ahci: always clear all bits in irq_stat
[linux/fpc-iii.git] / mm / hugetlb.c
blobab171274ef217817291667bee226b45bebe259e3
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
22 #include "internal.h"
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 static unsigned long nr_overcommit_huge_pages;
28 unsigned long max_huge_pages;
29 unsigned long sysctl_overcommit_huge_pages;
30 static struct list_head hugepage_freelists[MAX_NUMNODES];
31 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32 static unsigned int free_huge_pages_node[MAX_NUMNODES];
33 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36 static int hugetlb_next_nid;
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
41 static DEFINE_SPINLOCK(hugetlb_lock);
43 static void clear_huge_page(struct page *page, unsigned long addr)
45 int i;
47 might_sleep();
48 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
49 cond_resched();
50 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
54 static void copy_huge_page(struct page *dst, struct page *src,
55 unsigned long addr, struct vm_area_struct *vma)
57 int i;
59 might_sleep();
60 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
61 cond_resched();
62 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
66 static void enqueue_huge_page(struct page *page)
68 int nid = page_to_nid(page);
69 list_add(&page->lru, &hugepage_freelists[nid]);
70 free_huge_pages++;
71 free_huge_pages_node[nid]++;
74 static struct page *dequeue_huge_page(void)
76 int nid;
77 struct page *page = NULL;
79 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
80 if (!list_empty(&hugepage_freelists[nid])) {
81 page = list_entry(hugepage_freelists[nid].next,
82 struct page, lru);
83 list_del(&page->lru);
84 free_huge_pages--;
85 free_huge_pages_node[nid]--;
86 break;
89 return page;
92 static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
93 unsigned long address)
95 int nid;
96 struct page *page = NULL;
97 struct mempolicy *mpol;
98 nodemask_t *nodemask;
99 struct zonelist *zonelist = huge_zonelist(vma, address,
100 htlb_alloc_mask, &mpol, &nodemask);
101 struct zone *zone;
102 struct zoneref *z;
104 for_each_zone_zonelist_nodemask(zone, z, zonelist,
105 MAX_NR_ZONES - 1, nodemask) {
106 nid = zone_to_nid(zone);
107 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
108 !list_empty(&hugepage_freelists[nid])) {
109 page = list_entry(hugepage_freelists[nid].next,
110 struct page, lru);
111 list_del(&page->lru);
112 free_huge_pages--;
113 free_huge_pages_node[nid]--;
114 if (vma && vma->vm_flags & VM_MAYSHARE)
115 resv_huge_pages--;
116 break;
119 mpol_cond_put(mpol);
120 return page;
123 static void update_and_free_page(struct page *page)
125 int i;
126 nr_huge_pages--;
127 nr_huge_pages_node[page_to_nid(page)]--;
128 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
129 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
130 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
131 1 << PG_private | 1<< PG_writeback);
133 set_compound_page_dtor(page, NULL);
134 set_page_refcounted(page);
135 arch_release_hugepage(page);
136 __free_pages(page, HUGETLB_PAGE_ORDER);
139 static void free_huge_page(struct page *page)
141 int nid = page_to_nid(page);
142 struct address_space *mapping;
144 mapping = (struct address_space *) page_private(page);
145 set_page_private(page, 0);
146 BUG_ON(page_count(page));
147 INIT_LIST_HEAD(&page->lru);
149 spin_lock(&hugetlb_lock);
150 if (surplus_huge_pages_node[nid]) {
151 update_and_free_page(page);
152 surplus_huge_pages--;
153 surplus_huge_pages_node[nid]--;
154 } else {
155 enqueue_huge_page(page);
157 spin_unlock(&hugetlb_lock);
158 if (mapping)
159 hugetlb_put_quota(mapping, 1);
163 * Increment or decrement surplus_huge_pages. Keep node-specific counters
164 * balanced by operating on them in a round-robin fashion.
165 * Returns 1 if an adjustment was made.
167 static int adjust_pool_surplus(int delta)
169 static int prev_nid;
170 int nid = prev_nid;
171 int ret = 0;
173 VM_BUG_ON(delta != -1 && delta != 1);
174 do {
175 nid = next_node(nid, node_online_map);
176 if (nid == MAX_NUMNODES)
177 nid = first_node(node_online_map);
179 /* To shrink on this node, there must be a surplus page */
180 if (delta < 0 && !surplus_huge_pages_node[nid])
181 continue;
182 /* Surplus cannot exceed the total number of pages */
183 if (delta > 0 && surplus_huge_pages_node[nid] >=
184 nr_huge_pages_node[nid])
185 continue;
187 surplus_huge_pages += delta;
188 surplus_huge_pages_node[nid] += delta;
189 ret = 1;
190 break;
191 } while (nid != prev_nid);
193 prev_nid = nid;
194 return ret;
197 static struct page *alloc_fresh_huge_page_node(int nid)
199 struct page *page;
201 page = alloc_pages_node(nid,
202 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
203 __GFP_REPEAT|__GFP_NOWARN,
204 HUGETLB_PAGE_ORDER);
205 if (page) {
206 if (arch_prepare_hugepage(page)) {
207 __free_pages(page, HUGETLB_PAGE_ORDER);
208 return NULL;
210 set_compound_page_dtor(page, free_huge_page);
211 spin_lock(&hugetlb_lock);
212 nr_huge_pages++;
213 nr_huge_pages_node[nid]++;
214 spin_unlock(&hugetlb_lock);
215 put_page(page); /* free it into the hugepage allocator */
218 return page;
221 static int alloc_fresh_huge_page(void)
223 struct page *page;
224 int start_nid;
225 int next_nid;
226 int ret = 0;
228 start_nid = hugetlb_next_nid;
230 do {
231 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
232 if (page)
233 ret = 1;
235 * Use a helper variable to find the next node and then
236 * copy it back to hugetlb_next_nid afterwards:
237 * otherwise there's a window in which a racer might
238 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
239 * But we don't need to use a spin_lock here: it really
240 * doesn't matter if occasionally a racer chooses the
241 * same nid as we do. Move nid forward in the mask even
242 * if we just successfully allocated a hugepage so that
243 * the next caller gets hugepages on the next node.
245 next_nid = next_node(hugetlb_next_nid, node_online_map);
246 if (next_nid == MAX_NUMNODES)
247 next_nid = first_node(node_online_map);
248 hugetlb_next_nid = next_nid;
249 } while (!page && hugetlb_next_nid != start_nid);
251 if (ret)
252 count_vm_event(HTLB_BUDDY_PGALLOC);
253 else
254 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
256 return ret;
259 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
260 unsigned long address)
262 struct page *page;
263 unsigned int nid;
266 * Assume we will successfully allocate the surplus page to
267 * prevent racing processes from causing the surplus to exceed
268 * overcommit
270 * This however introduces a different race, where a process B
271 * tries to grow the static hugepage pool while alloc_pages() is
272 * called by process A. B will only examine the per-node
273 * counters in determining if surplus huge pages can be
274 * converted to normal huge pages in adjust_pool_surplus(). A
275 * won't be able to increment the per-node counter, until the
276 * lock is dropped by B, but B doesn't drop hugetlb_lock until
277 * no more huge pages can be converted from surplus to normal
278 * state (and doesn't try to convert again). Thus, we have a
279 * case where a surplus huge page exists, the pool is grown, and
280 * the surplus huge page still exists after, even though it
281 * should just have been converted to a normal huge page. This
282 * does not leak memory, though, as the hugepage will be freed
283 * once it is out of use. It also does not allow the counters to
284 * go out of whack in adjust_pool_surplus() as we don't modify
285 * the node values until we've gotten the hugepage and only the
286 * per-node value is checked there.
288 spin_lock(&hugetlb_lock);
289 if (surplus_huge_pages >= nr_overcommit_huge_pages) {
290 spin_unlock(&hugetlb_lock);
291 return NULL;
292 } else {
293 nr_huge_pages++;
294 surplus_huge_pages++;
296 spin_unlock(&hugetlb_lock);
298 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
299 __GFP_REPEAT|__GFP_NOWARN,
300 HUGETLB_PAGE_ORDER);
302 spin_lock(&hugetlb_lock);
303 if (page) {
305 * This page is now managed by the hugetlb allocator and has
306 * no users -- drop the buddy allocator's reference.
308 put_page_testzero(page);
309 VM_BUG_ON(page_count(page));
310 nid = page_to_nid(page);
311 set_compound_page_dtor(page, free_huge_page);
313 * We incremented the global counters already
315 nr_huge_pages_node[nid]++;
316 surplus_huge_pages_node[nid]++;
317 __count_vm_event(HTLB_BUDDY_PGALLOC);
318 } else {
319 nr_huge_pages--;
320 surplus_huge_pages--;
321 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
323 spin_unlock(&hugetlb_lock);
325 return page;
329 * Increase the hugetlb pool such that it can accomodate a reservation
330 * of size 'delta'.
332 static int gather_surplus_pages(int delta)
334 struct list_head surplus_list;
335 struct page *page, *tmp;
336 int ret, i;
337 int needed, allocated;
339 needed = (resv_huge_pages + delta) - free_huge_pages;
340 if (needed <= 0) {
341 resv_huge_pages += delta;
342 return 0;
345 allocated = 0;
346 INIT_LIST_HEAD(&surplus_list);
348 ret = -ENOMEM;
349 retry:
350 spin_unlock(&hugetlb_lock);
351 for (i = 0; i < needed; i++) {
352 page = alloc_buddy_huge_page(NULL, 0);
353 if (!page) {
355 * We were not able to allocate enough pages to
356 * satisfy the entire reservation so we free what
357 * we've allocated so far.
359 spin_lock(&hugetlb_lock);
360 needed = 0;
361 goto free;
364 list_add(&page->lru, &surplus_list);
366 allocated += needed;
369 * After retaking hugetlb_lock, we need to recalculate 'needed'
370 * because either resv_huge_pages or free_huge_pages may have changed.
372 spin_lock(&hugetlb_lock);
373 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
374 if (needed > 0)
375 goto retry;
378 * The surplus_list now contains _at_least_ the number of extra pages
379 * needed to accomodate the reservation. Add the appropriate number
380 * of pages to the hugetlb pool and free the extras back to the buddy
381 * allocator. Commit the entire reservation here to prevent another
382 * process from stealing the pages as they are added to the pool but
383 * before they are reserved.
385 needed += allocated;
386 resv_huge_pages += delta;
387 ret = 0;
388 free:
389 /* Free the needed pages to the hugetlb pool */
390 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
391 if ((--needed) < 0)
392 break;
393 list_del(&page->lru);
394 enqueue_huge_page(page);
397 /* Free unnecessary surplus pages to the buddy allocator */
398 if (!list_empty(&surplus_list)) {
399 spin_unlock(&hugetlb_lock);
400 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
401 list_del(&page->lru);
403 * The page has a reference count of zero already, so
404 * call free_huge_page directly instead of using
405 * put_page. This must be done with hugetlb_lock
406 * unlocked which is safe because free_huge_page takes
407 * hugetlb_lock before deciding how to free the page.
409 free_huge_page(page);
411 spin_lock(&hugetlb_lock);
414 return ret;
418 * When releasing a hugetlb pool reservation, any surplus pages that were
419 * allocated to satisfy the reservation must be explicitly freed if they were
420 * never used.
422 static void return_unused_surplus_pages(unsigned long unused_resv_pages)
424 static int nid = -1;
425 struct page *page;
426 unsigned long nr_pages;
429 * We want to release as many surplus pages as possible, spread
430 * evenly across all nodes. Iterate across all nodes until we
431 * can no longer free unreserved surplus pages. This occurs when
432 * the nodes with surplus pages have no free pages.
434 unsigned long remaining_iterations = num_online_nodes();
436 /* Uncommit the reservation */
437 resv_huge_pages -= unused_resv_pages;
439 nr_pages = min(unused_resv_pages, surplus_huge_pages);
441 while (remaining_iterations-- && nr_pages) {
442 nid = next_node(nid, node_online_map);
443 if (nid == MAX_NUMNODES)
444 nid = first_node(node_online_map);
446 if (!surplus_huge_pages_node[nid])
447 continue;
449 if (!list_empty(&hugepage_freelists[nid])) {
450 page = list_entry(hugepage_freelists[nid].next,
451 struct page, lru);
452 list_del(&page->lru);
453 update_and_free_page(page);
454 free_huge_pages--;
455 free_huge_pages_node[nid]--;
456 surplus_huge_pages--;
457 surplus_huge_pages_node[nid]--;
458 nr_pages--;
459 remaining_iterations = num_online_nodes();
465 static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
466 unsigned long addr)
468 struct page *page;
470 spin_lock(&hugetlb_lock);
471 page = dequeue_huge_page_vma(vma, addr);
472 spin_unlock(&hugetlb_lock);
473 return page ? page : ERR_PTR(-VM_FAULT_OOM);
476 static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
477 unsigned long addr)
479 struct page *page = NULL;
481 if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
482 return ERR_PTR(-VM_FAULT_SIGBUS);
484 spin_lock(&hugetlb_lock);
485 if (free_huge_pages > resv_huge_pages)
486 page = dequeue_huge_page_vma(vma, addr);
487 spin_unlock(&hugetlb_lock);
488 if (!page) {
489 page = alloc_buddy_huge_page(vma, addr);
490 if (!page) {
491 hugetlb_put_quota(vma->vm_file->f_mapping, 1);
492 return ERR_PTR(-VM_FAULT_OOM);
495 return page;
498 static struct page *alloc_huge_page(struct vm_area_struct *vma,
499 unsigned long addr)
501 struct page *page;
502 struct address_space *mapping = vma->vm_file->f_mapping;
504 if (vma->vm_flags & VM_MAYSHARE)
505 page = alloc_huge_page_shared(vma, addr);
506 else
507 page = alloc_huge_page_private(vma, addr);
509 if (!IS_ERR(page)) {
510 set_page_refcounted(page);
511 set_page_private(page, (unsigned long) mapping);
513 return page;
516 static int __init hugetlb_init(void)
518 unsigned long i;
520 if (HPAGE_SHIFT == 0)
521 return 0;
523 for (i = 0; i < MAX_NUMNODES; ++i)
524 INIT_LIST_HEAD(&hugepage_freelists[i]);
526 hugetlb_next_nid = first_node(node_online_map);
528 for (i = 0; i < max_huge_pages; ++i) {
529 if (!alloc_fresh_huge_page())
530 break;
532 max_huge_pages = free_huge_pages = nr_huge_pages = i;
533 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
534 return 0;
536 module_init(hugetlb_init);
538 static int __init hugetlb_setup(char *s)
540 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
541 max_huge_pages = 0;
542 return 1;
544 __setup("hugepages=", hugetlb_setup);
546 static unsigned int cpuset_mems_nr(unsigned int *array)
548 int node;
549 unsigned int nr = 0;
551 for_each_node_mask(node, cpuset_current_mems_allowed)
552 nr += array[node];
554 return nr;
557 #ifdef CONFIG_SYSCTL
558 #ifdef CONFIG_HIGHMEM
559 static void try_to_free_low(unsigned long count)
561 int i;
563 for (i = 0; i < MAX_NUMNODES; ++i) {
564 struct page *page, *next;
565 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
566 if (count >= nr_huge_pages)
567 return;
568 if (PageHighMem(page))
569 continue;
570 list_del(&page->lru);
571 update_and_free_page(page);
572 free_huge_pages--;
573 free_huge_pages_node[page_to_nid(page)]--;
577 #else
578 static inline void try_to_free_low(unsigned long count)
581 #endif
583 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
584 static unsigned long set_max_huge_pages(unsigned long count)
586 unsigned long min_count, ret;
589 * Increase the pool size
590 * First take pages out of surplus state. Then make up the
591 * remaining difference by allocating fresh huge pages.
593 * We might race with alloc_buddy_huge_page() here and be unable
594 * to convert a surplus huge page to a normal huge page. That is
595 * not critical, though, it just means the overall size of the
596 * pool might be one hugepage larger than it needs to be, but
597 * within all the constraints specified by the sysctls.
599 spin_lock(&hugetlb_lock);
600 while (surplus_huge_pages && count > persistent_huge_pages) {
601 if (!adjust_pool_surplus(-1))
602 break;
605 while (count > persistent_huge_pages) {
606 int ret;
608 * If this allocation races such that we no longer need the
609 * page, free_huge_page will handle it by freeing the page
610 * and reducing the surplus.
612 spin_unlock(&hugetlb_lock);
613 ret = alloc_fresh_huge_page();
614 spin_lock(&hugetlb_lock);
615 if (!ret)
616 goto out;
621 * Decrease the pool size
622 * First return free pages to the buddy allocator (being careful
623 * to keep enough around to satisfy reservations). Then place
624 * pages into surplus state as needed so the pool will shrink
625 * to the desired size as pages become free.
627 * By placing pages into the surplus state independent of the
628 * overcommit value, we are allowing the surplus pool size to
629 * exceed overcommit. There are few sane options here. Since
630 * alloc_buddy_huge_page() is checking the global counter,
631 * though, we'll note that we're not allowed to exceed surplus
632 * and won't grow the pool anywhere else. Not until one of the
633 * sysctls are changed, or the surplus pages go out of use.
635 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
636 min_count = max(count, min_count);
637 try_to_free_low(min_count);
638 while (min_count < persistent_huge_pages) {
639 struct page *page = dequeue_huge_page();
640 if (!page)
641 break;
642 update_and_free_page(page);
644 while (count < persistent_huge_pages) {
645 if (!adjust_pool_surplus(1))
646 break;
648 out:
649 ret = persistent_huge_pages;
650 spin_unlock(&hugetlb_lock);
651 return ret;
654 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
655 struct file *file, void __user *buffer,
656 size_t *length, loff_t *ppos)
658 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
659 max_huge_pages = set_max_huge_pages(max_huge_pages);
660 return 0;
663 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
664 struct file *file, void __user *buffer,
665 size_t *length, loff_t *ppos)
667 proc_dointvec(table, write, file, buffer, length, ppos);
668 if (hugepages_treat_as_movable)
669 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
670 else
671 htlb_alloc_mask = GFP_HIGHUSER;
672 return 0;
675 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
676 struct file *file, void __user *buffer,
677 size_t *length, loff_t *ppos)
679 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
680 spin_lock(&hugetlb_lock);
681 nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
682 spin_unlock(&hugetlb_lock);
683 return 0;
686 #endif /* CONFIG_SYSCTL */
688 int hugetlb_report_meminfo(char *buf)
690 return sprintf(buf,
691 "HugePages_Total: %5lu\n"
692 "HugePages_Free: %5lu\n"
693 "HugePages_Rsvd: %5lu\n"
694 "HugePages_Surp: %5lu\n"
695 "Hugepagesize: %5lu kB\n",
696 nr_huge_pages,
697 free_huge_pages,
698 resv_huge_pages,
699 surplus_huge_pages,
700 HPAGE_SIZE/1024);
703 int hugetlb_report_node_meminfo(int nid, char *buf)
705 return sprintf(buf,
706 "Node %d HugePages_Total: %5u\n"
707 "Node %d HugePages_Free: %5u\n"
708 "Node %d HugePages_Surp: %5u\n",
709 nid, nr_huge_pages_node[nid],
710 nid, free_huge_pages_node[nid],
711 nid, surplus_huge_pages_node[nid]);
714 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
715 unsigned long hugetlb_total_pages(void)
717 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
721 * We cannot handle pagefaults against hugetlb pages at all. They cause
722 * handle_mm_fault() to try to instantiate regular-sized pages in the
723 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
724 * this far.
726 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
728 BUG();
729 return 0;
732 struct vm_operations_struct hugetlb_vm_ops = {
733 .fault = hugetlb_vm_op_fault,
736 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
737 int writable)
739 pte_t entry;
741 if (writable) {
742 entry =
743 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
744 } else {
745 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
747 entry = pte_mkyoung(entry);
748 entry = pte_mkhuge(entry);
750 return entry;
753 static void set_huge_ptep_writable(struct vm_area_struct *vma,
754 unsigned long address, pte_t *ptep)
756 pte_t entry;
758 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
759 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
760 update_mmu_cache(vma, address, entry);
765 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
766 struct vm_area_struct *vma)
768 pte_t *src_pte, *dst_pte, entry;
769 struct page *ptepage;
770 unsigned long addr;
771 int cow;
773 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
775 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
776 src_pte = huge_pte_offset(src, addr);
777 if (!src_pte)
778 continue;
779 dst_pte = huge_pte_alloc(dst, addr);
780 if (!dst_pte)
781 goto nomem;
783 /* If the pagetables are shared don't copy or take references */
784 if (dst_pte == src_pte)
785 continue;
787 spin_lock(&dst->page_table_lock);
788 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
789 if (!huge_pte_none(huge_ptep_get(src_pte))) {
790 if (cow)
791 huge_ptep_set_wrprotect(src, addr, src_pte);
792 entry = huge_ptep_get(src_pte);
793 ptepage = pte_page(entry);
794 get_page(ptepage);
795 set_huge_pte_at(dst, addr, dst_pte, entry);
797 spin_unlock(&src->page_table_lock);
798 spin_unlock(&dst->page_table_lock);
800 return 0;
802 nomem:
803 return -ENOMEM;
806 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
807 unsigned long end)
809 struct mm_struct *mm = vma->vm_mm;
810 unsigned long address;
811 pte_t *ptep;
812 pte_t pte;
813 struct page *page;
814 struct page *tmp;
816 * A page gathering list, protected by per file i_mmap_lock. The
817 * lock is used to avoid list corruption from multiple unmapping
818 * of the same page since we are using page->lru.
820 LIST_HEAD(page_list);
822 WARN_ON(!is_vm_hugetlb_page(vma));
823 BUG_ON(start & ~HPAGE_MASK);
824 BUG_ON(end & ~HPAGE_MASK);
826 spin_lock(&mm->page_table_lock);
827 for (address = start; address < end; address += HPAGE_SIZE) {
828 ptep = huge_pte_offset(mm, address);
829 if (!ptep)
830 continue;
832 if (huge_pmd_unshare(mm, &address, ptep))
833 continue;
835 pte = huge_ptep_get_and_clear(mm, address, ptep);
836 if (huge_pte_none(pte))
837 continue;
839 page = pte_page(pte);
840 if (pte_dirty(pte))
841 set_page_dirty(page);
842 list_add(&page->lru, &page_list);
844 spin_unlock(&mm->page_table_lock);
845 flush_tlb_range(vma, start, end);
846 list_for_each_entry_safe(page, tmp, &page_list, lru) {
847 list_del(&page->lru);
848 put_page(page);
852 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
853 unsigned long end)
856 * It is undesirable to test vma->vm_file as it should be non-null
857 * for valid hugetlb area. However, vm_file will be NULL in the error
858 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
859 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
860 * to clean up. Since no pte has actually been setup, it is safe to
861 * do nothing in this case.
863 if (vma->vm_file) {
864 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
865 __unmap_hugepage_range(vma, start, end);
866 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
870 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
871 unsigned long address, pte_t *ptep, pte_t pte)
873 struct page *old_page, *new_page;
874 int avoidcopy;
876 old_page = pte_page(pte);
878 /* If no-one else is actually using this page, avoid the copy
879 * and just make the page writable */
880 avoidcopy = (page_count(old_page) == 1);
881 if (avoidcopy) {
882 set_huge_ptep_writable(vma, address, ptep);
883 return 0;
886 page_cache_get(old_page);
887 new_page = alloc_huge_page(vma, address);
889 if (IS_ERR(new_page)) {
890 page_cache_release(old_page);
891 return -PTR_ERR(new_page);
894 spin_unlock(&mm->page_table_lock);
895 copy_huge_page(new_page, old_page, address, vma);
896 __SetPageUptodate(new_page);
897 spin_lock(&mm->page_table_lock);
899 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
900 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
901 /* Break COW */
902 huge_ptep_clear_flush(vma, address, ptep);
903 set_huge_pte_at(mm, address, ptep,
904 make_huge_pte(vma, new_page, 1));
905 /* Make the old page be freed below */
906 new_page = old_page;
908 page_cache_release(new_page);
909 page_cache_release(old_page);
910 return 0;
913 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
914 unsigned long address, pte_t *ptep, int write_access)
916 int ret = VM_FAULT_SIGBUS;
917 unsigned long idx;
918 unsigned long size;
919 struct page *page;
920 struct address_space *mapping;
921 pte_t new_pte;
923 mapping = vma->vm_file->f_mapping;
924 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
925 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
928 * Use page lock to guard against racing truncation
929 * before we get page_table_lock.
931 retry:
932 page = find_lock_page(mapping, idx);
933 if (!page) {
934 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
935 if (idx >= size)
936 goto out;
937 page = alloc_huge_page(vma, address);
938 if (IS_ERR(page)) {
939 ret = -PTR_ERR(page);
940 goto out;
942 clear_huge_page(page, address);
943 __SetPageUptodate(page);
945 if (vma->vm_flags & VM_SHARED) {
946 int err;
947 struct inode *inode = mapping->host;
949 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
950 if (err) {
951 put_page(page);
952 if (err == -EEXIST)
953 goto retry;
954 goto out;
957 spin_lock(&inode->i_lock);
958 inode->i_blocks += BLOCKS_PER_HUGEPAGE;
959 spin_unlock(&inode->i_lock);
960 } else
961 lock_page(page);
964 spin_lock(&mm->page_table_lock);
965 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
966 if (idx >= size)
967 goto backout;
969 ret = 0;
970 if (!huge_pte_none(huge_ptep_get(ptep)))
971 goto backout;
973 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
974 && (vma->vm_flags & VM_SHARED)));
975 set_huge_pte_at(mm, address, ptep, new_pte);
977 if (write_access && !(vma->vm_flags & VM_SHARED)) {
978 /* Optimization, do the COW without a second fault */
979 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
982 spin_unlock(&mm->page_table_lock);
983 unlock_page(page);
984 out:
985 return ret;
987 backout:
988 spin_unlock(&mm->page_table_lock);
989 unlock_page(page);
990 put_page(page);
991 goto out;
994 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
995 unsigned long address, int write_access)
997 pte_t *ptep;
998 pte_t entry;
999 int ret;
1000 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1002 ptep = huge_pte_alloc(mm, address);
1003 if (!ptep)
1004 return VM_FAULT_OOM;
1007 * Serialize hugepage allocation and instantiation, so that we don't
1008 * get spurious allocation failures if two CPUs race to instantiate
1009 * the same page in the page cache.
1011 mutex_lock(&hugetlb_instantiation_mutex);
1012 entry = huge_ptep_get(ptep);
1013 if (huge_pte_none(entry)) {
1014 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
1015 mutex_unlock(&hugetlb_instantiation_mutex);
1016 return ret;
1019 ret = 0;
1021 spin_lock(&mm->page_table_lock);
1022 /* Check for a racing update before calling hugetlb_cow */
1023 if (likely(pte_same(entry, huge_ptep_get(ptep))))
1024 if (write_access && !pte_write(entry))
1025 ret = hugetlb_cow(mm, vma, address, ptep, entry);
1026 spin_unlock(&mm->page_table_lock);
1027 mutex_unlock(&hugetlb_instantiation_mutex);
1029 return ret;
1032 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1033 struct page **pages, struct vm_area_struct **vmas,
1034 unsigned long *position, int *length, int i,
1035 int write)
1037 unsigned long pfn_offset;
1038 unsigned long vaddr = *position;
1039 int remainder = *length;
1041 spin_lock(&mm->page_table_lock);
1042 while (vaddr < vma->vm_end && remainder) {
1043 pte_t *pte;
1044 struct page *page;
1047 * Some archs (sparc64, sh*) have multiple pte_ts to
1048 * each hugepage. We have to make * sure we get the
1049 * first, for the page indexing below to work.
1051 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
1053 if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
1054 (write && !pte_write(huge_ptep_get(pte)))) {
1055 int ret;
1057 spin_unlock(&mm->page_table_lock);
1058 ret = hugetlb_fault(mm, vma, vaddr, write);
1059 spin_lock(&mm->page_table_lock);
1060 if (!(ret & VM_FAULT_ERROR))
1061 continue;
1063 remainder = 0;
1064 if (!i)
1065 i = -EFAULT;
1066 break;
1069 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1070 page = pte_page(huge_ptep_get(pte));
1071 same_page:
1072 if (pages) {
1073 get_page(page);
1074 pages[i] = page + pfn_offset;
1077 if (vmas)
1078 vmas[i] = vma;
1080 vaddr += PAGE_SIZE;
1081 ++pfn_offset;
1082 --remainder;
1083 ++i;
1084 if (vaddr < vma->vm_end && remainder &&
1085 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1087 * We use pfn_offset to avoid touching the pageframes
1088 * of this compound page.
1090 goto same_page;
1093 spin_unlock(&mm->page_table_lock);
1094 *length = remainder;
1095 *position = vaddr;
1097 return i;
1100 void hugetlb_change_protection(struct vm_area_struct *vma,
1101 unsigned long address, unsigned long end, pgprot_t newprot)
1103 struct mm_struct *mm = vma->vm_mm;
1104 unsigned long start = address;
1105 pte_t *ptep;
1106 pte_t pte;
1108 BUG_ON(address >= end);
1109 flush_cache_range(vma, address, end);
1111 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1112 spin_lock(&mm->page_table_lock);
1113 for (; address < end; address += HPAGE_SIZE) {
1114 ptep = huge_pte_offset(mm, address);
1115 if (!ptep)
1116 continue;
1117 if (huge_pmd_unshare(mm, &address, ptep))
1118 continue;
1119 if (!huge_pte_none(huge_ptep_get(ptep))) {
1120 pte = huge_ptep_get_and_clear(mm, address, ptep);
1121 pte = pte_mkhuge(pte_modify(pte, newprot));
1122 set_huge_pte_at(mm, address, ptep, pte);
1125 spin_unlock(&mm->page_table_lock);
1126 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1128 flush_tlb_range(vma, start, end);
1131 struct file_region {
1132 struct list_head link;
1133 long from;
1134 long to;
1137 static long region_add(struct list_head *head, long f, long t)
1139 struct file_region *rg, *nrg, *trg;
1141 /* Locate the region we are either in or before. */
1142 list_for_each_entry(rg, head, link)
1143 if (f <= rg->to)
1144 break;
1146 /* Round our left edge to the current segment if it encloses us. */
1147 if (f > rg->from)
1148 f = rg->from;
1150 /* Check for and consume any regions we now overlap with. */
1151 nrg = rg;
1152 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1153 if (&rg->link == head)
1154 break;
1155 if (rg->from > t)
1156 break;
1158 /* If this area reaches higher then extend our area to
1159 * include it completely. If this is not the first area
1160 * which we intend to reuse, free it. */
1161 if (rg->to > t)
1162 t = rg->to;
1163 if (rg != nrg) {
1164 list_del(&rg->link);
1165 kfree(rg);
1168 nrg->from = f;
1169 nrg->to = t;
1170 return 0;
1173 static long region_chg(struct list_head *head, long f, long t)
1175 struct file_region *rg, *nrg;
1176 long chg = 0;
1178 /* Locate the region we are before or in. */
1179 list_for_each_entry(rg, head, link)
1180 if (f <= rg->to)
1181 break;
1183 /* If we are below the current region then a new region is required.
1184 * Subtle, allocate a new region at the position but make it zero
1185 * size such that we can guarantee to record the reservation. */
1186 if (&rg->link == head || t < rg->from) {
1187 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1188 if (!nrg)
1189 return -ENOMEM;
1190 nrg->from = f;
1191 nrg->to = f;
1192 INIT_LIST_HEAD(&nrg->link);
1193 list_add(&nrg->link, rg->link.prev);
1195 return t - f;
1198 /* Round our left edge to the current segment if it encloses us. */
1199 if (f > rg->from)
1200 f = rg->from;
1201 chg = t - f;
1203 /* Check for and consume any regions we now overlap with. */
1204 list_for_each_entry(rg, rg->link.prev, link) {
1205 if (&rg->link == head)
1206 break;
1207 if (rg->from > t)
1208 return chg;
1210 /* We overlap with this area, if it extends futher than
1211 * us then we must extend ourselves. Account for its
1212 * existing reservation. */
1213 if (rg->to > t) {
1214 chg += rg->to - t;
1215 t = rg->to;
1217 chg -= rg->to - rg->from;
1219 return chg;
1222 static long region_truncate(struct list_head *head, long end)
1224 struct file_region *rg, *trg;
1225 long chg = 0;
1227 /* Locate the region we are either in or before. */
1228 list_for_each_entry(rg, head, link)
1229 if (end <= rg->to)
1230 break;
1231 if (&rg->link == head)
1232 return 0;
1234 /* If we are in the middle of a region then adjust it. */
1235 if (end > rg->from) {
1236 chg = rg->to - end;
1237 rg->to = end;
1238 rg = list_entry(rg->link.next, typeof(*rg), link);
1241 /* Drop any remaining regions. */
1242 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1243 if (&rg->link == head)
1244 break;
1245 chg += rg->to - rg->from;
1246 list_del(&rg->link);
1247 kfree(rg);
1249 return chg;
1252 static int hugetlb_acct_memory(long delta)
1254 int ret = -ENOMEM;
1256 spin_lock(&hugetlb_lock);
1258 * When cpuset is configured, it breaks the strict hugetlb page
1259 * reservation as the accounting is done on a global variable. Such
1260 * reservation is completely rubbish in the presence of cpuset because
1261 * the reservation is not checked against page availability for the
1262 * current cpuset. Application can still potentially OOM'ed by kernel
1263 * with lack of free htlb page in cpuset that the task is in.
1264 * Attempt to enforce strict accounting with cpuset is almost
1265 * impossible (or too ugly) because cpuset is too fluid that
1266 * task or memory node can be dynamically moved between cpusets.
1268 * The change of semantics for shared hugetlb mapping with cpuset is
1269 * undesirable. However, in order to preserve some of the semantics,
1270 * we fall back to check against current free page availability as
1271 * a best attempt and hopefully to minimize the impact of changing
1272 * semantics that cpuset has.
1274 if (delta > 0) {
1275 if (gather_surplus_pages(delta) < 0)
1276 goto out;
1278 if (delta > cpuset_mems_nr(free_huge_pages_node)) {
1279 return_unused_surplus_pages(delta);
1280 goto out;
1284 ret = 0;
1285 if (delta < 0)
1286 return_unused_surplus_pages((unsigned long) -delta);
1288 out:
1289 spin_unlock(&hugetlb_lock);
1290 return ret;
1293 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1295 long ret, chg;
1297 chg = region_chg(&inode->i_mapping->private_list, from, to);
1298 if (chg < 0)
1299 return chg;
1301 if (hugetlb_get_quota(inode->i_mapping, chg))
1302 return -ENOSPC;
1303 ret = hugetlb_acct_memory(chg);
1304 if (ret < 0) {
1305 hugetlb_put_quota(inode->i_mapping, chg);
1306 return ret;
1308 region_add(&inode->i_mapping->private_list, from, to);
1309 return 0;
1312 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1314 long chg = region_truncate(&inode->i_mapping->private_list, offset);
1316 spin_lock(&inode->i_lock);
1317 inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1318 spin_unlock(&inode->i_lock);
1320 hugetlb_put_quota(inode->i_mapping, (chg - freed));
1321 hugetlb_acct_memory(-(chg - freed));