Linux 2.6.23.13
[linux/fpc-iii.git] / kernel / fork.c
blobf299d4522a2d190a16bcf55b4d4c38b6e508d1a4
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/key.h>
26 #include <linux/binfmts.h>
27 #include <linux/mman.h>
28 #include <linux/fs.h>
29 #include <linux/nsproxy.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/tsacct_kern.h>
47 #include <linux/cn_proc.h>
48 #include <linux/freezer.h>
49 #include <linux/delayacct.h>
50 #include <linux/taskstats_kern.h>
51 #include <linux/random.h>
52 #include <linux/tty.h>
54 #include <asm/pgtable.h>
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
57 #include <asm/mmu_context.h>
58 #include <asm/cacheflush.h>
59 #include <asm/tlbflush.h>
62 * Protected counters by write_lock_irq(&tasklist_lock)
64 unsigned long total_forks; /* Handle normal Linux uptimes. */
65 int nr_threads; /* The idle threads do not count.. */
67 int max_threads; /* tunable limit on nr_threads */
69 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
71 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
73 int nr_processes(void)
75 int cpu;
76 int total = 0;
78 for_each_online_cpu(cpu)
79 total += per_cpu(process_counts, cpu);
81 return total;
84 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
85 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
86 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
87 static struct kmem_cache *task_struct_cachep;
88 #endif
90 /* SLAB cache for signal_struct structures (tsk->signal) */
91 static struct kmem_cache *signal_cachep;
93 /* SLAB cache for sighand_struct structures (tsk->sighand) */
94 struct kmem_cache *sighand_cachep;
96 /* SLAB cache for files_struct structures (tsk->files) */
97 struct kmem_cache *files_cachep;
99 /* SLAB cache for fs_struct structures (tsk->fs) */
100 struct kmem_cache *fs_cachep;
102 /* SLAB cache for vm_area_struct structures */
103 struct kmem_cache *vm_area_cachep;
105 /* SLAB cache for mm_struct structures (tsk->mm) */
106 static struct kmem_cache *mm_cachep;
108 void free_task(struct task_struct *tsk)
110 free_thread_info(tsk->stack);
111 rt_mutex_debug_task_free(tsk);
112 free_task_struct(tsk);
114 EXPORT_SYMBOL(free_task);
116 void __put_task_struct(struct task_struct *tsk)
118 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
119 WARN_ON(atomic_read(&tsk->usage));
120 WARN_ON(tsk == current);
122 security_task_free(tsk);
123 free_uid(tsk->user);
124 put_group_info(tsk->group_info);
125 delayacct_tsk_free(tsk);
127 if (!profile_handoff_task(tsk))
128 free_task(tsk);
131 void __init fork_init(unsigned long mempages)
133 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
134 #ifndef ARCH_MIN_TASKALIGN
135 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
136 #endif
137 /* create a slab on which task_structs can be allocated */
138 task_struct_cachep =
139 kmem_cache_create("task_struct", sizeof(struct task_struct),
140 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
141 #endif
144 * The default maximum number of threads is set to a safe
145 * value: the thread structures can take up at most half
146 * of memory.
148 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
151 * we need to allow at least 20 threads to boot a system
153 if(max_threads < 20)
154 max_threads = 20;
156 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
157 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
158 init_task.signal->rlim[RLIMIT_SIGPENDING] =
159 init_task.signal->rlim[RLIMIT_NPROC];
162 static struct task_struct *dup_task_struct(struct task_struct *orig)
164 struct task_struct *tsk;
165 struct thread_info *ti;
167 prepare_to_copy(orig);
169 tsk = alloc_task_struct();
170 if (!tsk)
171 return NULL;
173 ti = alloc_thread_info(tsk);
174 if (!ti) {
175 free_task_struct(tsk);
176 return NULL;
179 *tsk = *orig;
180 tsk->stack = ti;
181 setup_thread_stack(tsk, orig);
183 #ifdef CONFIG_CC_STACKPROTECTOR
184 tsk->stack_canary = get_random_int();
185 #endif
187 /* One for us, one for whoever does the "release_task()" (usually parent) */
188 atomic_set(&tsk->usage,2);
189 atomic_set(&tsk->fs_excl, 0);
190 #ifdef CONFIG_BLK_DEV_IO_TRACE
191 tsk->btrace_seq = 0;
192 #endif
193 tsk->splice_pipe = NULL;
194 return tsk;
197 #ifdef CONFIG_MMU
198 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
200 struct vm_area_struct *mpnt, *tmp, **pprev;
201 struct rb_node **rb_link, *rb_parent;
202 int retval;
203 unsigned long charge;
204 struct mempolicy *pol;
206 down_write(&oldmm->mmap_sem);
207 flush_cache_dup_mm(oldmm);
209 * Not linked in yet - no deadlock potential:
211 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
213 mm->locked_vm = 0;
214 mm->mmap = NULL;
215 mm->mmap_cache = NULL;
216 mm->free_area_cache = oldmm->mmap_base;
217 mm->cached_hole_size = ~0UL;
218 mm->map_count = 0;
219 cpus_clear(mm->cpu_vm_mask);
220 mm->mm_rb = RB_ROOT;
221 rb_link = &mm->mm_rb.rb_node;
222 rb_parent = NULL;
223 pprev = &mm->mmap;
225 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
226 struct file *file;
228 if (mpnt->vm_flags & VM_DONTCOPY) {
229 long pages = vma_pages(mpnt);
230 mm->total_vm -= pages;
231 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
232 -pages);
233 continue;
235 charge = 0;
236 if (mpnt->vm_flags & VM_ACCOUNT) {
237 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
238 if (security_vm_enough_memory(len))
239 goto fail_nomem;
240 charge = len;
242 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
243 if (!tmp)
244 goto fail_nomem;
245 *tmp = *mpnt;
246 pol = mpol_copy(vma_policy(mpnt));
247 retval = PTR_ERR(pol);
248 if (IS_ERR(pol))
249 goto fail_nomem_policy;
250 vma_set_policy(tmp, pol);
251 tmp->vm_flags &= ~VM_LOCKED;
252 tmp->vm_mm = mm;
253 tmp->vm_next = NULL;
254 anon_vma_link(tmp);
255 file = tmp->vm_file;
256 if (file) {
257 struct inode *inode = file->f_path.dentry->d_inode;
258 get_file(file);
259 if (tmp->vm_flags & VM_DENYWRITE)
260 atomic_dec(&inode->i_writecount);
262 /* insert tmp into the share list, just after mpnt */
263 spin_lock(&file->f_mapping->i_mmap_lock);
264 tmp->vm_truncate_count = mpnt->vm_truncate_count;
265 flush_dcache_mmap_lock(file->f_mapping);
266 vma_prio_tree_add(tmp, mpnt);
267 flush_dcache_mmap_unlock(file->f_mapping);
268 spin_unlock(&file->f_mapping->i_mmap_lock);
272 * Link in the new vma and copy the page table entries.
274 *pprev = tmp;
275 pprev = &tmp->vm_next;
277 __vma_link_rb(mm, tmp, rb_link, rb_parent);
278 rb_link = &tmp->vm_rb.rb_right;
279 rb_parent = &tmp->vm_rb;
281 mm->map_count++;
282 retval = copy_page_range(mm, oldmm, mpnt);
284 if (tmp->vm_ops && tmp->vm_ops->open)
285 tmp->vm_ops->open(tmp);
287 if (retval)
288 goto out;
290 /* a new mm has just been created */
291 arch_dup_mmap(oldmm, mm);
292 retval = 0;
293 out:
294 up_write(&mm->mmap_sem);
295 flush_tlb_mm(oldmm);
296 up_write(&oldmm->mmap_sem);
297 return retval;
298 fail_nomem_policy:
299 kmem_cache_free(vm_area_cachep, tmp);
300 fail_nomem:
301 retval = -ENOMEM;
302 vm_unacct_memory(charge);
303 goto out;
306 static inline int mm_alloc_pgd(struct mm_struct * mm)
308 mm->pgd = pgd_alloc(mm);
309 if (unlikely(!mm->pgd))
310 return -ENOMEM;
311 return 0;
314 static inline void mm_free_pgd(struct mm_struct * mm)
316 pgd_free(mm->pgd);
318 #else
319 #define dup_mmap(mm, oldmm) (0)
320 #define mm_alloc_pgd(mm) (0)
321 #define mm_free_pgd(mm)
322 #endif /* CONFIG_MMU */
324 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
326 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
327 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
329 #include <linux/init_task.h>
331 static struct mm_struct * mm_init(struct mm_struct * mm)
333 atomic_set(&mm->mm_users, 1);
334 atomic_set(&mm->mm_count, 1);
335 init_rwsem(&mm->mmap_sem);
336 INIT_LIST_HEAD(&mm->mmlist);
337 mm->flags = (current->mm) ? current->mm->flags
338 : MMF_DUMP_FILTER_DEFAULT;
339 mm->core_waiters = 0;
340 mm->nr_ptes = 0;
341 set_mm_counter(mm, file_rss, 0);
342 set_mm_counter(mm, anon_rss, 0);
343 spin_lock_init(&mm->page_table_lock);
344 rwlock_init(&mm->ioctx_list_lock);
345 mm->ioctx_list = NULL;
346 mm->free_area_cache = TASK_UNMAPPED_BASE;
347 mm->cached_hole_size = ~0UL;
349 if (likely(!mm_alloc_pgd(mm))) {
350 mm->def_flags = 0;
351 return mm;
353 free_mm(mm);
354 return NULL;
358 * Allocate and initialize an mm_struct.
360 struct mm_struct * mm_alloc(void)
362 struct mm_struct * mm;
364 mm = allocate_mm();
365 if (mm) {
366 memset(mm, 0, sizeof(*mm));
367 mm = mm_init(mm);
369 return mm;
373 * Called when the last reference to the mm
374 * is dropped: either by a lazy thread or by
375 * mmput. Free the page directory and the mm.
377 void fastcall __mmdrop(struct mm_struct *mm)
379 BUG_ON(mm == &init_mm);
380 mm_free_pgd(mm);
381 destroy_context(mm);
382 free_mm(mm);
386 * Decrement the use count and release all resources for an mm.
388 void mmput(struct mm_struct *mm)
390 might_sleep();
392 if (atomic_dec_and_test(&mm->mm_users)) {
393 exit_aio(mm);
394 exit_mmap(mm);
395 if (!list_empty(&mm->mmlist)) {
396 spin_lock(&mmlist_lock);
397 list_del(&mm->mmlist);
398 spin_unlock(&mmlist_lock);
400 put_swap_token(mm);
401 mmdrop(mm);
404 EXPORT_SYMBOL_GPL(mmput);
407 * get_task_mm - acquire a reference to the task's mm
409 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
410 * this kernel workthread has transiently adopted a user mm with use_mm,
411 * to do its AIO) is not set and if so returns a reference to it, after
412 * bumping up the use count. User must release the mm via mmput()
413 * after use. Typically used by /proc and ptrace.
415 struct mm_struct *get_task_mm(struct task_struct *task)
417 struct mm_struct *mm;
419 task_lock(task);
420 mm = task->mm;
421 if (mm) {
422 if (task->flags & PF_BORROWED_MM)
423 mm = NULL;
424 else
425 atomic_inc(&mm->mm_users);
427 task_unlock(task);
428 return mm;
430 EXPORT_SYMBOL_GPL(get_task_mm);
432 /* Please note the differences between mmput and mm_release.
433 * mmput is called whenever we stop holding onto a mm_struct,
434 * error success whatever.
436 * mm_release is called after a mm_struct has been removed
437 * from the current process.
439 * This difference is important for error handling, when we
440 * only half set up a mm_struct for a new process and need to restore
441 * the old one. Because we mmput the new mm_struct before
442 * restoring the old one. . .
443 * Eric Biederman 10 January 1998
445 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
447 struct completion *vfork_done = tsk->vfork_done;
449 /* Get rid of any cached register state */
450 deactivate_mm(tsk, mm);
452 /* notify parent sleeping on vfork() */
453 if (vfork_done) {
454 tsk->vfork_done = NULL;
455 complete(vfork_done);
459 * If we're exiting normally, clear a user-space tid field if
460 * requested. We leave this alone when dying by signal, to leave
461 * the value intact in a core dump, and to save the unnecessary
462 * trouble otherwise. Userland only wants this done for a sys_exit.
464 if (tsk->clear_child_tid
465 && !(tsk->flags & PF_SIGNALED)
466 && atomic_read(&mm->mm_users) > 1) {
467 u32 __user * tidptr = tsk->clear_child_tid;
468 tsk->clear_child_tid = NULL;
471 * We don't check the error code - if userspace has
472 * not set up a proper pointer then tough luck.
474 put_user(0, tidptr);
475 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
480 * Allocate a new mm structure and copy contents from the
481 * mm structure of the passed in task structure.
483 static struct mm_struct *dup_mm(struct task_struct *tsk)
485 struct mm_struct *mm, *oldmm = current->mm;
486 int err;
488 if (!oldmm)
489 return NULL;
491 mm = allocate_mm();
492 if (!mm)
493 goto fail_nomem;
495 memcpy(mm, oldmm, sizeof(*mm));
497 /* Initializing for Swap token stuff */
498 mm->token_priority = 0;
499 mm->last_interval = 0;
501 if (!mm_init(mm))
502 goto fail_nomem;
504 if (init_new_context(tsk, mm))
505 goto fail_nocontext;
507 err = dup_mmap(mm, oldmm);
508 if (err)
509 goto free_pt;
511 mm->hiwater_rss = get_mm_rss(mm);
512 mm->hiwater_vm = mm->total_vm;
514 return mm;
516 free_pt:
517 mmput(mm);
519 fail_nomem:
520 return NULL;
522 fail_nocontext:
524 * If init_new_context() failed, we cannot use mmput() to free the mm
525 * because it calls destroy_context()
527 mm_free_pgd(mm);
528 free_mm(mm);
529 return NULL;
532 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
534 struct mm_struct * mm, *oldmm;
535 int retval;
537 tsk->min_flt = tsk->maj_flt = 0;
538 tsk->nvcsw = tsk->nivcsw = 0;
540 tsk->mm = NULL;
541 tsk->active_mm = NULL;
544 * Are we cloning a kernel thread?
546 * We need to steal a active VM for that..
548 oldmm = current->mm;
549 if (!oldmm)
550 return 0;
552 if (clone_flags & CLONE_VM) {
553 atomic_inc(&oldmm->mm_users);
554 mm = oldmm;
555 goto good_mm;
558 retval = -ENOMEM;
559 mm = dup_mm(tsk);
560 if (!mm)
561 goto fail_nomem;
563 good_mm:
564 /* Initializing for Swap token stuff */
565 mm->token_priority = 0;
566 mm->last_interval = 0;
568 tsk->mm = mm;
569 tsk->active_mm = mm;
570 return 0;
572 fail_nomem:
573 return retval;
576 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
578 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
579 /* We don't need to lock fs - think why ;-) */
580 if (fs) {
581 atomic_set(&fs->count, 1);
582 rwlock_init(&fs->lock);
583 fs->umask = old->umask;
584 read_lock(&old->lock);
585 fs->rootmnt = mntget(old->rootmnt);
586 fs->root = dget(old->root);
587 fs->pwdmnt = mntget(old->pwdmnt);
588 fs->pwd = dget(old->pwd);
589 if (old->altroot) {
590 fs->altrootmnt = mntget(old->altrootmnt);
591 fs->altroot = dget(old->altroot);
592 } else {
593 fs->altrootmnt = NULL;
594 fs->altroot = NULL;
596 read_unlock(&old->lock);
598 return fs;
601 struct fs_struct *copy_fs_struct(struct fs_struct *old)
603 return __copy_fs_struct(old);
606 EXPORT_SYMBOL_GPL(copy_fs_struct);
608 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
610 if (clone_flags & CLONE_FS) {
611 atomic_inc(&current->fs->count);
612 return 0;
614 tsk->fs = __copy_fs_struct(current->fs);
615 if (!tsk->fs)
616 return -ENOMEM;
617 return 0;
620 static int count_open_files(struct fdtable *fdt)
622 int size = fdt->max_fds;
623 int i;
625 /* Find the last open fd */
626 for (i = size/(8*sizeof(long)); i > 0; ) {
627 if (fdt->open_fds->fds_bits[--i])
628 break;
630 i = (i+1) * 8 * sizeof(long);
631 return i;
634 static struct files_struct *alloc_files(void)
636 struct files_struct *newf;
637 struct fdtable *fdt;
639 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
640 if (!newf)
641 goto out;
643 atomic_set(&newf->count, 1);
645 spin_lock_init(&newf->file_lock);
646 newf->next_fd = 0;
647 fdt = &newf->fdtab;
648 fdt->max_fds = NR_OPEN_DEFAULT;
649 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
650 fdt->open_fds = (fd_set *)&newf->open_fds_init;
651 fdt->fd = &newf->fd_array[0];
652 INIT_RCU_HEAD(&fdt->rcu);
653 fdt->next = NULL;
654 rcu_assign_pointer(newf->fdt, fdt);
655 out:
656 return newf;
660 * Allocate a new files structure and copy contents from the
661 * passed in files structure.
662 * errorp will be valid only when the returned files_struct is NULL.
664 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
666 struct files_struct *newf;
667 struct file **old_fds, **new_fds;
668 int open_files, size, i;
669 struct fdtable *old_fdt, *new_fdt;
671 *errorp = -ENOMEM;
672 newf = alloc_files();
673 if (!newf)
674 goto out;
676 spin_lock(&oldf->file_lock);
677 old_fdt = files_fdtable(oldf);
678 new_fdt = files_fdtable(newf);
679 open_files = count_open_files(old_fdt);
682 * Check whether we need to allocate a larger fd array and fd set.
683 * Note: we're not a clone task, so the open count won't change.
685 if (open_files > new_fdt->max_fds) {
686 new_fdt->max_fds = 0;
687 spin_unlock(&oldf->file_lock);
688 spin_lock(&newf->file_lock);
689 *errorp = expand_files(newf, open_files-1);
690 spin_unlock(&newf->file_lock);
691 if (*errorp < 0)
692 goto out_release;
693 new_fdt = files_fdtable(newf);
695 * Reacquire the oldf lock and a pointer to its fd table
696 * who knows it may have a new bigger fd table. We need
697 * the latest pointer.
699 spin_lock(&oldf->file_lock);
700 old_fdt = files_fdtable(oldf);
703 old_fds = old_fdt->fd;
704 new_fds = new_fdt->fd;
706 memcpy(new_fdt->open_fds->fds_bits,
707 old_fdt->open_fds->fds_bits, open_files/8);
708 memcpy(new_fdt->close_on_exec->fds_bits,
709 old_fdt->close_on_exec->fds_bits, open_files/8);
711 for (i = open_files; i != 0; i--) {
712 struct file *f = *old_fds++;
713 if (f) {
714 get_file(f);
715 } else {
717 * The fd may be claimed in the fd bitmap but not yet
718 * instantiated in the files array if a sibling thread
719 * is partway through open(). So make sure that this
720 * fd is available to the new process.
722 FD_CLR(open_files - i, new_fdt->open_fds);
724 rcu_assign_pointer(*new_fds++, f);
726 spin_unlock(&oldf->file_lock);
728 /* compute the remainder to be cleared */
729 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
731 /* This is long word aligned thus could use a optimized version */
732 memset(new_fds, 0, size);
734 if (new_fdt->max_fds > open_files) {
735 int left = (new_fdt->max_fds-open_files)/8;
736 int start = open_files / (8 * sizeof(unsigned long));
738 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
739 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
742 return newf;
744 out_release:
745 kmem_cache_free(files_cachep, newf);
746 out:
747 return NULL;
750 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
752 struct files_struct *oldf, *newf;
753 int error = 0;
756 * A background process may not have any files ...
758 oldf = current->files;
759 if (!oldf)
760 goto out;
762 if (clone_flags & CLONE_FILES) {
763 atomic_inc(&oldf->count);
764 goto out;
768 * Note: we may be using current for both targets (See exec.c)
769 * This works because we cache current->files (old) as oldf. Don't
770 * break this.
772 tsk->files = NULL;
773 newf = dup_fd(oldf, &error);
774 if (!newf)
775 goto out;
777 tsk->files = newf;
778 error = 0;
779 out:
780 return error;
784 * Helper to unshare the files of the current task.
785 * We don't want to expose copy_files internals to
786 * the exec layer of the kernel.
789 int unshare_files(void)
791 struct files_struct *files = current->files;
792 int rc;
794 BUG_ON(!files);
796 /* This can race but the race causes us to copy when we don't
797 need to and drop the copy */
798 if(atomic_read(&files->count) == 1)
800 atomic_inc(&files->count);
801 return 0;
803 rc = copy_files(0, current);
804 if(rc)
805 current->files = files;
806 return rc;
809 EXPORT_SYMBOL(unshare_files);
811 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
813 struct sighand_struct *sig;
815 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
816 atomic_inc(&current->sighand->count);
817 return 0;
819 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
820 rcu_assign_pointer(tsk->sighand, sig);
821 if (!sig)
822 return -ENOMEM;
823 atomic_set(&sig->count, 1);
824 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
825 return 0;
828 void __cleanup_sighand(struct sighand_struct *sighand)
830 if (atomic_dec_and_test(&sighand->count))
831 kmem_cache_free(sighand_cachep, sighand);
834 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
836 struct signal_struct *sig;
837 int ret;
839 if (clone_flags & CLONE_THREAD) {
840 atomic_inc(&current->signal->count);
841 atomic_inc(&current->signal->live);
842 return 0;
844 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
845 tsk->signal = sig;
846 if (!sig)
847 return -ENOMEM;
849 ret = copy_thread_group_keys(tsk);
850 if (ret < 0) {
851 kmem_cache_free(signal_cachep, sig);
852 return ret;
855 atomic_set(&sig->count, 1);
856 atomic_set(&sig->live, 1);
857 init_waitqueue_head(&sig->wait_chldexit);
858 sig->flags = 0;
859 sig->group_exit_code = 0;
860 sig->group_exit_task = NULL;
861 sig->group_stop_count = 0;
862 sig->curr_target = NULL;
863 init_sigpending(&sig->shared_pending);
864 INIT_LIST_HEAD(&sig->posix_timers);
866 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
867 sig->it_real_incr.tv64 = 0;
868 sig->real_timer.function = it_real_fn;
869 sig->tsk = tsk;
871 sig->it_virt_expires = cputime_zero;
872 sig->it_virt_incr = cputime_zero;
873 sig->it_prof_expires = cputime_zero;
874 sig->it_prof_incr = cputime_zero;
876 sig->leader = 0; /* session leadership doesn't inherit */
877 sig->tty_old_pgrp = NULL;
879 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
880 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
881 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
882 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
883 sig->sum_sched_runtime = 0;
884 INIT_LIST_HEAD(&sig->cpu_timers[0]);
885 INIT_LIST_HEAD(&sig->cpu_timers[1]);
886 INIT_LIST_HEAD(&sig->cpu_timers[2]);
887 taskstats_tgid_init(sig);
889 task_lock(current->group_leader);
890 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
891 task_unlock(current->group_leader);
893 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
895 * New sole thread in the process gets an expiry time
896 * of the whole CPU time limit.
898 tsk->it_prof_expires =
899 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
901 acct_init_pacct(&sig->pacct);
903 tty_audit_fork(sig);
905 return 0;
908 void __cleanup_signal(struct signal_struct *sig)
910 exit_thread_group_keys(sig);
911 kmem_cache_free(signal_cachep, sig);
914 static inline void cleanup_signal(struct task_struct *tsk)
916 struct signal_struct *sig = tsk->signal;
918 atomic_dec(&sig->live);
920 if (atomic_dec_and_test(&sig->count))
921 __cleanup_signal(sig);
924 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
926 unsigned long new_flags = p->flags;
928 new_flags &= ~PF_SUPERPRIV;
929 new_flags |= PF_FORKNOEXEC;
930 if (!(clone_flags & CLONE_PTRACE))
931 p->ptrace = 0;
932 p->flags = new_flags;
935 asmlinkage long sys_set_tid_address(int __user *tidptr)
937 current->clear_child_tid = tidptr;
939 return current->pid;
942 static inline void rt_mutex_init_task(struct task_struct *p)
944 spin_lock_init(&p->pi_lock);
945 #ifdef CONFIG_RT_MUTEXES
946 plist_head_init(&p->pi_waiters, &p->pi_lock);
947 p->pi_blocked_on = NULL;
948 #endif
952 * This creates a new process as a copy of the old one,
953 * but does not actually start it yet.
955 * It copies the registers, and all the appropriate
956 * parts of the process environment (as per the clone
957 * flags). The actual kick-off is left to the caller.
959 static struct task_struct *copy_process(unsigned long clone_flags,
960 unsigned long stack_start,
961 struct pt_regs *regs,
962 unsigned long stack_size,
963 int __user *parent_tidptr,
964 int __user *child_tidptr,
965 struct pid *pid)
967 int retval;
968 struct task_struct *p = NULL;
970 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
971 return ERR_PTR(-EINVAL);
974 * Thread groups must share signals as well, and detached threads
975 * can only be started up within the thread group.
977 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
978 return ERR_PTR(-EINVAL);
981 * Shared signal handlers imply shared VM. By way of the above,
982 * thread groups also imply shared VM. Blocking this case allows
983 * for various simplifications in other code.
985 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
986 return ERR_PTR(-EINVAL);
988 retval = security_task_create(clone_flags);
989 if (retval)
990 goto fork_out;
992 retval = -ENOMEM;
993 p = dup_task_struct(current);
994 if (!p)
995 goto fork_out;
997 rt_mutex_init_task(p);
999 #ifdef CONFIG_TRACE_IRQFLAGS
1000 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1001 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1002 #endif
1003 retval = -EAGAIN;
1004 if (atomic_read(&p->user->processes) >=
1005 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1006 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1007 p->user != current->nsproxy->user_ns->root_user)
1008 goto bad_fork_free;
1011 atomic_inc(&p->user->__count);
1012 atomic_inc(&p->user->processes);
1013 get_group_info(p->group_info);
1016 * If multiple threads are within copy_process(), then this check
1017 * triggers too late. This doesn't hurt, the check is only there
1018 * to stop root fork bombs.
1020 if (nr_threads >= max_threads)
1021 goto bad_fork_cleanup_count;
1023 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1024 goto bad_fork_cleanup_count;
1026 if (p->binfmt && !try_module_get(p->binfmt->module))
1027 goto bad_fork_cleanup_put_domain;
1029 p->did_exec = 0;
1030 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1031 copy_flags(clone_flags, p);
1032 p->pid = pid_nr(pid);
1033 retval = -EFAULT;
1034 if (clone_flags & CLONE_PARENT_SETTID)
1035 if (put_user(p->pid, parent_tidptr))
1036 goto bad_fork_cleanup_delays_binfmt;
1038 INIT_LIST_HEAD(&p->children);
1039 INIT_LIST_HEAD(&p->sibling);
1040 p->vfork_done = NULL;
1041 spin_lock_init(&p->alloc_lock);
1043 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1044 init_sigpending(&p->pending);
1046 p->utime = cputime_zero;
1047 p->stime = cputime_zero;
1048 p->prev_utime = cputime_zero;
1049 p->prev_stime = cputime_zero;
1051 #ifdef CONFIG_TASK_XACCT
1052 p->rchar = 0; /* I/O counter: bytes read */
1053 p->wchar = 0; /* I/O counter: bytes written */
1054 p->syscr = 0; /* I/O counter: read syscalls */
1055 p->syscw = 0; /* I/O counter: write syscalls */
1056 #endif
1057 task_io_accounting_init(p);
1058 acct_clear_integrals(p);
1060 p->it_virt_expires = cputime_zero;
1061 p->it_prof_expires = cputime_zero;
1062 p->it_sched_expires = 0;
1063 INIT_LIST_HEAD(&p->cpu_timers[0]);
1064 INIT_LIST_HEAD(&p->cpu_timers[1]);
1065 INIT_LIST_HEAD(&p->cpu_timers[2]);
1067 p->lock_depth = -1; /* -1 = no lock */
1068 do_posix_clock_monotonic_gettime(&p->start_time);
1069 p->real_start_time = p->start_time;
1070 monotonic_to_bootbased(&p->real_start_time);
1071 p->security = NULL;
1072 p->io_context = NULL;
1073 p->io_wait = NULL;
1074 p->audit_context = NULL;
1075 cpuset_fork(p);
1076 #ifdef CONFIG_NUMA
1077 p->mempolicy = mpol_copy(p->mempolicy);
1078 if (IS_ERR(p->mempolicy)) {
1079 retval = PTR_ERR(p->mempolicy);
1080 p->mempolicy = NULL;
1081 goto bad_fork_cleanup_cpuset;
1083 mpol_fix_fork_child_flag(p);
1084 #endif
1085 #ifdef CONFIG_TRACE_IRQFLAGS
1086 p->irq_events = 0;
1087 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1088 p->hardirqs_enabled = 1;
1089 #else
1090 p->hardirqs_enabled = 0;
1091 #endif
1092 p->hardirq_enable_ip = 0;
1093 p->hardirq_enable_event = 0;
1094 p->hardirq_disable_ip = _THIS_IP_;
1095 p->hardirq_disable_event = 0;
1096 p->softirqs_enabled = 1;
1097 p->softirq_enable_ip = _THIS_IP_;
1098 p->softirq_enable_event = 0;
1099 p->softirq_disable_ip = 0;
1100 p->softirq_disable_event = 0;
1101 p->hardirq_context = 0;
1102 p->softirq_context = 0;
1103 #endif
1104 #ifdef CONFIG_LOCKDEP
1105 p->lockdep_depth = 0; /* no locks held yet */
1106 p->curr_chain_key = 0;
1107 p->lockdep_recursion = 0;
1108 #endif
1110 #ifdef CONFIG_DEBUG_MUTEXES
1111 p->blocked_on = NULL; /* not blocked yet */
1112 #endif
1114 p->tgid = p->pid;
1115 if (clone_flags & CLONE_THREAD)
1116 p->tgid = current->tgid;
1118 if ((retval = security_task_alloc(p)))
1119 goto bad_fork_cleanup_policy;
1120 if ((retval = audit_alloc(p)))
1121 goto bad_fork_cleanup_security;
1122 /* copy all the process information */
1123 if ((retval = copy_semundo(clone_flags, p)))
1124 goto bad_fork_cleanup_audit;
1125 if ((retval = copy_files(clone_flags, p)))
1126 goto bad_fork_cleanup_semundo;
1127 if ((retval = copy_fs(clone_flags, p)))
1128 goto bad_fork_cleanup_files;
1129 if ((retval = copy_sighand(clone_flags, p)))
1130 goto bad_fork_cleanup_fs;
1131 if ((retval = copy_signal(clone_flags, p)))
1132 goto bad_fork_cleanup_sighand;
1133 if ((retval = copy_mm(clone_flags, p)))
1134 goto bad_fork_cleanup_signal;
1135 if ((retval = copy_keys(clone_flags, p)))
1136 goto bad_fork_cleanup_mm;
1137 if ((retval = copy_namespaces(clone_flags, p)))
1138 goto bad_fork_cleanup_keys;
1139 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1140 if (retval)
1141 goto bad_fork_cleanup_namespaces;
1143 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1145 * Clear TID on mm_release()?
1147 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1148 p->robust_list = NULL;
1149 #ifdef CONFIG_COMPAT
1150 p->compat_robust_list = NULL;
1151 #endif
1152 INIT_LIST_HEAD(&p->pi_state_list);
1153 p->pi_state_cache = NULL;
1156 * sigaltstack should be cleared when sharing the same VM
1158 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1159 p->sas_ss_sp = p->sas_ss_size = 0;
1162 * Syscall tracing should be turned off in the child regardless
1163 * of CLONE_PTRACE.
1165 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1166 #ifdef TIF_SYSCALL_EMU
1167 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1168 #endif
1170 /* Our parent execution domain becomes current domain
1171 These must match for thread signalling to apply */
1172 p->parent_exec_id = p->self_exec_id;
1174 /* ok, now we should be set up.. */
1175 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1176 p->pdeath_signal = 0;
1177 p->exit_state = 0;
1180 * Ok, make it visible to the rest of the system.
1181 * We dont wake it up yet.
1183 p->group_leader = p;
1184 INIT_LIST_HEAD(&p->thread_group);
1185 INIT_LIST_HEAD(&p->ptrace_children);
1186 INIT_LIST_HEAD(&p->ptrace_list);
1188 /* Perform scheduler related setup. Assign this task to a CPU. */
1189 sched_fork(p, clone_flags);
1191 /* Need tasklist lock for parent etc handling! */
1192 write_lock_irq(&tasklist_lock);
1194 /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
1195 p->ioprio = current->ioprio;
1198 * The task hasn't been attached yet, so its cpus_allowed mask will
1199 * not be changed, nor will its assigned CPU.
1201 * The cpus_allowed mask of the parent may have changed after it was
1202 * copied first time - so re-copy it here, then check the child's CPU
1203 * to ensure it is on a valid CPU (and if not, just force it back to
1204 * parent's CPU). This avoids alot of nasty races.
1206 p->cpus_allowed = current->cpus_allowed;
1207 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1208 !cpu_online(task_cpu(p))))
1209 set_task_cpu(p, smp_processor_id());
1211 /* CLONE_PARENT re-uses the old parent */
1212 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1213 p->real_parent = current->real_parent;
1214 else
1215 p->real_parent = current;
1216 p->parent = p->real_parent;
1218 spin_lock(&current->sighand->siglock);
1221 * Process group and session signals need to be delivered to just the
1222 * parent before the fork or both the parent and the child after the
1223 * fork. Restart if a signal comes in before we add the new process to
1224 * it's process group.
1225 * A fatal signal pending means that current will exit, so the new
1226 * thread can't slip out of an OOM kill (or normal SIGKILL).
1228 recalc_sigpending();
1229 if (signal_pending(current)) {
1230 spin_unlock(&current->sighand->siglock);
1231 write_unlock_irq(&tasklist_lock);
1232 retval = -ERESTARTNOINTR;
1233 goto bad_fork_cleanup_namespaces;
1236 if (clone_flags & CLONE_THREAD) {
1237 p->group_leader = current->group_leader;
1238 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1240 if (!cputime_eq(current->signal->it_virt_expires,
1241 cputime_zero) ||
1242 !cputime_eq(current->signal->it_prof_expires,
1243 cputime_zero) ||
1244 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1245 !list_empty(&current->signal->cpu_timers[0]) ||
1246 !list_empty(&current->signal->cpu_timers[1]) ||
1247 !list_empty(&current->signal->cpu_timers[2])) {
1249 * Have child wake up on its first tick to check
1250 * for process CPU timers.
1252 p->it_prof_expires = jiffies_to_cputime(1);
1256 if (likely(p->pid)) {
1257 add_parent(p);
1258 if (unlikely(p->ptrace & PT_PTRACED))
1259 __ptrace_link(p, current->parent);
1261 if (thread_group_leader(p)) {
1262 p->signal->tty = current->signal->tty;
1263 p->signal->pgrp = process_group(current);
1264 set_signal_session(p->signal, process_session(current));
1265 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1266 attach_pid(p, PIDTYPE_SID, task_session(current));
1268 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1269 __get_cpu_var(process_counts)++;
1271 attach_pid(p, PIDTYPE_PID, pid);
1272 nr_threads++;
1275 total_forks++;
1276 spin_unlock(&current->sighand->siglock);
1277 write_unlock_irq(&tasklist_lock);
1278 proc_fork_connector(p);
1279 return p;
1281 bad_fork_cleanup_namespaces:
1282 exit_task_namespaces(p);
1283 bad_fork_cleanup_keys:
1284 exit_keys(p);
1285 bad_fork_cleanup_mm:
1286 if (p->mm)
1287 mmput(p->mm);
1288 bad_fork_cleanup_signal:
1289 cleanup_signal(p);
1290 bad_fork_cleanup_sighand:
1291 __cleanup_sighand(p->sighand);
1292 bad_fork_cleanup_fs:
1293 exit_fs(p); /* blocking */
1294 bad_fork_cleanup_files:
1295 exit_files(p); /* blocking */
1296 bad_fork_cleanup_semundo:
1297 exit_sem(p);
1298 bad_fork_cleanup_audit:
1299 audit_free(p);
1300 bad_fork_cleanup_security:
1301 security_task_free(p);
1302 bad_fork_cleanup_policy:
1303 #ifdef CONFIG_NUMA
1304 mpol_free(p->mempolicy);
1305 bad_fork_cleanup_cpuset:
1306 #endif
1307 cpuset_exit(p);
1308 bad_fork_cleanup_delays_binfmt:
1309 delayacct_tsk_free(p);
1310 if (p->binfmt)
1311 module_put(p->binfmt->module);
1312 bad_fork_cleanup_put_domain:
1313 module_put(task_thread_info(p)->exec_domain->module);
1314 bad_fork_cleanup_count:
1315 put_group_info(p->group_info);
1316 atomic_dec(&p->user->processes);
1317 free_uid(p->user);
1318 bad_fork_free:
1319 free_task(p);
1320 fork_out:
1321 return ERR_PTR(retval);
1324 noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1326 memset(regs, 0, sizeof(struct pt_regs));
1327 return regs;
1330 struct task_struct * __cpuinit fork_idle(int cpu)
1332 struct task_struct *task;
1333 struct pt_regs regs;
1335 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL,
1336 &init_struct_pid);
1337 if (!IS_ERR(task))
1338 init_idle(task, cpu);
1340 return task;
1343 static inline int fork_traceflag (unsigned clone_flags)
1345 if (clone_flags & CLONE_UNTRACED)
1346 return 0;
1347 else if (clone_flags & CLONE_VFORK) {
1348 if (current->ptrace & PT_TRACE_VFORK)
1349 return PTRACE_EVENT_VFORK;
1350 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1351 if (current->ptrace & PT_TRACE_CLONE)
1352 return PTRACE_EVENT_CLONE;
1353 } else if (current->ptrace & PT_TRACE_FORK)
1354 return PTRACE_EVENT_FORK;
1356 return 0;
1360 * Ok, this is the main fork-routine.
1362 * It copies the process, and if successful kick-starts
1363 * it and waits for it to finish using the VM if required.
1365 long do_fork(unsigned long clone_flags,
1366 unsigned long stack_start,
1367 struct pt_regs *regs,
1368 unsigned long stack_size,
1369 int __user *parent_tidptr,
1370 int __user *child_tidptr)
1372 struct task_struct *p;
1373 int trace = 0;
1374 struct pid *pid = alloc_pid();
1375 long nr;
1377 if (!pid)
1378 return -EAGAIN;
1379 nr = pid->nr;
1380 if (unlikely(current->ptrace)) {
1381 trace = fork_traceflag (clone_flags);
1382 if (trace)
1383 clone_flags |= CLONE_PTRACE;
1386 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1388 * Do this prior waking up the new thread - the thread pointer
1389 * might get invalid after that point, if the thread exits quickly.
1391 if (!IS_ERR(p)) {
1392 struct completion vfork;
1394 if (clone_flags & CLONE_VFORK) {
1395 p->vfork_done = &vfork;
1396 init_completion(&vfork);
1399 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1401 * We'll start up with an immediate SIGSTOP.
1403 sigaddset(&p->pending.signal, SIGSTOP);
1404 set_tsk_thread_flag(p, TIF_SIGPENDING);
1407 if (!(clone_flags & CLONE_STOPPED))
1408 wake_up_new_task(p, clone_flags);
1409 else
1410 p->state = TASK_STOPPED;
1412 if (unlikely (trace)) {
1413 current->ptrace_message = nr;
1414 ptrace_notify ((trace << 8) | SIGTRAP);
1417 if (clone_flags & CLONE_VFORK) {
1418 freezer_do_not_count();
1419 wait_for_completion(&vfork);
1420 freezer_count();
1421 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1422 current->ptrace_message = nr;
1423 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1426 } else {
1427 free_pid(pid);
1428 nr = PTR_ERR(p);
1430 return nr;
1433 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1434 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1435 #endif
1437 static void sighand_ctor(void *data, struct kmem_cache *cachep,
1438 unsigned long flags)
1440 struct sighand_struct *sighand = data;
1442 spin_lock_init(&sighand->siglock);
1443 init_waitqueue_head(&sighand->signalfd_wqh);
1446 void __init proc_caches_init(void)
1448 sighand_cachep = kmem_cache_create("sighand_cache",
1449 sizeof(struct sighand_struct), 0,
1450 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1451 sighand_ctor);
1452 signal_cachep = kmem_cache_create("signal_cache",
1453 sizeof(struct signal_struct), 0,
1454 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1455 files_cachep = kmem_cache_create("files_cache",
1456 sizeof(struct files_struct), 0,
1457 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1458 fs_cachep = kmem_cache_create("fs_cache",
1459 sizeof(struct fs_struct), 0,
1460 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1461 vm_area_cachep = kmem_cache_create("vm_area_struct",
1462 sizeof(struct vm_area_struct), 0,
1463 SLAB_PANIC, NULL);
1464 mm_cachep = kmem_cache_create("mm_struct",
1465 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1466 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1470 * Check constraints on flags passed to the unshare system call and
1471 * force unsharing of additional process context as appropriate.
1473 static inline void check_unshare_flags(unsigned long *flags_ptr)
1476 * If unsharing a thread from a thread group, must also
1477 * unshare vm.
1479 if (*flags_ptr & CLONE_THREAD)
1480 *flags_ptr |= CLONE_VM;
1483 * If unsharing vm, must also unshare signal handlers.
1485 if (*flags_ptr & CLONE_VM)
1486 *flags_ptr |= CLONE_SIGHAND;
1489 * If unsharing signal handlers and the task was created
1490 * using CLONE_THREAD, then must unshare the thread
1492 if ((*flags_ptr & CLONE_SIGHAND) &&
1493 (atomic_read(&current->signal->count) > 1))
1494 *flags_ptr |= CLONE_THREAD;
1497 * If unsharing namespace, must also unshare filesystem information.
1499 if (*flags_ptr & CLONE_NEWNS)
1500 *flags_ptr |= CLONE_FS;
1504 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1506 static int unshare_thread(unsigned long unshare_flags)
1508 if (unshare_flags & CLONE_THREAD)
1509 return -EINVAL;
1511 return 0;
1515 * Unshare the filesystem structure if it is being shared
1517 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1519 struct fs_struct *fs = current->fs;
1521 if ((unshare_flags & CLONE_FS) &&
1522 (fs && atomic_read(&fs->count) > 1)) {
1523 *new_fsp = __copy_fs_struct(current->fs);
1524 if (!*new_fsp)
1525 return -ENOMEM;
1528 return 0;
1532 * Unsharing of sighand is not supported yet
1534 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1536 struct sighand_struct *sigh = current->sighand;
1538 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1539 return -EINVAL;
1540 else
1541 return 0;
1545 * Unshare vm if it is being shared
1547 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1549 struct mm_struct *mm = current->mm;
1551 if ((unshare_flags & CLONE_VM) &&
1552 (mm && atomic_read(&mm->mm_users) > 1)) {
1553 return -EINVAL;
1556 return 0;
1560 * Unshare file descriptor table if it is being shared
1562 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1564 struct files_struct *fd = current->files;
1565 int error = 0;
1567 if ((unshare_flags & CLONE_FILES) &&
1568 (fd && atomic_read(&fd->count) > 1)) {
1569 *new_fdp = dup_fd(fd, &error);
1570 if (!*new_fdp)
1571 return error;
1574 return 0;
1578 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1579 * supported yet
1581 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1583 if (unshare_flags & CLONE_SYSVSEM)
1584 return -EINVAL;
1586 return 0;
1590 * unshare allows a process to 'unshare' part of the process
1591 * context which was originally shared using clone. copy_*
1592 * functions used by do_fork() cannot be used here directly
1593 * because they modify an inactive task_struct that is being
1594 * constructed. Here we are modifying the current, active,
1595 * task_struct.
1597 asmlinkage long sys_unshare(unsigned long unshare_flags)
1599 int err = 0;
1600 struct fs_struct *fs, *new_fs = NULL;
1601 struct sighand_struct *new_sigh = NULL;
1602 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1603 struct files_struct *fd, *new_fd = NULL;
1604 struct sem_undo_list *new_ulist = NULL;
1605 struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL;
1607 check_unshare_flags(&unshare_flags);
1609 /* Return -EINVAL for all unsupported flags */
1610 err = -EINVAL;
1611 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1612 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1613 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER))
1614 goto bad_unshare_out;
1616 if ((err = unshare_thread(unshare_flags)))
1617 goto bad_unshare_out;
1618 if ((err = unshare_fs(unshare_flags, &new_fs)))
1619 goto bad_unshare_cleanup_thread;
1620 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1621 goto bad_unshare_cleanup_fs;
1622 if ((err = unshare_vm(unshare_flags, &new_mm)))
1623 goto bad_unshare_cleanup_sigh;
1624 if ((err = unshare_fd(unshare_flags, &new_fd)))
1625 goto bad_unshare_cleanup_vm;
1626 if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1627 goto bad_unshare_cleanup_fd;
1628 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1629 new_fs)))
1630 goto bad_unshare_cleanup_semundo;
1632 if (new_fs || new_mm || new_fd || new_ulist || new_nsproxy) {
1634 task_lock(current);
1636 if (new_nsproxy) {
1637 old_nsproxy = current->nsproxy;
1638 current->nsproxy = new_nsproxy;
1639 new_nsproxy = old_nsproxy;
1642 if (new_fs) {
1643 fs = current->fs;
1644 current->fs = new_fs;
1645 new_fs = fs;
1648 if (new_mm) {
1649 mm = current->mm;
1650 active_mm = current->active_mm;
1651 current->mm = new_mm;
1652 current->active_mm = new_mm;
1653 activate_mm(active_mm, new_mm);
1654 new_mm = mm;
1657 if (new_fd) {
1658 fd = current->files;
1659 current->files = new_fd;
1660 new_fd = fd;
1663 task_unlock(current);
1666 if (new_nsproxy)
1667 put_nsproxy(new_nsproxy);
1669 bad_unshare_cleanup_semundo:
1670 bad_unshare_cleanup_fd:
1671 if (new_fd)
1672 put_files_struct(new_fd);
1674 bad_unshare_cleanup_vm:
1675 if (new_mm)
1676 mmput(new_mm);
1678 bad_unshare_cleanup_sigh:
1679 if (new_sigh)
1680 if (atomic_dec_and_test(&new_sigh->count))
1681 kmem_cache_free(sighand_cachep, new_sigh);
1683 bad_unshare_cleanup_fs:
1684 if (new_fs)
1685 put_fs_struct(new_fs);
1687 bad_unshare_cleanup_thread:
1688 bad_unshare_out:
1689 return err;