2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <linux/kvm_irqfd.h>
31 #include <linux/irqbypass.h>
32 #include <trace/events/kvm.h>
33 #include <kvm/arm_pmu.h>
35 #define CREATE_TRACE_POINTS
38 #include <linux/uaccess.h>
39 #include <asm/ptrace.h>
41 #include <asm/tlbflush.h>
42 #include <asm/cacheflush.h>
44 #include <asm/kvm_arm.h>
45 #include <asm/kvm_asm.h>
46 #include <asm/kvm_mmu.h>
47 #include <asm/kvm_emulate.h>
48 #include <asm/kvm_coproc.h>
49 #include <asm/kvm_psci.h>
50 #include <asm/sections.h>
53 __asm__(".arch_extension virt");
56 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page
);
57 static kvm_cpu_context_t __percpu
*kvm_host_cpu_state
;
59 /* Per-CPU variable containing the currently running vcpu. */
60 static DEFINE_PER_CPU(struct kvm_vcpu
*, kvm_arm_running_vcpu
);
62 /* The VMID used in the VTTBR */
63 static atomic64_t kvm_vmid_gen
= ATOMIC64_INIT(1);
64 static u32 kvm_next_vmid
;
65 static unsigned int kvm_vmid_bits __read_mostly
;
66 static DEFINE_SPINLOCK(kvm_vmid_lock
);
68 static bool vgic_present
;
70 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled
);
72 static void kvm_arm_set_running_vcpu(struct kvm_vcpu
*vcpu
)
74 BUG_ON(preemptible());
75 __this_cpu_write(kvm_arm_running_vcpu
, vcpu
);
79 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
80 * Must be called from non-preemptible context
82 struct kvm_vcpu
*kvm_arm_get_running_vcpu(void)
84 BUG_ON(preemptible());
85 return __this_cpu_read(kvm_arm_running_vcpu
);
89 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
91 struct kvm_vcpu
* __percpu
*kvm_get_running_vcpus(void)
93 return &kvm_arm_running_vcpu
;
96 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
98 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
101 int kvm_arch_hardware_setup(void)
106 void kvm_arch_check_processor_compat(void *rtn
)
113 * kvm_arch_init_vm - initializes a VM data structure
114 * @kvm: pointer to the KVM struct
116 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
123 kvm
->arch
.last_vcpu_ran
= alloc_percpu(typeof(*kvm
->arch
.last_vcpu_ran
));
124 if (!kvm
->arch
.last_vcpu_ran
)
127 for_each_possible_cpu(cpu
)
128 *per_cpu_ptr(kvm
->arch
.last_vcpu_ran
, cpu
) = -1;
130 ret
= kvm_alloc_stage2_pgd(kvm
);
134 ret
= create_hyp_mappings(kvm
, kvm
+ 1, PAGE_HYP
);
136 goto out_free_stage2_pgd
;
138 kvm_vgic_early_init(kvm
);
140 /* Mark the initial VMID generation invalid */
141 kvm
->arch
.vmid_gen
= 0;
143 /* The maximum number of VCPUs is limited by the host's GIC model */
144 kvm
->arch
.max_vcpus
= vgic_present
?
145 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS
;
149 kvm_free_stage2_pgd(kvm
);
151 free_percpu(kvm
->arch
.last_vcpu_ran
);
152 kvm
->arch
.last_vcpu_ran
= NULL
;
156 bool kvm_arch_has_vcpu_debugfs(void)
161 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu
*vcpu
)
166 int kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
168 return VM_FAULT_SIGBUS
;
173 * kvm_arch_destroy_vm - destroy the VM data structure
174 * @kvm: pointer to the KVM struct
176 void kvm_arch_destroy_vm(struct kvm
*kvm
)
180 kvm_vgic_destroy(kvm
);
182 free_percpu(kvm
->arch
.last_vcpu_ran
);
183 kvm
->arch
.last_vcpu_ran
= NULL
;
185 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
187 kvm_arch_vcpu_free(kvm
->vcpus
[i
]);
188 kvm
->vcpus
[i
] = NULL
;
193 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
197 case KVM_CAP_IRQCHIP
:
200 case KVM_CAP_IOEVENTFD
:
201 case KVM_CAP_DEVICE_CTRL
:
202 case KVM_CAP_USER_MEMORY
:
203 case KVM_CAP_SYNC_MMU
:
204 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
205 case KVM_CAP_ONE_REG
:
206 case KVM_CAP_ARM_PSCI
:
207 case KVM_CAP_ARM_PSCI_0_2
:
208 case KVM_CAP_READONLY_MEM
:
209 case KVM_CAP_MP_STATE
:
210 case KVM_CAP_IMMEDIATE_EXIT
:
213 case KVM_CAP_ARM_SET_DEVICE_ADDR
:
216 case KVM_CAP_NR_VCPUS
:
217 r
= num_online_cpus();
219 case KVM_CAP_MAX_VCPUS
:
222 case KVM_CAP_NR_MEMSLOTS
:
223 r
= KVM_USER_MEM_SLOTS
;
225 case KVM_CAP_MSI_DEVID
:
229 r
= kvm
->arch
.vgic
.msis_require_devid
;
231 case KVM_CAP_ARM_USER_IRQ
:
233 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
234 * (bump this number if adding more devices)
239 r
= kvm_arch_dev_ioctl_check_extension(kvm
, ext
);
245 long kvm_arch_dev_ioctl(struct file
*filp
,
246 unsigned int ioctl
, unsigned long arg
)
252 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
, unsigned int id
)
255 struct kvm_vcpu
*vcpu
;
257 if (irqchip_in_kernel(kvm
) && vgic_initialized(kvm
)) {
262 if (id
>= kvm
->arch
.max_vcpus
) {
267 vcpu
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
273 err
= kvm_vcpu_init(vcpu
, kvm
, id
);
277 err
= create_hyp_mappings(vcpu
, vcpu
+ 1, PAGE_HYP
);
283 kvm_vcpu_uninit(vcpu
);
285 kmem_cache_free(kvm_vcpu_cache
, vcpu
);
290 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
292 kvm_vgic_vcpu_early_init(vcpu
);
295 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
297 kvm_mmu_free_memory_caches(vcpu
);
298 kvm_timer_vcpu_terminate(vcpu
);
299 kvm_vgic_vcpu_destroy(vcpu
);
300 kvm_pmu_vcpu_destroy(vcpu
);
301 kvm_vcpu_uninit(vcpu
);
302 kmem_cache_free(kvm_vcpu_cache
, vcpu
);
305 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
307 kvm_arch_vcpu_free(vcpu
);
310 int kvm_cpu_has_pending_timer(struct kvm_vcpu
*vcpu
)
312 return kvm_timer_is_pending(vcpu
);
315 void kvm_arch_vcpu_blocking(struct kvm_vcpu
*vcpu
)
317 kvm_timer_schedule(vcpu
);
318 kvm_vgic_v4_enable_doorbell(vcpu
);
321 void kvm_arch_vcpu_unblocking(struct kvm_vcpu
*vcpu
)
323 kvm_timer_unschedule(vcpu
);
324 kvm_vgic_v4_disable_doorbell(vcpu
);
327 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
329 /* Force users to call KVM_ARM_VCPU_INIT */
330 vcpu
->arch
.target
= -1;
331 bitmap_zero(vcpu
->arch
.features
, KVM_VCPU_MAX_FEATURES
);
333 /* Set up the timer */
334 kvm_timer_vcpu_init(vcpu
);
336 kvm_arm_reset_debug_ptr(vcpu
);
338 return kvm_vgic_vcpu_init(vcpu
);
341 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
345 last_ran
= this_cpu_ptr(vcpu
->kvm
->arch
.last_vcpu_ran
);
348 * We might get preempted before the vCPU actually runs, but
349 * over-invalidation doesn't affect correctness.
351 if (*last_ran
!= vcpu
->vcpu_id
) {
352 kvm_call_hyp(__kvm_tlb_flush_local_vmid
, vcpu
);
353 *last_ran
= vcpu
->vcpu_id
;
357 vcpu
->arch
.host_cpu_context
= this_cpu_ptr(kvm_host_cpu_state
);
359 kvm_arm_set_running_vcpu(vcpu
);
361 kvm_timer_vcpu_load(vcpu
);
364 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
366 kvm_timer_vcpu_put(vcpu
);
371 kvm_arm_set_running_vcpu(NULL
);
374 static void vcpu_power_off(struct kvm_vcpu
*vcpu
)
376 vcpu
->arch
.power_off
= true;
377 kvm_make_request(KVM_REQ_SLEEP
, vcpu
);
381 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
382 struct kvm_mp_state
*mp_state
)
384 if (vcpu
->arch
.power_off
)
385 mp_state
->mp_state
= KVM_MP_STATE_STOPPED
;
387 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
392 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
393 struct kvm_mp_state
*mp_state
)
395 switch (mp_state
->mp_state
) {
396 case KVM_MP_STATE_RUNNABLE
:
397 vcpu
->arch
.power_off
= false;
399 case KVM_MP_STATE_STOPPED
:
400 vcpu_power_off(vcpu
);
410 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
411 * @v: The VCPU pointer
413 * If the guest CPU is not waiting for interrupts or an interrupt line is
414 * asserted, the CPU is by definition runnable.
416 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*v
)
418 return ((!!v
->arch
.irq_lines
|| kvm_vgic_vcpu_pending_irq(v
))
419 && !v
->arch
.power_off
&& !v
->arch
.pause
);
422 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu
*vcpu
)
424 return vcpu_mode_priv(vcpu
);
427 /* Just ensure a guest exit from a particular CPU */
428 static void exit_vm_noop(void *info
)
432 void force_vm_exit(const cpumask_t
*mask
)
435 smp_call_function_many(mask
, exit_vm_noop
, NULL
, true);
440 * need_new_vmid_gen - check that the VMID is still valid
441 * @kvm: The VM's VMID to check
443 * return true if there is a new generation of VMIDs being used
445 * The hardware supports only 256 values with the value zero reserved for the
446 * host, so we check if an assigned value belongs to a previous generation,
447 * which which requires us to assign a new value. If we're the first to use a
448 * VMID for the new generation, we must flush necessary caches and TLBs on all
451 static bool need_new_vmid_gen(struct kvm
*kvm
)
453 return unlikely(kvm
->arch
.vmid_gen
!= atomic64_read(&kvm_vmid_gen
));
457 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
458 * @kvm The guest that we are about to run
460 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
461 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
464 static void update_vttbr(struct kvm
*kvm
)
466 phys_addr_t pgd_phys
;
469 if (!need_new_vmid_gen(kvm
))
472 spin_lock(&kvm_vmid_lock
);
475 * We need to re-check the vmid_gen here to ensure that if another vcpu
476 * already allocated a valid vmid for this vm, then this vcpu should
479 if (!need_new_vmid_gen(kvm
)) {
480 spin_unlock(&kvm_vmid_lock
);
484 /* First user of a new VMID generation? */
485 if (unlikely(kvm_next_vmid
== 0)) {
486 atomic64_inc(&kvm_vmid_gen
);
490 * On SMP we know no other CPUs can use this CPU's or each
491 * other's VMID after force_vm_exit returns since the
492 * kvm_vmid_lock blocks them from reentry to the guest.
494 force_vm_exit(cpu_all_mask
);
496 * Now broadcast TLB + ICACHE invalidation over the inner
497 * shareable domain to make sure all data structures are
500 kvm_call_hyp(__kvm_flush_vm_context
);
503 kvm
->arch
.vmid_gen
= atomic64_read(&kvm_vmid_gen
);
504 kvm
->arch
.vmid
= kvm_next_vmid
;
506 kvm_next_vmid
&= (1 << kvm_vmid_bits
) - 1;
508 /* update vttbr to be used with the new vmid */
509 pgd_phys
= virt_to_phys(kvm
->arch
.pgd
);
510 BUG_ON(pgd_phys
& ~VTTBR_BADDR_MASK
);
511 vmid
= ((u64
)(kvm
->arch
.vmid
) << VTTBR_VMID_SHIFT
) & VTTBR_VMID_MASK(kvm_vmid_bits
);
512 kvm
->arch
.vttbr
= pgd_phys
| vmid
;
514 spin_unlock(&kvm_vmid_lock
);
517 static int kvm_vcpu_first_run_init(struct kvm_vcpu
*vcpu
)
519 struct kvm
*kvm
= vcpu
->kvm
;
522 if (likely(vcpu
->arch
.has_run_once
))
525 vcpu
->arch
.has_run_once
= true;
528 * Map the VGIC hardware resources before running a vcpu the first
531 if (unlikely(irqchip_in_kernel(kvm
) && !vgic_ready(kvm
))) {
532 ret
= kvm_vgic_map_resources(kvm
);
537 ret
= kvm_timer_enable(vcpu
);
541 ret
= kvm_arm_pmu_v3_enable(vcpu
);
546 bool kvm_arch_intc_initialized(struct kvm
*kvm
)
548 return vgic_initialized(kvm
);
551 void kvm_arm_halt_guest(struct kvm
*kvm
)
554 struct kvm_vcpu
*vcpu
;
556 kvm_for_each_vcpu(i
, vcpu
, kvm
)
557 vcpu
->arch
.pause
= true;
558 kvm_make_all_cpus_request(kvm
, KVM_REQ_SLEEP
);
561 void kvm_arm_resume_guest(struct kvm
*kvm
)
564 struct kvm_vcpu
*vcpu
;
566 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
567 vcpu
->arch
.pause
= false;
568 swake_up(kvm_arch_vcpu_wq(vcpu
));
572 static void vcpu_req_sleep(struct kvm_vcpu
*vcpu
)
574 struct swait_queue_head
*wq
= kvm_arch_vcpu_wq(vcpu
);
576 swait_event_interruptible(*wq
, ((!vcpu
->arch
.power_off
) &&
577 (!vcpu
->arch
.pause
)));
579 if (vcpu
->arch
.power_off
|| vcpu
->arch
.pause
) {
580 /* Awaken to handle a signal, request we sleep again later. */
581 kvm_make_request(KVM_REQ_SLEEP
, vcpu
);
585 static int kvm_vcpu_initialized(struct kvm_vcpu
*vcpu
)
587 return vcpu
->arch
.target
>= 0;
590 static void check_vcpu_requests(struct kvm_vcpu
*vcpu
)
592 if (kvm_request_pending(vcpu
)) {
593 if (kvm_check_request(KVM_REQ_SLEEP
, vcpu
))
594 vcpu_req_sleep(vcpu
);
597 * Clear IRQ_PENDING requests that were made to guarantee
598 * that a VCPU sees new virtual interrupts.
600 kvm_check_request(KVM_REQ_IRQ_PENDING
, vcpu
);
605 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
606 * @vcpu: The VCPU pointer
607 * @run: The kvm_run structure pointer used for userspace state exchange
609 * This function is called through the VCPU_RUN ioctl called from user space. It
610 * will execute VM code in a loop until the time slice for the process is used
611 * or some emulation is needed from user space in which case the function will
612 * return with return value 0 and with the kvm_run structure filled in with the
613 * required data for the requested emulation.
615 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
620 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
623 ret
= kvm_vcpu_first_run_init(vcpu
);
627 if (run
->exit_reason
== KVM_EXIT_MMIO
) {
628 ret
= kvm_handle_mmio_return(vcpu
, vcpu
->run
);
633 if (run
->immediate_exit
)
636 if (vcpu
->sigset_active
)
637 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
640 run
->exit_reason
= KVM_EXIT_UNKNOWN
;
643 * Check conditions before entering the guest
647 update_vttbr(vcpu
->kvm
);
649 check_vcpu_requests(vcpu
);
652 * Preparing the interrupts to be injected also
653 * involves poking the GIC, which must be done in a
654 * non-preemptible context.
658 /* Flush FP/SIMD state that can't survive guest entry/exit */
659 kvm_fpsimd_flush_cpu_state();
661 kvm_pmu_flush_hwstate(vcpu
);
665 kvm_vgic_flush_hwstate(vcpu
);
668 * If we have a singal pending, or need to notify a userspace
669 * irqchip about timer or PMU level changes, then we exit (and
670 * update the timer level state in kvm_timer_update_run
673 if (signal_pending(current
) ||
674 kvm_timer_should_notify_user(vcpu
) ||
675 kvm_pmu_should_notify_user(vcpu
)) {
677 run
->exit_reason
= KVM_EXIT_INTR
;
681 * Ensure we set mode to IN_GUEST_MODE after we disable
682 * interrupts and before the final VCPU requests check.
683 * See the comment in kvm_vcpu_exiting_guest_mode() and
684 * Documentation/virtual/kvm/vcpu-requests.rst
686 smp_store_mb(vcpu
->mode
, IN_GUEST_MODE
);
688 if (ret
<= 0 || need_new_vmid_gen(vcpu
->kvm
) ||
689 kvm_request_pending(vcpu
)) {
690 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
691 kvm_pmu_sync_hwstate(vcpu
);
692 kvm_timer_sync_hwstate(vcpu
);
693 kvm_vgic_sync_hwstate(vcpu
);
699 kvm_arm_setup_debug(vcpu
);
701 /**************************************************************
704 trace_kvm_entry(*vcpu_pc(vcpu
));
705 guest_enter_irqoff();
707 ret
= kvm_call_hyp(__kvm_vcpu_run
, vcpu
);
709 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
713 *************************************************************/
715 kvm_arm_clear_debug(vcpu
);
718 * We must sync the PMU state before the vgic state so
719 * that the vgic can properly sample the updated state of the
722 kvm_pmu_sync_hwstate(vcpu
);
725 * Sync the vgic state before syncing the timer state because
726 * the timer code needs to know if the virtual timer
727 * interrupts are active.
729 kvm_vgic_sync_hwstate(vcpu
);
732 * Sync the timer hardware state before enabling interrupts as
733 * we don't want vtimer interrupts to race with syncing the
734 * timer virtual interrupt state.
736 kvm_timer_sync_hwstate(vcpu
);
739 * We may have taken a host interrupt in HYP mode (ie
740 * while executing the guest). This interrupt is still
741 * pending, as we haven't serviced it yet!
743 * We're now back in SVC mode, with interrupts
744 * disabled. Enabling the interrupts now will have
745 * the effect of taking the interrupt again, in SVC
751 * We do local_irq_enable() before calling guest_exit() so
752 * that if a timer interrupt hits while running the guest we
753 * account that tick as being spent in the guest. We enable
754 * preemption after calling guest_exit() so that if we get
755 * preempted we make sure ticks after that is not counted as
759 trace_kvm_exit(ret
, kvm_vcpu_trap_get_class(vcpu
), *vcpu_pc(vcpu
));
763 ret
= handle_exit(vcpu
, run
, ret
);
766 /* Tell userspace about in-kernel device output levels */
767 if (unlikely(!irqchip_in_kernel(vcpu
->kvm
))) {
768 kvm_timer_update_run(vcpu
);
769 kvm_pmu_update_run(vcpu
);
772 if (vcpu
->sigset_active
)
773 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
777 static int vcpu_interrupt_line(struct kvm_vcpu
*vcpu
, int number
, bool level
)
783 if (number
== KVM_ARM_IRQ_CPU_IRQ
)
784 bit_index
= __ffs(HCR_VI
);
785 else /* KVM_ARM_IRQ_CPU_FIQ */
786 bit_index
= __ffs(HCR_VF
);
788 ptr
= (unsigned long *)&vcpu
->arch
.irq_lines
;
790 set
= test_and_set_bit(bit_index
, ptr
);
792 set
= test_and_clear_bit(bit_index
, ptr
);
795 * If we didn't change anything, no need to wake up or kick other CPUs
801 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
802 * trigger a world-switch round on the running physical CPU to set the
803 * virtual IRQ/FIQ fields in the HCR appropriately.
805 kvm_make_request(KVM_REQ_IRQ_PENDING
, vcpu
);
811 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_level
,
814 u32 irq
= irq_level
->irq
;
815 unsigned int irq_type
, vcpu_idx
, irq_num
;
816 int nrcpus
= atomic_read(&kvm
->online_vcpus
);
817 struct kvm_vcpu
*vcpu
= NULL
;
818 bool level
= irq_level
->level
;
820 irq_type
= (irq
>> KVM_ARM_IRQ_TYPE_SHIFT
) & KVM_ARM_IRQ_TYPE_MASK
;
821 vcpu_idx
= (irq
>> KVM_ARM_IRQ_VCPU_SHIFT
) & KVM_ARM_IRQ_VCPU_MASK
;
822 irq_num
= (irq
>> KVM_ARM_IRQ_NUM_SHIFT
) & KVM_ARM_IRQ_NUM_MASK
;
824 trace_kvm_irq_line(irq_type
, vcpu_idx
, irq_num
, irq_level
->level
);
827 case KVM_ARM_IRQ_TYPE_CPU
:
828 if (irqchip_in_kernel(kvm
))
831 if (vcpu_idx
>= nrcpus
)
834 vcpu
= kvm_get_vcpu(kvm
, vcpu_idx
);
838 if (irq_num
> KVM_ARM_IRQ_CPU_FIQ
)
841 return vcpu_interrupt_line(vcpu
, irq_num
, level
);
842 case KVM_ARM_IRQ_TYPE_PPI
:
843 if (!irqchip_in_kernel(kvm
))
846 if (vcpu_idx
>= nrcpus
)
849 vcpu
= kvm_get_vcpu(kvm
, vcpu_idx
);
853 if (irq_num
< VGIC_NR_SGIS
|| irq_num
>= VGIC_NR_PRIVATE_IRQS
)
856 return kvm_vgic_inject_irq(kvm
, vcpu
->vcpu_id
, irq_num
, level
, NULL
);
857 case KVM_ARM_IRQ_TYPE_SPI
:
858 if (!irqchip_in_kernel(kvm
))
861 if (irq_num
< VGIC_NR_PRIVATE_IRQS
)
864 return kvm_vgic_inject_irq(kvm
, 0, irq_num
, level
, NULL
);
870 static int kvm_vcpu_set_target(struct kvm_vcpu
*vcpu
,
871 const struct kvm_vcpu_init
*init
)
874 int phys_target
= kvm_target_cpu();
876 if (init
->target
!= phys_target
)
880 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
881 * use the same target.
883 if (vcpu
->arch
.target
!= -1 && vcpu
->arch
.target
!= init
->target
)
886 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
887 for (i
= 0; i
< sizeof(init
->features
) * 8; i
++) {
888 bool set
= (init
->features
[i
/ 32] & (1 << (i
% 32)));
890 if (set
&& i
>= KVM_VCPU_MAX_FEATURES
)
894 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
895 * use the same feature set.
897 if (vcpu
->arch
.target
!= -1 && i
< KVM_VCPU_MAX_FEATURES
&&
898 test_bit(i
, vcpu
->arch
.features
) != set
)
902 set_bit(i
, vcpu
->arch
.features
);
905 vcpu
->arch
.target
= phys_target
;
907 /* Now we know what it is, we can reset it. */
908 return kvm_reset_vcpu(vcpu
);
912 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu
*vcpu
,
913 struct kvm_vcpu_init
*init
)
917 ret
= kvm_vcpu_set_target(vcpu
, init
);
922 * Ensure a rebooted VM will fault in RAM pages and detect if the
923 * guest MMU is turned off and flush the caches as needed.
925 if (vcpu
->arch
.has_run_once
)
926 stage2_unmap_vm(vcpu
->kvm
);
928 vcpu_reset_hcr(vcpu
);
931 * Handle the "start in power-off" case.
933 if (test_bit(KVM_ARM_VCPU_POWER_OFF
, vcpu
->arch
.features
))
934 vcpu_power_off(vcpu
);
936 vcpu
->arch
.power_off
= false;
941 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu
*vcpu
,
942 struct kvm_device_attr
*attr
)
946 switch (attr
->group
) {
948 ret
= kvm_arm_vcpu_arch_set_attr(vcpu
, attr
);
955 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu
*vcpu
,
956 struct kvm_device_attr
*attr
)
960 switch (attr
->group
) {
962 ret
= kvm_arm_vcpu_arch_get_attr(vcpu
, attr
);
969 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu
*vcpu
,
970 struct kvm_device_attr
*attr
)
974 switch (attr
->group
) {
976 ret
= kvm_arm_vcpu_arch_has_attr(vcpu
, attr
);
983 long kvm_arch_vcpu_ioctl(struct file
*filp
,
984 unsigned int ioctl
, unsigned long arg
)
986 struct kvm_vcpu
*vcpu
= filp
->private_data
;
987 void __user
*argp
= (void __user
*)arg
;
988 struct kvm_device_attr attr
;
991 case KVM_ARM_VCPU_INIT
: {
992 struct kvm_vcpu_init init
;
994 if (copy_from_user(&init
, argp
, sizeof(init
)))
997 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu
, &init
);
999 case KVM_SET_ONE_REG
:
1000 case KVM_GET_ONE_REG
: {
1001 struct kvm_one_reg reg
;
1003 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
1006 if (copy_from_user(®
, argp
, sizeof(reg
)))
1008 if (ioctl
== KVM_SET_ONE_REG
)
1009 return kvm_arm_set_reg(vcpu
, ®
);
1011 return kvm_arm_get_reg(vcpu
, ®
);
1013 case KVM_GET_REG_LIST
: {
1014 struct kvm_reg_list __user
*user_list
= argp
;
1015 struct kvm_reg_list reg_list
;
1018 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
1021 if (copy_from_user(®_list
, user_list
, sizeof(reg_list
)))
1024 reg_list
.n
= kvm_arm_num_regs(vcpu
);
1025 if (copy_to_user(user_list
, ®_list
, sizeof(reg_list
)))
1029 return kvm_arm_copy_reg_indices(vcpu
, user_list
->reg
);
1031 case KVM_SET_DEVICE_ATTR
: {
1032 if (copy_from_user(&attr
, argp
, sizeof(attr
)))
1034 return kvm_arm_vcpu_set_attr(vcpu
, &attr
);
1036 case KVM_GET_DEVICE_ATTR
: {
1037 if (copy_from_user(&attr
, argp
, sizeof(attr
)))
1039 return kvm_arm_vcpu_get_attr(vcpu
, &attr
);
1041 case KVM_HAS_DEVICE_ATTR
: {
1042 if (copy_from_user(&attr
, argp
, sizeof(attr
)))
1044 return kvm_arm_vcpu_has_attr(vcpu
, &attr
);
1052 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1053 * @kvm: kvm instance
1054 * @log: slot id and address to which we copy the log
1056 * Steps 1-4 below provide general overview of dirty page logging. See
1057 * kvm_get_dirty_log_protect() function description for additional details.
1059 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1060 * always flush the TLB (step 4) even if previous step failed and the dirty
1061 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1062 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1063 * writes will be marked dirty for next log read.
1065 * 1. Take a snapshot of the bit and clear it if needed.
1066 * 2. Write protect the corresponding page.
1067 * 3. Copy the snapshot to the userspace.
1068 * 4. Flush TLB's if needed.
1070 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
1072 bool is_dirty
= false;
1075 mutex_lock(&kvm
->slots_lock
);
1077 r
= kvm_get_dirty_log_protect(kvm
, log
, &is_dirty
);
1080 kvm_flush_remote_tlbs(kvm
);
1082 mutex_unlock(&kvm
->slots_lock
);
1086 static int kvm_vm_ioctl_set_device_addr(struct kvm
*kvm
,
1087 struct kvm_arm_device_addr
*dev_addr
)
1089 unsigned long dev_id
, type
;
1091 dev_id
= (dev_addr
->id
& KVM_ARM_DEVICE_ID_MASK
) >>
1092 KVM_ARM_DEVICE_ID_SHIFT
;
1093 type
= (dev_addr
->id
& KVM_ARM_DEVICE_TYPE_MASK
) >>
1094 KVM_ARM_DEVICE_TYPE_SHIFT
;
1097 case KVM_ARM_DEVICE_VGIC_V2
:
1100 return kvm_vgic_addr(kvm
, type
, &dev_addr
->addr
, true);
1106 long kvm_arch_vm_ioctl(struct file
*filp
,
1107 unsigned int ioctl
, unsigned long arg
)
1109 struct kvm
*kvm
= filp
->private_data
;
1110 void __user
*argp
= (void __user
*)arg
;
1113 case KVM_CREATE_IRQCHIP
: {
1117 mutex_lock(&kvm
->lock
);
1118 ret
= kvm_vgic_create(kvm
, KVM_DEV_TYPE_ARM_VGIC_V2
);
1119 mutex_unlock(&kvm
->lock
);
1122 case KVM_ARM_SET_DEVICE_ADDR
: {
1123 struct kvm_arm_device_addr dev_addr
;
1125 if (copy_from_user(&dev_addr
, argp
, sizeof(dev_addr
)))
1127 return kvm_vm_ioctl_set_device_addr(kvm
, &dev_addr
);
1129 case KVM_ARM_PREFERRED_TARGET
: {
1131 struct kvm_vcpu_init init
;
1133 err
= kvm_vcpu_preferred_target(&init
);
1137 if (copy_to_user(argp
, &init
, sizeof(init
)))
1147 static void cpu_init_hyp_mode(void *dummy
)
1149 phys_addr_t pgd_ptr
;
1150 unsigned long hyp_stack_ptr
;
1151 unsigned long stack_page
;
1152 unsigned long vector_ptr
;
1154 /* Switch from the HYP stub to our own HYP init vector */
1155 __hyp_set_vectors(kvm_get_idmap_vector());
1157 pgd_ptr
= kvm_mmu_get_httbr();
1158 stack_page
= __this_cpu_read(kvm_arm_hyp_stack_page
);
1159 hyp_stack_ptr
= stack_page
+ PAGE_SIZE
;
1160 vector_ptr
= (unsigned long)kvm_ksym_ref(__kvm_hyp_vector
);
1162 __cpu_init_hyp_mode(pgd_ptr
, hyp_stack_ptr
, vector_ptr
);
1163 __cpu_init_stage2();
1165 kvm_arm_init_debug();
1168 static void cpu_hyp_reset(void)
1170 if (!is_kernel_in_hyp_mode())
1171 __hyp_reset_vectors();
1174 static void cpu_hyp_reinit(void)
1178 if (is_kernel_in_hyp_mode()) {
1180 * __cpu_init_stage2() is safe to call even if the PM
1181 * event was cancelled before the CPU was reset.
1183 __cpu_init_stage2();
1184 kvm_timer_init_vhe();
1186 cpu_init_hyp_mode(NULL
);
1190 kvm_vgic_init_cpu_hardware();
1193 static void _kvm_arch_hardware_enable(void *discard
)
1195 if (!__this_cpu_read(kvm_arm_hardware_enabled
)) {
1197 __this_cpu_write(kvm_arm_hardware_enabled
, 1);
1201 int kvm_arch_hardware_enable(void)
1203 _kvm_arch_hardware_enable(NULL
);
1207 static void _kvm_arch_hardware_disable(void *discard
)
1209 if (__this_cpu_read(kvm_arm_hardware_enabled
)) {
1211 __this_cpu_write(kvm_arm_hardware_enabled
, 0);
1215 void kvm_arch_hardware_disable(void)
1217 _kvm_arch_hardware_disable(NULL
);
1220 #ifdef CONFIG_CPU_PM
1221 static int hyp_init_cpu_pm_notifier(struct notifier_block
*self
,
1226 * kvm_arm_hardware_enabled is left with its old value over
1227 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1232 if (__this_cpu_read(kvm_arm_hardware_enabled
))
1234 * don't update kvm_arm_hardware_enabled here
1235 * so that the hardware will be re-enabled
1236 * when we resume. See below.
1242 if (__this_cpu_read(kvm_arm_hardware_enabled
))
1243 /* The hardware was enabled before suspend. */
1253 static struct notifier_block hyp_init_cpu_pm_nb
= {
1254 .notifier_call
= hyp_init_cpu_pm_notifier
,
1257 static void __init
hyp_cpu_pm_init(void)
1259 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb
);
1261 static void __init
hyp_cpu_pm_exit(void)
1263 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb
);
1266 static inline void hyp_cpu_pm_init(void)
1269 static inline void hyp_cpu_pm_exit(void)
1274 static void teardown_common_resources(void)
1276 free_percpu(kvm_host_cpu_state
);
1279 static int init_common_resources(void)
1281 kvm_host_cpu_state
= alloc_percpu(kvm_cpu_context_t
);
1282 if (!kvm_host_cpu_state
) {
1283 kvm_err("Cannot allocate host CPU state\n");
1287 /* set size of VMID supported by CPU */
1288 kvm_vmid_bits
= kvm_get_vmid_bits();
1289 kvm_info("%d-bit VMID\n", kvm_vmid_bits
);
1294 static int init_subsystems(void)
1299 * Enable hardware so that subsystem initialisation can access EL2.
1301 on_each_cpu(_kvm_arch_hardware_enable
, NULL
, 1);
1304 * Register CPU lower-power notifier
1309 * Init HYP view of VGIC
1311 err
= kvm_vgic_hyp_init();
1314 vgic_present
= true;
1318 vgic_present
= false;
1326 * Init HYP architected timer support
1328 err
= kvm_timer_hyp_init();
1333 kvm_coproc_table_init();
1336 on_each_cpu(_kvm_arch_hardware_disable
, NULL
, 1);
1341 static void teardown_hyp_mode(void)
1346 for_each_possible_cpu(cpu
)
1347 free_page(per_cpu(kvm_arm_hyp_stack_page
, cpu
));
1352 * Inits Hyp-mode on all online CPUs
1354 static int init_hyp_mode(void)
1360 * Allocate Hyp PGD and setup Hyp identity mapping
1362 err
= kvm_mmu_init();
1367 * Allocate stack pages for Hypervisor-mode
1369 for_each_possible_cpu(cpu
) {
1370 unsigned long stack_page
;
1372 stack_page
= __get_free_page(GFP_KERNEL
);
1378 per_cpu(kvm_arm_hyp_stack_page
, cpu
) = stack_page
;
1382 * Map the Hyp-code called directly from the host
1384 err
= create_hyp_mappings(kvm_ksym_ref(__hyp_text_start
),
1385 kvm_ksym_ref(__hyp_text_end
), PAGE_HYP_EXEC
);
1387 kvm_err("Cannot map world-switch code\n");
1391 err
= create_hyp_mappings(kvm_ksym_ref(__start_rodata
),
1392 kvm_ksym_ref(__end_rodata
), PAGE_HYP_RO
);
1394 kvm_err("Cannot map rodata section\n");
1398 err
= create_hyp_mappings(kvm_ksym_ref(__bss_start
),
1399 kvm_ksym_ref(__bss_stop
), PAGE_HYP_RO
);
1401 kvm_err("Cannot map bss section\n");
1406 * Map the Hyp stack pages
1408 for_each_possible_cpu(cpu
) {
1409 char *stack_page
= (char *)per_cpu(kvm_arm_hyp_stack_page
, cpu
);
1410 err
= create_hyp_mappings(stack_page
, stack_page
+ PAGE_SIZE
,
1414 kvm_err("Cannot map hyp stack\n");
1419 for_each_possible_cpu(cpu
) {
1420 kvm_cpu_context_t
*cpu_ctxt
;
1422 cpu_ctxt
= per_cpu_ptr(kvm_host_cpu_state
, cpu
);
1423 err
= create_hyp_mappings(cpu_ctxt
, cpu_ctxt
+ 1, PAGE_HYP
);
1426 kvm_err("Cannot map host CPU state: %d\n", err
);
1434 teardown_hyp_mode();
1435 kvm_err("error initializing Hyp mode: %d\n", err
);
1439 static void check_kvm_target_cpu(void *ret
)
1441 *(int *)ret
= kvm_target_cpu();
1444 struct kvm_vcpu
*kvm_mpidr_to_vcpu(struct kvm
*kvm
, unsigned long mpidr
)
1446 struct kvm_vcpu
*vcpu
;
1449 mpidr
&= MPIDR_HWID_BITMASK
;
1450 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1451 if (mpidr
== kvm_vcpu_get_mpidr_aff(vcpu
))
1457 bool kvm_arch_has_irq_bypass(void)
1462 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer
*cons
,
1463 struct irq_bypass_producer
*prod
)
1465 struct kvm_kernel_irqfd
*irqfd
=
1466 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
1468 return kvm_vgic_v4_set_forwarding(irqfd
->kvm
, prod
->irq
,
1471 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer
*cons
,
1472 struct irq_bypass_producer
*prod
)
1474 struct kvm_kernel_irqfd
*irqfd
=
1475 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
1477 kvm_vgic_v4_unset_forwarding(irqfd
->kvm
, prod
->irq
,
1481 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer
*cons
)
1483 struct kvm_kernel_irqfd
*irqfd
=
1484 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
1486 kvm_arm_halt_guest(irqfd
->kvm
);
1489 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer
*cons
)
1491 struct kvm_kernel_irqfd
*irqfd
=
1492 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
1494 kvm_arm_resume_guest(irqfd
->kvm
);
1498 * Initialize Hyp-mode and memory mappings on all CPUs.
1500 int kvm_arch_init(void *opaque
)
1506 if (!is_hyp_mode_available()) {
1507 kvm_err("HYP mode not available\n");
1511 for_each_online_cpu(cpu
) {
1512 smp_call_function_single(cpu
, check_kvm_target_cpu
, &ret
, 1);
1514 kvm_err("Error, CPU %d not supported!\n", cpu
);
1519 err
= init_common_resources();
1523 in_hyp_mode
= is_kernel_in_hyp_mode();
1526 err
= init_hyp_mode();
1531 err
= init_subsystems();
1536 kvm_info("VHE mode initialized successfully\n");
1538 kvm_info("Hyp mode initialized successfully\n");
1544 teardown_hyp_mode();
1546 teardown_common_resources();
1550 /* NOP: Compiling as a module not supported */
1551 void kvm_arch_exit(void)
1553 kvm_perf_teardown();
1556 static int arm_init(void)
1558 int rc
= kvm_init(NULL
, sizeof(struct kvm_vcpu
), 0, THIS_MODULE
);
1562 module_init(arm_init
);