2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
66 MODULE_VERSION("3.6.26");
67 MODULE_LICENSE("GPL");
69 static int cciss_allow_hpsa
;
70 module_param(cciss_allow_hpsa
, int, S_IRUGO
|S_IWUSR
);
71 MODULE_PARM_DESC(cciss_allow_hpsa
,
72 "Prevent cciss driver from accessing hardware known to be "
73 " supported by the hpsa driver");
75 #include "cciss_cmd.h"
77 #include <linux/cciss_ioctl.h>
79 /* define the PCI info for the cards we can control */
80 static const struct pci_device_id cciss_pci_device_id
[] = {
81 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISS
, 0x0E11, 0x4070},
82 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4080},
83 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4082},
84 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4083},
85 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x4091},
86 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409A},
87 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409B},
88 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409C},
89 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409D},
90 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSA
, 0x103C, 0x3225},
91 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3223},
92 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3234},
93 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3235},
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3211},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3212},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3213},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3214},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3215},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3237},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x323D},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3250},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3251},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3252},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3253},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3254},
116 MODULE_DEVICE_TABLE(pci
, cciss_pci_device_id
);
118 /* board_id = Subsystem Device ID & Vendor ID
119 * product = Marketing Name for the board
120 * access = Address of the struct of function pointers
122 static struct board_type products
[] = {
123 {0x40700E11, "Smart Array 5300", &SA5_access
},
124 {0x40800E11, "Smart Array 5i", &SA5B_access
},
125 {0x40820E11, "Smart Array 532", &SA5B_access
},
126 {0x40830E11, "Smart Array 5312", &SA5B_access
},
127 {0x409A0E11, "Smart Array 641", &SA5_access
},
128 {0x409B0E11, "Smart Array 642", &SA5_access
},
129 {0x409C0E11, "Smart Array 6400", &SA5_access
},
130 {0x409D0E11, "Smart Array 6400 EM", &SA5_access
},
131 {0x40910E11, "Smart Array 6i", &SA5_access
},
132 {0x3225103C, "Smart Array P600", &SA5_access
},
133 {0x3235103C, "Smart Array P400i", &SA5_access
},
134 {0x3211103C, "Smart Array E200i", &SA5_access
},
135 {0x3212103C, "Smart Array E200", &SA5_access
},
136 {0x3213103C, "Smart Array E200i", &SA5_access
},
137 {0x3214103C, "Smart Array E200i", &SA5_access
},
138 {0x3215103C, "Smart Array E200i", &SA5_access
},
139 {0x3237103C, "Smart Array E500", &SA5_access
},
140 /* controllers below this line are also supported by the hpsa driver. */
141 #define HPSA_BOUNDARY 0x3223103C
142 {0x3223103C, "Smart Array P800", &SA5_access
},
143 {0x3234103C, "Smart Array P400", &SA5_access
},
144 {0x323D103C, "Smart Array P700m", &SA5_access
},
145 {0x3241103C, "Smart Array P212", &SA5_access
},
146 {0x3243103C, "Smart Array P410", &SA5_access
},
147 {0x3245103C, "Smart Array P410i", &SA5_access
},
148 {0x3247103C, "Smart Array P411", &SA5_access
},
149 {0x3249103C, "Smart Array P812", &SA5_access
},
150 {0x324A103C, "Smart Array P712m", &SA5_access
},
151 {0x324B103C, "Smart Array P711m", &SA5_access
},
152 {0x3250103C, "Smart Array", &SA5_access
},
153 {0x3251103C, "Smart Array", &SA5_access
},
154 {0x3252103C, "Smart Array", &SA5_access
},
155 {0x3253103C, "Smart Array", &SA5_access
},
156 {0x3254103C, "Smart Array", &SA5_access
},
159 /* How long to wait (in milliseconds) for board to go into simple mode */
160 #define MAX_CONFIG_WAIT 30000
161 #define MAX_IOCTL_CONFIG_WAIT 1000
163 /*define how many times we will try a command because of bus resets */
164 #define MAX_CMD_RETRIES 3
168 /* Originally cciss driver only supports 8 major numbers */
169 #define MAX_CTLR_ORIG 8
171 static ctlr_info_t
*hba
[MAX_CTLR
];
173 static struct task_struct
*cciss_scan_thread
;
174 static DEFINE_MUTEX(scan_mutex
);
175 static LIST_HEAD(scan_q
);
177 static void do_cciss_request(struct request_queue
*q
);
178 static irqreturn_t
do_cciss_intx(int irq
, void *dev_id
);
179 static irqreturn_t
do_cciss_msix_intr(int irq
, void *dev_id
);
180 static int cciss_open(struct block_device
*bdev
, fmode_t mode
);
181 static int cciss_unlocked_open(struct block_device
*bdev
, fmode_t mode
);
182 static int cciss_release(struct gendisk
*disk
, fmode_t mode
);
183 static int do_ioctl(struct block_device
*bdev
, fmode_t mode
,
184 unsigned int cmd
, unsigned long arg
);
185 static int cciss_ioctl(struct block_device
*bdev
, fmode_t mode
,
186 unsigned int cmd
, unsigned long arg
);
187 static int cciss_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
);
189 static int cciss_revalidate(struct gendisk
*disk
);
190 static int rebuild_lun_table(ctlr_info_t
*h
, int first_time
, int via_ioctl
);
191 static int deregister_disk(ctlr_info_t
*h
, int drv_index
,
192 int clear_all
, int via_ioctl
);
194 static void cciss_read_capacity(int ctlr
, int logvol
,
195 sector_t
*total_size
, unsigned int *block_size
);
196 static void cciss_read_capacity_16(int ctlr
, int logvol
,
197 sector_t
*total_size
, unsigned int *block_size
);
198 static void cciss_geometry_inquiry(int ctlr
, int logvol
,
200 unsigned int block_size
, InquiryData_struct
*inq_buff
,
201 drive_info_struct
*drv
);
202 static void __devinit
cciss_interrupt_mode(ctlr_info_t
*);
203 static void start_io(ctlr_info_t
*h
);
204 static int sendcmd_withirq(__u8 cmd
, int ctlr
, void *buff
, size_t size
,
205 __u8 page_code
, unsigned char scsi3addr
[],
207 static int sendcmd_withirq_core(ctlr_info_t
*h
, CommandList_struct
*c
,
209 static int process_sendcmd_error(ctlr_info_t
*h
, CommandList_struct
*c
);
211 static int add_to_scan_list(struct ctlr_info
*h
);
212 static int scan_thread(void *data
);
213 static int check_for_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
);
214 static void cciss_hba_release(struct device
*dev
);
215 static void cciss_device_release(struct device
*dev
);
216 static void cciss_free_gendisk(ctlr_info_t
*h
, int drv_index
);
217 static void cciss_free_drive_info(ctlr_info_t
*h
, int drv_index
);
218 static inline u32
next_command(ctlr_info_t
*h
);
220 /* performant mode helper functions */
221 static void calc_bucket_map(int *bucket
, int num_buckets
, int nsgs
,
223 static void cciss_put_controller_into_performant_mode(ctlr_info_t
*h
);
225 #ifdef CONFIG_PROC_FS
226 static void cciss_procinit(int i
);
228 static void cciss_procinit(int i
)
231 #endif /* CONFIG_PROC_FS */
234 static int cciss_compat_ioctl(struct block_device
*, fmode_t
,
235 unsigned, unsigned long);
238 static const struct block_device_operations cciss_fops
= {
239 .owner
= THIS_MODULE
,
240 .open
= cciss_unlocked_open
,
241 .release
= cciss_release
,
243 .getgeo
= cciss_getgeo
,
245 .compat_ioctl
= cciss_compat_ioctl
,
247 .revalidate_disk
= cciss_revalidate
,
250 /* set_performant_mode: Modify the tag for cciss performant
251 * set bit 0 for pull model, bits 3-1 for block fetch
254 static void set_performant_mode(ctlr_info_t
*h
, CommandList_struct
*c
)
256 if (likely(h
->transMethod
== CFGTBL_Trans_Performant
))
257 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
261 * Enqueuing and dequeuing functions for cmdlists.
263 static inline void addQ(struct hlist_head
*list
, CommandList_struct
*c
)
265 hlist_add_head(&c
->list
, list
);
268 static inline void removeQ(CommandList_struct
*c
)
271 * After kexec/dump some commands might still
272 * be in flight, which the firmware will try
273 * to complete. Resetting the firmware doesn't work
274 * with old fw revisions, so we have to mark
275 * them off as 'stale' to prevent the driver from
278 if (WARN_ON(hlist_unhashed(&c
->list
))) {
279 c
->cmd_type
= CMD_MSG_STALE
;
283 hlist_del_init(&c
->list
);
286 static void enqueue_cmd_and_start_io(ctlr_info_t
*h
,
287 CommandList_struct
*c
)
290 set_performant_mode(h
, c
);
291 spin_lock_irqsave(&h
->lock
, flags
);
295 spin_unlock_irqrestore(&h
->lock
, flags
);
298 static void cciss_free_sg_chain_blocks(SGDescriptor_struct
**cmd_sg_list
,
305 for (i
= 0; i
< nr_cmds
; i
++) {
306 kfree(cmd_sg_list
[i
]);
307 cmd_sg_list
[i
] = NULL
;
312 static SGDescriptor_struct
**cciss_allocate_sg_chain_blocks(
313 ctlr_info_t
*h
, int chainsize
, int nr_cmds
)
316 SGDescriptor_struct
**cmd_sg_list
;
321 cmd_sg_list
= kmalloc(sizeof(*cmd_sg_list
) * nr_cmds
, GFP_KERNEL
);
325 /* Build up chain blocks for each command */
326 for (j
= 0; j
< nr_cmds
; j
++) {
327 /* Need a block of chainsized s/g elements. */
328 cmd_sg_list
[j
] = kmalloc((chainsize
*
329 sizeof(*cmd_sg_list
[j
])), GFP_KERNEL
);
330 if (!cmd_sg_list
[j
]) {
331 dev_err(&h
->pdev
->dev
, "Cannot get memory "
332 "for s/g chains.\n");
338 cciss_free_sg_chain_blocks(cmd_sg_list
, nr_cmds
);
342 static void cciss_unmap_sg_chain_block(ctlr_info_t
*h
, CommandList_struct
*c
)
344 SGDescriptor_struct
*chain_sg
;
347 if (c
->Header
.SGTotal
<= h
->max_cmd_sgentries
)
350 chain_sg
= &c
->SG
[h
->max_cmd_sgentries
- 1];
351 temp64
.val32
.lower
= chain_sg
->Addr
.lower
;
352 temp64
.val32
.upper
= chain_sg
->Addr
.upper
;
353 pci_unmap_single(h
->pdev
, temp64
.val
, chain_sg
->Len
, PCI_DMA_TODEVICE
);
356 static void cciss_map_sg_chain_block(ctlr_info_t
*h
, CommandList_struct
*c
,
357 SGDescriptor_struct
*chain_block
, int len
)
359 SGDescriptor_struct
*chain_sg
;
362 chain_sg
= &c
->SG
[h
->max_cmd_sgentries
- 1];
363 chain_sg
->Ext
= CCISS_SG_CHAIN
;
365 temp64
.val
= pci_map_single(h
->pdev
, chain_block
, len
,
367 chain_sg
->Addr
.lower
= temp64
.val32
.lower
;
368 chain_sg
->Addr
.upper
= temp64
.val32
.upper
;
371 #include "cciss_scsi.c" /* For SCSI tape support */
373 static const char *raid_label
[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
376 #define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
378 #ifdef CONFIG_PROC_FS
381 * Report information about this controller.
383 #define ENG_GIG 1000000000
384 #define ENG_GIG_FACTOR (ENG_GIG/512)
385 #define ENGAGE_SCSI "engage scsi"
387 static struct proc_dir_entry
*proc_cciss
;
389 static void cciss_seq_show_header(struct seq_file
*seq
)
391 ctlr_info_t
*h
= seq
->private;
393 seq_printf(seq
, "%s: HP %s Controller\n"
394 "Board ID: 0x%08lx\n"
395 "Firmware Version: %c%c%c%c\n"
397 "Logical drives: %d\n"
398 "Current Q depth: %d\n"
399 "Current # commands on controller: %d\n"
400 "Max Q depth since init: %d\n"
401 "Max # commands on controller since init: %d\n"
402 "Max SG entries since init: %d\n",
405 (unsigned long)h
->board_id
,
406 h
->firm_ver
[0], h
->firm_ver
[1], h
->firm_ver
[2],
407 h
->firm_ver
[3], (unsigned int)h
->intr
[PERF_MODE_INT
],
409 h
->Qdepth
, h
->commands_outstanding
,
410 h
->maxQsinceinit
, h
->max_outstanding
, h
->maxSG
);
412 #ifdef CONFIG_CISS_SCSI_TAPE
413 cciss_seq_tape_report(seq
, h
->ctlr
);
414 #endif /* CONFIG_CISS_SCSI_TAPE */
417 static void *cciss_seq_start(struct seq_file
*seq
, loff_t
*pos
)
419 ctlr_info_t
*h
= seq
->private;
420 unsigned ctlr
= h
->ctlr
;
423 /* prevent displaying bogus info during configuration
424 * or deconfiguration of a logical volume
426 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
427 if (h
->busy_configuring
) {
428 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
429 return ERR_PTR(-EBUSY
);
431 h
->busy_configuring
= 1;
432 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
435 cciss_seq_show_header(seq
);
440 static int cciss_seq_show(struct seq_file
*seq
, void *v
)
442 sector_t vol_sz
, vol_sz_frac
;
443 ctlr_info_t
*h
= seq
->private;
444 unsigned ctlr
= h
->ctlr
;
446 drive_info_struct
*drv
= h
->drv
[*pos
];
448 if (*pos
> h
->highest_lun
)
451 if (drv
== NULL
) /* it's possible for h->drv[] to have holes. */
457 vol_sz
= drv
->nr_blocks
;
458 vol_sz_frac
= sector_div(vol_sz
, ENG_GIG_FACTOR
);
460 sector_div(vol_sz_frac
, ENG_GIG_FACTOR
);
462 if (drv
->raid_level
< 0 || drv
->raid_level
> RAID_UNKNOWN
)
463 drv
->raid_level
= RAID_UNKNOWN
;
464 seq_printf(seq
, "cciss/c%dd%d:"
465 "\t%4u.%02uGB\tRAID %s\n",
466 ctlr
, (int) *pos
, (int)vol_sz
, (int)vol_sz_frac
,
467 raid_label
[drv
->raid_level
]);
471 static void *cciss_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
473 ctlr_info_t
*h
= seq
->private;
475 if (*pos
> h
->highest_lun
)
482 static void cciss_seq_stop(struct seq_file
*seq
, void *v
)
484 ctlr_info_t
*h
= seq
->private;
486 /* Only reset h->busy_configuring if we succeeded in setting
487 * it during cciss_seq_start. */
488 if (v
== ERR_PTR(-EBUSY
))
491 h
->busy_configuring
= 0;
494 static const struct seq_operations cciss_seq_ops
= {
495 .start
= cciss_seq_start
,
496 .show
= cciss_seq_show
,
497 .next
= cciss_seq_next
,
498 .stop
= cciss_seq_stop
,
501 static int cciss_seq_open(struct inode
*inode
, struct file
*file
)
503 int ret
= seq_open(file
, &cciss_seq_ops
);
504 struct seq_file
*seq
= file
->private_data
;
507 seq
->private = PDE(inode
)->data
;
513 cciss_proc_write(struct file
*file
, const char __user
*buf
,
514 size_t length
, loff_t
*ppos
)
519 #ifndef CONFIG_CISS_SCSI_TAPE
523 if (!buf
|| length
> PAGE_SIZE
- 1)
526 buffer
= (char *)__get_free_page(GFP_KERNEL
);
531 if (copy_from_user(buffer
, buf
, length
))
533 buffer
[length
] = '\0';
535 #ifdef CONFIG_CISS_SCSI_TAPE
536 if (strncmp(ENGAGE_SCSI
, buffer
, sizeof ENGAGE_SCSI
- 1) == 0) {
537 struct seq_file
*seq
= file
->private_data
;
538 ctlr_info_t
*h
= seq
->private;
540 err
= cciss_engage_scsi(h
->ctlr
);
544 #endif /* CONFIG_CISS_SCSI_TAPE */
546 /* might be nice to have "disengage" too, but it's not
547 safely possible. (only 1 module use count, lock issues.) */
550 free_page((unsigned long)buffer
);
554 static const struct file_operations cciss_proc_fops
= {
555 .owner
= THIS_MODULE
,
556 .open
= cciss_seq_open
,
559 .release
= seq_release
,
560 .write
= cciss_proc_write
,
563 static void __devinit
cciss_procinit(int i
)
565 struct proc_dir_entry
*pde
;
567 if (proc_cciss
== NULL
)
568 proc_cciss
= proc_mkdir("driver/cciss", NULL
);
571 pde
= proc_create_data(hba
[i
]->devname
, S_IWUSR
| S_IRUSR
| S_IRGRP
|
573 &cciss_proc_fops
, hba
[i
]);
575 #endif /* CONFIG_PROC_FS */
577 #define MAX_PRODUCT_NAME_LEN 19
579 #define to_hba(n) container_of(n, struct ctlr_info, dev)
580 #define to_drv(n) container_of(n, drive_info_struct, dev)
582 static ssize_t
host_store_rescan(struct device
*dev
,
583 struct device_attribute
*attr
,
584 const char *buf
, size_t count
)
586 struct ctlr_info
*h
= to_hba(dev
);
589 wake_up_process(cciss_scan_thread
);
590 wait_for_completion_interruptible(&h
->scan_wait
);
594 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
596 static ssize_t
dev_show_unique_id(struct device
*dev
,
597 struct device_attribute
*attr
,
600 drive_info_struct
*drv
= to_drv(dev
);
601 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
606 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
607 if (h
->busy_configuring
)
610 memcpy(sn
, drv
->serial_no
, sizeof(sn
));
611 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
616 return snprintf(buf
, 16 * 2 + 2,
617 "%02X%02X%02X%02X%02X%02X%02X%02X"
618 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
619 sn
[0], sn
[1], sn
[2], sn
[3],
620 sn
[4], sn
[5], sn
[6], sn
[7],
621 sn
[8], sn
[9], sn
[10], sn
[11],
622 sn
[12], sn
[13], sn
[14], sn
[15]);
624 static DEVICE_ATTR(unique_id
, S_IRUGO
, dev_show_unique_id
, NULL
);
626 static ssize_t
dev_show_vendor(struct device
*dev
,
627 struct device_attribute
*attr
,
630 drive_info_struct
*drv
= to_drv(dev
);
631 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
632 char vendor
[VENDOR_LEN
+ 1];
636 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
637 if (h
->busy_configuring
)
640 memcpy(vendor
, drv
->vendor
, VENDOR_LEN
+ 1);
641 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
646 return snprintf(buf
, sizeof(vendor
) + 1, "%s\n", drv
->vendor
);
648 static DEVICE_ATTR(vendor
, S_IRUGO
, dev_show_vendor
, NULL
);
650 static ssize_t
dev_show_model(struct device
*dev
,
651 struct device_attribute
*attr
,
654 drive_info_struct
*drv
= to_drv(dev
);
655 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
656 char model
[MODEL_LEN
+ 1];
660 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
661 if (h
->busy_configuring
)
664 memcpy(model
, drv
->model
, MODEL_LEN
+ 1);
665 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
670 return snprintf(buf
, sizeof(model
) + 1, "%s\n", drv
->model
);
672 static DEVICE_ATTR(model
, S_IRUGO
, dev_show_model
, NULL
);
674 static ssize_t
dev_show_rev(struct device
*dev
,
675 struct device_attribute
*attr
,
678 drive_info_struct
*drv
= to_drv(dev
);
679 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
680 char rev
[REV_LEN
+ 1];
684 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
685 if (h
->busy_configuring
)
688 memcpy(rev
, drv
->rev
, REV_LEN
+ 1);
689 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
694 return snprintf(buf
, sizeof(rev
) + 1, "%s\n", drv
->rev
);
696 static DEVICE_ATTR(rev
, S_IRUGO
, dev_show_rev
, NULL
);
698 static ssize_t
cciss_show_lunid(struct device
*dev
,
699 struct device_attribute
*attr
, char *buf
)
701 drive_info_struct
*drv
= to_drv(dev
);
702 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
704 unsigned char lunid
[8];
706 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
707 if (h
->busy_configuring
) {
708 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
712 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
715 memcpy(lunid
, drv
->LunID
, sizeof(lunid
));
716 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
717 return snprintf(buf
, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
718 lunid
[0], lunid
[1], lunid
[2], lunid
[3],
719 lunid
[4], lunid
[5], lunid
[6], lunid
[7]);
721 static DEVICE_ATTR(lunid
, S_IRUGO
, cciss_show_lunid
, NULL
);
723 static ssize_t
cciss_show_raid_level(struct device
*dev
,
724 struct device_attribute
*attr
, char *buf
)
726 drive_info_struct
*drv
= to_drv(dev
);
727 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
731 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
732 if (h
->busy_configuring
) {
733 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
736 raid
= drv
->raid_level
;
737 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
738 if (raid
< 0 || raid
> RAID_UNKNOWN
)
741 return snprintf(buf
, strlen(raid_label
[raid
]) + 7, "RAID %s\n",
744 static DEVICE_ATTR(raid_level
, S_IRUGO
, cciss_show_raid_level
, NULL
);
746 static ssize_t
cciss_show_usage_count(struct device
*dev
,
747 struct device_attribute
*attr
, char *buf
)
749 drive_info_struct
*drv
= to_drv(dev
);
750 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
754 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
755 if (h
->busy_configuring
) {
756 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
759 count
= drv
->usage_count
;
760 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
761 return snprintf(buf
, 20, "%d\n", count
);
763 static DEVICE_ATTR(usage_count
, S_IRUGO
, cciss_show_usage_count
, NULL
);
765 static struct attribute
*cciss_host_attrs
[] = {
766 &dev_attr_rescan
.attr
,
770 static struct attribute_group cciss_host_attr_group
= {
771 .attrs
= cciss_host_attrs
,
774 static const struct attribute_group
*cciss_host_attr_groups
[] = {
775 &cciss_host_attr_group
,
779 static struct device_type cciss_host_type
= {
780 .name
= "cciss_host",
781 .groups
= cciss_host_attr_groups
,
782 .release
= cciss_hba_release
,
785 static struct attribute
*cciss_dev_attrs
[] = {
786 &dev_attr_unique_id
.attr
,
787 &dev_attr_model
.attr
,
788 &dev_attr_vendor
.attr
,
790 &dev_attr_lunid
.attr
,
791 &dev_attr_raid_level
.attr
,
792 &dev_attr_usage_count
.attr
,
796 static struct attribute_group cciss_dev_attr_group
= {
797 .attrs
= cciss_dev_attrs
,
800 static const struct attribute_group
*cciss_dev_attr_groups
[] = {
801 &cciss_dev_attr_group
,
805 static struct device_type cciss_dev_type
= {
806 .name
= "cciss_device",
807 .groups
= cciss_dev_attr_groups
,
808 .release
= cciss_device_release
,
811 static struct bus_type cciss_bus_type
= {
816 * cciss_hba_release is called when the reference count
817 * of h->dev goes to zero.
819 static void cciss_hba_release(struct device
*dev
)
822 * nothing to do, but need this to avoid a warning
823 * about not having a release handler from lib/kref.c.
828 * Initialize sysfs entry for each controller. This sets up and registers
829 * the 'cciss#' directory for each individual controller under
830 * /sys/bus/pci/devices/<dev>/.
832 static int cciss_create_hba_sysfs_entry(struct ctlr_info
*h
)
834 device_initialize(&h
->dev
);
835 h
->dev
.type
= &cciss_host_type
;
836 h
->dev
.bus
= &cciss_bus_type
;
837 dev_set_name(&h
->dev
, "%s", h
->devname
);
838 h
->dev
.parent
= &h
->pdev
->dev
;
840 return device_add(&h
->dev
);
844 * Remove sysfs entries for an hba.
846 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info
*h
)
849 put_device(&h
->dev
); /* final put. */
852 /* cciss_device_release is called when the reference count
853 * of h->drv[x]dev goes to zero.
855 static void cciss_device_release(struct device
*dev
)
857 drive_info_struct
*drv
= to_drv(dev
);
862 * Initialize sysfs for each logical drive. This sets up and registers
863 * the 'c#d#' directory for each individual logical drive under
864 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
865 * /sys/block/cciss!c#d# to this entry.
867 static long cciss_create_ld_sysfs_entry(struct ctlr_info
*h
,
872 if (h
->drv
[drv_index
]->device_initialized
)
875 dev
= &h
->drv
[drv_index
]->dev
;
876 device_initialize(dev
);
877 dev
->type
= &cciss_dev_type
;
878 dev
->bus
= &cciss_bus_type
;
879 dev_set_name(dev
, "c%dd%d", h
->ctlr
, drv_index
);
880 dev
->parent
= &h
->dev
;
881 h
->drv
[drv_index
]->device_initialized
= 1;
882 return device_add(dev
);
886 * Remove sysfs entries for a logical drive.
888 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info
*h
, int drv_index
,
891 struct device
*dev
= &h
->drv
[drv_index
]->dev
;
893 /* special case for c*d0, we only destroy it on controller exit */
894 if (drv_index
== 0 && !ctlr_exiting
)
898 put_device(dev
); /* the "final" put. */
899 h
->drv
[drv_index
] = NULL
;
903 * For operations that cannot sleep, a command block is allocated at init,
904 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
905 * which ones are free or in use. For operations that can wait for kmalloc
906 * to possible sleep, this routine can be called with get_from_pool set to 0.
907 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
909 static CommandList_struct
*cmd_alloc(ctlr_info_t
*h
, int get_from_pool
)
911 CommandList_struct
*c
;
914 dma_addr_t cmd_dma_handle
, err_dma_handle
;
916 if (!get_from_pool
) {
917 c
= (CommandList_struct
*) pci_alloc_consistent(h
->pdev
,
918 sizeof(CommandList_struct
), &cmd_dma_handle
);
921 memset(c
, 0, sizeof(CommandList_struct
));
925 c
->err_info
= (ErrorInfo_struct
*)
926 pci_alloc_consistent(h
->pdev
, sizeof(ErrorInfo_struct
),
929 if (c
->err_info
== NULL
) {
930 pci_free_consistent(h
->pdev
,
931 sizeof(CommandList_struct
), c
, cmd_dma_handle
);
934 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
935 } else { /* get it out of the controllers pool */
938 i
= find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
);
941 } while (test_and_set_bit
942 (i
& (BITS_PER_LONG
- 1),
943 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
)) != 0);
945 printk(KERN_DEBUG
"cciss: using command buffer %d\n", i
);
948 memset(c
, 0, sizeof(CommandList_struct
));
949 cmd_dma_handle
= h
->cmd_pool_dhandle
950 + i
* sizeof(CommandList_struct
);
951 c
->err_info
= h
->errinfo_pool
+ i
;
952 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
953 err_dma_handle
= h
->errinfo_pool_dhandle
954 + i
* sizeof(ErrorInfo_struct
);
960 INIT_HLIST_NODE(&c
->list
);
961 c
->busaddr
= (__u32
) cmd_dma_handle
;
962 temp64
.val
= (__u64
) err_dma_handle
;
963 c
->ErrDesc
.Addr
.lower
= temp64
.val32
.lower
;
964 c
->ErrDesc
.Addr
.upper
= temp64
.val32
.upper
;
965 c
->ErrDesc
.Len
= sizeof(ErrorInfo_struct
);
972 * Frees a command block that was previously allocated with cmd_alloc().
974 static void cmd_free(ctlr_info_t
*h
, CommandList_struct
*c
, int got_from_pool
)
979 if (!got_from_pool
) {
980 temp64
.val32
.lower
= c
->ErrDesc
.Addr
.lower
;
981 temp64
.val32
.upper
= c
->ErrDesc
.Addr
.upper
;
982 pci_free_consistent(h
->pdev
, sizeof(ErrorInfo_struct
),
983 c
->err_info
, (dma_addr_t
) temp64
.val
);
984 pci_free_consistent(h
->pdev
, sizeof(CommandList_struct
),
985 c
, (dma_addr_t
) c
->busaddr
);
988 clear_bit(i
& (BITS_PER_LONG
- 1),
989 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
994 static inline ctlr_info_t
*get_host(struct gendisk
*disk
)
996 return disk
->queue
->queuedata
;
999 static inline drive_info_struct
*get_drv(struct gendisk
*disk
)
1001 return disk
->private_data
;
1005 * Open. Make sure the device is really there.
1007 static int cciss_open(struct block_device
*bdev
, fmode_t mode
)
1009 ctlr_info_t
*host
= get_host(bdev
->bd_disk
);
1010 drive_info_struct
*drv
= get_drv(bdev
->bd_disk
);
1013 printk(KERN_DEBUG
"cciss_open %s\n", bdev
->bd_disk
->disk_name
);
1014 #endif /* CCISS_DEBUG */
1016 if (drv
->busy_configuring
)
1019 * Root is allowed to open raw volume zero even if it's not configured
1020 * so array config can still work. Root is also allowed to open any
1021 * volume that has a LUN ID, so it can issue IOCTL to reread the
1022 * disk information. I don't think I really like this
1023 * but I'm already using way to many device nodes to claim another one
1024 * for "raw controller".
1026 if (drv
->heads
== 0) {
1027 if (MINOR(bdev
->bd_dev
) != 0) { /* not node 0? */
1028 /* if not node 0 make sure it is a partition = 0 */
1029 if (MINOR(bdev
->bd_dev
) & 0x0f) {
1031 /* if it is, make sure we have a LUN ID */
1032 } else if (memcmp(drv
->LunID
, CTLR_LUNID
,
1033 sizeof(drv
->LunID
))) {
1037 if (!capable(CAP_SYS_ADMIN
))
1041 host
->usage_count
++;
1045 static int cciss_unlocked_open(struct block_device
*bdev
, fmode_t mode
)
1050 ret
= cciss_open(bdev
, mode
);
1057 * Close. Sync first.
1059 static int cciss_release(struct gendisk
*disk
, fmode_t mode
)
1062 drive_info_struct
*drv
;
1065 host
= get_host(disk
);
1066 drv
= get_drv(disk
);
1069 printk(KERN_DEBUG
"cciss_release %s\n", disk
->disk_name
);
1070 #endif /* CCISS_DEBUG */
1073 host
->usage_count
--;
1078 static int do_ioctl(struct block_device
*bdev
, fmode_t mode
,
1079 unsigned cmd
, unsigned long arg
)
1083 ret
= cciss_ioctl(bdev
, mode
, cmd
, arg
);
1088 #ifdef CONFIG_COMPAT
1090 static int cciss_ioctl32_passthru(struct block_device
*bdev
, fmode_t mode
,
1091 unsigned cmd
, unsigned long arg
);
1092 static int cciss_ioctl32_big_passthru(struct block_device
*bdev
, fmode_t mode
,
1093 unsigned cmd
, unsigned long arg
);
1095 static int cciss_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1096 unsigned cmd
, unsigned long arg
)
1099 case CCISS_GETPCIINFO
:
1100 case CCISS_GETINTINFO
:
1101 case CCISS_SETINTINFO
:
1102 case CCISS_GETNODENAME
:
1103 case CCISS_SETNODENAME
:
1104 case CCISS_GETHEARTBEAT
:
1105 case CCISS_GETBUSTYPES
:
1106 case CCISS_GETFIRMVER
:
1107 case CCISS_GETDRIVVER
:
1108 case CCISS_REVALIDVOLS
:
1109 case CCISS_DEREGDISK
:
1110 case CCISS_REGNEWDISK
:
1112 case CCISS_RESCANDISK
:
1113 case CCISS_GETLUNINFO
:
1114 return do_ioctl(bdev
, mode
, cmd
, arg
);
1116 case CCISS_PASSTHRU32
:
1117 return cciss_ioctl32_passthru(bdev
, mode
, cmd
, arg
);
1118 case CCISS_BIG_PASSTHRU32
:
1119 return cciss_ioctl32_big_passthru(bdev
, mode
, cmd
, arg
);
1122 return -ENOIOCTLCMD
;
1126 static int cciss_ioctl32_passthru(struct block_device
*bdev
, fmode_t mode
,
1127 unsigned cmd
, unsigned long arg
)
1129 IOCTL32_Command_struct __user
*arg32
=
1130 (IOCTL32_Command_struct __user
*) arg
;
1131 IOCTL_Command_struct arg64
;
1132 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
1138 copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
1139 sizeof(arg64
.LUN_info
));
1141 copy_from_user(&arg64
.Request
, &arg32
->Request
,
1142 sizeof(arg64
.Request
));
1144 copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
1145 sizeof(arg64
.error_info
));
1146 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
1147 err
|= get_user(cp
, &arg32
->buf
);
1148 arg64
.buf
= compat_ptr(cp
);
1149 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
1154 err
= do_ioctl(bdev
, mode
, CCISS_PASSTHRU
, (unsigned long)p
);
1158 copy_in_user(&arg32
->error_info
, &p
->error_info
,
1159 sizeof(arg32
->error_info
));
1165 static int cciss_ioctl32_big_passthru(struct block_device
*bdev
, fmode_t mode
,
1166 unsigned cmd
, unsigned long arg
)
1168 BIG_IOCTL32_Command_struct __user
*arg32
=
1169 (BIG_IOCTL32_Command_struct __user
*) arg
;
1170 BIG_IOCTL_Command_struct arg64
;
1171 BIG_IOCTL_Command_struct __user
*p
=
1172 compat_alloc_user_space(sizeof(arg64
));
1178 copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
1179 sizeof(arg64
.LUN_info
));
1181 copy_from_user(&arg64
.Request
, &arg32
->Request
,
1182 sizeof(arg64
.Request
));
1184 copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
1185 sizeof(arg64
.error_info
));
1186 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
1187 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
1188 err
|= get_user(cp
, &arg32
->buf
);
1189 arg64
.buf
= compat_ptr(cp
);
1190 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
1195 err
= do_ioctl(bdev
, mode
, CCISS_BIG_PASSTHRU
, (unsigned long)p
);
1199 copy_in_user(&arg32
->error_info
, &p
->error_info
,
1200 sizeof(arg32
->error_info
));
1207 static int cciss_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
1209 drive_info_struct
*drv
= get_drv(bdev
->bd_disk
);
1211 if (!drv
->cylinders
)
1214 geo
->heads
= drv
->heads
;
1215 geo
->sectors
= drv
->sectors
;
1216 geo
->cylinders
= drv
->cylinders
;
1220 static void check_ioctl_unit_attention(ctlr_info_t
*host
, CommandList_struct
*c
)
1222 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
1223 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
1224 (void)check_for_unit_attention(host
, c
);
1229 static int cciss_ioctl(struct block_device
*bdev
, fmode_t mode
,
1230 unsigned int cmd
, unsigned long arg
)
1232 struct gendisk
*disk
= bdev
->bd_disk
;
1233 ctlr_info_t
*host
= get_host(disk
);
1234 drive_info_struct
*drv
= get_drv(disk
);
1235 int ctlr
= host
->ctlr
;
1236 void __user
*argp
= (void __user
*)arg
;
1239 printk(KERN_DEBUG
"cciss_ioctl: Called with cmd=%x %lx\n", cmd
, arg
);
1240 #endif /* CCISS_DEBUG */
1243 case CCISS_GETPCIINFO
:
1245 cciss_pci_info_struct pciinfo
;
1249 pciinfo
.domain
= pci_domain_nr(host
->pdev
->bus
);
1250 pciinfo
.bus
= host
->pdev
->bus
->number
;
1251 pciinfo
.dev_fn
= host
->pdev
->devfn
;
1252 pciinfo
.board_id
= host
->board_id
;
1254 (argp
, &pciinfo
, sizeof(cciss_pci_info_struct
)))
1258 case CCISS_GETINTINFO
:
1260 cciss_coalint_struct intinfo
;
1264 readl(&host
->cfgtable
->HostWrite
.CoalIntDelay
);
1266 readl(&host
->cfgtable
->HostWrite
.CoalIntCount
);
1268 (argp
, &intinfo
, sizeof(cciss_coalint_struct
)))
1272 case CCISS_SETINTINFO
:
1274 cciss_coalint_struct intinfo
;
1275 unsigned long flags
;
1280 if (!capable(CAP_SYS_ADMIN
))
1283 (&intinfo
, argp
, sizeof(cciss_coalint_struct
)))
1285 if ((intinfo
.delay
== 0) && (intinfo
.count
== 0))
1287 // printk("cciss_ioctl: delay and count cannot be 0\n");
1290 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1291 /* Update the field, and then ring the doorbell */
1292 writel(intinfo
.delay
,
1293 &(host
->cfgtable
->HostWrite
.CoalIntDelay
));
1294 writel(intinfo
.count
,
1295 &(host
->cfgtable
->HostWrite
.CoalIntCount
));
1296 writel(CFGTBL_ChangeReq
, host
->vaddr
+ SA5_DOORBELL
);
1298 for (i
= 0; i
< MAX_IOCTL_CONFIG_WAIT
; i
++) {
1299 if (!(readl(host
->vaddr
+ SA5_DOORBELL
)
1300 & CFGTBL_ChangeReq
))
1302 /* delay and try again */
1305 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1306 if (i
>= MAX_IOCTL_CONFIG_WAIT
)
1310 case CCISS_GETNODENAME
:
1312 NodeName_type NodeName
;
1317 for (i
= 0; i
< 16; i
++)
1319 readb(&host
->cfgtable
->ServerName
[i
]);
1320 if (copy_to_user(argp
, NodeName
, sizeof(NodeName_type
)))
1324 case CCISS_SETNODENAME
:
1326 NodeName_type NodeName
;
1327 unsigned long flags
;
1332 if (!capable(CAP_SYS_ADMIN
))
1336 (NodeName
, argp
, sizeof(NodeName_type
)))
1339 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1341 /* Update the field, and then ring the doorbell */
1342 for (i
= 0; i
< 16; i
++)
1344 &host
->cfgtable
->ServerName
[i
]);
1346 writel(CFGTBL_ChangeReq
, host
->vaddr
+ SA5_DOORBELL
);
1348 for (i
= 0; i
< MAX_IOCTL_CONFIG_WAIT
; i
++) {
1349 if (!(readl(host
->vaddr
+ SA5_DOORBELL
)
1350 & CFGTBL_ChangeReq
))
1352 /* delay and try again */
1355 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1356 if (i
>= MAX_IOCTL_CONFIG_WAIT
)
1361 case CCISS_GETHEARTBEAT
:
1363 Heartbeat_type heartbeat
;
1367 heartbeat
= readl(&host
->cfgtable
->HeartBeat
);
1369 (argp
, &heartbeat
, sizeof(Heartbeat_type
)))
1373 case CCISS_GETBUSTYPES
:
1375 BusTypes_type BusTypes
;
1379 BusTypes
= readl(&host
->cfgtable
->BusTypes
);
1381 (argp
, &BusTypes
, sizeof(BusTypes_type
)))
1385 case CCISS_GETFIRMVER
:
1387 FirmwareVer_type firmware
;
1391 memcpy(firmware
, host
->firm_ver
, 4);
1394 (argp
, firmware
, sizeof(FirmwareVer_type
)))
1398 case CCISS_GETDRIVVER
:
1400 DriverVer_type DriverVer
= DRIVER_VERSION
;
1406 (argp
, &DriverVer
, sizeof(DriverVer_type
)))
1411 case CCISS_DEREGDISK
:
1413 case CCISS_REVALIDVOLS
:
1414 return rebuild_lun_table(host
, 0, 1);
1416 case CCISS_GETLUNINFO
:{
1417 LogvolInfo_struct luninfo
;
1419 memcpy(&luninfo
.LunID
, drv
->LunID
,
1420 sizeof(luninfo
.LunID
));
1421 luninfo
.num_opens
= drv
->usage_count
;
1422 luninfo
.num_parts
= 0;
1423 if (copy_to_user(argp
, &luninfo
,
1424 sizeof(LogvolInfo_struct
)))
1428 case CCISS_PASSTHRU
:
1430 IOCTL_Command_struct iocommand
;
1431 CommandList_struct
*c
;
1434 DECLARE_COMPLETION_ONSTACK(wait
);
1439 if (!capable(CAP_SYS_RAWIO
))
1443 (&iocommand
, argp
, sizeof(IOCTL_Command_struct
)))
1445 if ((iocommand
.buf_size
< 1) &&
1446 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
1449 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1450 /* Check kmalloc limits */
1451 if (iocommand
.buf_size
> 128000)
1454 if (iocommand
.buf_size
> 0) {
1455 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
1459 if (iocommand
.Request
.Type
.Direction
== XFER_WRITE
) {
1460 /* Copy the data into the buffer we created */
1462 (buff
, iocommand
.buf
, iocommand
.buf_size
)) {
1467 memset(buff
, 0, iocommand
.buf_size
);
1469 if ((c
= cmd_alloc(host
, 0)) == NULL
) {
1473 /* Fill in the command type */
1474 c
->cmd_type
= CMD_IOCTL_PEND
;
1475 /* Fill in Command Header */
1476 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
1477 if (iocommand
.buf_size
> 0) /* buffer to fill */
1479 c
->Header
.SGList
= 1;
1480 c
->Header
.SGTotal
= 1;
1481 } else /* no buffers to fill */
1483 c
->Header
.SGList
= 0;
1484 c
->Header
.SGTotal
= 0;
1486 c
->Header
.LUN
= iocommand
.LUN_info
;
1487 /* use the kernel address the cmd block for tag */
1488 c
->Header
.Tag
.lower
= c
->busaddr
;
1490 /* Fill in Request block */
1491 c
->Request
= iocommand
.Request
;
1493 /* Fill in the scatter gather information */
1494 if (iocommand
.buf_size
> 0) {
1495 temp64
.val
= pci_map_single(host
->pdev
, buff
,
1497 PCI_DMA_BIDIRECTIONAL
);
1498 c
->SG
[0].Addr
.lower
= temp64
.val32
.lower
;
1499 c
->SG
[0].Addr
.upper
= temp64
.val32
.upper
;
1500 c
->SG
[0].Len
= iocommand
.buf_size
;
1501 c
->SG
[0].Ext
= 0; /* we are not chaining */
1505 enqueue_cmd_and_start_io(host
, c
);
1506 wait_for_completion(&wait
);
1508 /* unlock the buffers from DMA */
1509 temp64
.val32
.lower
= c
->SG
[0].Addr
.lower
;
1510 temp64
.val32
.upper
= c
->SG
[0].Addr
.upper
;
1511 pci_unmap_single(host
->pdev
, (dma_addr_t
) temp64
.val
,
1513 PCI_DMA_BIDIRECTIONAL
);
1515 check_ioctl_unit_attention(host
, c
);
1517 /* Copy the error information out */
1518 iocommand
.error_info
= *(c
->err_info
);
1520 (argp
, &iocommand
, sizeof(IOCTL_Command_struct
))) {
1522 cmd_free(host
, c
, 0);
1526 if (iocommand
.Request
.Type
.Direction
== XFER_READ
) {
1527 /* Copy the data out of the buffer we created */
1529 (iocommand
.buf
, buff
, iocommand
.buf_size
)) {
1531 cmd_free(host
, c
, 0);
1536 cmd_free(host
, c
, 0);
1539 case CCISS_BIG_PASSTHRU
:{
1540 BIG_IOCTL_Command_struct
*ioc
;
1541 CommandList_struct
*c
;
1542 unsigned char **buff
= NULL
;
1543 int *buff_size
= NULL
;
1548 DECLARE_COMPLETION_ONSTACK(wait
);
1551 BYTE __user
*data_ptr
;
1555 if (!capable(CAP_SYS_RAWIO
))
1557 ioc
= (BIG_IOCTL_Command_struct
*)
1558 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
1563 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
1567 if ((ioc
->buf_size
< 1) &&
1568 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
1572 /* Check kmalloc limits using all SGs */
1573 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
1577 if (ioc
->buf_size
> ioc
->malloc_size
* MAXSGENTRIES
) {
1582 kzalloc(MAXSGENTRIES
* sizeof(char *), GFP_KERNEL
);
1587 buff_size
= kmalloc(MAXSGENTRIES
* sizeof(int),
1593 left
= ioc
->buf_size
;
1594 data_ptr
= ioc
->buf
;
1597 ioc
->malloc_size
) ? ioc
->
1599 buff_size
[sg_used
] = sz
;
1600 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
1601 if (buff
[sg_used
] == NULL
) {
1605 if (ioc
->Request
.Type
.Direction
== XFER_WRITE
) {
1607 (buff
[sg_used
], data_ptr
, sz
)) {
1612 memset(buff
[sg_used
], 0, sz
);
1618 if ((c
= cmd_alloc(host
, 0)) == NULL
) {
1622 c
->cmd_type
= CMD_IOCTL_PEND
;
1623 c
->Header
.ReplyQueue
= 0;
1625 if (ioc
->buf_size
> 0) {
1626 c
->Header
.SGList
= sg_used
;
1627 c
->Header
.SGTotal
= sg_used
;
1629 c
->Header
.SGList
= 0;
1630 c
->Header
.SGTotal
= 0;
1632 c
->Header
.LUN
= ioc
->LUN_info
;
1633 c
->Header
.Tag
.lower
= c
->busaddr
;
1635 c
->Request
= ioc
->Request
;
1636 if (ioc
->buf_size
> 0) {
1637 for (i
= 0; i
< sg_used
; i
++) {
1639 pci_map_single(host
->pdev
, buff
[i
],
1641 PCI_DMA_BIDIRECTIONAL
);
1642 c
->SG
[i
].Addr
.lower
=
1644 c
->SG
[i
].Addr
.upper
=
1646 c
->SG
[i
].Len
= buff_size
[i
];
1647 c
->SG
[i
].Ext
= 0; /* we are not chaining */
1651 enqueue_cmd_and_start_io(host
, c
);
1652 wait_for_completion(&wait
);
1653 /* unlock the buffers from DMA */
1654 for (i
= 0; i
< sg_used
; i
++) {
1655 temp64
.val32
.lower
= c
->SG
[i
].Addr
.lower
;
1656 temp64
.val32
.upper
= c
->SG
[i
].Addr
.upper
;
1657 pci_unmap_single(host
->pdev
,
1658 (dma_addr_t
) temp64
.val
, buff_size
[i
],
1659 PCI_DMA_BIDIRECTIONAL
);
1661 check_ioctl_unit_attention(host
, c
);
1662 /* Copy the error information out */
1663 ioc
->error_info
= *(c
->err_info
);
1664 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
1665 cmd_free(host
, c
, 0);
1669 if (ioc
->Request
.Type
.Direction
== XFER_READ
) {
1670 /* Copy the data out of the buffer we created */
1671 BYTE __user
*ptr
= ioc
->buf
;
1672 for (i
= 0; i
< sg_used
; i
++) {
1674 (ptr
, buff
[i
], buff_size
[i
])) {
1675 cmd_free(host
, c
, 0);
1679 ptr
+= buff_size
[i
];
1682 cmd_free(host
, c
, 0);
1686 for (i
= 0; i
< sg_used
; i
++)
1695 /* scsi_cmd_ioctl handles these, below, though some are not */
1696 /* very meaningful for cciss. SG_IO is the main one people want. */
1698 case SG_GET_VERSION_NUM
:
1699 case SG_SET_TIMEOUT
:
1700 case SG_GET_TIMEOUT
:
1701 case SG_GET_RESERVED_SIZE
:
1702 case SG_SET_RESERVED_SIZE
:
1703 case SG_EMULATED_HOST
:
1705 case SCSI_IOCTL_SEND_COMMAND
:
1706 return scsi_cmd_ioctl(disk
->queue
, disk
, mode
, cmd
, argp
);
1708 /* scsi_cmd_ioctl would normally handle these, below, but */
1709 /* they aren't a good fit for cciss, as CD-ROMs are */
1710 /* not supported, and we don't have any bus/target/lun */
1711 /* which we present to the kernel. */
1713 case CDROM_SEND_PACKET
:
1714 case CDROMCLOSETRAY
:
1716 case SCSI_IOCTL_GET_IDLUN
:
1717 case SCSI_IOCTL_GET_BUS_NUMBER
:
1723 static void cciss_check_queues(ctlr_info_t
*h
)
1725 int start_queue
= h
->next_to_run
;
1728 /* check to see if we have maxed out the number of commands that can
1729 * be placed on the queue. If so then exit. We do this check here
1730 * in case the interrupt we serviced was from an ioctl and did not
1731 * free any new commands.
1733 if ((find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
)) == h
->nr_cmds
)
1736 /* We have room on the queue for more commands. Now we need to queue
1737 * them up. We will also keep track of the next queue to run so
1738 * that every queue gets a chance to be started first.
1740 for (i
= 0; i
< h
->highest_lun
+ 1; i
++) {
1741 int curr_queue
= (start_queue
+ i
) % (h
->highest_lun
+ 1);
1742 /* make sure the disk has been added and the drive is real
1743 * because this can be called from the middle of init_one.
1745 if (!h
->drv
[curr_queue
])
1747 if (!(h
->drv
[curr_queue
]->queue
) ||
1748 !(h
->drv
[curr_queue
]->heads
))
1750 blk_start_queue(h
->gendisk
[curr_queue
]->queue
);
1752 /* check to see if we have maxed out the number of commands
1753 * that can be placed on the queue.
1755 if ((find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
)) == h
->nr_cmds
) {
1756 if (curr_queue
== start_queue
) {
1758 (start_queue
+ 1) % (h
->highest_lun
+ 1);
1761 h
->next_to_run
= curr_queue
;
1768 static void cciss_softirq_done(struct request
*rq
)
1770 CommandList_struct
*cmd
= rq
->completion_data
;
1771 ctlr_info_t
*h
= hba
[cmd
->ctlr
];
1772 SGDescriptor_struct
*curr_sg
= cmd
->SG
;
1774 unsigned long flags
;
1778 if (cmd
->Request
.Type
.Direction
== XFER_READ
)
1779 ddir
= PCI_DMA_FROMDEVICE
;
1781 ddir
= PCI_DMA_TODEVICE
;
1783 /* command did not need to be retried */
1784 /* unmap the DMA mapping for all the scatter gather elements */
1785 for (i
= 0; i
< cmd
->Header
.SGList
; i
++) {
1786 if (curr_sg
[sg_index
].Ext
== CCISS_SG_CHAIN
) {
1787 cciss_unmap_sg_chain_block(h
, cmd
);
1788 /* Point to the next block */
1789 curr_sg
= h
->cmd_sg_list
[cmd
->cmdindex
];
1792 temp64
.val32
.lower
= curr_sg
[sg_index
].Addr
.lower
;
1793 temp64
.val32
.upper
= curr_sg
[sg_index
].Addr
.upper
;
1794 pci_unmap_page(h
->pdev
, temp64
.val
, curr_sg
[sg_index
].Len
,
1800 printk("Done with %p\n", rq
);
1801 #endif /* CCISS_DEBUG */
1803 /* set the residual count for pc requests */
1804 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
)
1805 rq
->resid_len
= cmd
->err_info
->ResidualCnt
;
1807 blk_end_request_all(rq
, (rq
->errors
== 0) ? 0 : -EIO
);
1809 spin_lock_irqsave(&h
->lock
, flags
);
1810 cmd_free(h
, cmd
, 1);
1811 cciss_check_queues(h
);
1812 spin_unlock_irqrestore(&h
->lock
, flags
);
1815 static inline void log_unit_to_scsi3addr(ctlr_info_t
*h
,
1816 unsigned char scsi3addr
[], uint32_t log_unit
)
1818 memcpy(scsi3addr
, h
->drv
[log_unit
]->LunID
,
1819 sizeof(h
->drv
[log_unit
]->LunID
));
1822 /* This function gets the SCSI vendor, model, and revision of a logical drive
1823 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1824 * they cannot be read.
1826 static void cciss_get_device_descr(int ctlr
, int logvol
,
1827 char *vendor
, char *model
, char *rev
)
1830 InquiryData_struct
*inq_buf
;
1831 unsigned char scsi3addr
[8];
1837 inq_buf
= kzalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
1841 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
1842 rc
= sendcmd_withirq(CISS_INQUIRY
, ctlr
, inq_buf
, sizeof(*inq_buf
), 0,
1843 scsi3addr
, TYPE_CMD
);
1845 memcpy(vendor
, &inq_buf
->data_byte
[8], VENDOR_LEN
);
1846 vendor
[VENDOR_LEN
] = '\0';
1847 memcpy(model
, &inq_buf
->data_byte
[16], MODEL_LEN
);
1848 model
[MODEL_LEN
] = '\0';
1849 memcpy(rev
, &inq_buf
->data_byte
[32], REV_LEN
);
1850 rev
[REV_LEN
] = '\0';
1857 /* This function gets the serial number of a logical drive via
1858 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1859 * number cannot be had, for whatever reason, 16 bytes of 0xff
1860 * are returned instead.
1862 static void cciss_get_serial_no(int ctlr
, int logvol
,
1863 unsigned char *serial_no
, int buflen
)
1865 #define PAGE_83_INQ_BYTES 64
1868 unsigned char scsi3addr
[8];
1872 memset(serial_no
, 0xff, buflen
);
1873 buf
= kzalloc(PAGE_83_INQ_BYTES
, GFP_KERNEL
);
1876 memset(serial_no
, 0, buflen
);
1877 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
1878 rc
= sendcmd_withirq(CISS_INQUIRY
, ctlr
, buf
,
1879 PAGE_83_INQ_BYTES
, 0x83, scsi3addr
, TYPE_CMD
);
1881 memcpy(serial_no
, &buf
[8], buflen
);
1887 * cciss_add_disk sets up the block device queue for a logical drive
1889 static int cciss_add_disk(ctlr_info_t
*h
, struct gendisk
*disk
,
1892 disk
->queue
= blk_init_queue(do_cciss_request
, &h
->lock
);
1894 goto init_queue_failure
;
1895 sprintf(disk
->disk_name
, "cciss/c%dd%d", h
->ctlr
, drv_index
);
1896 disk
->major
= h
->major
;
1897 disk
->first_minor
= drv_index
<< NWD_SHIFT
;
1898 disk
->fops
= &cciss_fops
;
1899 if (cciss_create_ld_sysfs_entry(h
, drv_index
))
1901 disk
->private_data
= h
->drv
[drv_index
];
1902 disk
->driverfs_dev
= &h
->drv
[drv_index
]->dev
;
1904 /* Set up queue information */
1905 blk_queue_bounce_limit(disk
->queue
, h
->pdev
->dma_mask
);
1907 /* This is a hardware imposed limit. */
1908 blk_queue_max_segments(disk
->queue
, h
->maxsgentries
);
1910 blk_queue_max_hw_sectors(disk
->queue
, h
->cciss_max_sectors
);
1912 blk_queue_softirq_done(disk
->queue
, cciss_softirq_done
);
1914 disk
->queue
->queuedata
= h
;
1916 blk_queue_logical_block_size(disk
->queue
,
1917 h
->drv
[drv_index
]->block_size
);
1919 /* Make sure all queue data is written out before */
1920 /* setting h->drv[drv_index]->queue, as setting this */
1921 /* allows the interrupt handler to start the queue */
1923 h
->drv
[drv_index
]->queue
= disk
->queue
;
1928 blk_cleanup_queue(disk
->queue
);
1934 /* This function will check the usage_count of the drive to be updated/added.
1935 * If the usage_count is zero and it is a heretofore unknown drive, or,
1936 * the drive's capacity, geometry, or serial number has changed,
1937 * then the drive information will be updated and the disk will be
1938 * re-registered with the kernel. If these conditions don't hold,
1939 * then it will be left alone for the next reboot. The exception to this
1940 * is disk 0 which will always be left registered with the kernel since it
1941 * is also the controller node. Any changes to disk 0 will show up on
1944 static void cciss_update_drive_info(int ctlr
, int drv_index
, int first_time
,
1947 ctlr_info_t
*h
= hba
[ctlr
];
1948 struct gendisk
*disk
;
1949 InquiryData_struct
*inq_buff
= NULL
;
1950 unsigned int block_size
;
1951 sector_t total_size
;
1952 unsigned long flags
= 0;
1954 drive_info_struct
*drvinfo
;
1956 /* Get information about the disk and modify the driver structure */
1957 inq_buff
= kmalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
1958 drvinfo
= kzalloc(sizeof(*drvinfo
), GFP_KERNEL
);
1959 if (inq_buff
== NULL
|| drvinfo
== NULL
)
1962 /* testing to see if 16-byte CDBs are already being used */
1963 if (h
->cciss_read
== CCISS_READ_16
) {
1964 cciss_read_capacity_16(h
->ctlr
, drv_index
,
1965 &total_size
, &block_size
);
1968 cciss_read_capacity(ctlr
, drv_index
, &total_size
, &block_size
);
1969 /* if read_capacity returns all F's this volume is >2TB */
1970 /* in size so we switch to 16-byte CDB's for all */
1971 /* read/write ops */
1972 if (total_size
== 0xFFFFFFFFULL
) {
1973 cciss_read_capacity_16(ctlr
, drv_index
,
1974 &total_size
, &block_size
);
1975 h
->cciss_read
= CCISS_READ_16
;
1976 h
->cciss_write
= CCISS_WRITE_16
;
1978 h
->cciss_read
= CCISS_READ_10
;
1979 h
->cciss_write
= CCISS_WRITE_10
;
1983 cciss_geometry_inquiry(ctlr
, drv_index
, total_size
, block_size
,
1985 drvinfo
->block_size
= block_size
;
1986 drvinfo
->nr_blocks
= total_size
+ 1;
1988 cciss_get_device_descr(ctlr
, drv_index
, drvinfo
->vendor
,
1989 drvinfo
->model
, drvinfo
->rev
);
1990 cciss_get_serial_no(ctlr
, drv_index
, drvinfo
->serial_no
,
1991 sizeof(drvinfo
->serial_no
));
1992 /* Save the lunid in case we deregister the disk, below. */
1993 memcpy(drvinfo
->LunID
, h
->drv
[drv_index
]->LunID
,
1994 sizeof(drvinfo
->LunID
));
1996 /* Is it the same disk we already know, and nothing's changed? */
1997 if (h
->drv
[drv_index
]->raid_level
!= -1 &&
1998 ((memcmp(drvinfo
->serial_no
,
1999 h
->drv
[drv_index
]->serial_no
, 16) == 0) &&
2000 drvinfo
->block_size
== h
->drv
[drv_index
]->block_size
&&
2001 drvinfo
->nr_blocks
== h
->drv
[drv_index
]->nr_blocks
&&
2002 drvinfo
->heads
== h
->drv
[drv_index
]->heads
&&
2003 drvinfo
->sectors
== h
->drv
[drv_index
]->sectors
&&
2004 drvinfo
->cylinders
== h
->drv
[drv_index
]->cylinders
))
2005 /* The disk is unchanged, nothing to update */
2008 /* If we get here it's not the same disk, or something's changed,
2009 * so we need to * deregister it, and re-register it, if it's not
2011 * If the disk already exists then deregister it before proceeding
2012 * (unless it's the first disk (for the controller node).
2014 if (h
->drv
[drv_index
]->raid_level
!= -1 && drv_index
!= 0) {
2015 printk(KERN_WARNING
"disk %d has changed.\n", drv_index
);
2016 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
2017 h
->drv
[drv_index
]->busy_configuring
= 1;
2018 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
2020 /* deregister_disk sets h->drv[drv_index]->queue = NULL
2021 * which keeps the interrupt handler from starting
2024 ret
= deregister_disk(h
, drv_index
, 0, via_ioctl
);
2027 /* If the disk is in use return */
2031 /* Save the new information from cciss_geometry_inquiry
2032 * and serial number inquiry. If the disk was deregistered
2033 * above, then h->drv[drv_index] will be NULL.
2035 if (h
->drv
[drv_index
] == NULL
) {
2036 drvinfo
->device_initialized
= 0;
2037 h
->drv
[drv_index
] = drvinfo
;
2038 drvinfo
= NULL
; /* so it won't be freed below. */
2040 /* special case for cxd0 */
2041 h
->drv
[drv_index
]->block_size
= drvinfo
->block_size
;
2042 h
->drv
[drv_index
]->nr_blocks
= drvinfo
->nr_blocks
;
2043 h
->drv
[drv_index
]->heads
= drvinfo
->heads
;
2044 h
->drv
[drv_index
]->sectors
= drvinfo
->sectors
;
2045 h
->drv
[drv_index
]->cylinders
= drvinfo
->cylinders
;
2046 h
->drv
[drv_index
]->raid_level
= drvinfo
->raid_level
;
2047 memcpy(h
->drv
[drv_index
]->serial_no
, drvinfo
->serial_no
, 16);
2048 memcpy(h
->drv
[drv_index
]->vendor
, drvinfo
->vendor
,
2050 memcpy(h
->drv
[drv_index
]->model
, drvinfo
->model
, MODEL_LEN
+ 1);
2051 memcpy(h
->drv
[drv_index
]->rev
, drvinfo
->rev
, REV_LEN
+ 1);
2055 disk
= h
->gendisk
[drv_index
];
2056 set_capacity(disk
, h
->drv
[drv_index
]->nr_blocks
);
2058 /* If it's not disk 0 (drv_index != 0)
2059 * or if it was disk 0, but there was previously
2060 * no actual corresponding configured logical drive
2061 * (raid_leve == -1) then we want to update the
2062 * logical drive's information.
2064 if (drv_index
|| first_time
) {
2065 if (cciss_add_disk(h
, disk
, drv_index
) != 0) {
2066 cciss_free_gendisk(h
, drv_index
);
2067 cciss_free_drive_info(h
, drv_index
);
2068 printk(KERN_WARNING
"cciss:%d could not update "
2069 "disk %d\n", h
->ctlr
, drv_index
);
2079 printk(KERN_ERR
"cciss: out of memory\n");
2083 /* This function will find the first index of the controllers drive array
2084 * that has a null drv pointer and allocate the drive info struct and
2085 * will return that index This is where new drives will be added.
2086 * If the index to be returned is greater than the highest_lun index for
2087 * the controller then highest_lun is set * to this new index.
2088 * If there are no available indexes or if tha allocation fails, then -1
2089 * is returned. * "controller_node" is used to know if this is a real
2090 * logical drive, or just the controller node, which determines if this
2091 * counts towards highest_lun.
2093 static int cciss_alloc_drive_info(ctlr_info_t
*h
, int controller_node
)
2096 drive_info_struct
*drv
;
2098 /* Search for an empty slot for our drive info */
2099 for (i
= 0; i
< CISS_MAX_LUN
; i
++) {
2101 /* if not cxd0 case, and it's occupied, skip it. */
2102 if (h
->drv
[i
] && i
!= 0)
2105 * If it's cxd0 case, and drv is alloc'ed already, and a
2106 * disk is configured there, skip it.
2108 if (i
== 0 && h
->drv
[i
] && h
->drv
[i
]->raid_level
!= -1)
2112 * We've found an empty slot. Update highest_lun
2113 * provided this isn't just the fake cxd0 controller node.
2115 if (i
> h
->highest_lun
&& !controller_node
)
2118 /* If adding a real disk at cxd0, and it's already alloc'ed */
2119 if (i
== 0 && h
->drv
[i
] != NULL
)
2123 * Found an empty slot, not already alloc'ed. Allocate it.
2124 * Mark it with raid_level == -1, so we know it's new later on.
2126 drv
= kzalloc(sizeof(*drv
), GFP_KERNEL
);
2129 drv
->raid_level
= -1; /* so we know it's new */
2136 static void cciss_free_drive_info(ctlr_info_t
*h
, int drv_index
)
2138 kfree(h
->drv
[drv_index
]);
2139 h
->drv
[drv_index
] = NULL
;
2142 static void cciss_free_gendisk(ctlr_info_t
*h
, int drv_index
)
2144 put_disk(h
->gendisk
[drv_index
]);
2145 h
->gendisk
[drv_index
] = NULL
;
2148 /* cciss_add_gendisk finds a free hba[]->drv structure
2149 * and allocates a gendisk if needed, and sets the lunid
2150 * in the drvinfo structure. It returns the index into
2151 * the ->drv[] array, or -1 if none are free.
2152 * is_controller_node indicates whether highest_lun should
2153 * count this disk, or if it's only being added to provide
2154 * a means to talk to the controller in case no logical
2155 * drives have yet been configured.
2157 static int cciss_add_gendisk(ctlr_info_t
*h
, unsigned char lunid
[],
2158 int controller_node
)
2162 drv_index
= cciss_alloc_drive_info(h
, controller_node
);
2163 if (drv_index
== -1)
2166 /*Check if the gendisk needs to be allocated */
2167 if (!h
->gendisk
[drv_index
]) {
2168 h
->gendisk
[drv_index
] =
2169 alloc_disk(1 << NWD_SHIFT
);
2170 if (!h
->gendisk
[drv_index
]) {
2171 printk(KERN_ERR
"cciss%d: could not "
2172 "allocate a new disk %d\n",
2173 h
->ctlr
, drv_index
);
2174 goto err_free_drive_info
;
2177 memcpy(h
->drv
[drv_index
]->LunID
, lunid
,
2178 sizeof(h
->drv
[drv_index
]->LunID
));
2179 if (cciss_create_ld_sysfs_entry(h
, drv_index
))
2181 /* Don't need to mark this busy because nobody */
2182 /* else knows about this disk yet to contend */
2183 /* for access to it. */
2184 h
->drv
[drv_index
]->busy_configuring
= 0;
2189 cciss_free_gendisk(h
, drv_index
);
2190 err_free_drive_info
:
2191 cciss_free_drive_info(h
, drv_index
);
2195 /* This is for the special case of a controller which
2196 * has no logical drives. In this case, we still need
2197 * to register a disk so the controller can be accessed
2198 * by the Array Config Utility.
2200 static void cciss_add_controller_node(ctlr_info_t
*h
)
2202 struct gendisk
*disk
;
2205 if (h
->gendisk
[0] != NULL
) /* already did this? Then bail. */
2208 drv_index
= cciss_add_gendisk(h
, CTLR_LUNID
, 1);
2209 if (drv_index
== -1)
2211 h
->drv
[drv_index
]->block_size
= 512;
2212 h
->drv
[drv_index
]->nr_blocks
= 0;
2213 h
->drv
[drv_index
]->heads
= 0;
2214 h
->drv
[drv_index
]->sectors
= 0;
2215 h
->drv
[drv_index
]->cylinders
= 0;
2216 h
->drv
[drv_index
]->raid_level
= -1;
2217 memset(h
->drv
[drv_index
]->serial_no
, 0, 16);
2218 disk
= h
->gendisk
[drv_index
];
2219 if (cciss_add_disk(h
, disk
, drv_index
) == 0)
2221 cciss_free_gendisk(h
, drv_index
);
2222 cciss_free_drive_info(h
, drv_index
);
2224 printk(KERN_WARNING
"cciss%d: could not "
2225 "add disk 0.\n", h
->ctlr
);
2229 /* This function will add and remove logical drives from the Logical
2230 * drive array of the controller and maintain persistency of ordering
2231 * so that mount points are preserved until the next reboot. This allows
2232 * for the removal of logical drives in the middle of the drive array
2233 * without a re-ordering of those drives.
2235 * h = The controller to perform the operations on
2237 static int rebuild_lun_table(ctlr_info_t
*h
, int first_time
,
2242 ReportLunData_struct
*ld_buff
= NULL
;
2248 unsigned char lunid
[8] = CTLR_LUNID
;
2249 unsigned long flags
;
2251 if (!capable(CAP_SYS_RAWIO
))
2254 /* Set busy_configuring flag for this operation */
2255 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
2256 if (h
->busy_configuring
) {
2257 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
2260 h
->busy_configuring
= 1;
2261 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
2263 ld_buff
= kzalloc(sizeof(ReportLunData_struct
), GFP_KERNEL
);
2264 if (ld_buff
== NULL
)
2267 return_code
= sendcmd_withirq(CISS_REPORT_LOG
, ctlr
, ld_buff
,
2268 sizeof(ReportLunData_struct
),
2269 0, CTLR_LUNID
, TYPE_CMD
);
2271 if (return_code
== IO_OK
)
2272 listlength
= be32_to_cpu(*(__be32
*) ld_buff
->LUNListLength
);
2273 else { /* reading number of logical volumes failed */
2274 printk(KERN_WARNING
"cciss: report logical volume"
2275 " command failed\n");
2280 num_luns
= listlength
/ 8; /* 8 bytes per entry */
2281 if (num_luns
> CISS_MAX_LUN
) {
2282 num_luns
= CISS_MAX_LUN
;
2283 printk(KERN_WARNING
"cciss: more luns configured"
2284 " on controller than can be handled by"
2289 cciss_add_controller_node(h
);
2291 /* Compare controller drive array to driver's drive array
2292 * to see if any drives are missing on the controller due
2293 * to action of Array Config Utility (user deletes drive)
2294 * and deregister logical drives which have disappeared.
2296 for (i
= 0; i
<= h
->highest_lun
; i
++) {
2300 /* skip holes in the array from already deleted drives */
2301 if (h
->drv
[i
] == NULL
)
2304 for (j
= 0; j
< num_luns
; j
++) {
2305 memcpy(lunid
, &ld_buff
->LUN
[j
][0], sizeof(lunid
));
2306 if (memcmp(h
->drv
[i
]->LunID
, lunid
,
2307 sizeof(lunid
)) == 0) {
2313 /* Deregister it from the OS, it's gone. */
2314 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
2315 h
->drv
[i
]->busy_configuring
= 1;
2316 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
2317 return_code
= deregister_disk(h
, i
, 1, via_ioctl
);
2318 if (h
->drv
[i
] != NULL
)
2319 h
->drv
[i
]->busy_configuring
= 0;
2323 /* Compare controller drive array to driver's drive array.
2324 * Check for updates in the drive information and any new drives
2325 * on the controller due to ACU adding logical drives, or changing
2326 * a logical drive's size, etc. Reregister any new/changed drives
2328 for (i
= 0; i
< num_luns
; i
++) {
2333 memcpy(lunid
, &ld_buff
->LUN
[i
][0], sizeof(lunid
));
2334 /* Find if the LUN is already in the drive array
2335 * of the driver. If so then update its info
2336 * if not in use. If it does not exist then find
2337 * the first free index and add it.
2339 for (j
= 0; j
<= h
->highest_lun
; j
++) {
2340 if (h
->drv
[j
] != NULL
&&
2341 memcmp(h
->drv
[j
]->LunID
, lunid
,
2342 sizeof(h
->drv
[j
]->LunID
)) == 0) {
2349 /* check if the drive was found already in the array */
2351 drv_index
= cciss_add_gendisk(h
, lunid
, 0);
2352 if (drv_index
== -1)
2355 cciss_update_drive_info(ctlr
, drv_index
, first_time
,
2361 h
->busy_configuring
= 0;
2362 /* We return -1 here to tell the ACU that we have registered/updated
2363 * all of the drives that we can and to keep it from calling us
2368 printk(KERN_ERR
"cciss: out of memory\n");
2369 h
->busy_configuring
= 0;
2373 static void cciss_clear_drive_info(drive_info_struct
*drive_info
)
2375 /* zero out the disk size info */
2376 drive_info
->nr_blocks
= 0;
2377 drive_info
->block_size
= 0;
2378 drive_info
->heads
= 0;
2379 drive_info
->sectors
= 0;
2380 drive_info
->cylinders
= 0;
2381 drive_info
->raid_level
= -1;
2382 memset(drive_info
->serial_no
, 0, sizeof(drive_info
->serial_no
));
2383 memset(drive_info
->model
, 0, sizeof(drive_info
->model
));
2384 memset(drive_info
->rev
, 0, sizeof(drive_info
->rev
));
2385 memset(drive_info
->vendor
, 0, sizeof(drive_info
->vendor
));
2387 * don't clear the LUNID though, we need to remember which
2392 /* This function will deregister the disk and it's queue from the
2393 * kernel. It must be called with the controller lock held and the
2394 * drv structures busy_configuring flag set. It's parameters are:
2396 * disk = This is the disk to be deregistered
2397 * drv = This is the drive_info_struct associated with the disk to be
2398 * deregistered. It contains information about the disk used
2400 * clear_all = This flag determines whether or not the disk information
2401 * is going to be completely cleared out and the highest_lun
2402 * reset. Sometimes we want to clear out information about
2403 * the disk in preparation for re-adding it. In this case
2404 * the highest_lun should be left unchanged and the LunID
2405 * should not be cleared.
2407 * This indicates whether we've reached this path via ioctl.
2408 * This affects the maximum usage count allowed for c0d0 to be messed with.
2409 * If this path is reached via ioctl(), then the max_usage_count will
2410 * be 1, as the process calling ioctl() has got to have the device open.
2411 * If we get here via sysfs, then the max usage count will be zero.
2413 static int deregister_disk(ctlr_info_t
*h
, int drv_index
,
2414 int clear_all
, int via_ioctl
)
2417 struct gendisk
*disk
;
2418 drive_info_struct
*drv
;
2419 int recalculate_highest_lun
;
2421 if (!capable(CAP_SYS_RAWIO
))
2424 drv
= h
->drv
[drv_index
];
2425 disk
= h
->gendisk
[drv_index
];
2427 /* make sure logical volume is NOT is use */
2428 if (clear_all
|| (h
->gendisk
[0] == disk
)) {
2429 if (drv
->usage_count
> via_ioctl
)
2431 } else if (drv
->usage_count
> 0)
2434 recalculate_highest_lun
= (drv
== h
->drv
[h
->highest_lun
]);
2436 /* invalidate the devices and deregister the disk. If it is disk
2437 * zero do not deregister it but just zero out it's values. This
2438 * allows us to delete disk zero but keep the controller registered.
2440 if (h
->gendisk
[0] != disk
) {
2441 struct request_queue
*q
= disk
->queue
;
2442 if (disk
->flags
& GENHD_FL_UP
) {
2443 cciss_destroy_ld_sysfs_entry(h
, drv_index
, 0);
2447 blk_cleanup_queue(q
);
2448 /* If clear_all is set then we are deleting the logical
2449 * drive, not just refreshing its info. For drives
2450 * other than disk 0 we will call put_disk. We do not
2451 * do this for disk 0 as we need it to be able to
2452 * configure the controller.
2455 /* This isn't pretty, but we need to find the
2456 * disk in our array and NULL our the pointer.
2457 * This is so that we will call alloc_disk if
2458 * this index is used again later.
2460 for (i
=0; i
< CISS_MAX_LUN
; i
++){
2461 if (h
->gendisk
[i
] == disk
) {
2462 h
->gendisk
[i
] = NULL
;
2469 set_capacity(disk
, 0);
2470 cciss_clear_drive_info(drv
);
2475 /* if it was the last disk, find the new hightest lun */
2476 if (clear_all
&& recalculate_highest_lun
) {
2477 int newhighest
= -1;
2478 for (i
= 0; i
<= h
->highest_lun
; i
++) {
2479 /* if the disk has size > 0, it is available */
2480 if (h
->drv
[i
] && h
->drv
[i
]->heads
)
2483 h
->highest_lun
= newhighest
;
2488 static int fill_cmd(CommandList_struct
*c
, __u8 cmd
, int ctlr
, void *buff
,
2489 size_t size
, __u8 page_code
, unsigned char *scsi3addr
,
2492 ctlr_info_t
*h
= hba
[ctlr
];
2493 u64bit buff_dma_handle
;
2496 c
->cmd_type
= CMD_IOCTL_PEND
;
2497 c
->Header
.ReplyQueue
= 0;
2499 c
->Header
.SGList
= 1;
2500 c
->Header
.SGTotal
= 1;
2502 c
->Header
.SGList
= 0;
2503 c
->Header
.SGTotal
= 0;
2505 c
->Header
.Tag
.lower
= c
->busaddr
;
2506 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
2508 c
->Request
.Type
.Type
= cmd_type
;
2509 if (cmd_type
== TYPE_CMD
) {
2512 /* are we trying to read a vital product page */
2513 if (page_code
!= 0) {
2514 c
->Request
.CDB
[1] = 0x01;
2515 c
->Request
.CDB
[2] = page_code
;
2517 c
->Request
.CDBLen
= 6;
2518 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2519 c
->Request
.Type
.Direction
= XFER_READ
;
2520 c
->Request
.Timeout
= 0;
2521 c
->Request
.CDB
[0] = CISS_INQUIRY
;
2522 c
->Request
.CDB
[4] = size
& 0xFF;
2524 case CISS_REPORT_LOG
:
2525 case CISS_REPORT_PHYS
:
2526 /* Talking to controller so It's a physical command
2527 mode = 00 target = 0. Nothing to write.
2529 c
->Request
.CDBLen
= 12;
2530 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2531 c
->Request
.Type
.Direction
= XFER_READ
;
2532 c
->Request
.Timeout
= 0;
2533 c
->Request
.CDB
[0] = cmd
;
2534 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
2535 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
2536 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
2537 c
->Request
.CDB
[9] = size
& 0xFF;
2540 case CCISS_READ_CAPACITY
:
2541 c
->Request
.CDBLen
= 10;
2542 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2543 c
->Request
.Type
.Direction
= XFER_READ
;
2544 c
->Request
.Timeout
= 0;
2545 c
->Request
.CDB
[0] = cmd
;
2547 case CCISS_READ_CAPACITY_16
:
2548 c
->Request
.CDBLen
= 16;
2549 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2550 c
->Request
.Type
.Direction
= XFER_READ
;
2551 c
->Request
.Timeout
= 0;
2552 c
->Request
.CDB
[0] = cmd
;
2553 c
->Request
.CDB
[1] = 0x10;
2554 c
->Request
.CDB
[10] = (size
>> 24) & 0xFF;
2555 c
->Request
.CDB
[11] = (size
>> 16) & 0xFF;
2556 c
->Request
.CDB
[12] = (size
>> 8) & 0xFF;
2557 c
->Request
.CDB
[13] = size
& 0xFF;
2558 c
->Request
.Timeout
= 0;
2559 c
->Request
.CDB
[0] = cmd
;
2561 case CCISS_CACHE_FLUSH
:
2562 c
->Request
.CDBLen
= 12;
2563 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2564 c
->Request
.Type
.Direction
= XFER_WRITE
;
2565 c
->Request
.Timeout
= 0;
2566 c
->Request
.CDB
[0] = BMIC_WRITE
;
2567 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
2569 case TEST_UNIT_READY
:
2570 c
->Request
.CDBLen
= 6;
2571 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2572 c
->Request
.Type
.Direction
= XFER_NONE
;
2573 c
->Request
.Timeout
= 0;
2577 "cciss%d: Unknown Command 0x%c\n", ctlr
, cmd
);
2580 } else if (cmd_type
== TYPE_MSG
) {
2582 case 0: /* ABORT message */
2583 c
->Request
.CDBLen
= 12;
2584 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2585 c
->Request
.Type
.Direction
= XFER_WRITE
;
2586 c
->Request
.Timeout
= 0;
2587 c
->Request
.CDB
[0] = cmd
; /* abort */
2588 c
->Request
.CDB
[1] = 0; /* abort a command */
2589 /* buff contains the tag of the command to abort */
2590 memcpy(&c
->Request
.CDB
[4], buff
, 8);
2592 case 1: /* RESET message */
2593 c
->Request
.CDBLen
= 16;
2594 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2595 c
->Request
.Type
.Direction
= XFER_NONE
;
2596 c
->Request
.Timeout
= 0;
2597 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
2598 c
->Request
.CDB
[0] = cmd
; /* reset */
2599 c
->Request
.CDB
[1] = 0x03; /* reset a target */
2601 case 3: /* No-Op message */
2602 c
->Request
.CDBLen
= 1;
2603 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2604 c
->Request
.Type
.Direction
= XFER_WRITE
;
2605 c
->Request
.Timeout
= 0;
2606 c
->Request
.CDB
[0] = cmd
;
2610 "cciss%d: unknown message type %d\n", ctlr
, cmd
);
2615 "cciss%d: unknown command type %d\n", ctlr
, cmd_type
);
2618 /* Fill in the scatter gather information */
2620 buff_dma_handle
.val
= (__u64
) pci_map_single(h
->pdev
,
2622 PCI_DMA_BIDIRECTIONAL
);
2623 c
->SG
[0].Addr
.lower
= buff_dma_handle
.val32
.lower
;
2624 c
->SG
[0].Addr
.upper
= buff_dma_handle
.val32
.upper
;
2625 c
->SG
[0].Len
= size
;
2626 c
->SG
[0].Ext
= 0; /* we are not chaining */
2631 static int check_target_status(ctlr_info_t
*h
, CommandList_struct
*c
)
2633 switch (c
->err_info
->ScsiStatus
) {
2636 case SAM_STAT_CHECK_CONDITION
:
2637 switch (0xf & c
->err_info
->SenseInfo
[2]) {
2638 case 0: return IO_OK
; /* no sense */
2639 case 1: return IO_OK
; /* recovered error */
2641 if (check_for_unit_attention(h
, c
))
2642 return IO_NEEDS_RETRY
;
2643 printk(KERN_WARNING
"cciss%d: cmd 0x%02x "
2644 "check condition, sense key = 0x%02x\n",
2645 h
->ctlr
, c
->Request
.CDB
[0],
2646 c
->err_info
->SenseInfo
[2]);
2650 printk(KERN_WARNING
"cciss%d: cmd 0x%02x"
2651 "scsi status = 0x%02x\n", h
->ctlr
,
2652 c
->Request
.CDB
[0], c
->err_info
->ScsiStatus
);
2658 static int process_sendcmd_error(ctlr_info_t
*h
, CommandList_struct
*c
)
2660 int return_status
= IO_OK
;
2662 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
2665 switch (c
->err_info
->CommandStatus
) {
2666 case CMD_TARGET_STATUS
:
2667 return_status
= check_target_status(h
, c
);
2669 case CMD_DATA_UNDERRUN
:
2670 case CMD_DATA_OVERRUN
:
2671 /* expected for inquiry and report lun commands */
2674 printk(KERN_WARNING
"cciss: cmd 0x%02x is "
2675 "reported invalid\n", c
->Request
.CDB
[0]);
2676 return_status
= IO_ERROR
;
2678 case CMD_PROTOCOL_ERR
:
2679 printk(KERN_WARNING
"cciss: cmd 0x%02x has "
2680 "protocol error \n", c
->Request
.CDB
[0]);
2681 return_status
= IO_ERROR
;
2683 case CMD_HARDWARE_ERR
:
2684 printk(KERN_WARNING
"cciss: cmd 0x%02x had "
2685 " hardware error\n", c
->Request
.CDB
[0]);
2686 return_status
= IO_ERROR
;
2688 case CMD_CONNECTION_LOST
:
2689 printk(KERN_WARNING
"cciss: cmd 0x%02x had "
2690 "connection lost\n", c
->Request
.CDB
[0]);
2691 return_status
= IO_ERROR
;
2694 printk(KERN_WARNING
"cciss: cmd 0x%02x was "
2695 "aborted\n", c
->Request
.CDB
[0]);
2696 return_status
= IO_ERROR
;
2698 case CMD_ABORT_FAILED
:
2699 printk(KERN_WARNING
"cciss: cmd 0x%02x reports "
2700 "abort failed\n", c
->Request
.CDB
[0]);
2701 return_status
= IO_ERROR
;
2703 case CMD_UNSOLICITED_ABORT
:
2705 "cciss%d: unsolicited abort 0x%02x\n", h
->ctlr
,
2707 return_status
= IO_NEEDS_RETRY
;
2710 printk(KERN_WARNING
"cciss: cmd 0x%02x returned "
2711 "unknown status %x\n", c
->Request
.CDB
[0],
2712 c
->err_info
->CommandStatus
);
2713 return_status
= IO_ERROR
;
2715 return return_status
;
2718 static int sendcmd_withirq_core(ctlr_info_t
*h
, CommandList_struct
*c
,
2721 DECLARE_COMPLETION_ONSTACK(wait
);
2722 u64bit buff_dma_handle
;
2723 int return_status
= IO_OK
;
2727 enqueue_cmd_and_start_io(h
, c
);
2729 wait_for_completion(&wait
);
2731 if (c
->err_info
->CommandStatus
== 0 || !attempt_retry
)
2734 return_status
= process_sendcmd_error(h
, c
);
2736 if (return_status
== IO_NEEDS_RETRY
&&
2737 c
->retry_count
< MAX_CMD_RETRIES
) {
2738 printk(KERN_WARNING
"cciss%d: retrying 0x%02x\n", h
->ctlr
,
2741 /* erase the old error information */
2742 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
2743 return_status
= IO_OK
;
2744 INIT_COMPLETION(wait
);
2749 /* unlock the buffers from DMA */
2750 buff_dma_handle
.val32
.lower
= c
->SG
[0].Addr
.lower
;
2751 buff_dma_handle
.val32
.upper
= c
->SG
[0].Addr
.upper
;
2752 pci_unmap_single(h
->pdev
, (dma_addr_t
) buff_dma_handle
.val
,
2753 c
->SG
[0].Len
, PCI_DMA_BIDIRECTIONAL
);
2754 return return_status
;
2757 static int sendcmd_withirq(__u8 cmd
, int ctlr
, void *buff
, size_t size
,
2758 __u8 page_code
, unsigned char scsi3addr
[],
2761 ctlr_info_t
*h
= hba
[ctlr
];
2762 CommandList_struct
*c
;
2765 c
= cmd_alloc(h
, 0);
2768 return_status
= fill_cmd(c
, cmd
, ctlr
, buff
, size
, page_code
,
2769 scsi3addr
, cmd_type
);
2770 if (return_status
== IO_OK
)
2771 return_status
= sendcmd_withirq_core(h
, c
, 1);
2774 return return_status
;
2777 static void cciss_geometry_inquiry(int ctlr
, int logvol
,
2778 sector_t total_size
,
2779 unsigned int block_size
,
2780 InquiryData_struct
*inq_buff
,
2781 drive_info_struct
*drv
)
2785 unsigned char scsi3addr
[8];
2787 memset(inq_buff
, 0, sizeof(InquiryData_struct
));
2788 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
2789 return_code
= sendcmd_withirq(CISS_INQUIRY
, ctlr
, inq_buff
,
2790 sizeof(*inq_buff
), 0xC1, scsi3addr
, TYPE_CMD
);
2791 if (return_code
== IO_OK
) {
2792 if (inq_buff
->data_byte
[8] == 0xFF) {
2794 "cciss: reading geometry failed, volume "
2795 "does not support reading geometry\n");
2797 drv
->sectors
= 32; /* Sectors per track */
2798 drv
->cylinders
= total_size
+ 1;
2799 drv
->raid_level
= RAID_UNKNOWN
;
2801 drv
->heads
= inq_buff
->data_byte
[6];
2802 drv
->sectors
= inq_buff
->data_byte
[7];
2803 drv
->cylinders
= (inq_buff
->data_byte
[4] & 0xff) << 8;
2804 drv
->cylinders
+= inq_buff
->data_byte
[5];
2805 drv
->raid_level
= inq_buff
->data_byte
[8];
2807 drv
->block_size
= block_size
;
2808 drv
->nr_blocks
= total_size
+ 1;
2809 t
= drv
->heads
* drv
->sectors
;
2811 sector_t real_size
= total_size
+ 1;
2812 unsigned long rem
= sector_div(real_size
, t
);
2815 drv
->cylinders
= real_size
;
2817 } else { /* Get geometry failed */
2818 printk(KERN_WARNING
"cciss: reading geometry failed\n");
2823 cciss_read_capacity(int ctlr
, int logvol
, sector_t
*total_size
,
2824 unsigned int *block_size
)
2826 ReadCapdata_struct
*buf
;
2828 unsigned char scsi3addr
[8];
2830 buf
= kzalloc(sizeof(ReadCapdata_struct
), GFP_KERNEL
);
2832 printk(KERN_WARNING
"cciss: out of memory\n");
2836 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
2837 return_code
= sendcmd_withirq(CCISS_READ_CAPACITY
, ctlr
, buf
,
2838 sizeof(ReadCapdata_struct
), 0, scsi3addr
, TYPE_CMD
);
2839 if (return_code
== IO_OK
) {
2840 *total_size
= be32_to_cpu(*(__be32
*) buf
->total_size
);
2841 *block_size
= be32_to_cpu(*(__be32
*) buf
->block_size
);
2842 } else { /* read capacity command failed */
2843 printk(KERN_WARNING
"cciss: read capacity failed\n");
2845 *block_size
= BLOCK_SIZE
;
2850 static void cciss_read_capacity_16(int ctlr
, int logvol
,
2851 sector_t
*total_size
, unsigned int *block_size
)
2853 ReadCapdata_struct_16
*buf
;
2855 unsigned char scsi3addr
[8];
2857 buf
= kzalloc(sizeof(ReadCapdata_struct_16
), GFP_KERNEL
);
2859 printk(KERN_WARNING
"cciss: out of memory\n");
2863 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
2864 return_code
= sendcmd_withirq(CCISS_READ_CAPACITY_16
,
2865 ctlr
, buf
, sizeof(ReadCapdata_struct_16
),
2866 0, scsi3addr
, TYPE_CMD
);
2867 if (return_code
== IO_OK
) {
2868 *total_size
= be64_to_cpu(*(__be64
*) buf
->total_size
);
2869 *block_size
= be32_to_cpu(*(__be32
*) buf
->block_size
);
2870 } else { /* read capacity command failed */
2871 printk(KERN_WARNING
"cciss: read capacity failed\n");
2873 *block_size
= BLOCK_SIZE
;
2875 printk(KERN_INFO
" blocks= %llu block_size= %d\n",
2876 (unsigned long long)*total_size
+1, *block_size
);
2880 static int cciss_revalidate(struct gendisk
*disk
)
2882 ctlr_info_t
*h
= get_host(disk
);
2883 drive_info_struct
*drv
= get_drv(disk
);
2886 unsigned int block_size
;
2887 sector_t total_size
;
2888 InquiryData_struct
*inq_buff
= NULL
;
2890 for (logvol
= 0; logvol
< CISS_MAX_LUN
; logvol
++) {
2891 if (memcmp(h
->drv
[logvol
]->LunID
, drv
->LunID
,
2892 sizeof(drv
->LunID
)) == 0) {
2901 inq_buff
= kmalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
2902 if (inq_buff
== NULL
) {
2903 printk(KERN_WARNING
"cciss: out of memory\n");
2906 if (h
->cciss_read
== CCISS_READ_10
) {
2907 cciss_read_capacity(h
->ctlr
, logvol
,
2908 &total_size
, &block_size
);
2910 cciss_read_capacity_16(h
->ctlr
, logvol
,
2911 &total_size
, &block_size
);
2913 cciss_geometry_inquiry(h
->ctlr
, logvol
, total_size
, block_size
,
2916 blk_queue_logical_block_size(drv
->queue
, drv
->block_size
);
2917 set_capacity(disk
, drv
->nr_blocks
);
2924 * Map (physical) PCI mem into (virtual) kernel space
2926 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
2928 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
2929 ulong page_offs
= ((ulong
) base
) - page_base
;
2930 void __iomem
*page_remapped
= ioremap(page_base
, page_offs
+ size
);
2932 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
2936 * Takes jobs of the Q and sends them to the hardware, then puts it on
2937 * the Q to wait for completion.
2939 static void start_io(ctlr_info_t
*h
)
2941 CommandList_struct
*c
;
2943 while (!hlist_empty(&h
->reqQ
)) {
2944 c
= hlist_entry(h
->reqQ
.first
, CommandList_struct
, list
);
2945 /* can't do anything if fifo is full */
2946 if ((h
->access
.fifo_full(h
))) {
2947 printk(KERN_WARNING
"cciss: fifo full\n");
2951 /* Get the first entry from the Request Q */
2955 /* Tell the controller execute command */
2956 h
->access
.submit_command(h
, c
);
2958 /* Put job onto the completed Q */
2963 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2964 /* Zeros out the error record and then resends the command back */
2965 /* to the controller */
2966 static inline void resend_cciss_cmd(ctlr_info_t
*h
, CommandList_struct
*c
)
2968 /* erase the old error information */
2969 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
2971 /* add it to software queue and then send it to the controller */
2974 if (h
->Qdepth
> h
->maxQsinceinit
)
2975 h
->maxQsinceinit
= h
->Qdepth
;
2980 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte
,
2981 unsigned int msg_byte
, unsigned int host_byte
,
2982 unsigned int driver_byte
)
2984 /* inverse of macros in scsi.h */
2985 return (scsi_status_byte
& 0xff) |
2986 ((msg_byte
& 0xff) << 8) |
2987 ((host_byte
& 0xff) << 16) |
2988 ((driver_byte
& 0xff) << 24);
2991 static inline int evaluate_target_status(ctlr_info_t
*h
,
2992 CommandList_struct
*cmd
, int *retry_cmd
)
2994 unsigned char sense_key
;
2995 unsigned char status_byte
, msg_byte
, host_byte
, driver_byte
;
2999 /* If we get in here, it means we got "target status", that is, scsi status */
3000 status_byte
= cmd
->err_info
->ScsiStatus
;
3001 driver_byte
= DRIVER_OK
;
3002 msg_byte
= cmd
->err_info
->CommandStatus
; /* correct? seems too device specific */
3004 if (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
)
3005 host_byte
= DID_PASSTHROUGH
;
3009 error_value
= make_status_bytes(status_byte
, msg_byte
,
3010 host_byte
, driver_byte
);
3012 if (cmd
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
) {
3013 if (cmd
->rq
->cmd_type
!= REQ_TYPE_BLOCK_PC
)
3014 printk(KERN_WARNING
"cciss: cmd %p "
3015 "has SCSI Status 0x%x\n",
3016 cmd
, cmd
->err_info
->ScsiStatus
);
3020 /* check the sense key */
3021 sense_key
= 0xf & cmd
->err_info
->SenseInfo
[2];
3022 /* no status or recovered error */
3023 if (((sense_key
== 0x0) || (sense_key
== 0x1)) &&
3024 (cmd
->rq
->cmd_type
!= REQ_TYPE_BLOCK_PC
))
3027 if (check_for_unit_attention(h
, cmd
)) {
3028 *retry_cmd
= !(cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
);
3032 /* Not SG_IO or similar? */
3033 if (cmd
->rq
->cmd_type
!= REQ_TYPE_BLOCK_PC
) {
3034 if (error_value
!= 0)
3035 printk(KERN_WARNING
"cciss: cmd %p has CHECK CONDITION"
3036 " sense key = 0x%x\n", cmd
, sense_key
);
3040 /* SG_IO or similar, copy sense data back */
3041 if (cmd
->rq
->sense
) {
3042 if (cmd
->rq
->sense_len
> cmd
->err_info
->SenseLen
)
3043 cmd
->rq
->sense_len
= cmd
->err_info
->SenseLen
;
3044 memcpy(cmd
->rq
->sense
, cmd
->err_info
->SenseInfo
,
3045 cmd
->rq
->sense_len
);
3047 cmd
->rq
->sense_len
= 0;
3052 /* checks the status of the job and calls complete buffers to mark all
3053 * buffers for the completed job. Note that this function does not need
3054 * to hold the hba/queue lock.
3056 static inline void complete_command(ctlr_info_t
*h
, CommandList_struct
*cmd
,
3060 struct request
*rq
= cmd
->rq
;
3065 rq
->errors
= make_status_bytes(0, 0, 0, DRIVER_TIMEOUT
);
3067 if (cmd
->err_info
->CommandStatus
== 0) /* no error has occurred */
3068 goto after_error_processing
;
3070 switch (cmd
->err_info
->CommandStatus
) {
3071 case CMD_TARGET_STATUS
:
3072 rq
->errors
= evaluate_target_status(h
, cmd
, &retry_cmd
);
3074 case CMD_DATA_UNDERRUN
:
3075 if (cmd
->rq
->cmd_type
== REQ_TYPE_FS
) {
3076 printk(KERN_WARNING
"cciss: cmd %p has"
3077 " completed with data underrun "
3079 cmd
->rq
->resid_len
= cmd
->err_info
->ResidualCnt
;
3082 case CMD_DATA_OVERRUN
:
3083 if (cmd
->rq
->cmd_type
== REQ_TYPE_FS
)
3084 printk(KERN_WARNING
"cciss: cmd %p has"
3085 " completed with data overrun "
3089 printk(KERN_WARNING
"cciss: cmd %p is "
3090 "reported invalid\n", cmd
);
3091 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3092 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3093 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3094 DID_PASSTHROUGH
: DID_ERROR
);
3096 case CMD_PROTOCOL_ERR
:
3097 printk(KERN_WARNING
"cciss: cmd %p has "
3098 "protocol error \n", cmd
);
3099 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3100 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3101 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3102 DID_PASSTHROUGH
: DID_ERROR
);
3104 case CMD_HARDWARE_ERR
:
3105 printk(KERN_WARNING
"cciss: cmd %p had "
3106 " hardware error\n", cmd
);
3107 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3108 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3109 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3110 DID_PASSTHROUGH
: DID_ERROR
);
3112 case CMD_CONNECTION_LOST
:
3113 printk(KERN_WARNING
"cciss: cmd %p had "
3114 "connection lost\n", cmd
);
3115 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3116 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3117 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3118 DID_PASSTHROUGH
: DID_ERROR
);
3121 printk(KERN_WARNING
"cciss: cmd %p was "
3123 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3124 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3125 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3126 DID_PASSTHROUGH
: DID_ABORT
);
3128 case CMD_ABORT_FAILED
:
3129 printk(KERN_WARNING
"cciss: cmd %p reports "
3130 "abort failed\n", cmd
);
3131 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3132 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3133 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3134 DID_PASSTHROUGH
: DID_ERROR
);
3136 case CMD_UNSOLICITED_ABORT
:
3137 printk(KERN_WARNING
"cciss%d: unsolicited "
3138 "abort %p\n", h
->ctlr
, cmd
);
3139 if (cmd
->retry_count
< MAX_CMD_RETRIES
) {
3142 "cciss%d: retrying %p\n", h
->ctlr
, cmd
);
3146 "cciss%d: %p retried too "
3147 "many times\n", h
->ctlr
, cmd
);
3148 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3149 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3150 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3151 DID_PASSTHROUGH
: DID_ABORT
);
3154 printk(KERN_WARNING
"cciss: cmd %p timedout\n", cmd
);
3155 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3156 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3157 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3158 DID_PASSTHROUGH
: DID_ERROR
);
3161 printk(KERN_WARNING
"cciss: cmd %p returned "
3162 "unknown status %x\n", cmd
,
3163 cmd
->err_info
->CommandStatus
);
3164 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3165 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3166 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3167 DID_PASSTHROUGH
: DID_ERROR
);
3170 after_error_processing
:
3172 /* We need to return this command */
3174 resend_cciss_cmd(h
, cmd
);
3177 cmd
->rq
->completion_data
= cmd
;
3178 blk_complete_request(cmd
->rq
);
3181 static inline u32
cciss_tag_contains_index(u32 tag
)
3183 #define DIRECT_LOOKUP_BIT 0x10
3184 return tag
& DIRECT_LOOKUP_BIT
;
3187 static inline u32
cciss_tag_to_index(u32 tag
)
3189 #define DIRECT_LOOKUP_SHIFT 5
3190 return tag
>> DIRECT_LOOKUP_SHIFT
;
3193 static inline u32
cciss_tag_discard_error_bits(u32 tag
)
3195 #define CCISS_ERROR_BITS 0x03
3196 return tag
& ~CCISS_ERROR_BITS
;
3199 static inline void cciss_mark_tag_indexed(u32
*tag
)
3201 *tag
|= DIRECT_LOOKUP_BIT
;
3204 static inline void cciss_set_tag_index(u32
*tag
, u32 index
)
3206 *tag
|= (index
<< DIRECT_LOOKUP_SHIFT
);
3210 * Get a request and submit it to the controller.
3212 static void do_cciss_request(struct request_queue
*q
)
3214 ctlr_info_t
*h
= q
->queuedata
;
3215 CommandList_struct
*c
;
3218 struct request
*creq
;
3220 struct scatterlist
*tmp_sg
;
3221 SGDescriptor_struct
*curr_sg
;
3222 drive_info_struct
*drv
;
3227 /* We call start_io here in case there is a command waiting on the
3228 * queue that has not been sent.
3230 if (blk_queue_plugged(q
))
3234 creq
= blk_peek_request(q
);
3238 BUG_ON(creq
->nr_phys_segments
> h
->maxsgentries
);
3240 if ((c
= cmd_alloc(h
, 1)) == NULL
)
3243 blk_start_request(creq
);
3245 tmp_sg
= h
->scatter_list
[c
->cmdindex
];
3246 spin_unlock_irq(q
->queue_lock
);
3248 c
->cmd_type
= CMD_RWREQ
;
3251 /* fill in the request */
3252 drv
= creq
->rq_disk
->private_data
;
3253 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
3254 /* got command from pool, so use the command block index instead */
3255 /* for direct lookups. */
3256 /* The first 2 bits are reserved for controller error reporting. */
3257 cciss_set_tag_index(&c
->Header
.Tag
.lower
, c
->cmdindex
);
3258 cciss_mark_tag_indexed(&c
->Header
.Tag
.lower
);
3259 memcpy(&c
->Header
.LUN
, drv
->LunID
, sizeof(drv
->LunID
));
3260 c
->Request
.CDBLen
= 10; /* 12 byte commands not in FW yet; */
3261 c
->Request
.Type
.Type
= TYPE_CMD
; /* It is a command. */
3262 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3263 c
->Request
.Type
.Direction
=
3264 (rq_data_dir(creq
) == READ
) ? XFER_READ
: XFER_WRITE
;
3265 c
->Request
.Timeout
= 0; /* Don't time out */
3267 (rq_data_dir(creq
) == READ
) ? h
->cciss_read
: h
->cciss_write
;
3268 start_blk
= blk_rq_pos(creq
);
3270 printk(KERN_DEBUG
"ciss: sector =%d nr_sectors=%d\n",
3271 (int)blk_rq_pos(creq
), (int)blk_rq_sectors(creq
));
3272 #endif /* CCISS_DEBUG */
3274 sg_init_table(tmp_sg
, h
->maxsgentries
);
3275 seg
= blk_rq_map_sg(q
, creq
, tmp_sg
);
3277 /* get the DMA records for the setup */
3278 if (c
->Request
.Type
.Direction
== XFER_READ
)
3279 dir
= PCI_DMA_FROMDEVICE
;
3281 dir
= PCI_DMA_TODEVICE
;
3287 for (i
= 0; i
< seg
; i
++) {
3288 if (((sg_index
+1) == (h
->max_cmd_sgentries
)) &&
3289 !chained
&& ((seg
- i
) > 1)) {
3290 /* Point to next chain block. */
3291 curr_sg
= h
->cmd_sg_list
[c
->cmdindex
];
3295 curr_sg
[sg_index
].Len
= tmp_sg
[i
].length
;
3296 temp64
.val
= (__u64
) pci_map_page(h
->pdev
, sg_page(&tmp_sg
[i
]),
3298 tmp_sg
[i
].length
, dir
);
3299 curr_sg
[sg_index
].Addr
.lower
= temp64
.val32
.lower
;
3300 curr_sg
[sg_index
].Addr
.upper
= temp64
.val32
.upper
;
3301 curr_sg
[sg_index
].Ext
= 0; /* we are not chaining */
3305 cciss_map_sg_chain_block(h
, c
, h
->cmd_sg_list
[c
->cmdindex
],
3306 (seg
- (h
->max_cmd_sgentries
- 1)) *
3307 sizeof(SGDescriptor_struct
));
3309 /* track how many SG entries we are using */
3314 printk(KERN_DEBUG
"cciss: Submitting %ld sectors in %d segments "
3316 blk_rq_sectors(creq
), seg
, chained
);
3317 #endif /* CCISS_DEBUG */
3319 c
->Header
.SGTotal
= seg
+ chained
;
3320 if (seg
<= h
->max_cmd_sgentries
)
3321 c
->Header
.SGList
= c
->Header
.SGTotal
;
3323 c
->Header
.SGList
= h
->max_cmd_sgentries
;
3324 set_performant_mode(h
, c
);
3326 if (likely(creq
->cmd_type
== REQ_TYPE_FS
)) {
3327 if(h
->cciss_read
== CCISS_READ_10
) {
3328 c
->Request
.CDB
[1] = 0;
3329 c
->Request
.CDB
[2] = (start_blk
>> 24) & 0xff; /* MSB */
3330 c
->Request
.CDB
[3] = (start_blk
>> 16) & 0xff;
3331 c
->Request
.CDB
[4] = (start_blk
>> 8) & 0xff;
3332 c
->Request
.CDB
[5] = start_blk
& 0xff;
3333 c
->Request
.CDB
[6] = 0; /* (sect >> 24) & 0xff; MSB */
3334 c
->Request
.CDB
[7] = (blk_rq_sectors(creq
) >> 8) & 0xff;
3335 c
->Request
.CDB
[8] = blk_rq_sectors(creq
) & 0xff;
3336 c
->Request
.CDB
[9] = c
->Request
.CDB
[11] = c
->Request
.CDB
[12] = 0;
3338 u32 upper32
= upper_32_bits(start_blk
);
3340 c
->Request
.CDBLen
= 16;
3341 c
->Request
.CDB
[1]= 0;
3342 c
->Request
.CDB
[2]= (upper32
>> 24) & 0xff; /* MSB */
3343 c
->Request
.CDB
[3]= (upper32
>> 16) & 0xff;
3344 c
->Request
.CDB
[4]= (upper32
>> 8) & 0xff;
3345 c
->Request
.CDB
[5]= upper32
& 0xff;
3346 c
->Request
.CDB
[6]= (start_blk
>> 24) & 0xff;
3347 c
->Request
.CDB
[7]= (start_blk
>> 16) & 0xff;
3348 c
->Request
.CDB
[8]= (start_blk
>> 8) & 0xff;
3349 c
->Request
.CDB
[9]= start_blk
& 0xff;
3350 c
->Request
.CDB
[10]= (blk_rq_sectors(creq
) >> 24) & 0xff;
3351 c
->Request
.CDB
[11]= (blk_rq_sectors(creq
) >> 16) & 0xff;
3352 c
->Request
.CDB
[12]= (blk_rq_sectors(creq
) >> 8) & 0xff;
3353 c
->Request
.CDB
[13]= blk_rq_sectors(creq
) & 0xff;
3354 c
->Request
.CDB
[14] = c
->Request
.CDB
[15] = 0;
3356 } else if (creq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
3357 c
->Request
.CDBLen
= creq
->cmd_len
;
3358 memcpy(c
->Request
.CDB
, creq
->cmd
, BLK_MAX_CDB
);
3360 printk(KERN_WARNING
"cciss%d: bad request type %d\n", h
->ctlr
, creq
->cmd_type
);
3364 spin_lock_irq(q
->queue_lock
);
3368 if (h
->Qdepth
> h
->maxQsinceinit
)
3369 h
->maxQsinceinit
= h
->Qdepth
;
3375 /* We will already have the driver lock here so not need
3381 static inline unsigned long get_next_completion(ctlr_info_t
*h
)
3383 return h
->access
.command_completed(h
);
3386 static inline int interrupt_pending(ctlr_info_t
*h
)
3388 return h
->access
.intr_pending(h
);
3391 static inline long interrupt_not_for_us(ctlr_info_t
*h
)
3393 return !(h
->msi_vector
|| h
->msix_vector
) &&
3394 ((h
->access
.intr_pending(h
) == 0) ||
3395 (h
->interrupts_enabled
== 0));
3398 static inline int bad_tag(ctlr_info_t
*h
, u32 tag_index
,
3401 if (unlikely(tag_index
>= h
->nr_cmds
)) {
3402 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
3408 static inline void finish_cmd(ctlr_info_t
*h
, CommandList_struct
*c
,
3412 if (likely(c
->cmd_type
== CMD_RWREQ
))
3413 complete_command(h
, c
, 0);
3414 else if (c
->cmd_type
== CMD_IOCTL_PEND
)
3415 complete(c
->waiting
);
3416 #ifdef CONFIG_CISS_SCSI_TAPE
3417 else if (c
->cmd_type
== CMD_SCSI
)
3418 complete_scsi_command(c
, 0, raw_tag
);
3422 static inline u32
next_command(ctlr_info_t
*h
)
3426 if (unlikely(h
->transMethod
!= CFGTBL_Trans_Performant
))
3427 return h
->access
.command_completed(h
);
3429 if ((*(h
->reply_pool_head
) & 1) == (h
->reply_pool_wraparound
)) {
3430 a
= *(h
->reply_pool_head
); /* Next cmd in ring buffer */
3431 (h
->reply_pool_head
)++;
3432 h
->commands_outstanding
--;
3436 /* Check for wraparound */
3437 if (h
->reply_pool_head
== (h
->reply_pool
+ h
->max_commands
)) {
3438 h
->reply_pool_head
= h
->reply_pool
;
3439 h
->reply_pool_wraparound
^= 1;
3444 /* process completion of an indexed ("direct lookup") command */
3445 static inline u32
process_indexed_cmd(ctlr_info_t
*h
, u32 raw_tag
)
3448 CommandList_struct
*c
;
3450 tag_index
= cciss_tag_to_index(raw_tag
);
3451 if (bad_tag(h
, tag_index
, raw_tag
))
3452 return next_command(h
);
3453 c
= h
->cmd_pool
+ tag_index
;
3454 finish_cmd(h
, c
, raw_tag
);
3455 return next_command(h
);
3458 /* process completion of a non-indexed command */
3459 static inline u32
process_nonindexed_cmd(ctlr_info_t
*h
, u32 raw_tag
)
3462 CommandList_struct
*c
= NULL
;
3463 struct hlist_node
*tmp
;
3464 __u32 busaddr_masked
, tag_masked
;
3466 tag
= cciss_tag_discard_error_bits(raw_tag
);
3467 hlist_for_each_entry(c
, tmp
, &h
->cmpQ
, list
) {
3468 busaddr_masked
= cciss_tag_discard_error_bits(c
->busaddr
);
3469 tag_masked
= cciss_tag_discard_error_bits(tag
);
3470 if (busaddr_masked
== tag_masked
) {
3471 finish_cmd(h
, c
, raw_tag
);
3472 return next_command(h
);
3475 bad_tag(h
, h
->nr_cmds
+ 1, raw_tag
);
3476 return next_command(h
);
3479 static irqreturn_t
do_cciss_intx(int irq
, void *dev_id
)
3481 ctlr_info_t
*h
= dev_id
;
3482 unsigned long flags
;
3485 if (interrupt_not_for_us(h
))
3488 * If there are completed commands in the completion queue,
3489 * we had better do something about it.
3491 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
3492 while (interrupt_pending(h
)) {
3493 raw_tag
= get_next_completion(h
);
3494 while (raw_tag
!= FIFO_EMPTY
) {
3495 if (cciss_tag_contains_index(raw_tag
))
3496 raw_tag
= process_indexed_cmd(h
, raw_tag
);
3498 raw_tag
= process_nonindexed_cmd(h
, raw_tag
);
3502 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
3506 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3507 * check the interrupt pending register because it is not set.
3509 static irqreturn_t
do_cciss_msix_intr(int irq
, void *dev_id
)
3511 ctlr_info_t
*h
= dev_id
;
3512 unsigned long flags
;
3515 if (interrupt_not_for_us(h
))
3518 * If there are completed commands in the completion queue,
3519 * we had better do something about it.
3521 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
3522 raw_tag
= get_next_completion(h
);
3523 while (raw_tag
!= FIFO_EMPTY
) {
3524 if (cciss_tag_contains_index(raw_tag
))
3525 raw_tag
= process_indexed_cmd(h
, raw_tag
);
3527 raw_tag
= process_nonindexed_cmd(h
, raw_tag
);
3530 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
3535 * add_to_scan_list() - add controller to rescan queue
3536 * @h: Pointer to the controller.
3538 * Adds the controller to the rescan queue if not already on the queue.
3540 * returns 1 if added to the queue, 0 if skipped (could be on the
3541 * queue already, or the controller could be initializing or shutting
3544 static int add_to_scan_list(struct ctlr_info
*h
)
3546 struct ctlr_info
*test_h
;
3550 if (h
->busy_initializing
)
3553 if (!mutex_trylock(&h
->busy_shutting_down
))
3556 mutex_lock(&scan_mutex
);
3557 list_for_each_entry(test_h
, &scan_q
, scan_list
) {
3563 if (!found
&& !h
->busy_scanning
) {
3564 INIT_COMPLETION(h
->scan_wait
);
3565 list_add_tail(&h
->scan_list
, &scan_q
);
3568 mutex_unlock(&scan_mutex
);
3569 mutex_unlock(&h
->busy_shutting_down
);
3575 * remove_from_scan_list() - remove controller from rescan queue
3576 * @h: Pointer to the controller.
3578 * Removes the controller from the rescan queue if present. Blocks if
3579 * the controller is currently conducting a rescan. The controller
3580 * can be in one of three states:
3581 * 1. Doesn't need a scan
3582 * 2. On the scan list, but not scanning yet (we remove it)
3583 * 3. Busy scanning (and not on the list). In this case we want to wait for
3584 * the scan to complete to make sure the scanning thread for this
3585 * controller is completely idle.
3587 static void remove_from_scan_list(struct ctlr_info
*h
)
3589 struct ctlr_info
*test_h
, *tmp_h
;
3591 mutex_lock(&scan_mutex
);
3592 list_for_each_entry_safe(test_h
, tmp_h
, &scan_q
, scan_list
) {
3593 if (test_h
== h
) { /* state 2. */
3594 list_del(&h
->scan_list
);
3595 complete_all(&h
->scan_wait
);
3596 mutex_unlock(&scan_mutex
);
3600 if (h
->busy_scanning
) { /* state 3. */
3601 mutex_unlock(&scan_mutex
);
3602 wait_for_completion(&h
->scan_wait
);
3603 } else { /* state 1, nothing to do. */
3604 mutex_unlock(&scan_mutex
);
3609 * scan_thread() - kernel thread used to rescan controllers
3612 * A kernel thread used scan for drive topology changes on
3613 * controllers. The thread processes only one controller at a time
3614 * using a queue. Controllers are added to the queue using
3615 * add_to_scan_list() and removed from the queue either after done
3616 * processing or using remove_from_scan_list().
3620 static int scan_thread(void *data
)
3622 struct ctlr_info
*h
;
3625 set_current_state(TASK_INTERRUPTIBLE
);
3627 if (kthread_should_stop())
3631 mutex_lock(&scan_mutex
);
3632 if (list_empty(&scan_q
)) {
3633 mutex_unlock(&scan_mutex
);
3637 h
= list_entry(scan_q
.next
,
3640 list_del(&h
->scan_list
);
3641 h
->busy_scanning
= 1;
3642 mutex_unlock(&scan_mutex
);
3644 rebuild_lun_table(h
, 0, 0);
3645 complete_all(&h
->scan_wait
);
3646 mutex_lock(&scan_mutex
);
3647 h
->busy_scanning
= 0;
3648 mutex_unlock(&scan_mutex
);
3655 static int check_for_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
)
3657 if (c
->err_info
->SenseInfo
[2] != UNIT_ATTENTION
)
3660 switch (c
->err_info
->SenseInfo
[12]) {
3662 printk(KERN_WARNING
"cciss%d: a state change "
3663 "detected, command retried\n", h
->ctlr
);
3667 printk(KERN_WARNING
"cciss%d: LUN failure "
3668 "detected, action required\n", h
->ctlr
);
3671 case REPORT_LUNS_CHANGED
:
3672 printk(KERN_WARNING
"cciss%d: report LUN data "
3673 "changed\n", h
->ctlr
);
3675 * Here, we could call add_to_scan_list and wake up the scan thread,
3676 * except that it's quite likely that we will get more than one
3677 * REPORT_LUNS_CHANGED condition in quick succession, which means
3678 * that those which occur after the first one will likely happen
3679 * *during* the scan_thread's rescan. And the rescan code is not
3680 * robust enough to restart in the middle, undoing what it has already
3681 * done, and it's not clear that it's even possible to do this, since
3682 * part of what it does is notify the block layer, which starts
3683 * doing it's own i/o to read partition tables and so on, and the
3684 * driver doesn't have visibility to know what might need undoing.
3685 * In any event, if possible, it is horribly complicated to get right
3686 * so we just don't do it for now.
3688 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3692 case POWER_OR_RESET
:
3693 printk(KERN_WARNING
"cciss%d: a power on "
3694 "or device reset detected\n", h
->ctlr
);
3697 case UNIT_ATTENTION_CLEARED
:
3698 printk(KERN_WARNING
"cciss%d: unit attention "
3699 "cleared by another initiator\n", h
->ctlr
);
3703 printk(KERN_WARNING
"cciss%d: unknown "
3704 "unit attention detected\n", h
->ctlr
);
3710 * We cannot read the structure directly, for portability we must use
3712 * This is for debug only.
3715 static void print_cfg_table(CfgTable_struct
*tb
)
3720 printk("Controller Configuration information\n");
3721 printk("------------------------------------\n");
3722 for (i
= 0; i
< 4; i
++)
3723 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
3724 temp_name
[4] = '\0';
3725 printk(" Signature = %s\n", temp_name
);
3726 printk(" Spec Number = %d\n", readl(&(tb
->SpecValence
)));
3727 printk(" Transport methods supported = 0x%x\n",
3728 readl(&(tb
->TransportSupport
)));
3729 printk(" Transport methods active = 0x%x\n",
3730 readl(&(tb
->TransportActive
)));
3731 printk(" Requested transport Method = 0x%x\n",
3732 readl(&(tb
->HostWrite
.TransportRequest
)));
3733 printk(" Coalesce Interrupt Delay = 0x%x\n",
3734 readl(&(tb
->HostWrite
.CoalIntDelay
)));
3735 printk(" Coalesce Interrupt Count = 0x%x\n",
3736 readl(&(tb
->HostWrite
.CoalIntCount
)));
3737 printk(" Max outstanding commands = 0x%d\n",
3738 readl(&(tb
->CmdsOutMax
)));
3739 printk(" Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
3740 for (i
= 0; i
< 16; i
++)
3741 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
3742 temp_name
[16] = '\0';
3743 printk(" Server Name = %s\n", temp_name
);
3744 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb
->HeartBeat
)));
3746 #endif /* CCISS_DEBUG */
3748 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
3750 int i
, offset
, mem_type
, bar_type
;
3751 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
3754 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
3755 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
3756 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
3759 mem_type
= pci_resource_flags(pdev
, i
) &
3760 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
3762 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
3763 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
3764 offset
+= 4; /* 32 bit */
3766 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
3769 default: /* reserved in PCI 2.2 */
3771 "Base address is invalid\n");
3776 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
3782 /* Fill in bucket_map[], given nsgs (the max number of
3783 * scatter gather elements supported) and bucket[],
3784 * which is an array of 8 integers. The bucket[] array
3785 * contains 8 different DMA transfer sizes (in 16
3786 * byte increments) which the controller uses to fetch
3787 * commands. This function fills in bucket_map[], which
3788 * maps a given number of scatter gather elements to one of
3789 * the 8 DMA transfer sizes. The point of it is to allow the
3790 * controller to only do as much DMA as needed to fetch the
3791 * command, with the DMA transfer size encoded in the lower
3792 * bits of the command address.
3794 static void calc_bucket_map(int bucket
[], int num_buckets
,
3795 int nsgs
, int *bucket_map
)
3799 /* even a command with 0 SGs requires 4 blocks */
3800 #define MINIMUM_TRANSFER_BLOCKS 4
3801 #define NUM_BUCKETS 8
3802 /* Note, bucket_map must have nsgs+1 entries. */
3803 for (i
= 0; i
<= nsgs
; i
++) {
3804 /* Compute size of a command with i SG entries */
3805 size
= i
+ MINIMUM_TRANSFER_BLOCKS
;
3806 b
= num_buckets
; /* Assume the biggest bucket */
3807 /* Find the bucket that is just big enough */
3808 for (j
= 0; j
< 8; j
++) {
3809 if (bucket
[j
] >= size
) {
3814 /* for a command with i SG entries, use bucket b. */
3820 cciss_put_controller_into_performant_mode(ctlr_info_t
*h
)
3823 __u32 trans_support
;
3826 * 5 = 1 s/g entry or 4k
3827 * 6 = 2 s/g entry or 8k
3828 * 8 = 4 s/g entry or 16k
3829 * 10 = 6 s/g entry or 24k
3831 int bft
[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES
+ 4};
3832 unsigned long register_value
;
3834 BUILD_BUG_ON(28 > MAXSGENTRIES
+ 4);
3836 /* Attempt to put controller into performant mode if supported */
3837 /* Does board support performant mode? */
3838 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
3839 if (!(trans_support
& PERFORMANT_MODE
))
3842 printk(KERN_WARNING
"cciss%d: Placing controller into "
3843 "performant mode\n", h
->ctlr
);
3844 /* Performant mode demands commands on a 32 byte boundary
3845 * pci_alloc_consistent aligns on page boundarys already.
3846 * Just need to check if divisible by 32
3848 if ((sizeof(CommandList_struct
) % 32) != 0) {
3849 printk(KERN_WARNING
"%s %d %s\n",
3850 "cciss info: command size[",
3851 (int)sizeof(CommandList_struct
),
3852 "] not divisible by 32, no performant mode..\n");
3856 /* Performant mode ring buffer and supporting data structures */
3857 h
->reply_pool
= (__u64
*)pci_alloc_consistent(
3858 h
->pdev
, h
->max_commands
* sizeof(__u64
),
3859 &(h
->reply_pool_dhandle
));
3861 /* Need a block fetch table for performant mode */
3862 h
->blockFetchTable
= kmalloc(((h
->maxsgentries
+1) *
3863 sizeof(__u32
)), GFP_KERNEL
);
3865 if ((h
->reply_pool
== NULL
) || (h
->blockFetchTable
== NULL
))
3868 h
->reply_pool_wraparound
= 1; /* spec: init to 1 */
3870 /* Controller spec: zero out this buffer. */
3871 memset(h
->reply_pool
, 0, h
->max_commands
* sizeof(__u64
));
3872 h
->reply_pool_head
= h
->reply_pool
;
3874 trans_offset
= readl(&(h
->cfgtable
->TransMethodOffset
));
3875 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->maxsgentries
,
3876 h
->blockFetchTable
);
3877 writel(bft
[0], &h
->transtable
->BlockFetch0
);
3878 writel(bft
[1], &h
->transtable
->BlockFetch1
);
3879 writel(bft
[2], &h
->transtable
->BlockFetch2
);
3880 writel(bft
[3], &h
->transtable
->BlockFetch3
);
3881 writel(bft
[4], &h
->transtable
->BlockFetch4
);
3882 writel(bft
[5], &h
->transtable
->BlockFetch5
);
3883 writel(bft
[6], &h
->transtable
->BlockFetch6
);
3884 writel(bft
[7], &h
->transtable
->BlockFetch7
);
3886 /* size of controller ring buffer */
3887 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
3888 writel(1, &h
->transtable
->RepQCount
);
3889 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
3890 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
3891 writel(h
->reply_pool_dhandle
, &h
->transtable
->RepQAddr0Low32
);
3892 writel(0, &h
->transtable
->RepQAddr0High32
);
3893 writel(CFGTBL_Trans_Performant
,
3894 &(h
->cfgtable
->HostWrite
.TransportRequest
));
3896 h
->transMethod
= CFGTBL_Trans_Performant
;
3897 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
3898 /* under certain very rare conditions, this can take awhile.
3899 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3900 * as we enter this code.) */
3901 for (l
= 0; l
< MAX_CONFIG_WAIT
; l
++) {
3902 register_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
3903 if (!(register_value
& CFGTBL_ChangeReq
))
3905 /* delay and try again */
3906 set_current_state(TASK_INTERRUPTIBLE
);
3907 schedule_timeout(10);
3909 register_value
= readl(&(h
->cfgtable
->TransportActive
));
3910 if (!(register_value
& CFGTBL_Trans_Performant
)) {
3911 printk(KERN_WARNING
"cciss: unable to get board into"
3912 " performant mode\n");
3916 /* Change the access methods to the performant access methods */
3917 h
->access
= SA5_performant_access
;
3921 kfree(h
->blockFetchTable
);
3923 pci_free_consistent(h
->pdev
,
3924 h
->max_commands
* sizeof(__u64
),
3926 h
->reply_pool_dhandle
);
3929 } /* cciss_put_controller_into_performant_mode */
3931 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3932 * controllers that are capable. If not, we use IO-APIC mode.
3935 static void __devinit
cciss_interrupt_mode(ctlr_info_t
*c
)
3937 #ifdef CONFIG_PCI_MSI
3939 struct msix_entry cciss_msix_entries
[4] = { {0, 0}, {0, 1},
3943 /* Some boards advertise MSI but don't really support it */
3944 if ((c
->board_id
== 0x40700E11) || (c
->board_id
== 0x40800E11) ||
3945 (c
->board_id
== 0x40820E11) || (c
->board_id
== 0x40830E11))
3946 goto default_int_mode
;
3948 if (pci_find_capability(c
->pdev
, PCI_CAP_ID_MSIX
)) {
3949 err
= pci_enable_msix(c
->pdev
, cciss_msix_entries
, 4);
3951 c
->intr
[0] = cciss_msix_entries
[0].vector
;
3952 c
->intr
[1] = cciss_msix_entries
[1].vector
;
3953 c
->intr
[2] = cciss_msix_entries
[2].vector
;
3954 c
->intr
[3] = cciss_msix_entries
[3].vector
;
3959 printk(KERN_WARNING
"cciss: only %d MSI-X vectors "
3960 "available\n", err
);
3961 goto default_int_mode
;
3963 printk(KERN_WARNING
"cciss: MSI-X init failed %d\n",
3965 goto default_int_mode
;
3968 if (pci_find_capability(c
->pdev
, PCI_CAP_ID_MSI
)) {
3969 if (!pci_enable_msi(c
->pdev
)) {
3972 printk(KERN_WARNING
"cciss: MSI init failed\n");
3976 #endif /* CONFIG_PCI_MSI */
3977 /* if we get here we're going to use the default interrupt mode */
3978 c
->intr
[PERF_MODE_INT
] = c
->pdev
->irq
;
3982 static int __devinit
cciss_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
)
3985 u32 subsystem_vendor_id
, subsystem_device_id
;
3987 subsystem_vendor_id
= pdev
->subsystem_vendor
;
3988 subsystem_device_id
= pdev
->subsystem_device
;
3989 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
3990 subsystem_vendor_id
;
3992 for (i
= 0; i
< ARRAY_SIZE(products
); i
++) {
3993 /* Stand aside for hpsa driver on request */
3994 if (cciss_allow_hpsa
&& products
[i
].board_id
== HPSA_BOUNDARY
)
3996 if (*board_id
== products
[i
].board_id
)
3999 dev_warn(&pdev
->dev
, "unrecognized board ID: 0x%08x, ignoring.\n",
4004 static inline bool cciss_board_disabled(ctlr_info_t
*h
)
4008 (void) pci_read_config_word(h
->pdev
, PCI_COMMAND
, &command
);
4009 return ((command
& PCI_COMMAND_MEMORY
) == 0);
4012 static int __devinit
cciss_pci_find_memory_BAR(struct pci_dev
*pdev
,
4013 unsigned long *memory_bar
)
4017 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
4018 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
4019 /* addressing mode bits already removed */
4020 *memory_bar
= pci_resource_start(pdev
, i
);
4021 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
4025 dev_warn(&pdev
->dev
, "no memory BAR found\n");
4029 static int __devinit
cciss_wait_for_board_ready(ctlr_info_t
*h
)
4034 for (i
= 0; i
< CCISS_BOARD_READY_ITERATIONS
; i
++) {
4035 scratchpad
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
4036 if (scratchpad
== CCISS_FIRMWARE_READY
)
4038 msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS
);
4040 dev_warn(&h
->pdev
->dev
, "board not ready, timed out.\n");
4044 static int __devinit
cciss_pci_init(ctlr_info_t
*c
)
4047 __u32 cfg_base_addr
;
4048 __u64 cfg_base_addr_index
;
4050 int i
, prod_index
, err
;
4052 prod_index
= cciss_lookup_board_id(c
->pdev
, &c
->board_id
);
4055 c
->product_name
= products
[prod_index
].product_name
;
4056 c
->access
= *(products
[prod_index
].access
);
4058 if (cciss_board_disabled(c
)) {
4060 "cciss: controller appears to be disabled\n");
4063 err
= pci_enable_device(c
->pdev
);
4065 printk(KERN_ERR
"cciss: Unable to Enable PCI device\n");
4069 err
= pci_request_regions(c
->pdev
, "cciss");
4071 printk(KERN_ERR
"cciss: Cannot obtain PCI resources, "
4077 printk(KERN_INFO
"command = %x\n", command
);
4078 printk(KERN_INFO
"irq = %x\n", c
->pdev
->irq
);
4079 printk(KERN_INFO
"board_id = %x\n", c
->board_id
);
4080 #endif /* CCISS_DEBUG */
4082 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4083 * else we use the IO-APIC interrupt assigned to us by system ROM.
4085 cciss_interrupt_mode(c
);
4086 err
= cciss_pci_find_memory_BAR(c
->pdev
, &c
->paddr
);
4088 goto err_out_free_res
;
4089 c
->vaddr
= remap_pci_mem(c
->paddr
, 0x250);
4090 err
= cciss_wait_for_board_ready(c
);
4092 goto err_out_free_res
;
4094 /* get the address index number */
4095 cfg_base_addr
= readl(c
->vaddr
+ SA5_CTCFG_OFFSET
);
4096 cfg_base_addr
&= (__u32
) 0x0000ffff;
4098 printk("cfg base address = %x\n", cfg_base_addr
);
4099 #endif /* CCISS_DEBUG */
4100 cfg_base_addr_index
= find_PCI_BAR_index(c
->pdev
, cfg_base_addr
);
4102 printk("cfg base address index = %llx\n",
4103 (unsigned long long)cfg_base_addr_index
);
4104 #endif /* CCISS_DEBUG */
4105 if (cfg_base_addr_index
== -1) {
4106 printk(KERN_WARNING
"cciss: Cannot find cfg_base_addr_index\n");
4108 goto err_out_free_res
;
4111 cfg_offset
= readl(c
->vaddr
+ SA5_CTMEM_OFFSET
);
4113 printk("cfg offset = %llx\n", (unsigned long long)cfg_offset
);
4114 #endif /* CCISS_DEBUG */
4115 c
->cfgtable
= remap_pci_mem(pci_resource_start(c
->pdev
,
4116 cfg_base_addr_index
) +
4117 cfg_offset
, sizeof(CfgTable_struct
));
4118 /* Find performant mode table. */
4119 trans_offset
= readl(&(c
->cfgtable
->TransMethodOffset
));
4120 c
->transtable
= remap_pci_mem(pci_resource_start(c
->pdev
,
4121 cfg_base_addr_index
) + cfg_offset
+trans_offset
,
4122 sizeof(*c
->transtable
));
4124 print_cfg_table(c
->cfgtable
);
4125 #endif /* CCISS_DEBUG */
4127 /* Some controllers support Zero Memory Raid (ZMR).
4128 * When configured in ZMR mode the number of supported
4129 * commands drops to 64. So instead of just setting an
4130 * arbitrary value we make the driver a little smarter.
4131 * We read the config table to tell us how many commands
4132 * are supported on the controller then subtract 4 to
4133 * leave a little room for ioctl calls.
4135 c
->max_commands
= readl(&(c
->cfgtable
->MaxPerformantModeCommands
));
4136 c
->maxsgentries
= readl(&(c
->cfgtable
->MaxSGElements
));
4139 * Limit native command to 32 s/g elements to save dma'able memory.
4140 * Howvever spec says if 0, use 31
4143 c
->max_cmd_sgentries
= 31;
4144 if (c
->maxsgentries
> 512) {
4145 c
->max_cmd_sgentries
= 32;
4146 c
->chainsize
= c
->maxsgentries
- c
->max_cmd_sgentries
+ 1;
4147 c
->maxsgentries
-= 1; /* account for chain pointer */
4149 c
->maxsgentries
= 31; /* Default to traditional value */
4150 c
->chainsize
= 0; /* traditional */
4153 c
->nr_cmds
= c
->max_commands
- 4;
4154 if ((readb(&c
->cfgtable
->Signature
[0]) != 'C') ||
4155 (readb(&c
->cfgtable
->Signature
[1]) != 'I') ||
4156 (readb(&c
->cfgtable
->Signature
[2]) != 'S') ||
4157 (readb(&c
->cfgtable
->Signature
[3]) != 'S')) {
4158 printk("Does not appear to be a valid CISS config table\n");
4160 goto err_out_free_res
;
4164 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4166 prefetch
= readl(&(c
->cfgtable
->SCSI_Prefetch
));
4168 writel(prefetch
, &(c
->cfgtable
->SCSI_Prefetch
));
4172 /* Disabling DMA prefetch and refetch for the P600.
4173 * An ASIC bug may result in accesses to invalid memory addresses.
4174 * We've disabled prefetch for some time now. Testing with XEN
4175 * kernels revealed a bug in the refetch if dom0 resides on a P600.
4177 if (c
->board_id
== 0x3225103C) {
4180 dma_prefetch
= readl(c
->vaddr
+ I2O_DMA1_CFG
);
4181 dma_prefetch
|= 0x8000;
4182 writel(dma_prefetch
, c
->vaddr
+ I2O_DMA1_CFG
);
4183 pci_read_config_dword(c
->pdev
, PCI_COMMAND_PARITY
,
4186 pci_write_config_dword(c
->pdev
, PCI_COMMAND_PARITY
,
4191 printk(KERN_WARNING
"Trying to put board into Performant mode\n");
4192 #endif /* CCISS_DEBUG */
4193 cciss_put_controller_into_performant_mode(c
);
4198 * Deliberately omit pci_disable_device(): it does something nasty to
4199 * Smart Array controllers that pci_enable_device does not undo
4201 pci_release_regions(c
->pdev
);
4205 /* Function to find the first free pointer into our hba[] array
4206 * Returns -1 if no free entries are left.
4208 static int alloc_cciss_hba(void)
4212 for (i
= 0; i
< MAX_CTLR
; i
++) {
4216 p
= kzalloc(sizeof(ctlr_info_t
), GFP_KERNEL
);
4223 printk(KERN_WARNING
"cciss: This driver supports a maximum"
4224 " of %d controllers.\n", MAX_CTLR
);
4227 printk(KERN_ERR
"cciss: out of memory.\n");
4231 static void free_hba(int n
)
4233 ctlr_info_t
*h
= hba
[n
];
4237 for (i
= 0; i
< h
->highest_lun
+ 1; i
++)
4238 if (h
->gendisk
[i
] != NULL
)
4239 put_disk(h
->gendisk
[i
]);
4243 /* Send a message CDB to the firmware. */
4244 static __devinit
int cciss_message(struct pci_dev
*pdev
, unsigned char opcode
, unsigned char type
)
4247 CommandListHeader_struct CommandHeader
;
4248 RequestBlock_struct Request
;
4249 ErrDescriptor_struct ErrorDescriptor
;
4251 static const size_t cmd_sz
= sizeof(Command
) + sizeof(ErrorInfo_struct
);
4254 uint32_t paddr32
, tag
;
4255 void __iomem
*vaddr
;
4258 vaddr
= ioremap_nocache(pci_resource_start(pdev
, 0), pci_resource_len(pdev
, 0));
4262 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4263 CCISS commands, so they must be allocated from the lower 4GiB of
4265 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
4271 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
4277 /* This must fit, because of the 32-bit consistent DMA mask. Also,
4278 although there's no guarantee, we assume that the address is at
4279 least 4-byte aligned (most likely, it's page-aligned). */
4282 cmd
->CommandHeader
.ReplyQueue
= 0;
4283 cmd
->CommandHeader
.SGList
= 0;
4284 cmd
->CommandHeader
.SGTotal
= 0;
4285 cmd
->CommandHeader
.Tag
.lower
= paddr32
;
4286 cmd
->CommandHeader
.Tag
.upper
= 0;
4287 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
4289 cmd
->Request
.CDBLen
= 16;
4290 cmd
->Request
.Type
.Type
= TYPE_MSG
;
4291 cmd
->Request
.Type
.Attribute
= ATTR_HEADOFQUEUE
;
4292 cmd
->Request
.Type
.Direction
= XFER_NONE
;
4293 cmd
->Request
.Timeout
= 0; /* Don't time out */
4294 cmd
->Request
.CDB
[0] = opcode
;
4295 cmd
->Request
.CDB
[1] = type
;
4296 memset(&cmd
->Request
.CDB
[2], 0, 14); /* the rest of the CDB is reserved */
4298 cmd
->ErrorDescriptor
.Addr
.lower
= paddr32
+ sizeof(Command
);
4299 cmd
->ErrorDescriptor
.Addr
.upper
= 0;
4300 cmd
->ErrorDescriptor
.Len
= sizeof(ErrorInfo_struct
);
4302 writel(paddr32
, vaddr
+ SA5_REQUEST_PORT_OFFSET
);
4304 for (i
= 0; i
< 10; i
++) {
4305 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
4306 if ((tag
& ~3) == paddr32
)
4308 schedule_timeout_uninterruptible(HZ
);
4313 /* we leak the DMA buffer here ... no choice since the controller could
4314 still complete the command. */
4316 printk(KERN_ERR
"cciss: controller message %02x:%02x timed out\n",
4321 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
4324 printk(KERN_ERR
"cciss: controller message %02x:%02x failed\n",
4329 printk(KERN_INFO
"cciss: controller message %02x:%02x succeeded\n",
4334 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4335 #define cciss_noop(p) cciss_message(p, 3, 0)
4337 static __devinit
int cciss_reset_msi(struct pci_dev
*pdev
)
4339 /* the #defines are stolen from drivers/pci/msi.h. */
4340 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
4341 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
4346 pos
= pci_find_capability(pdev
, PCI_CAP_ID_MSI
);
4348 pci_read_config_word(pdev
, msi_control_reg(pos
), &control
);
4349 if (control
& PCI_MSI_FLAGS_ENABLE
) {
4350 printk(KERN_INFO
"cciss: resetting MSI\n");
4351 pci_write_config_word(pdev
, msi_control_reg(pos
), control
& ~PCI_MSI_FLAGS_ENABLE
);
4355 pos
= pci_find_capability(pdev
, PCI_CAP_ID_MSIX
);
4357 pci_read_config_word(pdev
, msi_control_reg(pos
), &control
);
4358 if (control
& PCI_MSIX_FLAGS_ENABLE
) {
4359 printk(KERN_INFO
"cciss: resetting MSI-X\n");
4360 pci_write_config_word(pdev
, msi_control_reg(pos
), control
& ~PCI_MSIX_FLAGS_ENABLE
);
4367 /* This does a hard reset of the controller using PCI power management
4369 static __devinit
int cciss_hard_reset_controller(struct pci_dev
*pdev
)
4371 u16 pmcsr
, saved_config_space
[32];
4374 printk(KERN_INFO
"cciss: using PCI PM to reset controller\n");
4376 /* This is very nearly the same thing as
4378 pci_save_state(pci_dev);
4379 pci_set_power_state(pci_dev, PCI_D3hot);
4380 pci_set_power_state(pci_dev, PCI_D0);
4381 pci_restore_state(pci_dev);
4383 but we can't use these nice canned kernel routines on
4384 kexec, because they also check the MSI/MSI-X state in PCI
4385 configuration space and do the wrong thing when it is
4386 set/cleared. Also, the pci_save/restore_state functions
4387 violate the ordering requirements for restoring the
4388 configuration space from the CCISS document (see the
4389 comment below). So we roll our own .... */
4391 for (i
= 0; i
< 32; i
++)
4392 pci_read_config_word(pdev
, 2*i
, &saved_config_space
[i
]);
4394 pos
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
4396 printk(KERN_ERR
"cciss_reset_controller: PCI PM not supported\n");
4400 /* Quoting from the Open CISS Specification: "The Power
4401 * Management Control/Status Register (CSR) controls the power
4402 * state of the device. The normal operating state is D0,
4403 * CSR=00h. The software off state is D3, CSR=03h. To reset
4404 * the controller, place the interface device in D3 then to
4405 * D0, this causes a secondary PCI reset which will reset the
4408 /* enter the D3hot power management state */
4409 pci_read_config_word(pdev
, pos
+ PCI_PM_CTRL
, &pmcsr
);
4410 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
4412 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
4414 schedule_timeout_uninterruptible(HZ
>> 1);
4416 /* enter the D0 power management state */
4417 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
4419 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
4421 schedule_timeout_uninterruptible(HZ
>> 1);
4423 /* Restore the PCI configuration space. The Open CISS
4424 * Specification says, "Restore the PCI Configuration
4425 * Registers, offsets 00h through 60h. It is important to
4426 * restore the command register, 16-bits at offset 04h,
4427 * last. Do not restore the configuration status register,
4428 * 16-bits at offset 06h." Note that the offset is 2*i. */
4429 for (i
= 0; i
< 32; i
++) {
4430 if (i
== 2 || i
== 3)
4432 pci_write_config_word(pdev
, 2*i
, saved_config_space
[i
]);
4435 pci_write_config_word(pdev
, 4, saved_config_space
[2]);
4441 * This is it. Find all the controllers and register them. I really hate
4442 * stealing all these major device numbers.
4443 * returns the number of block devices registered.
4445 static int __devinit
cciss_init_one(struct pci_dev
*pdev
,
4446 const struct pci_device_id
*ent
)
4452 int dac
, return_code
;
4453 InquiryData_struct
*inq_buff
;
4455 if (reset_devices
) {
4456 /* Reset the controller with a PCI power-cycle */
4457 if (cciss_hard_reset_controller(pdev
) || cciss_reset_msi(pdev
))
4460 /* Now try to get the controller to respond to a no-op. Some
4461 devices (notably the HP Smart Array 5i Controller) need
4462 up to 30 seconds to respond. */
4463 for (i
=0; i
<30; i
++) {
4464 if (cciss_noop(pdev
) == 0)
4467 schedule_timeout_uninterruptible(HZ
);
4470 printk(KERN_ERR
"cciss: controller seems dead\n");
4475 i
= alloc_cciss_hba();
4479 hba
[i
]->pdev
= pdev
;
4480 hba
[i
]->busy_initializing
= 1;
4481 INIT_HLIST_HEAD(&hba
[i
]->cmpQ
);
4482 INIT_HLIST_HEAD(&hba
[i
]->reqQ
);
4483 mutex_init(&hba
[i
]->busy_shutting_down
);
4485 if (cciss_pci_init(hba
[i
]) != 0)
4486 goto clean_no_release_regions
;
4488 sprintf(hba
[i
]->devname
, "cciss%d", i
);
4491 init_completion(&hba
[i
]->scan_wait
);
4493 if (cciss_create_hba_sysfs_entry(hba
[i
]))
4496 /* configure PCI DMA stuff */
4497 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64)))
4499 else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))
4502 printk(KERN_ERR
"cciss: no suitable DMA available\n");
4507 * register with the major number, or get a dynamic major number
4508 * by passing 0 as argument. This is done for greater than
4509 * 8 controller support.
4511 if (i
< MAX_CTLR_ORIG
)
4512 hba
[i
]->major
= COMPAQ_CISS_MAJOR
+ i
;
4513 rc
= register_blkdev(hba
[i
]->major
, hba
[i
]->devname
);
4514 if (rc
== -EBUSY
|| rc
== -EINVAL
) {
4516 "cciss: Unable to get major number %d for %s "
4517 "on hba %d\n", hba
[i
]->major
, hba
[i
]->devname
, i
);
4520 if (i
>= MAX_CTLR_ORIG
)
4524 /* make sure the board interrupts are off */
4525 hba
[i
]->access
.set_intr_mask(hba
[i
], CCISS_INTR_OFF
);
4526 if (hba
[i
]->msi_vector
|| hba
[i
]->msix_vector
) {
4527 if (request_irq(hba
[i
]->intr
[PERF_MODE_INT
],
4529 IRQF_DISABLED
, hba
[i
]->devname
, hba
[i
])) {
4530 printk(KERN_ERR
"cciss: Unable to get irq %d for %s\n",
4531 hba
[i
]->intr
[PERF_MODE_INT
], hba
[i
]->devname
);
4535 if (request_irq(hba
[i
]->intr
[PERF_MODE_INT
], do_cciss_intx
,
4536 IRQF_DISABLED
, hba
[i
]->devname
, hba
[i
])) {
4537 printk(KERN_ERR
"cciss: Unable to get irq %d for %s\n",
4538 hba
[i
]->intr
[PERF_MODE_INT
], hba
[i
]->devname
);
4543 printk(KERN_INFO
"%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4544 hba
[i
]->devname
, pdev
->device
, pci_name(pdev
),
4545 hba
[i
]->intr
[PERF_MODE_INT
], dac
? "" : " not");
4547 hba
[i
]->cmd_pool_bits
=
4548 kmalloc(DIV_ROUND_UP(hba
[i
]->nr_cmds
, BITS_PER_LONG
)
4549 * sizeof(unsigned long), GFP_KERNEL
);
4550 hba
[i
]->cmd_pool
= (CommandList_struct
*)
4551 pci_alloc_consistent(hba
[i
]->pdev
,
4552 hba
[i
]->nr_cmds
* sizeof(CommandList_struct
),
4553 &(hba
[i
]->cmd_pool_dhandle
));
4554 hba
[i
]->errinfo_pool
= (ErrorInfo_struct
*)
4555 pci_alloc_consistent(hba
[i
]->pdev
,
4556 hba
[i
]->nr_cmds
* sizeof(ErrorInfo_struct
),
4557 &(hba
[i
]->errinfo_pool_dhandle
));
4558 if ((hba
[i
]->cmd_pool_bits
== NULL
)
4559 || (hba
[i
]->cmd_pool
== NULL
)
4560 || (hba
[i
]->errinfo_pool
== NULL
)) {
4561 printk(KERN_ERR
"cciss: out of memory");
4565 /* Need space for temp scatter list */
4566 hba
[i
]->scatter_list
= kmalloc(hba
[i
]->max_commands
*
4567 sizeof(struct scatterlist
*),
4569 for (k
= 0; k
< hba
[i
]->nr_cmds
; k
++) {
4570 hba
[i
]->scatter_list
[k
] = kmalloc(sizeof(struct scatterlist
) *
4571 hba
[i
]->maxsgentries
,
4573 if (hba
[i
]->scatter_list
[k
] == NULL
) {
4574 printk(KERN_ERR
"cciss%d: could not allocate "
4579 hba
[i
]->cmd_sg_list
= cciss_allocate_sg_chain_blocks(hba
[i
],
4580 hba
[i
]->chainsize
, hba
[i
]->nr_cmds
);
4581 if (!hba
[i
]->cmd_sg_list
&& hba
[i
]->chainsize
> 0)
4584 spin_lock_init(&hba
[i
]->lock
);
4586 /* Initialize the pdev driver private data.
4587 have it point to hba[i]. */
4588 pci_set_drvdata(pdev
, hba
[i
]);
4589 /* command and error info recs zeroed out before
4591 memset(hba
[i
]->cmd_pool_bits
, 0,
4592 DIV_ROUND_UP(hba
[i
]->nr_cmds
, BITS_PER_LONG
)
4593 * sizeof(unsigned long));
4595 hba
[i
]->num_luns
= 0;
4596 hba
[i
]->highest_lun
= -1;
4597 for (j
= 0; j
< CISS_MAX_LUN
; j
++) {
4598 hba
[i
]->drv
[j
] = NULL
;
4599 hba
[i
]->gendisk
[j
] = NULL
;
4602 cciss_scsi_setup(i
);
4604 /* Turn the interrupts on so we can service requests */
4605 hba
[i
]->access
.set_intr_mask(hba
[i
], CCISS_INTR_ON
);
4607 /* Get the firmware version */
4608 inq_buff
= kzalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
4609 if (inq_buff
== NULL
) {
4610 printk(KERN_ERR
"cciss: out of memory\n");
4614 return_code
= sendcmd_withirq(CISS_INQUIRY
, i
, inq_buff
,
4615 sizeof(InquiryData_struct
), 0, CTLR_LUNID
, TYPE_CMD
);
4616 if (return_code
== IO_OK
) {
4617 hba
[i
]->firm_ver
[0] = inq_buff
->data_byte
[32];
4618 hba
[i
]->firm_ver
[1] = inq_buff
->data_byte
[33];
4619 hba
[i
]->firm_ver
[2] = inq_buff
->data_byte
[34];
4620 hba
[i
]->firm_ver
[3] = inq_buff
->data_byte
[35];
4621 } else { /* send command failed */
4622 printk(KERN_WARNING
"cciss: unable to determine firmware"
4623 " version of controller\n");
4629 hba
[i
]->cciss_max_sectors
= 8192;
4631 rebuild_lun_table(hba
[i
], 1, 0);
4632 hba
[i
]->busy_initializing
= 0;
4636 kfree(hba
[i
]->cmd_pool_bits
);
4637 /* Free up sg elements */
4638 for (k
= 0; k
< hba
[i
]->nr_cmds
; k
++)
4639 kfree(hba
[i
]->scatter_list
[k
]);
4640 kfree(hba
[i
]->scatter_list
);
4641 cciss_free_sg_chain_blocks(hba
[i
]->cmd_sg_list
, hba
[i
]->nr_cmds
);
4642 if (hba
[i
]->cmd_pool
)
4643 pci_free_consistent(hba
[i
]->pdev
,
4644 hba
[i
]->nr_cmds
* sizeof(CommandList_struct
),
4645 hba
[i
]->cmd_pool
, hba
[i
]->cmd_pool_dhandle
);
4646 if (hba
[i
]->errinfo_pool
)
4647 pci_free_consistent(hba
[i
]->pdev
,
4648 hba
[i
]->nr_cmds
* sizeof(ErrorInfo_struct
),
4649 hba
[i
]->errinfo_pool
,
4650 hba
[i
]->errinfo_pool_dhandle
);
4651 free_irq(hba
[i
]->intr
[PERF_MODE_INT
], hba
[i
]);
4653 unregister_blkdev(hba
[i
]->major
, hba
[i
]->devname
);
4655 cciss_destroy_hba_sysfs_entry(hba
[i
]);
4657 pci_release_regions(pdev
);
4658 clean_no_release_regions
:
4659 hba
[i
]->busy_initializing
= 0;
4662 * Deliberately omit pci_disable_device(): it does something nasty to
4663 * Smart Array controllers that pci_enable_device does not undo
4665 pci_set_drvdata(pdev
, NULL
);
4670 static void cciss_shutdown(struct pci_dev
*pdev
)
4676 h
= pci_get_drvdata(pdev
);
4677 flush_buf
= kzalloc(4, GFP_KERNEL
);
4680 "cciss:%d cache not flushed, out of memory.\n",
4684 /* write all data in the battery backed cache to disk */
4685 memset(flush_buf
, 0, 4);
4686 return_code
= sendcmd_withirq(CCISS_CACHE_FLUSH
, h
->ctlr
, flush_buf
,
4687 4, 0, CTLR_LUNID
, TYPE_CMD
);
4689 if (return_code
!= IO_OK
)
4690 printk(KERN_WARNING
"cciss%d: Error flushing cache\n",
4692 h
->access
.set_intr_mask(h
, CCISS_INTR_OFF
);
4693 free_irq(h
->intr
[PERF_MODE_INT
], h
);
4696 static void __devexit
cciss_remove_one(struct pci_dev
*pdev
)
4698 ctlr_info_t
*tmp_ptr
;
4701 if (pci_get_drvdata(pdev
) == NULL
) {
4702 printk(KERN_ERR
"cciss: Unable to remove device \n");
4706 tmp_ptr
= pci_get_drvdata(pdev
);
4708 if (hba
[i
] == NULL
) {
4709 printk(KERN_ERR
"cciss: device appears to "
4710 "already be removed \n");
4714 mutex_lock(&hba
[i
]->busy_shutting_down
);
4716 remove_from_scan_list(hba
[i
]);
4717 remove_proc_entry(hba
[i
]->devname
, proc_cciss
);
4718 unregister_blkdev(hba
[i
]->major
, hba
[i
]->devname
);
4720 /* remove it from the disk list */
4721 for (j
= 0; j
< CISS_MAX_LUN
; j
++) {
4722 struct gendisk
*disk
= hba
[i
]->gendisk
[j
];
4724 struct request_queue
*q
= disk
->queue
;
4726 if (disk
->flags
& GENHD_FL_UP
) {
4727 cciss_destroy_ld_sysfs_entry(hba
[i
], j
, 1);
4731 blk_cleanup_queue(q
);
4735 #ifdef CONFIG_CISS_SCSI_TAPE
4736 cciss_unregister_scsi(i
); /* unhook from SCSI subsystem */
4739 cciss_shutdown(pdev
);
4741 #ifdef CONFIG_PCI_MSI
4742 if (hba
[i
]->msix_vector
)
4743 pci_disable_msix(hba
[i
]->pdev
);
4744 else if (hba
[i
]->msi_vector
)
4745 pci_disable_msi(hba
[i
]->pdev
);
4746 #endif /* CONFIG_PCI_MSI */
4748 iounmap(hba
[i
]->vaddr
);
4750 pci_free_consistent(hba
[i
]->pdev
, hba
[i
]->nr_cmds
* sizeof(CommandList_struct
),
4751 hba
[i
]->cmd_pool
, hba
[i
]->cmd_pool_dhandle
);
4752 pci_free_consistent(hba
[i
]->pdev
, hba
[i
]->nr_cmds
* sizeof(ErrorInfo_struct
),
4753 hba
[i
]->errinfo_pool
, hba
[i
]->errinfo_pool_dhandle
);
4754 kfree(hba
[i
]->cmd_pool_bits
);
4755 /* Free up sg elements */
4756 for (j
= 0; j
< hba
[i
]->nr_cmds
; j
++)
4757 kfree(hba
[i
]->scatter_list
[j
]);
4758 kfree(hba
[i
]->scatter_list
);
4759 cciss_free_sg_chain_blocks(hba
[i
]->cmd_sg_list
, hba
[i
]->nr_cmds
);
4761 * Deliberately omit pci_disable_device(): it does something nasty to
4762 * Smart Array controllers that pci_enable_device does not undo
4764 pci_release_regions(pdev
);
4765 pci_set_drvdata(pdev
, NULL
);
4766 cciss_destroy_hba_sysfs_entry(hba
[i
]);
4767 mutex_unlock(&hba
[i
]->busy_shutting_down
);
4771 static struct pci_driver cciss_pci_driver
= {
4773 .probe
= cciss_init_one
,
4774 .remove
= __devexit_p(cciss_remove_one
),
4775 .id_table
= cciss_pci_device_id
, /* id_table */
4776 .shutdown
= cciss_shutdown
,
4780 * This is it. Register the PCI driver information for the cards we control
4781 * the OS will call our registered routines when it finds one of our cards.
4783 static int __init
cciss_init(void)
4788 * The hardware requires that commands are aligned on a 64-bit
4789 * boundary. Given that we use pci_alloc_consistent() to allocate an
4790 * array of them, the size must be a multiple of 8 bytes.
4792 BUILD_BUG_ON(sizeof(CommandList_struct
) % COMMANDLIST_ALIGNMENT
);
4793 printk(KERN_INFO DRIVER_NAME
"\n");
4795 err
= bus_register(&cciss_bus_type
);
4799 /* Start the scan thread */
4800 cciss_scan_thread
= kthread_run(scan_thread
, NULL
, "cciss_scan");
4801 if (IS_ERR(cciss_scan_thread
)) {
4802 err
= PTR_ERR(cciss_scan_thread
);
4803 goto err_bus_unregister
;
4806 /* Register for our PCI devices */
4807 err
= pci_register_driver(&cciss_pci_driver
);
4809 goto err_thread_stop
;
4814 kthread_stop(cciss_scan_thread
);
4816 bus_unregister(&cciss_bus_type
);
4821 static void __exit
cciss_cleanup(void)
4825 pci_unregister_driver(&cciss_pci_driver
);
4826 /* double check that all controller entrys have been removed */
4827 for (i
= 0; i
< MAX_CTLR
; i
++) {
4828 if (hba
[i
] != NULL
) {
4829 printk(KERN_WARNING
"cciss: had to remove"
4830 " controller %d\n", i
);
4831 cciss_remove_one(hba
[i
]->pdev
);
4834 kthread_stop(cciss_scan_thread
);
4835 remove_proc_entry("driver/cciss", NULL
);
4836 bus_unregister(&cciss_bus_type
);
4839 module_init(cciss_init
);
4840 module_exit(cciss_cleanup
);