE(ctx->released))) {
392 * Don't return VM_FAULT_SIGBUS in this case, so a non
393 * cooperative manager can close the uffd after the
394 * last UFFDIO_COPY, without risking to trigger an
395 * involuntary SIGBUS if the process was starting the
396 * userfaultfd while the userfaultfd was still armed
397 * (but after the last UFFDIO_COPY). If the uffd
398 * wasn't already closed when the userfault reached
399 * this point, that would normally be solved by
400 * userfaultfd_must_wait returning 'false'.
402 * If we were to return VM_FAULT_SIGBUS here, the non
403 * cooperative manager would be instead forced to
404 * always call UFFDIO_UNREGISTER before it can safely
405 * close the uffd.
407 ret = VM_FAULT_NOPAGE;
408 goto out;
412 * Check that we can return VM_FAULT_RETRY.
414 * NOTE: it should become possible to return VM_FAULT_RETRY
415 * even if FAULT_FLAG_TRIED is set without leading to gup()
416 * -EBUSY failures, if the userfaultfd is to be extended for
417 * VM_UFFD_WP tracking and we intend to arm the userfault
418 * without first stopping userland access to the memory. For
419 * VM_UFFD_MISSING userfaults this is enough for now.
421 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
423 * Validate the invariant that nowait must allow retry
424 * to be sure not to return SIGBUS erroneously on
425 * nowait invocations.
427 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
428 #ifdef CONFIG_DEBUG_VM
429 if (printk_ratelimit()) {
430 printk(KERN_WARNING
431 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
432 vmf->flags);
433 dump_stack();
435 #endif
436 goto out;
440 * Handle nowait, not much to do other than tell it to retry
441 * and wait.
443 ret = VM_FAULT_RETRY;
444 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
445 goto out;
447 /* take the reference before dropping the mmap_sem */
448 userfaultfd_ctx_get(ctx);
450 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
451 uwq.wq.private = current;
452 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
453 ctx->features);
454 uwq.ctx = ctx;
455 uwq.waken = false;
457 return_to_userland =
458 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
459 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
460 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
461 TASK_KILLABLE;
463 spin_lock(&ctx->fault_pending_wqh.lock);
465 * After the __add_wait_queue the uwq is visible to userland
466 * through poll/read().
468 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
470 * The smp_mb() after __set_current_state prevents the reads
471 * following the spin_unlock to happen before the list_add in
472 * __add_wait_queue.
474 set_current_state(blocking_state);
475 spin_unlock(&ctx->fault_pending_wqh.lock);
477 if (!is_vm_hugetlb_page(vmf->vma))
478 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
479 reason);
480 else
481 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
482 vmf->address,
483 vmf->flags, reason);
484 up_read(&mm->mmap_sem);
486 if (likely(must_wait && !READ_ONCE(ctx->released) &&
487 (return_to_userland ? !signal_pending(current) :
488 !fatal_signal_pending(current)))) {
489 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
490 schedule();
491 ret |= VM_FAULT_MAJOR;
494 * False wakeups can orginate even from rwsem before
495 * up_read() however userfaults will wait either for a
496 * targeted wakeup on the specific uwq waitqueue from
497 * wake_userfault() or for signals or for uffd
498 * release.
500 while (!READ_ONCE(uwq.waken)) {
502 * This needs the full smp_store_mb()
503 * guarantee as the state write must be
504 * visible to other CPUs before reading
505 * uwq.waken from other CPUs.
507 set_current_state(blocking_state);
508 if (READ_ONCE(uwq.waken) ||
509 READ_ONCE(ctx->released) ||
510 (return_to_userland ? signal_pending(current) :
511 fatal_signal_pending(current)))
512 break;
513 schedule();
517 __set_current_state(TASK_RUNNING);
519 if (return_to_userland) {
520 if (signal_pending(current) &&
521 !fatal_signal_pending(current)) {
523 * If we got a SIGSTOP or SIGCONT and this is
524 * a normal userland page fault, just let
525 * userland return so the signal will be
526 * handled and gdb debugging works. The page
527 * fault code immediately after we return from
528 * this function is going to release the
529 * mmap_sem and it's not depending on it
530 * (unlike gup would if we were not to return
531 * VM_FAULT_RETRY).
533 * If a fatal signal is pending we still take
534 * the streamlined VM_FAULT_RETRY failure path
535 * and there's no need to retake the mmap_sem
536 * in such case.
538 down_read(&mm->mmap_sem);
539 ret = VM_FAULT_NOPAGE;
544 * Here we race with the list_del; list_add in
545 * userfaultfd_ctx_read(), however because we don't ever run
546 * list_del_init() to refile across the two lists, the prev
547 * and next pointers will never point to self. list_add also
548 * would never let any of the two pointers to point to
549 * self. So list_empty_careful won't risk to see both pointers
550 * pointing to self at any time during the list refile. The
551 * only case where list_del_init() is called is the full
552 * removal in the wake function and there we don't re-list_add
553 * and it's fine not to block on the spinlock. The uwq on this
554 * kernel stack can be released after the list_del_init.
556 if (!list_empty_careful(&uwq.wq.entry)) {
557 spin_lock(&ctx->fault_pending_wqh.lock);
559 * No need of list_del_init(), the uwq on the stack
560 * will be freed shortly anyway.
562 list_del(&uwq.wq.entry);
563 spin_unlock(&ctx->fault_pending_wqh.lock);
567 * ctx may go away after this if the userfault pseudo fd is
568 * already released.
570 userfaultfd_ctx_put(ctx);
572 out:
573 return ret;
576 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
577 struct userfaultfd_wait_queue *ewq)
579 struct userfaultfd_ctx *release_new_ctx;
581 if (WARN_ON_ONCE(current->flags & PF_EXITING))
582 goto out;
584 ewq->ctx = ctx;
585 init_waitqueue_entry(&ewq->wq, current);
586 release_new_ctx = NULL;
588 spin_lock(&ctx->event_wqh.lock);
590 * After the __add_wait_queue the uwq is visible to userland
591 * through poll/read().
593 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
594 for (;;) {
595 set_current_state(TASK_KILLABLE);
596 if (ewq->msg.event == 0)
597 break;
598 if (READ_ONCE(ctx->released) ||
599 fatal_signal_pending(current)) {
601 * &ewq->wq may be queued in fork_event, but
602 * __remove_wait_queue ignores the head
603 * parameter. It would be a problem if it
604 * didn't.
606 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
607 if (ewq->msg.event == UFFD_EVENT_FORK) {
608 struct userfaultfd_ctx *new;
610 new = (struct userfaultfd_ctx *)
611 (unsigned long)
612 ewq->msg.arg.reserved.reserved1;
613 release_new_ctx = new;
615 break;
618 spin_unlock(&ctx->event_wqh.lock);
620 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
621 schedule();
623 spin_lock(&ctx->event_wqh.lock);
625 __set_current_state(TASK_RUNNING);
626 spin_unlock(&ctx->event_wqh.lock);
628 if (release_new_ctx) {
629 struct vm_area_struct *vma;
630 struct mm_struct *mm = release_new_ctx->mm;
632 /* the various vma->vm_userfaultfd_ctx still points to it */
633 down_write(&mm->mmap_sem);
634 /* no task can run (and in turn coredump) yet */
635 VM_WARN_ON(!mmget_still_valid(mm));
636 for (vma = mm->mmap; vma; vma = vma->vm_next)
637 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
638 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
639 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
641 up_write(&mm->mmap_sem);
643 userfaultfd_ctx_put(release_new_ctx);
647 * ctx may go away after this if the userfault pseudo fd is
648 * already released.
650 out:
651 WRITE_ONCE(ctx->mmap_changing, false);
652 userfaultfd_ctx_put(ctx);
655 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
656 struct userfaultfd_wait_queue *ewq)
658 ewq->msg.event = 0;
659 wake_up_locked(&ctx->event_wqh);
660 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
663 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
665 struct userfaultfd_ctx *ctx = NULL, *octx;
666 struct userfaultfd_fork_ctx *fctx;
668 octx = vma->vm_userfaultfd_ctx.ctx;
669 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
670 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
671 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
672 return 0;
675 list_for_each_entry(fctx, fcs, list)
676 if (fctx->orig == octx) {
677 ctx = fctx->new;
678 break;
681 if (!ctx) {
682 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
683 if (!fctx)
684 return -ENOMEM;
686 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
687 if (!ctx) {
688 kfree(fctx);
689 return -ENOMEM;
692 refcount_set(&ctx->refcount, 1);
693 ctx->flags = octx->flags;
694 ctx->state = UFFD_STATE_RUNNING;
695 ctx->features = octx->features;
696 ctx->released = false;
697 ctx->mmap_changing = false;
698 ctx->mm = vma->vm_mm;
699 mmgrab(ctx->mm);
701 userfaultfd_ctx_get(octx);
702 WRITE_ONCE(octx->mmap_changing, true);
703 fctx->orig = octx;
704 fctx->new = ctx;
705 list_add_tail(&fctx->list, fcs);
708 vma->vm_userfaultfd_ctx.ctx = ctx;
709 return 0;
712 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
714 struct userfaultfd_ctx *ctx = fctx->orig;
715 struct userfaultfd_wait_queue ewq;
717 msg_init(&ewq.msg);
719 ewq.msg.event = UFFD_EVENT_FORK;
720 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
722 userfaultfd_event_wait_completion(ctx, &ewq);
725 void dup_userfaultfd_complete(struct list_head *fcs)
727 struct userfaultfd_fork_ctx *fctx, *n;
729 list_for_each_entry_safe(fctx, n, fcs, list) {
730 dup_fctx(fctx);
731 list_del(&fctx->list);
732 kfree(fctx);
736 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
737 struct vm_userfaultfd_ctx *vm_ctx)
739 struct userfaultfd_ctx *ctx;
741 ctx = vma->vm_userfaultfd_ctx.ctx;
743 if (!ctx)
744 return;
746 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
747 vm_ctx->ctx = ctx;
748 userfaultfd_ctx_get(ctx);
749 WRITE_ONCE(ctx->mmap_changing, true);
750 } else {
751 /* Drop uffd context if remap feature not enabled */
752 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
753 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
757 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
758 unsigned long from, unsigned long to,
759 unsigned long len)
761 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
762 struct userfaultfd_wait_queue ewq;
764 if (!ctx)
765 return;
767 if (to & ~PAGE_MASK) {
768 userfaultfd_ctx_put(ctx);
769 return;
772 msg_init(&ewq.msg);
774 ewq.msg.event = UFFD_EVENT_REMAP;
775 ewq.msg.arg.remap.from = from;
776 ewq.msg.arg.remap.to = to;
777 ewq.msg.arg.remap.len = len;
779 userfaultfd_event_wait_completion(ctx, &ewq);
782 bool userfaultfd_remove(struct vm_area_struct *vma,
783 unsigned long start, unsigned long end)
785 struct mm_struct *mm = vma->vm_mm;
786 struct userfaultfd_ctx *ctx;
787 struct userfaultfd_wait_queue ewq;
789 ctx = vma->vm_userfaultfd_ctx.ctx;
790 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
791 return true;
793 userfaultfd_ctx_get(ctx);
794 WRITE_ONCE(ctx->mmap_changing, true);
795 up_read(&mm->mmap_sem);
797 msg_init(&ewq.msg);
799 ewq.msg.event = UFFD_EVENT_REMOVE;
800 ewq.msg.arg.remove.start = start;
801 ewq.msg.arg.remove.end = end;
803 userfaultfd_event_wait_completion(ctx, &ewq);
805 return false;
808 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
809 unsigned long start, unsigned long end)
811 struct userfaultfd_unmap_ctx *unmap_ctx;
813 list_for_each_entry(unmap_ctx, unmaps, list)
814 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
815 unmap_ctx->end == end)
816 return true;
818 return false;
821 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
822 unsigned long start, unsigned long end,
823 struct list_head *unmaps)
825 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
826 struct userfaultfd_unmap_ctx *unmap_ctx;
827 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
829 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
830 has_unmap_ctx(ctx, unmaps, start, end))
831 continue;
833 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
834 if (!unmap_ctx)
835 return -ENOMEM;
837 userfaultfd_ctx_get(ctx);
838 WRITE_ONCE(ctx->mmap_changing, true);
839 unmap_ctx->ctx = ctx;
840 unmap_ctx->start = start;
841 unmap_ctx->end = end;
842 list_add_tail(&unmap_ctx->list, unmaps);
845 return 0;
848 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
850 struct userfaultfd_unmap_ctx *ctx, *n;
851 struct userfaultfd_wait_queue ewq;
853 list_for_each_entry_safe(ctx, n, uf, list) {
854 msg_init(&ewq.msg);
856 ewq.msg.event = UFFD_EVENT_UNMAP;
857 ewq.msg.arg.remove.start = ctx->start;
858 ewq.msg.arg.remove.end = ctx->end;
860 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
862 list_del(&ctx->list);
863 kfree(ctx);
867 static int userfaultfd_release(struct inode *inode, struct file *file)
869 struct userfaultfd_ctx *ctx = file->private_data;
870 struct mm_struct *mm = ctx->mm;
871 struct vm_area_struct *vma, *prev;
872 /* len == 0 means wake all */
873 struct userfaultfd_wake_range range = { .len = 0, };
874 unsigned long new_flags;
876 WRITE_ONCE(ctx->released, true);
878 if (!mmget_not_zero(mm))
879 goto wakeup;
882 * Flush page faults out of all CPUs. NOTE: all page faults
883 * must be retried without returning VM_FAULT_SIGBUS if
884 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
885 * changes while handle_userfault released the mmap_sem. So
886 * it's critical that released is set to true (above), before
887 * taking the mmap_sem for writing.
889 down_write(&mm->mmap_sem);
890 if (!mmget_still_valid(mm))
891 goto skip_mm;
892 prev = NULL;
893 for (vma = mm->mmap; vma; vma = vma->vm_next) {
894 cond_resched();
895 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
896 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
897 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
898 prev = vma;
899 continue;
901 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
902 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
903 new_flags, vma->anon_vma,
904 vma->vm_file, vma->vm_pgoff,
905 vma_policy(vma),
906 NULL_VM_UFFD_CTX);
907 if (prev)
908 vma = prev;
909 else
910 prev = vma;
911 vma->vm_flags = new_flags;
912 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
914 skip_mm:
915 up_write(&mm->mmap_sem);
916 mmput(mm);
917 wakeup:
919 * After no new page faults can wait on this fault_*wqh, flush
920 * the last page faults that may have been already waiting on
921 * the fault_*wqh.
923 spin_lock(&ctx->fault_pending_wqh.lock);
924 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
925 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
926 spin_unlock(&ctx->fault_pending_wqh.lock);
928 /* Flush pending events that may still wait on event_wqh */
929 wake_up_all(&ctx->event_wqh);
931 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
932 userfaultfd_ctx_put(ctx);
933 return 0;
936 /* fault_pending_wqh.lock must be hold by the caller */
937 static inline struct userfaultfd_wait_queue *find_userfault_in(
938 wait_queue_head_t *wqh)
940 wait_queue_entry_t *wq;
941 struct userfaultfd_wait_queue *uwq;
943 lockdep_assert_held(&wqh->lock);
945 uwq = NULL;
946 if (!waitqueue_active(wqh))
947 goto out;
948 /* walk in reverse to provide FIFO behavior to read userfaults */
949 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
950 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
951 out:
952 return uwq;
955 static inline struct userfaultfd_wait_queue *find_userfault(
956 struct userfaultfd_ctx *ctx)
958 return find_userfault_in(&ctx->fault_pending_wqh);
961 static inline struct userfaultfd_wait_queue *find_userfault_evt(
962 struct userfaultfd_ctx *ctx)
964 return find_userfault_in(&ctx->event_wqh);
967 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
969 struct userfaultfd_ctx *ctx = file->private_data;
970 __poll_t ret;
972 poll_wait(file, &ctx->fd_wqh, wait);
974 switch (ctx->state) {
975 case UFFD_STATE_WAIT_API:
976 return EPOLLERR;
977 case UFFD_STATE_RUNNING:
979 * poll() never guarantees that read won't block.
980 * userfaults can be waken before they're read().
982 if (unlikely(!(file->f_flags & O_NONBLOCK)))
983 return EPOLLERR;
985 * lockless access to see if there are pending faults
986 * __pollwait last action is the add_wait_queue but
987 * the spin_unlock would allow the waitqueue_active to
988 * pass above the actual list_add inside
989 * add_wait_queue critical section. So use a full
990 * memory barrier to serialize the list_add write of
991 * add_wait_queue() with the waitqueue_active read
992 * below.
994 ret = 0;
995 smp_mb();
996 if (waitqueue_active(&ctx->fault_pending_wqh))
997 ret = EPOLLIN;
998 else if (waitqueue_active(&ctx->event_wqh))
999 ret = EPOLLIN;
1001 return ret;
1002 default:
1003 WARN_ON_ONCE(1);
1004 return EPOLLERR;
1008 static const struct file_operations userfaultfd_fops;
1010 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
1011 struct userfaultfd_ctx *new,
1012 struct uffd_msg *msg)
1014 int fd;
1016 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1017 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1018 if (fd < 0)
1019 return fd;
1021 msg->arg.reserved.reserved1 = 0;
1022 msg->arg.fork.ufd = fd;
1023 return 0;
1026 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1027 struct uffd_msg *msg)
1029 ssize_t ret;
1030 DECLARE_WAITQUEUE(wait, current);
1031 struct userfaultfd_wait_queue *uwq;
1033 * Handling fork event requires sleeping operations, so
1034 * we drop the event_wqh lock, then do these ops, then
1035 * lock it back and wake up the waiter. While the lock is
1036 * dropped the ewq may go away so we keep track of it
1037 * carefully.
1039 LIST_HEAD(fork_event);
1040 struct userfaultfd_ctx *fork_nctx = NULL;
1042 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1043 spin_lock_irq(&ctx->fd_wqh.lock);
1044 __add_wait_queue(&ctx->fd_wqh, &wait);
1045 for (;;) {
1046 set_current_state(TASK_INTERRUPTIBLE);
1047 spin_lock(&ctx->fault_pending_wqh.lock);
1048 uwq = find_userfault(ctx);
1049 if (uwq) {
1051 * Use a seqcount to repeat the lockless check
1052 * in wake_userfault() to avoid missing
1053 * wakeups because during the refile both
1054 * waitqueue could become empty if this is the
1055 * only userfault.
1057 write_seqcount_begin(&ctx->refile_seq);
1060 * The fault_pending_wqh.lock prevents the uwq
1061 * to disappear from under us.
1063 * Refile this userfault from
1064 * fault_pending_wqh to fault_wqh, it's not
1065 * pending anymore after we read it.
1067 * Use list_del() by hand (as
1068 * userfaultfd_wake_function also uses
1069 * list_del_init() by hand) to be sure nobody
1070 * changes __remove_wait_queue() to use
1071 * list_del_init() in turn breaking the
1072 * !list_empty_careful() check in
1073 * handle_userfault(). The uwq->wq.head list
1074 * must never be empty at any time during the
1075 * refile, or the waitqueue could disappear
1076 * from under us. The "wait_queue_head_t"
1077 * parameter of __remove_wait_queue() is unused
1078 * anyway.
1080 list_del(&uwq->wq.entry);
1081 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1083 write_seqcount_end(&ctx->refile_seq);
1085 /* careful to always initialize msg if ret == 0 */
1086 *msg = uwq->msg;
1087 spin_unlock(&ctx->fault_pending_wqh.lock);
1088 ret = 0;
1089 break;
1091 spin_unlock(&ctx->fault_pending_wqh.lock);
1093 spin_lock(&ctx->event_wqh.lock);
1094 uwq = find_userfault_evt(ctx);
1095 if (uwq) {
1096 *msg = uwq->msg;
1098 if (uwq->msg.event == UFFD_EVENT_FORK) {
1099 fork_nctx = (struct userfaultfd_ctx *)
1100 (unsigned long)
1101 uwq->msg.arg.reserved.reserved1;
1102 list_move(&uwq->wq.entry, &fork_event);
1104 * fork_nctx can be freed as soon as
1105 * we drop the lock, unless we take a
1106 * reference on it.
1108 userfaultfd_ctx_get(fork_nctx);
1109 spin_unlock(&ctx->event_wqh.lock);
1110 ret = 0;
1111 break;
1114 userfaultfd_event_complete(ctx, uwq);
1115 spin_unlock(&ctx->event_wqh.lock);
1116 ret = 0;
1117 break;
1119 spin_unlock(&ctx->event_wqh.lock);
1121 if (signal_pending(current)) {
1122 ret = -ERESTARTSYS;
1123 break;
1125 if (no_wait) {
1126 ret = -EAGAIN;
1127 break;
1129 spin_unlock_irq(&ctx->fd_wqh.lock);
1130 schedule();
1131 spin_lock_irq(&ctx->fd_wqh.lock);
1133 __remove_wait_queue(&ctx->fd_wqh, &wait);
1134 __set_current_state(TASK_RUNNING);
1135 spin_unlock_irq(&ctx->fd_wqh.lock);
1137 if (!ret && msg->event == UFFD_EVENT_FORK) {
1138 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1139 spin_lock(&ctx->event_wqh.lock);
1140 if (!list_empty(&fork_event)) {
1142 * The fork thread didn't abort, so we can
1143 * drop the temporary refcount.
1145 userfaultfd_ctx_put(fork_nctx);
1147 uwq = list_first_entry(&fork_event,
1148 typeof(*uwq),
1149 wq.entry);
1151 * If fork_event list wasn't empty and in turn
1152 * the event wasn't already released by fork
1153 * (the event is allocated on fork kernel
1154 * stack), put the event back to its place in
1155 * the event_wq. fork_event head will be freed
1156 * as soon as we return so the event cannot
1157 * stay queued there no matter the current
1158 * "ret" value.
1160 list_del(&uwq->wq.entry);
1161 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1164 * Leave the event in the waitqueue and report
1165 * error to userland if we failed to resolve
1166 * the userfault fork.
1168 if (likely(!ret))
1169 userfaultfd_event_complete(ctx, uwq);
1170 } else {
1172 * Here the fork thread aborted and the
1173 * refcount from the fork thread on fork_nctx
1174 * has already been released. We still hold
1175 * the reference we took before releasing the
1176 * lock above. If resolve_userfault_fork
1177 * failed we've to drop it because the
1178 * fork_nctx has to be freed in such case. If
1179 * it succeeded we'll hold it because the new
1180 * uffd references it.
1182 if (ret)
1183 userfaultfd_ctx_put(fork_nctx);
1185 spin_unlock(&ctx->event_wqh.lock);
1188 return ret;
1191 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1192 size_t count, loff_t *ppos)
1194 struct userfaultfd_ctx *ctx = file->private_data;
1195 ssize_t _ret, ret = 0;
1196 struct uffd_msg msg;
1197 int no_wait = file->f_flags & O_NONBLOCK;
1199 if (ctx->state == UFFD_STATE_WAIT_API)
1200 return -EINVAL;
1202 for (;;) {
1203 if (count < sizeof(msg))
1204 return ret ? ret : -EINVAL;
1205 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1206 if (_ret < 0)
1207 return ret ? ret : _ret;
1208 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1209 return ret ? ret : -EFAULT;
1210 ret += sizeof(msg);
1211 buf += sizeof(msg);
1212 count -= sizeof(msg);
1214 * Allow to read more than one fault at time but only
1215 * block if waiting for the very first one.
1217 no_wait = O_NONBLOCK;
1221 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1222 struct userfaultfd_wake_range *range)
1224 spin_lock(&ctx->fault_pending_wqh.lock);
1225 /* wake all in the range and autoremove */
1226 if (waitqueue_active(&ctx->fault_pending_wqh))
1227 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1228 range);
1229 if (waitqueue_active(&ctx->fault_wqh))
1230 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1231 spin_unlock(&ctx->fault_pending_wqh.lock);
1234 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1235 struct userfaultfd_wake_range *range)
1237 unsigned seq;
1238 bool need_wakeup;
1241 * To be sure waitqueue_active() is not reordered by the CPU
1242 * before the pagetable update, use an explicit SMP memory
1243 * barrier here. PT lock release or up_read(mmap_sem) still
1244 * have release semantics that can allow the
1245 * waitqueue_active() to be reordered before the pte update.
1247 smp_mb();
1250 * Use waitqueue_active because it's very frequent to
1251 * change the address space atomically even if there are no
1252 * userfaults yet. So we take the spinlock only when we're
1253 * sure we've userfaults to wake.
1255 do {
1256 seq = read_seqcount_begin(&ctx->refile_seq);
1257 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1258 waitqueue_active(&ctx->fault_wqh);
1259 cond_resched();
1260 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1261 if (need_wakeup)
1262 __wake_userfault(ctx, range);
1265 static __always_inline int validate_range(struct mm_struct *mm,
1266 __u64 start, __u64 len)
1268 __u64 task_size = mm->task_size;
1270 if (start & ~PAGE_MASK)
1271 return -EINVAL;
1272 if (len & ~PAGE_MASK)
1273 return -EINVAL;
1274 if (!len)
1275 return -EINVAL;
1276 if (start < mmap_min_addr)
1277 return -EINVAL;
1278 if (start >= task_size)
1279 return -EINVAL;
1280 if (len > task_size - start)
1281 return -EINVAL;
1282 return 0;
1285 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1287 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1288 vma_is_shmem(vma);
1291 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1292 unsigned long arg)
1294 struct mm_struct *mm = ctx->mm;
1295 struct vm_area_struct *vma, *prev, *cur;
1296 int ret;
1297 struct uffdio_register uffdio_register;
1298 struct uffdio_register __user *user_uffdio_register;
1299 unsigned long vm_flags, new_flags;
1300 bool found;
1301 bool basic_ioctls;
1302 unsigned long start, end, vma_end;
1304 user_uffdio_register = (struct uffdio_register __user *) arg;
1306 ret = -EFAULT;
1307 if (copy_from_user(&uffdio_register, user_uffdio_register,
1308 sizeof(uffdio_register)-sizeof(__u64)))
1309 goto out;
1311 ret = -EINVAL;
1312 if (!uffdio_register.mode)
1313 goto out;
1314 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1315 UFFDIO_REGISTER_MODE_WP))
1316 goto out;
1317 vm_flags = 0;
1318 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1319 vm_flags |= VM_UFFD_MISSING;
1320 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1321 vm_flags |= VM_UFFD_WP;
1323 * FIXME: remove the below error constraint by
1324 * implementing the wprotect tracking mode.
1326 ret = -EINVAL;
1327 goto out;
1330 ret = validate_range(mm, uffdio_register.range.start,
1331 uffdio_register.range.len);
1332 if (ret)
1333 goto out;
1335 start = uffdio_register.range.start;
1336 end = start + uffdio_register.range.len;
1338 ret = -ENOMEM;
1339 if (!mmget_not_zero(mm))
1340 goto out;
1342 down_write(&mm->mmap_sem);
1343 if (!mmget_still_valid(mm))
1344 goto out_unlock;
1345 vma = find_vma_prev(mm, start, &prev);
1346 if (!vma)
1347 goto out_unlock;
1349 /* check that there's at least one vma in the range */
1350 ret = -EINVAL;
1351 if (vma->vm_start >= end)
1352 goto out_unlock;
1355 * If the first vma contains huge pages, make sure start address
1356 * is aligned to huge page size.
1358 if (is_vm_hugetlb_page(vma)) {
1359 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1361 if (start & (vma_hpagesize - 1))
1362 goto out_unlock;
1366 * Search for not compatible vmas.
1368 found = false;
1369 basic_ioctls = false;
1370 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1371 cond_resched();
1373 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1374 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1376 /* check not compatible vmas */
1377 ret = -EINVAL;
1378 if (!vma_can_userfault(cur))
1379 goto out_unlock;
1382 * UFFDIO_COPY will fill file holes even without
1383 * PROT_WRITE. This check enforces that if this is a
1384 * MAP_SHARED, the process has write permission to the backing
1385 * file. If VM_MAYWRITE is set it also enforces that on a
1386 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1387 * F_WRITE_SEAL can be taken until the vma is destroyed.
1389 ret = -EPERM;
1390 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1391 goto out_unlock;
1394 * If this vma contains ending address, and huge pages
1395 * check alignment.
1397 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1398 end > cur->vm_start) {
1399 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1401 ret = -EINVAL;
1403 if (end & (vma_hpagesize - 1))
1404 goto out_unlock;
1408 * Check that this vma isn't already owned by a
1409 * different userfaultfd. We can't allow more than one
1410 * userfaultfd to own a single vma simultaneously or we
1411 * wouldn't know which one to deliver the userfaults to.
1413 ret = -EBUSY;
1414 if (cur->vm_userfaultfd_ctx.ctx &&
1415 cur->vm_userfaultfd_ctx.ctx != ctx)
1416 goto out_unlock;
1419 * Note vmas containing huge pages
1421 if (is_vm_hugetlb_page(cur))
1422 basic_ioctls = true;
1424 found = true;
1426 BUG_ON(!found);
1428 if (vma->vm_start < start)
1429 prev = vma;
1431 ret = 0;
1432 do {
1433 cond_resched();
1435 BUG_ON(!vma_can_userfault(vma));
1436 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1437 vma->vm_userfaultfd_ctx.ctx != ctx);
1438 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1441 * Nothing to do: this vma is already registered into this
1442 * userfaultfd and with the right tracking mode too.
1444 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1445 (vma->vm_flags & vm_flags) == vm_flags)
1446 goto skip;
1448 if (vma->vm_start > start)
1449 start = vma->vm_start;
1450 vma_end = min(end, vma->vm_end);
1452 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1453 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1454 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1455 vma_policy(vma),
1456 ((struct vm_userfaultfd_ctx){ ctx }));
1457 if (prev) {
1458 vma = prev;
1459 goto next;
1461 if (vma->vm_start < start) {
1462 ret = split_vma(mm, vma, start, 1);
1463 if (ret)
1464 break;
1466 if (vma->vm_end > end) {
1467 ret = split_vma(mm, vma, end, 0);
1468 if (ret)
1469 break;
1471 next:
1473 * In the vma_merge() successful mprotect-like case 8:
1474 * the next vma was merged into the current one and
1475 * the current one has not been updated yet.
1477 vma->vm_flags = new_flags;
1478 vma->vm_userfaultfd_ctx.ctx = ctx;
1480 skip:
1481 prev = vma;
1482 start = vma->vm_end;
1483 vma = vma->vm_next;
1484 } while (vma && vma->vm_start < end);
1485 out_unlock:
1486 up_write(&mm->mmap_sem);
1487 mmput(mm);
1488 if (!ret) {
1490 * Now that we scanned all vmas we can already tell
1491 * userland which ioctls methods are guaranteed to
1492 * succeed on this range.
1494 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1495 UFFD_API_RANGE_IOCTLS,
1496 &user_uffdio_register->ioctls))
1497 ret = -EFAULT;
1499 out:
1500 return ret;
1503 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1504 unsigned long arg)
1506 struct mm_struct *mm = ctx->mm;
1507 struct vm_area_struct *vma, *prev, *cur;
1508 int ret;
1509 struct uffdio_range uffdio_unregister;
1510 unsigned long new_flags;
1511 bool found;
1512 unsigned long start, end, vma_end;
1513 const void __user *buf = (void __user *)arg;
1515 ret = -EFAULT;
1516 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1517 goto out;
1519 ret = validate_range(mm, uffdio_unregister.start,
1520 uffdio_unregister.len);
1521 if (ret)
1522 goto out;
1524 start = uffdio_unregister.start;
1525 end = start + uffdio_unregister.len;
1527 ret = -ENOMEM;
1528 if (!mmget_not_zero(mm))
1529 goto out;
1531 down_write(&mm->mmap_sem);
1532 if (!mmget_still_valid(mm))
1533 goto out_unlock;
1534 vma = find_vma_prev(mm, start, &prev);
1535 if (!vma)
1536 goto out_unlock;
1538 /* check that there's at least one vma in the range */
1539 ret = -EINVAL;
1540 if (vma->vm_start >= end)
1541 goto out_unlock;
1544 * If the first vma contains huge pages, make sure start address
1545 * is aligned to huge page size.
1547 if (is_vm_hugetlb_page(vma)) {
1548 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1550 if (start & (vma_hpagesize - 1))
1551 goto out_unlock;
1555 * Search for not compatible vmas.
1557 found = false;
1558 ret = -EINVAL;
1559 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1560 cond_resched();
1562 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1563 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1566 * Check not compatible vmas, not strictly required
1567 * here as not compatible vmas cannot have an
1568 * userfaultfd_ctx registered on them, but this
1569 * provides for more strict behavior to notice
1570 * unregistration errors.
1572 if (!vma_can_userfault(cur))
1573 goto out_unlock;
1575 found = true;
1577 BUG_ON(!found);
1579 if (vma->vm_start < start)
1580 prev = vma;
1582 ret = 0;
1583 do {
1584 cond_resched();
1586 BUG_ON(!vma_can_userfault(vma));
1589 * Nothing to do: this vma is already registered into this
1590 * userfaultfd and with the right tracking mode too.
1592 if (!vma->vm_userfaultfd_ctx.ctx)
1593 goto skip;
1595 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1597 if (vma->vm_start > start)
1598 start = vma->vm_start;
1599 vma_end = min(end, vma->vm_end);
1601 if (userfaultfd_missing(vma)) {
1603 * Wake any concurrent pending userfault while
1604 * we unregister, so they will not hang
1605 * permanently and it avoids userland to call
1606 * UFFDIO_WAKE explicitly.
1608 struct userfaultfd_wake_range range;
1609 range.start = start;
1610 range.len = vma_end - start;
1611 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1614 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1615 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1616 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1617 vma_policy(vma),
1618 NULL_VM_UFFD_CTX);
1619 if (prev) {
1620 vma = prev;
1621 goto next;
1623 if (vma->vm_start < start) {
1624 ret = split_vma(mm, vma, start, 1);
1625 if (ret)
1626 break;
1628 if (vma->vm_end > end) {
1629 ret = split_vma(mm, vma, end, 0);
1630 if (ret)
1631 break;
1633 next:
1635 * In the vma_merge() successful mprotect-like case 8:
1636 * the next vma was merged into the current one and
1637 * the current one has not been updated yet.
1639 vma->vm_flags = new_flags;
1640 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1642 skip:
1643 prev = vma;
1644 start = vma->vm_end;
1645 vma = vma->vm_next;
1646 } while (vma && vma->vm_start < end);
1647 out_unlock:
1648 up_write(&mm->mmap_sem);
1649 mmput(mm);
1650 out:
1651 return ret;
1655 * userfaultfd_wake may be used in combination with the
1656 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1658 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1659 unsigned long arg)
1661 int ret;
1662 struct uffdio_range uffdio_wake;
1663 struct userfaultfd_wake_range range;
1664 const void __user *buf = (void __user *)arg;
1666 ret = -EFAULT;
1667 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1668 goto out;
1670 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1671 if (ret)
1672 goto out;
1674 range.start = uffdio_wake.start;
1675 range.len = uffdio_wake.len;
1678 * len == 0 means wake all and we don't want to wake all here,
1679 * so check it again to be sure.
1681 VM_BUG_ON(!range.len);
1683 wake_userfault(ctx, &range);
1684 ret = 0;
1686 out:
1687 return ret;
1690 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1691 unsigned long arg)
1693 __s64 ret;
1694 struct uffdio_copy uffdio_copy;
1695 struct uffdio_copy __user *user_uffdio_copy;
1696 struct userfaultfd_wake_range range;
1698 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1700 ret = -EAGAIN;
1701 if (READ_ONCE(ctx->mmap_changing))
1702 goto out;
1704 ret = -EFAULT;
1705 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1706 /* don't copy "copy" last field */
1707 sizeof(uffdio_copy)-sizeof(__s64)))
1708 goto out;
1710 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1711 if (ret)
1712 goto out;
1714 * double check for wraparound just in case. copy_from_user()
1715 * will later check uffdio_copy.src + uffdio_copy.len to fit
1716 * in the userland range.
1718 ret = -EINVAL;
1719 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1720 goto out;
1721 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1722 goto out;
1723 if (mmget_not_zero(ctx->mm)) {
1724 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1725 uffdio_copy.len, &ctx->mmap_changing);
1726 mmput(ctx->mm);
1727 } else {
1728 return -ESRCH;
1730 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1731 return -EFAULT;
1732 if (ret < 0)
1733 goto out;
1734 BUG_ON(!ret);
1735 /* len == 0 would wake all */
1736 range.len = ret;
1737 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1738 range.start = uffdio_copy.dst;
1739 wake_userfault(ctx, &range);
1741 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1742 out:
1743 return ret;
1746 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1747 unsigned long arg)
1749 __s64 ret;
1750 struct uffdio_zeropage uffdio_zeropage;
1751 struct uffdio_zeropage __user *user_uffdio_zeropage;
1752 struct userfaultfd_wake_range range;
1754 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1756 ret = -EAGAIN;
1757 if (READ_ONCE(ctx->mmap_changing))
1758 goto out;
1760 ret = -EFAULT;
1761 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1762 /* don't copy "zeropage" last field */
1763 sizeof(uffdio_zeropage)-sizeof(__s64)))
1764 goto out;
1766 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1767 uffdio_zeropage.range.len);
1768 if (ret)
1769 goto out;
1770 ret = -EINVAL;
1771 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1772 goto out;
1774 if (mmget_not_zero(ctx->mm)) {
1775 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1776 uffdio_zeropage.range.len,
1777 &ctx->mmap_changing);
1778 mmput(ctx->mm);
1779 } else {
1780 return -ESRCH;
1782 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1783 return -EFAULT;
1784 if (ret < 0)
1785 goto out;
1786 /* len == 0 would wake all */
1787 BUG_ON(!ret);
1788 range.len = ret;
1789 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1790 range.start = uffdio_zeropage.range.start;
1791 wake_userfault(ctx, &range);
1793 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1794 out:
1795 return ret;
1798 static inline unsigned int uffd_ctx_features(__u64 user_features)
1801 * For the current set of features the bits just coincide
1803 return (unsigned int)user_features;
1807 * userland asks for a certain API version and we return which bits
1808 * and ioctl commands are implemented in this kernel for such API
1809 * version or -EINVAL if unknown.
1811 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1812 unsigned long arg)
1814 struct uffdio_api uffdio_api;
1815 void __user *buf = (void __user *)arg;
1816 int ret;
1817 __u64 features;
1819 ret = -EINVAL;
1820 if (ctx->state != UFFD_STATE_WAIT_API)
1821 goto out;
1822 ret = -EFAULT;
1823 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1824 goto out;
1825 features = uffdio_api.features;
1826 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1827 memset(&uffdio_api, 0, sizeof(uffdio_api));
1828 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1829 goto out;
1830 ret = -EINVAL;
1831 goto out;
1833 /* report all available features and ioctls to userland */
1834 uffdio_api.features = UFFD_API_FEATURES;
1835 uffdio_api.ioctls = UFFD_API_IOCTLS;
1836 ret = -EFAULT;
1837 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1838 goto out;
1839 ctx->state = UFFD_STATE_RUNNING;
1840 /* only enable the requested features for this uffd context */
1841 ctx->features = uffd_ctx_features(features);
1842 ret = 0;
1843 out:
1844 return ret;
1847 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1848 unsigned long arg)
1850 int ret = -EINVAL;
1851 struct userfaultfd_ctx *ctx = file->private_data;
1853 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1854 return -EINVAL;
1856 switch(cmd) {
1857 case UFFDIO_API:
1858 ret = userfaultfd_api(ctx, arg);
1859 break;
1860 case UFFDIO_REGISTER:
1861 ret = userfaultfd_register(ctx, arg);
1862 break;
1863 case UFFDIO_UNREGISTER:
1864 ret = userfaultfd_unregister(ctx, arg);
1865 break;
1866 case UFFDIO_WAKE:
1867 ret = userfaultfd_wake(ctx, arg);
1868 break;
1869 case UFFDIO_COPY:
1870 ret = userfaultfd_copy(ctx, arg);
1871 break;
1872 case UFFDIO_ZEROPAGE:
1873 ret = userfaultfd_zeropage(ctx, arg);
1874 break;
1876 return ret;
1879 #ifdef CONFIG_PROC_FS
1880 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1882 struct userfaultfd_ctx *ctx = f->private_data;
1883 wait_queue_entry_t *wq;
1884 unsigned long pending = 0, total = 0;
1886 spin_lock(&ctx->fault_pending_wqh.lock);
1887 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1888 pending++;
1889 total++;
1891 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1892 total++;
1894 spin_unlock(&ctx->fault_pending_wqh.lock);
1897 * If more protocols will be added, there will be all shown
1898 * separated by a space. Like this:
1899 * protocols: aa:... bb:...
1901 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1902 pending, total, UFFD_API, ctx->features,
1903 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1905 #endif
1907 static const struct file_operations userfaultfd_fops = {
1908 #ifdef CONFIG_PROC_FS
1909 .show_fdinfo = userfaultfd_show_fdinfo,
1910 #endif
1911 .release = userfaultfd_release,
1912 .poll = userfaultfd_poll,
1913 .read = userfaultfd_read,
1914 .unlocked_ioctl = userfaultfd_ioctl,
1915 .compat_ioctl = userfaultfd_ioctl,
1916 .llseek = noop_llseek,
1919 static void init_once_userfaultfd_ctx(void *mem)
1921 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1923 init_waitqueue_head(&ctx->fault_pending_wqh);
1924 init_waitqueue_head(&ctx->fault_wqh);
1925 init_waitqueue_head(&ctx->event_wqh);
1926 init_waitqueue_head(&ctx->fd_wqh);
1927 seqcount_init(&ctx->refile_seq);
1930 SYSCALL_DEFINE1(userfaultfd, int, flags)
1932 struct userfaultfd_ctx *ctx;
1933 int fd;
1935 if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE))
1936 return -EPERM;
1938 BUG_ON(!current->mm);
1940 /* Check the UFFD_* constants for consistency. */
1941 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1942 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1944 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1945 return -EINVAL;
1947 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1948 if (!ctx)
1949 return -ENOMEM;
1951 refcount_set(&ctx->refcount, 1);
1952 ctx->flags = flags;
1953 ctx->features = 0;
1954 ctx->state = UFFD_STATE_WAIT_API;
1955 ctx->released = false;
1956 ctx->mmap_changing = false;
1957 ctx->mm = current->mm;
1958 /* prevent the mm struct to be freed */
1959 mmgrab(ctx->mm);
1961 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1962 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1963 if (fd < 0) {
1964 mmdrop(ctx->mm);
1965 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1967 return fd;
1970 static int __init userfaultfd_init(void)
1972 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1973 sizeof(struct userfaultfd_ctx),
1975 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1976 init_once_userfaultfd_ctx);
1977 return 0;
1979 __initcall(userfaultfd_init);