4 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
14 #include <linux/log2.h>
15 #include <linux/mount.h>
16 #include <linux/magic.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/uio.h>
19 #include <linux/highmem.h>
20 #include <linux/pagemap.h>
21 #include <linux/audit.h>
22 #include <linux/syscalls.h>
23 #include <linux/fcntl.h>
25 #include <asm/uaccess.h>
26 #include <asm/ioctls.h>
29 * The max size that a non-root user is allowed to grow the pipe. Can
30 * be set by root in /proc/sys/fs/pipe-max-size
32 unsigned int pipe_max_size
= 1048576;
35 * Minimum pipe size, as required by POSIX
37 unsigned int pipe_min_size
= PAGE_SIZE
;
40 * We use a start+len construction, which provides full use of the
42 * -- Florian Coosmann (FGC)
44 * Reads with count = 0 should always return 0.
45 * -- Julian Bradfield 1999-06-07.
47 * FIFOs and Pipes now generate SIGIO for both readers and writers.
48 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
50 * pipe_read & write cleanup
51 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
54 static void pipe_lock_nested(struct pipe_inode_info
*pipe
, int subclass
)
57 mutex_lock_nested(&pipe
->inode
->i_mutex
, subclass
);
60 void pipe_lock(struct pipe_inode_info
*pipe
)
63 * pipe_lock() nests non-pipe inode locks (for writing to a file)
65 pipe_lock_nested(pipe
, I_MUTEX_PARENT
);
67 EXPORT_SYMBOL(pipe_lock
);
69 void pipe_unlock(struct pipe_inode_info
*pipe
)
72 mutex_unlock(&pipe
->inode
->i_mutex
);
74 EXPORT_SYMBOL(pipe_unlock
);
76 void pipe_double_lock(struct pipe_inode_info
*pipe1
,
77 struct pipe_inode_info
*pipe2
)
79 BUG_ON(pipe1
== pipe2
);
82 pipe_lock_nested(pipe1
, I_MUTEX_PARENT
);
83 pipe_lock_nested(pipe2
, I_MUTEX_CHILD
);
85 pipe_lock_nested(pipe2
, I_MUTEX_PARENT
);
86 pipe_lock_nested(pipe1
, I_MUTEX_CHILD
);
90 /* Drop the inode semaphore and wait for a pipe event, atomically */
91 void pipe_wait(struct pipe_inode_info
*pipe
)
96 * Pipes are system-local resources, so sleeping on them
97 * is considered a noninteractive wait:
99 prepare_to_wait(&pipe
->wait
, &wait
, TASK_INTERRUPTIBLE
);
102 finish_wait(&pipe
->wait
, &wait
);
107 pipe_iov_copy_from_user(void *to
, struct iovec
*iov
, unsigned long len
,
113 while (!iov
->iov_len
)
115 copy
= min_t(unsigned long, len
, iov
->iov_len
);
118 if (__copy_from_user_inatomic(to
, iov
->iov_base
, copy
))
121 if (copy_from_user(to
, iov
->iov_base
, copy
))
126 iov
->iov_base
+= copy
;
127 iov
->iov_len
-= copy
;
133 pipe_iov_copy_to_user(struct iovec
*iov
, const void *from
, unsigned long len
,
139 while (!iov
->iov_len
)
141 copy
= min_t(unsigned long, len
, iov
->iov_len
);
144 if (__copy_to_user_inatomic(iov
->iov_base
, from
, copy
))
147 if (copy_to_user(iov
->iov_base
, from
, copy
))
152 iov
->iov_base
+= copy
;
153 iov
->iov_len
-= copy
;
159 * Attempt to pre-fault in the user memory, so we can use atomic copies.
160 * Returns the number of bytes not faulted in.
162 static int iov_fault_in_pages_write(struct iovec
*iov
, unsigned long len
)
164 while (!iov
->iov_len
)
168 unsigned long this_len
;
170 this_len
= min_t(unsigned long, len
, iov
->iov_len
);
171 if (fault_in_pages_writeable(iov
->iov_base
, this_len
))
182 * Pre-fault in the user memory, so we can use atomic copies.
184 static void iov_fault_in_pages_read(struct iovec
*iov
, unsigned long len
)
186 while (!iov
->iov_len
)
190 unsigned long this_len
;
192 this_len
= min_t(unsigned long, len
, iov
->iov_len
);
193 fault_in_pages_readable(iov
->iov_base
, this_len
);
199 static void anon_pipe_buf_release(struct pipe_inode_info
*pipe
,
200 struct pipe_buffer
*buf
)
202 struct page
*page
= buf
->page
;
205 * If nobody else uses this page, and we don't already have a
206 * temporary page, let's keep track of it as a one-deep
207 * allocation cache. (Otherwise just release our reference to it)
209 if (page_count(page
) == 1 && !pipe
->tmp_page
)
210 pipe
->tmp_page
= page
;
212 page_cache_release(page
);
216 * generic_pipe_buf_map - virtually map a pipe buffer
217 * @pipe: the pipe that the buffer belongs to
218 * @buf: the buffer that should be mapped
219 * @atomic: whether to use an atomic map
222 * This function returns a kernel virtual address mapping for the
223 * pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
224 * and the caller has to be careful not to fault before calling
225 * the unmap function.
227 * Note that this function occupies KM_USER0 if @atomic != 0.
229 void *generic_pipe_buf_map(struct pipe_inode_info
*pipe
,
230 struct pipe_buffer
*buf
, int atomic
)
233 buf
->flags
|= PIPE_BUF_FLAG_ATOMIC
;
234 return kmap_atomic(buf
->page
);
237 return kmap(buf
->page
);
239 EXPORT_SYMBOL(generic_pipe_buf_map
);
242 * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
243 * @pipe: the pipe that the buffer belongs to
244 * @buf: the buffer that should be unmapped
245 * @map_data: the data that the mapping function returned
248 * This function undoes the mapping that ->map() provided.
250 void generic_pipe_buf_unmap(struct pipe_inode_info
*pipe
,
251 struct pipe_buffer
*buf
, void *map_data
)
253 if (buf
->flags
& PIPE_BUF_FLAG_ATOMIC
) {
254 buf
->flags
&= ~PIPE_BUF_FLAG_ATOMIC
;
255 kunmap_atomic(map_data
);
259 EXPORT_SYMBOL(generic_pipe_buf_unmap
);
262 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
263 * @pipe: the pipe that the buffer belongs to
264 * @buf: the buffer to attempt to steal
267 * This function attempts to steal the &struct page attached to
268 * @buf. If successful, this function returns 0 and returns with
269 * the page locked. The caller may then reuse the page for whatever
270 * he wishes; the typical use is insertion into a different file
273 int generic_pipe_buf_steal(struct pipe_inode_info
*pipe
,
274 struct pipe_buffer
*buf
)
276 struct page
*page
= buf
->page
;
279 * A reference of one is golden, that means that the owner of this
280 * page is the only one holding a reference to it. lock the page
283 if (page_count(page
) == 1) {
290 EXPORT_SYMBOL(generic_pipe_buf_steal
);
293 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
294 * @pipe: the pipe that the buffer belongs to
295 * @buf: the buffer to get a reference to
298 * This function grabs an extra reference to @buf. It's used in
299 * in the tee() system call, when we duplicate the buffers in one
302 void generic_pipe_buf_get(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
)
304 page_cache_get(buf
->page
);
306 EXPORT_SYMBOL(generic_pipe_buf_get
);
309 * generic_pipe_buf_confirm - verify contents of the pipe buffer
310 * @info: the pipe that the buffer belongs to
311 * @buf: the buffer to confirm
314 * This function does nothing, because the generic pipe code uses
315 * pages that are always good when inserted into the pipe.
317 int generic_pipe_buf_confirm(struct pipe_inode_info
*info
,
318 struct pipe_buffer
*buf
)
322 EXPORT_SYMBOL(generic_pipe_buf_confirm
);
325 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
326 * @pipe: the pipe that the buffer belongs to
327 * @buf: the buffer to put a reference to
330 * This function releases a reference to @buf.
332 void generic_pipe_buf_release(struct pipe_inode_info
*pipe
,
333 struct pipe_buffer
*buf
)
335 page_cache_release(buf
->page
);
337 EXPORT_SYMBOL(generic_pipe_buf_release
);
339 static const struct pipe_buf_operations anon_pipe_buf_ops
= {
341 .map
= generic_pipe_buf_map
,
342 .unmap
= generic_pipe_buf_unmap
,
343 .confirm
= generic_pipe_buf_confirm
,
344 .release
= anon_pipe_buf_release
,
345 .steal
= generic_pipe_buf_steal
,
346 .get
= generic_pipe_buf_get
,
350 pipe_read(struct kiocb
*iocb
, const struct iovec
*_iov
,
351 unsigned long nr_segs
, loff_t pos
)
353 struct file
*filp
= iocb
->ki_filp
;
354 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
355 struct pipe_inode_info
*pipe
;
358 struct iovec
*iov
= (struct iovec
*)_iov
;
361 total_len
= iov_length(iov
, nr_segs
);
362 /* Null read succeeds. */
363 if (unlikely(total_len
== 0))
368 mutex_lock(&inode
->i_mutex
);
369 pipe
= inode
->i_pipe
;
371 int bufs
= pipe
->nrbufs
;
373 int curbuf
= pipe
->curbuf
;
374 struct pipe_buffer
*buf
= pipe
->bufs
+ curbuf
;
375 const struct pipe_buf_operations
*ops
= buf
->ops
;
377 size_t chars
= buf
->len
;
380 if (chars
> total_len
)
383 error
= ops
->confirm(pipe
, buf
);
390 atomic
= !iov_fault_in_pages_write(iov
, chars
);
392 addr
= ops
->map(pipe
, buf
, atomic
);
393 error
= pipe_iov_copy_to_user(iov
, addr
+ buf
->offset
, chars
, atomic
);
394 ops
->unmap(pipe
, buf
, addr
);
395 if (unlikely(error
)) {
397 * Just retry with the slow path if we failed.
408 buf
->offset
+= chars
;
412 ops
->release(pipe
, buf
);
413 curbuf
= (curbuf
+ 1) & (pipe
->buffers
- 1);
414 pipe
->curbuf
= curbuf
;
415 pipe
->nrbufs
= --bufs
;
420 break; /* common path: read succeeded */
422 if (bufs
) /* More to do? */
426 if (!pipe
->waiting_writers
) {
427 /* syscall merging: Usually we must not sleep
428 * if O_NONBLOCK is set, or if we got some data.
429 * But if a writer sleeps in kernel space, then
430 * we can wait for that data without violating POSIX.
434 if (filp
->f_flags
& O_NONBLOCK
) {
439 if (signal_pending(current
)) {
445 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLOUT
| POLLWRNORM
);
446 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
450 mutex_unlock(&inode
->i_mutex
);
452 /* Signal writers asynchronously that there is more room. */
454 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLOUT
| POLLWRNORM
);
455 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
463 pipe_write(struct kiocb
*iocb
, const struct iovec
*_iov
,
464 unsigned long nr_segs
, loff_t ppos
)
466 struct file
*filp
= iocb
->ki_filp
;
467 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
468 struct pipe_inode_info
*pipe
;
471 struct iovec
*iov
= (struct iovec
*)_iov
;
475 total_len
= iov_length(iov
, nr_segs
);
476 /* Null write succeeds. */
477 if (unlikely(total_len
== 0))
482 mutex_lock(&inode
->i_mutex
);
483 pipe
= inode
->i_pipe
;
485 if (!pipe
->readers
) {
486 send_sig(SIGPIPE
, current
, 0);
491 /* We try to merge small writes */
492 chars
= total_len
& (PAGE_SIZE
-1); /* size of the last buffer */
493 if (pipe
->nrbufs
&& chars
!= 0) {
494 int lastbuf
= (pipe
->curbuf
+ pipe
->nrbufs
- 1) &
496 struct pipe_buffer
*buf
= pipe
->bufs
+ lastbuf
;
497 const struct pipe_buf_operations
*ops
= buf
->ops
;
498 int offset
= buf
->offset
+ buf
->len
;
500 if (ops
->can_merge
&& offset
+ chars
<= PAGE_SIZE
) {
501 int error
, atomic
= 1;
504 error
= ops
->confirm(pipe
, buf
);
508 iov_fault_in_pages_read(iov
, chars
);
510 addr
= ops
->map(pipe
, buf
, atomic
);
511 error
= pipe_iov_copy_from_user(offset
+ addr
, iov
,
513 ops
->unmap(pipe
, buf
, addr
);
534 if (!pipe
->readers
) {
535 send_sig(SIGPIPE
, current
, 0);
541 if (bufs
< pipe
->buffers
) {
542 int newbuf
= (pipe
->curbuf
+ bufs
) & (pipe
->buffers
-1);
543 struct pipe_buffer
*buf
= pipe
->bufs
+ newbuf
;
544 struct page
*page
= pipe
->tmp_page
;
546 int error
, atomic
= 1;
549 page
= alloc_page(GFP_HIGHUSER
);
550 if (unlikely(!page
)) {
551 ret
= ret
? : -ENOMEM
;
554 pipe
->tmp_page
= page
;
556 /* Always wake up, even if the copy fails. Otherwise
557 * we lock up (O_NONBLOCK-)readers that sleep due to
559 * FIXME! Is this really true?
563 if (chars
> total_len
)
566 iov_fault_in_pages_read(iov
, chars
);
569 src
= kmap_atomic(page
);
573 error
= pipe_iov_copy_from_user(src
, iov
, chars
,
580 if (unlikely(error
)) {
591 /* Insert it into the buffer array */
593 buf
->ops
= &anon_pipe_buf_ops
;
596 pipe
->nrbufs
= ++bufs
;
597 pipe
->tmp_page
= NULL
;
603 if (bufs
< pipe
->buffers
)
605 if (filp
->f_flags
& O_NONBLOCK
) {
610 if (signal_pending(current
)) {
616 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLIN
| POLLRDNORM
);
617 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
620 pipe
->waiting_writers
++;
622 pipe
->waiting_writers
--;
625 mutex_unlock(&inode
->i_mutex
);
627 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLIN
| POLLRDNORM
);
628 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
631 file_update_time(filp
);
636 bad_pipe_r(struct file
*filp
, char __user
*buf
, size_t count
, loff_t
*ppos
)
642 bad_pipe_w(struct file
*filp
, const char __user
*buf
, size_t count
,
648 static long pipe_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
)
650 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
651 struct pipe_inode_info
*pipe
;
652 int count
, buf
, nrbufs
;
656 mutex_lock(&inode
->i_mutex
);
657 pipe
= inode
->i_pipe
;
660 nrbufs
= pipe
->nrbufs
;
661 while (--nrbufs
>= 0) {
662 count
+= pipe
->bufs
[buf
].len
;
663 buf
= (buf
+1) & (pipe
->buffers
- 1);
665 mutex_unlock(&inode
->i_mutex
);
667 return put_user(count
, (int __user
*)arg
);
673 /* No kernel lock held - fine */
675 pipe_poll(struct file
*filp
, poll_table
*wait
)
678 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
679 struct pipe_inode_info
*pipe
= inode
->i_pipe
;
682 poll_wait(filp
, &pipe
->wait
, wait
);
684 /* Reading only -- no need for acquiring the semaphore. */
685 nrbufs
= pipe
->nrbufs
;
687 if (filp
->f_mode
& FMODE_READ
) {
688 mask
= (nrbufs
> 0) ? POLLIN
| POLLRDNORM
: 0;
689 if (!pipe
->writers
&& filp
->f_version
!= pipe
->w_counter
)
693 if (filp
->f_mode
& FMODE_WRITE
) {
694 mask
|= (nrbufs
< pipe
->buffers
) ? POLLOUT
| POLLWRNORM
: 0;
696 * Most Unices do not set POLLERR for FIFOs but on Linux they
697 * behave exactly like pipes for poll().
707 pipe_release(struct inode
*inode
, int decr
, int decw
)
709 struct pipe_inode_info
*pipe
;
711 mutex_lock(&inode
->i_mutex
);
712 pipe
= inode
->i_pipe
;
713 pipe
->readers
-= decr
;
714 pipe
->writers
-= decw
;
716 if (!pipe
->readers
&& !pipe
->writers
) {
717 free_pipe_info(inode
);
719 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLIN
| POLLOUT
| POLLRDNORM
| POLLWRNORM
| POLLERR
| POLLHUP
);
720 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
721 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
723 mutex_unlock(&inode
->i_mutex
);
729 pipe_read_fasync(int fd
, struct file
*filp
, int on
)
731 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
734 mutex_lock(&inode
->i_mutex
);
735 retval
= fasync_helper(fd
, filp
, on
, &inode
->i_pipe
->fasync_readers
);
736 mutex_unlock(&inode
->i_mutex
);
743 pipe_write_fasync(int fd
, struct file
*filp
, int on
)
745 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
748 mutex_lock(&inode
->i_mutex
);
749 retval
= fasync_helper(fd
, filp
, on
, &inode
->i_pipe
->fasync_writers
);
750 mutex_unlock(&inode
->i_mutex
);
757 pipe_rdwr_fasync(int fd
, struct file
*filp
, int on
)
759 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
760 struct pipe_inode_info
*pipe
= inode
->i_pipe
;
763 mutex_lock(&inode
->i_mutex
);
764 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_readers
);
766 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_writers
);
767 if (retval
< 0) /* this can happen only if on == T */
768 fasync_helper(-1, filp
, 0, &pipe
->fasync_readers
);
770 mutex_unlock(&inode
->i_mutex
);
776 pipe_read_release(struct inode
*inode
, struct file
*filp
)
778 return pipe_release(inode
, 1, 0);
782 pipe_write_release(struct inode
*inode
, struct file
*filp
)
784 return pipe_release(inode
, 0, 1);
788 pipe_rdwr_release(struct inode
*inode
, struct file
*filp
)
792 decr
= (filp
->f_mode
& FMODE_READ
) != 0;
793 decw
= (filp
->f_mode
& FMODE_WRITE
) != 0;
794 return pipe_release(inode
, decr
, decw
);
798 pipe_read_open(struct inode
*inode
, struct file
*filp
)
802 mutex_lock(&inode
->i_mutex
);
806 inode
->i_pipe
->readers
++;
809 mutex_unlock(&inode
->i_mutex
);
815 pipe_write_open(struct inode
*inode
, struct file
*filp
)
819 mutex_lock(&inode
->i_mutex
);
823 inode
->i_pipe
->writers
++;
826 mutex_unlock(&inode
->i_mutex
);
832 pipe_rdwr_open(struct inode
*inode
, struct file
*filp
)
836 mutex_lock(&inode
->i_mutex
);
840 if (filp
->f_mode
& FMODE_READ
)
841 inode
->i_pipe
->readers
++;
842 if (filp
->f_mode
& FMODE_WRITE
)
843 inode
->i_pipe
->writers
++;
846 mutex_unlock(&inode
->i_mutex
);
852 * The file_operations structs are not static because they
853 * are also used in linux/fs/fifo.c to do operations on FIFOs.
855 * Pipes reuse fifos' file_operations structs.
857 const struct file_operations read_pipefifo_fops
= {
859 .read
= do_sync_read
,
860 .aio_read
= pipe_read
,
863 .unlocked_ioctl
= pipe_ioctl
,
864 .open
= pipe_read_open
,
865 .release
= pipe_read_release
,
866 .fasync
= pipe_read_fasync
,
869 const struct file_operations write_pipefifo_fops
= {
872 .write
= do_sync_write
,
873 .aio_write
= pipe_write
,
875 .unlocked_ioctl
= pipe_ioctl
,
876 .open
= pipe_write_open
,
877 .release
= pipe_write_release
,
878 .fasync
= pipe_write_fasync
,
881 const struct file_operations rdwr_pipefifo_fops
= {
883 .read
= do_sync_read
,
884 .aio_read
= pipe_read
,
885 .write
= do_sync_write
,
886 .aio_write
= pipe_write
,
888 .unlocked_ioctl
= pipe_ioctl
,
889 .open
= pipe_rdwr_open
,
890 .release
= pipe_rdwr_release
,
891 .fasync
= pipe_rdwr_fasync
,
894 struct pipe_inode_info
* alloc_pipe_info(struct inode
*inode
)
896 struct pipe_inode_info
*pipe
;
898 pipe
= kzalloc(sizeof(struct pipe_inode_info
), GFP_KERNEL
);
900 pipe
->bufs
= kzalloc(sizeof(struct pipe_buffer
) * PIPE_DEF_BUFFERS
, GFP_KERNEL
);
902 init_waitqueue_head(&pipe
->wait
);
903 pipe
->r_counter
= pipe
->w_counter
= 1;
905 pipe
->buffers
= PIPE_DEF_BUFFERS
;
914 void __free_pipe_info(struct pipe_inode_info
*pipe
)
918 for (i
= 0; i
< pipe
->buffers
; i
++) {
919 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
921 buf
->ops
->release(pipe
, buf
);
924 __free_page(pipe
->tmp_page
);
929 void free_pipe_info(struct inode
*inode
)
931 __free_pipe_info(inode
->i_pipe
);
932 inode
->i_pipe
= NULL
;
935 static struct vfsmount
*pipe_mnt __read_mostly
;
938 * pipefs_dname() is called from d_path().
940 static char *pipefs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
942 return dynamic_dname(dentry
, buffer
, buflen
, "pipe:[%lu]",
943 dentry
->d_inode
->i_ino
);
946 static const struct dentry_operations pipefs_dentry_operations
= {
947 .d_dname
= pipefs_dname
,
950 static struct inode
* get_pipe_inode(void)
952 struct inode
*inode
= new_inode_pseudo(pipe_mnt
->mnt_sb
);
953 struct pipe_inode_info
*pipe
;
958 inode
->i_ino
= get_next_ino();
960 pipe
= alloc_pipe_info(inode
);
963 inode
->i_pipe
= pipe
;
965 pipe
->readers
= pipe
->writers
= 1;
966 inode
->i_fop
= &rdwr_pipefifo_fops
;
969 * Mark the inode dirty from the very beginning,
970 * that way it will never be moved to the dirty
971 * list because "mark_inode_dirty()" will think
972 * that it already _is_ on the dirty list.
974 inode
->i_state
= I_DIRTY
;
975 inode
->i_mode
= S_IFIFO
| S_IRUSR
| S_IWUSR
;
976 inode
->i_uid
= current_fsuid();
977 inode
->i_gid
= current_fsgid();
978 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
989 struct file
*create_write_pipe(int flags
)
995 struct qstr name
= { .name
= "" };
998 inode
= get_pipe_inode();
1003 path
.dentry
= d_alloc_pseudo(pipe_mnt
->mnt_sb
, &name
);
1006 path
.mnt
= mntget(pipe_mnt
);
1008 d_instantiate(path
.dentry
, inode
);
1011 f
= alloc_file(&path
, FMODE_WRITE
, &write_pipefifo_fops
);
1014 f
->f_mapping
= inode
->i_mapping
;
1016 f
->f_flags
= O_WRONLY
| (flags
& O_NONBLOCK
);
1022 free_pipe_info(inode
);
1024 return ERR_PTR(err
);
1027 free_pipe_info(inode
);
1030 return ERR_PTR(err
);
1033 void free_write_pipe(struct file
*f
)
1035 free_pipe_info(f
->f_dentry
->d_inode
);
1036 path_put(&f
->f_path
);
1040 struct file
*create_read_pipe(struct file
*wrf
, int flags
)
1042 /* Grab pipe from the writer */
1043 struct file
*f
= alloc_file(&wrf
->f_path
, FMODE_READ
,
1044 &read_pipefifo_fops
);
1046 return ERR_PTR(-ENFILE
);
1048 path_get(&wrf
->f_path
);
1049 f
->f_flags
= O_RDONLY
| (flags
& O_NONBLOCK
);
1054 int do_pipe_flags(int *fd
, int flags
)
1056 struct file
*fw
, *fr
;
1060 if (flags
& ~(O_CLOEXEC
| O_NONBLOCK
))
1063 fw
= create_write_pipe(flags
);
1066 fr
= create_read_pipe(fw
, flags
);
1067 error
= PTR_ERR(fr
);
1069 goto err_write_pipe
;
1071 error
= get_unused_fd_flags(flags
);
1076 error
= get_unused_fd_flags(flags
);
1081 audit_fd_pair(fdr
, fdw
);
1082 fd_install(fdr
, fr
);
1083 fd_install(fdw
, fw
);
1092 path_put(&fr
->f_path
);
1095 free_write_pipe(fw
);
1100 * sys_pipe() is the normal C calling standard for creating
1101 * a pipe. It's not the way Unix traditionally does this, though.
1103 SYSCALL_DEFINE2(pipe2
, int __user
*, fildes
, int, flags
)
1108 error
= do_pipe_flags(fd
, flags
);
1110 if (copy_to_user(fildes
, fd
, sizeof(fd
))) {
1119 SYSCALL_DEFINE1(pipe
, int __user
*, fildes
)
1121 return sys_pipe2(fildes
, 0);
1125 * Allocate a new array of pipe buffers and copy the info over. Returns the
1126 * pipe size if successful, or return -ERROR on error.
1128 static long pipe_set_size(struct pipe_inode_info
*pipe
, unsigned long nr_pages
)
1130 struct pipe_buffer
*bufs
;
1133 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1134 * expect a lot of shrink+grow operations, just free and allocate
1135 * again like we would do for growing. If the pipe currently
1136 * contains more buffers than arg, then return busy.
1138 if (nr_pages
< pipe
->nrbufs
)
1141 bufs
= kcalloc(nr_pages
, sizeof(*bufs
), GFP_KERNEL
| __GFP_NOWARN
);
1142 if (unlikely(!bufs
))
1146 * The pipe array wraps around, so just start the new one at zero
1147 * and adjust the indexes.
1153 tail
= pipe
->curbuf
+ pipe
->nrbufs
;
1154 if (tail
< pipe
->buffers
)
1157 tail
&= (pipe
->buffers
- 1);
1159 head
= pipe
->nrbufs
- tail
;
1161 memcpy(bufs
, pipe
->bufs
+ pipe
->curbuf
, head
* sizeof(struct pipe_buffer
));
1163 memcpy(bufs
+ head
, pipe
->bufs
, tail
* sizeof(struct pipe_buffer
));
1169 pipe
->buffers
= nr_pages
;
1170 return nr_pages
* PAGE_SIZE
;
1174 * Currently we rely on the pipe array holding a power-of-2 number
1177 static inline unsigned int round_pipe_size(unsigned int size
)
1179 unsigned long nr_pages
;
1181 nr_pages
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1182 return roundup_pow_of_two(nr_pages
) << PAGE_SHIFT
;
1186 * This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
1187 * will return an error.
1189 int pipe_proc_fn(struct ctl_table
*table
, int write
, void __user
*buf
,
1190 size_t *lenp
, loff_t
*ppos
)
1194 ret
= proc_dointvec_minmax(table
, write
, buf
, lenp
, ppos
);
1195 if (ret
< 0 || !write
)
1198 pipe_max_size
= round_pipe_size(pipe_max_size
);
1203 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1204 * location, so checking ->i_pipe is not enough to verify that this is a
1207 struct pipe_inode_info
*get_pipe_info(struct file
*file
)
1209 struct inode
*i
= file
->f_path
.dentry
->d_inode
;
1211 return S_ISFIFO(i
->i_mode
) ? i
->i_pipe
: NULL
;
1214 long pipe_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1216 struct pipe_inode_info
*pipe
;
1219 pipe
= get_pipe_info(file
);
1223 mutex_lock(&pipe
->inode
->i_mutex
);
1226 case F_SETPIPE_SZ
: {
1227 unsigned int size
, nr_pages
;
1229 size
= round_pipe_size(arg
);
1230 nr_pages
= size
>> PAGE_SHIFT
;
1236 if (!capable(CAP_SYS_RESOURCE
) && size
> pipe_max_size
) {
1240 ret
= pipe_set_size(pipe
, nr_pages
);
1244 ret
= pipe
->buffers
* PAGE_SIZE
;
1252 mutex_unlock(&pipe
->inode
->i_mutex
);
1256 static const struct super_operations pipefs_ops
= {
1257 .destroy_inode
= free_inode_nonrcu
,
1258 .statfs
= simple_statfs
,
1262 * pipefs should _never_ be mounted by userland - too much of security hassle,
1263 * no real gain from having the whole whorehouse mounted. So we don't need
1264 * any operations on the root directory. However, we need a non-trivial
1265 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1267 static struct dentry
*pipefs_mount(struct file_system_type
*fs_type
,
1268 int flags
, const char *dev_name
, void *data
)
1270 return mount_pseudo(fs_type
, "pipe:", &pipefs_ops
,
1271 &pipefs_dentry_operations
, PIPEFS_MAGIC
);
1274 static struct file_system_type pipe_fs_type
= {
1276 .mount
= pipefs_mount
,
1277 .kill_sb
= kill_anon_super
,
1280 static int __init
init_pipe_fs(void)
1282 int err
= register_filesystem(&pipe_fs_type
);
1285 pipe_mnt
= kern_mount(&pipe_fs_type
);
1286 if (IS_ERR(pipe_mnt
)) {
1287 err
= PTR_ERR(pipe_mnt
);
1288 unregister_filesystem(&pipe_fs_type
);
1294 fs_initcall(init_pipe_fs
);