2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
53 #include <asm/uaccess.h>
55 #include <trace/events/timer.h>
60 * There are more clockids then hrtimer bases. Thus, we index
61 * into the timer bases by the hrtimer_base_type enum. When trying
62 * to reach a base using a clockid, hrtimer_clockid_to_base()
63 * is used to convert from clockid to the proper hrtimer_base_type.
65 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
68 .lock
= __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases
.lock
),
72 .index
= HRTIMER_BASE_MONOTONIC
,
73 .clockid
= CLOCK_MONOTONIC
,
74 .get_time
= &ktime_get
,
75 .resolution
= KTIME_LOW_RES
,
78 .index
= HRTIMER_BASE_REALTIME
,
79 .clockid
= CLOCK_REALTIME
,
80 .get_time
= &ktime_get_real
,
81 .resolution
= KTIME_LOW_RES
,
84 .index
= HRTIMER_BASE_BOOTTIME
,
85 .clockid
= CLOCK_BOOTTIME
,
86 .get_time
= &ktime_get_boottime
,
87 .resolution
= KTIME_LOW_RES
,
90 .index
= HRTIMER_BASE_TAI
,
92 .get_time
= &ktime_get_clocktai
,
93 .resolution
= KTIME_LOW_RES
,
98 static const int hrtimer_clock_to_base_table
[MAX_CLOCKS
] = {
99 [CLOCK_REALTIME
] = HRTIMER_BASE_REALTIME
,
100 [CLOCK_MONOTONIC
] = HRTIMER_BASE_MONOTONIC
,
101 [CLOCK_BOOTTIME
] = HRTIMER_BASE_BOOTTIME
,
102 [CLOCK_TAI
] = HRTIMER_BASE_TAI
,
105 static inline int hrtimer_clockid_to_base(clockid_t clock_id
)
107 return hrtimer_clock_to_base_table
[clock_id
];
112 * Get the coarse grained time at the softirq based on xtime and
115 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base
*base
)
117 ktime_t xtim
, mono
, boot
;
118 struct timespec xts
, tom
, slp
;
121 get_xtime_and_monotonic_and_sleep_offset(&xts
, &tom
, &slp
);
122 tai_offset
= timekeeping_get_tai_offset();
124 xtim
= timespec_to_ktime(xts
);
125 mono
= ktime_add(xtim
, timespec_to_ktime(tom
));
126 boot
= ktime_add(mono
, timespec_to_ktime(slp
));
127 base
->clock_base
[HRTIMER_BASE_REALTIME
].softirq_time
= xtim
;
128 base
->clock_base
[HRTIMER_BASE_MONOTONIC
].softirq_time
= mono
;
129 base
->clock_base
[HRTIMER_BASE_BOOTTIME
].softirq_time
= boot
;
130 base
->clock_base
[HRTIMER_BASE_TAI
].softirq_time
=
131 ktime_add(xtim
, ktime_set(tai_offset
, 0));
135 * Functions and macros which are different for UP/SMP systems are kept in a
141 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
142 * means that all timers which are tied to this base via timer->base are
143 * locked, and the base itself is locked too.
145 * So __run_timers/migrate_timers can safely modify all timers which could
146 * be found on the lists/queues.
148 * When the timer's base is locked, and the timer removed from list, it is
149 * possible to set timer->base = NULL and drop the lock: the timer remains
153 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
154 unsigned long *flags
)
156 struct hrtimer_clock_base
*base
;
160 if (likely(base
!= NULL
)) {
161 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
162 if (likely(base
== timer
->base
))
164 /* The timer has migrated to another CPU: */
165 raw_spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
173 * Get the preferred target CPU for NOHZ
175 static int hrtimer_get_target(int this_cpu
, int pinned
)
177 #ifdef CONFIG_NO_HZ_COMMON
178 if (!pinned
&& get_sysctl_timer_migration() && idle_cpu(this_cpu
))
179 return get_nohz_timer_target();
185 * With HIGHRES=y we do not migrate the timer when it is expiring
186 * before the next event on the target cpu because we cannot reprogram
187 * the target cpu hardware and we would cause it to fire late.
189 * Called with cpu_base->lock of target cpu held.
192 hrtimer_check_target(struct hrtimer
*timer
, struct hrtimer_clock_base
*new_base
)
194 #ifdef CONFIG_HIGH_RES_TIMERS
197 if (!new_base
->cpu_base
->hres_active
)
200 expires
= ktime_sub(hrtimer_get_expires(timer
), new_base
->offset
);
201 return expires
.tv64
<= new_base
->cpu_base
->expires_next
.tv64
;
208 * Switch the timer base to the current CPU when possible.
210 static inline struct hrtimer_clock_base
*
211 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
,
214 struct hrtimer_clock_base
*new_base
;
215 struct hrtimer_cpu_base
*new_cpu_base
;
216 int this_cpu
= smp_processor_id();
217 int cpu
= hrtimer_get_target(this_cpu
, pinned
);
218 int basenum
= base
->index
;
221 new_cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
222 new_base
= &new_cpu_base
->clock_base
[basenum
];
224 if (base
!= new_base
) {
226 * We are trying to move timer to new_base.
227 * However we can't change timer's base while it is running,
228 * so we keep it on the same CPU. No hassle vs. reprogramming
229 * the event source in the high resolution case. The softirq
230 * code will take care of this when the timer function has
231 * completed. There is no conflict as we hold the lock until
232 * the timer is enqueued.
234 if (unlikely(hrtimer_callback_running(timer
)))
237 /* See the comment in lock_timer_base() */
239 raw_spin_unlock(&base
->cpu_base
->lock
);
240 raw_spin_lock(&new_base
->cpu_base
->lock
);
242 if (cpu
!= this_cpu
&& hrtimer_check_target(timer
, new_base
)) {
244 raw_spin_unlock(&new_base
->cpu_base
->lock
);
245 raw_spin_lock(&base
->cpu_base
->lock
);
249 timer
->base
= new_base
;
251 if (cpu
!= this_cpu
&& hrtimer_check_target(timer
, new_base
)) {
259 #else /* CONFIG_SMP */
261 static inline struct hrtimer_clock_base
*
262 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
264 struct hrtimer_clock_base
*base
= timer
->base
;
266 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
271 # define switch_hrtimer_base(t, b, p) (b)
273 #endif /* !CONFIG_SMP */
276 * Functions for the union type storage format of ktime_t which are
277 * too large for inlining:
279 #if BITS_PER_LONG < 64
280 # ifndef CONFIG_KTIME_SCALAR
282 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
284 * @nsec: the scalar nsec value to add
286 * Returns the sum of kt and nsec in ktime_t format
288 ktime_t
ktime_add_ns(const ktime_t kt
, u64 nsec
)
292 if (likely(nsec
< NSEC_PER_SEC
)) {
295 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
297 /* Make sure nsec fits into long */
298 if (unlikely(nsec
> KTIME_SEC_MAX
))
299 return (ktime_t
){ .tv64
= KTIME_MAX
};
301 tmp
= ktime_set((long)nsec
, rem
);
304 return ktime_add(kt
, tmp
);
307 EXPORT_SYMBOL_GPL(ktime_add_ns
);
310 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
312 * @nsec: the scalar nsec value to subtract
314 * Returns the subtraction of @nsec from @kt in ktime_t format
316 ktime_t
ktime_sub_ns(const ktime_t kt
, u64 nsec
)
320 if (likely(nsec
< NSEC_PER_SEC
)) {
323 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
325 tmp
= ktime_set((long)nsec
, rem
);
328 return ktime_sub(kt
, tmp
);
331 EXPORT_SYMBOL_GPL(ktime_sub_ns
);
332 # endif /* !CONFIG_KTIME_SCALAR */
335 * Divide a ktime value by a nanosecond value
337 u64
ktime_divns(const ktime_t kt
, s64 div
)
342 dclc
= ktime_to_ns(kt
);
343 /* Make sure the divisor is less than 2^32: */
349 do_div(dclc
, (unsigned long) div
);
353 #endif /* BITS_PER_LONG >= 64 */
356 * Add two ktime values and do a safety check for overflow:
358 ktime_t
ktime_add_safe(const ktime_t lhs
, const ktime_t rhs
)
360 ktime_t res
= ktime_add(lhs
, rhs
);
363 * We use KTIME_SEC_MAX here, the maximum timeout which we can
364 * return to user space in a timespec:
366 if (res
.tv64
< 0 || res
.tv64
< lhs
.tv64
|| res
.tv64
< rhs
.tv64
)
367 res
= ktime_set(KTIME_SEC_MAX
, 0);
372 EXPORT_SYMBOL_GPL(ktime_add_safe
);
374 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
376 static struct debug_obj_descr hrtimer_debug_descr
;
378 static void *hrtimer_debug_hint(void *addr
)
380 return ((struct hrtimer
*) addr
)->function
;
384 * fixup_init is called when:
385 * - an active object is initialized
387 static int hrtimer_fixup_init(void *addr
, enum debug_obj_state state
)
389 struct hrtimer
*timer
= addr
;
392 case ODEBUG_STATE_ACTIVE
:
393 hrtimer_cancel(timer
);
394 debug_object_init(timer
, &hrtimer_debug_descr
);
402 * fixup_activate is called when:
403 * - an active object is activated
404 * - an unknown object is activated (might be a statically initialized object)
406 static int hrtimer_fixup_activate(void *addr
, enum debug_obj_state state
)
410 case ODEBUG_STATE_NOTAVAILABLE
:
414 case ODEBUG_STATE_ACTIVE
:
423 * fixup_free is called when:
424 * - an active object is freed
426 static int hrtimer_fixup_free(void *addr
, enum debug_obj_state state
)
428 struct hrtimer
*timer
= addr
;
431 case ODEBUG_STATE_ACTIVE
:
432 hrtimer_cancel(timer
);
433 debug_object_free(timer
, &hrtimer_debug_descr
);
440 static struct debug_obj_descr hrtimer_debug_descr
= {
442 .debug_hint
= hrtimer_debug_hint
,
443 .fixup_init
= hrtimer_fixup_init
,
444 .fixup_activate
= hrtimer_fixup_activate
,
445 .fixup_free
= hrtimer_fixup_free
,
448 static inline void debug_hrtimer_init(struct hrtimer
*timer
)
450 debug_object_init(timer
, &hrtimer_debug_descr
);
453 static inline void debug_hrtimer_activate(struct hrtimer
*timer
)
455 debug_object_activate(timer
, &hrtimer_debug_descr
);
458 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
)
460 debug_object_deactivate(timer
, &hrtimer_debug_descr
);
463 static inline void debug_hrtimer_free(struct hrtimer
*timer
)
465 debug_object_free(timer
, &hrtimer_debug_descr
);
468 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
469 enum hrtimer_mode mode
);
471 void hrtimer_init_on_stack(struct hrtimer
*timer
, clockid_t clock_id
,
472 enum hrtimer_mode mode
)
474 debug_object_init_on_stack(timer
, &hrtimer_debug_descr
);
475 __hrtimer_init(timer
, clock_id
, mode
);
477 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack
);
479 void destroy_hrtimer_on_stack(struct hrtimer
*timer
)
481 debug_object_free(timer
, &hrtimer_debug_descr
);
485 static inline void debug_hrtimer_init(struct hrtimer
*timer
) { }
486 static inline void debug_hrtimer_activate(struct hrtimer
*timer
) { }
487 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
) { }
491 debug_init(struct hrtimer
*timer
, clockid_t clockid
,
492 enum hrtimer_mode mode
)
494 debug_hrtimer_init(timer
);
495 trace_hrtimer_init(timer
, clockid
, mode
);
498 static inline void debug_activate(struct hrtimer
*timer
)
500 debug_hrtimer_activate(timer
);
501 trace_hrtimer_start(timer
);
504 static inline void debug_deactivate(struct hrtimer
*timer
)
506 debug_hrtimer_deactivate(timer
);
507 trace_hrtimer_cancel(timer
);
510 /* High resolution timer related functions */
511 #ifdef CONFIG_HIGH_RES_TIMERS
514 * High resolution timer enabled ?
516 static int hrtimer_hres_enabled __read_mostly
= 1;
519 * Enable / Disable high resolution mode
521 static int __init
setup_hrtimer_hres(char *str
)
523 if (!strcmp(str
, "off"))
524 hrtimer_hres_enabled
= 0;
525 else if (!strcmp(str
, "on"))
526 hrtimer_hres_enabled
= 1;
532 __setup("highres=", setup_hrtimer_hres
);
535 * hrtimer_high_res_enabled - query, if the highres mode is enabled
537 static inline int hrtimer_is_hres_enabled(void)
539 return hrtimer_hres_enabled
;
543 * Is the high resolution mode active ?
545 static inline int hrtimer_hres_active(void)
547 return __this_cpu_read(hrtimer_bases
.hres_active
);
551 * Reprogram the event source with checking both queues for the
553 * Called with interrupts disabled and base->lock held
556 hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
, int skip_equal
)
559 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
560 ktime_t expires
, expires_next
;
562 expires_next
.tv64
= KTIME_MAX
;
564 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
565 struct hrtimer
*timer
;
566 struct timerqueue_node
*next
;
568 next
= timerqueue_getnext(&base
->active
);
571 timer
= container_of(next
, struct hrtimer
, node
);
573 expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
575 * clock_was_set() has changed base->offset so the
576 * result might be negative. Fix it up to prevent a
577 * false positive in clockevents_program_event()
579 if (expires
.tv64
< 0)
581 if (expires
.tv64
< expires_next
.tv64
)
582 expires_next
= expires
;
585 if (skip_equal
&& expires_next
.tv64
== cpu_base
->expires_next
.tv64
)
588 cpu_base
->expires_next
.tv64
= expires_next
.tv64
;
591 * If a hang was detected in the last timer interrupt then we
592 * leave the hang delay active in the hardware. We want the
593 * system to make progress. That also prevents the following
595 * T1 expires 50ms from now
596 * T2 expires 5s from now
598 * T1 is removed, so this code is called and would reprogram
599 * the hardware to 5s from now. Any hrtimer_start after that
600 * will not reprogram the hardware due to hang_detected being
601 * set. So we'd effectivly block all timers until the T2 event
604 if (cpu_base
->hang_detected
)
607 if (cpu_base
->expires_next
.tv64
!= KTIME_MAX
)
608 tick_program_event(cpu_base
->expires_next
, 1);
612 * Shared reprogramming for clock_realtime and clock_monotonic
614 * When a timer is enqueued and expires earlier than the already enqueued
615 * timers, we have to check, whether it expires earlier than the timer for
616 * which the clock event device was armed.
618 * Called with interrupts disabled and base->cpu_base.lock held
620 static int hrtimer_reprogram(struct hrtimer
*timer
,
621 struct hrtimer_clock_base
*base
)
623 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
624 ktime_t expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
627 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer
) < 0);
630 * When the callback is running, we do not reprogram the clock event
631 * device. The timer callback is either running on a different CPU or
632 * the callback is executed in the hrtimer_interrupt context. The
633 * reprogramming is handled either by the softirq, which called the
634 * callback or at the end of the hrtimer_interrupt.
636 if (hrtimer_callback_running(timer
))
640 * CLOCK_REALTIME timer might be requested with an absolute
641 * expiry time which is less than base->offset. Nothing wrong
642 * about that, just avoid to call into the tick code, which
643 * has now objections against negative expiry values.
645 if (expires
.tv64
< 0)
648 if (expires
.tv64
>= cpu_base
->expires_next
.tv64
)
652 * If a hang was detected in the last timer interrupt then we
653 * do not schedule a timer which is earlier than the expiry
654 * which we enforced in the hang detection. We want the system
657 if (cpu_base
->hang_detected
)
661 * Clockevents returns -ETIME, when the event was in the past.
663 res
= tick_program_event(expires
, 0);
664 if (!IS_ERR_VALUE(res
))
665 cpu_base
->expires_next
= expires
;
670 * Initialize the high resolution related parts of cpu_base
672 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
)
674 base
->expires_next
.tv64
= KTIME_MAX
;
675 base
->hres_active
= 0;
679 * When High resolution timers are active, try to reprogram. Note, that in case
680 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
681 * check happens. The timer gets enqueued into the rbtree. The reprogramming
682 * and expiry check is done in the hrtimer_interrupt or in the softirq.
684 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
685 struct hrtimer_clock_base
*base
)
687 return base
->cpu_base
->hres_active
&& hrtimer_reprogram(timer
, base
);
690 static inline ktime_t
hrtimer_update_base(struct hrtimer_cpu_base
*base
)
692 ktime_t
*offs_real
= &base
->clock_base
[HRTIMER_BASE_REALTIME
].offset
;
693 ktime_t
*offs_boot
= &base
->clock_base
[HRTIMER_BASE_BOOTTIME
].offset
;
694 ktime_t
*offs_tai
= &base
->clock_base
[HRTIMER_BASE_TAI
].offset
;
696 return ktime_get_update_offsets(offs_real
, offs_boot
, offs_tai
);
700 * Retrigger next event is called after clock was set
702 * Called with interrupts disabled via on_each_cpu()
704 static void retrigger_next_event(void *arg
)
706 struct hrtimer_cpu_base
*base
= &__get_cpu_var(hrtimer_bases
);
708 if (!hrtimer_hres_active())
711 raw_spin_lock(&base
->lock
);
712 hrtimer_update_base(base
);
713 hrtimer_force_reprogram(base
, 0);
714 raw_spin_unlock(&base
->lock
);
718 * Switch to high resolution mode
720 static int hrtimer_switch_to_hres(void)
722 int i
, cpu
= smp_processor_id();
723 struct hrtimer_cpu_base
*base
= &per_cpu(hrtimer_bases
, cpu
);
726 if (base
->hres_active
)
729 local_irq_save(flags
);
731 if (tick_init_highres()) {
732 local_irq_restore(flags
);
733 printk(KERN_WARNING
"Could not switch to high resolution "
734 "mode on CPU %d\n", cpu
);
737 base
->hres_active
= 1;
738 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
739 base
->clock_base
[i
].resolution
= KTIME_HIGH_RES
;
741 tick_setup_sched_timer();
742 /* "Retrigger" the interrupt to get things going */
743 retrigger_next_event(NULL
);
744 local_irq_restore(flags
);
748 static void clock_was_set_work(struct work_struct
*work
)
753 static DECLARE_WORK(hrtimer_work
, clock_was_set_work
);
756 * Called from timekeeping and resume code to reprogramm the hrtimer
757 * interrupt device on all cpus.
759 void clock_was_set_delayed(void)
761 schedule_work(&hrtimer_work
);
766 static inline int hrtimer_hres_active(void) { return 0; }
767 static inline int hrtimer_is_hres_enabled(void) { return 0; }
768 static inline int hrtimer_switch_to_hres(void) { return 0; }
770 hrtimer_force_reprogram(struct hrtimer_cpu_base
*base
, int skip_equal
) { }
771 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
772 struct hrtimer_clock_base
*base
)
776 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
) { }
777 static inline void retrigger_next_event(void *arg
) { }
779 #endif /* CONFIG_HIGH_RES_TIMERS */
782 * Clock realtime was set
784 * Change the offset of the realtime clock vs. the monotonic
787 * We might have to reprogram the high resolution timer interrupt. On
788 * SMP we call the architecture specific code to retrigger _all_ high
789 * resolution timer interrupts. On UP we just disable interrupts and
790 * call the high resolution interrupt code.
792 void clock_was_set(void)
794 #ifdef CONFIG_HIGH_RES_TIMERS
795 /* Retrigger the CPU local events everywhere */
796 on_each_cpu(retrigger_next_event
, NULL
, 1);
798 timerfd_clock_was_set();
802 * During resume we might have to reprogram the high resolution timer
803 * interrupt on all online CPUs. However, all other CPUs will be
804 * stopped with IRQs interrupts disabled so the clock_was_set() call
807 void hrtimers_resume(void)
809 WARN_ONCE(!irqs_disabled(),
810 KERN_INFO
"hrtimers_resume() called with IRQs enabled!");
812 /* Retrigger on the local CPU */
813 retrigger_next_event(NULL
);
814 /* And schedule a retrigger for all others */
815 clock_was_set_delayed();
818 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer
*timer
)
820 #ifdef CONFIG_TIMER_STATS
821 if (timer
->start_site
)
823 timer
->start_site
= __builtin_return_address(0);
824 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
825 timer
->start_pid
= current
->pid
;
829 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer
*timer
)
831 #ifdef CONFIG_TIMER_STATS
832 timer
->start_site
= NULL
;
836 static inline void timer_stats_account_hrtimer(struct hrtimer
*timer
)
838 #ifdef CONFIG_TIMER_STATS
839 if (likely(!timer_stats_active
))
841 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
842 timer
->function
, timer
->start_comm
, 0);
847 * Counterpart to lock_hrtimer_base above:
850 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
852 raw_spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
856 * hrtimer_forward - forward the timer expiry
857 * @timer: hrtimer to forward
858 * @now: forward past this time
859 * @interval: the interval to forward
861 * Forward the timer expiry so it will expire in the future.
862 * Returns the number of overruns.
864 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
869 delta
= ktime_sub(now
, hrtimer_get_expires(timer
));
874 if (interval
.tv64
< timer
->base
->resolution
.tv64
)
875 interval
.tv64
= timer
->base
->resolution
.tv64
;
877 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
878 s64 incr
= ktime_to_ns(interval
);
880 orun
= ktime_divns(delta
, incr
);
881 hrtimer_add_expires_ns(timer
, incr
* orun
);
882 if (hrtimer_get_expires_tv64(timer
) > now
.tv64
)
885 * This (and the ktime_add() below) is the
886 * correction for exact:
890 hrtimer_add_expires(timer
, interval
);
894 EXPORT_SYMBOL_GPL(hrtimer_forward
);
897 * enqueue_hrtimer - internal function to (re)start a timer
899 * The timer is inserted in expiry order. Insertion into the
900 * red black tree is O(log(n)). Must hold the base lock.
902 * Returns 1 when the new timer is the leftmost timer in the tree.
904 static int enqueue_hrtimer(struct hrtimer
*timer
,
905 struct hrtimer_clock_base
*base
)
907 debug_activate(timer
);
909 timerqueue_add(&base
->active
, &timer
->node
);
910 base
->cpu_base
->active_bases
|= 1 << base
->index
;
913 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
914 * state of a possibly running callback.
916 timer
->state
|= HRTIMER_STATE_ENQUEUED
;
918 return (&timer
->node
== base
->active
.next
);
922 * __remove_hrtimer - internal function to remove a timer
924 * Caller must hold the base lock.
926 * High resolution timer mode reprograms the clock event device when the
927 * timer is the one which expires next. The caller can disable this by setting
928 * reprogram to zero. This is useful, when the context does a reprogramming
929 * anyway (e.g. timer interrupt)
931 static void __remove_hrtimer(struct hrtimer
*timer
,
932 struct hrtimer_clock_base
*base
,
933 unsigned long newstate
, int reprogram
)
935 struct timerqueue_node
*next_timer
;
936 if (!(timer
->state
& HRTIMER_STATE_ENQUEUED
))
939 next_timer
= timerqueue_getnext(&base
->active
);
940 timerqueue_del(&base
->active
, &timer
->node
);
941 if (&timer
->node
== next_timer
) {
942 #ifdef CONFIG_HIGH_RES_TIMERS
943 /* Reprogram the clock event device. if enabled */
944 if (reprogram
&& hrtimer_hres_active()) {
947 expires
= ktime_sub(hrtimer_get_expires(timer
),
949 if (base
->cpu_base
->expires_next
.tv64
== expires
.tv64
)
950 hrtimer_force_reprogram(base
->cpu_base
, 1);
954 if (!timerqueue_getnext(&base
->active
))
955 base
->cpu_base
->active_bases
&= ~(1 << base
->index
);
957 timer
->state
= newstate
;
961 * remove hrtimer, called with base lock held
964 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
966 if (hrtimer_is_queued(timer
)) {
971 * Remove the timer and force reprogramming when high
972 * resolution mode is active and the timer is on the current
973 * CPU. If we remove a timer on another CPU, reprogramming is
974 * skipped. The interrupt event on this CPU is fired and
975 * reprogramming happens in the interrupt handler. This is a
976 * rare case and less expensive than a smp call.
978 debug_deactivate(timer
);
979 timer_stats_hrtimer_clear_start_info(timer
);
980 reprogram
= base
->cpu_base
== &__get_cpu_var(hrtimer_bases
);
982 * We must preserve the CALLBACK state flag here,
983 * otherwise we could move the timer base in
984 * switch_hrtimer_base.
986 state
= timer
->state
& HRTIMER_STATE_CALLBACK
;
987 __remove_hrtimer(timer
, base
, state
, reprogram
);
993 int __hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
994 unsigned long delta_ns
, const enum hrtimer_mode mode
,
997 struct hrtimer_clock_base
*base
, *new_base
;
1001 base
= lock_hrtimer_base(timer
, &flags
);
1003 /* Remove an active timer from the queue: */
1004 ret
= remove_hrtimer(timer
, base
);
1006 if (mode
& HRTIMER_MODE_REL
) {
1007 tim
= ktime_add_safe(tim
, base
->get_time());
1009 * CONFIG_TIME_LOW_RES is a temporary way for architectures
1010 * to signal that they simply return xtime in
1011 * do_gettimeoffset(). In this case we want to round up by
1012 * resolution when starting a relative timer, to avoid short
1013 * timeouts. This will go away with the GTOD framework.
1015 #ifdef CONFIG_TIME_LOW_RES
1016 tim
= ktime_add_safe(tim
, base
->resolution
);
1020 hrtimer_set_expires_range_ns(timer
, tim
, delta_ns
);
1022 /* Switch the timer base, if necessary: */
1023 new_base
= switch_hrtimer_base(timer
, base
, mode
& HRTIMER_MODE_PINNED
);
1025 timer_stats_hrtimer_set_start_info(timer
);
1027 leftmost
= enqueue_hrtimer(timer
, new_base
);
1030 * Only allow reprogramming if the new base is on this CPU.
1031 * (it might still be on another CPU if the timer was pending)
1033 * XXX send_remote_softirq() ?
1035 if (leftmost
&& new_base
->cpu_base
== &__get_cpu_var(hrtimer_bases
)
1036 && hrtimer_enqueue_reprogram(timer
, new_base
)) {
1039 * We need to drop cpu_base->lock to avoid a
1040 * lock ordering issue vs. rq->lock.
1042 raw_spin_unlock(&new_base
->cpu_base
->lock
);
1043 raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
1044 local_irq_restore(flags
);
1047 __raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
1051 unlock_hrtimer_base(timer
, &flags
);
1057 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1058 * @timer: the timer to be added
1060 * @delta_ns: "slack" range for the timer
1061 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1062 * relative (HRTIMER_MODE_REL)
1066 * 1 when the timer was active
1068 int hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
1069 unsigned long delta_ns
, const enum hrtimer_mode mode
)
1071 return __hrtimer_start_range_ns(timer
, tim
, delta_ns
, mode
, 1);
1073 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns
);
1076 * hrtimer_start - (re)start an hrtimer on the current CPU
1077 * @timer: the timer to be added
1079 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1080 * relative (HRTIMER_MODE_REL)
1084 * 1 when the timer was active
1087 hrtimer_start(struct hrtimer
*timer
, ktime_t tim
, const enum hrtimer_mode mode
)
1089 return __hrtimer_start_range_ns(timer
, tim
, 0, mode
, 1);
1091 EXPORT_SYMBOL_GPL(hrtimer_start
);
1095 * hrtimer_try_to_cancel - try to deactivate a timer
1096 * @timer: hrtimer to stop
1099 * 0 when the timer was not active
1100 * 1 when the timer was active
1101 * -1 when the timer is currently excuting the callback function and
1104 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
1106 struct hrtimer_clock_base
*base
;
1107 unsigned long flags
;
1110 base
= lock_hrtimer_base(timer
, &flags
);
1112 if (!hrtimer_callback_running(timer
))
1113 ret
= remove_hrtimer(timer
, base
);
1115 unlock_hrtimer_base(timer
, &flags
);
1120 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
1123 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1124 * @timer: the timer to be cancelled
1127 * 0 when the timer was not active
1128 * 1 when the timer was active
1130 int hrtimer_cancel(struct hrtimer
*timer
)
1133 int ret
= hrtimer_try_to_cancel(timer
);
1140 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
1143 * hrtimer_get_remaining - get remaining time for the timer
1144 * @timer: the timer to read
1146 ktime_t
hrtimer_get_remaining(const struct hrtimer
*timer
)
1148 unsigned long flags
;
1151 lock_hrtimer_base(timer
, &flags
);
1152 rem
= hrtimer_expires_remaining(timer
);
1153 unlock_hrtimer_base(timer
, &flags
);
1157 EXPORT_SYMBOL_GPL(hrtimer_get_remaining
);
1159 #ifdef CONFIG_NO_HZ_COMMON
1161 * hrtimer_get_next_event - get the time until next expiry event
1163 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1166 ktime_t
hrtimer_get_next_event(void)
1168 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1169 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
1170 ktime_t delta
, mindelta
= { .tv64
= KTIME_MAX
};
1171 unsigned long flags
;
1174 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1176 if (!hrtimer_hres_active()) {
1177 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
1178 struct hrtimer
*timer
;
1179 struct timerqueue_node
*next
;
1181 next
= timerqueue_getnext(&base
->active
);
1185 timer
= container_of(next
, struct hrtimer
, node
);
1186 delta
.tv64
= hrtimer_get_expires_tv64(timer
);
1187 delta
= ktime_sub(delta
, base
->get_time());
1188 if (delta
.tv64
< mindelta
.tv64
)
1189 mindelta
.tv64
= delta
.tv64
;
1193 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1195 if (mindelta
.tv64
< 0)
1201 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1202 enum hrtimer_mode mode
)
1204 struct hrtimer_cpu_base
*cpu_base
;
1207 memset(timer
, 0, sizeof(struct hrtimer
));
1209 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1211 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
1212 clock_id
= CLOCK_MONOTONIC
;
1214 base
= hrtimer_clockid_to_base(clock_id
);
1215 timer
->base
= &cpu_base
->clock_base
[base
];
1216 timerqueue_init(&timer
->node
);
1218 #ifdef CONFIG_TIMER_STATS
1219 timer
->start_site
= NULL
;
1220 timer
->start_pid
= -1;
1221 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
1226 * hrtimer_init - initialize a timer to the given clock
1227 * @timer: the timer to be initialized
1228 * @clock_id: the clock to be used
1229 * @mode: timer mode abs/rel
1231 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1232 enum hrtimer_mode mode
)
1234 debug_init(timer
, clock_id
, mode
);
1235 __hrtimer_init(timer
, clock_id
, mode
);
1237 EXPORT_SYMBOL_GPL(hrtimer_init
);
1240 * hrtimer_get_res - get the timer resolution for a clock
1241 * @which_clock: which clock to query
1242 * @tp: pointer to timespec variable to store the resolution
1244 * Store the resolution of the clock selected by @which_clock in the
1245 * variable pointed to by @tp.
1247 int hrtimer_get_res(const clockid_t which_clock
, struct timespec
*tp
)
1249 struct hrtimer_cpu_base
*cpu_base
;
1250 int base
= hrtimer_clockid_to_base(which_clock
);
1252 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1253 *tp
= ktime_to_timespec(cpu_base
->clock_base
[base
].resolution
);
1257 EXPORT_SYMBOL_GPL(hrtimer_get_res
);
1259 static void __run_hrtimer(struct hrtimer
*timer
, ktime_t
*now
)
1261 struct hrtimer_clock_base
*base
= timer
->base
;
1262 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
1263 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1266 WARN_ON(!irqs_disabled());
1268 debug_deactivate(timer
);
1269 __remove_hrtimer(timer
, base
, HRTIMER_STATE_CALLBACK
, 0);
1270 timer_stats_account_hrtimer(timer
);
1271 fn
= timer
->function
;
1274 * Because we run timers from hardirq context, there is no chance
1275 * they get migrated to another cpu, therefore its safe to unlock
1278 raw_spin_unlock(&cpu_base
->lock
);
1279 trace_hrtimer_expire_entry(timer
, now
);
1280 restart
= fn(timer
);
1281 trace_hrtimer_expire_exit(timer
);
1282 raw_spin_lock(&cpu_base
->lock
);
1285 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1286 * we do not reprogramm the event hardware. Happens either in
1287 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1289 if (restart
!= HRTIMER_NORESTART
) {
1290 BUG_ON(timer
->state
!= HRTIMER_STATE_CALLBACK
);
1291 enqueue_hrtimer(timer
, base
);
1294 WARN_ON_ONCE(!(timer
->state
& HRTIMER_STATE_CALLBACK
));
1296 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1299 #ifdef CONFIG_HIGH_RES_TIMERS
1302 * High resolution timer interrupt
1303 * Called with interrupts disabled
1305 void hrtimer_interrupt(struct clock_event_device
*dev
)
1307 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1308 ktime_t expires_next
, now
, entry_time
, delta
;
1311 BUG_ON(!cpu_base
->hres_active
);
1312 cpu_base
->nr_events
++;
1313 dev
->next_event
.tv64
= KTIME_MAX
;
1315 raw_spin_lock(&cpu_base
->lock
);
1316 entry_time
= now
= hrtimer_update_base(cpu_base
);
1318 expires_next
.tv64
= KTIME_MAX
;
1320 * We set expires_next to KTIME_MAX here with cpu_base->lock
1321 * held to prevent that a timer is enqueued in our queue via
1322 * the migration code. This does not affect enqueueing of
1323 * timers which run their callback and need to be requeued on
1326 cpu_base
->expires_next
.tv64
= KTIME_MAX
;
1328 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1329 struct hrtimer_clock_base
*base
;
1330 struct timerqueue_node
*node
;
1333 if (!(cpu_base
->active_bases
& (1 << i
)))
1336 base
= cpu_base
->clock_base
+ i
;
1337 basenow
= ktime_add(now
, base
->offset
);
1339 while ((node
= timerqueue_getnext(&base
->active
))) {
1340 struct hrtimer
*timer
;
1342 timer
= container_of(node
, struct hrtimer
, node
);
1345 * The immediate goal for using the softexpires is
1346 * minimizing wakeups, not running timers at the
1347 * earliest interrupt after their soft expiration.
1348 * This allows us to avoid using a Priority Search
1349 * Tree, which can answer a stabbing querry for
1350 * overlapping intervals and instead use the simple
1351 * BST we already have.
1352 * We don't add extra wakeups by delaying timers that
1353 * are right-of a not yet expired timer, because that
1354 * timer will have to trigger a wakeup anyway.
1357 if (basenow
.tv64
< hrtimer_get_softexpires_tv64(timer
)) {
1360 expires
= ktime_sub(hrtimer_get_expires(timer
),
1362 if (expires
.tv64
< 0)
1363 expires
.tv64
= KTIME_MAX
;
1364 if (expires
.tv64
< expires_next
.tv64
)
1365 expires_next
= expires
;
1369 __run_hrtimer(timer
, &basenow
);
1374 * Store the new expiry value so the migration code can verify
1377 cpu_base
->expires_next
= expires_next
;
1378 raw_spin_unlock(&cpu_base
->lock
);
1380 /* Reprogramming necessary ? */
1381 if (expires_next
.tv64
== KTIME_MAX
||
1382 !tick_program_event(expires_next
, 0)) {
1383 cpu_base
->hang_detected
= 0;
1388 * The next timer was already expired due to:
1390 * - long lasting callbacks
1391 * - being scheduled away when running in a VM
1393 * We need to prevent that we loop forever in the hrtimer
1394 * interrupt routine. We give it 3 attempts to avoid
1395 * overreacting on some spurious event.
1397 * Acquire base lock for updating the offsets and retrieving
1400 raw_spin_lock(&cpu_base
->lock
);
1401 now
= hrtimer_update_base(cpu_base
);
1402 cpu_base
->nr_retries
++;
1406 * Give the system a chance to do something else than looping
1407 * here. We stored the entry time, so we know exactly how long
1408 * we spent here. We schedule the next event this amount of
1411 cpu_base
->nr_hangs
++;
1412 cpu_base
->hang_detected
= 1;
1413 raw_spin_unlock(&cpu_base
->lock
);
1414 delta
= ktime_sub(now
, entry_time
);
1415 if (delta
.tv64
> cpu_base
->max_hang_time
.tv64
)
1416 cpu_base
->max_hang_time
= delta
;
1418 * Limit it to a sensible value as we enforce a longer
1419 * delay. Give the CPU at least 100ms to catch up.
1421 if (delta
.tv64
> 100 * NSEC_PER_MSEC
)
1422 expires_next
= ktime_add_ns(now
, 100 * NSEC_PER_MSEC
);
1424 expires_next
= ktime_add(now
, delta
);
1425 tick_program_event(expires_next
, 1);
1426 printk_once(KERN_WARNING
"hrtimer: interrupt took %llu ns\n",
1427 ktime_to_ns(delta
));
1431 * local version of hrtimer_peek_ahead_timers() called with interrupts
1434 static void __hrtimer_peek_ahead_timers(void)
1436 struct tick_device
*td
;
1438 if (!hrtimer_hres_active())
1441 td
= &__get_cpu_var(tick_cpu_device
);
1442 if (td
&& td
->evtdev
)
1443 hrtimer_interrupt(td
->evtdev
);
1447 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1449 * hrtimer_peek_ahead_timers will peek at the timer queue of
1450 * the current cpu and check if there are any timers for which
1451 * the soft expires time has passed. If any such timers exist,
1452 * they are run immediately and then removed from the timer queue.
1455 void hrtimer_peek_ahead_timers(void)
1457 unsigned long flags
;
1459 local_irq_save(flags
);
1460 __hrtimer_peek_ahead_timers();
1461 local_irq_restore(flags
);
1464 static void run_hrtimer_softirq(struct softirq_action
*h
)
1466 hrtimer_peek_ahead_timers();
1469 #else /* CONFIG_HIGH_RES_TIMERS */
1471 static inline void __hrtimer_peek_ahead_timers(void) { }
1473 #endif /* !CONFIG_HIGH_RES_TIMERS */
1476 * Called from timer softirq every jiffy, expire hrtimers:
1478 * For HRT its the fall back code to run the softirq in the timer
1479 * softirq context in case the hrtimer initialization failed or has
1480 * not been done yet.
1482 void hrtimer_run_pending(void)
1484 if (hrtimer_hres_active())
1488 * This _is_ ugly: We have to check in the softirq context,
1489 * whether we can switch to highres and / or nohz mode. The
1490 * clocksource switch happens in the timer interrupt with
1491 * xtime_lock held. Notification from there only sets the
1492 * check bit in the tick_oneshot code, otherwise we might
1493 * deadlock vs. xtime_lock.
1495 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1496 hrtimer_switch_to_hres();
1500 * Called from hardirq context every jiffy
1502 void hrtimer_run_queues(void)
1504 struct timerqueue_node
*node
;
1505 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1506 struct hrtimer_clock_base
*base
;
1507 int index
, gettime
= 1;
1509 if (hrtimer_hres_active())
1512 for (index
= 0; index
< HRTIMER_MAX_CLOCK_BASES
; index
++) {
1513 base
= &cpu_base
->clock_base
[index
];
1514 if (!timerqueue_getnext(&base
->active
))
1518 hrtimer_get_softirq_time(cpu_base
);
1522 raw_spin_lock(&cpu_base
->lock
);
1524 while ((node
= timerqueue_getnext(&base
->active
))) {
1525 struct hrtimer
*timer
;
1527 timer
= container_of(node
, struct hrtimer
, node
);
1528 if (base
->softirq_time
.tv64
<=
1529 hrtimer_get_expires_tv64(timer
))
1532 __run_hrtimer(timer
, &base
->softirq_time
);
1534 raw_spin_unlock(&cpu_base
->lock
);
1539 * Sleep related functions:
1541 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1543 struct hrtimer_sleeper
*t
=
1544 container_of(timer
, struct hrtimer_sleeper
, timer
);
1545 struct task_struct
*task
= t
->task
;
1549 wake_up_process(task
);
1551 return HRTIMER_NORESTART
;
1554 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1556 sl
->timer
.function
= hrtimer_wakeup
;
1559 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper
);
1561 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1563 hrtimer_init_sleeper(t
, current
);
1566 set_current_state(TASK_INTERRUPTIBLE
);
1567 hrtimer_start_expires(&t
->timer
, mode
);
1568 if (!hrtimer_active(&t
->timer
))
1571 if (likely(t
->task
))
1572 freezable_schedule();
1574 hrtimer_cancel(&t
->timer
);
1575 mode
= HRTIMER_MODE_ABS
;
1577 } while (t
->task
&& !signal_pending(current
));
1579 __set_current_state(TASK_RUNNING
);
1581 return t
->task
== NULL
;
1584 static int update_rmtp(struct hrtimer
*timer
, struct timespec __user
*rmtp
)
1586 struct timespec rmt
;
1589 rem
= hrtimer_expires_remaining(timer
);
1592 rmt
= ktime_to_timespec(rem
);
1594 if (copy_to_user(rmtp
, &rmt
, sizeof(*rmtp
)))
1600 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1602 struct hrtimer_sleeper t
;
1603 struct timespec __user
*rmtp
;
1606 hrtimer_init_on_stack(&t
.timer
, restart
->nanosleep
.clockid
,
1608 hrtimer_set_expires_tv64(&t
.timer
, restart
->nanosleep
.expires
);
1610 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
1613 rmtp
= restart
->nanosleep
.rmtp
;
1615 ret
= update_rmtp(&t
.timer
, rmtp
);
1620 /* The other values in restart are already filled in */
1621 ret
= -ERESTART_RESTARTBLOCK
;
1623 destroy_hrtimer_on_stack(&t
.timer
);
1627 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
1628 const enum hrtimer_mode mode
, const clockid_t clockid
)
1630 struct restart_block
*restart
;
1631 struct hrtimer_sleeper t
;
1633 unsigned long slack
;
1635 slack
= current
->timer_slack_ns
;
1636 if (dl_task(current
) || rt_task(current
))
1639 hrtimer_init_on_stack(&t
.timer
, clockid
, mode
);
1640 hrtimer_set_expires_range_ns(&t
.timer
, timespec_to_ktime(*rqtp
), slack
);
1641 if (do_nanosleep(&t
, mode
))
1644 /* Absolute timers do not update the rmtp value and restart: */
1645 if (mode
== HRTIMER_MODE_ABS
) {
1646 ret
= -ERESTARTNOHAND
;
1651 ret
= update_rmtp(&t
.timer
, rmtp
);
1656 restart
= ¤t_thread_info()->restart_block
;
1657 restart
->fn
= hrtimer_nanosleep_restart
;
1658 restart
->nanosleep
.clockid
= t
.timer
.base
->clockid
;
1659 restart
->nanosleep
.rmtp
= rmtp
;
1660 restart
->nanosleep
.expires
= hrtimer_get_expires_tv64(&t
.timer
);
1662 ret
= -ERESTART_RESTARTBLOCK
;
1664 destroy_hrtimer_on_stack(&t
.timer
);
1668 SYSCALL_DEFINE2(nanosleep
, struct timespec __user
*, rqtp
,
1669 struct timespec __user
*, rmtp
)
1673 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
1676 if (!timespec_valid(&tu
))
1679 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1683 * Functions related to boot-time initialization:
1685 static void init_hrtimers_cpu(int cpu
)
1687 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1690 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1691 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1692 timerqueue_init_head(&cpu_base
->clock_base
[i
].active
);
1695 hrtimer_init_hres(cpu_base
);
1698 #ifdef CONFIG_HOTPLUG_CPU
1700 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1701 struct hrtimer_clock_base
*new_base
)
1703 struct hrtimer
*timer
;
1704 struct timerqueue_node
*node
;
1706 while ((node
= timerqueue_getnext(&old_base
->active
))) {
1707 timer
= container_of(node
, struct hrtimer
, node
);
1708 BUG_ON(hrtimer_callback_running(timer
));
1709 debug_deactivate(timer
);
1712 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1713 * timer could be seen as !active and just vanish away
1714 * under us on another CPU
1716 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_MIGRATE
, 0);
1717 timer
->base
= new_base
;
1719 * Enqueue the timers on the new cpu. This does not
1720 * reprogram the event device in case the timer
1721 * expires before the earliest on this CPU, but we run
1722 * hrtimer_interrupt after we migrated everything to
1723 * sort out already expired timers and reprogram the
1726 enqueue_hrtimer(timer
, new_base
);
1728 /* Clear the migration state bit */
1729 timer
->state
&= ~HRTIMER_STATE_MIGRATE
;
1733 static void migrate_hrtimers(int scpu
)
1735 struct hrtimer_cpu_base
*old_base
, *new_base
;
1738 BUG_ON(cpu_online(scpu
));
1739 tick_cancel_sched_timer(scpu
);
1741 local_irq_disable();
1742 old_base
= &per_cpu(hrtimer_bases
, scpu
);
1743 new_base
= &__get_cpu_var(hrtimer_bases
);
1745 * The caller is globally serialized and nobody else
1746 * takes two locks at once, deadlock is not possible.
1748 raw_spin_lock(&new_base
->lock
);
1749 raw_spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1751 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1752 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1753 &new_base
->clock_base
[i
]);
1756 raw_spin_unlock(&old_base
->lock
);
1757 raw_spin_unlock(&new_base
->lock
);
1759 /* Check, if we got expired work to do */
1760 __hrtimer_peek_ahead_timers();
1764 #endif /* CONFIG_HOTPLUG_CPU */
1766 static int hrtimer_cpu_notify(struct notifier_block
*self
,
1767 unsigned long action
, void *hcpu
)
1769 int scpu
= (long)hcpu
;
1773 case CPU_UP_PREPARE
:
1774 case CPU_UP_PREPARE_FROZEN
:
1775 init_hrtimers_cpu(scpu
);
1778 #ifdef CONFIG_HOTPLUG_CPU
1780 case CPU_DYING_FROZEN
:
1781 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING
, &scpu
);
1784 case CPU_DEAD_FROZEN
:
1786 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD
, &scpu
);
1787 migrate_hrtimers(scpu
);
1799 static struct notifier_block hrtimers_nb
= {
1800 .notifier_call
= hrtimer_cpu_notify
,
1803 void __init
hrtimers_init(void)
1805 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
1806 (void *)(long)smp_processor_id());
1807 register_cpu_notifier(&hrtimers_nb
);
1808 #ifdef CONFIG_HIGH_RES_TIMERS
1809 open_softirq(HRTIMER_SOFTIRQ
, run_hrtimer_softirq
);
1814 * schedule_hrtimeout_range_clock - sleep until timeout
1815 * @expires: timeout value (ktime_t)
1816 * @delta: slack in expires timeout (ktime_t)
1817 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1818 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1821 schedule_hrtimeout_range_clock(ktime_t
*expires
, unsigned long delta
,
1822 const enum hrtimer_mode mode
, int clock
)
1824 struct hrtimer_sleeper t
;
1827 * Optimize when a zero timeout value is given. It does not
1828 * matter whether this is an absolute or a relative time.
1830 if (expires
&& !expires
->tv64
) {
1831 __set_current_state(TASK_RUNNING
);
1836 * A NULL parameter means "infinite"
1840 __set_current_state(TASK_RUNNING
);
1844 hrtimer_init_on_stack(&t
.timer
, clock
, mode
);
1845 hrtimer_set_expires_range_ns(&t
.timer
, *expires
, delta
);
1847 hrtimer_init_sleeper(&t
, current
);
1849 hrtimer_start_expires(&t
.timer
, mode
);
1850 if (!hrtimer_active(&t
.timer
))
1856 hrtimer_cancel(&t
.timer
);
1857 destroy_hrtimer_on_stack(&t
.timer
);
1859 __set_current_state(TASK_RUNNING
);
1861 return !t
.task
? 0 : -EINTR
;
1865 * schedule_hrtimeout_range - sleep until timeout
1866 * @expires: timeout value (ktime_t)
1867 * @delta: slack in expires timeout (ktime_t)
1868 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1870 * Make the current task sleep until the given expiry time has
1871 * elapsed. The routine will return immediately unless
1872 * the current task state has been set (see set_current_state()).
1874 * The @delta argument gives the kernel the freedom to schedule the
1875 * actual wakeup to a time that is both power and performance friendly.
1876 * The kernel give the normal best effort behavior for "@expires+@delta",
1877 * but may decide to fire the timer earlier, but no earlier than @expires.
1879 * You can set the task state as follows -
1881 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1882 * pass before the routine returns.
1884 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1885 * delivered to the current task.
1887 * The current task state is guaranteed to be TASK_RUNNING when this
1890 * Returns 0 when the timer has expired otherwise -EINTR
1892 int __sched
schedule_hrtimeout_range(ktime_t
*expires
, unsigned long delta
,
1893 const enum hrtimer_mode mode
)
1895 return schedule_hrtimeout_range_clock(expires
, delta
, mode
,
1898 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range
);
1901 * schedule_hrtimeout - sleep until timeout
1902 * @expires: timeout value (ktime_t)
1903 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1905 * Make the current task sleep until the given expiry time has
1906 * elapsed. The routine will return immediately unless
1907 * the current task state has been set (see set_current_state()).
1909 * You can set the task state as follows -
1911 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1912 * pass before the routine returns.
1914 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1915 * delivered to the current task.
1917 * The current task state is guaranteed to be TASK_RUNNING when this
1920 * Returns 0 when the timer has expired otherwise -EINTR
1922 int __sched
schedule_hrtimeout(ktime_t
*expires
,
1923 const enum hrtimer_mode mode
)
1925 return schedule_hrtimeout_range(expires
, 0, mode
);
1927 EXPORT_SYMBOL_GPL(schedule_hrtimeout
);