lockd: remove net pointer from messages
[linux/fpc-iii.git] / virt / kvm / arm / arm.c
bloba6524ff27de495460414b286f8181762674a84a3
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <linux/kvm_irqfd.h>
31 #include <linux/irqbypass.h>
32 #include <trace/events/kvm.h>
33 #include <kvm/arm_pmu.h>
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
38 #include <linux/uaccess.h>
39 #include <asm/ptrace.h>
40 #include <asm/mman.h>
41 #include <asm/tlbflush.h>
42 #include <asm/cacheflush.h>
43 #include <asm/virt.h>
44 #include <asm/kvm_arm.h>
45 #include <asm/kvm_asm.h>
46 #include <asm/kvm_mmu.h>
47 #include <asm/kvm_emulate.h>
48 #include <asm/kvm_coproc.h>
49 #include <asm/kvm_psci.h>
50 #include <asm/sections.h>
52 #ifdef REQUIRES_VIRT
53 __asm__(".arch_extension virt");
54 #endif
56 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
57 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
59 /* Per-CPU variable containing the currently running vcpu. */
60 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
62 /* The VMID used in the VTTBR */
63 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
64 static u32 kvm_next_vmid;
65 static unsigned int kvm_vmid_bits __read_mostly;
66 static DEFINE_SPINLOCK(kvm_vmid_lock);
68 static bool vgic_present;
70 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
72 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
74 BUG_ON(preemptible());
75 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
78 /**
79 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
80 * Must be called from non-preemptible context
82 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
84 BUG_ON(preemptible());
85 return __this_cpu_read(kvm_arm_running_vcpu);
88 /**
89 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
91 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
93 return &kvm_arm_running_vcpu;
96 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
98 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
101 int kvm_arch_hardware_setup(void)
103 return 0;
106 void kvm_arch_check_processor_compat(void *rtn)
108 *(int *)rtn = 0;
113 * kvm_arch_init_vm - initializes a VM data structure
114 * @kvm: pointer to the KVM struct
116 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
118 int ret, cpu;
120 if (type)
121 return -EINVAL;
123 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
124 if (!kvm->arch.last_vcpu_ran)
125 return -ENOMEM;
127 for_each_possible_cpu(cpu)
128 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
130 ret = kvm_alloc_stage2_pgd(kvm);
131 if (ret)
132 goto out_fail_alloc;
134 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
135 if (ret)
136 goto out_free_stage2_pgd;
138 kvm_vgic_early_init(kvm);
140 /* Mark the initial VMID generation invalid */
141 kvm->arch.vmid_gen = 0;
143 /* The maximum number of VCPUs is limited by the host's GIC model */
144 kvm->arch.max_vcpus = vgic_present ?
145 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
147 return ret;
148 out_free_stage2_pgd:
149 kvm_free_stage2_pgd(kvm);
150 out_fail_alloc:
151 free_percpu(kvm->arch.last_vcpu_ran);
152 kvm->arch.last_vcpu_ran = NULL;
153 return ret;
156 bool kvm_arch_has_vcpu_debugfs(void)
158 return false;
161 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
163 return 0;
166 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
168 return VM_FAULT_SIGBUS;
173 * kvm_arch_destroy_vm - destroy the VM data structure
174 * @kvm: pointer to the KVM struct
176 void kvm_arch_destroy_vm(struct kvm *kvm)
178 int i;
180 kvm_vgic_destroy(kvm);
182 free_percpu(kvm->arch.last_vcpu_ran);
183 kvm->arch.last_vcpu_ran = NULL;
185 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
186 if (kvm->vcpus[i]) {
187 kvm_arch_vcpu_free(kvm->vcpus[i]);
188 kvm->vcpus[i] = NULL;
193 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
195 int r;
196 switch (ext) {
197 case KVM_CAP_IRQCHIP:
198 r = vgic_present;
199 break;
200 case KVM_CAP_IOEVENTFD:
201 case KVM_CAP_DEVICE_CTRL:
202 case KVM_CAP_USER_MEMORY:
203 case KVM_CAP_SYNC_MMU:
204 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
205 case KVM_CAP_ONE_REG:
206 case KVM_CAP_ARM_PSCI:
207 case KVM_CAP_ARM_PSCI_0_2:
208 case KVM_CAP_READONLY_MEM:
209 case KVM_CAP_MP_STATE:
210 case KVM_CAP_IMMEDIATE_EXIT:
211 r = 1;
212 break;
213 case KVM_CAP_ARM_SET_DEVICE_ADDR:
214 r = 1;
215 break;
216 case KVM_CAP_NR_VCPUS:
217 r = num_online_cpus();
218 break;
219 case KVM_CAP_MAX_VCPUS:
220 r = KVM_MAX_VCPUS;
221 break;
222 case KVM_CAP_NR_MEMSLOTS:
223 r = KVM_USER_MEM_SLOTS;
224 break;
225 case KVM_CAP_MSI_DEVID:
226 if (!kvm)
227 r = -EINVAL;
228 else
229 r = kvm->arch.vgic.msis_require_devid;
230 break;
231 case KVM_CAP_ARM_USER_IRQ:
233 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
234 * (bump this number if adding more devices)
236 r = 1;
237 break;
238 default:
239 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
240 break;
242 return r;
245 long kvm_arch_dev_ioctl(struct file *filp,
246 unsigned int ioctl, unsigned long arg)
248 return -EINVAL;
252 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
254 int err;
255 struct kvm_vcpu *vcpu;
257 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
258 err = -EBUSY;
259 goto out;
262 if (id >= kvm->arch.max_vcpus) {
263 err = -EINVAL;
264 goto out;
267 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
268 if (!vcpu) {
269 err = -ENOMEM;
270 goto out;
273 err = kvm_vcpu_init(vcpu, kvm, id);
274 if (err)
275 goto free_vcpu;
277 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
278 if (err)
279 goto vcpu_uninit;
281 return vcpu;
282 vcpu_uninit:
283 kvm_vcpu_uninit(vcpu);
284 free_vcpu:
285 kmem_cache_free(kvm_vcpu_cache, vcpu);
286 out:
287 return ERR_PTR(err);
290 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
292 kvm_vgic_vcpu_early_init(vcpu);
295 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
297 kvm_mmu_free_memory_caches(vcpu);
298 kvm_timer_vcpu_terminate(vcpu);
299 kvm_vgic_vcpu_destroy(vcpu);
300 kvm_pmu_vcpu_destroy(vcpu);
301 kvm_vcpu_uninit(vcpu);
302 kmem_cache_free(kvm_vcpu_cache, vcpu);
305 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
307 kvm_arch_vcpu_free(vcpu);
310 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
312 return kvm_timer_is_pending(vcpu);
315 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
317 kvm_timer_schedule(vcpu);
318 kvm_vgic_v4_enable_doorbell(vcpu);
321 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
323 kvm_timer_unschedule(vcpu);
324 kvm_vgic_v4_disable_doorbell(vcpu);
327 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
329 /* Force users to call KVM_ARM_VCPU_INIT */
330 vcpu->arch.target = -1;
331 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
333 /* Set up the timer */
334 kvm_timer_vcpu_init(vcpu);
336 kvm_arm_reset_debug_ptr(vcpu);
338 return kvm_vgic_vcpu_init(vcpu);
341 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
343 int *last_ran;
345 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
348 * We might get preempted before the vCPU actually runs, but
349 * over-invalidation doesn't affect correctness.
351 if (*last_ran != vcpu->vcpu_id) {
352 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
353 *last_ran = vcpu->vcpu_id;
356 vcpu->cpu = cpu;
357 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
359 kvm_arm_set_running_vcpu(vcpu);
360 kvm_vgic_load(vcpu);
361 kvm_timer_vcpu_load(vcpu);
364 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
366 kvm_timer_vcpu_put(vcpu);
367 kvm_vgic_put(vcpu);
369 vcpu->cpu = -1;
371 kvm_arm_set_running_vcpu(NULL);
374 static void vcpu_power_off(struct kvm_vcpu *vcpu)
376 vcpu->arch.power_off = true;
377 kvm_make_request(KVM_REQ_SLEEP, vcpu);
378 kvm_vcpu_kick(vcpu);
381 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
382 struct kvm_mp_state *mp_state)
384 if (vcpu->arch.power_off)
385 mp_state->mp_state = KVM_MP_STATE_STOPPED;
386 else
387 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
389 return 0;
392 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
393 struct kvm_mp_state *mp_state)
395 switch (mp_state->mp_state) {
396 case KVM_MP_STATE_RUNNABLE:
397 vcpu->arch.power_off = false;
398 break;
399 case KVM_MP_STATE_STOPPED:
400 vcpu_power_off(vcpu);
401 break;
402 default:
403 return -EINVAL;
406 return 0;
410 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
411 * @v: The VCPU pointer
413 * If the guest CPU is not waiting for interrupts or an interrupt line is
414 * asserted, the CPU is by definition runnable.
416 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
418 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
419 && !v->arch.power_off && !v->arch.pause);
422 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
424 return vcpu_mode_priv(vcpu);
427 /* Just ensure a guest exit from a particular CPU */
428 static void exit_vm_noop(void *info)
432 void force_vm_exit(const cpumask_t *mask)
434 preempt_disable();
435 smp_call_function_many(mask, exit_vm_noop, NULL, true);
436 preempt_enable();
440 * need_new_vmid_gen - check that the VMID is still valid
441 * @kvm: The VM's VMID to check
443 * return true if there is a new generation of VMIDs being used
445 * The hardware supports only 256 values with the value zero reserved for the
446 * host, so we check if an assigned value belongs to a previous generation,
447 * which which requires us to assign a new value. If we're the first to use a
448 * VMID for the new generation, we must flush necessary caches and TLBs on all
449 * CPUs.
451 static bool need_new_vmid_gen(struct kvm *kvm)
453 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
457 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
458 * @kvm The guest that we are about to run
460 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
461 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
462 * caches and TLBs.
464 static void update_vttbr(struct kvm *kvm)
466 phys_addr_t pgd_phys;
467 u64 vmid;
469 if (!need_new_vmid_gen(kvm))
470 return;
472 spin_lock(&kvm_vmid_lock);
475 * We need to re-check the vmid_gen here to ensure that if another vcpu
476 * already allocated a valid vmid for this vm, then this vcpu should
477 * use the same vmid.
479 if (!need_new_vmid_gen(kvm)) {
480 spin_unlock(&kvm_vmid_lock);
481 return;
484 /* First user of a new VMID generation? */
485 if (unlikely(kvm_next_vmid == 0)) {
486 atomic64_inc(&kvm_vmid_gen);
487 kvm_next_vmid = 1;
490 * On SMP we know no other CPUs can use this CPU's or each
491 * other's VMID after force_vm_exit returns since the
492 * kvm_vmid_lock blocks them from reentry to the guest.
494 force_vm_exit(cpu_all_mask);
496 * Now broadcast TLB + ICACHE invalidation over the inner
497 * shareable domain to make sure all data structures are
498 * clean.
500 kvm_call_hyp(__kvm_flush_vm_context);
503 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
504 kvm->arch.vmid = kvm_next_vmid;
505 kvm_next_vmid++;
506 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
508 /* update vttbr to be used with the new vmid */
509 pgd_phys = virt_to_phys(kvm->arch.pgd);
510 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
511 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
512 kvm->arch.vttbr = pgd_phys | vmid;
514 spin_unlock(&kvm_vmid_lock);
517 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
519 struct kvm *kvm = vcpu->kvm;
520 int ret = 0;
522 if (likely(vcpu->arch.has_run_once))
523 return 0;
525 vcpu->arch.has_run_once = true;
528 * Map the VGIC hardware resources before running a vcpu the first
529 * time on this VM.
531 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
532 ret = kvm_vgic_map_resources(kvm);
533 if (ret)
534 return ret;
537 ret = kvm_timer_enable(vcpu);
538 if (ret)
539 return ret;
541 ret = kvm_arm_pmu_v3_enable(vcpu);
543 return ret;
546 bool kvm_arch_intc_initialized(struct kvm *kvm)
548 return vgic_initialized(kvm);
551 void kvm_arm_halt_guest(struct kvm *kvm)
553 int i;
554 struct kvm_vcpu *vcpu;
556 kvm_for_each_vcpu(i, vcpu, kvm)
557 vcpu->arch.pause = true;
558 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
561 void kvm_arm_resume_guest(struct kvm *kvm)
563 int i;
564 struct kvm_vcpu *vcpu;
566 kvm_for_each_vcpu(i, vcpu, kvm) {
567 vcpu->arch.pause = false;
568 swake_up(kvm_arch_vcpu_wq(vcpu));
572 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
574 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
576 swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
577 (!vcpu->arch.pause)));
579 if (vcpu->arch.power_off || vcpu->arch.pause) {
580 /* Awaken to handle a signal, request we sleep again later. */
581 kvm_make_request(KVM_REQ_SLEEP, vcpu);
585 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
587 return vcpu->arch.target >= 0;
590 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
592 if (kvm_request_pending(vcpu)) {
593 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
594 vcpu_req_sleep(vcpu);
597 * Clear IRQ_PENDING requests that were made to guarantee
598 * that a VCPU sees new virtual interrupts.
600 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
605 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
606 * @vcpu: The VCPU pointer
607 * @run: The kvm_run structure pointer used for userspace state exchange
609 * This function is called through the VCPU_RUN ioctl called from user space. It
610 * will execute VM code in a loop until the time slice for the process is used
611 * or some emulation is needed from user space in which case the function will
612 * return with return value 0 and with the kvm_run structure filled in with the
613 * required data for the requested emulation.
615 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
617 int ret;
618 sigset_t sigsaved;
620 if (unlikely(!kvm_vcpu_initialized(vcpu)))
621 return -ENOEXEC;
623 ret = kvm_vcpu_first_run_init(vcpu);
624 if (ret)
625 return ret;
627 if (run->exit_reason == KVM_EXIT_MMIO) {
628 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
629 if (ret)
630 return ret;
633 if (run->immediate_exit)
634 return -EINTR;
636 if (vcpu->sigset_active)
637 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
639 ret = 1;
640 run->exit_reason = KVM_EXIT_UNKNOWN;
641 while (ret > 0) {
643 * Check conditions before entering the guest
645 cond_resched();
647 update_vttbr(vcpu->kvm);
649 check_vcpu_requests(vcpu);
652 * Preparing the interrupts to be injected also
653 * involves poking the GIC, which must be done in a
654 * non-preemptible context.
656 preempt_disable();
658 /* Flush FP/SIMD state that can't survive guest entry/exit */
659 kvm_fpsimd_flush_cpu_state();
661 kvm_pmu_flush_hwstate(vcpu);
663 local_irq_disable();
665 kvm_vgic_flush_hwstate(vcpu);
668 * If we have a singal pending, or need to notify a userspace
669 * irqchip about timer or PMU level changes, then we exit (and
670 * update the timer level state in kvm_timer_update_run
671 * below).
673 if (signal_pending(current) ||
674 kvm_timer_should_notify_user(vcpu) ||
675 kvm_pmu_should_notify_user(vcpu)) {
676 ret = -EINTR;
677 run->exit_reason = KVM_EXIT_INTR;
681 * Ensure we set mode to IN_GUEST_MODE after we disable
682 * interrupts and before the final VCPU requests check.
683 * See the comment in kvm_vcpu_exiting_guest_mode() and
684 * Documentation/virtual/kvm/vcpu-requests.rst
686 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
688 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
689 kvm_request_pending(vcpu)) {
690 vcpu->mode = OUTSIDE_GUEST_MODE;
691 kvm_pmu_sync_hwstate(vcpu);
692 kvm_timer_sync_hwstate(vcpu);
693 kvm_vgic_sync_hwstate(vcpu);
694 local_irq_enable();
695 preempt_enable();
696 continue;
699 kvm_arm_setup_debug(vcpu);
701 /**************************************************************
702 * Enter the guest
704 trace_kvm_entry(*vcpu_pc(vcpu));
705 guest_enter_irqoff();
707 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
709 vcpu->mode = OUTSIDE_GUEST_MODE;
710 vcpu->stat.exits++;
712 * Back from guest
713 *************************************************************/
715 kvm_arm_clear_debug(vcpu);
718 * We must sync the PMU state before the vgic state so
719 * that the vgic can properly sample the updated state of the
720 * interrupt line.
722 kvm_pmu_sync_hwstate(vcpu);
725 * Sync the vgic state before syncing the timer state because
726 * the timer code needs to know if the virtual timer
727 * interrupts are active.
729 kvm_vgic_sync_hwstate(vcpu);
732 * Sync the timer hardware state before enabling interrupts as
733 * we don't want vtimer interrupts to race with syncing the
734 * timer virtual interrupt state.
736 kvm_timer_sync_hwstate(vcpu);
739 * We may have taken a host interrupt in HYP mode (ie
740 * while executing the guest). This interrupt is still
741 * pending, as we haven't serviced it yet!
743 * We're now back in SVC mode, with interrupts
744 * disabled. Enabling the interrupts now will have
745 * the effect of taking the interrupt again, in SVC
746 * mode this time.
748 local_irq_enable();
751 * We do local_irq_enable() before calling guest_exit() so
752 * that if a timer interrupt hits while running the guest we
753 * account that tick as being spent in the guest. We enable
754 * preemption after calling guest_exit() so that if we get
755 * preempted we make sure ticks after that is not counted as
756 * guest time.
758 guest_exit();
759 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
761 preempt_enable();
763 ret = handle_exit(vcpu, run, ret);
766 /* Tell userspace about in-kernel device output levels */
767 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
768 kvm_timer_update_run(vcpu);
769 kvm_pmu_update_run(vcpu);
772 if (vcpu->sigset_active)
773 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
774 return ret;
777 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
779 int bit_index;
780 bool set;
781 unsigned long *ptr;
783 if (number == KVM_ARM_IRQ_CPU_IRQ)
784 bit_index = __ffs(HCR_VI);
785 else /* KVM_ARM_IRQ_CPU_FIQ */
786 bit_index = __ffs(HCR_VF);
788 ptr = (unsigned long *)&vcpu->arch.irq_lines;
789 if (level)
790 set = test_and_set_bit(bit_index, ptr);
791 else
792 set = test_and_clear_bit(bit_index, ptr);
795 * If we didn't change anything, no need to wake up or kick other CPUs
797 if (set == level)
798 return 0;
801 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
802 * trigger a world-switch round on the running physical CPU to set the
803 * virtual IRQ/FIQ fields in the HCR appropriately.
805 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
806 kvm_vcpu_kick(vcpu);
808 return 0;
811 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
812 bool line_status)
814 u32 irq = irq_level->irq;
815 unsigned int irq_type, vcpu_idx, irq_num;
816 int nrcpus = atomic_read(&kvm->online_vcpus);
817 struct kvm_vcpu *vcpu = NULL;
818 bool level = irq_level->level;
820 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
821 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
822 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
824 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
826 switch (irq_type) {
827 case KVM_ARM_IRQ_TYPE_CPU:
828 if (irqchip_in_kernel(kvm))
829 return -ENXIO;
831 if (vcpu_idx >= nrcpus)
832 return -EINVAL;
834 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
835 if (!vcpu)
836 return -EINVAL;
838 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
839 return -EINVAL;
841 return vcpu_interrupt_line(vcpu, irq_num, level);
842 case KVM_ARM_IRQ_TYPE_PPI:
843 if (!irqchip_in_kernel(kvm))
844 return -ENXIO;
846 if (vcpu_idx >= nrcpus)
847 return -EINVAL;
849 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
850 if (!vcpu)
851 return -EINVAL;
853 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
854 return -EINVAL;
856 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
857 case KVM_ARM_IRQ_TYPE_SPI:
858 if (!irqchip_in_kernel(kvm))
859 return -ENXIO;
861 if (irq_num < VGIC_NR_PRIVATE_IRQS)
862 return -EINVAL;
864 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
867 return -EINVAL;
870 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
871 const struct kvm_vcpu_init *init)
873 unsigned int i;
874 int phys_target = kvm_target_cpu();
876 if (init->target != phys_target)
877 return -EINVAL;
880 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
881 * use the same target.
883 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
884 return -EINVAL;
886 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
887 for (i = 0; i < sizeof(init->features) * 8; i++) {
888 bool set = (init->features[i / 32] & (1 << (i % 32)));
890 if (set && i >= KVM_VCPU_MAX_FEATURES)
891 return -ENOENT;
894 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
895 * use the same feature set.
897 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
898 test_bit(i, vcpu->arch.features) != set)
899 return -EINVAL;
901 if (set)
902 set_bit(i, vcpu->arch.features);
905 vcpu->arch.target = phys_target;
907 /* Now we know what it is, we can reset it. */
908 return kvm_reset_vcpu(vcpu);
912 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
913 struct kvm_vcpu_init *init)
915 int ret;
917 ret = kvm_vcpu_set_target(vcpu, init);
918 if (ret)
919 return ret;
922 * Ensure a rebooted VM will fault in RAM pages and detect if the
923 * guest MMU is turned off and flush the caches as needed.
925 if (vcpu->arch.has_run_once)
926 stage2_unmap_vm(vcpu->kvm);
928 vcpu_reset_hcr(vcpu);
931 * Handle the "start in power-off" case.
933 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
934 vcpu_power_off(vcpu);
935 else
936 vcpu->arch.power_off = false;
938 return 0;
941 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
942 struct kvm_device_attr *attr)
944 int ret = -ENXIO;
946 switch (attr->group) {
947 default:
948 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
949 break;
952 return ret;
955 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
956 struct kvm_device_attr *attr)
958 int ret = -ENXIO;
960 switch (attr->group) {
961 default:
962 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
963 break;
966 return ret;
969 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
970 struct kvm_device_attr *attr)
972 int ret = -ENXIO;
974 switch (attr->group) {
975 default:
976 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
977 break;
980 return ret;
983 long kvm_arch_vcpu_ioctl(struct file *filp,
984 unsigned int ioctl, unsigned long arg)
986 struct kvm_vcpu *vcpu = filp->private_data;
987 void __user *argp = (void __user *)arg;
988 struct kvm_device_attr attr;
990 switch (ioctl) {
991 case KVM_ARM_VCPU_INIT: {
992 struct kvm_vcpu_init init;
994 if (copy_from_user(&init, argp, sizeof(init)))
995 return -EFAULT;
997 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
999 case KVM_SET_ONE_REG:
1000 case KVM_GET_ONE_REG: {
1001 struct kvm_one_reg reg;
1003 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1004 return -ENOEXEC;
1006 if (copy_from_user(&reg, argp, sizeof(reg)))
1007 return -EFAULT;
1008 if (ioctl == KVM_SET_ONE_REG)
1009 return kvm_arm_set_reg(vcpu, &reg);
1010 else
1011 return kvm_arm_get_reg(vcpu, &reg);
1013 case KVM_GET_REG_LIST: {
1014 struct kvm_reg_list __user *user_list = argp;
1015 struct kvm_reg_list reg_list;
1016 unsigned n;
1018 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1019 return -ENOEXEC;
1021 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1022 return -EFAULT;
1023 n = reg_list.n;
1024 reg_list.n = kvm_arm_num_regs(vcpu);
1025 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1026 return -EFAULT;
1027 if (n < reg_list.n)
1028 return -E2BIG;
1029 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1031 case KVM_SET_DEVICE_ATTR: {
1032 if (copy_from_user(&attr, argp, sizeof(attr)))
1033 return -EFAULT;
1034 return kvm_arm_vcpu_set_attr(vcpu, &attr);
1036 case KVM_GET_DEVICE_ATTR: {
1037 if (copy_from_user(&attr, argp, sizeof(attr)))
1038 return -EFAULT;
1039 return kvm_arm_vcpu_get_attr(vcpu, &attr);
1041 case KVM_HAS_DEVICE_ATTR: {
1042 if (copy_from_user(&attr, argp, sizeof(attr)))
1043 return -EFAULT;
1044 return kvm_arm_vcpu_has_attr(vcpu, &attr);
1046 default:
1047 return -EINVAL;
1052 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1053 * @kvm: kvm instance
1054 * @log: slot id and address to which we copy the log
1056 * Steps 1-4 below provide general overview of dirty page logging. See
1057 * kvm_get_dirty_log_protect() function description for additional details.
1059 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1060 * always flush the TLB (step 4) even if previous step failed and the dirty
1061 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1062 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1063 * writes will be marked dirty for next log read.
1065 * 1. Take a snapshot of the bit and clear it if needed.
1066 * 2. Write protect the corresponding page.
1067 * 3. Copy the snapshot to the userspace.
1068 * 4. Flush TLB's if needed.
1070 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1072 bool is_dirty = false;
1073 int r;
1075 mutex_lock(&kvm->slots_lock);
1077 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1079 if (is_dirty)
1080 kvm_flush_remote_tlbs(kvm);
1082 mutex_unlock(&kvm->slots_lock);
1083 return r;
1086 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1087 struct kvm_arm_device_addr *dev_addr)
1089 unsigned long dev_id, type;
1091 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1092 KVM_ARM_DEVICE_ID_SHIFT;
1093 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1094 KVM_ARM_DEVICE_TYPE_SHIFT;
1096 switch (dev_id) {
1097 case KVM_ARM_DEVICE_VGIC_V2:
1098 if (!vgic_present)
1099 return -ENXIO;
1100 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1101 default:
1102 return -ENODEV;
1106 long kvm_arch_vm_ioctl(struct file *filp,
1107 unsigned int ioctl, unsigned long arg)
1109 struct kvm *kvm = filp->private_data;
1110 void __user *argp = (void __user *)arg;
1112 switch (ioctl) {
1113 case KVM_CREATE_IRQCHIP: {
1114 int ret;
1115 if (!vgic_present)
1116 return -ENXIO;
1117 mutex_lock(&kvm->lock);
1118 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1119 mutex_unlock(&kvm->lock);
1120 return ret;
1122 case KVM_ARM_SET_DEVICE_ADDR: {
1123 struct kvm_arm_device_addr dev_addr;
1125 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1126 return -EFAULT;
1127 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1129 case KVM_ARM_PREFERRED_TARGET: {
1130 int err;
1131 struct kvm_vcpu_init init;
1133 err = kvm_vcpu_preferred_target(&init);
1134 if (err)
1135 return err;
1137 if (copy_to_user(argp, &init, sizeof(init)))
1138 return -EFAULT;
1140 return 0;
1142 default:
1143 return -EINVAL;
1147 static void cpu_init_hyp_mode(void *dummy)
1149 phys_addr_t pgd_ptr;
1150 unsigned long hyp_stack_ptr;
1151 unsigned long stack_page;
1152 unsigned long vector_ptr;
1154 /* Switch from the HYP stub to our own HYP init vector */
1155 __hyp_set_vectors(kvm_get_idmap_vector());
1157 pgd_ptr = kvm_mmu_get_httbr();
1158 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1159 hyp_stack_ptr = stack_page + PAGE_SIZE;
1160 vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1162 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1163 __cpu_init_stage2();
1165 kvm_arm_init_debug();
1168 static void cpu_hyp_reset(void)
1170 if (!is_kernel_in_hyp_mode())
1171 __hyp_reset_vectors();
1174 static void cpu_hyp_reinit(void)
1176 cpu_hyp_reset();
1178 if (is_kernel_in_hyp_mode()) {
1180 * __cpu_init_stage2() is safe to call even if the PM
1181 * event was cancelled before the CPU was reset.
1183 __cpu_init_stage2();
1184 kvm_timer_init_vhe();
1185 } else {
1186 cpu_init_hyp_mode(NULL);
1189 if (vgic_present)
1190 kvm_vgic_init_cpu_hardware();
1193 static void _kvm_arch_hardware_enable(void *discard)
1195 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1196 cpu_hyp_reinit();
1197 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1201 int kvm_arch_hardware_enable(void)
1203 _kvm_arch_hardware_enable(NULL);
1204 return 0;
1207 static void _kvm_arch_hardware_disable(void *discard)
1209 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1210 cpu_hyp_reset();
1211 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1215 void kvm_arch_hardware_disable(void)
1217 _kvm_arch_hardware_disable(NULL);
1220 #ifdef CONFIG_CPU_PM
1221 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1222 unsigned long cmd,
1223 void *v)
1226 * kvm_arm_hardware_enabled is left with its old value over
1227 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1228 * re-enable hyp.
1230 switch (cmd) {
1231 case CPU_PM_ENTER:
1232 if (__this_cpu_read(kvm_arm_hardware_enabled))
1234 * don't update kvm_arm_hardware_enabled here
1235 * so that the hardware will be re-enabled
1236 * when we resume. See below.
1238 cpu_hyp_reset();
1240 return NOTIFY_OK;
1241 case CPU_PM_EXIT:
1242 if (__this_cpu_read(kvm_arm_hardware_enabled))
1243 /* The hardware was enabled before suspend. */
1244 cpu_hyp_reinit();
1246 return NOTIFY_OK;
1248 default:
1249 return NOTIFY_DONE;
1253 static struct notifier_block hyp_init_cpu_pm_nb = {
1254 .notifier_call = hyp_init_cpu_pm_notifier,
1257 static void __init hyp_cpu_pm_init(void)
1259 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1261 static void __init hyp_cpu_pm_exit(void)
1263 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1265 #else
1266 static inline void hyp_cpu_pm_init(void)
1269 static inline void hyp_cpu_pm_exit(void)
1272 #endif
1274 static void teardown_common_resources(void)
1276 free_percpu(kvm_host_cpu_state);
1279 static int init_common_resources(void)
1281 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1282 if (!kvm_host_cpu_state) {
1283 kvm_err("Cannot allocate host CPU state\n");
1284 return -ENOMEM;
1287 /* set size of VMID supported by CPU */
1288 kvm_vmid_bits = kvm_get_vmid_bits();
1289 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1291 return 0;
1294 static int init_subsystems(void)
1296 int err = 0;
1299 * Enable hardware so that subsystem initialisation can access EL2.
1301 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1304 * Register CPU lower-power notifier
1306 hyp_cpu_pm_init();
1309 * Init HYP view of VGIC
1311 err = kvm_vgic_hyp_init();
1312 switch (err) {
1313 case 0:
1314 vgic_present = true;
1315 break;
1316 case -ENODEV:
1317 case -ENXIO:
1318 vgic_present = false;
1319 err = 0;
1320 break;
1321 default:
1322 goto out;
1326 * Init HYP architected timer support
1328 err = kvm_timer_hyp_init();
1329 if (err)
1330 goto out;
1332 kvm_perf_init();
1333 kvm_coproc_table_init();
1335 out:
1336 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1338 return err;
1341 static void teardown_hyp_mode(void)
1343 int cpu;
1345 free_hyp_pgds();
1346 for_each_possible_cpu(cpu)
1347 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1348 hyp_cpu_pm_exit();
1352 * Inits Hyp-mode on all online CPUs
1354 static int init_hyp_mode(void)
1356 int cpu;
1357 int err = 0;
1360 * Allocate Hyp PGD and setup Hyp identity mapping
1362 err = kvm_mmu_init();
1363 if (err)
1364 goto out_err;
1367 * Allocate stack pages for Hypervisor-mode
1369 for_each_possible_cpu(cpu) {
1370 unsigned long stack_page;
1372 stack_page = __get_free_page(GFP_KERNEL);
1373 if (!stack_page) {
1374 err = -ENOMEM;
1375 goto out_err;
1378 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1382 * Map the Hyp-code called directly from the host
1384 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1385 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1386 if (err) {
1387 kvm_err("Cannot map world-switch code\n");
1388 goto out_err;
1391 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1392 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1393 if (err) {
1394 kvm_err("Cannot map rodata section\n");
1395 goto out_err;
1398 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1399 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1400 if (err) {
1401 kvm_err("Cannot map bss section\n");
1402 goto out_err;
1406 * Map the Hyp stack pages
1408 for_each_possible_cpu(cpu) {
1409 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1410 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1411 PAGE_HYP);
1413 if (err) {
1414 kvm_err("Cannot map hyp stack\n");
1415 goto out_err;
1419 for_each_possible_cpu(cpu) {
1420 kvm_cpu_context_t *cpu_ctxt;
1422 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1423 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1425 if (err) {
1426 kvm_err("Cannot map host CPU state: %d\n", err);
1427 goto out_err;
1431 return 0;
1433 out_err:
1434 teardown_hyp_mode();
1435 kvm_err("error initializing Hyp mode: %d\n", err);
1436 return err;
1439 static void check_kvm_target_cpu(void *ret)
1441 *(int *)ret = kvm_target_cpu();
1444 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1446 struct kvm_vcpu *vcpu;
1447 int i;
1449 mpidr &= MPIDR_HWID_BITMASK;
1450 kvm_for_each_vcpu(i, vcpu, kvm) {
1451 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1452 return vcpu;
1454 return NULL;
1457 bool kvm_arch_has_irq_bypass(void)
1459 return true;
1462 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1463 struct irq_bypass_producer *prod)
1465 struct kvm_kernel_irqfd *irqfd =
1466 container_of(cons, struct kvm_kernel_irqfd, consumer);
1468 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1469 &irqfd->irq_entry);
1471 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1472 struct irq_bypass_producer *prod)
1474 struct kvm_kernel_irqfd *irqfd =
1475 container_of(cons, struct kvm_kernel_irqfd, consumer);
1477 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1478 &irqfd->irq_entry);
1481 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1483 struct kvm_kernel_irqfd *irqfd =
1484 container_of(cons, struct kvm_kernel_irqfd, consumer);
1486 kvm_arm_halt_guest(irqfd->kvm);
1489 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1491 struct kvm_kernel_irqfd *irqfd =
1492 container_of(cons, struct kvm_kernel_irqfd, consumer);
1494 kvm_arm_resume_guest(irqfd->kvm);
1498 * Initialize Hyp-mode and memory mappings on all CPUs.
1500 int kvm_arch_init(void *opaque)
1502 int err;
1503 int ret, cpu;
1504 bool in_hyp_mode;
1506 if (!is_hyp_mode_available()) {
1507 kvm_err("HYP mode not available\n");
1508 return -ENODEV;
1511 for_each_online_cpu(cpu) {
1512 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1513 if (ret < 0) {
1514 kvm_err("Error, CPU %d not supported!\n", cpu);
1515 return -ENODEV;
1519 err = init_common_resources();
1520 if (err)
1521 return err;
1523 in_hyp_mode = is_kernel_in_hyp_mode();
1525 if (!in_hyp_mode) {
1526 err = init_hyp_mode();
1527 if (err)
1528 goto out_err;
1531 err = init_subsystems();
1532 if (err)
1533 goto out_hyp;
1535 if (in_hyp_mode)
1536 kvm_info("VHE mode initialized successfully\n");
1537 else
1538 kvm_info("Hyp mode initialized successfully\n");
1540 return 0;
1542 out_hyp:
1543 if (!in_hyp_mode)
1544 teardown_hyp_mode();
1545 out_err:
1546 teardown_common_resources();
1547 return err;
1550 /* NOP: Compiling as a module not supported */
1551 void kvm_arch_exit(void)
1553 kvm_perf_teardown();
1556 static int arm_init(void)
1558 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1559 return rc;
1562 module_init(arm_init);