perf intel-pt: Factor out intel_pt_8b_tsc()
[linux/fpc-iii.git] / fs / xfs / libxfs / xfs_iext_tree.c
blobbc690f2409faab3135fc1cf857263fab99faf2a8
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2017 Christoph Hellwig.
4 */
6 #include <linux/cache.h>
7 #include <linux/kernel.h>
8 #include <linux/slab.h>
9 #include "xfs.h"
10 #include "xfs_format.h"
11 #include "xfs_bit.h"
12 #include "xfs_log_format.h"
13 #include "xfs_inode.h"
14 #include "xfs_inode_fork.h"
15 #include "xfs_trans_resv.h"
16 #include "xfs_mount.h"
17 #include "xfs_bmap.h"
18 #include "xfs_trace.h"
21 * In-core extent record layout:
23 * +-------+----------------------------+
24 * | 00:53 | all 54 bits of startoff |
25 * | 54:63 | low 10 bits of startblock |
26 * +-------+----------------------------+
27 * | 00:20 | all 21 bits of length |
28 * | 21 | unwritten extent bit |
29 * | 22:63 | high 42 bits of startblock |
30 * +-------+----------------------------+
32 #define XFS_IEXT_STARTOFF_MASK xfs_mask64lo(BMBT_STARTOFF_BITLEN)
33 #define XFS_IEXT_LENGTH_MASK xfs_mask64lo(BMBT_BLOCKCOUNT_BITLEN)
34 #define XFS_IEXT_STARTBLOCK_MASK xfs_mask64lo(BMBT_STARTBLOCK_BITLEN)
36 struct xfs_iext_rec {
37 uint64_t lo;
38 uint64_t hi;
42 * Given that the length can't be a zero, only an empty hi value indicates an
43 * unused record.
45 static bool xfs_iext_rec_is_empty(struct xfs_iext_rec *rec)
47 return rec->hi == 0;
50 static inline void xfs_iext_rec_clear(struct xfs_iext_rec *rec)
52 rec->lo = 0;
53 rec->hi = 0;
56 static void
57 xfs_iext_set(
58 struct xfs_iext_rec *rec,
59 struct xfs_bmbt_irec *irec)
61 ASSERT((irec->br_startoff & ~XFS_IEXT_STARTOFF_MASK) == 0);
62 ASSERT((irec->br_blockcount & ~XFS_IEXT_LENGTH_MASK) == 0);
63 ASSERT((irec->br_startblock & ~XFS_IEXT_STARTBLOCK_MASK) == 0);
65 rec->lo = irec->br_startoff & XFS_IEXT_STARTOFF_MASK;
66 rec->hi = irec->br_blockcount & XFS_IEXT_LENGTH_MASK;
68 rec->lo |= (irec->br_startblock << 54);
69 rec->hi |= ((irec->br_startblock & ~xfs_mask64lo(10)) << (22 - 10));
71 if (irec->br_state == XFS_EXT_UNWRITTEN)
72 rec->hi |= (1 << 21);
75 static void
76 xfs_iext_get(
77 struct xfs_bmbt_irec *irec,
78 struct xfs_iext_rec *rec)
80 irec->br_startoff = rec->lo & XFS_IEXT_STARTOFF_MASK;
81 irec->br_blockcount = rec->hi & XFS_IEXT_LENGTH_MASK;
83 irec->br_startblock = rec->lo >> 54;
84 irec->br_startblock |= (rec->hi & xfs_mask64hi(42)) >> (22 - 10);
86 if (rec->hi & (1 << 21))
87 irec->br_state = XFS_EXT_UNWRITTEN;
88 else
89 irec->br_state = XFS_EXT_NORM;
92 enum {
93 NODE_SIZE = 256,
94 KEYS_PER_NODE = NODE_SIZE / (sizeof(uint64_t) + sizeof(void *)),
95 RECS_PER_LEAF = (NODE_SIZE - (2 * sizeof(struct xfs_iext_leaf *))) /
96 sizeof(struct xfs_iext_rec),
100 * In-core extent btree block layout:
102 * There are two types of blocks in the btree: leaf and inner (non-leaf) blocks.
104 * The leaf blocks are made up by %KEYS_PER_NODE extent records, which each
105 * contain the startoffset, blockcount, startblock and unwritten extent flag.
106 * See above for the exact format, followed by pointers to the previous and next
107 * leaf blocks (if there are any).
109 * The inner (non-leaf) blocks first contain KEYS_PER_NODE lookup keys, followed
110 * by an equal number of pointers to the btree blocks at the next lower level.
112 * +-------+-------+-------+-------+-------+----------+----------+
113 * Leaf: | rec 1 | rec 2 | rec 3 | rec 4 | rec N | prev-ptr | next-ptr |
114 * +-------+-------+-------+-------+-------+----------+----------+
116 * +-------+-------+-------+-------+-------+-------+------+-------+
117 * Inner: | key 1 | key 2 | key 3 | key N | ptr 1 | ptr 2 | ptr3 | ptr N |
118 * +-------+-------+-------+-------+-------+-------+------+-------+
120 struct xfs_iext_node {
121 uint64_t keys[KEYS_PER_NODE];
122 #define XFS_IEXT_KEY_INVALID (1ULL << 63)
123 void *ptrs[KEYS_PER_NODE];
126 struct xfs_iext_leaf {
127 struct xfs_iext_rec recs[RECS_PER_LEAF];
128 struct xfs_iext_leaf *prev;
129 struct xfs_iext_leaf *next;
132 inline xfs_extnum_t xfs_iext_count(struct xfs_ifork *ifp)
134 return ifp->if_bytes / sizeof(struct xfs_iext_rec);
137 static inline int xfs_iext_max_recs(struct xfs_ifork *ifp)
139 if (ifp->if_height == 1)
140 return xfs_iext_count(ifp);
141 return RECS_PER_LEAF;
144 static inline struct xfs_iext_rec *cur_rec(struct xfs_iext_cursor *cur)
146 return &cur->leaf->recs[cur->pos];
149 static inline bool xfs_iext_valid(struct xfs_ifork *ifp,
150 struct xfs_iext_cursor *cur)
152 if (!cur->leaf)
153 return false;
154 if (cur->pos < 0 || cur->pos >= xfs_iext_max_recs(ifp))
155 return false;
156 if (xfs_iext_rec_is_empty(cur_rec(cur)))
157 return false;
158 return true;
161 static void *
162 xfs_iext_find_first_leaf(
163 struct xfs_ifork *ifp)
165 struct xfs_iext_node *node = ifp->if_u1.if_root;
166 int height;
168 if (!ifp->if_height)
169 return NULL;
171 for (height = ifp->if_height; height > 1; height--) {
172 node = node->ptrs[0];
173 ASSERT(node);
176 return node;
179 static void *
180 xfs_iext_find_last_leaf(
181 struct xfs_ifork *ifp)
183 struct xfs_iext_node *node = ifp->if_u1.if_root;
184 int height, i;
186 if (!ifp->if_height)
187 return NULL;
189 for (height = ifp->if_height; height > 1; height--) {
190 for (i = 1; i < KEYS_PER_NODE; i++)
191 if (!node->ptrs[i])
192 break;
193 node = node->ptrs[i - 1];
194 ASSERT(node);
197 return node;
200 void
201 xfs_iext_first(
202 struct xfs_ifork *ifp,
203 struct xfs_iext_cursor *cur)
205 cur->pos = 0;
206 cur->leaf = xfs_iext_find_first_leaf(ifp);
209 void
210 xfs_iext_last(
211 struct xfs_ifork *ifp,
212 struct xfs_iext_cursor *cur)
214 int i;
216 cur->leaf = xfs_iext_find_last_leaf(ifp);
217 if (!cur->leaf) {
218 cur->pos = 0;
219 return;
222 for (i = 1; i < xfs_iext_max_recs(ifp); i++) {
223 if (xfs_iext_rec_is_empty(&cur->leaf->recs[i]))
224 break;
226 cur->pos = i - 1;
229 void
230 xfs_iext_next(
231 struct xfs_ifork *ifp,
232 struct xfs_iext_cursor *cur)
234 if (!cur->leaf) {
235 ASSERT(cur->pos <= 0 || cur->pos >= RECS_PER_LEAF);
236 xfs_iext_first(ifp, cur);
237 return;
240 ASSERT(cur->pos >= 0);
241 ASSERT(cur->pos < xfs_iext_max_recs(ifp));
243 cur->pos++;
244 if (ifp->if_height > 1 && !xfs_iext_valid(ifp, cur) &&
245 cur->leaf->next) {
246 cur->leaf = cur->leaf->next;
247 cur->pos = 0;
251 void
252 xfs_iext_prev(
253 struct xfs_ifork *ifp,
254 struct xfs_iext_cursor *cur)
256 if (!cur->leaf) {
257 ASSERT(cur->pos <= 0 || cur->pos >= RECS_PER_LEAF);
258 xfs_iext_last(ifp, cur);
259 return;
262 ASSERT(cur->pos >= 0);
263 ASSERT(cur->pos <= RECS_PER_LEAF);
265 recurse:
266 do {
267 cur->pos--;
268 if (xfs_iext_valid(ifp, cur))
269 return;
270 } while (cur->pos > 0);
272 if (ifp->if_height > 1 && cur->leaf->prev) {
273 cur->leaf = cur->leaf->prev;
274 cur->pos = RECS_PER_LEAF;
275 goto recurse;
279 static inline int
280 xfs_iext_key_cmp(
281 struct xfs_iext_node *node,
282 int n,
283 xfs_fileoff_t offset)
285 if (node->keys[n] > offset)
286 return 1;
287 if (node->keys[n] < offset)
288 return -1;
289 return 0;
292 static inline int
293 xfs_iext_rec_cmp(
294 struct xfs_iext_rec *rec,
295 xfs_fileoff_t offset)
297 uint64_t rec_offset = rec->lo & XFS_IEXT_STARTOFF_MASK;
298 uint32_t rec_len = rec->hi & XFS_IEXT_LENGTH_MASK;
300 if (rec_offset > offset)
301 return 1;
302 if (rec_offset + rec_len <= offset)
303 return -1;
304 return 0;
307 static void *
308 xfs_iext_find_level(
309 struct xfs_ifork *ifp,
310 xfs_fileoff_t offset,
311 int level)
313 struct xfs_iext_node *node = ifp->if_u1.if_root;
314 int height, i;
316 if (!ifp->if_height)
317 return NULL;
319 for (height = ifp->if_height; height > level; height--) {
320 for (i = 1; i < KEYS_PER_NODE; i++)
321 if (xfs_iext_key_cmp(node, i, offset) > 0)
322 break;
324 node = node->ptrs[i - 1];
325 if (!node)
326 break;
329 return node;
332 static int
333 xfs_iext_node_pos(
334 struct xfs_iext_node *node,
335 xfs_fileoff_t offset)
337 int i;
339 for (i = 1; i < KEYS_PER_NODE; i++) {
340 if (xfs_iext_key_cmp(node, i, offset) > 0)
341 break;
344 return i - 1;
347 static int
348 xfs_iext_node_insert_pos(
349 struct xfs_iext_node *node,
350 xfs_fileoff_t offset)
352 int i;
354 for (i = 0; i < KEYS_PER_NODE; i++) {
355 if (xfs_iext_key_cmp(node, i, offset) > 0)
356 return i;
359 return KEYS_PER_NODE;
362 static int
363 xfs_iext_node_nr_entries(
364 struct xfs_iext_node *node,
365 int start)
367 int i;
369 for (i = start; i < KEYS_PER_NODE; i++) {
370 if (node->keys[i] == XFS_IEXT_KEY_INVALID)
371 break;
374 return i;
377 static int
378 xfs_iext_leaf_nr_entries(
379 struct xfs_ifork *ifp,
380 struct xfs_iext_leaf *leaf,
381 int start)
383 int i;
385 for (i = start; i < xfs_iext_max_recs(ifp); i++) {
386 if (xfs_iext_rec_is_empty(&leaf->recs[i]))
387 break;
390 return i;
393 static inline uint64_t
394 xfs_iext_leaf_key(
395 struct xfs_iext_leaf *leaf,
396 int n)
398 return leaf->recs[n].lo & XFS_IEXT_STARTOFF_MASK;
401 static void
402 xfs_iext_grow(
403 struct xfs_ifork *ifp)
405 struct xfs_iext_node *node = kmem_zalloc(NODE_SIZE, KM_NOFS);
406 int i;
408 if (ifp->if_height == 1) {
409 struct xfs_iext_leaf *prev = ifp->if_u1.if_root;
411 node->keys[0] = xfs_iext_leaf_key(prev, 0);
412 node->ptrs[0] = prev;
413 } else {
414 struct xfs_iext_node *prev = ifp->if_u1.if_root;
416 ASSERT(ifp->if_height > 1);
418 node->keys[0] = prev->keys[0];
419 node->ptrs[0] = prev;
422 for (i = 1; i < KEYS_PER_NODE; i++)
423 node->keys[i] = XFS_IEXT_KEY_INVALID;
425 ifp->if_u1.if_root = node;
426 ifp->if_height++;
429 static void
430 xfs_iext_update_node(
431 struct xfs_ifork *ifp,
432 xfs_fileoff_t old_offset,
433 xfs_fileoff_t new_offset,
434 int level,
435 void *ptr)
437 struct xfs_iext_node *node = ifp->if_u1.if_root;
438 int height, i;
440 for (height = ifp->if_height; height > level; height--) {
441 for (i = 0; i < KEYS_PER_NODE; i++) {
442 if (i > 0 && xfs_iext_key_cmp(node, i, old_offset) > 0)
443 break;
444 if (node->keys[i] == old_offset)
445 node->keys[i] = new_offset;
447 node = node->ptrs[i - 1];
448 ASSERT(node);
451 ASSERT(node == ptr);
454 static struct xfs_iext_node *
455 xfs_iext_split_node(
456 struct xfs_iext_node **nodep,
457 int *pos,
458 int *nr_entries)
460 struct xfs_iext_node *node = *nodep;
461 struct xfs_iext_node *new = kmem_zalloc(NODE_SIZE, KM_NOFS);
462 const int nr_move = KEYS_PER_NODE / 2;
463 int nr_keep = nr_move + (KEYS_PER_NODE & 1);
464 int i = 0;
466 /* for sequential append operations just spill over into the new node */
467 if (*pos == KEYS_PER_NODE) {
468 *nodep = new;
469 *pos = 0;
470 *nr_entries = 0;
471 goto done;
475 for (i = 0; i < nr_move; i++) {
476 new->keys[i] = node->keys[nr_keep + i];
477 new->ptrs[i] = node->ptrs[nr_keep + i];
479 node->keys[nr_keep + i] = XFS_IEXT_KEY_INVALID;
480 node->ptrs[nr_keep + i] = NULL;
483 if (*pos >= nr_keep) {
484 *nodep = new;
485 *pos -= nr_keep;
486 *nr_entries = nr_move;
487 } else {
488 *nr_entries = nr_keep;
490 done:
491 for (; i < KEYS_PER_NODE; i++)
492 new->keys[i] = XFS_IEXT_KEY_INVALID;
493 return new;
496 static void
497 xfs_iext_insert_node(
498 struct xfs_ifork *ifp,
499 uint64_t offset,
500 void *ptr,
501 int level)
503 struct xfs_iext_node *node, *new;
504 int i, pos, nr_entries;
506 again:
507 if (ifp->if_height < level)
508 xfs_iext_grow(ifp);
510 new = NULL;
511 node = xfs_iext_find_level(ifp, offset, level);
512 pos = xfs_iext_node_insert_pos(node, offset);
513 nr_entries = xfs_iext_node_nr_entries(node, pos);
515 ASSERT(pos >= nr_entries || xfs_iext_key_cmp(node, pos, offset) != 0);
516 ASSERT(nr_entries <= KEYS_PER_NODE);
518 if (nr_entries == KEYS_PER_NODE)
519 new = xfs_iext_split_node(&node, &pos, &nr_entries);
522 * Update the pointers in higher levels if the first entry changes
523 * in an existing node.
525 if (node != new && pos == 0 && nr_entries > 0)
526 xfs_iext_update_node(ifp, node->keys[0], offset, level, node);
528 for (i = nr_entries; i > pos; i--) {
529 node->keys[i] = node->keys[i - 1];
530 node->ptrs[i] = node->ptrs[i - 1];
532 node->keys[pos] = offset;
533 node->ptrs[pos] = ptr;
535 if (new) {
536 offset = new->keys[0];
537 ptr = new;
538 level++;
539 goto again;
543 static struct xfs_iext_leaf *
544 xfs_iext_split_leaf(
545 struct xfs_iext_cursor *cur,
546 int *nr_entries)
548 struct xfs_iext_leaf *leaf = cur->leaf;
549 struct xfs_iext_leaf *new = kmem_zalloc(NODE_SIZE, KM_NOFS);
550 const int nr_move = RECS_PER_LEAF / 2;
551 int nr_keep = nr_move + (RECS_PER_LEAF & 1);
552 int i;
554 /* for sequential append operations just spill over into the new node */
555 if (cur->pos == RECS_PER_LEAF) {
556 cur->leaf = new;
557 cur->pos = 0;
558 *nr_entries = 0;
559 goto done;
562 for (i = 0; i < nr_move; i++) {
563 new->recs[i] = leaf->recs[nr_keep + i];
564 xfs_iext_rec_clear(&leaf->recs[nr_keep + i]);
567 if (cur->pos >= nr_keep) {
568 cur->leaf = new;
569 cur->pos -= nr_keep;
570 *nr_entries = nr_move;
571 } else {
572 *nr_entries = nr_keep;
574 done:
575 if (leaf->next)
576 leaf->next->prev = new;
577 new->next = leaf->next;
578 new->prev = leaf;
579 leaf->next = new;
580 return new;
583 static void
584 xfs_iext_alloc_root(
585 struct xfs_ifork *ifp,
586 struct xfs_iext_cursor *cur)
588 ASSERT(ifp->if_bytes == 0);
590 ifp->if_u1.if_root = kmem_zalloc(sizeof(struct xfs_iext_rec), KM_NOFS);
591 ifp->if_height = 1;
593 /* now that we have a node step into it */
594 cur->leaf = ifp->if_u1.if_root;
595 cur->pos = 0;
598 static void
599 xfs_iext_realloc_root(
600 struct xfs_ifork *ifp,
601 struct xfs_iext_cursor *cur)
603 size_t new_size = ifp->if_bytes + sizeof(struct xfs_iext_rec);
604 void *new;
606 /* account for the prev/next pointers */
607 if (new_size / sizeof(struct xfs_iext_rec) == RECS_PER_LEAF)
608 new_size = NODE_SIZE;
610 new = kmem_realloc(ifp->if_u1.if_root, new_size, KM_NOFS);
611 memset(new + ifp->if_bytes, 0, new_size - ifp->if_bytes);
612 ifp->if_u1.if_root = new;
613 cur->leaf = new;
617 * Increment the sequence counter on extent tree changes. If we are on a COW
618 * fork, this allows the writeback code to skip looking for a COW extent if the
619 * COW fork hasn't changed. We use WRITE_ONCE here to ensure the update to the
620 * sequence counter is seen before the modifications to the extent tree itself
621 * take effect.
623 static inline void xfs_iext_inc_seq(struct xfs_ifork *ifp, int state)
625 WRITE_ONCE(ifp->if_seq, READ_ONCE(ifp->if_seq) + 1);
628 void
629 xfs_iext_insert(
630 struct xfs_inode *ip,
631 struct xfs_iext_cursor *cur,
632 struct xfs_bmbt_irec *irec,
633 int state)
635 struct xfs_ifork *ifp = xfs_iext_state_to_fork(ip, state);
636 xfs_fileoff_t offset = irec->br_startoff;
637 struct xfs_iext_leaf *new = NULL;
638 int nr_entries, i;
640 xfs_iext_inc_seq(ifp, state);
642 if (ifp->if_height == 0)
643 xfs_iext_alloc_root(ifp, cur);
644 else if (ifp->if_height == 1)
645 xfs_iext_realloc_root(ifp, cur);
647 nr_entries = xfs_iext_leaf_nr_entries(ifp, cur->leaf, cur->pos);
648 ASSERT(nr_entries <= RECS_PER_LEAF);
649 ASSERT(cur->pos >= nr_entries ||
650 xfs_iext_rec_cmp(cur_rec(cur), irec->br_startoff) != 0);
652 if (nr_entries == RECS_PER_LEAF)
653 new = xfs_iext_split_leaf(cur, &nr_entries);
656 * Update the pointers in higher levels if the first entry changes
657 * in an existing node.
659 if (cur->leaf != new && cur->pos == 0 && nr_entries > 0) {
660 xfs_iext_update_node(ifp, xfs_iext_leaf_key(cur->leaf, 0),
661 offset, 1, cur->leaf);
664 for (i = nr_entries; i > cur->pos; i--)
665 cur->leaf->recs[i] = cur->leaf->recs[i - 1];
666 xfs_iext_set(cur_rec(cur), irec);
667 ifp->if_bytes += sizeof(struct xfs_iext_rec);
669 trace_xfs_iext_insert(ip, cur, state, _RET_IP_);
671 if (new)
672 xfs_iext_insert_node(ifp, xfs_iext_leaf_key(new, 0), new, 2);
675 static struct xfs_iext_node *
676 xfs_iext_rebalance_node(
677 struct xfs_iext_node *parent,
678 int *pos,
679 struct xfs_iext_node *node,
680 int nr_entries)
683 * If the neighbouring nodes are completely full, or have different
684 * parents, we might never be able to merge our node, and will only
685 * delete it once the number of entries hits zero.
687 if (nr_entries == 0)
688 return node;
690 if (*pos > 0) {
691 struct xfs_iext_node *prev = parent->ptrs[*pos - 1];
692 int nr_prev = xfs_iext_node_nr_entries(prev, 0), i;
694 if (nr_prev + nr_entries <= KEYS_PER_NODE) {
695 for (i = 0; i < nr_entries; i++) {
696 prev->keys[nr_prev + i] = node->keys[i];
697 prev->ptrs[nr_prev + i] = node->ptrs[i];
699 return node;
703 if (*pos + 1 < xfs_iext_node_nr_entries(parent, *pos)) {
704 struct xfs_iext_node *next = parent->ptrs[*pos + 1];
705 int nr_next = xfs_iext_node_nr_entries(next, 0), i;
707 if (nr_entries + nr_next <= KEYS_PER_NODE) {
709 * Merge the next node into this node so that we don't
710 * have to do an additional update of the keys in the
711 * higher levels.
713 for (i = 0; i < nr_next; i++) {
714 node->keys[nr_entries + i] = next->keys[i];
715 node->ptrs[nr_entries + i] = next->ptrs[i];
718 ++*pos;
719 return next;
723 return NULL;
726 static void
727 xfs_iext_remove_node(
728 struct xfs_ifork *ifp,
729 xfs_fileoff_t offset,
730 void *victim)
732 struct xfs_iext_node *node, *parent;
733 int level = 2, pos, nr_entries, i;
735 ASSERT(level <= ifp->if_height);
736 node = xfs_iext_find_level(ifp, offset, level);
737 pos = xfs_iext_node_pos(node, offset);
738 again:
739 ASSERT(node->ptrs[pos]);
740 ASSERT(node->ptrs[pos] == victim);
741 kmem_free(victim);
743 nr_entries = xfs_iext_node_nr_entries(node, pos) - 1;
744 offset = node->keys[0];
745 for (i = pos; i < nr_entries; i++) {
746 node->keys[i] = node->keys[i + 1];
747 node->ptrs[i] = node->ptrs[i + 1];
749 node->keys[nr_entries] = XFS_IEXT_KEY_INVALID;
750 node->ptrs[nr_entries] = NULL;
752 if (pos == 0 && nr_entries > 0) {
753 xfs_iext_update_node(ifp, offset, node->keys[0], level, node);
754 offset = node->keys[0];
757 if (nr_entries >= KEYS_PER_NODE / 2)
758 return;
760 if (level < ifp->if_height) {
762 * If we aren't at the root yet try to find a neighbour node to
763 * merge with (or delete the node if it is empty), and then
764 * recurse up to the next level.
766 level++;
767 parent = xfs_iext_find_level(ifp, offset, level);
768 pos = xfs_iext_node_pos(parent, offset);
770 ASSERT(pos != KEYS_PER_NODE);
771 ASSERT(parent->ptrs[pos] == node);
773 node = xfs_iext_rebalance_node(parent, &pos, node, nr_entries);
774 if (node) {
775 victim = node;
776 node = parent;
777 goto again;
779 } else if (nr_entries == 1) {
781 * If we are at the root and only one entry is left we can just
782 * free this node and update the root pointer.
784 ASSERT(node == ifp->if_u1.if_root);
785 ifp->if_u1.if_root = node->ptrs[0];
786 ifp->if_height--;
787 kmem_free(node);
791 static void
792 xfs_iext_rebalance_leaf(
793 struct xfs_ifork *ifp,
794 struct xfs_iext_cursor *cur,
795 struct xfs_iext_leaf *leaf,
796 xfs_fileoff_t offset,
797 int nr_entries)
800 * If the neighbouring nodes are completely full we might never be able
801 * to merge our node, and will only delete it once the number of
802 * entries hits zero.
804 if (nr_entries == 0)
805 goto remove_node;
807 if (leaf->prev) {
808 int nr_prev = xfs_iext_leaf_nr_entries(ifp, leaf->prev, 0), i;
810 if (nr_prev + nr_entries <= RECS_PER_LEAF) {
811 for (i = 0; i < nr_entries; i++)
812 leaf->prev->recs[nr_prev + i] = leaf->recs[i];
814 if (cur->leaf == leaf) {
815 cur->leaf = leaf->prev;
816 cur->pos += nr_prev;
818 goto remove_node;
822 if (leaf->next) {
823 int nr_next = xfs_iext_leaf_nr_entries(ifp, leaf->next, 0), i;
825 if (nr_entries + nr_next <= RECS_PER_LEAF) {
827 * Merge the next node into this node so that we don't
828 * have to do an additional update of the keys in the
829 * higher levels.
831 for (i = 0; i < nr_next; i++) {
832 leaf->recs[nr_entries + i] =
833 leaf->next->recs[i];
836 if (cur->leaf == leaf->next) {
837 cur->leaf = leaf;
838 cur->pos += nr_entries;
841 offset = xfs_iext_leaf_key(leaf->next, 0);
842 leaf = leaf->next;
843 goto remove_node;
847 return;
848 remove_node:
849 if (leaf->prev)
850 leaf->prev->next = leaf->next;
851 if (leaf->next)
852 leaf->next->prev = leaf->prev;
853 xfs_iext_remove_node(ifp, offset, leaf);
856 static void
857 xfs_iext_free_last_leaf(
858 struct xfs_ifork *ifp)
860 ifp->if_height--;
861 kmem_free(ifp->if_u1.if_root);
862 ifp->if_u1.if_root = NULL;
865 void
866 xfs_iext_remove(
867 struct xfs_inode *ip,
868 struct xfs_iext_cursor *cur,
869 int state)
871 struct xfs_ifork *ifp = xfs_iext_state_to_fork(ip, state);
872 struct xfs_iext_leaf *leaf = cur->leaf;
873 xfs_fileoff_t offset = xfs_iext_leaf_key(leaf, 0);
874 int i, nr_entries;
876 trace_xfs_iext_remove(ip, cur, state, _RET_IP_);
878 ASSERT(ifp->if_height > 0);
879 ASSERT(ifp->if_u1.if_root != NULL);
880 ASSERT(xfs_iext_valid(ifp, cur));
882 xfs_iext_inc_seq(ifp, state);
884 nr_entries = xfs_iext_leaf_nr_entries(ifp, leaf, cur->pos) - 1;
885 for (i = cur->pos; i < nr_entries; i++)
886 leaf->recs[i] = leaf->recs[i + 1];
887 xfs_iext_rec_clear(&leaf->recs[nr_entries]);
888 ifp->if_bytes -= sizeof(struct xfs_iext_rec);
890 if (cur->pos == 0 && nr_entries > 0) {
891 xfs_iext_update_node(ifp, offset, xfs_iext_leaf_key(leaf, 0), 1,
892 leaf);
893 offset = xfs_iext_leaf_key(leaf, 0);
894 } else if (cur->pos == nr_entries) {
895 if (ifp->if_height > 1 && leaf->next)
896 cur->leaf = leaf->next;
897 else
898 cur->leaf = NULL;
899 cur->pos = 0;
902 if (nr_entries >= RECS_PER_LEAF / 2)
903 return;
905 if (ifp->if_height > 1)
906 xfs_iext_rebalance_leaf(ifp, cur, leaf, offset, nr_entries);
907 else if (nr_entries == 0)
908 xfs_iext_free_last_leaf(ifp);
912 * Lookup the extent covering bno.
914 * If there is an extent covering bno return the extent index, and store the
915 * expanded extent structure in *gotp, and the extent cursor in *cur.
916 * If there is no extent covering bno, but there is an extent after it (e.g.
917 * it lies in a hole) return that extent in *gotp and its cursor in *cur
918 * instead.
919 * If bno is beyond the last extent return false, and return an invalid
920 * cursor value.
922 bool
923 xfs_iext_lookup_extent(
924 struct xfs_inode *ip,
925 struct xfs_ifork *ifp,
926 xfs_fileoff_t offset,
927 struct xfs_iext_cursor *cur,
928 struct xfs_bmbt_irec *gotp)
930 XFS_STATS_INC(ip->i_mount, xs_look_exlist);
932 cur->leaf = xfs_iext_find_level(ifp, offset, 1);
933 if (!cur->leaf) {
934 cur->pos = 0;
935 return false;
938 for (cur->pos = 0; cur->pos < xfs_iext_max_recs(ifp); cur->pos++) {
939 struct xfs_iext_rec *rec = cur_rec(cur);
941 if (xfs_iext_rec_is_empty(rec))
942 break;
943 if (xfs_iext_rec_cmp(rec, offset) >= 0)
944 goto found;
947 /* Try looking in the next node for an entry > offset */
948 if (ifp->if_height == 1 || !cur->leaf->next)
949 return false;
950 cur->leaf = cur->leaf->next;
951 cur->pos = 0;
952 if (!xfs_iext_valid(ifp, cur))
953 return false;
954 found:
955 xfs_iext_get(gotp, cur_rec(cur));
956 return true;
960 * Returns the last extent before end, and if this extent doesn't cover
961 * end, update end to the end of the extent.
963 bool
964 xfs_iext_lookup_extent_before(
965 struct xfs_inode *ip,
966 struct xfs_ifork *ifp,
967 xfs_fileoff_t *end,
968 struct xfs_iext_cursor *cur,
969 struct xfs_bmbt_irec *gotp)
971 /* could be optimized to not even look up the next on a match.. */
972 if (xfs_iext_lookup_extent(ip, ifp, *end - 1, cur, gotp) &&
973 gotp->br_startoff <= *end - 1)
974 return true;
975 if (!xfs_iext_prev_extent(ifp, cur, gotp))
976 return false;
977 *end = gotp->br_startoff + gotp->br_blockcount;
978 return true;
981 void
982 xfs_iext_update_extent(
983 struct xfs_inode *ip,
984 int state,
985 struct xfs_iext_cursor *cur,
986 struct xfs_bmbt_irec *new)
988 struct xfs_ifork *ifp = xfs_iext_state_to_fork(ip, state);
990 xfs_iext_inc_seq(ifp, state);
992 if (cur->pos == 0) {
993 struct xfs_bmbt_irec old;
995 xfs_iext_get(&old, cur_rec(cur));
996 if (new->br_startoff != old.br_startoff) {
997 xfs_iext_update_node(ifp, old.br_startoff,
998 new->br_startoff, 1, cur->leaf);
1002 trace_xfs_bmap_pre_update(ip, cur, state, _RET_IP_);
1003 xfs_iext_set(cur_rec(cur), new);
1004 trace_xfs_bmap_post_update(ip, cur, state, _RET_IP_);
1008 * Return true if the cursor points at an extent and return the extent structure
1009 * in gotp. Else return false.
1011 bool
1012 xfs_iext_get_extent(
1013 struct xfs_ifork *ifp,
1014 struct xfs_iext_cursor *cur,
1015 struct xfs_bmbt_irec *gotp)
1017 if (!xfs_iext_valid(ifp, cur))
1018 return false;
1019 xfs_iext_get(gotp, cur_rec(cur));
1020 return true;
1024 * This is a recursive function, because of that we need to be extremely
1025 * careful with stack usage.
1027 static void
1028 xfs_iext_destroy_node(
1029 struct xfs_iext_node *node,
1030 int level)
1032 int i;
1034 if (level > 1) {
1035 for (i = 0; i < KEYS_PER_NODE; i++) {
1036 if (node->keys[i] == XFS_IEXT_KEY_INVALID)
1037 break;
1038 xfs_iext_destroy_node(node->ptrs[i], level - 1);
1042 kmem_free(node);
1045 void
1046 xfs_iext_destroy(
1047 struct xfs_ifork *ifp)
1049 xfs_iext_destroy_node(ifp->if_u1.if_root, ifp->if_height);
1051 ifp->if_bytes = 0;
1052 ifp->if_height = 0;
1053 ifp->if_u1.if_root = NULL;