Merge tag 'pm-fixes-4.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux/fpc-iii.git] / drivers / firmware / dmi_scan.c
blob783041964439acaa60c80eac80df24080579d036
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/bootmem.h>
9 #include <linux/random.h>
10 #include <asm/dmi.h>
11 #include <asm/unaligned.h>
13 struct kobject *dmi_kobj;
14 EXPORT_SYMBOL_GPL(dmi_kobj);
17 * DMI stands for "Desktop Management Interface". It is part
18 * of and an antecedent to, SMBIOS, which stands for System
19 * Management BIOS. See further: http://www.dmtf.org/standards
21 static const char dmi_empty_string[] = " ";
23 static u32 dmi_ver __initdata;
24 static u32 dmi_len;
25 static u16 dmi_num;
26 static u8 smbios_entry_point[32];
27 static int smbios_entry_point_size;
30 * Catch too early calls to dmi_check_system():
32 static int dmi_initialized;
34 /* DMI system identification string used during boot */
35 static char dmi_ids_string[128] __initdata;
37 static struct dmi_memdev_info {
38 const char *device;
39 const char *bank;
40 u16 handle;
41 } *dmi_memdev;
42 static int dmi_memdev_nr;
44 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
46 const u8 *bp = ((u8 *) dm) + dm->length;
48 if (s) {
49 s--;
50 while (s > 0 && *bp) {
51 bp += strlen(bp) + 1;
52 s--;
55 if (*bp != 0) {
56 size_t len = strlen(bp)+1;
57 size_t cmp_len = len > 8 ? 8 : len;
59 if (!memcmp(bp, dmi_empty_string, cmp_len))
60 return dmi_empty_string;
61 return bp;
65 return "";
68 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
70 const char *bp = dmi_string_nosave(dm, s);
71 char *str;
72 size_t len;
74 if (bp == dmi_empty_string)
75 return dmi_empty_string;
77 len = strlen(bp) + 1;
78 str = dmi_alloc(len);
79 if (str != NULL)
80 strcpy(str, bp);
82 return str;
86 * We have to be cautious here. We have seen BIOSes with DMI pointers
87 * pointing to completely the wrong place for example
89 static void dmi_decode_table(u8 *buf,
90 void (*decode)(const struct dmi_header *, void *),
91 void *private_data)
93 u8 *data = buf;
94 int i = 0;
97 * Stop when we have seen all the items the table claimed to have
98 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
99 * >= 3.0 only) OR we run off the end of the table (should never
100 * happen but sometimes does on bogus implementations.)
102 while ((!dmi_num || i < dmi_num) &&
103 (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
104 const struct dmi_header *dm = (const struct dmi_header *)data;
107 * We want to know the total length (formatted area and
108 * strings) before decoding to make sure we won't run off the
109 * table in dmi_decode or dmi_string
111 data += dm->length;
112 while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
113 data++;
114 if (data - buf < dmi_len - 1)
115 decode(dm, private_data);
117 data += 2;
118 i++;
121 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
122 * For tables behind a 64-bit entry point, we have no item
123 * count and no exact table length, so stop on end-of-table
124 * marker. For tables behind a 32-bit entry point, we have
125 * seen OEM structures behind the end-of-table marker on
126 * some systems, so don't trust it.
128 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
129 break;
132 /* Trim DMI table length if needed */
133 if (dmi_len > data - buf)
134 dmi_len = data - buf;
137 static phys_addr_t dmi_base;
139 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
140 void *))
142 u8 *buf;
143 u32 orig_dmi_len = dmi_len;
145 buf = dmi_early_remap(dmi_base, orig_dmi_len);
146 if (buf == NULL)
147 return -ENOMEM;
149 dmi_decode_table(buf, decode, NULL);
151 add_device_randomness(buf, dmi_len);
153 dmi_early_unmap(buf, orig_dmi_len);
154 return 0;
157 static int __init dmi_checksum(const u8 *buf, u8 len)
159 u8 sum = 0;
160 int a;
162 for (a = 0; a < len; a++)
163 sum += buf[a];
165 return sum == 0;
168 static const char *dmi_ident[DMI_STRING_MAX];
169 static LIST_HEAD(dmi_devices);
170 int dmi_available;
173 * Save a DMI string
175 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
176 int string)
178 const char *d = (const char *) dm;
179 const char *p;
181 if (dmi_ident[slot] || dm->length <= string)
182 return;
184 p = dmi_string(dm, d[string]);
185 if (p == NULL)
186 return;
188 dmi_ident[slot] = p;
191 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
192 int index)
194 const u8 *d;
195 char *s;
196 int is_ff = 1, is_00 = 1, i;
198 if (dmi_ident[slot] || dm->length <= index + 16)
199 return;
201 d = (u8 *) dm + index;
202 for (i = 0; i < 16 && (is_ff || is_00); i++) {
203 if (d[i] != 0x00)
204 is_00 = 0;
205 if (d[i] != 0xFF)
206 is_ff = 0;
209 if (is_ff || is_00)
210 return;
212 s = dmi_alloc(16*2+4+1);
213 if (!s)
214 return;
217 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
218 * the UUID are supposed to be little-endian encoded. The specification
219 * says that this is the defacto standard.
221 if (dmi_ver >= 0x020600)
222 sprintf(s, "%pUL", d);
223 else
224 sprintf(s, "%pUB", d);
226 dmi_ident[slot] = s;
229 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
230 int index)
232 const u8 *d;
233 char *s;
235 if (dmi_ident[slot] || dm->length <= index)
236 return;
238 s = dmi_alloc(4);
239 if (!s)
240 return;
242 d = (u8 *) dm + index;
243 sprintf(s, "%u", *d & 0x7F);
244 dmi_ident[slot] = s;
247 static void __init dmi_save_one_device(int type, const char *name)
249 struct dmi_device *dev;
251 /* No duplicate device */
252 if (dmi_find_device(type, name, NULL))
253 return;
255 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
256 if (!dev)
257 return;
259 dev->type = type;
260 strcpy((char *)(dev + 1), name);
261 dev->name = (char *)(dev + 1);
262 dev->device_data = NULL;
263 list_add(&dev->list, &dmi_devices);
266 static void __init dmi_save_devices(const struct dmi_header *dm)
268 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
270 for (i = 0; i < count; i++) {
271 const char *d = (char *)(dm + 1) + (i * 2);
273 /* Skip disabled device */
274 if ((*d & 0x80) == 0)
275 continue;
277 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
281 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
283 int i, count;
284 struct dmi_device *dev;
286 if (dm->length < 0x05)
287 return;
289 count = *(u8 *)(dm + 1);
290 for (i = 1; i <= count; i++) {
291 const char *devname = dmi_string(dm, i);
293 if (devname == dmi_empty_string)
294 continue;
296 dev = dmi_alloc(sizeof(*dev));
297 if (!dev)
298 break;
300 dev->type = DMI_DEV_TYPE_OEM_STRING;
301 dev->name = devname;
302 dev->device_data = NULL;
304 list_add(&dev->list, &dmi_devices);
308 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
310 struct dmi_device *dev;
311 void *data;
313 data = dmi_alloc(dm->length);
314 if (data == NULL)
315 return;
317 memcpy(data, dm, dm->length);
319 dev = dmi_alloc(sizeof(*dev));
320 if (!dev)
321 return;
323 dev->type = DMI_DEV_TYPE_IPMI;
324 dev->name = "IPMI controller";
325 dev->device_data = data;
327 list_add_tail(&dev->list, &dmi_devices);
330 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
331 int devfn, const char *name, int type)
333 struct dmi_dev_onboard *dev;
335 /* Ignore invalid values */
336 if (type == DMI_DEV_TYPE_DEV_SLOT &&
337 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
338 return;
340 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
341 if (!dev)
342 return;
344 dev->instance = instance;
345 dev->segment = segment;
346 dev->bus = bus;
347 dev->devfn = devfn;
349 strcpy((char *)&dev[1], name);
350 dev->dev.type = type;
351 dev->dev.name = (char *)&dev[1];
352 dev->dev.device_data = dev;
354 list_add(&dev->dev.list, &dmi_devices);
357 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
359 const char *name;
360 const u8 *d = (u8 *)dm;
362 if (dm->length < 0x0B)
363 return;
365 /* Skip disabled device */
366 if ((d[0x5] & 0x80) == 0)
367 return;
369 name = dmi_string_nosave(dm, d[0x4]);
370 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
371 DMI_DEV_TYPE_DEV_ONBOARD);
372 dmi_save_one_device(d[0x5] & 0x7f, name);
375 static void __init dmi_save_system_slot(const struct dmi_header *dm)
377 const u8 *d = (u8 *)dm;
379 /* Need SMBIOS 2.6+ structure */
380 if (dm->length < 0x11)
381 return;
382 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
383 d[0x10], dmi_string_nosave(dm, d[0x4]),
384 DMI_DEV_TYPE_DEV_SLOT);
387 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
389 if (dm->type != DMI_ENTRY_MEM_DEVICE)
390 return;
391 dmi_memdev_nr++;
394 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
396 const char *d = (const char *)dm;
397 static int nr;
399 if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x12)
400 return;
401 if (nr >= dmi_memdev_nr) {
402 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
403 return;
405 dmi_memdev[nr].handle = get_unaligned(&dm->handle);
406 dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
407 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
408 nr++;
411 void __init dmi_memdev_walk(void)
413 if (!dmi_available)
414 return;
416 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
417 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
418 if (dmi_memdev)
419 dmi_walk_early(save_mem_devices);
424 * Process a DMI table entry. Right now all we care about are the BIOS
425 * and machine entries. For 2.5 we should pull the smbus controller info
426 * out of here.
428 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
430 switch (dm->type) {
431 case 0: /* BIOS Information */
432 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
433 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
434 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
435 break;
436 case 1: /* System Information */
437 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
438 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
439 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
440 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
441 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
442 dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
443 break;
444 case 2: /* Base Board Information */
445 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
446 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
447 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
448 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
449 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
450 break;
451 case 3: /* Chassis Information */
452 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
453 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
454 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
455 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
456 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
457 break;
458 case 9: /* System Slots */
459 dmi_save_system_slot(dm);
460 break;
461 case 10: /* Onboard Devices Information */
462 dmi_save_devices(dm);
463 break;
464 case 11: /* OEM Strings */
465 dmi_save_oem_strings_devices(dm);
466 break;
467 case 38: /* IPMI Device Information */
468 dmi_save_ipmi_device(dm);
469 break;
470 case 41: /* Onboard Devices Extended Information */
471 dmi_save_extended_devices(dm);
475 static int __init print_filtered(char *buf, size_t len, const char *info)
477 int c = 0;
478 const char *p;
480 if (!info)
481 return c;
483 for (p = info; *p; p++)
484 if (isprint(*p))
485 c += scnprintf(buf + c, len - c, "%c", *p);
486 else
487 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
488 return c;
491 static void __init dmi_format_ids(char *buf, size_t len)
493 int c = 0;
494 const char *board; /* Board Name is optional */
496 c += print_filtered(buf + c, len - c,
497 dmi_get_system_info(DMI_SYS_VENDOR));
498 c += scnprintf(buf + c, len - c, " ");
499 c += print_filtered(buf + c, len - c,
500 dmi_get_system_info(DMI_PRODUCT_NAME));
502 board = dmi_get_system_info(DMI_BOARD_NAME);
503 if (board) {
504 c += scnprintf(buf + c, len - c, "/");
505 c += print_filtered(buf + c, len - c, board);
507 c += scnprintf(buf + c, len - c, ", BIOS ");
508 c += print_filtered(buf + c, len - c,
509 dmi_get_system_info(DMI_BIOS_VERSION));
510 c += scnprintf(buf + c, len - c, " ");
511 c += print_filtered(buf + c, len - c,
512 dmi_get_system_info(DMI_BIOS_DATE));
516 * Check for DMI/SMBIOS headers in the system firmware image. Any
517 * SMBIOS header must start 16 bytes before the DMI header, so take a
518 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
519 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
520 * takes precedence) and return 0. Otherwise return 1.
522 static int __init dmi_present(const u8 *buf)
524 u32 smbios_ver;
526 if (memcmp(buf, "_SM_", 4) == 0 &&
527 buf[5] < 32 && dmi_checksum(buf, buf[5])) {
528 smbios_ver = get_unaligned_be16(buf + 6);
529 smbios_entry_point_size = buf[5];
530 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
532 /* Some BIOS report weird SMBIOS version, fix that up */
533 switch (smbios_ver) {
534 case 0x021F:
535 case 0x0221:
536 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
537 smbios_ver & 0xFF, 3);
538 smbios_ver = 0x0203;
539 break;
540 case 0x0233:
541 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
542 smbios_ver = 0x0206;
543 break;
545 } else {
546 smbios_ver = 0;
549 buf += 16;
551 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
552 if (smbios_ver)
553 dmi_ver = smbios_ver;
554 else
555 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
556 dmi_ver <<= 8;
557 dmi_num = get_unaligned_le16(buf + 12);
558 dmi_len = get_unaligned_le16(buf + 6);
559 dmi_base = get_unaligned_le32(buf + 8);
561 if (dmi_walk_early(dmi_decode) == 0) {
562 if (smbios_ver) {
563 pr_info("SMBIOS %d.%d present.\n",
564 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
565 } else {
566 smbios_entry_point_size = 15;
567 memcpy(smbios_entry_point, buf,
568 smbios_entry_point_size);
569 pr_info("Legacy DMI %d.%d present.\n",
570 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
572 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
573 pr_info("DMI: %s\n", dmi_ids_string);
574 return 0;
578 return 1;
582 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
583 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
585 static int __init dmi_smbios3_present(const u8 *buf)
587 if (memcmp(buf, "_SM3_", 5) == 0 &&
588 buf[6] < 32 && dmi_checksum(buf, buf[6])) {
589 dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
590 dmi_num = 0; /* No longer specified */
591 dmi_len = get_unaligned_le32(buf + 12);
592 dmi_base = get_unaligned_le64(buf + 16);
593 smbios_entry_point_size = buf[6];
594 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
596 if (dmi_walk_early(dmi_decode) == 0) {
597 pr_info("SMBIOS %d.%d.%d present.\n",
598 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
599 dmi_ver & 0xFF);
600 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
601 pr_info("DMI: %s\n", dmi_ids_string);
602 return 0;
605 return 1;
608 void __init dmi_scan_machine(void)
610 char __iomem *p, *q;
611 char buf[32];
613 if (efi_enabled(EFI_CONFIG_TABLES)) {
615 * According to the DMTF SMBIOS reference spec v3.0.0, it is
616 * allowed to define both the 64-bit entry point (smbios3) and
617 * the 32-bit entry point (smbios), in which case they should
618 * either both point to the same SMBIOS structure table, or the
619 * table pointed to by the 64-bit entry point should contain a
620 * superset of the table contents pointed to by the 32-bit entry
621 * point (section 5.2)
622 * This implies that the 64-bit entry point should have
623 * precedence if it is defined and supported by the OS. If we
624 * have the 64-bit entry point, but fail to decode it, fall
625 * back to the legacy one (if available)
627 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
628 p = dmi_early_remap(efi.smbios3, 32);
629 if (p == NULL)
630 goto error;
631 memcpy_fromio(buf, p, 32);
632 dmi_early_unmap(p, 32);
634 if (!dmi_smbios3_present(buf)) {
635 dmi_available = 1;
636 goto out;
639 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
640 goto error;
642 /* This is called as a core_initcall() because it isn't
643 * needed during early boot. This also means we can
644 * iounmap the space when we're done with it.
646 p = dmi_early_remap(efi.smbios, 32);
647 if (p == NULL)
648 goto error;
649 memcpy_fromio(buf, p, 32);
650 dmi_early_unmap(p, 32);
652 if (!dmi_present(buf)) {
653 dmi_available = 1;
654 goto out;
656 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
657 p = dmi_early_remap(0xF0000, 0x10000);
658 if (p == NULL)
659 goto error;
662 * Same logic as above, look for a 64-bit entry point
663 * first, and if not found, fall back to 32-bit entry point.
665 memcpy_fromio(buf, p, 16);
666 for (q = p + 16; q < p + 0x10000; q += 16) {
667 memcpy_fromio(buf + 16, q, 16);
668 if (!dmi_smbios3_present(buf)) {
669 dmi_available = 1;
670 dmi_early_unmap(p, 0x10000);
671 goto out;
673 memcpy(buf, buf + 16, 16);
677 * Iterate over all possible DMI header addresses q.
678 * Maintain the 32 bytes around q in buf. On the
679 * first iteration, substitute zero for the
680 * out-of-range bytes so there is no chance of falsely
681 * detecting an SMBIOS header.
683 memset(buf, 0, 16);
684 for (q = p; q < p + 0x10000; q += 16) {
685 memcpy_fromio(buf + 16, q, 16);
686 if (!dmi_present(buf)) {
687 dmi_available = 1;
688 dmi_early_unmap(p, 0x10000);
689 goto out;
691 memcpy(buf, buf + 16, 16);
693 dmi_early_unmap(p, 0x10000);
695 error:
696 pr_info("DMI not present or invalid.\n");
697 out:
698 dmi_initialized = 1;
701 static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
702 struct bin_attribute *attr, char *buf,
703 loff_t pos, size_t count)
705 memcpy(buf, attr->private + pos, count);
706 return count;
709 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
710 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
712 static int __init dmi_init(void)
714 struct kobject *tables_kobj;
715 u8 *dmi_table;
716 int ret = -ENOMEM;
718 if (!dmi_available) {
719 ret = -ENODATA;
720 goto err;
724 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
725 * even after farther error, as it can be used by other modules like
726 * dmi-sysfs.
728 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
729 if (!dmi_kobj)
730 goto err;
732 tables_kobj = kobject_create_and_add("tables", dmi_kobj);
733 if (!tables_kobj)
734 goto err;
736 dmi_table = dmi_remap(dmi_base, dmi_len);
737 if (!dmi_table)
738 goto err_tables;
740 bin_attr_smbios_entry_point.size = smbios_entry_point_size;
741 bin_attr_smbios_entry_point.private = smbios_entry_point;
742 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
743 if (ret)
744 goto err_unmap;
746 bin_attr_DMI.size = dmi_len;
747 bin_attr_DMI.private = dmi_table;
748 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
749 if (!ret)
750 return 0;
752 sysfs_remove_bin_file(tables_kobj,
753 &bin_attr_smbios_entry_point);
754 err_unmap:
755 dmi_unmap(dmi_table);
756 err_tables:
757 kobject_del(tables_kobj);
758 kobject_put(tables_kobj);
759 err:
760 pr_err("dmi: Firmware registration failed.\n");
762 return ret;
764 subsys_initcall(dmi_init);
767 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
769 * Invoke dump_stack_set_arch_desc() with DMI system information so that
770 * DMI identifiers are printed out on task dumps. Arch boot code should
771 * call this function after dmi_scan_machine() if it wants to print out DMI
772 * identifiers on task dumps.
774 void __init dmi_set_dump_stack_arch_desc(void)
776 dump_stack_set_arch_desc("%s", dmi_ids_string);
780 * dmi_matches - check if dmi_system_id structure matches system DMI data
781 * @dmi: pointer to the dmi_system_id structure to check
783 static bool dmi_matches(const struct dmi_system_id *dmi)
785 int i;
787 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
789 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
790 int s = dmi->matches[i].slot;
791 if (s == DMI_NONE)
792 break;
793 if (dmi_ident[s]) {
794 if (!dmi->matches[i].exact_match &&
795 strstr(dmi_ident[s], dmi->matches[i].substr))
796 continue;
797 else if (dmi->matches[i].exact_match &&
798 !strcmp(dmi_ident[s], dmi->matches[i].substr))
799 continue;
802 /* No match */
803 return false;
805 return true;
809 * dmi_is_end_of_table - check for end-of-table marker
810 * @dmi: pointer to the dmi_system_id structure to check
812 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
814 return dmi->matches[0].slot == DMI_NONE;
818 * dmi_check_system - check system DMI data
819 * @list: array of dmi_system_id structures to match against
820 * All non-null elements of the list must match
821 * their slot's (field index's) data (i.e., each
822 * list string must be a substring of the specified
823 * DMI slot's string data) to be considered a
824 * successful match.
826 * Walk the blacklist table running matching functions until someone
827 * returns non zero or we hit the end. Callback function is called for
828 * each successful match. Returns the number of matches.
830 int dmi_check_system(const struct dmi_system_id *list)
832 int count = 0;
833 const struct dmi_system_id *d;
835 for (d = list; !dmi_is_end_of_table(d); d++)
836 if (dmi_matches(d)) {
837 count++;
838 if (d->callback && d->callback(d))
839 break;
842 return count;
844 EXPORT_SYMBOL(dmi_check_system);
847 * dmi_first_match - find dmi_system_id structure matching system DMI data
848 * @list: array of dmi_system_id structures to match against
849 * All non-null elements of the list must match
850 * their slot's (field index's) data (i.e., each
851 * list string must be a substring of the specified
852 * DMI slot's string data) to be considered a
853 * successful match.
855 * Walk the blacklist table until the first match is found. Return the
856 * pointer to the matching entry or NULL if there's no match.
858 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
860 const struct dmi_system_id *d;
862 for (d = list; !dmi_is_end_of_table(d); d++)
863 if (dmi_matches(d))
864 return d;
866 return NULL;
868 EXPORT_SYMBOL(dmi_first_match);
871 * dmi_get_system_info - return DMI data value
872 * @field: data index (see enum dmi_field)
874 * Returns one DMI data value, can be used to perform
875 * complex DMI data checks.
877 const char *dmi_get_system_info(int field)
879 return dmi_ident[field];
881 EXPORT_SYMBOL(dmi_get_system_info);
884 * dmi_name_in_serial - Check if string is in the DMI product serial information
885 * @str: string to check for
887 int dmi_name_in_serial(const char *str)
889 int f = DMI_PRODUCT_SERIAL;
890 if (dmi_ident[f] && strstr(dmi_ident[f], str))
891 return 1;
892 return 0;
896 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
897 * @str: Case sensitive Name
899 int dmi_name_in_vendors(const char *str)
901 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
902 int i;
903 for (i = 0; fields[i] != DMI_NONE; i++) {
904 int f = fields[i];
905 if (dmi_ident[f] && strstr(dmi_ident[f], str))
906 return 1;
908 return 0;
910 EXPORT_SYMBOL(dmi_name_in_vendors);
913 * dmi_find_device - find onboard device by type/name
914 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
915 * @name: device name string or %NULL to match all
916 * @from: previous device found in search, or %NULL for new search.
918 * Iterates through the list of known onboard devices. If a device is
919 * found with a matching @type and @name, a pointer to its device
920 * structure is returned. Otherwise, %NULL is returned.
921 * A new search is initiated by passing %NULL as the @from argument.
922 * If @from is not %NULL, searches continue from next device.
924 const struct dmi_device *dmi_find_device(int type, const char *name,
925 const struct dmi_device *from)
927 const struct list_head *head = from ? &from->list : &dmi_devices;
928 struct list_head *d;
930 for (d = head->next; d != &dmi_devices; d = d->next) {
931 const struct dmi_device *dev =
932 list_entry(d, struct dmi_device, list);
934 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
935 ((name == NULL) || (strcmp(dev->name, name) == 0)))
936 return dev;
939 return NULL;
941 EXPORT_SYMBOL(dmi_find_device);
944 * dmi_get_date - parse a DMI date
945 * @field: data index (see enum dmi_field)
946 * @yearp: optional out parameter for the year
947 * @monthp: optional out parameter for the month
948 * @dayp: optional out parameter for the day
950 * The date field is assumed to be in the form resembling
951 * [mm[/dd]]/yy[yy] and the result is stored in the out
952 * parameters any or all of which can be omitted.
954 * If the field doesn't exist, all out parameters are set to zero
955 * and false is returned. Otherwise, true is returned with any
956 * invalid part of date set to zero.
958 * On return, year, month and day are guaranteed to be in the
959 * range of [0,9999], [0,12] and [0,31] respectively.
961 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
963 int year = 0, month = 0, day = 0;
964 bool exists;
965 const char *s, *y;
966 char *e;
968 s = dmi_get_system_info(field);
969 exists = s;
970 if (!exists)
971 goto out;
974 * Determine year first. We assume the date string resembles
975 * mm/dd/yy[yy] but the original code extracted only the year
976 * from the end. Keep the behavior in the spirit of no
977 * surprises.
979 y = strrchr(s, '/');
980 if (!y)
981 goto out;
983 y++;
984 year = simple_strtoul(y, &e, 10);
985 if (y != e && year < 100) { /* 2-digit year */
986 year += 1900;
987 if (year < 1996) /* no dates < spec 1.0 */
988 year += 100;
990 if (year > 9999) /* year should fit in %04d */
991 year = 0;
993 /* parse the mm and dd */
994 month = simple_strtoul(s, &e, 10);
995 if (s == e || *e != '/' || !month || month > 12) {
996 month = 0;
997 goto out;
1000 s = e + 1;
1001 day = simple_strtoul(s, &e, 10);
1002 if (s == y || s == e || *e != '/' || day > 31)
1003 day = 0;
1004 out:
1005 if (yearp)
1006 *yearp = year;
1007 if (monthp)
1008 *monthp = month;
1009 if (dayp)
1010 *dayp = day;
1011 return exists;
1013 EXPORT_SYMBOL(dmi_get_date);
1016 * dmi_walk - Walk the DMI table and get called back for every record
1017 * @decode: Callback function
1018 * @private_data: Private data to be passed to the callback function
1020 * Returns 0 on success, -ENXIO if DMI is not selected or not present,
1021 * or a different negative error code if DMI walking fails.
1023 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1024 void *private_data)
1026 u8 *buf;
1028 if (!dmi_available)
1029 return -ENXIO;
1031 buf = dmi_remap(dmi_base, dmi_len);
1032 if (buf == NULL)
1033 return -ENOMEM;
1035 dmi_decode_table(buf, decode, private_data);
1037 dmi_unmap(buf);
1038 return 0;
1040 EXPORT_SYMBOL_GPL(dmi_walk);
1043 * dmi_match - compare a string to the dmi field (if exists)
1044 * @f: DMI field identifier
1045 * @str: string to compare the DMI field to
1047 * Returns true if the requested field equals to the str (including NULL).
1049 bool dmi_match(enum dmi_field f, const char *str)
1051 const char *info = dmi_get_system_info(f);
1053 if (info == NULL || str == NULL)
1054 return info == str;
1056 return !strcmp(info, str);
1058 EXPORT_SYMBOL_GPL(dmi_match);
1060 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1062 int n;
1064 if (dmi_memdev == NULL)
1065 return;
1067 for (n = 0; n < dmi_memdev_nr; n++) {
1068 if (handle == dmi_memdev[n].handle) {
1069 *bank = dmi_memdev[n].bank;
1070 *device = dmi_memdev[n].device;
1071 break;
1075 EXPORT_SYMBOL_GPL(dmi_memdev_name);