drivers/rtc/rtc-sirfsoc.c: add rtc drivers for CSR SiRFprimaII and SiRFatlasVI
[linux/fpc-iii.git] / kernel / cgroup.c
blobe5583d10a325657620add60075ae0c9eead92617
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/init_task.h>
34 #include <linux/kernel.h>
35 #include <linux/list.h>
36 #include <linux/mm.h>
37 #include <linux/mutex.h>
38 #include <linux/mount.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/rcupdate.h>
42 #include <linux/sched.h>
43 #include <linux/backing-dev.h>
44 #include <linux/seq_file.h>
45 #include <linux/slab.h>
46 #include <linux/magic.h>
47 #include <linux/spinlock.h>
48 #include <linux/string.h>
49 #include <linux/sort.h>
50 #include <linux/kmod.h>
51 #include <linux/module.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/namei.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/eventfd.h>
60 #include <linux/poll.h>
61 #include <linux/flex_array.h> /* used in cgroup_attach_task */
62 #include <linux/kthread.h>
64 #include <linux/atomic.h>
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
82 #ifdef CONFIG_PROVE_RCU
83 DEFINE_MUTEX(cgroup_mutex);
84 EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for task_subsys_state_check() */
85 #else
86 static DEFINE_MUTEX(cgroup_mutex);
87 #endif
89 static DEFINE_MUTEX(cgroup_root_mutex);
92 * Generate an array of cgroup subsystem pointers. At boot time, this is
93 * populated with the built in subsystems, and modular subsystems are
94 * registered after that. The mutable section of this array is protected by
95 * cgroup_mutex.
97 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
98 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
99 static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
100 #include <linux/cgroup_subsys.h>
104 * The dummy hierarchy, reserved for the subsystems that are otherwise
105 * unattached - it never has more than a single cgroup, and all tasks are
106 * part of that cgroup.
108 static struct cgroupfs_root cgroup_dummy_root;
110 /* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
111 static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
114 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
116 struct cfent {
117 struct list_head node;
118 struct dentry *dentry;
119 struct cftype *type;
121 /* file xattrs */
122 struct simple_xattrs xattrs;
126 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
127 * cgroup_subsys->use_id != 0.
129 #define CSS_ID_MAX (65535)
130 struct css_id {
132 * The css to which this ID points. This pointer is set to valid value
133 * after cgroup is populated. If cgroup is removed, this will be NULL.
134 * This pointer is expected to be RCU-safe because destroy()
135 * is called after synchronize_rcu(). But for safe use, css_tryget()
136 * should be used for avoiding race.
138 struct cgroup_subsys_state __rcu *css;
140 * ID of this css.
142 unsigned short id;
144 * Depth in hierarchy which this ID belongs to.
146 unsigned short depth;
148 * ID is freed by RCU. (and lookup routine is RCU safe.)
150 struct rcu_head rcu_head;
152 * Hierarchy of CSS ID belongs to.
154 unsigned short stack[0]; /* Array of Length (depth+1) */
158 * cgroup_event represents events which userspace want to receive.
160 struct cgroup_event {
162 * Cgroup which the event belongs to.
164 struct cgroup *cgrp;
166 * Control file which the event associated.
168 struct cftype *cft;
170 * eventfd to signal userspace about the event.
172 struct eventfd_ctx *eventfd;
174 * Each of these stored in a list by the cgroup.
176 struct list_head list;
178 * All fields below needed to unregister event when
179 * userspace closes eventfd.
181 poll_table pt;
182 wait_queue_head_t *wqh;
183 wait_queue_t wait;
184 struct work_struct remove;
187 /* The list of hierarchy roots */
189 static LIST_HEAD(cgroup_roots);
190 static int cgroup_root_count;
193 * Hierarchy ID allocation and mapping. It follows the same exclusion
194 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
195 * writes, either for reads.
197 static DEFINE_IDR(cgroup_hierarchy_idr);
199 static struct cgroup_name root_cgroup_name = { .name = "/" };
202 * Assign a monotonically increasing serial number to cgroups. It
203 * guarantees cgroups with bigger numbers are newer than those with smaller
204 * numbers. Also, as cgroups are always appended to the parent's
205 * ->children list, it guarantees that sibling cgroups are always sorted in
206 * the ascending serial number order on the list. Protected by
207 * cgroup_mutex.
209 static u64 cgroup_serial_nr_next = 1;
211 /* This flag indicates whether tasks in the fork and exit paths should
212 * check for fork/exit handlers to call. This avoids us having to do
213 * extra work in the fork/exit path if none of the subsystems need to
214 * be called.
216 static int need_forkexit_callback __read_mostly;
218 static void cgroup_offline_fn(struct work_struct *work);
219 static int cgroup_destroy_locked(struct cgroup *cgrp);
220 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
221 struct cftype cfts[], bool is_add);
223 /* convenient tests for these bits */
224 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
226 return test_bit(CGRP_DEAD, &cgrp->flags);
230 * cgroup_is_descendant - test ancestry
231 * @cgrp: the cgroup to be tested
232 * @ancestor: possible ancestor of @cgrp
234 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
235 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
236 * and @ancestor are accessible.
238 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
240 while (cgrp) {
241 if (cgrp == ancestor)
242 return true;
243 cgrp = cgrp->parent;
245 return false;
247 EXPORT_SYMBOL_GPL(cgroup_is_descendant);
249 static int cgroup_is_releasable(const struct cgroup *cgrp)
251 const int bits =
252 (1 << CGRP_RELEASABLE) |
253 (1 << CGRP_NOTIFY_ON_RELEASE);
254 return (cgrp->flags & bits) == bits;
257 static int notify_on_release(const struct cgroup *cgrp)
259 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
263 * for_each_subsys - iterate all loaded cgroup subsystems
264 * @ss: the iteration cursor
265 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
267 * Should be called under cgroup_mutex.
269 #define for_each_subsys(ss, i) \
270 for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++) \
271 if (({ lockdep_assert_held(&cgroup_mutex); \
272 !((ss) = cgroup_subsys[i]); })) { } \
273 else
276 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
277 * @ss: the iteration cursor
278 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
280 * Bulit-in subsystems are always present and iteration itself doesn't
281 * require any synchronization.
283 #define for_each_builtin_subsys(ss, i) \
284 for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
285 (((ss) = cgroup_subsys[i]) || true); (i)++)
287 /* iterate each subsystem attached to a hierarchy */
288 #define for_each_root_subsys(root, ss) \
289 list_for_each_entry((ss), &(root)->subsys_list, sibling)
291 /* iterate across the active hierarchies */
292 #define for_each_active_root(root) \
293 list_for_each_entry((root), &cgroup_roots, root_list)
295 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
297 return dentry->d_fsdata;
300 static inline struct cfent *__d_cfe(struct dentry *dentry)
302 return dentry->d_fsdata;
305 static inline struct cftype *__d_cft(struct dentry *dentry)
307 return __d_cfe(dentry)->type;
311 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
312 * @cgrp: the cgroup to be checked for liveness
314 * On success, returns true; the mutex should be later unlocked. On
315 * failure returns false with no lock held.
317 static bool cgroup_lock_live_group(struct cgroup *cgrp)
319 mutex_lock(&cgroup_mutex);
320 if (cgroup_is_dead(cgrp)) {
321 mutex_unlock(&cgroup_mutex);
322 return false;
324 return true;
327 /* the list of cgroups eligible for automatic release. Protected by
328 * release_list_lock */
329 static LIST_HEAD(release_list);
330 static DEFINE_RAW_SPINLOCK(release_list_lock);
331 static void cgroup_release_agent(struct work_struct *work);
332 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
333 static void check_for_release(struct cgroup *cgrp);
336 * A cgroup can be associated with multiple css_sets as different tasks may
337 * belong to different cgroups on different hierarchies. In the other
338 * direction, a css_set is naturally associated with multiple cgroups.
339 * This M:N relationship is represented by the following link structure
340 * which exists for each association and allows traversing the associations
341 * from both sides.
343 struct cgrp_cset_link {
344 /* the cgroup and css_set this link associates */
345 struct cgroup *cgrp;
346 struct css_set *cset;
348 /* list of cgrp_cset_links anchored at cgrp->cset_links */
349 struct list_head cset_link;
351 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
352 struct list_head cgrp_link;
355 /* The default css_set - used by init and its children prior to any
356 * hierarchies being mounted. It contains a pointer to the root state
357 * for each subsystem. Also used to anchor the list of css_sets. Not
358 * reference-counted, to improve performance when child cgroups
359 * haven't been created.
362 static struct css_set init_css_set;
363 static struct cgrp_cset_link init_cgrp_cset_link;
365 static int cgroup_init_idr(struct cgroup_subsys *ss,
366 struct cgroup_subsys_state *css);
368 /* css_set_lock protects the list of css_set objects, and the
369 * chain of tasks off each css_set. Nests outside task->alloc_lock
370 * due to cgroup_iter_start() */
371 static DEFINE_RWLOCK(css_set_lock);
372 static int css_set_count;
375 * hash table for cgroup groups. This improves the performance to find
376 * an existing css_set. This hash doesn't (currently) take into
377 * account cgroups in empty hierarchies.
379 #define CSS_SET_HASH_BITS 7
380 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
382 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
384 unsigned long key = 0UL;
385 struct cgroup_subsys *ss;
386 int i;
388 for_each_subsys(ss, i)
389 key += (unsigned long)css[i];
390 key = (key >> 16) ^ key;
392 return key;
395 /* We don't maintain the lists running through each css_set to its
396 * task until after the first call to cgroup_iter_start(). This
397 * reduces the fork()/exit() overhead for people who have cgroups
398 * compiled into their kernel but not actually in use */
399 static int use_task_css_set_links __read_mostly;
401 static void __put_css_set(struct css_set *cset, int taskexit)
403 struct cgrp_cset_link *link, *tmp_link;
406 * Ensure that the refcount doesn't hit zero while any readers
407 * can see it. Similar to atomic_dec_and_lock(), but for an
408 * rwlock
410 if (atomic_add_unless(&cset->refcount, -1, 1))
411 return;
412 write_lock(&css_set_lock);
413 if (!atomic_dec_and_test(&cset->refcount)) {
414 write_unlock(&css_set_lock);
415 return;
418 /* This css_set is dead. unlink it and release cgroup refcounts */
419 hash_del(&cset->hlist);
420 css_set_count--;
422 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
423 struct cgroup *cgrp = link->cgrp;
425 list_del(&link->cset_link);
426 list_del(&link->cgrp_link);
428 /* @cgrp can't go away while we're holding css_set_lock */
429 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
430 if (taskexit)
431 set_bit(CGRP_RELEASABLE, &cgrp->flags);
432 check_for_release(cgrp);
435 kfree(link);
438 write_unlock(&css_set_lock);
439 kfree_rcu(cset, rcu_head);
443 * refcounted get/put for css_set objects
445 static inline void get_css_set(struct css_set *cset)
447 atomic_inc(&cset->refcount);
450 static inline void put_css_set(struct css_set *cset)
452 __put_css_set(cset, 0);
455 static inline void put_css_set_taskexit(struct css_set *cset)
457 __put_css_set(cset, 1);
461 * compare_css_sets - helper function for find_existing_css_set().
462 * @cset: candidate css_set being tested
463 * @old_cset: existing css_set for a task
464 * @new_cgrp: cgroup that's being entered by the task
465 * @template: desired set of css pointers in css_set (pre-calculated)
467 * Returns true if "cg" matches "old_cg" except for the hierarchy
468 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
470 static bool compare_css_sets(struct css_set *cset,
471 struct css_set *old_cset,
472 struct cgroup *new_cgrp,
473 struct cgroup_subsys_state *template[])
475 struct list_head *l1, *l2;
477 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
478 /* Not all subsystems matched */
479 return false;
483 * Compare cgroup pointers in order to distinguish between
484 * different cgroups in heirarchies with no subsystems. We
485 * could get by with just this check alone (and skip the
486 * memcmp above) but on most setups the memcmp check will
487 * avoid the need for this more expensive check on almost all
488 * candidates.
491 l1 = &cset->cgrp_links;
492 l2 = &old_cset->cgrp_links;
493 while (1) {
494 struct cgrp_cset_link *link1, *link2;
495 struct cgroup *cgrp1, *cgrp2;
497 l1 = l1->next;
498 l2 = l2->next;
499 /* See if we reached the end - both lists are equal length. */
500 if (l1 == &cset->cgrp_links) {
501 BUG_ON(l2 != &old_cset->cgrp_links);
502 break;
503 } else {
504 BUG_ON(l2 == &old_cset->cgrp_links);
506 /* Locate the cgroups associated with these links. */
507 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
508 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
509 cgrp1 = link1->cgrp;
510 cgrp2 = link2->cgrp;
511 /* Hierarchies should be linked in the same order. */
512 BUG_ON(cgrp1->root != cgrp2->root);
515 * If this hierarchy is the hierarchy of the cgroup
516 * that's changing, then we need to check that this
517 * css_set points to the new cgroup; if it's any other
518 * hierarchy, then this css_set should point to the
519 * same cgroup as the old css_set.
521 if (cgrp1->root == new_cgrp->root) {
522 if (cgrp1 != new_cgrp)
523 return false;
524 } else {
525 if (cgrp1 != cgrp2)
526 return false;
529 return true;
533 * find_existing_css_set - init css array and find the matching css_set
534 * @old_cset: the css_set that we're using before the cgroup transition
535 * @cgrp: the cgroup that we're moving into
536 * @template: out param for the new set of csses, should be clear on entry
538 static struct css_set *find_existing_css_set(struct css_set *old_cset,
539 struct cgroup *cgrp,
540 struct cgroup_subsys_state *template[])
542 struct cgroupfs_root *root = cgrp->root;
543 struct cgroup_subsys *ss;
544 struct css_set *cset;
545 unsigned long key;
546 int i;
549 * Build the set of subsystem state objects that we want to see in the
550 * new css_set. while subsystems can change globally, the entries here
551 * won't change, so no need for locking.
553 for_each_subsys(ss, i) {
554 if (root->subsys_mask & (1UL << i)) {
555 /* Subsystem is in this hierarchy. So we want
556 * the subsystem state from the new
557 * cgroup */
558 template[i] = cgrp->subsys[i];
559 } else {
560 /* Subsystem is not in this hierarchy, so we
561 * don't want to change the subsystem state */
562 template[i] = old_cset->subsys[i];
566 key = css_set_hash(template);
567 hash_for_each_possible(css_set_table, cset, hlist, key) {
568 if (!compare_css_sets(cset, old_cset, cgrp, template))
569 continue;
571 /* This css_set matches what we need */
572 return cset;
575 /* No existing cgroup group matched */
576 return NULL;
579 static void free_cgrp_cset_links(struct list_head *links_to_free)
581 struct cgrp_cset_link *link, *tmp_link;
583 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
584 list_del(&link->cset_link);
585 kfree(link);
590 * allocate_cgrp_cset_links - allocate cgrp_cset_links
591 * @count: the number of links to allocate
592 * @tmp_links: list_head the allocated links are put on
594 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
595 * through ->cset_link. Returns 0 on success or -errno.
597 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
599 struct cgrp_cset_link *link;
600 int i;
602 INIT_LIST_HEAD(tmp_links);
604 for (i = 0; i < count; i++) {
605 link = kzalloc(sizeof(*link), GFP_KERNEL);
606 if (!link) {
607 free_cgrp_cset_links(tmp_links);
608 return -ENOMEM;
610 list_add(&link->cset_link, tmp_links);
612 return 0;
616 * link_css_set - a helper function to link a css_set to a cgroup
617 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
618 * @cset: the css_set to be linked
619 * @cgrp: the destination cgroup
621 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
622 struct cgroup *cgrp)
624 struct cgrp_cset_link *link;
626 BUG_ON(list_empty(tmp_links));
627 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
628 link->cset = cset;
629 link->cgrp = cgrp;
630 list_move(&link->cset_link, &cgrp->cset_links);
632 * Always add links to the tail of the list so that the list
633 * is sorted by order of hierarchy creation
635 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
639 * find_css_set - return a new css_set with one cgroup updated
640 * @old_cset: the baseline css_set
641 * @cgrp: the cgroup to be updated
643 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
644 * substituted into the appropriate hierarchy.
646 static struct css_set *find_css_set(struct css_set *old_cset,
647 struct cgroup *cgrp)
649 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
650 struct css_set *cset;
651 struct list_head tmp_links;
652 struct cgrp_cset_link *link;
653 unsigned long key;
655 lockdep_assert_held(&cgroup_mutex);
657 /* First see if we already have a cgroup group that matches
658 * the desired set */
659 read_lock(&css_set_lock);
660 cset = find_existing_css_set(old_cset, cgrp, template);
661 if (cset)
662 get_css_set(cset);
663 read_unlock(&css_set_lock);
665 if (cset)
666 return cset;
668 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
669 if (!cset)
670 return NULL;
672 /* Allocate all the cgrp_cset_link objects that we'll need */
673 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
674 kfree(cset);
675 return NULL;
678 atomic_set(&cset->refcount, 1);
679 INIT_LIST_HEAD(&cset->cgrp_links);
680 INIT_LIST_HEAD(&cset->tasks);
681 INIT_HLIST_NODE(&cset->hlist);
683 /* Copy the set of subsystem state objects generated in
684 * find_existing_css_set() */
685 memcpy(cset->subsys, template, sizeof(cset->subsys));
687 write_lock(&css_set_lock);
688 /* Add reference counts and links from the new css_set. */
689 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
690 struct cgroup *c = link->cgrp;
692 if (c->root == cgrp->root)
693 c = cgrp;
694 link_css_set(&tmp_links, cset, c);
697 BUG_ON(!list_empty(&tmp_links));
699 css_set_count++;
701 /* Add this cgroup group to the hash table */
702 key = css_set_hash(cset->subsys);
703 hash_add(css_set_table, &cset->hlist, key);
705 write_unlock(&css_set_lock);
707 return cset;
711 * Return the cgroup for "task" from the given hierarchy. Must be
712 * called with cgroup_mutex held.
714 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
715 struct cgroupfs_root *root)
717 struct css_set *cset;
718 struct cgroup *res = NULL;
720 BUG_ON(!mutex_is_locked(&cgroup_mutex));
721 read_lock(&css_set_lock);
723 * No need to lock the task - since we hold cgroup_mutex the
724 * task can't change groups, so the only thing that can happen
725 * is that it exits and its css is set back to init_css_set.
727 cset = task_css_set(task);
728 if (cset == &init_css_set) {
729 res = &root->top_cgroup;
730 } else {
731 struct cgrp_cset_link *link;
733 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
734 struct cgroup *c = link->cgrp;
736 if (c->root == root) {
737 res = c;
738 break;
742 read_unlock(&css_set_lock);
743 BUG_ON(!res);
744 return res;
748 * There is one global cgroup mutex. We also require taking
749 * task_lock() when dereferencing a task's cgroup subsys pointers.
750 * See "The task_lock() exception", at the end of this comment.
752 * A task must hold cgroup_mutex to modify cgroups.
754 * Any task can increment and decrement the count field without lock.
755 * So in general, code holding cgroup_mutex can't rely on the count
756 * field not changing. However, if the count goes to zero, then only
757 * cgroup_attach_task() can increment it again. Because a count of zero
758 * means that no tasks are currently attached, therefore there is no
759 * way a task attached to that cgroup can fork (the other way to
760 * increment the count). So code holding cgroup_mutex can safely
761 * assume that if the count is zero, it will stay zero. Similarly, if
762 * a task holds cgroup_mutex on a cgroup with zero count, it
763 * knows that the cgroup won't be removed, as cgroup_rmdir()
764 * needs that mutex.
766 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
767 * (usually) take cgroup_mutex. These are the two most performance
768 * critical pieces of code here. The exception occurs on cgroup_exit(),
769 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
770 * is taken, and if the cgroup count is zero, a usermode call made
771 * to the release agent with the name of the cgroup (path relative to
772 * the root of cgroup file system) as the argument.
774 * A cgroup can only be deleted if both its 'count' of using tasks
775 * is zero, and its list of 'children' cgroups is empty. Since all
776 * tasks in the system use _some_ cgroup, and since there is always at
777 * least one task in the system (init, pid == 1), therefore, top_cgroup
778 * always has either children cgroups and/or using tasks. So we don't
779 * need a special hack to ensure that top_cgroup cannot be deleted.
781 * The task_lock() exception
783 * The need for this exception arises from the action of
784 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
785 * another. It does so using cgroup_mutex, however there are
786 * several performance critical places that need to reference
787 * task->cgroup without the expense of grabbing a system global
788 * mutex. Therefore except as noted below, when dereferencing or, as
789 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
790 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
791 * the task_struct routinely used for such matters.
793 * P.S. One more locking exception. RCU is used to guard the
794 * update of a tasks cgroup pointer by cgroup_attach_task()
798 * A couple of forward declarations required, due to cyclic reference loop:
799 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
800 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
801 * -> cgroup_mkdir.
804 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
805 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
806 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
807 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
808 unsigned long subsys_mask);
809 static const struct inode_operations cgroup_dir_inode_operations;
810 static const struct file_operations proc_cgroupstats_operations;
812 static struct backing_dev_info cgroup_backing_dev_info = {
813 .name = "cgroup",
814 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
817 static int alloc_css_id(struct cgroup_subsys *ss,
818 struct cgroup *parent, struct cgroup *child);
820 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
822 struct inode *inode = new_inode(sb);
824 if (inode) {
825 inode->i_ino = get_next_ino();
826 inode->i_mode = mode;
827 inode->i_uid = current_fsuid();
828 inode->i_gid = current_fsgid();
829 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
830 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
832 return inode;
835 static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
837 struct cgroup_name *name;
839 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
840 if (!name)
841 return NULL;
842 strcpy(name->name, dentry->d_name.name);
843 return name;
846 static void cgroup_free_fn(struct work_struct *work)
848 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
849 struct cgroup_subsys *ss;
851 mutex_lock(&cgroup_mutex);
853 * Release the subsystem state objects.
855 for_each_root_subsys(cgrp->root, ss)
856 ss->css_free(cgrp);
858 cgrp->root->number_of_cgroups--;
859 mutex_unlock(&cgroup_mutex);
862 * We get a ref to the parent's dentry, and put the ref when
863 * this cgroup is being freed, so it's guaranteed that the
864 * parent won't be destroyed before its children.
866 dput(cgrp->parent->dentry);
868 ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
871 * Drop the active superblock reference that we took when we
872 * created the cgroup. This will free cgrp->root, if we are
873 * holding the last reference to @sb.
875 deactivate_super(cgrp->root->sb);
878 * if we're getting rid of the cgroup, refcount should ensure
879 * that there are no pidlists left.
881 BUG_ON(!list_empty(&cgrp->pidlists));
883 simple_xattrs_free(&cgrp->xattrs);
885 kfree(rcu_dereference_raw(cgrp->name));
886 kfree(cgrp);
889 static void cgroup_free_rcu(struct rcu_head *head)
891 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
893 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
894 schedule_work(&cgrp->destroy_work);
897 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
899 /* is dentry a directory ? if so, kfree() associated cgroup */
900 if (S_ISDIR(inode->i_mode)) {
901 struct cgroup *cgrp = dentry->d_fsdata;
903 BUG_ON(!(cgroup_is_dead(cgrp)));
904 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
905 } else {
906 struct cfent *cfe = __d_cfe(dentry);
907 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
909 WARN_ONCE(!list_empty(&cfe->node) &&
910 cgrp != &cgrp->root->top_cgroup,
911 "cfe still linked for %s\n", cfe->type->name);
912 simple_xattrs_free(&cfe->xattrs);
913 kfree(cfe);
915 iput(inode);
918 static int cgroup_delete(const struct dentry *d)
920 return 1;
923 static void remove_dir(struct dentry *d)
925 struct dentry *parent = dget(d->d_parent);
927 d_delete(d);
928 simple_rmdir(parent->d_inode, d);
929 dput(parent);
932 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
934 struct cfent *cfe;
936 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
937 lockdep_assert_held(&cgroup_mutex);
940 * If we're doing cleanup due to failure of cgroup_create(),
941 * the corresponding @cfe may not exist.
943 list_for_each_entry(cfe, &cgrp->files, node) {
944 struct dentry *d = cfe->dentry;
946 if (cft && cfe->type != cft)
947 continue;
949 dget(d);
950 d_delete(d);
951 simple_unlink(cgrp->dentry->d_inode, d);
952 list_del_init(&cfe->node);
953 dput(d);
955 break;
960 * cgroup_clear_directory - selective removal of base and subsystem files
961 * @dir: directory containing the files
962 * @base_files: true if the base files should be removed
963 * @subsys_mask: mask of the subsystem ids whose files should be removed
965 static void cgroup_clear_directory(struct dentry *dir, bool base_files,
966 unsigned long subsys_mask)
968 struct cgroup *cgrp = __d_cgrp(dir);
969 struct cgroup_subsys *ss;
971 for_each_root_subsys(cgrp->root, ss) {
972 struct cftype_set *set;
973 if (!test_bit(ss->subsys_id, &subsys_mask))
974 continue;
975 list_for_each_entry(set, &ss->cftsets, node)
976 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
978 if (base_files) {
979 while (!list_empty(&cgrp->files))
980 cgroup_rm_file(cgrp, NULL);
985 * NOTE : the dentry must have been dget()'ed
987 static void cgroup_d_remove_dir(struct dentry *dentry)
989 struct dentry *parent;
990 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
992 cgroup_clear_directory(dentry, true, root->subsys_mask);
994 parent = dentry->d_parent;
995 spin_lock(&parent->d_lock);
996 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
997 list_del_init(&dentry->d_u.d_child);
998 spin_unlock(&dentry->d_lock);
999 spin_unlock(&parent->d_lock);
1000 remove_dir(dentry);
1004 * Call with cgroup_mutex held. Drops reference counts on modules, including
1005 * any duplicate ones that parse_cgroupfs_options took. If this function
1006 * returns an error, no reference counts are touched.
1008 static int rebind_subsystems(struct cgroupfs_root *root,
1009 unsigned long added_mask, unsigned removed_mask)
1011 struct cgroup *cgrp = &root->top_cgroup;
1012 struct cgroup_subsys *ss;
1013 int i;
1015 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1016 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
1018 /* Check that any added subsystems are currently free */
1019 for_each_subsys(ss, i) {
1020 unsigned long bit = 1UL << i;
1022 if (!(bit & added_mask))
1023 continue;
1025 if (ss->root != &cgroup_dummy_root) {
1026 /* Subsystem isn't free */
1027 return -EBUSY;
1031 /* Currently we don't handle adding/removing subsystems when
1032 * any child cgroups exist. This is theoretically supportable
1033 * but involves complex error handling, so it's being left until
1034 * later */
1035 if (root->number_of_cgroups > 1)
1036 return -EBUSY;
1038 /* Process each subsystem */
1039 for_each_subsys(ss, i) {
1040 unsigned long bit = 1UL << i;
1042 if (bit & added_mask) {
1043 /* We're binding this subsystem to this hierarchy */
1044 BUG_ON(cgrp->subsys[i]);
1045 BUG_ON(!cgroup_dummy_top->subsys[i]);
1046 BUG_ON(cgroup_dummy_top->subsys[i]->cgroup != cgroup_dummy_top);
1048 cgrp->subsys[i] = cgroup_dummy_top->subsys[i];
1049 cgrp->subsys[i]->cgroup = cgrp;
1050 list_move(&ss->sibling, &root->subsys_list);
1051 ss->root = root;
1052 if (ss->bind)
1053 ss->bind(cgrp);
1055 /* refcount was already taken, and we're keeping it */
1056 root->subsys_mask |= bit;
1057 } else if (bit & removed_mask) {
1058 /* We're removing this subsystem */
1059 BUG_ON(cgrp->subsys[i] != cgroup_dummy_top->subsys[i]);
1060 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1062 if (ss->bind)
1063 ss->bind(cgroup_dummy_top);
1064 cgroup_dummy_top->subsys[i]->cgroup = cgroup_dummy_top;
1065 cgrp->subsys[i] = NULL;
1066 cgroup_subsys[i]->root = &cgroup_dummy_root;
1067 list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
1069 /* subsystem is now free - drop reference on module */
1070 module_put(ss->module);
1071 root->subsys_mask &= ~bit;
1072 } else if (bit & root->subsys_mask) {
1073 /* Subsystem state should already exist */
1074 BUG_ON(!cgrp->subsys[i]);
1076 * a refcount was taken, but we already had one, so
1077 * drop the extra reference.
1079 module_put(ss->module);
1080 #ifdef CONFIG_MODULE_UNLOAD
1081 BUG_ON(ss->module && !module_refcount(ss->module));
1082 #endif
1083 } else {
1084 /* Subsystem state shouldn't exist */
1085 BUG_ON(cgrp->subsys[i]);
1090 * Mark @root has finished binding subsystems. @root->subsys_mask
1091 * now matches the bound subsystems.
1093 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
1095 return 0;
1098 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1100 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1101 struct cgroup_subsys *ss;
1103 mutex_lock(&cgroup_root_mutex);
1104 for_each_root_subsys(root, ss)
1105 seq_printf(seq, ",%s", ss->name);
1106 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1107 seq_puts(seq, ",sane_behavior");
1108 if (root->flags & CGRP_ROOT_NOPREFIX)
1109 seq_puts(seq, ",noprefix");
1110 if (root->flags & CGRP_ROOT_XATTR)
1111 seq_puts(seq, ",xattr");
1112 if (strlen(root->release_agent_path))
1113 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1114 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
1115 seq_puts(seq, ",clone_children");
1116 if (strlen(root->name))
1117 seq_printf(seq, ",name=%s", root->name);
1118 mutex_unlock(&cgroup_root_mutex);
1119 return 0;
1122 struct cgroup_sb_opts {
1123 unsigned long subsys_mask;
1124 unsigned long flags;
1125 char *release_agent;
1126 bool cpuset_clone_children;
1127 char *name;
1128 /* User explicitly requested empty subsystem */
1129 bool none;
1131 struct cgroupfs_root *new_root;
1136 * Convert a hierarchy specifier into a bitmask of subsystems and
1137 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1138 * array. This function takes refcounts on subsystems to be used, unless it
1139 * returns error, in which case no refcounts are taken.
1141 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1143 char *token, *o = data;
1144 bool all_ss = false, one_ss = false;
1145 unsigned long mask = (unsigned long)-1;
1146 bool module_pin_failed = false;
1147 struct cgroup_subsys *ss;
1148 int i;
1150 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1152 #ifdef CONFIG_CPUSETS
1153 mask = ~(1UL << cpuset_subsys_id);
1154 #endif
1156 memset(opts, 0, sizeof(*opts));
1158 while ((token = strsep(&o, ",")) != NULL) {
1159 if (!*token)
1160 return -EINVAL;
1161 if (!strcmp(token, "none")) {
1162 /* Explicitly have no subsystems */
1163 opts->none = true;
1164 continue;
1166 if (!strcmp(token, "all")) {
1167 /* Mutually exclusive option 'all' + subsystem name */
1168 if (one_ss)
1169 return -EINVAL;
1170 all_ss = true;
1171 continue;
1173 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1174 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1175 continue;
1177 if (!strcmp(token, "noprefix")) {
1178 opts->flags |= CGRP_ROOT_NOPREFIX;
1179 continue;
1181 if (!strcmp(token, "clone_children")) {
1182 opts->cpuset_clone_children = true;
1183 continue;
1185 if (!strcmp(token, "xattr")) {
1186 opts->flags |= CGRP_ROOT_XATTR;
1187 continue;
1189 if (!strncmp(token, "release_agent=", 14)) {
1190 /* Specifying two release agents is forbidden */
1191 if (opts->release_agent)
1192 return -EINVAL;
1193 opts->release_agent =
1194 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1195 if (!opts->release_agent)
1196 return -ENOMEM;
1197 continue;
1199 if (!strncmp(token, "name=", 5)) {
1200 const char *name = token + 5;
1201 /* Can't specify an empty name */
1202 if (!strlen(name))
1203 return -EINVAL;
1204 /* Must match [\w.-]+ */
1205 for (i = 0; i < strlen(name); i++) {
1206 char c = name[i];
1207 if (isalnum(c))
1208 continue;
1209 if ((c == '.') || (c == '-') || (c == '_'))
1210 continue;
1211 return -EINVAL;
1213 /* Specifying two names is forbidden */
1214 if (opts->name)
1215 return -EINVAL;
1216 opts->name = kstrndup(name,
1217 MAX_CGROUP_ROOT_NAMELEN - 1,
1218 GFP_KERNEL);
1219 if (!opts->name)
1220 return -ENOMEM;
1222 continue;
1225 for_each_subsys(ss, i) {
1226 if (strcmp(token, ss->name))
1227 continue;
1228 if (ss->disabled)
1229 continue;
1231 /* Mutually exclusive option 'all' + subsystem name */
1232 if (all_ss)
1233 return -EINVAL;
1234 set_bit(i, &opts->subsys_mask);
1235 one_ss = true;
1237 break;
1239 if (i == CGROUP_SUBSYS_COUNT)
1240 return -ENOENT;
1244 * If the 'all' option was specified select all the subsystems,
1245 * otherwise if 'none', 'name=' and a subsystem name options
1246 * were not specified, let's default to 'all'
1248 if (all_ss || (!one_ss && !opts->none && !opts->name))
1249 for_each_subsys(ss, i)
1250 if (!ss->disabled)
1251 set_bit(i, &opts->subsys_mask);
1253 /* Consistency checks */
1255 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1256 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1258 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1259 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1260 return -EINVAL;
1263 if (opts->cpuset_clone_children) {
1264 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1265 return -EINVAL;
1270 * Option noprefix was introduced just for backward compatibility
1271 * with the old cpuset, so we allow noprefix only if mounting just
1272 * the cpuset subsystem.
1274 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1275 return -EINVAL;
1278 /* Can't specify "none" and some subsystems */
1279 if (opts->subsys_mask && opts->none)
1280 return -EINVAL;
1283 * We either have to specify by name or by subsystems. (So all
1284 * empty hierarchies must have a name).
1286 if (!opts->subsys_mask && !opts->name)
1287 return -EINVAL;
1290 * Grab references on all the modules we'll need, so the subsystems
1291 * don't dance around before rebind_subsystems attaches them. This may
1292 * take duplicate reference counts on a subsystem that's already used,
1293 * but rebind_subsystems handles this case.
1295 for_each_subsys(ss, i) {
1296 if (!(opts->subsys_mask & (1UL << i)))
1297 continue;
1298 if (!try_module_get(cgroup_subsys[i]->module)) {
1299 module_pin_failed = true;
1300 break;
1303 if (module_pin_failed) {
1305 * oops, one of the modules was going away. this means that we
1306 * raced with a module_delete call, and to the user this is
1307 * essentially a "subsystem doesn't exist" case.
1309 for (i--; i >= 0; i--) {
1310 /* drop refcounts only on the ones we took */
1311 unsigned long bit = 1UL << i;
1313 if (!(bit & opts->subsys_mask))
1314 continue;
1315 module_put(cgroup_subsys[i]->module);
1317 return -ENOENT;
1320 return 0;
1323 static void drop_parsed_module_refcounts(unsigned long subsys_mask)
1325 struct cgroup_subsys *ss;
1326 int i;
1328 mutex_lock(&cgroup_mutex);
1329 for_each_subsys(ss, i)
1330 if (subsys_mask & (1UL << i))
1331 module_put(cgroup_subsys[i]->module);
1332 mutex_unlock(&cgroup_mutex);
1335 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1337 int ret = 0;
1338 struct cgroupfs_root *root = sb->s_fs_info;
1339 struct cgroup *cgrp = &root->top_cgroup;
1340 struct cgroup_sb_opts opts;
1341 unsigned long added_mask, removed_mask;
1343 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1344 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1345 return -EINVAL;
1348 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1349 mutex_lock(&cgroup_mutex);
1350 mutex_lock(&cgroup_root_mutex);
1352 /* See what subsystems are wanted */
1353 ret = parse_cgroupfs_options(data, &opts);
1354 if (ret)
1355 goto out_unlock;
1357 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1358 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1359 task_tgid_nr(current), current->comm);
1361 added_mask = opts.subsys_mask & ~root->subsys_mask;
1362 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1364 /* Don't allow flags or name to change at remount */
1365 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
1366 (opts.name && strcmp(opts.name, root->name))) {
1367 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1368 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1369 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
1370 ret = -EINVAL;
1371 goto out_unlock;
1375 * Clear out the files of subsystems that should be removed, do
1376 * this before rebind_subsystems, since rebind_subsystems may
1377 * change this hierarchy's subsys_list.
1379 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1381 ret = rebind_subsystems(root, added_mask, removed_mask);
1382 if (ret) {
1383 /* rebind_subsystems failed, re-populate the removed files */
1384 cgroup_populate_dir(cgrp, false, removed_mask);
1385 goto out_unlock;
1388 /* re-populate subsystem files */
1389 cgroup_populate_dir(cgrp, false, added_mask);
1391 if (opts.release_agent)
1392 strcpy(root->release_agent_path, opts.release_agent);
1393 out_unlock:
1394 kfree(opts.release_agent);
1395 kfree(opts.name);
1396 mutex_unlock(&cgroup_root_mutex);
1397 mutex_unlock(&cgroup_mutex);
1398 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1399 if (ret)
1400 drop_parsed_module_refcounts(opts.subsys_mask);
1401 return ret;
1404 static const struct super_operations cgroup_ops = {
1405 .statfs = simple_statfs,
1406 .drop_inode = generic_delete_inode,
1407 .show_options = cgroup_show_options,
1408 .remount_fs = cgroup_remount,
1411 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1413 INIT_LIST_HEAD(&cgrp->sibling);
1414 INIT_LIST_HEAD(&cgrp->children);
1415 INIT_LIST_HEAD(&cgrp->files);
1416 INIT_LIST_HEAD(&cgrp->cset_links);
1417 INIT_LIST_HEAD(&cgrp->release_list);
1418 INIT_LIST_HEAD(&cgrp->pidlists);
1419 mutex_init(&cgrp->pidlist_mutex);
1420 INIT_LIST_HEAD(&cgrp->event_list);
1421 spin_lock_init(&cgrp->event_list_lock);
1422 simple_xattrs_init(&cgrp->xattrs);
1425 static void init_cgroup_root(struct cgroupfs_root *root)
1427 struct cgroup *cgrp = &root->top_cgroup;
1429 INIT_LIST_HEAD(&root->subsys_list);
1430 INIT_LIST_HEAD(&root->root_list);
1431 root->number_of_cgroups = 1;
1432 cgrp->root = root;
1433 RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
1434 init_cgroup_housekeeping(cgrp);
1437 static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
1439 int id;
1441 lockdep_assert_held(&cgroup_mutex);
1442 lockdep_assert_held(&cgroup_root_mutex);
1444 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
1445 GFP_KERNEL);
1446 if (id < 0)
1447 return id;
1449 root->hierarchy_id = id;
1450 return 0;
1453 static void cgroup_exit_root_id(struct cgroupfs_root *root)
1455 lockdep_assert_held(&cgroup_mutex);
1456 lockdep_assert_held(&cgroup_root_mutex);
1458 if (root->hierarchy_id) {
1459 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1460 root->hierarchy_id = 0;
1464 static int cgroup_test_super(struct super_block *sb, void *data)
1466 struct cgroup_sb_opts *opts = data;
1467 struct cgroupfs_root *root = sb->s_fs_info;
1469 /* If we asked for a name then it must match */
1470 if (opts->name && strcmp(opts->name, root->name))
1471 return 0;
1474 * If we asked for subsystems (or explicitly for no
1475 * subsystems) then they must match
1477 if ((opts->subsys_mask || opts->none)
1478 && (opts->subsys_mask != root->subsys_mask))
1479 return 0;
1481 return 1;
1484 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1486 struct cgroupfs_root *root;
1488 if (!opts->subsys_mask && !opts->none)
1489 return NULL;
1491 root = kzalloc(sizeof(*root), GFP_KERNEL);
1492 if (!root)
1493 return ERR_PTR(-ENOMEM);
1495 init_cgroup_root(root);
1498 * We need to set @root->subsys_mask now so that @root can be
1499 * matched by cgroup_test_super() before it finishes
1500 * initialization; otherwise, competing mounts with the same
1501 * options may try to bind the same subsystems instead of waiting
1502 * for the first one leading to unexpected mount errors.
1503 * SUBSYS_BOUND will be set once actual binding is complete.
1505 root->subsys_mask = opts->subsys_mask;
1506 root->flags = opts->flags;
1507 ida_init(&root->cgroup_ida);
1508 if (opts->release_agent)
1509 strcpy(root->release_agent_path, opts->release_agent);
1510 if (opts->name)
1511 strcpy(root->name, opts->name);
1512 if (opts->cpuset_clone_children)
1513 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
1514 return root;
1517 static void cgroup_free_root(struct cgroupfs_root *root)
1519 if (root) {
1520 /* hierarhcy ID shoulid already have been released */
1521 WARN_ON_ONCE(root->hierarchy_id);
1523 ida_destroy(&root->cgroup_ida);
1524 kfree(root);
1528 static int cgroup_set_super(struct super_block *sb, void *data)
1530 int ret;
1531 struct cgroup_sb_opts *opts = data;
1533 /* If we don't have a new root, we can't set up a new sb */
1534 if (!opts->new_root)
1535 return -EINVAL;
1537 BUG_ON(!opts->subsys_mask && !opts->none);
1539 ret = set_anon_super(sb, NULL);
1540 if (ret)
1541 return ret;
1543 sb->s_fs_info = opts->new_root;
1544 opts->new_root->sb = sb;
1546 sb->s_blocksize = PAGE_CACHE_SIZE;
1547 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1548 sb->s_magic = CGROUP_SUPER_MAGIC;
1549 sb->s_op = &cgroup_ops;
1551 return 0;
1554 static int cgroup_get_rootdir(struct super_block *sb)
1556 static const struct dentry_operations cgroup_dops = {
1557 .d_iput = cgroup_diput,
1558 .d_delete = cgroup_delete,
1561 struct inode *inode =
1562 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1564 if (!inode)
1565 return -ENOMEM;
1567 inode->i_fop = &simple_dir_operations;
1568 inode->i_op = &cgroup_dir_inode_operations;
1569 /* directories start off with i_nlink == 2 (for "." entry) */
1570 inc_nlink(inode);
1571 sb->s_root = d_make_root(inode);
1572 if (!sb->s_root)
1573 return -ENOMEM;
1574 /* for everything else we want ->d_op set */
1575 sb->s_d_op = &cgroup_dops;
1576 return 0;
1579 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1580 int flags, const char *unused_dev_name,
1581 void *data)
1583 struct cgroup_sb_opts opts;
1584 struct cgroupfs_root *root;
1585 int ret = 0;
1586 struct super_block *sb;
1587 struct cgroupfs_root *new_root;
1588 struct inode *inode;
1590 /* First find the desired set of subsystems */
1591 mutex_lock(&cgroup_mutex);
1592 ret = parse_cgroupfs_options(data, &opts);
1593 mutex_unlock(&cgroup_mutex);
1594 if (ret)
1595 goto out_err;
1598 * Allocate a new cgroup root. We may not need it if we're
1599 * reusing an existing hierarchy.
1601 new_root = cgroup_root_from_opts(&opts);
1602 if (IS_ERR(new_root)) {
1603 ret = PTR_ERR(new_root);
1604 goto drop_modules;
1606 opts.new_root = new_root;
1608 /* Locate an existing or new sb for this hierarchy */
1609 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1610 if (IS_ERR(sb)) {
1611 ret = PTR_ERR(sb);
1612 cgroup_free_root(opts.new_root);
1613 goto drop_modules;
1616 root = sb->s_fs_info;
1617 BUG_ON(!root);
1618 if (root == opts.new_root) {
1619 /* We used the new root structure, so this is a new hierarchy */
1620 struct list_head tmp_links;
1621 struct cgroup *root_cgrp = &root->top_cgroup;
1622 struct cgroupfs_root *existing_root;
1623 const struct cred *cred;
1624 int i;
1625 struct css_set *cset;
1627 BUG_ON(sb->s_root != NULL);
1629 ret = cgroup_get_rootdir(sb);
1630 if (ret)
1631 goto drop_new_super;
1632 inode = sb->s_root->d_inode;
1634 mutex_lock(&inode->i_mutex);
1635 mutex_lock(&cgroup_mutex);
1636 mutex_lock(&cgroup_root_mutex);
1638 /* Check for name clashes with existing mounts */
1639 ret = -EBUSY;
1640 if (strlen(root->name))
1641 for_each_active_root(existing_root)
1642 if (!strcmp(existing_root->name, root->name))
1643 goto unlock_drop;
1646 * We're accessing css_set_count without locking
1647 * css_set_lock here, but that's OK - it can only be
1648 * increased by someone holding cgroup_lock, and
1649 * that's us. The worst that can happen is that we
1650 * have some link structures left over
1652 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1653 if (ret)
1654 goto unlock_drop;
1656 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1657 ret = cgroup_init_root_id(root, 2, 0);
1658 if (ret)
1659 goto unlock_drop;
1661 ret = rebind_subsystems(root, root->subsys_mask, 0);
1662 if (ret == -EBUSY) {
1663 free_cgrp_cset_links(&tmp_links);
1664 goto unlock_drop;
1667 * There must be no failure case after here, since rebinding
1668 * takes care of subsystems' refcounts, which are explicitly
1669 * dropped in the failure exit path.
1672 /* EBUSY should be the only error here */
1673 BUG_ON(ret);
1675 list_add(&root->root_list, &cgroup_roots);
1676 cgroup_root_count++;
1678 sb->s_root->d_fsdata = root_cgrp;
1679 root->top_cgroup.dentry = sb->s_root;
1681 /* Link the top cgroup in this hierarchy into all
1682 * the css_set objects */
1683 write_lock(&css_set_lock);
1684 hash_for_each(css_set_table, i, cset, hlist)
1685 link_css_set(&tmp_links, cset, root_cgrp);
1686 write_unlock(&css_set_lock);
1688 free_cgrp_cset_links(&tmp_links);
1690 BUG_ON(!list_empty(&root_cgrp->children));
1691 BUG_ON(root->number_of_cgroups != 1);
1693 cred = override_creds(&init_cred);
1694 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
1695 revert_creds(cred);
1696 mutex_unlock(&cgroup_root_mutex);
1697 mutex_unlock(&cgroup_mutex);
1698 mutex_unlock(&inode->i_mutex);
1699 } else {
1701 * We re-used an existing hierarchy - the new root (if
1702 * any) is not needed
1704 cgroup_free_root(opts.new_root);
1706 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
1707 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1708 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1709 ret = -EINVAL;
1710 goto drop_new_super;
1711 } else {
1712 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1716 /* no subsys rebinding, so refcounts don't change */
1717 drop_parsed_module_refcounts(opts.subsys_mask);
1720 kfree(opts.release_agent);
1721 kfree(opts.name);
1722 return dget(sb->s_root);
1724 unlock_drop:
1725 cgroup_exit_root_id(root);
1726 mutex_unlock(&cgroup_root_mutex);
1727 mutex_unlock(&cgroup_mutex);
1728 mutex_unlock(&inode->i_mutex);
1729 drop_new_super:
1730 deactivate_locked_super(sb);
1731 drop_modules:
1732 drop_parsed_module_refcounts(opts.subsys_mask);
1733 out_err:
1734 kfree(opts.release_agent);
1735 kfree(opts.name);
1736 return ERR_PTR(ret);
1739 static void cgroup_kill_sb(struct super_block *sb) {
1740 struct cgroupfs_root *root = sb->s_fs_info;
1741 struct cgroup *cgrp = &root->top_cgroup;
1742 struct cgrp_cset_link *link, *tmp_link;
1743 int ret;
1745 BUG_ON(!root);
1747 BUG_ON(root->number_of_cgroups != 1);
1748 BUG_ON(!list_empty(&cgrp->children));
1750 mutex_lock(&cgroup_mutex);
1751 mutex_lock(&cgroup_root_mutex);
1753 /* Rebind all subsystems back to the default hierarchy */
1754 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
1755 ret = rebind_subsystems(root, 0, root->subsys_mask);
1756 /* Shouldn't be able to fail ... */
1757 BUG_ON(ret);
1761 * Release all the links from cset_links to this hierarchy's
1762 * root cgroup
1764 write_lock(&css_set_lock);
1766 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1767 list_del(&link->cset_link);
1768 list_del(&link->cgrp_link);
1769 kfree(link);
1771 write_unlock(&css_set_lock);
1773 if (!list_empty(&root->root_list)) {
1774 list_del(&root->root_list);
1775 cgroup_root_count--;
1778 cgroup_exit_root_id(root);
1780 mutex_unlock(&cgroup_root_mutex);
1781 mutex_unlock(&cgroup_mutex);
1783 simple_xattrs_free(&cgrp->xattrs);
1785 kill_litter_super(sb);
1786 cgroup_free_root(root);
1789 static struct file_system_type cgroup_fs_type = {
1790 .name = "cgroup",
1791 .mount = cgroup_mount,
1792 .kill_sb = cgroup_kill_sb,
1795 static struct kobject *cgroup_kobj;
1798 * cgroup_path - generate the path of a cgroup
1799 * @cgrp: the cgroup in question
1800 * @buf: the buffer to write the path into
1801 * @buflen: the length of the buffer
1803 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1805 * We can't generate cgroup path using dentry->d_name, as accessing
1806 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1807 * inode's i_mutex, while on the other hand cgroup_path() can be called
1808 * with some irq-safe spinlocks held.
1810 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1812 int ret = -ENAMETOOLONG;
1813 char *start;
1815 if (!cgrp->parent) {
1816 if (strlcpy(buf, "/", buflen) >= buflen)
1817 return -ENAMETOOLONG;
1818 return 0;
1821 start = buf + buflen - 1;
1822 *start = '\0';
1824 rcu_read_lock();
1825 do {
1826 const char *name = cgroup_name(cgrp);
1827 int len;
1829 len = strlen(name);
1830 if ((start -= len) < buf)
1831 goto out;
1832 memcpy(start, name, len);
1834 if (--start < buf)
1835 goto out;
1836 *start = '/';
1838 cgrp = cgrp->parent;
1839 } while (cgrp->parent);
1840 ret = 0;
1841 memmove(buf, start, buf + buflen - start);
1842 out:
1843 rcu_read_unlock();
1844 return ret;
1846 EXPORT_SYMBOL_GPL(cgroup_path);
1849 * task_cgroup_path_from_hierarchy - cgroup path of a task on a hierarchy
1850 * @task: target task
1851 * @hierarchy_id: the hierarchy to look up @task's cgroup from
1852 * @buf: the buffer to write the path into
1853 * @buflen: the length of the buffer
1855 * Determine @task's cgroup on the hierarchy specified by @hierarchy_id and
1856 * copy its path into @buf. This function grabs cgroup_mutex and shouldn't
1857 * be used inside locks used by cgroup controller callbacks.
1859 int task_cgroup_path_from_hierarchy(struct task_struct *task, int hierarchy_id,
1860 char *buf, size_t buflen)
1862 struct cgroupfs_root *root;
1863 struct cgroup *cgrp = NULL;
1864 int ret = -ENOENT;
1866 mutex_lock(&cgroup_mutex);
1868 root = idr_find(&cgroup_hierarchy_idr, hierarchy_id);
1869 if (root) {
1870 cgrp = task_cgroup_from_root(task, root);
1871 ret = cgroup_path(cgrp, buf, buflen);
1874 mutex_unlock(&cgroup_mutex);
1876 return ret;
1878 EXPORT_SYMBOL_GPL(task_cgroup_path_from_hierarchy);
1881 * Control Group taskset
1883 struct task_and_cgroup {
1884 struct task_struct *task;
1885 struct cgroup *cgrp;
1886 struct css_set *cg;
1889 struct cgroup_taskset {
1890 struct task_and_cgroup single;
1891 struct flex_array *tc_array;
1892 int tc_array_len;
1893 int idx;
1894 struct cgroup *cur_cgrp;
1898 * cgroup_taskset_first - reset taskset and return the first task
1899 * @tset: taskset of interest
1901 * @tset iteration is initialized and the first task is returned.
1903 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1905 if (tset->tc_array) {
1906 tset->idx = 0;
1907 return cgroup_taskset_next(tset);
1908 } else {
1909 tset->cur_cgrp = tset->single.cgrp;
1910 return tset->single.task;
1913 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1916 * cgroup_taskset_next - iterate to the next task in taskset
1917 * @tset: taskset of interest
1919 * Return the next task in @tset. Iteration must have been initialized
1920 * with cgroup_taskset_first().
1922 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1924 struct task_and_cgroup *tc;
1926 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1927 return NULL;
1929 tc = flex_array_get(tset->tc_array, tset->idx++);
1930 tset->cur_cgrp = tc->cgrp;
1931 return tc->task;
1933 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1936 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1937 * @tset: taskset of interest
1939 * Return the cgroup for the current (last returned) task of @tset. This
1940 * function must be preceded by either cgroup_taskset_first() or
1941 * cgroup_taskset_next().
1943 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1945 return tset->cur_cgrp;
1947 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1950 * cgroup_taskset_size - return the number of tasks in taskset
1951 * @tset: taskset of interest
1953 int cgroup_taskset_size(struct cgroup_taskset *tset)
1955 return tset->tc_array ? tset->tc_array_len : 1;
1957 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1961 * cgroup_task_migrate - move a task from one cgroup to another.
1963 * Must be called with cgroup_mutex and threadgroup locked.
1965 static void cgroup_task_migrate(struct cgroup *old_cgrp,
1966 struct task_struct *tsk,
1967 struct css_set *new_cset)
1969 struct css_set *old_cset;
1972 * We are synchronized through threadgroup_lock() against PF_EXITING
1973 * setting such that we can't race against cgroup_exit() changing the
1974 * css_set to init_css_set and dropping the old one.
1976 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1977 old_cset = task_css_set(tsk);
1979 task_lock(tsk);
1980 rcu_assign_pointer(tsk->cgroups, new_cset);
1981 task_unlock(tsk);
1983 /* Update the css_set linked lists if we're using them */
1984 write_lock(&css_set_lock);
1985 if (!list_empty(&tsk->cg_list))
1986 list_move(&tsk->cg_list, &new_cset->tasks);
1987 write_unlock(&css_set_lock);
1990 * We just gained a reference on old_cset by taking it from the
1991 * task. As trading it for new_cset is protected by cgroup_mutex,
1992 * we're safe to drop it here; it will be freed under RCU.
1994 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1995 put_css_set(old_cset);
1999 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2000 * @cgrp: the cgroup to attach to
2001 * @tsk: the task or the leader of the threadgroup to be attached
2002 * @threadgroup: attach the whole threadgroup?
2004 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2005 * task_lock of @tsk or each thread in the threadgroup individually in turn.
2007 static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
2008 bool threadgroup)
2010 int retval, i, group_size;
2011 struct cgroup_subsys *ss, *failed_ss = NULL;
2012 struct cgroupfs_root *root = cgrp->root;
2013 /* threadgroup list cursor and array */
2014 struct task_struct *leader = tsk;
2015 struct task_and_cgroup *tc;
2016 struct flex_array *group;
2017 struct cgroup_taskset tset = { };
2020 * step 0: in order to do expensive, possibly blocking operations for
2021 * every thread, we cannot iterate the thread group list, since it needs
2022 * rcu or tasklist locked. instead, build an array of all threads in the
2023 * group - group_rwsem prevents new threads from appearing, and if
2024 * threads exit, this will just be an over-estimate.
2026 if (threadgroup)
2027 group_size = get_nr_threads(tsk);
2028 else
2029 group_size = 1;
2030 /* flex_array supports very large thread-groups better than kmalloc. */
2031 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2032 if (!group)
2033 return -ENOMEM;
2034 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2035 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
2036 if (retval)
2037 goto out_free_group_list;
2039 i = 0;
2041 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2042 * already PF_EXITING could be freed from underneath us unless we
2043 * take an rcu_read_lock.
2045 rcu_read_lock();
2046 do {
2047 struct task_and_cgroup ent;
2049 /* @tsk either already exited or can't exit until the end */
2050 if (tsk->flags & PF_EXITING)
2051 continue;
2053 /* as per above, nr_threads may decrease, but not increase. */
2054 BUG_ON(i >= group_size);
2055 ent.task = tsk;
2056 ent.cgrp = task_cgroup_from_root(tsk, root);
2057 /* nothing to do if this task is already in the cgroup */
2058 if (ent.cgrp == cgrp)
2059 continue;
2061 * saying GFP_ATOMIC has no effect here because we did prealloc
2062 * earlier, but it's good form to communicate our expectations.
2064 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2065 BUG_ON(retval != 0);
2066 i++;
2068 if (!threadgroup)
2069 break;
2070 } while_each_thread(leader, tsk);
2071 rcu_read_unlock();
2072 /* remember the number of threads in the array for later. */
2073 group_size = i;
2074 tset.tc_array = group;
2075 tset.tc_array_len = group_size;
2077 /* methods shouldn't be called if no task is actually migrating */
2078 retval = 0;
2079 if (!group_size)
2080 goto out_free_group_list;
2083 * step 1: check that we can legitimately attach to the cgroup.
2085 for_each_root_subsys(root, ss) {
2086 if (ss->can_attach) {
2087 retval = ss->can_attach(cgrp, &tset);
2088 if (retval) {
2089 failed_ss = ss;
2090 goto out_cancel_attach;
2096 * step 2: make sure css_sets exist for all threads to be migrated.
2097 * we use find_css_set, which allocates a new one if necessary.
2099 for (i = 0; i < group_size; i++) {
2100 struct css_set *old_cset;
2102 tc = flex_array_get(group, i);
2103 old_cset = task_css_set(tc->task);
2104 tc->cg = find_css_set(old_cset, cgrp);
2105 if (!tc->cg) {
2106 retval = -ENOMEM;
2107 goto out_put_css_set_refs;
2112 * step 3: now that we're guaranteed success wrt the css_sets,
2113 * proceed to move all tasks to the new cgroup. There are no
2114 * failure cases after here, so this is the commit point.
2116 for (i = 0; i < group_size; i++) {
2117 tc = flex_array_get(group, i);
2118 cgroup_task_migrate(tc->cgrp, tc->task, tc->cg);
2120 /* nothing is sensitive to fork() after this point. */
2123 * step 4: do subsystem attach callbacks.
2125 for_each_root_subsys(root, ss) {
2126 if (ss->attach)
2127 ss->attach(cgrp, &tset);
2131 * step 5: success! and cleanup
2133 retval = 0;
2134 out_put_css_set_refs:
2135 if (retval) {
2136 for (i = 0; i < group_size; i++) {
2137 tc = flex_array_get(group, i);
2138 if (!tc->cg)
2139 break;
2140 put_css_set(tc->cg);
2143 out_cancel_attach:
2144 if (retval) {
2145 for_each_root_subsys(root, ss) {
2146 if (ss == failed_ss)
2147 break;
2148 if (ss->cancel_attach)
2149 ss->cancel_attach(cgrp, &tset);
2152 out_free_group_list:
2153 flex_array_free(group);
2154 return retval;
2158 * Find the task_struct of the task to attach by vpid and pass it along to the
2159 * function to attach either it or all tasks in its threadgroup. Will lock
2160 * cgroup_mutex and threadgroup; may take task_lock of task.
2162 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2164 struct task_struct *tsk;
2165 const struct cred *cred = current_cred(), *tcred;
2166 int ret;
2168 if (!cgroup_lock_live_group(cgrp))
2169 return -ENODEV;
2171 retry_find_task:
2172 rcu_read_lock();
2173 if (pid) {
2174 tsk = find_task_by_vpid(pid);
2175 if (!tsk) {
2176 rcu_read_unlock();
2177 ret= -ESRCH;
2178 goto out_unlock_cgroup;
2181 * even if we're attaching all tasks in the thread group, we
2182 * only need to check permissions on one of them.
2184 tcred = __task_cred(tsk);
2185 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2186 !uid_eq(cred->euid, tcred->uid) &&
2187 !uid_eq(cred->euid, tcred->suid)) {
2188 rcu_read_unlock();
2189 ret = -EACCES;
2190 goto out_unlock_cgroup;
2192 } else
2193 tsk = current;
2195 if (threadgroup)
2196 tsk = tsk->group_leader;
2199 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2200 * trapped in a cpuset, or RT worker may be born in a cgroup
2201 * with no rt_runtime allocated. Just say no.
2203 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2204 ret = -EINVAL;
2205 rcu_read_unlock();
2206 goto out_unlock_cgroup;
2209 get_task_struct(tsk);
2210 rcu_read_unlock();
2212 threadgroup_lock(tsk);
2213 if (threadgroup) {
2214 if (!thread_group_leader(tsk)) {
2216 * a race with de_thread from another thread's exec()
2217 * may strip us of our leadership, if this happens,
2218 * there is no choice but to throw this task away and
2219 * try again; this is
2220 * "double-double-toil-and-trouble-check locking".
2222 threadgroup_unlock(tsk);
2223 put_task_struct(tsk);
2224 goto retry_find_task;
2228 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2230 threadgroup_unlock(tsk);
2232 put_task_struct(tsk);
2233 out_unlock_cgroup:
2234 mutex_unlock(&cgroup_mutex);
2235 return ret;
2239 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2240 * @from: attach to all cgroups of a given task
2241 * @tsk: the task to be attached
2243 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2245 struct cgroupfs_root *root;
2246 int retval = 0;
2248 mutex_lock(&cgroup_mutex);
2249 for_each_active_root(root) {
2250 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2252 retval = cgroup_attach_task(from_cg, tsk, false);
2253 if (retval)
2254 break;
2256 mutex_unlock(&cgroup_mutex);
2258 return retval;
2260 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2262 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2264 return attach_task_by_pid(cgrp, pid, false);
2267 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2269 return attach_task_by_pid(cgrp, tgid, true);
2272 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2273 const char *buffer)
2275 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2276 if (strlen(buffer) >= PATH_MAX)
2277 return -EINVAL;
2278 if (!cgroup_lock_live_group(cgrp))
2279 return -ENODEV;
2280 mutex_lock(&cgroup_root_mutex);
2281 strcpy(cgrp->root->release_agent_path, buffer);
2282 mutex_unlock(&cgroup_root_mutex);
2283 mutex_unlock(&cgroup_mutex);
2284 return 0;
2287 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2288 struct seq_file *seq)
2290 if (!cgroup_lock_live_group(cgrp))
2291 return -ENODEV;
2292 seq_puts(seq, cgrp->root->release_agent_path);
2293 seq_putc(seq, '\n');
2294 mutex_unlock(&cgroup_mutex);
2295 return 0;
2298 static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft,
2299 struct seq_file *seq)
2301 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
2302 return 0;
2305 /* A buffer size big enough for numbers or short strings */
2306 #define CGROUP_LOCAL_BUFFER_SIZE 64
2308 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2309 struct file *file,
2310 const char __user *userbuf,
2311 size_t nbytes, loff_t *unused_ppos)
2313 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2314 int retval = 0;
2315 char *end;
2317 if (!nbytes)
2318 return -EINVAL;
2319 if (nbytes >= sizeof(buffer))
2320 return -E2BIG;
2321 if (copy_from_user(buffer, userbuf, nbytes))
2322 return -EFAULT;
2324 buffer[nbytes] = 0; /* nul-terminate */
2325 if (cft->write_u64) {
2326 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2327 if (*end)
2328 return -EINVAL;
2329 retval = cft->write_u64(cgrp, cft, val);
2330 } else {
2331 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2332 if (*end)
2333 return -EINVAL;
2334 retval = cft->write_s64(cgrp, cft, val);
2336 if (!retval)
2337 retval = nbytes;
2338 return retval;
2341 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2342 struct file *file,
2343 const char __user *userbuf,
2344 size_t nbytes, loff_t *unused_ppos)
2346 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2347 int retval = 0;
2348 size_t max_bytes = cft->max_write_len;
2349 char *buffer = local_buffer;
2351 if (!max_bytes)
2352 max_bytes = sizeof(local_buffer) - 1;
2353 if (nbytes >= max_bytes)
2354 return -E2BIG;
2355 /* Allocate a dynamic buffer if we need one */
2356 if (nbytes >= sizeof(local_buffer)) {
2357 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2358 if (buffer == NULL)
2359 return -ENOMEM;
2361 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2362 retval = -EFAULT;
2363 goto out;
2366 buffer[nbytes] = 0; /* nul-terminate */
2367 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2368 if (!retval)
2369 retval = nbytes;
2370 out:
2371 if (buffer != local_buffer)
2372 kfree(buffer);
2373 return retval;
2376 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2377 size_t nbytes, loff_t *ppos)
2379 struct cftype *cft = __d_cft(file->f_dentry);
2380 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2382 if (cgroup_is_dead(cgrp))
2383 return -ENODEV;
2384 if (cft->write)
2385 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2386 if (cft->write_u64 || cft->write_s64)
2387 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2388 if (cft->write_string)
2389 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2390 if (cft->trigger) {
2391 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2392 return ret ? ret : nbytes;
2394 return -EINVAL;
2397 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2398 struct file *file,
2399 char __user *buf, size_t nbytes,
2400 loff_t *ppos)
2402 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2403 u64 val = cft->read_u64(cgrp, cft);
2404 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2406 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2409 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2410 struct file *file,
2411 char __user *buf, size_t nbytes,
2412 loff_t *ppos)
2414 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2415 s64 val = cft->read_s64(cgrp, cft);
2416 int len = sprintf(tmp, "%lld\n", (long long) val);
2418 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2421 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2422 size_t nbytes, loff_t *ppos)
2424 struct cftype *cft = __d_cft(file->f_dentry);
2425 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2427 if (cgroup_is_dead(cgrp))
2428 return -ENODEV;
2430 if (cft->read)
2431 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2432 if (cft->read_u64)
2433 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2434 if (cft->read_s64)
2435 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2436 return -EINVAL;
2440 * seqfile ops/methods for returning structured data. Currently just
2441 * supports string->u64 maps, but can be extended in future.
2444 struct cgroup_seqfile_state {
2445 struct cftype *cft;
2446 struct cgroup *cgroup;
2449 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2451 struct seq_file *sf = cb->state;
2452 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2455 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2457 struct cgroup_seqfile_state *state = m->private;
2458 struct cftype *cft = state->cft;
2459 if (cft->read_map) {
2460 struct cgroup_map_cb cb = {
2461 .fill = cgroup_map_add,
2462 .state = m,
2464 return cft->read_map(state->cgroup, cft, &cb);
2466 return cft->read_seq_string(state->cgroup, cft, m);
2469 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2471 struct seq_file *seq = file->private_data;
2472 kfree(seq->private);
2473 return single_release(inode, file);
2476 static const struct file_operations cgroup_seqfile_operations = {
2477 .read = seq_read,
2478 .write = cgroup_file_write,
2479 .llseek = seq_lseek,
2480 .release = cgroup_seqfile_release,
2483 static int cgroup_file_open(struct inode *inode, struct file *file)
2485 int err;
2486 struct cftype *cft;
2488 err = generic_file_open(inode, file);
2489 if (err)
2490 return err;
2491 cft = __d_cft(file->f_dentry);
2493 if (cft->read_map || cft->read_seq_string) {
2494 struct cgroup_seqfile_state *state;
2496 state = kzalloc(sizeof(*state), GFP_USER);
2497 if (!state)
2498 return -ENOMEM;
2500 state->cft = cft;
2501 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2502 file->f_op = &cgroup_seqfile_operations;
2503 err = single_open(file, cgroup_seqfile_show, state);
2504 if (err < 0)
2505 kfree(state);
2506 } else if (cft->open)
2507 err = cft->open(inode, file);
2508 else
2509 err = 0;
2511 return err;
2514 static int cgroup_file_release(struct inode *inode, struct file *file)
2516 struct cftype *cft = __d_cft(file->f_dentry);
2517 if (cft->release)
2518 return cft->release(inode, file);
2519 return 0;
2523 * cgroup_rename - Only allow simple rename of directories in place.
2525 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2526 struct inode *new_dir, struct dentry *new_dentry)
2528 int ret;
2529 struct cgroup_name *name, *old_name;
2530 struct cgroup *cgrp;
2533 * It's convinient to use parent dir's i_mutex to protected
2534 * cgrp->name.
2536 lockdep_assert_held(&old_dir->i_mutex);
2538 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2539 return -ENOTDIR;
2540 if (new_dentry->d_inode)
2541 return -EEXIST;
2542 if (old_dir != new_dir)
2543 return -EIO;
2545 cgrp = __d_cgrp(old_dentry);
2548 * This isn't a proper migration and its usefulness is very
2549 * limited. Disallow if sane_behavior.
2551 if (cgroup_sane_behavior(cgrp))
2552 return -EPERM;
2554 name = cgroup_alloc_name(new_dentry);
2555 if (!name)
2556 return -ENOMEM;
2558 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2559 if (ret) {
2560 kfree(name);
2561 return ret;
2564 old_name = rcu_dereference_protected(cgrp->name, true);
2565 rcu_assign_pointer(cgrp->name, name);
2567 kfree_rcu(old_name, rcu_head);
2568 return 0;
2571 static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2573 if (S_ISDIR(dentry->d_inode->i_mode))
2574 return &__d_cgrp(dentry)->xattrs;
2575 else
2576 return &__d_cfe(dentry)->xattrs;
2579 static inline int xattr_enabled(struct dentry *dentry)
2581 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2582 return root->flags & CGRP_ROOT_XATTR;
2585 static bool is_valid_xattr(const char *name)
2587 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2588 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2589 return true;
2590 return false;
2593 static int cgroup_setxattr(struct dentry *dentry, const char *name,
2594 const void *val, size_t size, int flags)
2596 if (!xattr_enabled(dentry))
2597 return -EOPNOTSUPP;
2598 if (!is_valid_xattr(name))
2599 return -EINVAL;
2600 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2603 static int cgroup_removexattr(struct dentry *dentry, const char *name)
2605 if (!xattr_enabled(dentry))
2606 return -EOPNOTSUPP;
2607 if (!is_valid_xattr(name))
2608 return -EINVAL;
2609 return simple_xattr_remove(__d_xattrs(dentry), name);
2612 static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2613 void *buf, size_t size)
2615 if (!xattr_enabled(dentry))
2616 return -EOPNOTSUPP;
2617 if (!is_valid_xattr(name))
2618 return -EINVAL;
2619 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2622 static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2624 if (!xattr_enabled(dentry))
2625 return -EOPNOTSUPP;
2626 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2629 static const struct file_operations cgroup_file_operations = {
2630 .read = cgroup_file_read,
2631 .write = cgroup_file_write,
2632 .llseek = generic_file_llseek,
2633 .open = cgroup_file_open,
2634 .release = cgroup_file_release,
2637 static const struct inode_operations cgroup_file_inode_operations = {
2638 .setxattr = cgroup_setxattr,
2639 .getxattr = cgroup_getxattr,
2640 .listxattr = cgroup_listxattr,
2641 .removexattr = cgroup_removexattr,
2644 static const struct inode_operations cgroup_dir_inode_operations = {
2645 .lookup = cgroup_lookup,
2646 .mkdir = cgroup_mkdir,
2647 .rmdir = cgroup_rmdir,
2648 .rename = cgroup_rename,
2649 .setxattr = cgroup_setxattr,
2650 .getxattr = cgroup_getxattr,
2651 .listxattr = cgroup_listxattr,
2652 .removexattr = cgroup_removexattr,
2655 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2657 if (dentry->d_name.len > NAME_MAX)
2658 return ERR_PTR(-ENAMETOOLONG);
2659 d_add(dentry, NULL);
2660 return NULL;
2664 * Check if a file is a control file
2666 static inline struct cftype *__file_cft(struct file *file)
2668 if (file_inode(file)->i_fop != &cgroup_file_operations)
2669 return ERR_PTR(-EINVAL);
2670 return __d_cft(file->f_dentry);
2673 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2674 struct super_block *sb)
2676 struct inode *inode;
2678 if (!dentry)
2679 return -ENOENT;
2680 if (dentry->d_inode)
2681 return -EEXIST;
2683 inode = cgroup_new_inode(mode, sb);
2684 if (!inode)
2685 return -ENOMEM;
2687 if (S_ISDIR(mode)) {
2688 inode->i_op = &cgroup_dir_inode_operations;
2689 inode->i_fop = &simple_dir_operations;
2691 /* start off with i_nlink == 2 (for "." entry) */
2692 inc_nlink(inode);
2693 inc_nlink(dentry->d_parent->d_inode);
2696 * Control reaches here with cgroup_mutex held.
2697 * @inode->i_mutex should nest outside cgroup_mutex but we
2698 * want to populate it immediately without releasing
2699 * cgroup_mutex. As @inode isn't visible to anyone else
2700 * yet, trylock will always succeed without affecting
2701 * lockdep checks.
2703 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
2704 } else if (S_ISREG(mode)) {
2705 inode->i_size = 0;
2706 inode->i_fop = &cgroup_file_operations;
2707 inode->i_op = &cgroup_file_inode_operations;
2709 d_instantiate(dentry, inode);
2710 dget(dentry); /* Extra count - pin the dentry in core */
2711 return 0;
2715 * cgroup_file_mode - deduce file mode of a control file
2716 * @cft: the control file in question
2718 * returns cft->mode if ->mode is not 0
2719 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2720 * returns S_IRUGO if it has only a read handler
2721 * returns S_IWUSR if it has only a write hander
2723 static umode_t cgroup_file_mode(const struct cftype *cft)
2725 umode_t mode = 0;
2727 if (cft->mode)
2728 return cft->mode;
2730 if (cft->read || cft->read_u64 || cft->read_s64 ||
2731 cft->read_map || cft->read_seq_string)
2732 mode |= S_IRUGO;
2734 if (cft->write || cft->write_u64 || cft->write_s64 ||
2735 cft->write_string || cft->trigger)
2736 mode |= S_IWUSR;
2738 return mode;
2741 static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2742 struct cftype *cft)
2744 struct dentry *dir = cgrp->dentry;
2745 struct cgroup *parent = __d_cgrp(dir);
2746 struct dentry *dentry;
2747 struct cfent *cfe;
2748 int error;
2749 umode_t mode;
2750 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2752 if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2753 strcpy(name, subsys->name);
2754 strcat(name, ".");
2756 strcat(name, cft->name);
2758 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2760 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2761 if (!cfe)
2762 return -ENOMEM;
2764 dentry = lookup_one_len(name, dir, strlen(name));
2765 if (IS_ERR(dentry)) {
2766 error = PTR_ERR(dentry);
2767 goto out;
2770 cfe->type = (void *)cft;
2771 cfe->dentry = dentry;
2772 dentry->d_fsdata = cfe;
2773 simple_xattrs_init(&cfe->xattrs);
2775 mode = cgroup_file_mode(cft);
2776 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2777 if (!error) {
2778 list_add_tail(&cfe->node, &parent->files);
2779 cfe = NULL;
2781 dput(dentry);
2782 out:
2783 kfree(cfe);
2784 return error;
2787 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2788 struct cftype cfts[], bool is_add)
2790 struct cftype *cft;
2791 int err, ret = 0;
2793 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2794 /* does cft->flags tell us to skip this file on @cgrp? */
2795 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2796 continue;
2797 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2798 continue;
2799 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2800 continue;
2802 if (is_add) {
2803 err = cgroup_add_file(cgrp, subsys, cft);
2804 if (err)
2805 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2806 cft->name, err);
2807 ret = err;
2808 } else {
2809 cgroup_rm_file(cgrp, cft);
2812 return ret;
2815 static void cgroup_cfts_prepare(void)
2816 __acquires(&cgroup_mutex)
2819 * Thanks to the entanglement with vfs inode locking, we can't walk
2820 * the existing cgroups under cgroup_mutex and create files.
2821 * Instead, we use cgroup_for_each_descendant_pre() and drop RCU
2822 * read lock before calling cgroup_addrm_files().
2824 mutex_lock(&cgroup_mutex);
2827 static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2828 struct cftype *cfts, bool is_add)
2829 __releases(&cgroup_mutex)
2831 LIST_HEAD(pending);
2832 struct cgroup *cgrp, *root = &ss->root->top_cgroup;
2833 struct super_block *sb = ss->root->sb;
2834 struct dentry *prev = NULL;
2835 struct inode *inode;
2836 u64 update_before;
2838 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2839 if (!cfts || ss->root == &cgroup_dummy_root ||
2840 !atomic_inc_not_zero(&sb->s_active)) {
2841 mutex_unlock(&cgroup_mutex);
2842 return;
2846 * All cgroups which are created after we drop cgroup_mutex will
2847 * have the updated set of files, so we only need to update the
2848 * cgroups created before the current @cgroup_serial_nr_next.
2850 update_before = cgroup_serial_nr_next;
2852 mutex_unlock(&cgroup_mutex);
2854 /* @root always needs to be updated */
2855 inode = root->dentry->d_inode;
2856 mutex_lock(&inode->i_mutex);
2857 mutex_lock(&cgroup_mutex);
2858 cgroup_addrm_files(root, ss, cfts, is_add);
2859 mutex_unlock(&cgroup_mutex);
2860 mutex_unlock(&inode->i_mutex);
2862 /* add/rm files for all cgroups created before */
2863 rcu_read_lock();
2864 cgroup_for_each_descendant_pre(cgrp, root) {
2865 if (cgroup_is_dead(cgrp))
2866 continue;
2868 inode = cgrp->dentry->d_inode;
2869 dget(cgrp->dentry);
2870 rcu_read_unlock();
2872 dput(prev);
2873 prev = cgrp->dentry;
2875 mutex_lock(&inode->i_mutex);
2876 mutex_lock(&cgroup_mutex);
2877 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
2878 cgroup_addrm_files(cgrp, ss, cfts, is_add);
2879 mutex_unlock(&cgroup_mutex);
2880 mutex_unlock(&inode->i_mutex);
2882 rcu_read_lock();
2884 rcu_read_unlock();
2885 dput(prev);
2886 deactivate_super(sb);
2890 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2891 * @ss: target cgroup subsystem
2892 * @cfts: zero-length name terminated array of cftypes
2894 * Register @cfts to @ss. Files described by @cfts are created for all
2895 * existing cgroups to which @ss is attached and all future cgroups will
2896 * have them too. This function can be called anytime whether @ss is
2897 * attached or not.
2899 * Returns 0 on successful registration, -errno on failure. Note that this
2900 * function currently returns 0 as long as @cfts registration is successful
2901 * even if some file creation attempts on existing cgroups fail.
2903 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2905 struct cftype_set *set;
2907 set = kzalloc(sizeof(*set), GFP_KERNEL);
2908 if (!set)
2909 return -ENOMEM;
2911 cgroup_cfts_prepare();
2912 set->cfts = cfts;
2913 list_add_tail(&set->node, &ss->cftsets);
2914 cgroup_cfts_commit(ss, cfts, true);
2916 return 0;
2918 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2921 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2922 * @ss: target cgroup subsystem
2923 * @cfts: zero-length name terminated array of cftypes
2925 * Unregister @cfts from @ss. Files described by @cfts are removed from
2926 * all existing cgroups to which @ss is attached and all future cgroups
2927 * won't have them either. This function can be called anytime whether @ss
2928 * is attached or not.
2930 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2931 * registered with @ss.
2933 int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2935 struct cftype_set *set;
2937 cgroup_cfts_prepare();
2939 list_for_each_entry(set, &ss->cftsets, node) {
2940 if (set->cfts == cfts) {
2941 list_del(&set->node);
2942 kfree(set);
2943 cgroup_cfts_commit(ss, cfts, false);
2944 return 0;
2948 cgroup_cfts_commit(ss, NULL, false);
2949 return -ENOENT;
2953 * cgroup_task_count - count the number of tasks in a cgroup.
2954 * @cgrp: the cgroup in question
2956 * Return the number of tasks in the cgroup.
2958 int cgroup_task_count(const struct cgroup *cgrp)
2960 int count = 0;
2961 struct cgrp_cset_link *link;
2963 read_lock(&css_set_lock);
2964 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2965 count += atomic_read(&link->cset->refcount);
2966 read_unlock(&css_set_lock);
2967 return count;
2971 * Advance a list_head iterator. The iterator should be positioned at
2972 * the start of a css_set
2974 static void cgroup_advance_iter(struct cgroup *cgrp, struct cgroup_iter *it)
2976 struct list_head *l = it->cset_link;
2977 struct cgrp_cset_link *link;
2978 struct css_set *cset;
2980 /* Advance to the next non-empty css_set */
2981 do {
2982 l = l->next;
2983 if (l == &cgrp->cset_links) {
2984 it->cset_link = NULL;
2985 return;
2987 link = list_entry(l, struct cgrp_cset_link, cset_link);
2988 cset = link->cset;
2989 } while (list_empty(&cset->tasks));
2990 it->cset_link = l;
2991 it->task = cset->tasks.next;
2995 * To reduce the fork() overhead for systems that are not actually
2996 * using their cgroups capability, we don't maintain the lists running
2997 * through each css_set to its tasks until we see the list actually
2998 * used - in other words after the first call to cgroup_iter_start().
3000 static void cgroup_enable_task_cg_lists(void)
3002 struct task_struct *p, *g;
3003 write_lock(&css_set_lock);
3004 use_task_css_set_links = 1;
3006 * We need tasklist_lock because RCU is not safe against
3007 * while_each_thread(). Besides, a forking task that has passed
3008 * cgroup_post_fork() without seeing use_task_css_set_links = 1
3009 * is not guaranteed to have its child immediately visible in the
3010 * tasklist if we walk through it with RCU.
3012 read_lock(&tasklist_lock);
3013 do_each_thread(g, p) {
3014 task_lock(p);
3016 * We should check if the process is exiting, otherwise
3017 * it will race with cgroup_exit() in that the list
3018 * entry won't be deleted though the process has exited.
3020 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
3021 list_add(&p->cg_list, &task_css_set(p)->tasks);
3022 task_unlock(p);
3023 } while_each_thread(g, p);
3024 read_unlock(&tasklist_lock);
3025 write_unlock(&css_set_lock);
3029 * cgroup_next_sibling - find the next sibling of a given cgroup
3030 * @pos: the current cgroup
3032 * This function returns the next sibling of @pos and should be called
3033 * under RCU read lock. The only requirement is that @pos is accessible.
3034 * The next sibling is guaranteed to be returned regardless of @pos's
3035 * state.
3037 struct cgroup *cgroup_next_sibling(struct cgroup *pos)
3039 struct cgroup *next;
3041 WARN_ON_ONCE(!rcu_read_lock_held());
3044 * @pos could already have been removed. Once a cgroup is removed,
3045 * its ->sibling.next is no longer updated when its next sibling
3046 * changes. As CGRP_DEAD assertion is serialized and happens
3047 * before the cgroup is taken off the ->sibling list, if we see it
3048 * unasserted, it's guaranteed that the next sibling hasn't
3049 * finished its grace period even if it's already removed, and thus
3050 * safe to dereference from this RCU critical section. If
3051 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3052 * to be visible as %true here.
3054 if (likely(!cgroup_is_dead(pos))) {
3055 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3056 if (&next->sibling != &pos->parent->children)
3057 return next;
3058 return NULL;
3062 * Can't dereference the next pointer. Each cgroup is given a
3063 * monotonically increasing unique serial number and always
3064 * appended to the sibling list, so the next one can be found by
3065 * walking the parent's children until we see a cgroup with higher
3066 * serial number than @pos's.
3068 * While this path can be slow, it's taken only when either the
3069 * current cgroup is removed or iteration and removal race.
3071 list_for_each_entry_rcu(next, &pos->parent->children, sibling)
3072 if (next->serial_nr > pos->serial_nr)
3073 return next;
3074 return NULL;
3076 EXPORT_SYMBOL_GPL(cgroup_next_sibling);
3079 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
3080 * @pos: the current position (%NULL to initiate traversal)
3081 * @cgroup: cgroup whose descendants to walk
3083 * To be used by cgroup_for_each_descendant_pre(). Find the next
3084 * descendant to visit for pre-order traversal of @cgroup's descendants.
3086 * While this function requires RCU read locking, it doesn't require the
3087 * whole traversal to be contained in a single RCU critical section. This
3088 * function will return the correct next descendant as long as both @pos
3089 * and @cgroup are accessible and @pos is a descendant of @cgroup.
3091 struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
3092 struct cgroup *cgroup)
3094 struct cgroup *next;
3096 WARN_ON_ONCE(!rcu_read_lock_held());
3098 /* if first iteration, pretend we just visited @cgroup */
3099 if (!pos)
3100 pos = cgroup;
3102 /* visit the first child if exists */
3103 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
3104 if (next)
3105 return next;
3107 /* no child, visit my or the closest ancestor's next sibling */
3108 while (pos != cgroup) {
3109 next = cgroup_next_sibling(pos);
3110 if (next)
3111 return next;
3112 pos = pos->parent;
3115 return NULL;
3117 EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
3120 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
3121 * @pos: cgroup of interest
3123 * Return the rightmost descendant of @pos. If there's no descendant,
3124 * @pos is returned. This can be used during pre-order traversal to skip
3125 * subtree of @pos.
3127 * While this function requires RCU read locking, it doesn't require the
3128 * whole traversal to be contained in a single RCU critical section. This
3129 * function will return the correct rightmost descendant as long as @pos is
3130 * accessible.
3132 struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
3134 struct cgroup *last, *tmp;
3136 WARN_ON_ONCE(!rcu_read_lock_held());
3138 do {
3139 last = pos;
3140 /* ->prev isn't RCU safe, walk ->next till the end */
3141 pos = NULL;
3142 list_for_each_entry_rcu(tmp, &last->children, sibling)
3143 pos = tmp;
3144 } while (pos);
3146 return last;
3148 EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
3150 static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3152 struct cgroup *last;
3154 do {
3155 last = pos;
3156 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3157 sibling);
3158 } while (pos);
3160 return last;
3164 * cgroup_next_descendant_post - find the next descendant for post-order walk
3165 * @pos: the current position (%NULL to initiate traversal)
3166 * @cgroup: cgroup whose descendants to walk
3168 * To be used by cgroup_for_each_descendant_post(). Find the next
3169 * descendant to visit for post-order traversal of @cgroup's descendants.
3171 * While this function requires RCU read locking, it doesn't require the
3172 * whole traversal to be contained in a single RCU critical section. This
3173 * function will return the correct next descendant as long as both @pos
3174 * and @cgroup are accessible and @pos is a descendant of @cgroup.
3176 struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3177 struct cgroup *cgroup)
3179 struct cgroup *next;
3181 WARN_ON_ONCE(!rcu_read_lock_held());
3183 /* if first iteration, visit the leftmost descendant */
3184 if (!pos) {
3185 next = cgroup_leftmost_descendant(cgroup);
3186 return next != cgroup ? next : NULL;
3189 /* if there's an unvisited sibling, visit its leftmost descendant */
3190 next = cgroup_next_sibling(pos);
3191 if (next)
3192 return cgroup_leftmost_descendant(next);
3194 /* no sibling left, visit parent */
3195 next = pos->parent;
3196 return next != cgroup ? next : NULL;
3198 EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3200 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
3201 __acquires(css_set_lock)
3204 * The first time anyone tries to iterate across a cgroup,
3205 * we need to enable the list linking each css_set to its
3206 * tasks, and fix up all existing tasks.
3208 if (!use_task_css_set_links)
3209 cgroup_enable_task_cg_lists();
3211 read_lock(&css_set_lock);
3212 it->cset_link = &cgrp->cset_links;
3213 cgroup_advance_iter(cgrp, it);
3216 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
3217 struct cgroup_iter *it)
3219 struct task_struct *res;
3220 struct list_head *l = it->task;
3221 struct cgrp_cset_link *link;
3223 /* If the iterator cg is NULL, we have no tasks */
3224 if (!it->cset_link)
3225 return NULL;
3226 res = list_entry(l, struct task_struct, cg_list);
3227 /* Advance iterator to find next entry */
3228 l = l->next;
3229 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3230 if (l == &link->cset->tasks) {
3231 /* We reached the end of this task list - move on to
3232 * the next cg_cgroup_link */
3233 cgroup_advance_iter(cgrp, it);
3234 } else {
3235 it->task = l;
3237 return res;
3240 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
3241 __releases(css_set_lock)
3243 read_unlock(&css_set_lock);
3246 static inline int started_after_time(struct task_struct *t1,
3247 struct timespec *time,
3248 struct task_struct *t2)
3250 int start_diff = timespec_compare(&t1->start_time, time);
3251 if (start_diff > 0) {
3252 return 1;
3253 } else if (start_diff < 0) {
3254 return 0;
3255 } else {
3257 * Arbitrarily, if two processes started at the same
3258 * time, we'll say that the lower pointer value
3259 * started first. Note that t2 may have exited by now
3260 * so this may not be a valid pointer any longer, but
3261 * that's fine - it still serves to distinguish
3262 * between two tasks started (effectively) simultaneously.
3264 return t1 > t2;
3269 * This function is a callback from heap_insert() and is used to order
3270 * the heap.
3271 * In this case we order the heap in descending task start time.
3273 static inline int started_after(void *p1, void *p2)
3275 struct task_struct *t1 = p1;
3276 struct task_struct *t2 = p2;
3277 return started_after_time(t1, &t2->start_time, t2);
3281 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3282 * @scan: struct cgroup_scanner containing arguments for the scan
3284 * Arguments include pointers to callback functions test_task() and
3285 * process_task().
3286 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3287 * and if it returns true, call process_task() for it also.
3288 * The test_task pointer may be NULL, meaning always true (select all tasks).
3289 * Effectively duplicates cgroup_iter_{start,next,end}()
3290 * but does not lock css_set_lock for the call to process_task().
3291 * The struct cgroup_scanner may be embedded in any structure of the caller's
3292 * creation.
3293 * It is guaranteed that process_task() will act on every task that
3294 * is a member of the cgroup for the duration of this call. This
3295 * function may or may not call process_task() for tasks that exit
3296 * or move to a different cgroup during the call, or are forked or
3297 * move into the cgroup during the call.
3299 * Note that test_task() may be called with locks held, and may in some
3300 * situations be called multiple times for the same task, so it should
3301 * be cheap.
3302 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3303 * pre-allocated and will be used for heap operations (and its "gt" member will
3304 * be overwritten), else a temporary heap will be used (allocation of which
3305 * may cause this function to fail).
3307 int cgroup_scan_tasks(struct cgroup_scanner *scan)
3309 int retval, i;
3310 struct cgroup_iter it;
3311 struct task_struct *p, *dropped;
3312 /* Never dereference latest_task, since it's not refcounted */
3313 struct task_struct *latest_task = NULL;
3314 struct ptr_heap tmp_heap;
3315 struct ptr_heap *heap;
3316 struct timespec latest_time = { 0, 0 };
3318 if (scan->heap) {
3319 /* The caller supplied our heap and pre-allocated its memory */
3320 heap = scan->heap;
3321 heap->gt = &started_after;
3322 } else {
3323 /* We need to allocate our own heap memory */
3324 heap = &tmp_heap;
3325 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3326 if (retval)
3327 /* cannot allocate the heap */
3328 return retval;
3331 again:
3333 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3334 * to determine which are of interest, and using the scanner's
3335 * "process_task" callback to process any of them that need an update.
3336 * Since we don't want to hold any locks during the task updates,
3337 * gather tasks to be processed in a heap structure.
3338 * The heap is sorted by descending task start time.
3339 * If the statically-sized heap fills up, we overflow tasks that
3340 * started later, and in future iterations only consider tasks that
3341 * started after the latest task in the previous pass. This
3342 * guarantees forward progress and that we don't miss any tasks.
3344 heap->size = 0;
3345 cgroup_iter_start(scan->cg, &it);
3346 while ((p = cgroup_iter_next(scan->cg, &it))) {
3348 * Only affect tasks that qualify per the caller's callback,
3349 * if he provided one
3351 if (scan->test_task && !scan->test_task(p, scan))
3352 continue;
3354 * Only process tasks that started after the last task
3355 * we processed
3357 if (!started_after_time(p, &latest_time, latest_task))
3358 continue;
3359 dropped = heap_insert(heap, p);
3360 if (dropped == NULL) {
3362 * The new task was inserted; the heap wasn't
3363 * previously full
3365 get_task_struct(p);
3366 } else if (dropped != p) {
3368 * The new task was inserted, and pushed out a
3369 * different task
3371 get_task_struct(p);
3372 put_task_struct(dropped);
3375 * Else the new task was newer than anything already in
3376 * the heap and wasn't inserted
3379 cgroup_iter_end(scan->cg, &it);
3381 if (heap->size) {
3382 for (i = 0; i < heap->size; i++) {
3383 struct task_struct *q = heap->ptrs[i];
3384 if (i == 0) {
3385 latest_time = q->start_time;
3386 latest_task = q;
3388 /* Process the task per the caller's callback */
3389 scan->process_task(q, scan);
3390 put_task_struct(q);
3393 * If we had to process any tasks at all, scan again
3394 * in case some of them were in the middle of forking
3395 * children that didn't get processed.
3396 * Not the most efficient way to do it, but it avoids
3397 * having to take callback_mutex in the fork path
3399 goto again;
3401 if (heap == &tmp_heap)
3402 heap_free(&tmp_heap);
3403 return 0;
3406 static void cgroup_transfer_one_task(struct task_struct *task,
3407 struct cgroup_scanner *scan)
3409 struct cgroup *new_cgroup = scan->data;
3411 mutex_lock(&cgroup_mutex);
3412 cgroup_attach_task(new_cgroup, task, false);
3413 mutex_unlock(&cgroup_mutex);
3417 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3418 * @to: cgroup to which the tasks will be moved
3419 * @from: cgroup in which the tasks currently reside
3421 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3423 struct cgroup_scanner scan;
3425 scan.cg = from;
3426 scan.test_task = NULL; /* select all tasks in cgroup */
3427 scan.process_task = cgroup_transfer_one_task;
3428 scan.heap = NULL;
3429 scan.data = to;
3431 return cgroup_scan_tasks(&scan);
3435 * Stuff for reading the 'tasks'/'procs' files.
3437 * Reading this file can return large amounts of data if a cgroup has
3438 * *lots* of attached tasks. So it may need several calls to read(),
3439 * but we cannot guarantee that the information we produce is correct
3440 * unless we produce it entirely atomically.
3444 /* which pidlist file are we talking about? */
3445 enum cgroup_filetype {
3446 CGROUP_FILE_PROCS,
3447 CGROUP_FILE_TASKS,
3451 * A pidlist is a list of pids that virtually represents the contents of one
3452 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3453 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3454 * to the cgroup.
3456 struct cgroup_pidlist {
3458 * used to find which pidlist is wanted. doesn't change as long as
3459 * this particular list stays in the list.
3461 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3462 /* array of xids */
3463 pid_t *list;
3464 /* how many elements the above list has */
3465 int length;
3466 /* how many files are using the current array */
3467 int use_count;
3468 /* each of these stored in a list by its cgroup */
3469 struct list_head links;
3470 /* pointer to the cgroup we belong to, for list removal purposes */
3471 struct cgroup *owner;
3472 /* protects the other fields */
3473 struct rw_semaphore mutex;
3477 * The following two functions "fix" the issue where there are more pids
3478 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3479 * TODO: replace with a kernel-wide solution to this problem
3481 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3482 static void *pidlist_allocate(int count)
3484 if (PIDLIST_TOO_LARGE(count))
3485 return vmalloc(count * sizeof(pid_t));
3486 else
3487 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3489 static void pidlist_free(void *p)
3491 if (is_vmalloc_addr(p))
3492 vfree(p);
3493 else
3494 kfree(p);
3498 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3499 * Returns the number of unique elements.
3501 static int pidlist_uniq(pid_t *list, int length)
3503 int src, dest = 1;
3506 * we presume the 0th element is unique, so i starts at 1. trivial
3507 * edge cases first; no work needs to be done for either
3509 if (length == 0 || length == 1)
3510 return length;
3511 /* src and dest walk down the list; dest counts unique elements */
3512 for (src = 1; src < length; src++) {
3513 /* find next unique element */
3514 while (list[src] == list[src-1]) {
3515 src++;
3516 if (src == length)
3517 goto after;
3519 /* dest always points to where the next unique element goes */
3520 list[dest] = list[src];
3521 dest++;
3523 after:
3524 return dest;
3527 static int cmppid(const void *a, const void *b)
3529 return *(pid_t *)a - *(pid_t *)b;
3533 * find the appropriate pidlist for our purpose (given procs vs tasks)
3534 * returns with the lock on that pidlist already held, and takes care
3535 * of the use count, or returns NULL with no locks held if we're out of
3536 * memory.
3538 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3539 enum cgroup_filetype type)
3541 struct cgroup_pidlist *l;
3542 /* don't need task_nsproxy() if we're looking at ourself */
3543 struct pid_namespace *ns = task_active_pid_ns(current);
3546 * We can't drop the pidlist_mutex before taking the l->mutex in case
3547 * the last ref-holder is trying to remove l from the list at the same
3548 * time. Holding the pidlist_mutex precludes somebody taking whichever
3549 * list we find out from under us - compare release_pid_array().
3551 mutex_lock(&cgrp->pidlist_mutex);
3552 list_for_each_entry(l, &cgrp->pidlists, links) {
3553 if (l->key.type == type && l->key.ns == ns) {
3554 /* make sure l doesn't vanish out from under us */
3555 down_write(&l->mutex);
3556 mutex_unlock(&cgrp->pidlist_mutex);
3557 return l;
3560 /* entry not found; create a new one */
3561 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3562 if (!l) {
3563 mutex_unlock(&cgrp->pidlist_mutex);
3564 return l;
3566 init_rwsem(&l->mutex);
3567 down_write(&l->mutex);
3568 l->key.type = type;
3569 l->key.ns = get_pid_ns(ns);
3570 l->owner = cgrp;
3571 list_add(&l->links, &cgrp->pidlists);
3572 mutex_unlock(&cgrp->pidlist_mutex);
3573 return l;
3577 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3579 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3580 struct cgroup_pidlist **lp)
3582 pid_t *array;
3583 int length;
3584 int pid, n = 0; /* used for populating the array */
3585 struct cgroup_iter it;
3586 struct task_struct *tsk;
3587 struct cgroup_pidlist *l;
3590 * If cgroup gets more users after we read count, we won't have
3591 * enough space - tough. This race is indistinguishable to the
3592 * caller from the case that the additional cgroup users didn't
3593 * show up until sometime later on.
3595 length = cgroup_task_count(cgrp);
3596 array = pidlist_allocate(length);
3597 if (!array)
3598 return -ENOMEM;
3599 /* now, populate the array */
3600 cgroup_iter_start(cgrp, &it);
3601 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3602 if (unlikely(n == length))
3603 break;
3604 /* get tgid or pid for procs or tasks file respectively */
3605 if (type == CGROUP_FILE_PROCS)
3606 pid = task_tgid_vnr(tsk);
3607 else
3608 pid = task_pid_vnr(tsk);
3609 if (pid > 0) /* make sure to only use valid results */
3610 array[n++] = pid;
3612 cgroup_iter_end(cgrp, &it);
3613 length = n;
3614 /* now sort & (if procs) strip out duplicates */
3615 sort(array, length, sizeof(pid_t), cmppid, NULL);
3616 if (type == CGROUP_FILE_PROCS)
3617 length = pidlist_uniq(array, length);
3618 l = cgroup_pidlist_find(cgrp, type);
3619 if (!l) {
3620 pidlist_free(array);
3621 return -ENOMEM;
3623 /* store array, freeing old if necessary - lock already held */
3624 pidlist_free(l->list);
3625 l->list = array;
3626 l->length = length;
3627 l->use_count++;
3628 up_write(&l->mutex);
3629 *lp = l;
3630 return 0;
3634 * cgroupstats_build - build and fill cgroupstats
3635 * @stats: cgroupstats to fill information into
3636 * @dentry: A dentry entry belonging to the cgroup for which stats have
3637 * been requested.
3639 * Build and fill cgroupstats so that taskstats can export it to user
3640 * space.
3642 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3644 int ret = -EINVAL;
3645 struct cgroup *cgrp;
3646 struct cgroup_iter it;
3647 struct task_struct *tsk;
3650 * Validate dentry by checking the superblock operations,
3651 * and make sure it's a directory.
3653 if (dentry->d_sb->s_op != &cgroup_ops ||
3654 !S_ISDIR(dentry->d_inode->i_mode))
3655 goto err;
3657 ret = 0;
3658 cgrp = dentry->d_fsdata;
3660 cgroup_iter_start(cgrp, &it);
3661 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3662 switch (tsk->state) {
3663 case TASK_RUNNING:
3664 stats->nr_running++;
3665 break;
3666 case TASK_INTERRUPTIBLE:
3667 stats->nr_sleeping++;
3668 break;
3669 case TASK_UNINTERRUPTIBLE:
3670 stats->nr_uninterruptible++;
3671 break;
3672 case TASK_STOPPED:
3673 stats->nr_stopped++;
3674 break;
3675 default:
3676 if (delayacct_is_task_waiting_on_io(tsk))
3677 stats->nr_io_wait++;
3678 break;
3681 cgroup_iter_end(cgrp, &it);
3683 err:
3684 return ret;
3689 * seq_file methods for the tasks/procs files. The seq_file position is the
3690 * next pid to display; the seq_file iterator is a pointer to the pid
3691 * in the cgroup->l->list array.
3694 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3697 * Initially we receive a position value that corresponds to
3698 * one more than the last pid shown (or 0 on the first call or
3699 * after a seek to the start). Use a binary-search to find the
3700 * next pid to display, if any
3702 struct cgroup_pidlist *l = s->private;
3703 int index = 0, pid = *pos;
3704 int *iter;
3706 down_read(&l->mutex);
3707 if (pid) {
3708 int end = l->length;
3710 while (index < end) {
3711 int mid = (index + end) / 2;
3712 if (l->list[mid] == pid) {
3713 index = mid;
3714 break;
3715 } else if (l->list[mid] <= pid)
3716 index = mid + 1;
3717 else
3718 end = mid;
3721 /* If we're off the end of the array, we're done */
3722 if (index >= l->length)
3723 return NULL;
3724 /* Update the abstract position to be the actual pid that we found */
3725 iter = l->list + index;
3726 *pos = *iter;
3727 return iter;
3730 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3732 struct cgroup_pidlist *l = s->private;
3733 up_read(&l->mutex);
3736 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3738 struct cgroup_pidlist *l = s->private;
3739 pid_t *p = v;
3740 pid_t *end = l->list + l->length;
3742 * Advance to the next pid in the array. If this goes off the
3743 * end, we're done
3745 p++;
3746 if (p >= end) {
3747 return NULL;
3748 } else {
3749 *pos = *p;
3750 return p;
3754 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3756 return seq_printf(s, "%d\n", *(int *)v);
3760 * seq_operations functions for iterating on pidlists through seq_file -
3761 * independent of whether it's tasks or procs
3763 static const struct seq_operations cgroup_pidlist_seq_operations = {
3764 .start = cgroup_pidlist_start,
3765 .stop = cgroup_pidlist_stop,
3766 .next = cgroup_pidlist_next,
3767 .show = cgroup_pidlist_show,
3770 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3773 * the case where we're the last user of this particular pidlist will
3774 * have us remove it from the cgroup's list, which entails taking the
3775 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3776 * pidlist_mutex, we have to take pidlist_mutex first.
3778 mutex_lock(&l->owner->pidlist_mutex);
3779 down_write(&l->mutex);
3780 BUG_ON(!l->use_count);
3781 if (!--l->use_count) {
3782 /* we're the last user if refcount is 0; remove and free */
3783 list_del(&l->links);
3784 mutex_unlock(&l->owner->pidlist_mutex);
3785 pidlist_free(l->list);
3786 put_pid_ns(l->key.ns);
3787 up_write(&l->mutex);
3788 kfree(l);
3789 return;
3791 mutex_unlock(&l->owner->pidlist_mutex);
3792 up_write(&l->mutex);
3795 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3797 struct cgroup_pidlist *l;
3798 if (!(file->f_mode & FMODE_READ))
3799 return 0;
3801 * the seq_file will only be initialized if the file was opened for
3802 * reading; hence we check if it's not null only in that case.
3804 l = ((struct seq_file *)file->private_data)->private;
3805 cgroup_release_pid_array(l);
3806 return seq_release(inode, file);
3809 static const struct file_operations cgroup_pidlist_operations = {
3810 .read = seq_read,
3811 .llseek = seq_lseek,
3812 .write = cgroup_file_write,
3813 .release = cgroup_pidlist_release,
3817 * The following functions handle opens on a file that displays a pidlist
3818 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3819 * in the cgroup.
3821 /* helper function for the two below it */
3822 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3824 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3825 struct cgroup_pidlist *l;
3826 int retval;
3828 /* Nothing to do for write-only files */
3829 if (!(file->f_mode & FMODE_READ))
3830 return 0;
3832 /* have the array populated */
3833 retval = pidlist_array_load(cgrp, type, &l);
3834 if (retval)
3835 return retval;
3836 /* configure file information */
3837 file->f_op = &cgroup_pidlist_operations;
3839 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3840 if (retval) {
3841 cgroup_release_pid_array(l);
3842 return retval;
3844 ((struct seq_file *)file->private_data)->private = l;
3845 return 0;
3847 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3849 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3851 static int cgroup_procs_open(struct inode *unused, struct file *file)
3853 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3856 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3857 struct cftype *cft)
3859 return notify_on_release(cgrp);
3862 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3863 struct cftype *cft,
3864 u64 val)
3866 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3867 if (val)
3868 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3869 else
3870 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3871 return 0;
3875 * When dput() is called asynchronously, if umount has been done and
3876 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3877 * there's a small window that vfs will see the root dentry with non-zero
3878 * refcnt and trigger BUG().
3880 * That's why we hold a reference before dput() and drop it right after.
3882 static void cgroup_dput(struct cgroup *cgrp)
3884 struct super_block *sb = cgrp->root->sb;
3886 atomic_inc(&sb->s_active);
3887 dput(cgrp->dentry);
3888 deactivate_super(sb);
3892 * Unregister event and free resources.
3894 * Gets called from workqueue.
3896 static void cgroup_event_remove(struct work_struct *work)
3898 struct cgroup_event *event = container_of(work, struct cgroup_event,
3899 remove);
3900 struct cgroup *cgrp = event->cgrp;
3902 remove_wait_queue(event->wqh, &event->wait);
3904 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3906 /* Notify userspace the event is going away. */
3907 eventfd_signal(event->eventfd, 1);
3909 eventfd_ctx_put(event->eventfd);
3910 kfree(event);
3911 cgroup_dput(cgrp);
3915 * Gets called on POLLHUP on eventfd when user closes it.
3917 * Called with wqh->lock held and interrupts disabled.
3919 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3920 int sync, void *key)
3922 struct cgroup_event *event = container_of(wait,
3923 struct cgroup_event, wait);
3924 struct cgroup *cgrp = event->cgrp;
3925 unsigned long flags = (unsigned long)key;
3927 if (flags & POLLHUP) {
3929 * If the event has been detached at cgroup removal, we
3930 * can simply return knowing the other side will cleanup
3931 * for us.
3933 * We can't race against event freeing since the other
3934 * side will require wqh->lock via remove_wait_queue(),
3935 * which we hold.
3937 spin_lock(&cgrp->event_list_lock);
3938 if (!list_empty(&event->list)) {
3939 list_del_init(&event->list);
3941 * We are in atomic context, but cgroup_event_remove()
3942 * may sleep, so we have to call it in workqueue.
3944 schedule_work(&event->remove);
3946 spin_unlock(&cgrp->event_list_lock);
3949 return 0;
3952 static void cgroup_event_ptable_queue_proc(struct file *file,
3953 wait_queue_head_t *wqh, poll_table *pt)
3955 struct cgroup_event *event = container_of(pt,
3956 struct cgroup_event, pt);
3958 event->wqh = wqh;
3959 add_wait_queue(wqh, &event->wait);
3963 * Parse input and register new cgroup event handler.
3965 * Input must be in format '<event_fd> <control_fd> <args>'.
3966 * Interpretation of args is defined by control file implementation.
3968 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3969 const char *buffer)
3971 struct cgroup_event *event = NULL;
3972 struct cgroup *cgrp_cfile;
3973 unsigned int efd, cfd;
3974 struct file *efile = NULL;
3975 struct file *cfile = NULL;
3976 char *endp;
3977 int ret;
3979 efd = simple_strtoul(buffer, &endp, 10);
3980 if (*endp != ' ')
3981 return -EINVAL;
3982 buffer = endp + 1;
3984 cfd = simple_strtoul(buffer, &endp, 10);
3985 if ((*endp != ' ') && (*endp != '\0'))
3986 return -EINVAL;
3987 buffer = endp + 1;
3989 event = kzalloc(sizeof(*event), GFP_KERNEL);
3990 if (!event)
3991 return -ENOMEM;
3992 event->cgrp = cgrp;
3993 INIT_LIST_HEAD(&event->list);
3994 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3995 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3996 INIT_WORK(&event->remove, cgroup_event_remove);
3998 efile = eventfd_fget(efd);
3999 if (IS_ERR(efile)) {
4000 ret = PTR_ERR(efile);
4001 goto fail;
4004 event->eventfd = eventfd_ctx_fileget(efile);
4005 if (IS_ERR(event->eventfd)) {
4006 ret = PTR_ERR(event->eventfd);
4007 goto fail;
4010 cfile = fget(cfd);
4011 if (!cfile) {
4012 ret = -EBADF;
4013 goto fail;
4016 /* the process need read permission on control file */
4017 /* AV: shouldn't we check that it's been opened for read instead? */
4018 ret = inode_permission(file_inode(cfile), MAY_READ);
4019 if (ret < 0)
4020 goto fail;
4022 event->cft = __file_cft(cfile);
4023 if (IS_ERR(event->cft)) {
4024 ret = PTR_ERR(event->cft);
4025 goto fail;
4029 * The file to be monitored must be in the same cgroup as
4030 * cgroup.event_control is.
4032 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
4033 if (cgrp_cfile != cgrp) {
4034 ret = -EINVAL;
4035 goto fail;
4038 if (!event->cft->register_event || !event->cft->unregister_event) {
4039 ret = -EINVAL;
4040 goto fail;
4043 ret = event->cft->register_event(cgrp, event->cft,
4044 event->eventfd, buffer);
4045 if (ret)
4046 goto fail;
4048 efile->f_op->poll(efile, &event->pt);
4051 * Events should be removed after rmdir of cgroup directory, but before
4052 * destroying subsystem state objects. Let's take reference to cgroup
4053 * directory dentry to do that.
4055 dget(cgrp->dentry);
4057 spin_lock(&cgrp->event_list_lock);
4058 list_add(&event->list, &cgrp->event_list);
4059 spin_unlock(&cgrp->event_list_lock);
4061 fput(cfile);
4062 fput(efile);
4064 return 0;
4066 fail:
4067 if (cfile)
4068 fput(cfile);
4070 if (event && event->eventfd && !IS_ERR(event->eventfd))
4071 eventfd_ctx_put(event->eventfd);
4073 if (!IS_ERR_OR_NULL(efile))
4074 fput(efile);
4076 kfree(event);
4078 return ret;
4081 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
4082 struct cftype *cft)
4084 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4087 static int cgroup_clone_children_write(struct cgroup *cgrp,
4088 struct cftype *cft,
4089 u64 val)
4091 if (val)
4092 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4093 else
4094 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4095 return 0;
4098 static struct cftype cgroup_base_files[] = {
4100 .name = "cgroup.procs",
4101 .open = cgroup_procs_open,
4102 .write_u64 = cgroup_procs_write,
4103 .release = cgroup_pidlist_release,
4104 .mode = S_IRUGO | S_IWUSR,
4107 .name = "cgroup.event_control",
4108 .write_string = cgroup_write_event_control,
4109 .mode = S_IWUGO,
4112 .name = "cgroup.clone_children",
4113 .flags = CFTYPE_INSANE,
4114 .read_u64 = cgroup_clone_children_read,
4115 .write_u64 = cgroup_clone_children_write,
4118 .name = "cgroup.sane_behavior",
4119 .flags = CFTYPE_ONLY_ON_ROOT,
4120 .read_seq_string = cgroup_sane_behavior_show,
4124 * Historical crazy stuff. These don't have "cgroup." prefix and
4125 * don't exist if sane_behavior. If you're depending on these, be
4126 * prepared to be burned.
4129 .name = "tasks",
4130 .flags = CFTYPE_INSANE, /* use "procs" instead */
4131 .open = cgroup_tasks_open,
4132 .write_u64 = cgroup_tasks_write,
4133 .release = cgroup_pidlist_release,
4134 .mode = S_IRUGO | S_IWUSR,
4137 .name = "notify_on_release",
4138 .flags = CFTYPE_INSANE,
4139 .read_u64 = cgroup_read_notify_on_release,
4140 .write_u64 = cgroup_write_notify_on_release,
4143 .name = "release_agent",
4144 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
4145 .read_seq_string = cgroup_release_agent_show,
4146 .write_string = cgroup_release_agent_write,
4147 .max_write_len = PATH_MAX,
4149 { } /* terminate */
4153 * cgroup_populate_dir - selectively creation of files in a directory
4154 * @cgrp: target cgroup
4155 * @base_files: true if the base files should be added
4156 * @subsys_mask: mask of the subsystem ids whose files should be added
4158 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
4159 unsigned long subsys_mask)
4161 int err;
4162 struct cgroup_subsys *ss;
4164 if (base_files) {
4165 err = cgroup_addrm_files(cgrp, NULL, cgroup_base_files, true);
4166 if (err < 0)
4167 return err;
4170 /* process cftsets of each subsystem */
4171 for_each_root_subsys(cgrp->root, ss) {
4172 struct cftype_set *set;
4173 if (!test_bit(ss->subsys_id, &subsys_mask))
4174 continue;
4176 list_for_each_entry(set, &ss->cftsets, node)
4177 cgroup_addrm_files(cgrp, ss, set->cfts, true);
4180 /* This cgroup is ready now */
4181 for_each_root_subsys(cgrp->root, ss) {
4182 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4183 struct css_id *id = rcu_dereference_protected(css->id, true);
4186 * Update id->css pointer and make this css visible from
4187 * CSS ID functions. This pointer will be dereferened
4188 * from RCU-read-side without locks.
4190 if (id)
4191 rcu_assign_pointer(id->css, css);
4194 return 0;
4197 static void css_dput_fn(struct work_struct *work)
4199 struct cgroup_subsys_state *css =
4200 container_of(work, struct cgroup_subsys_state, dput_work);
4202 cgroup_dput(css->cgroup);
4205 static void css_release(struct percpu_ref *ref)
4207 struct cgroup_subsys_state *css =
4208 container_of(ref, struct cgroup_subsys_state, refcnt);
4210 schedule_work(&css->dput_work);
4213 static void init_cgroup_css(struct cgroup_subsys_state *css,
4214 struct cgroup_subsys *ss,
4215 struct cgroup *cgrp)
4217 css->cgroup = cgrp;
4218 css->flags = 0;
4219 css->id = NULL;
4220 if (cgrp == cgroup_dummy_top)
4221 css->flags |= CSS_ROOT;
4222 BUG_ON(cgrp->subsys[ss->subsys_id]);
4223 cgrp->subsys[ss->subsys_id] = css;
4226 * css holds an extra ref to @cgrp->dentry which is put on the last
4227 * css_put(). dput() requires process context, which css_put() may
4228 * be called without. @css->dput_work will be used to invoke
4229 * dput() asynchronously from css_put().
4231 INIT_WORK(&css->dput_work, css_dput_fn);
4234 /* invoke ->post_create() on a new CSS and mark it online if successful */
4235 static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4237 int ret = 0;
4239 lockdep_assert_held(&cgroup_mutex);
4241 if (ss->css_online)
4242 ret = ss->css_online(cgrp);
4243 if (!ret)
4244 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4245 return ret;
4248 /* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
4249 static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4250 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4252 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4254 lockdep_assert_held(&cgroup_mutex);
4256 if (!(css->flags & CSS_ONLINE))
4257 return;
4259 if (ss->css_offline)
4260 ss->css_offline(cgrp);
4262 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4266 * cgroup_create - create a cgroup
4267 * @parent: cgroup that will be parent of the new cgroup
4268 * @dentry: dentry of the new cgroup
4269 * @mode: mode to set on new inode
4271 * Must be called with the mutex on the parent inode held
4273 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
4274 umode_t mode)
4276 struct cgroup *cgrp;
4277 struct cgroup_name *name;
4278 struct cgroupfs_root *root = parent->root;
4279 int err = 0;
4280 struct cgroup_subsys *ss;
4281 struct super_block *sb = root->sb;
4283 /* allocate the cgroup and its ID, 0 is reserved for the root */
4284 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4285 if (!cgrp)
4286 return -ENOMEM;
4288 name = cgroup_alloc_name(dentry);
4289 if (!name)
4290 goto err_free_cgrp;
4291 rcu_assign_pointer(cgrp->name, name);
4293 cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
4294 if (cgrp->id < 0)
4295 goto err_free_name;
4298 * Only live parents can have children. Note that the liveliness
4299 * check isn't strictly necessary because cgroup_mkdir() and
4300 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4301 * anyway so that locking is contained inside cgroup proper and we
4302 * don't get nasty surprises if we ever grow another caller.
4304 if (!cgroup_lock_live_group(parent)) {
4305 err = -ENODEV;
4306 goto err_free_id;
4309 /* Grab a reference on the superblock so the hierarchy doesn't
4310 * get deleted on unmount if there are child cgroups. This
4311 * can be done outside cgroup_mutex, since the sb can't
4312 * disappear while someone has an open control file on the
4313 * fs */
4314 atomic_inc(&sb->s_active);
4316 init_cgroup_housekeeping(cgrp);
4318 dentry->d_fsdata = cgrp;
4319 cgrp->dentry = dentry;
4321 cgrp->parent = parent;
4322 cgrp->root = parent->root;
4324 if (notify_on_release(parent))
4325 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4327 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4328 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4330 for_each_root_subsys(root, ss) {
4331 struct cgroup_subsys_state *css;
4333 css = ss->css_alloc(cgrp);
4334 if (IS_ERR(css)) {
4335 err = PTR_ERR(css);
4336 goto err_free_all;
4339 err = percpu_ref_init(&css->refcnt, css_release);
4340 if (err)
4341 goto err_free_all;
4343 init_cgroup_css(css, ss, cgrp);
4345 if (ss->use_id) {
4346 err = alloc_css_id(ss, parent, cgrp);
4347 if (err)
4348 goto err_free_all;
4353 * Create directory. cgroup_create_file() returns with the new
4354 * directory locked on success so that it can be populated without
4355 * dropping cgroup_mutex.
4357 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
4358 if (err < 0)
4359 goto err_free_all;
4360 lockdep_assert_held(&dentry->d_inode->i_mutex);
4362 cgrp->serial_nr = cgroup_serial_nr_next++;
4364 /* allocation complete, commit to creation */
4365 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4366 root->number_of_cgroups++;
4368 /* each css holds a ref to the cgroup's dentry */
4369 for_each_root_subsys(root, ss)
4370 dget(dentry);
4372 /* hold a ref to the parent's dentry */
4373 dget(parent->dentry);
4375 /* creation succeeded, notify subsystems */
4376 for_each_root_subsys(root, ss) {
4377 err = online_css(ss, cgrp);
4378 if (err)
4379 goto err_destroy;
4381 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4382 parent->parent) {
4383 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4384 current->comm, current->pid, ss->name);
4385 if (!strcmp(ss->name, "memory"))
4386 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4387 ss->warned_broken_hierarchy = true;
4391 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4392 if (err)
4393 goto err_destroy;
4395 mutex_unlock(&cgroup_mutex);
4396 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4398 return 0;
4400 err_free_all:
4401 for_each_root_subsys(root, ss) {
4402 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4404 if (css) {
4405 percpu_ref_cancel_init(&css->refcnt);
4406 ss->css_free(cgrp);
4409 mutex_unlock(&cgroup_mutex);
4410 /* Release the reference count that we took on the superblock */
4411 deactivate_super(sb);
4412 err_free_id:
4413 ida_simple_remove(&root->cgroup_ida, cgrp->id);
4414 err_free_name:
4415 kfree(rcu_dereference_raw(cgrp->name));
4416 err_free_cgrp:
4417 kfree(cgrp);
4418 return err;
4420 err_destroy:
4421 cgroup_destroy_locked(cgrp);
4422 mutex_unlock(&cgroup_mutex);
4423 mutex_unlock(&dentry->d_inode->i_mutex);
4424 return err;
4427 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4429 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4431 /* the vfs holds inode->i_mutex already */
4432 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4435 static void cgroup_css_killed(struct cgroup *cgrp)
4437 if (!atomic_dec_and_test(&cgrp->css_kill_cnt))
4438 return;
4440 /* percpu ref's of all css's are killed, kick off the next step */
4441 INIT_WORK(&cgrp->destroy_work, cgroup_offline_fn);
4442 schedule_work(&cgrp->destroy_work);
4445 static void css_ref_killed_fn(struct percpu_ref *ref)
4447 struct cgroup_subsys_state *css =
4448 container_of(ref, struct cgroup_subsys_state, refcnt);
4450 cgroup_css_killed(css->cgroup);
4454 * cgroup_destroy_locked - the first stage of cgroup destruction
4455 * @cgrp: cgroup to be destroyed
4457 * css's make use of percpu refcnts whose killing latency shouldn't be
4458 * exposed to userland and are RCU protected. Also, cgroup core needs to
4459 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4460 * invoked. To satisfy all the requirements, destruction is implemented in
4461 * the following two steps.
4463 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4464 * userland visible parts and start killing the percpu refcnts of
4465 * css's. Set up so that the next stage will be kicked off once all
4466 * the percpu refcnts are confirmed to be killed.
4468 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4469 * rest of destruction. Once all cgroup references are gone, the
4470 * cgroup is RCU-freed.
4472 * This function implements s1. After this step, @cgrp is gone as far as
4473 * the userland is concerned and a new cgroup with the same name may be
4474 * created. As cgroup doesn't care about the names internally, this
4475 * doesn't cause any problem.
4477 static int cgroup_destroy_locked(struct cgroup *cgrp)
4478 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4480 struct dentry *d = cgrp->dentry;
4481 struct cgroup_event *event, *tmp;
4482 struct cgroup_subsys *ss;
4483 bool empty;
4485 lockdep_assert_held(&d->d_inode->i_mutex);
4486 lockdep_assert_held(&cgroup_mutex);
4489 * css_set_lock synchronizes access to ->cset_links and prevents
4490 * @cgrp from being removed while __put_css_set() is in progress.
4492 read_lock(&css_set_lock);
4493 empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children);
4494 read_unlock(&css_set_lock);
4495 if (!empty)
4496 return -EBUSY;
4499 * Block new css_tryget() by killing css refcnts. cgroup core
4500 * guarantees that, by the time ->css_offline() is invoked, no new
4501 * css reference will be given out via css_tryget(). We can't
4502 * simply call percpu_ref_kill() and proceed to offlining css's
4503 * because percpu_ref_kill() doesn't guarantee that the ref is seen
4504 * as killed on all CPUs on return.
4506 * Use percpu_ref_kill_and_confirm() to get notifications as each
4507 * css is confirmed to be seen as killed on all CPUs. The
4508 * notification callback keeps track of the number of css's to be
4509 * killed and schedules cgroup_offline_fn() to perform the rest of
4510 * destruction once the percpu refs of all css's are confirmed to
4511 * be killed.
4513 atomic_set(&cgrp->css_kill_cnt, 1);
4514 for_each_root_subsys(cgrp->root, ss) {
4515 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4518 * Killing would put the base ref, but we need to keep it
4519 * alive until after ->css_offline.
4521 percpu_ref_get(&css->refcnt);
4523 atomic_inc(&cgrp->css_kill_cnt);
4524 percpu_ref_kill_and_confirm(&css->refcnt, css_ref_killed_fn);
4526 cgroup_css_killed(cgrp);
4529 * Mark @cgrp dead. This prevents further task migration and child
4530 * creation by disabling cgroup_lock_live_group(). Note that
4531 * CGRP_DEAD assertion is depended upon by cgroup_next_sibling() to
4532 * resume iteration after dropping RCU read lock. See
4533 * cgroup_next_sibling() for details.
4535 set_bit(CGRP_DEAD, &cgrp->flags);
4537 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4538 raw_spin_lock(&release_list_lock);
4539 if (!list_empty(&cgrp->release_list))
4540 list_del_init(&cgrp->release_list);
4541 raw_spin_unlock(&release_list_lock);
4544 * Remove @cgrp directory. The removal puts the base ref but we
4545 * aren't quite done with @cgrp yet, so hold onto it.
4547 dget(d);
4548 cgroup_d_remove_dir(d);
4551 * Unregister events and notify userspace.
4552 * Notify userspace about cgroup removing only after rmdir of cgroup
4553 * directory to avoid race between userspace and kernelspace.
4555 spin_lock(&cgrp->event_list_lock);
4556 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4557 list_del_init(&event->list);
4558 schedule_work(&event->remove);
4560 spin_unlock(&cgrp->event_list_lock);
4562 return 0;
4566 * cgroup_offline_fn - the second step of cgroup destruction
4567 * @work: cgroup->destroy_free_work
4569 * This function is invoked from a work item for a cgroup which is being
4570 * destroyed after the percpu refcnts of all css's are guaranteed to be
4571 * seen as killed on all CPUs, and performs the rest of destruction. This
4572 * is the second step of destruction described in the comment above
4573 * cgroup_destroy_locked().
4575 static void cgroup_offline_fn(struct work_struct *work)
4577 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
4578 struct cgroup *parent = cgrp->parent;
4579 struct dentry *d = cgrp->dentry;
4580 struct cgroup_subsys *ss;
4582 mutex_lock(&cgroup_mutex);
4585 * css_tryget() is guaranteed to fail now. Tell subsystems to
4586 * initate destruction.
4588 for_each_root_subsys(cgrp->root, ss)
4589 offline_css(ss, cgrp);
4592 * Put the css refs from cgroup_destroy_locked(). Each css holds
4593 * an extra reference to the cgroup's dentry and cgroup removal
4594 * proceeds regardless of css refs. On the last put of each css,
4595 * whenever that may be, the extra dentry ref is put so that dentry
4596 * destruction happens only after all css's are released.
4598 for_each_root_subsys(cgrp->root, ss)
4599 css_put(cgrp->subsys[ss->subsys_id]);
4601 /* delete this cgroup from parent->children */
4602 list_del_rcu(&cgrp->sibling);
4604 dput(d);
4606 set_bit(CGRP_RELEASABLE, &parent->flags);
4607 check_for_release(parent);
4609 mutex_unlock(&cgroup_mutex);
4612 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4614 int ret;
4616 mutex_lock(&cgroup_mutex);
4617 ret = cgroup_destroy_locked(dentry->d_fsdata);
4618 mutex_unlock(&cgroup_mutex);
4620 return ret;
4623 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4625 INIT_LIST_HEAD(&ss->cftsets);
4628 * base_cftset is embedded in subsys itself, no need to worry about
4629 * deregistration.
4631 if (ss->base_cftypes) {
4632 ss->base_cftset.cfts = ss->base_cftypes;
4633 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4637 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4639 struct cgroup_subsys_state *css;
4641 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4643 mutex_lock(&cgroup_mutex);
4645 /* init base cftset */
4646 cgroup_init_cftsets(ss);
4648 /* Create the top cgroup state for this subsystem */
4649 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4650 ss->root = &cgroup_dummy_root;
4651 css = ss->css_alloc(cgroup_dummy_top);
4652 /* We don't handle early failures gracefully */
4653 BUG_ON(IS_ERR(css));
4654 init_cgroup_css(css, ss, cgroup_dummy_top);
4656 /* Update the init_css_set to contain a subsys
4657 * pointer to this state - since the subsystem is
4658 * newly registered, all tasks and hence the
4659 * init_css_set is in the subsystem's top cgroup. */
4660 init_css_set.subsys[ss->subsys_id] = css;
4662 need_forkexit_callback |= ss->fork || ss->exit;
4664 /* At system boot, before all subsystems have been
4665 * registered, no tasks have been forked, so we don't
4666 * need to invoke fork callbacks here. */
4667 BUG_ON(!list_empty(&init_task.tasks));
4669 BUG_ON(online_css(ss, cgroup_dummy_top));
4671 mutex_unlock(&cgroup_mutex);
4673 /* this function shouldn't be used with modular subsystems, since they
4674 * need to register a subsys_id, among other things */
4675 BUG_ON(ss->module);
4679 * cgroup_load_subsys: load and register a modular subsystem at runtime
4680 * @ss: the subsystem to load
4682 * This function should be called in a modular subsystem's initcall. If the
4683 * subsystem is built as a module, it will be assigned a new subsys_id and set
4684 * up for use. If the subsystem is built-in anyway, work is delegated to the
4685 * simpler cgroup_init_subsys.
4687 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4689 struct cgroup_subsys_state *css;
4690 int i, ret;
4691 struct hlist_node *tmp;
4692 struct css_set *cset;
4693 unsigned long key;
4695 /* check name and function validity */
4696 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4697 ss->css_alloc == NULL || ss->css_free == NULL)
4698 return -EINVAL;
4701 * we don't support callbacks in modular subsystems. this check is
4702 * before the ss->module check for consistency; a subsystem that could
4703 * be a module should still have no callbacks even if the user isn't
4704 * compiling it as one.
4706 if (ss->fork || ss->exit)
4707 return -EINVAL;
4710 * an optionally modular subsystem is built-in: we want to do nothing,
4711 * since cgroup_init_subsys will have already taken care of it.
4713 if (ss->module == NULL) {
4714 /* a sanity check */
4715 BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
4716 return 0;
4719 /* init base cftset */
4720 cgroup_init_cftsets(ss);
4722 mutex_lock(&cgroup_mutex);
4723 cgroup_subsys[ss->subsys_id] = ss;
4726 * no ss->css_alloc seems to need anything important in the ss
4727 * struct, so this can happen first (i.e. before the dummy root
4728 * attachment).
4730 css = ss->css_alloc(cgroup_dummy_top);
4731 if (IS_ERR(css)) {
4732 /* failure case - need to deassign the cgroup_subsys[] slot. */
4733 cgroup_subsys[ss->subsys_id] = NULL;
4734 mutex_unlock(&cgroup_mutex);
4735 return PTR_ERR(css);
4738 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4739 ss->root = &cgroup_dummy_root;
4741 /* our new subsystem will be attached to the dummy hierarchy. */
4742 init_cgroup_css(css, ss, cgroup_dummy_top);
4743 /* init_idr must be after init_cgroup_css because it sets css->id. */
4744 if (ss->use_id) {
4745 ret = cgroup_init_idr(ss, css);
4746 if (ret)
4747 goto err_unload;
4751 * Now we need to entangle the css into the existing css_sets. unlike
4752 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4753 * will need a new pointer to it; done by iterating the css_set_table.
4754 * furthermore, modifying the existing css_sets will corrupt the hash
4755 * table state, so each changed css_set will need its hash recomputed.
4756 * this is all done under the css_set_lock.
4758 write_lock(&css_set_lock);
4759 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
4760 /* skip entries that we already rehashed */
4761 if (cset->subsys[ss->subsys_id])
4762 continue;
4763 /* remove existing entry */
4764 hash_del(&cset->hlist);
4765 /* set new value */
4766 cset->subsys[ss->subsys_id] = css;
4767 /* recompute hash and restore entry */
4768 key = css_set_hash(cset->subsys);
4769 hash_add(css_set_table, &cset->hlist, key);
4771 write_unlock(&css_set_lock);
4773 ret = online_css(ss, cgroup_dummy_top);
4774 if (ret)
4775 goto err_unload;
4777 /* success! */
4778 mutex_unlock(&cgroup_mutex);
4779 return 0;
4781 err_unload:
4782 mutex_unlock(&cgroup_mutex);
4783 /* @ss can't be mounted here as try_module_get() would fail */
4784 cgroup_unload_subsys(ss);
4785 return ret;
4787 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4790 * cgroup_unload_subsys: unload a modular subsystem
4791 * @ss: the subsystem to unload
4793 * This function should be called in a modular subsystem's exitcall. When this
4794 * function is invoked, the refcount on the subsystem's module will be 0, so
4795 * the subsystem will not be attached to any hierarchy.
4797 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4799 struct cgrp_cset_link *link;
4801 BUG_ON(ss->module == NULL);
4804 * we shouldn't be called if the subsystem is in use, and the use of
4805 * try_module_get in parse_cgroupfs_options should ensure that it
4806 * doesn't start being used while we're killing it off.
4808 BUG_ON(ss->root != &cgroup_dummy_root);
4810 mutex_lock(&cgroup_mutex);
4812 offline_css(ss, cgroup_dummy_top);
4814 if (ss->use_id)
4815 idr_destroy(&ss->idr);
4817 /* deassign the subsys_id */
4818 cgroup_subsys[ss->subsys_id] = NULL;
4820 /* remove subsystem from the dummy root's list of subsystems */
4821 list_del_init(&ss->sibling);
4824 * disentangle the css from all css_sets attached to the dummy
4825 * top. as in loading, we need to pay our respects to the hashtable
4826 * gods.
4828 write_lock(&css_set_lock);
4829 list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
4830 struct css_set *cset = link->cset;
4831 unsigned long key;
4833 hash_del(&cset->hlist);
4834 cset->subsys[ss->subsys_id] = NULL;
4835 key = css_set_hash(cset->subsys);
4836 hash_add(css_set_table, &cset->hlist, key);
4838 write_unlock(&css_set_lock);
4841 * remove subsystem's css from the cgroup_dummy_top and free it -
4842 * need to free before marking as null because ss->css_free needs
4843 * the cgrp->subsys pointer to find their state. note that this
4844 * also takes care of freeing the css_id.
4846 ss->css_free(cgroup_dummy_top);
4847 cgroup_dummy_top->subsys[ss->subsys_id] = NULL;
4849 mutex_unlock(&cgroup_mutex);
4851 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4854 * cgroup_init_early - cgroup initialization at system boot
4856 * Initialize cgroups at system boot, and initialize any
4857 * subsystems that request early init.
4859 int __init cgroup_init_early(void)
4861 struct cgroup_subsys *ss;
4862 int i;
4864 atomic_set(&init_css_set.refcount, 1);
4865 INIT_LIST_HEAD(&init_css_set.cgrp_links);
4866 INIT_LIST_HEAD(&init_css_set.tasks);
4867 INIT_HLIST_NODE(&init_css_set.hlist);
4868 css_set_count = 1;
4869 init_cgroup_root(&cgroup_dummy_root);
4870 cgroup_root_count = 1;
4871 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4873 init_cgrp_cset_link.cset = &init_css_set;
4874 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4875 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
4876 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
4878 /* at bootup time, we don't worry about modular subsystems */
4879 for_each_builtin_subsys(ss, i) {
4880 BUG_ON(!ss->name);
4881 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4882 BUG_ON(!ss->css_alloc);
4883 BUG_ON(!ss->css_free);
4884 if (ss->subsys_id != i) {
4885 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4886 ss->name, ss->subsys_id);
4887 BUG();
4890 if (ss->early_init)
4891 cgroup_init_subsys(ss);
4893 return 0;
4897 * cgroup_init - cgroup initialization
4899 * Register cgroup filesystem and /proc file, and initialize
4900 * any subsystems that didn't request early init.
4902 int __init cgroup_init(void)
4904 struct cgroup_subsys *ss;
4905 unsigned long key;
4906 int i, err;
4908 err = bdi_init(&cgroup_backing_dev_info);
4909 if (err)
4910 return err;
4912 for_each_builtin_subsys(ss, i) {
4913 if (!ss->early_init)
4914 cgroup_init_subsys(ss);
4915 if (ss->use_id)
4916 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4919 /* allocate id for the dummy hierarchy */
4920 mutex_lock(&cgroup_mutex);
4921 mutex_lock(&cgroup_root_mutex);
4923 /* Add init_css_set to the hash table */
4924 key = css_set_hash(init_css_set.subsys);
4925 hash_add(css_set_table, &init_css_set.hlist, key);
4927 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
4929 mutex_unlock(&cgroup_root_mutex);
4930 mutex_unlock(&cgroup_mutex);
4932 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4933 if (!cgroup_kobj) {
4934 err = -ENOMEM;
4935 goto out;
4938 err = register_filesystem(&cgroup_fs_type);
4939 if (err < 0) {
4940 kobject_put(cgroup_kobj);
4941 goto out;
4944 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4946 out:
4947 if (err)
4948 bdi_destroy(&cgroup_backing_dev_info);
4950 return err;
4954 * proc_cgroup_show()
4955 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4956 * - Used for /proc/<pid>/cgroup.
4957 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4958 * doesn't really matter if tsk->cgroup changes after we read it,
4959 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4960 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4961 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4962 * cgroup to top_cgroup.
4965 /* TODO: Use a proper seq_file iterator */
4966 int proc_cgroup_show(struct seq_file *m, void *v)
4968 struct pid *pid;
4969 struct task_struct *tsk;
4970 char *buf;
4971 int retval;
4972 struct cgroupfs_root *root;
4974 retval = -ENOMEM;
4975 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4976 if (!buf)
4977 goto out;
4979 retval = -ESRCH;
4980 pid = m->private;
4981 tsk = get_pid_task(pid, PIDTYPE_PID);
4982 if (!tsk)
4983 goto out_free;
4985 retval = 0;
4987 mutex_lock(&cgroup_mutex);
4989 for_each_active_root(root) {
4990 struct cgroup_subsys *ss;
4991 struct cgroup *cgrp;
4992 int count = 0;
4994 seq_printf(m, "%d:", root->hierarchy_id);
4995 for_each_root_subsys(root, ss)
4996 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4997 if (strlen(root->name))
4998 seq_printf(m, "%sname=%s", count ? "," : "",
4999 root->name);
5000 seq_putc(m, ':');
5001 cgrp = task_cgroup_from_root(tsk, root);
5002 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
5003 if (retval < 0)
5004 goto out_unlock;
5005 seq_puts(m, buf);
5006 seq_putc(m, '\n');
5009 out_unlock:
5010 mutex_unlock(&cgroup_mutex);
5011 put_task_struct(tsk);
5012 out_free:
5013 kfree(buf);
5014 out:
5015 return retval;
5018 /* Display information about each subsystem and each hierarchy */
5019 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5021 struct cgroup_subsys *ss;
5022 int i;
5024 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5026 * ideally we don't want subsystems moving around while we do this.
5027 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5028 * subsys/hierarchy state.
5030 mutex_lock(&cgroup_mutex);
5032 for_each_subsys(ss, i)
5033 seq_printf(m, "%s\t%d\t%d\t%d\n",
5034 ss->name, ss->root->hierarchy_id,
5035 ss->root->number_of_cgroups, !ss->disabled);
5037 mutex_unlock(&cgroup_mutex);
5038 return 0;
5041 static int cgroupstats_open(struct inode *inode, struct file *file)
5043 return single_open(file, proc_cgroupstats_show, NULL);
5046 static const struct file_operations proc_cgroupstats_operations = {
5047 .open = cgroupstats_open,
5048 .read = seq_read,
5049 .llseek = seq_lseek,
5050 .release = single_release,
5054 * cgroup_fork - attach newly forked task to its parents cgroup.
5055 * @child: pointer to task_struct of forking parent process.
5057 * Description: A task inherits its parent's cgroup at fork().
5059 * A pointer to the shared css_set was automatically copied in
5060 * fork.c by dup_task_struct(). However, we ignore that copy, since
5061 * it was not made under the protection of RCU or cgroup_mutex, so
5062 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5063 * have already changed current->cgroups, allowing the previously
5064 * referenced cgroup group to be removed and freed.
5066 * At the point that cgroup_fork() is called, 'current' is the parent
5067 * task, and the passed argument 'child' points to the child task.
5069 void cgroup_fork(struct task_struct *child)
5071 task_lock(current);
5072 get_css_set(task_css_set(current));
5073 child->cgroups = current->cgroups;
5074 task_unlock(current);
5075 INIT_LIST_HEAD(&child->cg_list);
5079 * cgroup_post_fork - called on a new task after adding it to the task list
5080 * @child: the task in question
5082 * Adds the task to the list running through its css_set if necessary and
5083 * call the subsystem fork() callbacks. Has to be after the task is
5084 * visible on the task list in case we race with the first call to
5085 * cgroup_iter_start() - to guarantee that the new task ends up on its
5086 * list.
5088 void cgroup_post_fork(struct task_struct *child)
5090 struct cgroup_subsys *ss;
5091 int i;
5094 * use_task_css_set_links is set to 1 before we walk the tasklist
5095 * under the tasklist_lock and we read it here after we added the child
5096 * to the tasklist under the tasklist_lock as well. If the child wasn't
5097 * yet in the tasklist when we walked through it from
5098 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5099 * should be visible now due to the paired locking and barriers implied
5100 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5101 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5102 * lock on fork.
5104 if (use_task_css_set_links) {
5105 write_lock(&css_set_lock);
5106 task_lock(child);
5107 if (list_empty(&child->cg_list))
5108 list_add(&child->cg_list, &task_css_set(child)->tasks);
5109 task_unlock(child);
5110 write_unlock(&css_set_lock);
5114 * Call ss->fork(). This must happen after @child is linked on
5115 * css_set; otherwise, @child might change state between ->fork()
5116 * and addition to css_set.
5118 if (need_forkexit_callback) {
5120 * fork/exit callbacks are supported only for builtin
5121 * subsystems, and the builtin section of the subsys
5122 * array is immutable, so we don't need to lock the
5123 * subsys array here. On the other hand, modular section
5124 * of the array can be freed at module unload, so we
5125 * can't touch that.
5127 for_each_builtin_subsys(ss, i)
5128 if (ss->fork)
5129 ss->fork(child);
5134 * cgroup_exit - detach cgroup from exiting task
5135 * @tsk: pointer to task_struct of exiting process
5136 * @run_callback: run exit callbacks?
5138 * Description: Detach cgroup from @tsk and release it.
5140 * Note that cgroups marked notify_on_release force every task in
5141 * them to take the global cgroup_mutex mutex when exiting.
5142 * This could impact scaling on very large systems. Be reluctant to
5143 * use notify_on_release cgroups where very high task exit scaling
5144 * is required on large systems.
5146 * the_top_cgroup_hack:
5148 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5150 * We call cgroup_exit() while the task is still competent to
5151 * handle notify_on_release(), then leave the task attached to the
5152 * root cgroup in each hierarchy for the remainder of its exit.
5154 * To do this properly, we would increment the reference count on
5155 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5156 * code we would add a second cgroup function call, to drop that
5157 * reference. This would just create an unnecessary hot spot on
5158 * the top_cgroup reference count, to no avail.
5160 * Normally, holding a reference to a cgroup without bumping its
5161 * count is unsafe. The cgroup could go away, or someone could
5162 * attach us to a different cgroup, decrementing the count on
5163 * the first cgroup that we never incremented. But in this case,
5164 * top_cgroup isn't going away, and either task has PF_EXITING set,
5165 * which wards off any cgroup_attach_task() attempts, or task is a failed
5166 * fork, never visible to cgroup_attach_task.
5168 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5170 struct cgroup_subsys *ss;
5171 struct css_set *cset;
5172 int i;
5175 * Unlink from the css_set task list if necessary.
5176 * Optimistically check cg_list before taking
5177 * css_set_lock
5179 if (!list_empty(&tsk->cg_list)) {
5180 write_lock(&css_set_lock);
5181 if (!list_empty(&tsk->cg_list))
5182 list_del_init(&tsk->cg_list);
5183 write_unlock(&css_set_lock);
5186 /* Reassign the task to the init_css_set. */
5187 task_lock(tsk);
5188 cset = task_css_set(tsk);
5189 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5191 if (run_callbacks && need_forkexit_callback) {
5193 * fork/exit callbacks are supported only for builtin
5194 * subsystems, see cgroup_post_fork() for details.
5196 for_each_builtin_subsys(ss, i) {
5197 if (ss->exit) {
5198 struct cgroup *old_cgrp = cset->subsys[i]->cgroup;
5199 struct cgroup *cgrp = task_cgroup(tsk, i);
5201 ss->exit(cgrp, old_cgrp, tsk);
5205 task_unlock(tsk);
5207 put_css_set_taskexit(cset);
5210 static void check_for_release(struct cgroup *cgrp)
5212 if (cgroup_is_releasable(cgrp) &&
5213 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
5215 * Control Group is currently removeable. If it's not
5216 * already queued for a userspace notification, queue
5217 * it now
5219 int need_schedule_work = 0;
5221 raw_spin_lock(&release_list_lock);
5222 if (!cgroup_is_dead(cgrp) &&
5223 list_empty(&cgrp->release_list)) {
5224 list_add(&cgrp->release_list, &release_list);
5225 need_schedule_work = 1;
5227 raw_spin_unlock(&release_list_lock);
5228 if (need_schedule_work)
5229 schedule_work(&release_agent_work);
5234 * Notify userspace when a cgroup is released, by running the
5235 * configured release agent with the name of the cgroup (path
5236 * relative to the root of cgroup file system) as the argument.
5238 * Most likely, this user command will try to rmdir this cgroup.
5240 * This races with the possibility that some other task will be
5241 * attached to this cgroup before it is removed, or that some other
5242 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5243 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5244 * unused, and this cgroup will be reprieved from its death sentence,
5245 * to continue to serve a useful existence. Next time it's released,
5246 * we will get notified again, if it still has 'notify_on_release' set.
5248 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5249 * means only wait until the task is successfully execve()'d. The
5250 * separate release agent task is forked by call_usermodehelper(),
5251 * then control in this thread returns here, without waiting for the
5252 * release agent task. We don't bother to wait because the caller of
5253 * this routine has no use for the exit status of the release agent
5254 * task, so no sense holding our caller up for that.
5256 static void cgroup_release_agent(struct work_struct *work)
5258 BUG_ON(work != &release_agent_work);
5259 mutex_lock(&cgroup_mutex);
5260 raw_spin_lock(&release_list_lock);
5261 while (!list_empty(&release_list)) {
5262 char *argv[3], *envp[3];
5263 int i;
5264 char *pathbuf = NULL, *agentbuf = NULL;
5265 struct cgroup *cgrp = list_entry(release_list.next,
5266 struct cgroup,
5267 release_list);
5268 list_del_init(&cgrp->release_list);
5269 raw_spin_unlock(&release_list_lock);
5270 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5271 if (!pathbuf)
5272 goto continue_free;
5273 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5274 goto continue_free;
5275 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5276 if (!agentbuf)
5277 goto continue_free;
5279 i = 0;
5280 argv[i++] = agentbuf;
5281 argv[i++] = pathbuf;
5282 argv[i] = NULL;
5284 i = 0;
5285 /* minimal command environment */
5286 envp[i++] = "HOME=/";
5287 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5288 envp[i] = NULL;
5290 /* Drop the lock while we invoke the usermode helper,
5291 * since the exec could involve hitting disk and hence
5292 * be a slow process */
5293 mutex_unlock(&cgroup_mutex);
5294 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5295 mutex_lock(&cgroup_mutex);
5296 continue_free:
5297 kfree(pathbuf);
5298 kfree(agentbuf);
5299 raw_spin_lock(&release_list_lock);
5301 raw_spin_unlock(&release_list_lock);
5302 mutex_unlock(&cgroup_mutex);
5305 static int __init cgroup_disable(char *str)
5307 struct cgroup_subsys *ss;
5308 char *token;
5309 int i;
5311 while ((token = strsep(&str, ",")) != NULL) {
5312 if (!*token)
5313 continue;
5316 * cgroup_disable, being at boot time, can't know about
5317 * module subsystems, so we don't worry about them.
5319 for_each_builtin_subsys(ss, i) {
5320 if (!strcmp(token, ss->name)) {
5321 ss->disabled = 1;
5322 printk(KERN_INFO "Disabling %s control group"
5323 " subsystem\n", ss->name);
5324 break;
5328 return 1;
5330 __setup("cgroup_disable=", cgroup_disable);
5333 * Functons for CSS ID.
5336 /* to get ID other than 0, this should be called when !cgroup_is_dead() */
5337 unsigned short css_id(struct cgroup_subsys_state *css)
5339 struct css_id *cssid;
5342 * This css_id() can return correct value when somone has refcnt
5343 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5344 * it's unchanged until freed.
5346 cssid = rcu_dereference_raw(css->id);
5348 if (cssid)
5349 return cssid->id;
5350 return 0;
5352 EXPORT_SYMBOL_GPL(css_id);
5355 * css_is_ancestor - test "root" css is an ancestor of "child"
5356 * @child: the css to be tested.
5357 * @root: the css supporsed to be an ancestor of the child.
5359 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5360 * this function reads css->id, the caller must hold rcu_read_lock().
5361 * But, considering usual usage, the csses should be valid objects after test.
5362 * Assuming that the caller will do some action to the child if this returns
5363 * returns true, the caller must take "child";s reference count.
5364 * If "child" is valid object and this returns true, "root" is valid, too.
5367 bool css_is_ancestor(struct cgroup_subsys_state *child,
5368 const struct cgroup_subsys_state *root)
5370 struct css_id *child_id;
5371 struct css_id *root_id;
5373 child_id = rcu_dereference(child->id);
5374 if (!child_id)
5375 return false;
5376 root_id = rcu_dereference(root->id);
5377 if (!root_id)
5378 return false;
5379 if (child_id->depth < root_id->depth)
5380 return false;
5381 if (child_id->stack[root_id->depth] != root_id->id)
5382 return false;
5383 return true;
5386 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5388 struct css_id *id = rcu_dereference_protected(css->id, true);
5390 /* When this is called before css_id initialization, id can be NULL */
5391 if (!id)
5392 return;
5394 BUG_ON(!ss->use_id);
5396 rcu_assign_pointer(id->css, NULL);
5397 rcu_assign_pointer(css->id, NULL);
5398 spin_lock(&ss->id_lock);
5399 idr_remove(&ss->idr, id->id);
5400 spin_unlock(&ss->id_lock);
5401 kfree_rcu(id, rcu_head);
5403 EXPORT_SYMBOL_GPL(free_css_id);
5406 * This is called by init or create(). Then, calls to this function are
5407 * always serialized (By cgroup_mutex() at create()).
5410 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5412 struct css_id *newid;
5413 int ret, size;
5415 BUG_ON(!ss->use_id);
5417 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5418 newid = kzalloc(size, GFP_KERNEL);
5419 if (!newid)
5420 return ERR_PTR(-ENOMEM);
5422 idr_preload(GFP_KERNEL);
5423 spin_lock(&ss->id_lock);
5424 /* Don't use 0. allocates an ID of 1-65535 */
5425 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
5426 spin_unlock(&ss->id_lock);
5427 idr_preload_end();
5429 /* Returns error when there are no free spaces for new ID.*/
5430 if (ret < 0)
5431 goto err_out;
5433 newid->id = ret;
5434 newid->depth = depth;
5435 return newid;
5436 err_out:
5437 kfree(newid);
5438 return ERR_PTR(ret);
5442 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5443 struct cgroup_subsys_state *rootcss)
5445 struct css_id *newid;
5447 spin_lock_init(&ss->id_lock);
5448 idr_init(&ss->idr);
5450 newid = get_new_cssid(ss, 0);
5451 if (IS_ERR(newid))
5452 return PTR_ERR(newid);
5454 newid->stack[0] = newid->id;
5455 RCU_INIT_POINTER(newid->css, rootcss);
5456 RCU_INIT_POINTER(rootcss->id, newid);
5457 return 0;
5460 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5461 struct cgroup *child)
5463 int subsys_id, i, depth = 0;
5464 struct cgroup_subsys_state *parent_css, *child_css;
5465 struct css_id *child_id, *parent_id;
5467 subsys_id = ss->subsys_id;
5468 parent_css = parent->subsys[subsys_id];
5469 child_css = child->subsys[subsys_id];
5470 parent_id = rcu_dereference_protected(parent_css->id, true);
5471 depth = parent_id->depth + 1;
5473 child_id = get_new_cssid(ss, depth);
5474 if (IS_ERR(child_id))
5475 return PTR_ERR(child_id);
5477 for (i = 0; i < depth; i++)
5478 child_id->stack[i] = parent_id->stack[i];
5479 child_id->stack[depth] = child_id->id;
5481 * child_id->css pointer will be set after this cgroup is available
5482 * see cgroup_populate_dir()
5484 rcu_assign_pointer(child_css->id, child_id);
5486 return 0;
5490 * css_lookup - lookup css by id
5491 * @ss: cgroup subsys to be looked into.
5492 * @id: the id
5494 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5495 * NULL if not. Should be called under rcu_read_lock()
5497 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5499 struct css_id *cssid = NULL;
5501 BUG_ON(!ss->use_id);
5502 cssid = idr_find(&ss->idr, id);
5504 if (unlikely(!cssid))
5505 return NULL;
5507 return rcu_dereference(cssid->css);
5509 EXPORT_SYMBOL_GPL(css_lookup);
5512 * get corresponding css from file open on cgroupfs directory
5514 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5516 struct cgroup *cgrp;
5517 struct inode *inode;
5518 struct cgroup_subsys_state *css;
5520 inode = file_inode(f);
5521 /* check in cgroup filesystem dir */
5522 if (inode->i_op != &cgroup_dir_inode_operations)
5523 return ERR_PTR(-EBADF);
5525 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5526 return ERR_PTR(-EINVAL);
5528 /* get cgroup */
5529 cgrp = __d_cgrp(f->f_dentry);
5530 css = cgrp->subsys[id];
5531 return css ? css : ERR_PTR(-ENOENT);
5534 #ifdef CONFIG_CGROUP_DEBUG
5535 static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cgrp)
5537 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5539 if (!css)
5540 return ERR_PTR(-ENOMEM);
5542 return css;
5545 static void debug_css_free(struct cgroup *cgrp)
5547 kfree(cgrp->subsys[debug_subsys_id]);
5550 static u64 debug_taskcount_read(struct cgroup *cgrp, struct cftype *cft)
5552 return cgroup_task_count(cgrp);
5555 static u64 current_css_set_read(struct cgroup *cgrp, struct cftype *cft)
5557 return (u64)(unsigned long)current->cgroups;
5560 static u64 current_css_set_refcount_read(struct cgroup *cgrp,
5561 struct cftype *cft)
5563 u64 count;
5565 rcu_read_lock();
5566 count = atomic_read(&task_css_set(current)->refcount);
5567 rcu_read_unlock();
5568 return count;
5571 static int current_css_set_cg_links_read(struct cgroup *cgrp,
5572 struct cftype *cft,
5573 struct seq_file *seq)
5575 struct cgrp_cset_link *link;
5576 struct css_set *cset;
5578 read_lock(&css_set_lock);
5579 rcu_read_lock();
5580 cset = rcu_dereference(current->cgroups);
5581 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5582 struct cgroup *c = link->cgrp;
5583 const char *name;
5585 if (c->dentry)
5586 name = c->dentry->d_name.name;
5587 else
5588 name = "?";
5589 seq_printf(seq, "Root %d group %s\n",
5590 c->root->hierarchy_id, name);
5592 rcu_read_unlock();
5593 read_unlock(&css_set_lock);
5594 return 0;
5597 #define MAX_TASKS_SHOWN_PER_CSS 25
5598 static int cgroup_css_links_read(struct cgroup *cgrp,
5599 struct cftype *cft,
5600 struct seq_file *seq)
5602 struct cgrp_cset_link *link;
5604 read_lock(&css_set_lock);
5605 list_for_each_entry(link, &cgrp->cset_links, cset_link) {
5606 struct css_set *cset = link->cset;
5607 struct task_struct *task;
5608 int count = 0;
5609 seq_printf(seq, "css_set %p\n", cset);
5610 list_for_each_entry(task, &cset->tasks, cg_list) {
5611 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5612 seq_puts(seq, " ...\n");
5613 break;
5614 } else {
5615 seq_printf(seq, " task %d\n",
5616 task_pid_vnr(task));
5620 read_unlock(&css_set_lock);
5621 return 0;
5624 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5626 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5629 static struct cftype debug_files[] = {
5631 .name = "taskcount",
5632 .read_u64 = debug_taskcount_read,
5636 .name = "current_css_set",
5637 .read_u64 = current_css_set_read,
5641 .name = "current_css_set_refcount",
5642 .read_u64 = current_css_set_refcount_read,
5646 .name = "current_css_set_cg_links",
5647 .read_seq_string = current_css_set_cg_links_read,
5651 .name = "cgroup_css_links",
5652 .read_seq_string = cgroup_css_links_read,
5656 .name = "releasable",
5657 .read_u64 = releasable_read,
5660 { } /* terminate */
5663 struct cgroup_subsys debug_subsys = {
5664 .name = "debug",
5665 .css_alloc = debug_css_alloc,
5666 .css_free = debug_css_free,
5667 .subsys_id = debug_subsys_id,
5668 .base_cftypes = debug_files,
5670 #endif /* CONFIG_CGROUP_DEBUG */