4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
20 #include <linux/oom.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/sched/mm.h>
26 #include <linux/sched/coredump.h>
27 #include <linux/sched/task.h>
28 #include <linux/swap.h>
29 #include <linux/timex.h>
30 #include <linux/jiffies.h>
31 #include <linux/cpuset.h>
32 #include <linux/export.h>
33 #include <linux/notifier.h>
34 #include <linux/memcontrol.h>
35 #include <linux/mempolicy.h>
36 #include <linux/security.h>
37 #include <linux/ptrace.h>
38 #include <linux/freezer.h>
39 #include <linux/ftrace.h>
40 #include <linux/ratelimit.h>
41 #include <linux/kthread.h>
42 #include <linux/init.h>
43 #include <linux/mmu_notifier.h>
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/oom.h>
52 int sysctl_panic_on_oom
;
53 int sysctl_oom_kill_allocating_task
;
54 int sysctl_oom_dump_tasks
= 1;
57 * Serializes oom killer invocations (out_of_memory()) from all contexts to
58 * prevent from over eager oom killing (e.g. when the oom killer is invoked
59 * from different domains).
61 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
64 DEFINE_MUTEX(oom_lock
);
68 * has_intersects_mems_allowed() - check task eligiblity for kill
69 * @start: task struct of which task to consider
70 * @mask: nodemask passed to page allocator for mempolicy ooms
72 * Task eligibility is determined by whether or not a candidate task, @tsk,
73 * shares the same mempolicy nodes as current if it is bound by such a policy
74 * and whether or not it has the same set of allowed cpuset nodes.
76 static bool has_intersects_mems_allowed(struct task_struct
*start
,
77 const nodemask_t
*mask
)
79 struct task_struct
*tsk
;
83 for_each_thread(start
, tsk
) {
86 * If this is a mempolicy constrained oom, tsk's
87 * cpuset is irrelevant. Only return true if its
88 * mempolicy intersects current, otherwise it may be
91 ret
= mempolicy_nodemask_intersects(tsk
, mask
);
94 * This is not a mempolicy constrained oom, so only
95 * check the mems of tsk's cpuset.
97 ret
= cpuset_mems_allowed_intersects(current
, tsk
);
107 static bool has_intersects_mems_allowed(struct task_struct
*tsk
,
108 const nodemask_t
*mask
)
112 #endif /* CONFIG_NUMA */
115 * The process p may have detached its own ->mm while exiting or through
116 * use_mm(), but one or more of its subthreads may still have a valid
117 * pointer. Return p, or any of its subthreads with a valid ->mm, with
120 struct task_struct
*find_lock_task_mm(struct task_struct
*p
)
122 struct task_struct
*t
;
126 for_each_thread(p
, t
) {
140 * order == -1 means the oom kill is required by sysrq, otherwise only
141 * for display purposes.
143 static inline bool is_sysrq_oom(struct oom_control
*oc
)
145 return oc
->order
== -1;
148 static inline bool is_memcg_oom(struct oom_control
*oc
)
150 return oc
->memcg
!= NULL
;
153 /* return true if the task is not adequate as candidate victim task. */
154 static bool oom_unkillable_task(struct task_struct
*p
,
155 struct mem_cgroup
*memcg
, const nodemask_t
*nodemask
)
157 if (is_global_init(p
))
159 if (p
->flags
& PF_KTHREAD
)
162 /* When mem_cgroup_out_of_memory() and p is not member of the group */
163 if (memcg
&& !task_in_mem_cgroup(p
, memcg
))
166 /* p may not have freeable memory in nodemask */
167 if (!has_intersects_mems_allowed(p
, nodemask
))
174 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
175 * than all user memory (LRU pages)
177 static bool is_dump_unreclaim_slabs(void)
179 unsigned long nr_lru
;
181 nr_lru
= global_node_page_state(NR_ACTIVE_ANON
) +
182 global_node_page_state(NR_INACTIVE_ANON
) +
183 global_node_page_state(NR_ACTIVE_FILE
) +
184 global_node_page_state(NR_INACTIVE_FILE
) +
185 global_node_page_state(NR_ISOLATED_ANON
) +
186 global_node_page_state(NR_ISOLATED_FILE
) +
187 global_node_page_state(NR_UNEVICTABLE
);
189 return (global_node_page_state(NR_SLAB_UNRECLAIMABLE
) > nr_lru
);
193 * oom_badness - heuristic function to determine which candidate task to kill
194 * @p: task struct of which task we should calculate
195 * @totalpages: total present RAM allowed for page allocation
196 * @memcg: task's memory controller, if constrained
197 * @nodemask: nodemask passed to page allocator for mempolicy ooms
199 * The heuristic for determining which task to kill is made to be as simple and
200 * predictable as possible. The goal is to return the highest value for the
201 * task consuming the most memory to avoid subsequent oom failures.
203 unsigned long oom_badness(struct task_struct
*p
, struct mem_cgroup
*memcg
,
204 const nodemask_t
*nodemask
, unsigned long totalpages
)
209 if (oom_unkillable_task(p
, memcg
, nodemask
))
212 p
= find_lock_task_mm(p
);
217 * Do not even consider tasks which are explicitly marked oom
218 * unkillable or have been already oom reaped or the are in
219 * the middle of vfork
221 adj
= (long)p
->signal
->oom_score_adj
;
222 if (adj
== OOM_SCORE_ADJ_MIN
||
223 test_bit(MMF_OOM_SKIP
, &p
->mm
->flags
) ||
230 * The baseline for the badness score is the proportion of RAM that each
231 * task's rss, pagetable and swap space use.
233 points
= get_mm_rss(p
->mm
) + get_mm_counter(p
->mm
, MM_SWAPENTS
) +
234 mm_pgtables_bytes(p
->mm
) / PAGE_SIZE
;
237 /* Normalize to oom_score_adj units */
238 adj
*= totalpages
/ 1000;
242 * Never return 0 for an eligible task regardless of the root bonus and
243 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
245 return points
> 0 ? points
: 1;
248 static const char * const oom_constraint_text
[] = {
249 [CONSTRAINT_NONE
] = "CONSTRAINT_NONE",
250 [CONSTRAINT_CPUSET
] = "CONSTRAINT_CPUSET",
251 [CONSTRAINT_MEMORY_POLICY
] = "CONSTRAINT_MEMORY_POLICY",
252 [CONSTRAINT_MEMCG
] = "CONSTRAINT_MEMCG",
256 * Determine the type of allocation constraint.
258 static enum oom_constraint
constrained_alloc(struct oom_control
*oc
)
262 enum zone_type high_zoneidx
= gfp_zone(oc
->gfp_mask
);
263 bool cpuset_limited
= false;
266 if (is_memcg_oom(oc
)) {
267 oc
->totalpages
= mem_cgroup_get_max(oc
->memcg
) ?: 1;
268 return CONSTRAINT_MEMCG
;
271 /* Default to all available memory */
272 oc
->totalpages
= totalram_pages() + total_swap_pages
;
274 if (!IS_ENABLED(CONFIG_NUMA
))
275 return CONSTRAINT_NONE
;
278 return CONSTRAINT_NONE
;
280 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
281 * to kill current.We have to random task kill in this case.
282 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
284 if (oc
->gfp_mask
& __GFP_THISNODE
)
285 return CONSTRAINT_NONE
;
288 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
289 * the page allocator means a mempolicy is in effect. Cpuset policy
290 * is enforced in get_page_from_freelist().
293 !nodes_subset(node_states
[N_MEMORY
], *oc
->nodemask
)) {
294 oc
->totalpages
= total_swap_pages
;
295 for_each_node_mask(nid
, *oc
->nodemask
)
296 oc
->totalpages
+= node_spanned_pages(nid
);
297 return CONSTRAINT_MEMORY_POLICY
;
300 /* Check this allocation failure is caused by cpuset's wall function */
301 for_each_zone_zonelist_nodemask(zone
, z
, oc
->zonelist
,
302 high_zoneidx
, oc
->nodemask
)
303 if (!cpuset_zone_allowed(zone
, oc
->gfp_mask
))
304 cpuset_limited
= true;
306 if (cpuset_limited
) {
307 oc
->totalpages
= total_swap_pages
;
308 for_each_node_mask(nid
, cpuset_current_mems_allowed
)
309 oc
->totalpages
+= node_spanned_pages(nid
);
310 return CONSTRAINT_CPUSET
;
312 return CONSTRAINT_NONE
;
315 static int oom_evaluate_task(struct task_struct
*task
, void *arg
)
317 struct oom_control
*oc
= arg
;
318 unsigned long points
;
320 if (oom_unkillable_task(task
, NULL
, oc
->nodemask
))
324 * This task already has access to memory reserves and is being killed.
325 * Don't allow any other task to have access to the reserves unless
326 * the task has MMF_OOM_SKIP because chances that it would release
327 * any memory is quite low.
329 if (!is_sysrq_oom(oc
) && tsk_is_oom_victim(task
)) {
330 if (test_bit(MMF_OOM_SKIP
, &task
->signal
->oom_mm
->flags
))
336 * If task is allocating a lot of memory and has been marked to be
337 * killed first if it triggers an oom, then select it.
339 if (oom_task_origin(task
)) {
344 points
= oom_badness(task
, NULL
, oc
->nodemask
, oc
->totalpages
);
345 if (!points
|| points
< oc
->chosen_points
)
348 /* Prefer thread group leaders for display purposes */
349 if (points
== oc
->chosen_points
&& thread_group_leader(oc
->chosen
))
353 put_task_struct(oc
->chosen
);
354 get_task_struct(task
);
356 oc
->chosen_points
= points
;
361 put_task_struct(oc
->chosen
);
362 oc
->chosen
= (void *)-1UL;
367 * Simple selection loop. We choose the process with the highest number of
368 * 'points'. In case scan was aborted, oc->chosen is set to -1.
370 static void select_bad_process(struct oom_control
*oc
)
372 if (is_memcg_oom(oc
))
373 mem_cgroup_scan_tasks(oc
->memcg
, oom_evaluate_task
, oc
);
375 struct task_struct
*p
;
379 if (oom_evaluate_task(p
, oc
))
384 oc
->chosen_points
= oc
->chosen_points
* 1000 / oc
->totalpages
;
388 * dump_tasks - dump current memory state of all system tasks
389 * @memcg: current's memory controller, if constrained
390 * @nodemask: nodemask passed to page allocator for mempolicy ooms
392 * Dumps the current memory state of all eligible tasks. Tasks not in the same
393 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
395 * State information includes task's pid, uid, tgid, vm size, rss,
396 * pgtables_bytes, swapents, oom_score_adj value, and name.
398 static void dump_tasks(struct mem_cgroup
*memcg
, const nodemask_t
*nodemask
)
400 struct task_struct
*p
;
401 struct task_struct
*task
;
403 pr_info("Tasks state (memory values in pages):\n");
404 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n");
406 for_each_process(p
) {
407 if (oom_unkillable_task(p
, memcg
, nodemask
))
410 task
= find_lock_task_mm(p
);
413 * This is a kthread or all of p's threads have already
414 * detached their mm's. There's no need to report
415 * them; they can't be oom killed anyway.
420 pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n",
421 task
->pid
, from_kuid(&init_user_ns
, task_uid(task
)),
422 task
->tgid
, task
->mm
->total_vm
, get_mm_rss(task
->mm
),
423 mm_pgtables_bytes(task
->mm
),
424 get_mm_counter(task
->mm
, MM_SWAPENTS
),
425 task
->signal
->oom_score_adj
, task
->comm
);
431 static void dump_oom_summary(struct oom_control
*oc
, struct task_struct
*victim
)
433 /* one line summary of the oom killer context. */
434 pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
435 oom_constraint_text
[oc
->constraint
],
436 nodemask_pr_args(oc
->nodemask
));
437 cpuset_print_current_mems_allowed();
438 mem_cgroup_print_oom_context(oc
->memcg
, victim
);
439 pr_cont(",task=%s,pid=%d,uid=%d\n", victim
->comm
, victim
->pid
,
440 from_kuid(&init_user_ns
, task_uid(victim
)));
443 static void dump_header(struct oom_control
*oc
, struct task_struct
*p
)
445 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
446 current
->comm
, oc
->gfp_mask
, &oc
->gfp_mask
, oc
->order
,
447 current
->signal
->oom_score_adj
);
448 if (!IS_ENABLED(CONFIG_COMPACTION
) && oc
->order
)
449 pr_warn("COMPACTION is disabled!!!\n");
452 if (is_memcg_oom(oc
))
453 mem_cgroup_print_oom_meminfo(oc
->memcg
);
455 show_mem(SHOW_MEM_FILTER_NODES
, oc
->nodemask
);
456 if (is_dump_unreclaim_slabs())
457 dump_unreclaimable_slab();
459 if (sysctl_oom_dump_tasks
)
460 dump_tasks(oc
->memcg
, oc
->nodemask
);
462 dump_oom_summary(oc
, p
);
466 * Number of OOM victims in flight
468 static atomic_t oom_victims
= ATOMIC_INIT(0);
469 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait
);
471 static bool oom_killer_disabled __read_mostly
;
473 #define K(x) ((x) << (PAGE_SHIFT-10))
476 * task->mm can be NULL if the task is the exited group leader. So to
477 * determine whether the task is using a particular mm, we examine all the
478 * task's threads: if one of those is using this mm then this task was also
481 bool process_shares_mm(struct task_struct
*p
, struct mm_struct
*mm
)
483 struct task_struct
*t
;
485 for_each_thread(p
, t
) {
486 struct mm_struct
*t_mm
= READ_ONCE(t
->mm
);
495 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
496 * victim (if that is possible) to help the OOM killer to move on.
498 static struct task_struct
*oom_reaper_th
;
499 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait
);
500 static struct task_struct
*oom_reaper_list
;
501 static DEFINE_SPINLOCK(oom_reaper_lock
);
503 bool __oom_reap_task_mm(struct mm_struct
*mm
)
505 struct vm_area_struct
*vma
;
509 * Tell all users of get_user/copy_from_user etc... that the content
510 * is no longer stable. No barriers really needed because unmapping
511 * should imply barriers already and the reader would hit a page fault
512 * if it stumbled over a reaped memory.
514 set_bit(MMF_UNSTABLE
, &mm
->flags
);
516 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
517 if (!can_madv_dontneed_vma(vma
))
521 * Only anonymous pages have a good chance to be dropped
522 * without additional steps which we cannot afford as we
525 * We do not even care about fs backed pages because all
526 * which are reclaimable have already been reclaimed and
527 * we do not want to block exit_mmap by keeping mm ref
528 * count elevated without a good reason.
530 if (vma_is_anonymous(vma
) || !(vma
->vm_flags
& VM_SHARED
)) {
531 struct mmu_notifier_range range
;
532 struct mmu_gather tlb
;
534 mmu_notifier_range_init(&range
, mm
, vma
->vm_start
,
536 tlb_gather_mmu(&tlb
, mm
, range
.start
, range
.end
);
537 if (mmu_notifier_invalidate_range_start_nonblock(&range
)) {
538 tlb_finish_mmu(&tlb
, range
.start
, range
.end
);
542 unmap_page_range(&tlb
, vma
, range
.start
, range
.end
, NULL
);
543 mmu_notifier_invalidate_range_end(&range
);
544 tlb_finish_mmu(&tlb
, range
.start
, range
.end
);
552 * Reaps the address space of the give task.
554 * Returns true on success and false if none or part of the address space
555 * has been reclaimed and the caller should retry later.
557 static bool oom_reap_task_mm(struct task_struct
*tsk
, struct mm_struct
*mm
)
561 if (!down_read_trylock(&mm
->mmap_sem
)) {
562 trace_skip_task_reaping(tsk
->pid
);
567 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
568 * work on the mm anymore. The check for MMF_OOM_SKIP must run
569 * under mmap_sem for reading because it serializes against the
570 * down_write();up_write() cycle in exit_mmap().
572 if (test_bit(MMF_OOM_SKIP
, &mm
->flags
)) {
573 trace_skip_task_reaping(tsk
->pid
);
577 trace_start_task_reaping(tsk
->pid
);
579 /* failed to reap part of the address space. Try again later */
580 ret
= __oom_reap_task_mm(mm
);
584 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
585 task_pid_nr(tsk
), tsk
->comm
,
586 K(get_mm_counter(mm
, MM_ANONPAGES
)),
587 K(get_mm_counter(mm
, MM_FILEPAGES
)),
588 K(get_mm_counter(mm
, MM_SHMEMPAGES
)));
590 trace_finish_task_reaping(tsk
->pid
);
592 up_read(&mm
->mmap_sem
);
597 #define MAX_OOM_REAP_RETRIES 10
598 static void oom_reap_task(struct task_struct
*tsk
)
601 struct mm_struct
*mm
= tsk
->signal
->oom_mm
;
603 /* Retry the down_read_trylock(mmap_sem) a few times */
604 while (attempts
++ < MAX_OOM_REAP_RETRIES
&& !oom_reap_task_mm(tsk
, mm
))
605 schedule_timeout_idle(HZ
/10);
607 if (attempts
<= MAX_OOM_REAP_RETRIES
||
608 test_bit(MMF_OOM_SKIP
, &mm
->flags
))
611 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
612 task_pid_nr(tsk
), tsk
->comm
);
613 debug_show_all_locks();
616 tsk
->oom_reaper_list
= NULL
;
619 * Hide this mm from OOM killer because it has been either reaped or
620 * somebody can't call up_write(mmap_sem).
622 set_bit(MMF_OOM_SKIP
, &mm
->flags
);
624 /* Drop a reference taken by wake_oom_reaper */
625 put_task_struct(tsk
);
628 static int oom_reaper(void *unused
)
631 struct task_struct
*tsk
= NULL
;
633 wait_event_freezable(oom_reaper_wait
, oom_reaper_list
!= NULL
);
634 spin_lock(&oom_reaper_lock
);
635 if (oom_reaper_list
!= NULL
) {
636 tsk
= oom_reaper_list
;
637 oom_reaper_list
= tsk
->oom_reaper_list
;
639 spin_unlock(&oom_reaper_lock
);
648 static void wake_oom_reaper(struct task_struct
*tsk
)
650 /* mm is already queued? */
651 if (test_and_set_bit(MMF_OOM_REAP_QUEUED
, &tsk
->signal
->oom_mm
->flags
))
654 get_task_struct(tsk
);
656 spin_lock(&oom_reaper_lock
);
657 tsk
->oom_reaper_list
= oom_reaper_list
;
658 oom_reaper_list
= tsk
;
659 spin_unlock(&oom_reaper_lock
);
660 trace_wake_reaper(tsk
->pid
);
661 wake_up(&oom_reaper_wait
);
664 static int __init
oom_init(void)
666 oom_reaper_th
= kthread_run(oom_reaper
, NULL
, "oom_reaper");
669 subsys_initcall(oom_init
)
671 static inline void wake_oom_reaper(struct task_struct
*tsk
)
674 #endif /* CONFIG_MMU */
677 * mark_oom_victim - mark the given task as OOM victim
680 * Has to be called with oom_lock held and never after
681 * oom has been disabled already.
683 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
684 * under task_lock or operate on the current).
686 static void mark_oom_victim(struct task_struct
*tsk
)
688 struct mm_struct
*mm
= tsk
->mm
;
690 WARN_ON(oom_killer_disabled
);
691 /* OOM killer might race with memcg OOM */
692 if (test_and_set_tsk_thread_flag(tsk
, TIF_MEMDIE
))
695 /* oom_mm is bound to the signal struct life time. */
696 if (!cmpxchg(&tsk
->signal
->oom_mm
, NULL
, mm
)) {
697 mmgrab(tsk
->signal
->oom_mm
);
698 set_bit(MMF_OOM_VICTIM
, &mm
->flags
);
702 * Make sure that the task is woken up from uninterruptible sleep
703 * if it is frozen because OOM killer wouldn't be able to free
704 * any memory and livelock. freezing_slow_path will tell the freezer
705 * that TIF_MEMDIE tasks should be ignored.
708 atomic_inc(&oom_victims
);
709 trace_mark_victim(tsk
->pid
);
713 * exit_oom_victim - note the exit of an OOM victim
715 void exit_oom_victim(void)
717 clear_thread_flag(TIF_MEMDIE
);
719 if (!atomic_dec_return(&oom_victims
))
720 wake_up_all(&oom_victims_wait
);
724 * oom_killer_enable - enable OOM killer
726 void oom_killer_enable(void)
728 oom_killer_disabled
= false;
729 pr_info("OOM killer enabled.\n");
733 * oom_killer_disable - disable OOM killer
734 * @timeout: maximum timeout to wait for oom victims in jiffies
736 * Forces all page allocations to fail rather than trigger OOM killer.
737 * Will block and wait until all OOM victims are killed or the given
740 * The function cannot be called when there are runnable user tasks because
741 * the userspace would see unexpected allocation failures as a result. Any
742 * new usage of this function should be consulted with MM people.
744 * Returns true if successful and false if the OOM killer cannot be
747 bool oom_killer_disable(signed long timeout
)
752 * Make sure to not race with an ongoing OOM killer. Check that the
753 * current is not killed (possibly due to sharing the victim's memory).
755 if (mutex_lock_killable(&oom_lock
))
757 oom_killer_disabled
= true;
758 mutex_unlock(&oom_lock
);
760 ret
= wait_event_interruptible_timeout(oom_victims_wait
,
761 !atomic_read(&oom_victims
), timeout
);
766 pr_info("OOM killer disabled.\n");
771 static inline bool __task_will_free_mem(struct task_struct
*task
)
773 struct signal_struct
*sig
= task
->signal
;
776 * A coredumping process may sleep for an extended period in exit_mm(),
777 * so the oom killer cannot assume that the process will promptly exit
778 * and release memory.
780 if (sig
->flags
& SIGNAL_GROUP_COREDUMP
)
783 if (sig
->flags
& SIGNAL_GROUP_EXIT
)
786 if (thread_group_empty(task
) && (task
->flags
& PF_EXITING
))
793 * Checks whether the given task is dying or exiting and likely to
794 * release its address space. This means that all threads and processes
795 * sharing the same mm have to be killed or exiting.
796 * Caller has to make sure that task->mm is stable (hold task_lock or
797 * it operates on the current).
799 static bool task_will_free_mem(struct task_struct
*task
)
801 struct mm_struct
*mm
= task
->mm
;
802 struct task_struct
*p
;
806 * Skip tasks without mm because it might have passed its exit_mm and
807 * exit_oom_victim. oom_reaper could have rescued that but do not rely
808 * on that for now. We can consider find_lock_task_mm in future.
813 if (!__task_will_free_mem(task
))
817 * This task has already been drained by the oom reaper so there are
818 * only small chances it will free some more
820 if (test_bit(MMF_OOM_SKIP
, &mm
->flags
))
823 if (atomic_read(&mm
->mm_users
) <= 1)
827 * Make sure that all tasks which share the mm with the given tasks
828 * are dying as well to make sure that a) nobody pins its mm and
829 * b) the task is also reapable by the oom reaper.
832 for_each_process(p
) {
833 if (!process_shares_mm(p
, mm
))
835 if (same_thread_group(task
, p
))
837 ret
= __task_will_free_mem(p
);
846 static void __oom_kill_process(struct task_struct
*victim
)
848 struct task_struct
*p
;
849 struct mm_struct
*mm
;
850 bool can_oom_reap
= true;
852 p
= find_lock_task_mm(victim
);
854 put_task_struct(victim
);
856 } else if (victim
!= p
) {
858 put_task_struct(victim
);
862 /* Get a reference to safely compare mm after task_unlock(victim) */
866 /* Raise event before sending signal: task reaper must see this */
867 count_vm_event(OOM_KILL
);
868 memcg_memory_event_mm(mm
, MEMCG_OOM_KILL
);
871 * We should send SIGKILL before granting access to memory reserves
872 * in order to prevent the OOM victim from depleting the memory
873 * reserves from the user space under its control.
875 do_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, victim
, PIDTYPE_TGID
);
876 mark_oom_victim(victim
);
877 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
878 task_pid_nr(victim
), victim
->comm
, K(victim
->mm
->total_vm
),
879 K(get_mm_counter(victim
->mm
, MM_ANONPAGES
)),
880 K(get_mm_counter(victim
->mm
, MM_FILEPAGES
)),
881 K(get_mm_counter(victim
->mm
, MM_SHMEMPAGES
)));
885 * Kill all user processes sharing victim->mm in other thread groups, if
886 * any. They don't get access to memory reserves, though, to avoid
887 * depletion of all memory. This prevents mm->mmap_sem livelock when an
888 * oom killed thread cannot exit because it requires the semaphore and
889 * its contended by another thread trying to allocate memory itself.
890 * That thread will now get access to memory reserves since it has a
891 * pending fatal signal.
894 for_each_process(p
) {
895 if (!process_shares_mm(p
, mm
))
897 if (same_thread_group(p
, victim
))
899 if (is_global_init(p
)) {
900 can_oom_reap
= false;
901 set_bit(MMF_OOM_SKIP
, &mm
->flags
);
902 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
903 task_pid_nr(victim
), victim
->comm
,
904 task_pid_nr(p
), p
->comm
);
908 * No use_mm() user needs to read from the userspace so we are
911 if (unlikely(p
->flags
& PF_KTHREAD
))
913 do_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, p
, PIDTYPE_TGID
);
918 wake_oom_reaper(victim
);
921 put_task_struct(victim
);
926 * Kill provided task unless it's secured by setting
927 * oom_score_adj to OOM_SCORE_ADJ_MIN.
929 static int oom_kill_memcg_member(struct task_struct
*task
, void *unused
)
931 if (task
->signal
->oom_score_adj
!= OOM_SCORE_ADJ_MIN
) {
932 get_task_struct(task
);
933 __oom_kill_process(task
);
938 static void oom_kill_process(struct oom_control
*oc
, const char *message
)
940 struct task_struct
*p
= oc
->chosen
;
941 unsigned int points
= oc
->chosen_points
;
942 struct task_struct
*victim
= p
;
943 struct task_struct
*child
;
944 struct task_struct
*t
;
945 struct mem_cgroup
*oom_group
;
946 unsigned int victim_points
= 0;
947 static DEFINE_RATELIMIT_STATE(oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
948 DEFAULT_RATELIMIT_BURST
);
951 * If the task is already exiting, don't alarm the sysadmin or kill
952 * its children or threads, just give it access to memory reserves
953 * so it can die quickly
956 if (task_will_free_mem(p
)) {
965 if (__ratelimit(&oom_rs
))
968 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
969 message
, task_pid_nr(p
), p
->comm
, points
);
972 * If any of p's children has a different mm and is eligible for kill,
973 * the one with the highest oom_badness() score is sacrificed for its
974 * parent. This attempts to lose the minimal amount of work done while
975 * still freeing memory.
977 read_lock(&tasklist_lock
);
980 * The task 'p' might have already exited before reaching here. The
981 * put_task_struct() will free task_struct 'p' while the loop still try
982 * to access the field of 'p', so, get an extra reference.
985 for_each_thread(p
, t
) {
986 list_for_each_entry(child
, &t
->children
, sibling
) {
987 unsigned int child_points
;
989 if (process_shares_mm(child
, p
->mm
))
992 * oom_badness() returns 0 if the thread is unkillable
994 child_points
= oom_badness(child
,
995 oc
->memcg
, oc
->nodemask
, oc
->totalpages
);
996 if (child_points
> victim_points
) {
997 put_task_struct(victim
);
999 victim_points
= child_points
;
1000 get_task_struct(victim
);
1005 read_unlock(&tasklist_lock
);
1008 * Do we need to kill the entire memory cgroup?
1009 * Or even one of the ancestor memory cgroups?
1010 * Check this out before killing the victim task.
1012 oom_group
= mem_cgroup_get_oom_group(victim
, oc
->memcg
);
1014 __oom_kill_process(victim
);
1017 * If necessary, kill all tasks in the selected memory cgroup.
1020 mem_cgroup_print_oom_group(oom_group
);
1021 mem_cgroup_scan_tasks(oom_group
, oom_kill_memcg_member
, NULL
);
1022 mem_cgroup_put(oom_group
);
1027 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1029 static void check_panic_on_oom(struct oom_control
*oc
,
1030 enum oom_constraint constraint
)
1032 if (likely(!sysctl_panic_on_oom
))
1034 if (sysctl_panic_on_oom
!= 2) {
1036 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1037 * does not panic for cpuset, mempolicy, or memcg allocation
1040 if (constraint
!= CONSTRAINT_NONE
)
1043 /* Do not panic for oom kills triggered by sysrq */
1044 if (is_sysrq_oom(oc
))
1046 dump_header(oc
, NULL
);
1047 panic("Out of memory: %s panic_on_oom is enabled\n",
1048 sysctl_panic_on_oom
== 2 ? "compulsory" : "system-wide");
1051 static BLOCKING_NOTIFIER_HEAD(oom_notify_list
);
1053 int register_oom_notifier(struct notifier_block
*nb
)
1055 return blocking_notifier_chain_register(&oom_notify_list
, nb
);
1057 EXPORT_SYMBOL_GPL(register_oom_notifier
);
1059 int unregister_oom_notifier(struct notifier_block
*nb
)
1061 return blocking_notifier_chain_unregister(&oom_notify_list
, nb
);
1063 EXPORT_SYMBOL_GPL(unregister_oom_notifier
);
1066 * out_of_memory - kill the "best" process when we run out of memory
1067 * @oc: pointer to struct oom_control
1069 * If we run out of memory, we have the choice between either
1070 * killing a random task (bad), letting the system crash (worse)
1071 * OR try to be smart about which process to kill. Note that we
1072 * don't have to be perfect here, we just have to be good.
1074 bool out_of_memory(struct oom_control
*oc
)
1076 unsigned long freed
= 0;
1077 enum oom_constraint constraint
= CONSTRAINT_NONE
;
1079 if (oom_killer_disabled
)
1082 if (!is_memcg_oom(oc
)) {
1083 blocking_notifier_call_chain(&oom_notify_list
, 0, &freed
);
1085 /* Got some memory back in the last second. */
1090 * If current has a pending SIGKILL or is exiting, then automatically
1091 * select it. The goal is to allow it to allocate so that it may
1092 * quickly exit and free its memory.
1094 if (task_will_free_mem(current
)) {
1095 mark_oom_victim(current
);
1096 wake_oom_reaper(current
);
1101 * The OOM killer does not compensate for IO-less reclaim.
1102 * pagefault_out_of_memory lost its gfp context so we have to
1103 * make sure exclude 0 mask - all other users should have at least
1104 * ___GFP_DIRECT_RECLAIM to get here.
1106 if (oc
->gfp_mask
&& !(oc
->gfp_mask
& __GFP_FS
))
1110 * Check if there were limitations on the allocation (only relevant for
1111 * NUMA and memcg) that may require different handling.
1113 constraint
= constrained_alloc(oc
);
1114 if (constraint
!= CONSTRAINT_MEMORY_POLICY
)
1115 oc
->nodemask
= NULL
;
1116 check_panic_on_oom(oc
, constraint
);
1118 if (!is_memcg_oom(oc
) && sysctl_oom_kill_allocating_task
&&
1119 current
->mm
&& !oom_unkillable_task(current
, NULL
, oc
->nodemask
) &&
1120 current
->signal
->oom_score_adj
!= OOM_SCORE_ADJ_MIN
) {
1121 get_task_struct(current
);
1122 oc
->chosen
= current
;
1123 oom_kill_process(oc
, "Out of memory (oom_kill_allocating_task)");
1127 select_bad_process(oc
);
1128 /* Found nothing?!?! */
1130 dump_header(oc
, NULL
);
1131 pr_warn("Out of memory and no killable processes...\n");
1133 * If we got here due to an actual allocation at the
1134 * system level, we cannot survive this and will enter
1135 * an endless loop in the allocator. Bail out now.
1137 if (!is_sysrq_oom(oc
) && !is_memcg_oom(oc
))
1138 panic("System is deadlocked on memory\n");
1140 if (oc
->chosen
&& oc
->chosen
!= (void *)-1UL)
1141 oom_kill_process(oc
, !is_memcg_oom(oc
) ? "Out of memory" :
1142 "Memory cgroup out of memory");
1143 return !!oc
->chosen
;
1147 * The pagefault handler calls here because it is out of memory, so kill a
1148 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1149 * killing is already in progress so do nothing.
1151 void pagefault_out_of_memory(void)
1153 struct oom_control oc
= {
1161 if (mem_cgroup_oom_synchronize(true))
1164 if (!mutex_trylock(&oom_lock
))
1167 mutex_unlock(&oom_lock
);