1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2016 Avago Technologies. All rights reserved.
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "../host/fc.h"
20 /* *************************** Data Structures/Defines ****************** */
23 #define NVMET_LS_CTX_COUNT 256
25 struct nvmet_fc_tgtport
;
26 struct nvmet_fc_tgt_assoc
;
28 struct nvmet_fc_ls_iod
{ /* for an LS RQST RCV */
29 struct nvmefc_ls_rsp
*lsrsp
;
30 struct nvmefc_tgt_fcp_req
*fcpreq
; /* only if RS */
32 struct list_head ls_rcv_list
; /* tgtport->ls_rcv_list */
34 struct nvmet_fc_tgtport
*tgtport
;
35 struct nvmet_fc_tgt_assoc
*assoc
;
38 union nvmefc_ls_requests
*rqstbuf
;
39 union nvmefc_ls_responses
*rspbuf
;
43 struct scatterlist sg
[2];
45 struct work_struct work
;
46 } __aligned(sizeof(unsigned long long));
48 struct nvmet_fc_ls_req_op
{ /* for an LS RQST XMT */
49 struct nvmefc_ls_req ls_req
;
51 struct nvmet_fc_tgtport
*tgtport
;
55 struct list_head lsreq_list
; /* tgtport->ls_req_list */
60 /* desired maximum for a single sequence - if sg list allows it */
61 #define NVMET_FC_MAX_SEQ_LENGTH (256 * 1024)
63 enum nvmet_fcp_datadir
{
70 struct nvmet_fc_fcp_iod
{
71 struct nvmefc_tgt_fcp_req
*fcpreq
;
73 struct nvme_fc_cmd_iu cmdiubuf
;
74 struct nvme_fc_ersp_iu rspiubuf
;
76 struct scatterlist
*next_sg
;
77 struct scatterlist
*data_sg
;
80 enum nvmet_fcp_datadir io_dir
;
88 struct work_struct defer_work
;
90 struct nvmet_fc_tgtport
*tgtport
;
91 struct nvmet_fc_tgt_queue
*queue
;
93 struct list_head fcp_list
; /* tgtport->fcp_list */
96 struct nvmet_fc_tgtport
{
97 struct nvmet_fc_target_port fc_target_port
;
99 struct list_head tgt_list
; /* nvmet_fc_target_list */
100 struct device
*dev
; /* dev for dma mapping */
101 struct nvmet_fc_target_template
*ops
;
103 struct nvmet_fc_ls_iod
*iod
;
105 struct list_head ls_rcv_list
;
106 struct list_head ls_req_list
;
107 struct list_head ls_busylist
;
108 struct list_head assoc_list
;
109 struct list_head host_list
;
110 struct ida assoc_cnt
;
111 struct nvmet_fc_port_entry
*pe
;
116 struct nvmet_fc_port_entry
{
117 struct nvmet_fc_tgtport
*tgtport
;
118 struct nvmet_port
*port
;
121 struct list_head pe_list
;
124 struct nvmet_fc_defer_fcp_req
{
125 struct list_head req_list
;
126 struct nvmefc_tgt_fcp_req
*fcp_req
;
129 struct nvmet_fc_tgt_queue
{
140 struct nvmet_cq nvme_cq
;
141 struct nvmet_sq nvme_sq
;
142 struct nvmet_fc_tgt_assoc
*assoc
;
143 struct list_head fod_list
;
144 struct list_head pending_cmd_list
;
145 struct list_head avail_defer_list
;
146 struct workqueue_struct
*work_q
;
148 struct nvmet_fc_fcp_iod fod
[]; /* array of fcp_iods */
149 } __aligned(sizeof(unsigned long long));
151 struct nvmet_fc_hostport
{
152 struct nvmet_fc_tgtport
*tgtport
;
154 struct list_head host_list
;
159 struct nvmet_fc_tgt_assoc
{
162 atomic_t terminating
;
163 struct nvmet_fc_tgtport
*tgtport
;
164 struct nvmet_fc_hostport
*hostport
;
165 struct nvmet_fc_ls_iod
*rcv_disconn
;
166 struct list_head a_list
;
167 struct nvmet_fc_tgt_queue
*queues
[NVMET_NR_QUEUES
+ 1];
169 struct work_struct del_work
;
174 nvmet_fc_iodnum(struct nvmet_fc_ls_iod
*iodptr
)
176 return (iodptr
- iodptr
->tgtport
->iod
);
180 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod
*fodptr
)
182 return (fodptr
- fodptr
->queue
->fod
);
187 * Association and Connection IDs:
189 * Association ID will have random number in upper 6 bytes and zero
192 * Connection IDs will be Association ID with QID or'd in lower 2 bytes
194 * note: Association ID = Connection ID for queue 0
196 #define BYTES_FOR_QID sizeof(u16)
197 #define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8)
198 #define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
201 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc
*assoc
, u16 qid
)
203 return (assoc
->association_id
| qid
);
207 nvmet_fc_getassociationid(u64 connectionid
)
209 return connectionid
& ~NVMET_FC_QUEUEID_MASK
;
213 nvmet_fc_getqueueid(u64 connectionid
)
215 return (u16
)(connectionid
& NVMET_FC_QUEUEID_MASK
);
218 static inline struct nvmet_fc_tgtport
*
219 targetport_to_tgtport(struct nvmet_fc_target_port
*targetport
)
221 return container_of(targetport
, struct nvmet_fc_tgtport
,
225 static inline struct nvmet_fc_fcp_iod
*
226 nvmet_req_to_fod(struct nvmet_req
*nvme_req
)
228 return container_of(nvme_req
, struct nvmet_fc_fcp_iod
, req
);
232 /* *************************** Globals **************************** */
235 static DEFINE_SPINLOCK(nvmet_fc_tgtlock
);
237 static LIST_HEAD(nvmet_fc_target_list
);
238 static DEFINE_IDA(nvmet_fc_tgtport_cnt
);
239 static LIST_HEAD(nvmet_fc_portentry_list
);
242 static void nvmet_fc_handle_ls_rqst_work(struct work_struct
*work
);
243 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct
*work
);
244 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc
*assoc
);
245 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc
*assoc
);
246 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue
*queue
);
247 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue
*queue
);
248 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport
*tgtport
);
249 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport
*tgtport
);
250 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport
*tgtport
,
251 struct nvmet_fc_fcp_iod
*fod
);
252 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc
*assoc
);
253 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport
*tgtport
,
254 struct nvmet_fc_ls_iod
*iod
);
257 /* *********************** FC-NVME DMA Handling **************************** */
260 * The fcloop device passes in a NULL device pointer. Real LLD's will
261 * pass in a valid device pointer. If NULL is passed to the dma mapping
262 * routines, depending on the platform, it may or may not succeed, and
266 * Wrapper all the dma routines and check the dev pointer.
268 * If simple mappings (return just a dma address, we'll noop them,
269 * returning a dma address of 0.
271 * On more complex mappings (dma_map_sg), a pseudo routine fills
272 * in the scatter list, setting all dma addresses to 0.
275 static inline dma_addr_t
276 fc_dma_map_single(struct device
*dev
, void *ptr
, size_t size
,
277 enum dma_data_direction dir
)
279 return dev
? dma_map_single(dev
, ptr
, size
, dir
) : (dma_addr_t
)0L;
283 fc_dma_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
285 return dev
? dma_mapping_error(dev
, dma_addr
) : 0;
289 fc_dma_unmap_single(struct device
*dev
, dma_addr_t addr
, size_t size
,
290 enum dma_data_direction dir
)
293 dma_unmap_single(dev
, addr
, size
, dir
);
297 fc_dma_sync_single_for_cpu(struct device
*dev
, dma_addr_t addr
, size_t size
,
298 enum dma_data_direction dir
)
301 dma_sync_single_for_cpu(dev
, addr
, size
, dir
);
305 fc_dma_sync_single_for_device(struct device
*dev
, dma_addr_t addr
, size_t size
,
306 enum dma_data_direction dir
)
309 dma_sync_single_for_device(dev
, addr
, size
, dir
);
312 /* pseudo dma_map_sg call */
314 fc_map_sg(struct scatterlist
*sg
, int nents
)
316 struct scatterlist
*s
;
319 WARN_ON(nents
== 0 || sg
[0].length
== 0);
321 for_each_sg(sg
, s
, nents
, i
) {
323 #ifdef CONFIG_NEED_SG_DMA_LENGTH
324 s
->dma_length
= s
->length
;
331 fc_dma_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
332 enum dma_data_direction dir
)
334 return dev
? dma_map_sg(dev
, sg
, nents
, dir
) : fc_map_sg(sg
, nents
);
338 fc_dma_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
339 enum dma_data_direction dir
)
342 dma_unmap_sg(dev
, sg
, nents
, dir
);
346 /* ********************** FC-NVME LS XMT Handling ************************* */
350 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op
*lsop
)
352 struct nvmet_fc_tgtport
*tgtport
= lsop
->tgtport
;
353 struct nvmefc_ls_req
*lsreq
= &lsop
->ls_req
;
356 spin_lock_irqsave(&tgtport
->lock
, flags
);
358 if (!lsop
->req_queued
) {
359 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
363 list_del(&lsop
->lsreq_list
);
365 lsop
->req_queued
= false;
367 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
369 fc_dma_unmap_single(tgtport
->dev
, lsreq
->rqstdma
,
370 (lsreq
->rqstlen
+ lsreq
->rsplen
),
373 nvmet_fc_tgtport_put(tgtport
);
377 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport
*tgtport
,
378 struct nvmet_fc_ls_req_op
*lsop
,
379 void (*done
)(struct nvmefc_ls_req
*req
, int status
))
381 struct nvmefc_ls_req
*lsreq
= &lsop
->ls_req
;
385 if (!tgtport
->ops
->ls_req
)
388 if (!nvmet_fc_tgtport_get(tgtport
))
392 lsop
->req_queued
= false;
393 INIT_LIST_HEAD(&lsop
->lsreq_list
);
395 lsreq
->rqstdma
= fc_dma_map_single(tgtport
->dev
, lsreq
->rqstaddr
,
396 lsreq
->rqstlen
+ lsreq
->rsplen
,
398 if (fc_dma_mapping_error(tgtport
->dev
, lsreq
->rqstdma
)) {
402 lsreq
->rspdma
= lsreq
->rqstdma
+ lsreq
->rqstlen
;
404 spin_lock_irqsave(&tgtport
->lock
, flags
);
406 list_add_tail(&lsop
->lsreq_list
, &tgtport
->ls_req_list
);
408 lsop
->req_queued
= true;
410 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
412 ret
= tgtport
->ops
->ls_req(&tgtport
->fc_target_port
, lsop
->hosthandle
,
420 lsop
->ls_error
= ret
;
421 spin_lock_irqsave(&tgtport
->lock
, flags
);
422 lsop
->req_queued
= false;
423 list_del(&lsop
->lsreq_list
);
424 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
425 fc_dma_unmap_single(tgtport
->dev
, lsreq
->rqstdma
,
426 (lsreq
->rqstlen
+ lsreq
->rsplen
),
429 nvmet_fc_tgtport_put(tgtport
);
435 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport
*tgtport
,
436 struct nvmet_fc_ls_req_op
*lsop
,
437 void (*done
)(struct nvmefc_ls_req
*req
, int status
))
439 /* don't wait for completion */
441 return __nvmet_fc_send_ls_req(tgtport
, lsop
, done
);
445 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req
*lsreq
, int status
)
447 struct nvmet_fc_ls_req_op
*lsop
=
448 container_of(lsreq
, struct nvmet_fc_ls_req_op
, ls_req
);
450 __nvmet_fc_finish_ls_req(lsop
);
452 /* fc-nvme target doesn't care about success or failure of cmd */
458 * This routine sends a FC-NVME LS to disconnect (aka terminate)
459 * the FC-NVME Association. Terminating the association also
460 * terminates the FC-NVME connections (per queue, both admin and io
461 * queues) that are part of the association. E.g. things are torn
462 * down, and the related FC-NVME Association ID and Connection IDs
465 * The behavior of the fc-nvme target is such that it's
466 * understanding of the association and connections will implicitly
467 * be torn down. The action is implicit as it may be due to a loss of
468 * connectivity with the fc-nvme host, so the target may never get a
469 * response even if it tried. As such, the action of this routine
470 * is to asynchronously send the LS, ignore any results of the LS, and
471 * continue on with terminating the association. If the fc-nvme host
472 * is present and receives the LS, it too can tear down.
475 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc
*assoc
)
477 struct nvmet_fc_tgtport
*tgtport
= assoc
->tgtport
;
478 struct fcnvme_ls_disconnect_assoc_rqst
*discon_rqst
;
479 struct fcnvme_ls_disconnect_assoc_acc
*discon_acc
;
480 struct nvmet_fc_ls_req_op
*lsop
;
481 struct nvmefc_ls_req
*lsreq
;
485 * If ls_req is NULL or no hosthandle, it's an older lldd and no
486 * message is normal. Otherwise, send unless the hostport has
487 * already been invalidated by the lldd.
489 if (!tgtport
->ops
->ls_req
|| !assoc
->hostport
||
490 assoc
->hostport
->invalid
)
493 lsop
= kzalloc((sizeof(*lsop
) +
494 sizeof(*discon_rqst
) + sizeof(*discon_acc
) +
495 tgtport
->ops
->lsrqst_priv_sz
), GFP_KERNEL
);
497 dev_info(tgtport
->dev
,
498 "{%d:%d} send Disconnect Association failed: ENOMEM\n",
499 tgtport
->fc_target_port
.port_num
, assoc
->a_id
);
503 discon_rqst
= (struct fcnvme_ls_disconnect_assoc_rqst
*)&lsop
[1];
504 discon_acc
= (struct fcnvme_ls_disconnect_assoc_acc
*)&discon_rqst
[1];
505 lsreq
= &lsop
->ls_req
;
506 if (tgtport
->ops
->lsrqst_priv_sz
)
507 lsreq
->private = (void *)&discon_acc
[1];
509 lsreq
->private = NULL
;
511 lsop
->tgtport
= tgtport
;
512 lsop
->hosthandle
= assoc
->hostport
->hosthandle
;
514 nvmefc_fmt_lsreq_discon_assoc(lsreq
, discon_rqst
, discon_acc
,
515 assoc
->association_id
);
517 ret
= nvmet_fc_send_ls_req_async(tgtport
, lsop
,
518 nvmet_fc_disconnect_assoc_done
);
520 dev_info(tgtport
->dev
,
521 "{%d:%d} XMT Disconnect Association failed: %d\n",
522 tgtport
->fc_target_port
.port_num
, assoc
->a_id
, ret
);
528 /* *********************** FC-NVME Port Management ************************ */
532 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport
*tgtport
)
534 struct nvmet_fc_ls_iod
*iod
;
537 iod
= kcalloc(NVMET_LS_CTX_COUNT
, sizeof(struct nvmet_fc_ls_iod
),
544 for (i
= 0; i
< NVMET_LS_CTX_COUNT
; iod
++, i
++) {
545 INIT_WORK(&iod
->work
, nvmet_fc_handle_ls_rqst_work
);
546 iod
->tgtport
= tgtport
;
547 list_add_tail(&iod
->ls_rcv_list
, &tgtport
->ls_rcv_list
);
549 iod
->rqstbuf
= kzalloc(sizeof(union nvmefc_ls_requests
) +
550 sizeof(union nvmefc_ls_responses
),
555 iod
->rspbuf
= (union nvmefc_ls_responses
*)&iod
->rqstbuf
[1];
557 iod
->rspdma
= fc_dma_map_single(tgtport
->dev
, iod
->rspbuf
,
558 sizeof(*iod
->rspbuf
),
560 if (fc_dma_mapping_error(tgtport
->dev
, iod
->rspdma
))
568 list_del(&iod
->ls_rcv_list
);
569 for (iod
--, i
--; i
>= 0; iod
--, i
--) {
570 fc_dma_unmap_single(tgtport
->dev
, iod
->rspdma
,
571 sizeof(*iod
->rspbuf
), DMA_TO_DEVICE
);
573 list_del(&iod
->ls_rcv_list
);
582 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport
*tgtport
)
584 struct nvmet_fc_ls_iod
*iod
= tgtport
->iod
;
587 for (i
= 0; i
< NVMET_LS_CTX_COUNT
; iod
++, i
++) {
588 fc_dma_unmap_single(tgtport
->dev
,
589 iod
->rspdma
, sizeof(*iod
->rspbuf
),
592 list_del(&iod
->ls_rcv_list
);
597 static struct nvmet_fc_ls_iod
*
598 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport
*tgtport
)
600 struct nvmet_fc_ls_iod
*iod
;
603 spin_lock_irqsave(&tgtport
->lock
, flags
);
604 iod
= list_first_entry_or_null(&tgtport
->ls_rcv_list
,
605 struct nvmet_fc_ls_iod
, ls_rcv_list
);
607 list_move_tail(&iod
->ls_rcv_list
, &tgtport
->ls_busylist
);
608 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
614 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport
*tgtport
,
615 struct nvmet_fc_ls_iod
*iod
)
619 spin_lock_irqsave(&tgtport
->lock
, flags
);
620 list_move(&iod
->ls_rcv_list
, &tgtport
->ls_rcv_list
);
621 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
625 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport
*tgtport
,
626 struct nvmet_fc_tgt_queue
*queue
)
628 struct nvmet_fc_fcp_iod
*fod
= queue
->fod
;
631 for (i
= 0; i
< queue
->sqsize
; fod
++, i
++) {
632 INIT_WORK(&fod
->defer_work
, nvmet_fc_fcp_rqst_op_defer_work
);
633 fod
->tgtport
= tgtport
;
637 fod
->aborted
= false;
639 list_add_tail(&fod
->fcp_list
, &queue
->fod_list
);
640 spin_lock_init(&fod
->flock
);
642 fod
->rspdma
= fc_dma_map_single(tgtport
->dev
, &fod
->rspiubuf
,
643 sizeof(fod
->rspiubuf
), DMA_TO_DEVICE
);
644 if (fc_dma_mapping_error(tgtport
->dev
, fod
->rspdma
)) {
645 list_del(&fod
->fcp_list
);
646 for (fod
--, i
--; i
>= 0; fod
--, i
--) {
647 fc_dma_unmap_single(tgtport
->dev
, fod
->rspdma
,
648 sizeof(fod
->rspiubuf
),
651 list_del(&fod
->fcp_list
);
660 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport
*tgtport
,
661 struct nvmet_fc_tgt_queue
*queue
)
663 struct nvmet_fc_fcp_iod
*fod
= queue
->fod
;
666 for (i
= 0; i
< queue
->sqsize
; fod
++, i
++) {
668 fc_dma_unmap_single(tgtport
->dev
, fod
->rspdma
,
669 sizeof(fod
->rspiubuf
), DMA_TO_DEVICE
);
673 static struct nvmet_fc_fcp_iod
*
674 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue
*queue
)
676 struct nvmet_fc_fcp_iod
*fod
;
678 lockdep_assert_held(&queue
->qlock
);
680 fod
= list_first_entry_or_null(&queue
->fod_list
,
681 struct nvmet_fc_fcp_iod
, fcp_list
);
683 list_del(&fod
->fcp_list
);
686 * no queue reference is taken, as it was taken by the
687 * queue lookup just prior to the allocation. The iod
688 * will "inherit" that reference.
696 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport
*tgtport
,
697 struct nvmet_fc_tgt_queue
*queue
,
698 struct nvmefc_tgt_fcp_req
*fcpreq
)
700 struct nvmet_fc_fcp_iod
*fod
= fcpreq
->nvmet_fc_private
;
703 * put all admin cmds on hw queue id 0. All io commands go to
704 * the respective hw queue based on a modulo basis
706 fcpreq
->hwqid
= queue
->qid
?
707 ((queue
->qid
- 1) % tgtport
->ops
->max_hw_queues
) : 0;
709 nvmet_fc_handle_fcp_rqst(tgtport
, fod
);
713 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct
*work
)
715 struct nvmet_fc_fcp_iod
*fod
=
716 container_of(work
, struct nvmet_fc_fcp_iod
, defer_work
);
718 /* Submit deferred IO for processing */
719 nvmet_fc_queue_fcp_req(fod
->tgtport
, fod
->queue
, fod
->fcpreq
);
724 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue
*queue
,
725 struct nvmet_fc_fcp_iod
*fod
)
727 struct nvmefc_tgt_fcp_req
*fcpreq
= fod
->fcpreq
;
728 struct nvmet_fc_tgtport
*tgtport
= fod
->tgtport
;
729 struct nvmet_fc_defer_fcp_req
*deferfcp
;
732 fc_dma_sync_single_for_cpu(tgtport
->dev
, fod
->rspdma
,
733 sizeof(fod
->rspiubuf
), DMA_TO_DEVICE
);
735 fcpreq
->nvmet_fc_private
= NULL
;
739 fod
->aborted
= false;
740 fod
->writedataactive
= false;
743 tgtport
->ops
->fcp_req_release(&tgtport
->fc_target_port
, fcpreq
);
745 /* release the queue lookup reference on the completed IO */
746 nvmet_fc_tgt_q_put(queue
);
748 spin_lock_irqsave(&queue
->qlock
, flags
);
749 deferfcp
= list_first_entry_or_null(&queue
->pending_cmd_list
,
750 struct nvmet_fc_defer_fcp_req
, req_list
);
752 list_add_tail(&fod
->fcp_list
, &fod
->queue
->fod_list
);
753 spin_unlock_irqrestore(&queue
->qlock
, flags
);
757 /* Re-use the fod for the next pending cmd that was deferred */
758 list_del(&deferfcp
->req_list
);
760 fcpreq
= deferfcp
->fcp_req
;
762 /* deferfcp can be reused for another IO at a later date */
763 list_add_tail(&deferfcp
->req_list
, &queue
->avail_defer_list
);
765 spin_unlock_irqrestore(&queue
->qlock
, flags
);
767 /* Save NVME CMD IO in fod */
768 memcpy(&fod
->cmdiubuf
, fcpreq
->rspaddr
, fcpreq
->rsplen
);
770 /* Setup new fcpreq to be processed */
771 fcpreq
->rspaddr
= NULL
;
773 fcpreq
->nvmet_fc_private
= fod
;
774 fod
->fcpreq
= fcpreq
;
777 /* inform LLDD IO is now being processed */
778 tgtport
->ops
->defer_rcv(&tgtport
->fc_target_port
, fcpreq
);
781 * Leave the queue lookup get reference taken when
782 * fod was originally allocated.
785 queue_work(queue
->work_q
, &fod
->defer_work
);
788 static struct nvmet_fc_tgt_queue
*
789 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc
*assoc
,
792 struct nvmet_fc_tgt_queue
*queue
;
796 if (qid
> NVMET_NR_QUEUES
)
799 queue
= kzalloc(struct_size(queue
, fod
, sqsize
), GFP_KERNEL
);
803 if (!nvmet_fc_tgt_a_get(assoc
))
806 queue
->work_q
= alloc_workqueue("ntfc%d.%d.%d", 0, 0,
807 assoc
->tgtport
->fc_target_port
.port_num
,
813 queue
->sqsize
= sqsize
;
814 queue
->assoc
= assoc
;
815 INIT_LIST_HEAD(&queue
->fod_list
);
816 INIT_LIST_HEAD(&queue
->avail_defer_list
);
817 INIT_LIST_HEAD(&queue
->pending_cmd_list
);
818 atomic_set(&queue
->connected
, 0);
819 atomic_set(&queue
->sqtail
, 0);
820 atomic_set(&queue
->rsn
, 1);
821 atomic_set(&queue
->zrspcnt
, 0);
822 spin_lock_init(&queue
->qlock
);
823 kref_init(&queue
->ref
);
825 nvmet_fc_prep_fcp_iodlist(assoc
->tgtport
, queue
);
827 ret
= nvmet_sq_init(&queue
->nvme_sq
);
829 goto out_fail_iodlist
;
831 WARN_ON(assoc
->queues
[qid
]);
832 spin_lock_irqsave(&assoc
->tgtport
->lock
, flags
);
833 assoc
->queues
[qid
] = queue
;
834 spin_unlock_irqrestore(&assoc
->tgtport
->lock
, flags
);
839 nvmet_fc_destroy_fcp_iodlist(assoc
->tgtport
, queue
);
840 destroy_workqueue(queue
->work_q
);
842 nvmet_fc_tgt_a_put(assoc
);
850 nvmet_fc_tgt_queue_free(struct kref
*ref
)
852 struct nvmet_fc_tgt_queue
*queue
=
853 container_of(ref
, struct nvmet_fc_tgt_queue
, ref
);
856 spin_lock_irqsave(&queue
->assoc
->tgtport
->lock
, flags
);
857 queue
->assoc
->queues
[queue
->qid
] = NULL
;
858 spin_unlock_irqrestore(&queue
->assoc
->tgtport
->lock
, flags
);
860 nvmet_fc_destroy_fcp_iodlist(queue
->assoc
->tgtport
, queue
);
862 nvmet_fc_tgt_a_put(queue
->assoc
);
864 destroy_workqueue(queue
->work_q
);
870 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue
*queue
)
872 kref_put(&queue
->ref
, nvmet_fc_tgt_queue_free
);
876 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue
*queue
)
878 return kref_get_unless_zero(&queue
->ref
);
883 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue
*queue
)
885 struct nvmet_fc_tgtport
*tgtport
= queue
->assoc
->tgtport
;
886 struct nvmet_fc_fcp_iod
*fod
= queue
->fod
;
887 struct nvmet_fc_defer_fcp_req
*deferfcp
, *tempptr
;
892 disconnect
= atomic_xchg(&queue
->connected
, 0);
894 /* if not connected, nothing to do */
898 spin_lock_irqsave(&queue
->qlock
, flags
);
899 /* abort outstanding io's */
900 for (i
= 0; i
< queue
->sqsize
; fod
++, i
++) {
902 spin_lock(&fod
->flock
);
905 * only call lldd abort routine if waiting for
906 * writedata. other outstanding ops should finish
909 if (fod
->writedataactive
) {
911 spin_unlock(&fod
->flock
);
912 tgtport
->ops
->fcp_abort(
913 &tgtport
->fc_target_port
, fod
->fcpreq
);
915 spin_unlock(&fod
->flock
);
919 /* Cleanup defer'ed IOs in queue */
920 list_for_each_entry_safe(deferfcp
, tempptr
, &queue
->avail_defer_list
,
922 list_del(&deferfcp
->req_list
);
927 deferfcp
= list_first_entry_or_null(&queue
->pending_cmd_list
,
928 struct nvmet_fc_defer_fcp_req
, req_list
);
932 list_del(&deferfcp
->req_list
);
933 spin_unlock_irqrestore(&queue
->qlock
, flags
);
935 tgtport
->ops
->defer_rcv(&tgtport
->fc_target_port
,
938 tgtport
->ops
->fcp_abort(&tgtport
->fc_target_port
,
941 tgtport
->ops
->fcp_req_release(&tgtport
->fc_target_port
,
944 /* release the queue lookup reference */
945 nvmet_fc_tgt_q_put(queue
);
949 spin_lock_irqsave(&queue
->qlock
, flags
);
951 spin_unlock_irqrestore(&queue
->qlock
, flags
);
953 flush_workqueue(queue
->work_q
);
955 nvmet_sq_destroy(&queue
->nvme_sq
);
957 nvmet_fc_tgt_q_put(queue
);
960 static struct nvmet_fc_tgt_queue
*
961 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport
*tgtport
,
964 struct nvmet_fc_tgt_assoc
*assoc
;
965 struct nvmet_fc_tgt_queue
*queue
;
966 u64 association_id
= nvmet_fc_getassociationid(connection_id
);
967 u16 qid
= nvmet_fc_getqueueid(connection_id
);
970 if (qid
> NVMET_NR_QUEUES
)
973 spin_lock_irqsave(&tgtport
->lock
, flags
);
974 list_for_each_entry(assoc
, &tgtport
->assoc_list
, a_list
) {
975 if (association_id
== assoc
->association_id
) {
976 queue
= assoc
->queues
[qid
];
978 (!atomic_read(&queue
->connected
) ||
979 !nvmet_fc_tgt_q_get(queue
)))
981 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
985 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
990 nvmet_fc_hostport_free(struct kref
*ref
)
992 struct nvmet_fc_hostport
*hostport
=
993 container_of(ref
, struct nvmet_fc_hostport
, ref
);
994 struct nvmet_fc_tgtport
*tgtport
= hostport
->tgtport
;
997 spin_lock_irqsave(&tgtport
->lock
, flags
);
998 list_del(&hostport
->host_list
);
999 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
1000 if (tgtport
->ops
->host_release
&& hostport
->invalid
)
1001 tgtport
->ops
->host_release(hostport
->hosthandle
);
1003 nvmet_fc_tgtport_put(tgtport
);
1007 nvmet_fc_hostport_put(struct nvmet_fc_hostport
*hostport
)
1009 kref_put(&hostport
->ref
, nvmet_fc_hostport_free
);
1013 nvmet_fc_hostport_get(struct nvmet_fc_hostport
*hostport
)
1015 return kref_get_unless_zero(&hostport
->ref
);
1019 nvmet_fc_free_hostport(struct nvmet_fc_hostport
*hostport
)
1021 /* if LLDD not implemented, leave as NULL */
1022 if (!hostport
|| !hostport
->hosthandle
)
1025 nvmet_fc_hostport_put(hostport
);
1028 static struct nvmet_fc_hostport
*
1029 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport
*tgtport
, void *hosthandle
)
1031 struct nvmet_fc_hostport
*newhost
, *host
, *match
= NULL
;
1032 unsigned long flags
;
1034 /* if LLDD not implemented, leave as NULL */
1038 /* take reference for what will be the newly allocated hostport */
1039 if (!nvmet_fc_tgtport_get(tgtport
))
1040 return ERR_PTR(-EINVAL
);
1042 newhost
= kzalloc(sizeof(*newhost
), GFP_KERNEL
);
1044 spin_lock_irqsave(&tgtport
->lock
, flags
);
1045 list_for_each_entry(host
, &tgtport
->host_list
, host_list
) {
1046 if (host
->hosthandle
== hosthandle
&& !host
->invalid
) {
1047 if (nvmet_fc_hostport_get(host
)) {
1053 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
1054 /* no allocation - release reference */
1055 nvmet_fc_tgtport_put(tgtport
);
1056 return (match
) ? match
: ERR_PTR(-ENOMEM
);
1059 newhost
->tgtport
= tgtport
;
1060 newhost
->hosthandle
= hosthandle
;
1061 INIT_LIST_HEAD(&newhost
->host_list
);
1062 kref_init(&newhost
->ref
);
1064 spin_lock_irqsave(&tgtport
->lock
, flags
);
1065 list_for_each_entry(host
, &tgtport
->host_list
, host_list
) {
1066 if (host
->hosthandle
== hosthandle
&& !host
->invalid
) {
1067 if (nvmet_fc_hostport_get(host
)) {
1076 /* releasing allocation - release reference */
1077 nvmet_fc_tgtport_put(tgtport
);
1079 list_add_tail(&newhost
->host_list
, &tgtport
->host_list
);
1080 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
1082 return (match
) ? match
: newhost
;
1086 nvmet_fc_delete_assoc(struct work_struct
*work
)
1088 struct nvmet_fc_tgt_assoc
*assoc
=
1089 container_of(work
, struct nvmet_fc_tgt_assoc
, del_work
);
1091 nvmet_fc_delete_target_assoc(assoc
);
1092 nvmet_fc_tgt_a_put(assoc
);
1095 static struct nvmet_fc_tgt_assoc
*
1096 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport
*tgtport
, void *hosthandle
)
1098 struct nvmet_fc_tgt_assoc
*assoc
, *tmpassoc
;
1099 unsigned long flags
;
1102 bool needrandom
= true;
1104 assoc
= kzalloc(sizeof(*assoc
), GFP_KERNEL
);
1108 idx
= ida_simple_get(&tgtport
->assoc_cnt
, 0, 0, GFP_KERNEL
);
1110 goto out_free_assoc
;
1112 if (!nvmet_fc_tgtport_get(tgtport
))
1115 assoc
->hostport
= nvmet_fc_alloc_hostport(tgtport
, hosthandle
);
1116 if (IS_ERR(assoc
->hostport
))
1119 assoc
->tgtport
= tgtport
;
1121 INIT_LIST_HEAD(&assoc
->a_list
);
1122 kref_init(&assoc
->ref
);
1123 INIT_WORK(&assoc
->del_work
, nvmet_fc_delete_assoc
);
1124 atomic_set(&assoc
->terminating
, 0);
1126 while (needrandom
) {
1127 get_random_bytes(&ran
, sizeof(ran
) - BYTES_FOR_QID
);
1128 ran
= ran
<< BYTES_FOR_QID_SHIFT
;
1130 spin_lock_irqsave(&tgtport
->lock
, flags
);
1132 list_for_each_entry(tmpassoc
, &tgtport
->assoc_list
, a_list
) {
1133 if (ran
== tmpassoc
->association_id
) {
1139 assoc
->association_id
= ran
;
1140 list_add_tail(&assoc
->a_list
, &tgtport
->assoc_list
);
1142 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
1148 nvmet_fc_tgtport_put(tgtport
);
1150 ida_simple_remove(&tgtport
->assoc_cnt
, idx
);
1157 nvmet_fc_target_assoc_free(struct kref
*ref
)
1159 struct nvmet_fc_tgt_assoc
*assoc
=
1160 container_of(ref
, struct nvmet_fc_tgt_assoc
, ref
);
1161 struct nvmet_fc_tgtport
*tgtport
= assoc
->tgtport
;
1162 struct nvmet_fc_ls_iod
*oldls
;
1163 unsigned long flags
;
1165 /* Send Disconnect now that all i/o has completed */
1166 nvmet_fc_xmt_disconnect_assoc(assoc
);
1168 nvmet_fc_free_hostport(assoc
->hostport
);
1169 spin_lock_irqsave(&tgtport
->lock
, flags
);
1170 list_del(&assoc
->a_list
);
1171 oldls
= assoc
->rcv_disconn
;
1172 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
1173 /* if pending Rcv Disconnect Association LS, send rsp now */
1175 nvmet_fc_xmt_ls_rsp(tgtport
, oldls
);
1176 ida_simple_remove(&tgtport
->assoc_cnt
, assoc
->a_id
);
1177 dev_info(tgtport
->dev
,
1178 "{%d:%d} Association freed\n",
1179 tgtport
->fc_target_port
.port_num
, assoc
->a_id
);
1181 nvmet_fc_tgtport_put(tgtport
);
1185 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc
*assoc
)
1187 kref_put(&assoc
->ref
, nvmet_fc_target_assoc_free
);
1191 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc
*assoc
)
1193 return kref_get_unless_zero(&assoc
->ref
);
1197 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc
*assoc
)
1199 struct nvmet_fc_tgtport
*tgtport
= assoc
->tgtport
;
1200 struct nvmet_fc_tgt_queue
*queue
;
1201 unsigned long flags
;
1204 terminating
= atomic_xchg(&assoc
->terminating
, 1);
1206 /* if already terminating, do nothing */
1210 spin_lock_irqsave(&tgtport
->lock
, flags
);
1211 for (i
= NVMET_NR_QUEUES
; i
>= 0; i
--) {
1212 queue
= assoc
->queues
[i
];
1214 if (!nvmet_fc_tgt_q_get(queue
))
1216 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
1217 nvmet_fc_delete_target_queue(queue
);
1218 nvmet_fc_tgt_q_put(queue
);
1219 spin_lock_irqsave(&tgtport
->lock
, flags
);
1222 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
1224 dev_info(tgtport
->dev
,
1225 "{%d:%d} Association deleted\n",
1226 tgtport
->fc_target_port
.port_num
, assoc
->a_id
);
1228 nvmet_fc_tgt_a_put(assoc
);
1231 static struct nvmet_fc_tgt_assoc
*
1232 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport
*tgtport
,
1235 struct nvmet_fc_tgt_assoc
*assoc
;
1236 struct nvmet_fc_tgt_assoc
*ret
= NULL
;
1237 unsigned long flags
;
1239 spin_lock_irqsave(&tgtport
->lock
, flags
);
1240 list_for_each_entry(assoc
, &tgtport
->assoc_list
, a_list
) {
1241 if (association_id
== assoc
->association_id
) {
1243 if (!nvmet_fc_tgt_a_get(assoc
))
1248 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
1254 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport
*tgtport
,
1255 struct nvmet_fc_port_entry
*pe
,
1256 struct nvmet_port
*port
)
1258 lockdep_assert_held(&nvmet_fc_tgtlock
);
1260 pe
->tgtport
= tgtport
;
1266 pe
->node_name
= tgtport
->fc_target_port
.node_name
;
1267 pe
->port_name
= tgtport
->fc_target_port
.port_name
;
1268 INIT_LIST_HEAD(&pe
->pe_list
);
1270 list_add_tail(&pe
->pe_list
, &nvmet_fc_portentry_list
);
1274 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry
*pe
)
1276 unsigned long flags
;
1278 spin_lock_irqsave(&nvmet_fc_tgtlock
, flags
);
1280 pe
->tgtport
->pe
= NULL
;
1281 list_del(&pe
->pe_list
);
1282 spin_unlock_irqrestore(&nvmet_fc_tgtlock
, flags
);
1286 * called when a targetport deregisters. Breaks the relationship
1287 * with the nvmet port, but leaves the port_entry in place so that
1288 * re-registration can resume operation.
1291 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport
*tgtport
)
1293 struct nvmet_fc_port_entry
*pe
;
1294 unsigned long flags
;
1296 spin_lock_irqsave(&nvmet_fc_tgtlock
, flags
);
1301 spin_unlock_irqrestore(&nvmet_fc_tgtlock
, flags
);
1305 * called when a new targetport is registered. Looks in the
1306 * existing nvmet port_entries to see if the nvmet layer is
1307 * configured for the targetport's wwn's. (the targetport existed,
1308 * nvmet configured, the lldd unregistered the tgtport, and is now
1309 * reregistering the same targetport). If so, set the nvmet port
1310 * port entry on the targetport.
1313 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport
*tgtport
)
1315 struct nvmet_fc_port_entry
*pe
;
1316 unsigned long flags
;
1318 spin_lock_irqsave(&nvmet_fc_tgtlock
, flags
);
1319 list_for_each_entry(pe
, &nvmet_fc_portentry_list
, pe_list
) {
1320 if (tgtport
->fc_target_port
.node_name
== pe
->node_name
&&
1321 tgtport
->fc_target_port
.port_name
== pe
->port_name
) {
1322 WARN_ON(pe
->tgtport
);
1324 pe
->tgtport
= tgtport
;
1328 spin_unlock_irqrestore(&nvmet_fc_tgtlock
, flags
);
1332 * nvme_fc_register_targetport - transport entry point called by an
1333 * LLDD to register the existence of a local
1334 * NVME subystem FC port.
1335 * @pinfo: pointer to information about the port to be registered
1336 * @template: LLDD entrypoints and operational parameters for the port
1337 * @dev: physical hardware device node port corresponds to. Will be
1338 * used for DMA mappings
1339 * @portptr: pointer to a local port pointer. Upon success, the routine
1340 * will allocate a nvme_fc_local_port structure and place its
1341 * address in the local port pointer. Upon failure, local port
1342 * pointer will be set to NULL.
1345 * a completion status. Must be 0 upon success; a negative errno
1346 * (ex: -ENXIO) upon failure.
1349 nvmet_fc_register_targetport(struct nvmet_fc_port_info
*pinfo
,
1350 struct nvmet_fc_target_template
*template,
1352 struct nvmet_fc_target_port
**portptr
)
1354 struct nvmet_fc_tgtport
*newrec
;
1355 unsigned long flags
;
1358 if (!template->xmt_ls_rsp
|| !template->fcp_op
||
1359 !template->fcp_abort
||
1360 !template->fcp_req_release
|| !template->targetport_delete
||
1361 !template->max_hw_queues
|| !template->max_sgl_segments
||
1362 !template->max_dif_sgl_segments
|| !template->dma_boundary
) {
1364 goto out_regtgt_failed
;
1367 newrec
= kzalloc((sizeof(*newrec
) + template->target_priv_sz
),
1371 goto out_regtgt_failed
;
1374 idx
= ida_simple_get(&nvmet_fc_tgtport_cnt
, 0, 0, GFP_KERNEL
);
1377 goto out_fail_kfree
;
1380 if (!get_device(dev
) && dev
) {
1385 newrec
->fc_target_port
.node_name
= pinfo
->node_name
;
1386 newrec
->fc_target_port
.port_name
= pinfo
->port_name
;
1387 if (template->target_priv_sz
)
1388 newrec
->fc_target_port
.private = &newrec
[1];
1390 newrec
->fc_target_port
.private = NULL
;
1391 newrec
->fc_target_port
.port_id
= pinfo
->port_id
;
1392 newrec
->fc_target_port
.port_num
= idx
;
1393 INIT_LIST_HEAD(&newrec
->tgt_list
);
1395 newrec
->ops
= template;
1396 spin_lock_init(&newrec
->lock
);
1397 INIT_LIST_HEAD(&newrec
->ls_rcv_list
);
1398 INIT_LIST_HEAD(&newrec
->ls_req_list
);
1399 INIT_LIST_HEAD(&newrec
->ls_busylist
);
1400 INIT_LIST_HEAD(&newrec
->assoc_list
);
1401 INIT_LIST_HEAD(&newrec
->host_list
);
1402 kref_init(&newrec
->ref
);
1403 ida_init(&newrec
->assoc_cnt
);
1404 newrec
->max_sg_cnt
= template->max_sgl_segments
;
1406 ret
= nvmet_fc_alloc_ls_iodlist(newrec
);
1409 goto out_free_newrec
;
1412 nvmet_fc_portentry_rebind_tgt(newrec
);
1414 spin_lock_irqsave(&nvmet_fc_tgtlock
, flags
);
1415 list_add_tail(&newrec
->tgt_list
, &nvmet_fc_target_list
);
1416 spin_unlock_irqrestore(&nvmet_fc_tgtlock
, flags
);
1418 *portptr
= &newrec
->fc_target_port
;
1424 ida_simple_remove(&nvmet_fc_tgtport_cnt
, idx
);
1431 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport
);
1435 nvmet_fc_free_tgtport(struct kref
*ref
)
1437 struct nvmet_fc_tgtport
*tgtport
=
1438 container_of(ref
, struct nvmet_fc_tgtport
, ref
);
1439 struct device
*dev
= tgtport
->dev
;
1440 unsigned long flags
;
1442 spin_lock_irqsave(&nvmet_fc_tgtlock
, flags
);
1443 list_del(&tgtport
->tgt_list
);
1444 spin_unlock_irqrestore(&nvmet_fc_tgtlock
, flags
);
1446 nvmet_fc_free_ls_iodlist(tgtport
);
1448 /* let the LLDD know we've finished tearing it down */
1449 tgtport
->ops
->targetport_delete(&tgtport
->fc_target_port
);
1451 ida_simple_remove(&nvmet_fc_tgtport_cnt
,
1452 tgtport
->fc_target_port
.port_num
);
1454 ida_destroy(&tgtport
->assoc_cnt
);
1462 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport
*tgtport
)
1464 kref_put(&tgtport
->ref
, nvmet_fc_free_tgtport
);
1468 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport
*tgtport
)
1470 return kref_get_unless_zero(&tgtport
->ref
);
1474 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport
*tgtport
)
1476 struct nvmet_fc_tgt_assoc
*assoc
, *next
;
1477 unsigned long flags
;
1479 spin_lock_irqsave(&tgtport
->lock
, flags
);
1480 list_for_each_entry_safe(assoc
, next
,
1481 &tgtport
->assoc_list
, a_list
) {
1482 if (!nvmet_fc_tgt_a_get(assoc
))
1484 if (!schedule_work(&assoc
->del_work
))
1485 /* already deleting - release local reference */
1486 nvmet_fc_tgt_a_put(assoc
);
1488 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
1492 * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1493 * to remove references to a hosthandle for LS's.
1495 * The nvmet-fc layer ensures that any references to the hosthandle
1496 * on the targetport are forgotten (set to NULL). The LLDD will
1497 * typically call this when a login with a remote host port has been
1498 * lost, thus LS's for the remote host port are no longer possible.
1500 * If an LS request is outstanding to the targetport/hosthandle (or
1501 * issued concurrently with the call to invalidate the host), the
1502 * LLDD is responsible for terminating/aborting the LS and completing
1503 * the LS request. It is recommended that these terminations/aborts
1504 * occur after calling to invalidate the host handle to avoid additional
1505 * retries by the nvmet-fc transport. The nvmet-fc transport may
1506 * continue to reference host handle while it cleans up outstanding
1507 * NVME associations. The nvmet-fc transport will call the
1508 * ops->host_release() callback to notify the LLDD that all references
1509 * are complete and the related host handle can be recovered.
1510 * Note: if there are no references, the callback may be called before
1511 * the invalidate host call returns.
1513 * @target_port: pointer to the (registered) target port that a prior
1514 * LS was received on and which supplied the transport the
1516 * @hosthandle: the handle (pointer) that represents the host port
1517 * that no longer has connectivity and that LS's should
1518 * no longer be directed to.
1521 nvmet_fc_invalidate_host(struct nvmet_fc_target_port
*target_port
,
1524 struct nvmet_fc_tgtport
*tgtport
= targetport_to_tgtport(target_port
);
1525 struct nvmet_fc_tgt_assoc
*assoc
, *next
;
1526 unsigned long flags
;
1527 bool noassoc
= true;
1529 spin_lock_irqsave(&tgtport
->lock
, flags
);
1530 list_for_each_entry_safe(assoc
, next
,
1531 &tgtport
->assoc_list
, a_list
) {
1532 if (!assoc
->hostport
||
1533 assoc
->hostport
->hosthandle
!= hosthandle
)
1535 if (!nvmet_fc_tgt_a_get(assoc
))
1537 assoc
->hostport
->invalid
= 1;
1539 if (!schedule_work(&assoc
->del_work
))
1540 /* already deleting - release local reference */
1541 nvmet_fc_tgt_a_put(assoc
);
1543 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
1545 /* if there's nothing to wait for - call the callback */
1546 if (noassoc
&& tgtport
->ops
->host_release
)
1547 tgtport
->ops
->host_release(hosthandle
);
1549 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host
);
1552 * nvmet layer has called to terminate an association
1555 nvmet_fc_delete_ctrl(struct nvmet_ctrl
*ctrl
)
1557 struct nvmet_fc_tgtport
*tgtport
, *next
;
1558 struct nvmet_fc_tgt_assoc
*assoc
;
1559 struct nvmet_fc_tgt_queue
*queue
;
1560 unsigned long flags
;
1561 bool found_ctrl
= false;
1563 /* this is a bit ugly, but don't want to make locks layered */
1564 spin_lock_irqsave(&nvmet_fc_tgtlock
, flags
);
1565 list_for_each_entry_safe(tgtport
, next
, &nvmet_fc_target_list
,
1567 if (!nvmet_fc_tgtport_get(tgtport
))
1569 spin_unlock_irqrestore(&nvmet_fc_tgtlock
, flags
);
1571 spin_lock_irqsave(&tgtport
->lock
, flags
);
1572 list_for_each_entry(assoc
, &tgtport
->assoc_list
, a_list
) {
1573 queue
= assoc
->queues
[0];
1574 if (queue
&& queue
->nvme_sq
.ctrl
== ctrl
) {
1575 if (nvmet_fc_tgt_a_get(assoc
))
1580 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
1582 nvmet_fc_tgtport_put(tgtport
);
1585 if (!schedule_work(&assoc
->del_work
))
1586 /* already deleting - release local reference */
1587 nvmet_fc_tgt_a_put(assoc
);
1591 spin_lock_irqsave(&nvmet_fc_tgtlock
, flags
);
1593 spin_unlock_irqrestore(&nvmet_fc_tgtlock
, flags
);
1597 * nvme_fc_unregister_targetport - transport entry point called by an
1598 * LLDD to deregister/remove a previously
1599 * registered a local NVME subsystem FC port.
1600 * @target_port: pointer to the (registered) target port that is to be
1604 * a completion status. Must be 0 upon success; a negative errno
1605 * (ex: -ENXIO) upon failure.
1608 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port
*target_port
)
1610 struct nvmet_fc_tgtport
*tgtport
= targetport_to_tgtport(target_port
);
1612 nvmet_fc_portentry_unbind_tgt(tgtport
);
1614 /* terminate any outstanding associations */
1615 __nvmet_fc_free_assocs(tgtport
);
1618 * should terminate LS's as well. However, LS's will be generated
1619 * at the tail end of association termination, so they likely don't
1620 * exist yet. And even if they did, it's worthwhile to just let
1621 * them finish and targetport ref counting will clean things up.
1624 nvmet_fc_tgtport_put(tgtport
);
1628 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport
);
1631 /* ********************** FC-NVME LS RCV Handling ************************* */
1635 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport
*tgtport
,
1636 struct nvmet_fc_ls_iod
*iod
)
1638 struct fcnvme_ls_cr_assoc_rqst
*rqst
= &iod
->rqstbuf
->rq_cr_assoc
;
1639 struct fcnvme_ls_cr_assoc_acc
*acc
= &iod
->rspbuf
->rsp_cr_assoc
;
1640 struct nvmet_fc_tgt_queue
*queue
;
1643 memset(acc
, 0, sizeof(*acc
));
1646 * FC-NVME spec changes. There are initiators sending different
1647 * lengths as padding sizes for Create Association Cmd descriptor
1649 * Accept anything of "minimum" length. Assume format per 1.15
1650 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1651 * trailing pad length is.
1653 if (iod
->rqstdatalen
< FCNVME_LSDESC_CRA_RQST_MINLEN
)
1654 ret
= VERR_CR_ASSOC_LEN
;
1655 else if (be32_to_cpu(rqst
->desc_list_len
) <
1656 FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN
)
1657 ret
= VERR_CR_ASSOC_RQST_LEN
;
1658 else if (rqst
->assoc_cmd
.desc_tag
!=
1659 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD
))
1660 ret
= VERR_CR_ASSOC_CMD
;
1661 else if (be32_to_cpu(rqst
->assoc_cmd
.desc_len
) <
1662 FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN
)
1663 ret
= VERR_CR_ASSOC_CMD_LEN
;
1664 else if (!rqst
->assoc_cmd
.ersp_ratio
||
1665 (be16_to_cpu(rqst
->assoc_cmd
.ersp_ratio
) >=
1666 be16_to_cpu(rqst
->assoc_cmd
.sqsize
)))
1667 ret
= VERR_ERSP_RATIO
;
1670 /* new association w/ admin queue */
1671 iod
->assoc
= nvmet_fc_alloc_target_assoc(
1672 tgtport
, iod
->hosthandle
);
1674 ret
= VERR_ASSOC_ALLOC_FAIL
;
1676 queue
= nvmet_fc_alloc_target_queue(iod
->assoc
, 0,
1677 be16_to_cpu(rqst
->assoc_cmd
.sqsize
));
1679 ret
= VERR_QUEUE_ALLOC_FAIL
;
1684 dev_err(tgtport
->dev
,
1685 "Create Association LS failed: %s\n",
1686 validation_errors
[ret
]);
1687 iod
->lsrsp
->rsplen
= nvme_fc_format_rjt(acc
,
1688 sizeof(*acc
), rqst
->w0
.ls_cmd
,
1689 FCNVME_RJT_RC_LOGIC
,
1690 FCNVME_RJT_EXP_NONE
, 0);
1694 queue
->ersp_ratio
= be16_to_cpu(rqst
->assoc_cmd
.ersp_ratio
);
1695 atomic_set(&queue
->connected
, 1);
1696 queue
->sqhd
= 0; /* best place to init value */
1698 dev_info(tgtport
->dev
,
1699 "{%d:%d} Association created\n",
1700 tgtport
->fc_target_port
.port_num
, iod
->assoc
->a_id
);
1702 /* format a response */
1704 iod
->lsrsp
->rsplen
= sizeof(*acc
);
1706 nvme_fc_format_rsp_hdr(acc
, FCNVME_LS_ACC
,
1708 sizeof(struct fcnvme_ls_cr_assoc_acc
)),
1709 FCNVME_LS_CREATE_ASSOCIATION
);
1710 acc
->associd
.desc_tag
= cpu_to_be32(FCNVME_LSDESC_ASSOC_ID
);
1711 acc
->associd
.desc_len
=
1713 sizeof(struct fcnvme_lsdesc_assoc_id
));
1714 acc
->associd
.association_id
=
1715 cpu_to_be64(nvmet_fc_makeconnid(iod
->assoc
, 0));
1716 acc
->connectid
.desc_tag
= cpu_to_be32(FCNVME_LSDESC_CONN_ID
);
1717 acc
->connectid
.desc_len
=
1719 sizeof(struct fcnvme_lsdesc_conn_id
));
1720 acc
->connectid
.connection_id
= acc
->associd
.association_id
;
1724 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport
*tgtport
,
1725 struct nvmet_fc_ls_iod
*iod
)
1727 struct fcnvme_ls_cr_conn_rqst
*rqst
= &iod
->rqstbuf
->rq_cr_conn
;
1728 struct fcnvme_ls_cr_conn_acc
*acc
= &iod
->rspbuf
->rsp_cr_conn
;
1729 struct nvmet_fc_tgt_queue
*queue
;
1732 memset(acc
, 0, sizeof(*acc
));
1734 if (iod
->rqstdatalen
< sizeof(struct fcnvme_ls_cr_conn_rqst
))
1735 ret
= VERR_CR_CONN_LEN
;
1736 else if (rqst
->desc_list_len
!=
1738 sizeof(struct fcnvme_ls_cr_conn_rqst
)))
1739 ret
= VERR_CR_CONN_RQST_LEN
;
1740 else if (rqst
->associd
.desc_tag
!= cpu_to_be32(FCNVME_LSDESC_ASSOC_ID
))
1741 ret
= VERR_ASSOC_ID
;
1742 else if (rqst
->associd
.desc_len
!=
1744 sizeof(struct fcnvme_lsdesc_assoc_id
)))
1745 ret
= VERR_ASSOC_ID_LEN
;
1746 else if (rqst
->connect_cmd
.desc_tag
!=
1747 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD
))
1748 ret
= VERR_CR_CONN_CMD
;
1749 else if (rqst
->connect_cmd
.desc_len
!=
1751 sizeof(struct fcnvme_lsdesc_cr_conn_cmd
)))
1752 ret
= VERR_CR_CONN_CMD_LEN
;
1753 else if (!rqst
->connect_cmd
.ersp_ratio
||
1754 (be16_to_cpu(rqst
->connect_cmd
.ersp_ratio
) >=
1755 be16_to_cpu(rqst
->connect_cmd
.sqsize
)))
1756 ret
= VERR_ERSP_RATIO
;
1760 iod
->assoc
= nvmet_fc_find_target_assoc(tgtport
,
1761 be64_to_cpu(rqst
->associd
.association_id
));
1763 ret
= VERR_NO_ASSOC
;
1765 queue
= nvmet_fc_alloc_target_queue(iod
->assoc
,
1766 be16_to_cpu(rqst
->connect_cmd
.qid
),
1767 be16_to_cpu(rqst
->connect_cmd
.sqsize
));
1769 ret
= VERR_QUEUE_ALLOC_FAIL
;
1771 /* release get taken in nvmet_fc_find_target_assoc */
1772 nvmet_fc_tgt_a_put(iod
->assoc
);
1777 dev_err(tgtport
->dev
,
1778 "Create Connection LS failed: %s\n",
1779 validation_errors
[ret
]);
1780 iod
->lsrsp
->rsplen
= nvme_fc_format_rjt(acc
,
1781 sizeof(*acc
), rqst
->w0
.ls_cmd
,
1782 (ret
== VERR_NO_ASSOC
) ?
1783 FCNVME_RJT_RC_INV_ASSOC
:
1784 FCNVME_RJT_RC_LOGIC
,
1785 FCNVME_RJT_EXP_NONE
, 0);
1789 queue
->ersp_ratio
= be16_to_cpu(rqst
->connect_cmd
.ersp_ratio
);
1790 atomic_set(&queue
->connected
, 1);
1791 queue
->sqhd
= 0; /* best place to init value */
1793 /* format a response */
1795 iod
->lsrsp
->rsplen
= sizeof(*acc
);
1797 nvme_fc_format_rsp_hdr(acc
, FCNVME_LS_ACC
,
1798 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc
)),
1799 FCNVME_LS_CREATE_CONNECTION
);
1800 acc
->connectid
.desc_tag
= cpu_to_be32(FCNVME_LSDESC_CONN_ID
);
1801 acc
->connectid
.desc_len
=
1803 sizeof(struct fcnvme_lsdesc_conn_id
));
1804 acc
->connectid
.connection_id
=
1805 cpu_to_be64(nvmet_fc_makeconnid(iod
->assoc
,
1806 be16_to_cpu(rqst
->connect_cmd
.qid
)));
1810 * Returns true if the LS response is to be transmit
1811 * Returns false if the LS response is to be delayed
1814 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport
*tgtport
,
1815 struct nvmet_fc_ls_iod
*iod
)
1817 struct fcnvme_ls_disconnect_assoc_rqst
*rqst
=
1818 &iod
->rqstbuf
->rq_dis_assoc
;
1819 struct fcnvme_ls_disconnect_assoc_acc
*acc
=
1820 &iod
->rspbuf
->rsp_dis_assoc
;
1821 struct nvmet_fc_tgt_assoc
*assoc
= NULL
;
1822 struct nvmet_fc_ls_iod
*oldls
= NULL
;
1823 unsigned long flags
;
1826 memset(acc
, 0, sizeof(*acc
));
1828 ret
= nvmefc_vldt_lsreq_discon_assoc(iod
->rqstdatalen
, rqst
);
1830 /* match an active association - takes an assoc ref if !NULL */
1831 assoc
= nvmet_fc_find_target_assoc(tgtport
,
1832 be64_to_cpu(rqst
->associd
.association_id
));
1835 ret
= VERR_NO_ASSOC
;
1838 if (ret
|| !assoc
) {
1839 dev_err(tgtport
->dev
,
1840 "Disconnect LS failed: %s\n",
1841 validation_errors
[ret
]);
1842 iod
->lsrsp
->rsplen
= nvme_fc_format_rjt(acc
,
1843 sizeof(*acc
), rqst
->w0
.ls_cmd
,
1844 (ret
== VERR_NO_ASSOC
) ?
1845 FCNVME_RJT_RC_INV_ASSOC
:
1846 FCNVME_RJT_RC_LOGIC
,
1847 FCNVME_RJT_EXP_NONE
, 0);
1851 /* format a response */
1853 iod
->lsrsp
->rsplen
= sizeof(*acc
);
1855 nvme_fc_format_rsp_hdr(acc
, FCNVME_LS_ACC
,
1857 sizeof(struct fcnvme_ls_disconnect_assoc_acc
)),
1858 FCNVME_LS_DISCONNECT_ASSOC
);
1860 /* release get taken in nvmet_fc_find_target_assoc */
1861 nvmet_fc_tgt_a_put(assoc
);
1864 * The rules for LS response says the response cannot
1865 * go back until ABTS's have been sent for all outstanding
1866 * I/O and a Disconnect Association LS has been sent.
1867 * So... save off the Disconnect LS to send the response
1868 * later. If there was a prior LS already saved, replace
1869 * it with the newer one and send a can't perform reject
1872 spin_lock_irqsave(&tgtport
->lock
, flags
);
1873 oldls
= assoc
->rcv_disconn
;
1874 assoc
->rcv_disconn
= iod
;
1875 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
1877 nvmet_fc_delete_target_assoc(assoc
);
1880 dev_info(tgtport
->dev
,
1881 "{%d:%d} Multiple Disconnect Association LS's "
1883 tgtport
->fc_target_port
.port_num
, assoc
->a_id
);
1884 /* overwrite good response with bogus failure */
1885 oldls
->lsrsp
->rsplen
= nvme_fc_format_rjt(oldls
->rspbuf
,
1886 sizeof(*iod
->rspbuf
),
1887 /* ok to use rqst, LS is same */
1890 FCNVME_RJT_EXP_NONE
, 0);
1891 nvmet_fc_xmt_ls_rsp(tgtport
, oldls
);
1898 /* *********************** NVME Ctrl Routines **************************** */
1901 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req
*nvme_req
);
1903 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops
;
1906 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp
*lsrsp
)
1908 struct nvmet_fc_ls_iod
*iod
= lsrsp
->nvme_fc_private
;
1909 struct nvmet_fc_tgtport
*tgtport
= iod
->tgtport
;
1911 fc_dma_sync_single_for_cpu(tgtport
->dev
, iod
->rspdma
,
1912 sizeof(*iod
->rspbuf
), DMA_TO_DEVICE
);
1913 nvmet_fc_free_ls_iod(tgtport
, iod
);
1914 nvmet_fc_tgtport_put(tgtport
);
1918 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport
*tgtport
,
1919 struct nvmet_fc_ls_iod
*iod
)
1923 fc_dma_sync_single_for_device(tgtport
->dev
, iod
->rspdma
,
1924 sizeof(*iod
->rspbuf
), DMA_TO_DEVICE
);
1926 ret
= tgtport
->ops
->xmt_ls_rsp(&tgtport
->fc_target_port
, iod
->lsrsp
);
1928 nvmet_fc_xmt_ls_rsp_done(iod
->lsrsp
);
1932 * Actual processing routine for received FC-NVME LS Requests from the LLD
1935 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport
*tgtport
,
1936 struct nvmet_fc_ls_iod
*iod
)
1938 struct fcnvme_ls_rqst_w0
*w0
= &iod
->rqstbuf
->rq_cr_assoc
.w0
;
1939 bool sendrsp
= true;
1941 iod
->lsrsp
->nvme_fc_private
= iod
;
1942 iod
->lsrsp
->rspbuf
= iod
->rspbuf
;
1943 iod
->lsrsp
->rspdma
= iod
->rspdma
;
1944 iod
->lsrsp
->done
= nvmet_fc_xmt_ls_rsp_done
;
1945 /* Be preventative. handlers will later set to valid length */
1946 iod
->lsrsp
->rsplen
= 0;
1952 * parse request input, execute the request, and format the
1955 switch (w0
->ls_cmd
) {
1956 case FCNVME_LS_CREATE_ASSOCIATION
:
1957 /* Creates Association and initial Admin Queue/Connection */
1958 nvmet_fc_ls_create_association(tgtport
, iod
);
1960 case FCNVME_LS_CREATE_CONNECTION
:
1961 /* Creates an IO Queue/Connection */
1962 nvmet_fc_ls_create_connection(tgtport
, iod
);
1964 case FCNVME_LS_DISCONNECT_ASSOC
:
1965 /* Terminate a Queue/Connection or the Association */
1966 sendrsp
= nvmet_fc_ls_disconnect(tgtport
, iod
);
1969 iod
->lsrsp
->rsplen
= nvme_fc_format_rjt(iod
->rspbuf
,
1970 sizeof(*iod
->rspbuf
), w0
->ls_cmd
,
1971 FCNVME_RJT_RC_INVAL
, FCNVME_RJT_EXP_NONE
, 0);
1975 nvmet_fc_xmt_ls_rsp(tgtport
, iod
);
1979 * Actual processing routine for received FC-NVME LS Requests from the LLD
1982 nvmet_fc_handle_ls_rqst_work(struct work_struct
*work
)
1984 struct nvmet_fc_ls_iod
*iod
=
1985 container_of(work
, struct nvmet_fc_ls_iod
, work
);
1986 struct nvmet_fc_tgtport
*tgtport
= iod
->tgtport
;
1988 nvmet_fc_handle_ls_rqst(tgtport
, iod
);
1993 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1994 * upon the reception of a NVME LS request.
1996 * The nvmet-fc layer will copy payload to an internal structure for
1997 * processing. As such, upon completion of the routine, the LLDD may
1998 * immediately free/reuse the LS request buffer passed in the call.
2000 * If this routine returns error, the LLDD should abort the exchange.
2002 * @target_port: pointer to the (registered) target port the LS was
2004 * @lsrsp: pointer to a lsrsp structure to be used to reference
2005 * the exchange corresponding to the LS.
2006 * @lsreqbuf: pointer to the buffer containing the LS Request
2007 * @lsreqbuf_len: length, in bytes, of the received LS request
2010 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port
*target_port
,
2012 struct nvmefc_ls_rsp
*lsrsp
,
2013 void *lsreqbuf
, u32 lsreqbuf_len
)
2015 struct nvmet_fc_tgtport
*tgtport
= targetport_to_tgtport(target_port
);
2016 struct nvmet_fc_ls_iod
*iod
;
2017 struct fcnvme_ls_rqst_w0
*w0
= (struct fcnvme_ls_rqst_w0
*)lsreqbuf
;
2019 if (lsreqbuf_len
> sizeof(union nvmefc_ls_requests
)) {
2020 dev_info(tgtport
->dev
,
2021 "RCV %s LS failed: payload too large (%d)\n",
2022 (w0
->ls_cmd
<= NVME_FC_LAST_LS_CMD_VALUE
) ?
2023 nvmefc_ls_names
[w0
->ls_cmd
] : "",
2028 if (!nvmet_fc_tgtport_get(tgtport
)) {
2029 dev_info(tgtport
->dev
,
2030 "RCV %s LS failed: target deleting\n",
2031 (w0
->ls_cmd
<= NVME_FC_LAST_LS_CMD_VALUE
) ?
2032 nvmefc_ls_names
[w0
->ls_cmd
] : "");
2036 iod
= nvmet_fc_alloc_ls_iod(tgtport
);
2038 dev_info(tgtport
->dev
,
2039 "RCV %s LS failed: context allocation failed\n",
2040 (w0
->ls_cmd
<= NVME_FC_LAST_LS_CMD_VALUE
) ?
2041 nvmefc_ls_names
[w0
->ls_cmd
] : "");
2042 nvmet_fc_tgtport_put(tgtport
);
2048 memcpy(iod
->rqstbuf
, lsreqbuf
, lsreqbuf_len
);
2049 iod
->rqstdatalen
= lsreqbuf_len
;
2050 iod
->hosthandle
= hosthandle
;
2052 schedule_work(&iod
->work
);
2056 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req
);
2060 * **********************
2061 * Start of FCP handling
2062 * **********************
2066 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod
*fod
)
2068 struct scatterlist
*sg
;
2071 sg
= sgl_alloc(fod
->req
.transfer_len
, GFP_KERNEL
, &nent
);
2076 fod
->data_sg_cnt
= nent
;
2077 fod
->data_sg_cnt
= fc_dma_map_sg(fod
->tgtport
->dev
, sg
, nent
,
2078 ((fod
->io_dir
== NVMET_FCP_WRITE
) ?
2079 DMA_FROM_DEVICE
: DMA_TO_DEVICE
));
2080 /* note: write from initiator perspective */
2081 fod
->next_sg
= fod
->data_sg
;
2086 return NVME_SC_INTERNAL
;
2090 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod
*fod
)
2092 if (!fod
->data_sg
|| !fod
->data_sg_cnt
)
2095 fc_dma_unmap_sg(fod
->tgtport
->dev
, fod
->data_sg
, fod
->data_sg_cnt
,
2096 ((fod
->io_dir
== NVMET_FCP_WRITE
) ?
2097 DMA_FROM_DEVICE
: DMA_TO_DEVICE
));
2098 sgl_free(fod
->data_sg
);
2099 fod
->data_sg
= NULL
;
2100 fod
->data_sg_cnt
= 0;
2105 queue_90percent_full(struct nvmet_fc_tgt_queue
*q
, u32 sqhd
)
2109 /* egad, this is ugly. And sqtail is just a best guess */
2110 sqtail
= atomic_read(&q
->sqtail
) % q
->sqsize
;
2112 used
= (sqtail
< sqhd
) ? (sqtail
+ q
->sqsize
- sqhd
) : (sqtail
- sqhd
);
2113 return ((used
* 10) >= (((u32
)(q
->sqsize
- 1) * 9)));
2118 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2121 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport
*tgtport
,
2122 struct nvmet_fc_fcp_iod
*fod
)
2124 struct nvme_fc_ersp_iu
*ersp
= &fod
->rspiubuf
;
2125 struct nvme_common_command
*sqe
= &fod
->cmdiubuf
.sqe
.common
;
2126 struct nvme_completion
*cqe
= &ersp
->cqe
;
2127 u32
*cqewd
= (u32
*)cqe
;
2128 bool send_ersp
= false;
2129 u32 rsn
, rspcnt
, xfr_length
;
2131 if (fod
->fcpreq
->op
== NVMET_FCOP_READDATA_RSP
)
2132 xfr_length
= fod
->req
.transfer_len
;
2134 xfr_length
= fod
->offset
;
2137 * check to see if we can send a 0's rsp.
2138 * Note: to send a 0's response, the NVME-FC host transport will
2139 * recreate the CQE. The host transport knows: sq id, SQHD (last
2140 * seen in an ersp), and command_id. Thus it will create a
2141 * zero-filled CQE with those known fields filled in. Transport
2142 * must send an ersp for any condition where the cqe won't match
2145 * Here are the FC-NVME mandated cases where we must send an ersp:
2146 * every N responses, where N=ersp_ratio
2147 * force fabric commands to send ersp's (not in FC-NVME but good
2149 * normal cmds: any time status is non-zero, or status is zero
2150 * but words 0 or 1 are non-zero.
2151 * the SQ is 90% or more full
2152 * the cmd is a fused command
2153 * transferred data length not equal to cmd iu length
2155 rspcnt
= atomic_inc_return(&fod
->queue
->zrspcnt
);
2156 if (!(rspcnt
% fod
->queue
->ersp_ratio
) ||
2157 nvme_is_fabrics((struct nvme_command
*) sqe
) ||
2158 xfr_length
!= fod
->req
.transfer_len
||
2159 (le16_to_cpu(cqe
->status
) & 0xFFFE) || cqewd
[0] || cqewd
[1] ||
2160 (sqe
->flags
& (NVME_CMD_FUSE_FIRST
| NVME_CMD_FUSE_SECOND
)) ||
2161 queue_90percent_full(fod
->queue
, le16_to_cpu(cqe
->sq_head
)))
2164 /* re-set the fields */
2165 fod
->fcpreq
->rspaddr
= ersp
;
2166 fod
->fcpreq
->rspdma
= fod
->rspdma
;
2169 memset(ersp
, 0, NVME_FC_SIZEOF_ZEROS_RSP
);
2170 fod
->fcpreq
->rsplen
= NVME_FC_SIZEOF_ZEROS_RSP
;
2172 ersp
->iu_len
= cpu_to_be16(sizeof(*ersp
)/sizeof(u32
));
2173 rsn
= atomic_inc_return(&fod
->queue
->rsn
);
2174 ersp
->rsn
= cpu_to_be32(rsn
);
2175 ersp
->xfrd_len
= cpu_to_be32(xfr_length
);
2176 fod
->fcpreq
->rsplen
= sizeof(*ersp
);
2179 fc_dma_sync_single_for_device(tgtport
->dev
, fod
->rspdma
,
2180 sizeof(fod
->rspiubuf
), DMA_TO_DEVICE
);
2183 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req
*fcpreq
);
2186 nvmet_fc_abort_op(struct nvmet_fc_tgtport
*tgtport
,
2187 struct nvmet_fc_fcp_iod
*fod
)
2189 struct nvmefc_tgt_fcp_req
*fcpreq
= fod
->fcpreq
;
2191 /* data no longer needed */
2192 nvmet_fc_free_tgt_pgs(fod
);
2195 * if an ABTS was received or we issued the fcp_abort early
2196 * don't call abort routine again.
2198 /* no need to take lock - lock was taken earlier to get here */
2200 tgtport
->ops
->fcp_abort(&tgtport
->fc_target_port
, fcpreq
);
2202 nvmet_fc_free_fcp_iod(fod
->queue
, fod
);
2206 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport
*tgtport
,
2207 struct nvmet_fc_fcp_iod
*fod
)
2211 fod
->fcpreq
->op
= NVMET_FCOP_RSP
;
2212 fod
->fcpreq
->timeout
= 0;
2214 nvmet_fc_prep_fcp_rsp(tgtport
, fod
);
2216 ret
= tgtport
->ops
->fcp_op(&tgtport
->fc_target_port
, fod
->fcpreq
);
2218 nvmet_fc_abort_op(tgtport
, fod
);
2222 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport
*tgtport
,
2223 struct nvmet_fc_fcp_iod
*fod
, u8 op
)
2225 struct nvmefc_tgt_fcp_req
*fcpreq
= fod
->fcpreq
;
2226 struct scatterlist
*sg
= fod
->next_sg
;
2227 unsigned long flags
;
2228 u32 remaininglen
= fod
->req
.transfer_len
- fod
->offset
;
2233 fcpreq
->offset
= fod
->offset
;
2234 fcpreq
->timeout
= NVME_FC_TGTOP_TIMEOUT_SEC
;
2237 * for next sequence:
2238 * break at a sg element boundary
2239 * attempt to keep sequence length capped at
2240 * NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2241 * be longer if a single sg element is larger
2242 * than that amount. This is done to avoid creating
2243 * a new sg list to use for the tgtport api.
2247 while (tlen
< remaininglen
&&
2248 fcpreq
->sg_cnt
< tgtport
->max_sg_cnt
&&
2249 tlen
+ sg_dma_len(sg
) < NVMET_FC_MAX_SEQ_LENGTH
) {
2251 tlen
+= sg_dma_len(sg
);
2254 if (tlen
< remaininglen
&& fcpreq
->sg_cnt
== 0) {
2256 tlen
+= min_t(u32
, sg_dma_len(sg
), remaininglen
);
2259 if (tlen
< remaininglen
)
2262 fod
->next_sg
= NULL
;
2264 fcpreq
->transfer_length
= tlen
;
2265 fcpreq
->transferred_length
= 0;
2266 fcpreq
->fcp_error
= 0;
2270 * If the last READDATA request: check if LLDD supports
2271 * combined xfr with response.
2273 if ((op
== NVMET_FCOP_READDATA
) &&
2274 ((fod
->offset
+ fcpreq
->transfer_length
) == fod
->req
.transfer_len
) &&
2275 (tgtport
->ops
->target_features
& NVMET_FCTGTFEAT_READDATA_RSP
)) {
2276 fcpreq
->op
= NVMET_FCOP_READDATA_RSP
;
2277 nvmet_fc_prep_fcp_rsp(tgtport
, fod
);
2280 ret
= tgtport
->ops
->fcp_op(&tgtport
->fc_target_port
, fod
->fcpreq
);
2283 * should be ok to set w/o lock as its in the thread of
2284 * execution (not an async timer routine) and doesn't
2285 * contend with any clearing action
2289 if (op
== NVMET_FCOP_WRITEDATA
) {
2290 spin_lock_irqsave(&fod
->flock
, flags
);
2291 fod
->writedataactive
= false;
2292 spin_unlock_irqrestore(&fod
->flock
, flags
);
2293 nvmet_req_complete(&fod
->req
, NVME_SC_INTERNAL
);
2294 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2295 fcpreq
->fcp_error
= ret
;
2296 fcpreq
->transferred_length
= 0;
2297 nvmet_fc_xmt_fcp_op_done(fod
->fcpreq
);
2303 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod
*fod
, bool abort
)
2305 struct nvmefc_tgt_fcp_req
*fcpreq
= fod
->fcpreq
;
2306 struct nvmet_fc_tgtport
*tgtport
= fod
->tgtport
;
2308 /* if in the middle of an io and we need to tear down */
2310 if (fcpreq
->op
== NVMET_FCOP_WRITEDATA
) {
2311 nvmet_req_complete(&fod
->req
, NVME_SC_INTERNAL
);
2315 nvmet_fc_abort_op(tgtport
, fod
);
2323 * actual done handler for FCP operations when completed by the lldd
2326 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod
*fod
)
2328 struct nvmefc_tgt_fcp_req
*fcpreq
= fod
->fcpreq
;
2329 struct nvmet_fc_tgtport
*tgtport
= fod
->tgtport
;
2330 unsigned long flags
;
2333 spin_lock_irqsave(&fod
->flock
, flags
);
2335 fod
->writedataactive
= false;
2336 spin_unlock_irqrestore(&fod
->flock
, flags
);
2338 switch (fcpreq
->op
) {
2340 case NVMET_FCOP_WRITEDATA
:
2341 if (__nvmet_fc_fod_op_abort(fod
, abort
))
2343 if (fcpreq
->fcp_error
||
2344 fcpreq
->transferred_length
!= fcpreq
->transfer_length
) {
2345 spin_lock_irqsave(&fod
->flock
, flags
);
2347 spin_unlock_irqrestore(&fod
->flock
, flags
);
2349 nvmet_req_complete(&fod
->req
, NVME_SC_INTERNAL
);
2353 fod
->offset
+= fcpreq
->transferred_length
;
2354 if (fod
->offset
!= fod
->req
.transfer_len
) {
2355 spin_lock_irqsave(&fod
->flock
, flags
);
2356 fod
->writedataactive
= true;
2357 spin_unlock_irqrestore(&fod
->flock
, flags
);
2359 /* transfer the next chunk */
2360 nvmet_fc_transfer_fcp_data(tgtport
, fod
,
2361 NVMET_FCOP_WRITEDATA
);
2365 /* data transfer complete, resume with nvmet layer */
2366 fod
->req
.execute(&fod
->req
);
2369 case NVMET_FCOP_READDATA
:
2370 case NVMET_FCOP_READDATA_RSP
:
2371 if (__nvmet_fc_fod_op_abort(fod
, abort
))
2373 if (fcpreq
->fcp_error
||
2374 fcpreq
->transferred_length
!= fcpreq
->transfer_length
) {
2375 nvmet_fc_abort_op(tgtport
, fod
);
2381 if (fcpreq
->op
== NVMET_FCOP_READDATA_RSP
) {
2382 /* data no longer needed */
2383 nvmet_fc_free_tgt_pgs(fod
);
2384 nvmet_fc_free_fcp_iod(fod
->queue
, fod
);
2388 fod
->offset
+= fcpreq
->transferred_length
;
2389 if (fod
->offset
!= fod
->req
.transfer_len
) {
2390 /* transfer the next chunk */
2391 nvmet_fc_transfer_fcp_data(tgtport
, fod
,
2392 NVMET_FCOP_READDATA
);
2396 /* data transfer complete, send response */
2398 /* data no longer needed */
2399 nvmet_fc_free_tgt_pgs(fod
);
2401 nvmet_fc_xmt_fcp_rsp(tgtport
, fod
);
2405 case NVMET_FCOP_RSP
:
2406 if (__nvmet_fc_fod_op_abort(fod
, abort
))
2408 nvmet_fc_free_fcp_iod(fod
->queue
, fod
);
2417 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req
*fcpreq
)
2419 struct nvmet_fc_fcp_iod
*fod
= fcpreq
->nvmet_fc_private
;
2421 nvmet_fc_fod_op_done(fod
);
2425 * actual completion handler after execution by the nvmet layer
2428 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport
*tgtport
,
2429 struct nvmet_fc_fcp_iod
*fod
, int status
)
2431 struct nvme_common_command
*sqe
= &fod
->cmdiubuf
.sqe
.common
;
2432 struct nvme_completion
*cqe
= &fod
->rspiubuf
.cqe
;
2433 unsigned long flags
;
2436 spin_lock_irqsave(&fod
->flock
, flags
);
2438 spin_unlock_irqrestore(&fod
->flock
, flags
);
2440 /* if we have a CQE, snoop the last sq_head value */
2442 fod
->queue
->sqhd
= cqe
->sq_head
;
2445 nvmet_fc_abort_op(tgtport
, fod
);
2449 /* if an error handling the cmd post initial parsing */
2451 /* fudge up a failed CQE status for our transport error */
2452 memset(cqe
, 0, sizeof(*cqe
));
2453 cqe
->sq_head
= fod
->queue
->sqhd
; /* echo last cqe sqhd */
2454 cqe
->sq_id
= cpu_to_le16(fod
->queue
->qid
);
2455 cqe
->command_id
= sqe
->command_id
;
2456 cqe
->status
= cpu_to_le16(status
);
2460 * try to push the data even if the SQE status is non-zero.
2461 * There may be a status where data still was intended to
2464 if ((fod
->io_dir
== NVMET_FCP_READ
) && (fod
->data_sg_cnt
)) {
2465 /* push the data over before sending rsp */
2466 nvmet_fc_transfer_fcp_data(tgtport
, fod
,
2467 NVMET_FCOP_READDATA
);
2471 /* writes & no data - fall thru */
2474 /* data no longer needed */
2475 nvmet_fc_free_tgt_pgs(fod
);
2477 nvmet_fc_xmt_fcp_rsp(tgtport
, fod
);
2482 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req
*nvme_req
)
2484 struct nvmet_fc_fcp_iod
*fod
= nvmet_req_to_fod(nvme_req
);
2485 struct nvmet_fc_tgtport
*tgtport
= fod
->tgtport
;
2487 __nvmet_fc_fcp_nvme_cmd_done(tgtport
, fod
, 0);
2492 * Actual processing routine for received FC-NVME I/O Requests from the LLD
2495 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport
*tgtport
,
2496 struct nvmet_fc_fcp_iod
*fod
)
2498 struct nvme_fc_cmd_iu
*cmdiu
= &fod
->cmdiubuf
;
2499 u32 xfrlen
= be32_to_cpu(cmdiu
->data_len
);
2503 * if there is no nvmet mapping to the targetport there
2504 * shouldn't be requests. just terminate them.
2507 goto transport_error
;
2510 * Fused commands are currently not supported in the linux
2513 * As such, the implementation of the FC transport does not
2514 * look at the fused commands and order delivery to the upper
2515 * layer until we have both based on csn.
2518 fod
->fcpreq
->done
= nvmet_fc_xmt_fcp_op_done
;
2520 if (cmdiu
->flags
& FCNVME_CMD_FLAGS_WRITE
) {
2521 fod
->io_dir
= NVMET_FCP_WRITE
;
2522 if (!nvme_is_write(&cmdiu
->sqe
))
2523 goto transport_error
;
2524 } else if (cmdiu
->flags
& FCNVME_CMD_FLAGS_READ
) {
2525 fod
->io_dir
= NVMET_FCP_READ
;
2526 if (nvme_is_write(&cmdiu
->sqe
))
2527 goto transport_error
;
2529 fod
->io_dir
= NVMET_FCP_NODATA
;
2531 goto transport_error
;
2534 fod
->req
.cmd
= &fod
->cmdiubuf
.sqe
;
2535 fod
->req
.cqe
= &fod
->rspiubuf
.cqe
;
2536 fod
->req
.port
= tgtport
->pe
->port
;
2538 /* clear any response payload */
2539 memset(&fod
->rspiubuf
, 0, sizeof(fod
->rspiubuf
));
2541 fod
->data_sg
= NULL
;
2542 fod
->data_sg_cnt
= 0;
2544 ret
= nvmet_req_init(&fod
->req
,
2545 &fod
->queue
->nvme_cq
,
2546 &fod
->queue
->nvme_sq
,
2547 &nvmet_fc_tgt_fcp_ops
);
2549 /* bad SQE content or invalid ctrl state */
2550 /* nvmet layer has already called op done to send rsp. */
2554 fod
->req
.transfer_len
= xfrlen
;
2556 /* keep a running counter of tail position */
2557 atomic_inc(&fod
->queue
->sqtail
);
2559 if (fod
->req
.transfer_len
) {
2560 ret
= nvmet_fc_alloc_tgt_pgs(fod
);
2562 nvmet_req_complete(&fod
->req
, ret
);
2566 fod
->req
.sg
= fod
->data_sg
;
2567 fod
->req
.sg_cnt
= fod
->data_sg_cnt
;
2570 if (fod
->io_dir
== NVMET_FCP_WRITE
) {
2571 /* pull the data over before invoking nvmet layer */
2572 nvmet_fc_transfer_fcp_data(tgtport
, fod
, NVMET_FCOP_WRITEDATA
);
2579 * can invoke the nvmet_layer now. If read data, cmd completion will
2582 fod
->req
.execute(&fod
->req
);
2586 nvmet_fc_abort_op(tgtport
, fod
);
2590 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2591 * upon the reception of a NVME FCP CMD IU.
2593 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2594 * layer for processing.
2596 * The nvmet_fc layer allocates a local job structure (struct
2597 * nvmet_fc_fcp_iod) from the queue for the io and copies the
2598 * CMD IU buffer to the job structure. As such, on a successful
2599 * completion (returns 0), the LLDD may immediately free/reuse
2600 * the CMD IU buffer passed in the call.
2602 * However, in some circumstances, due to the packetized nature of FC
2603 * and the api of the FC LLDD which may issue a hw command to send the
2604 * response, but the LLDD may not get the hw completion for that command
2605 * and upcall the nvmet_fc layer before a new command may be
2606 * asynchronously received - its possible for a command to be received
2607 * before the LLDD and nvmet_fc have recycled the job structure. It gives
2608 * the appearance of more commands received than fits in the sq.
2609 * To alleviate this scenario, a temporary queue is maintained in the
2610 * transport for pending LLDD requests waiting for a queue job structure.
2611 * In these "overrun" cases, a temporary queue element is allocated
2612 * the LLDD request and CMD iu buffer information remembered, and the
2613 * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2614 * structure is freed, it is immediately reallocated for anything on the
2615 * pending request list. The LLDDs defer_rcv() callback is called,
2616 * informing the LLDD that it may reuse the CMD IU buffer, and the io
2617 * is then started normally with the transport.
2619 * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2620 * the completion as successful but must not reuse the CMD IU buffer
2621 * until the LLDD's defer_rcv() callback has been called for the
2622 * corresponding struct nvmefc_tgt_fcp_req pointer.
2624 * If there is any other condition in which an error occurs, the
2625 * transport will return a non-zero status indicating the error.
2626 * In all cases other than -EOVERFLOW, the transport has not accepted the
2627 * request and the LLDD should abort the exchange.
2629 * @target_port: pointer to the (registered) target port the FCP CMD IU
2631 * @fcpreq: pointer to a fcpreq request structure to be used to reference
2632 * the exchange corresponding to the FCP Exchange.
2633 * @cmdiubuf: pointer to the buffer containing the FCP CMD IU
2634 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2637 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port
*target_port
,
2638 struct nvmefc_tgt_fcp_req
*fcpreq
,
2639 void *cmdiubuf
, u32 cmdiubuf_len
)
2641 struct nvmet_fc_tgtport
*tgtport
= targetport_to_tgtport(target_port
);
2642 struct nvme_fc_cmd_iu
*cmdiu
= cmdiubuf
;
2643 struct nvmet_fc_tgt_queue
*queue
;
2644 struct nvmet_fc_fcp_iod
*fod
;
2645 struct nvmet_fc_defer_fcp_req
*deferfcp
;
2646 unsigned long flags
;
2648 /* validate iu, so the connection id can be used to find the queue */
2649 if ((cmdiubuf_len
!= sizeof(*cmdiu
)) ||
2650 (cmdiu
->format_id
!= NVME_CMD_FORMAT_ID
) ||
2651 (cmdiu
->fc_id
!= NVME_CMD_FC_ID
) ||
2652 (be16_to_cpu(cmdiu
->iu_len
) != (sizeof(*cmdiu
)/4)))
2655 queue
= nvmet_fc_find_target_queue(tgtport
,
2656 be64_to_cpu(cmdiu
->connection_id
));
2661 * note: reference taken by find_target_queue
2662 * After successful fod allocation, the fod will inherit the
2663 * ownership of that reference and will remove the reference
2664 * when the fod is freed.
2667 spin_lock_irqsave(&queue
->qlock
, flags
);
2669 fod
= nvmet_fc_alloc_fcp_iod(queue
);
2671 spin_unlock_irqrestore(&queue
->qlock
, flags
);
2673 fcpreq
->nvmet_fc_private
= fod
;
2674 fod
->fcpreq
= fcpreq
;
2676 memcpy(&fod
->cmdiubuf
, cmdiubuf
, cmdiubuf_len
);
2678 nvmet_fc_queue_fcp_req(tgtport
, queue
, fcpreq
);
2683 if (!tgtport
->ops
->defer_rcv
) {
2684 spin_unlock_irqrestore(&queue
->qlock
, flags
);
2685 /* release the queue lookup reference */
2686 nvmet_fc_tgt_q_put(queue
);
2690 deferfcp
= list_first_entry_or_null(&queue
->avail_defer_list
,
2691 struct nvmet_fc_defer_fcp_req
, req_list
);
2693 /* Just re-use one that was previously allocated */
2694 list_del(&deferfcp
->req_list
);
2696 spin_unlock_irqrestore(&queue
->qlock
, flags
);
2698 /* Now we need to dynamically allocate one */
2699 deferfcp
= kmalloc(sizeof(*deferfcp
), GFP_KERNEL
);
2701 /* release the queue lookup reference */
2702 nvmet_fc_tgt_q_put(queue
);
2705 spin_lock_irqsave(&queue
->qlock
, flags
);
2708 /* For now, use rspaddr / rsplen to save payload information */
2709 fcpreq
->rspaddr
= cmdiubuf
;
2710 fcpreq
->rsplen
= cmdiubuf_len
;
2711 deferfcp
->fcp_req
= fcpreq
;
2713 /* defer processing till a fod becomes available */
2714 list_add_tail(&deferfcp
->req_list
, &queue
->pending_cmd_list
);
2716 /* NOTE: the queue lookup reference is still valid */
2718 spin_unlock_irqrestore(&queue
->qlock
, flags
);
2722 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req
);
2725 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2726 * upon the reception of an ABTS for a FCP command
2728 * Notify the transport that an ABTS has been received for a FCP command
2729 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2730 * LLDD believes the command is still being worked on
2731 * (template_ops->fcp_req_release() has not been called).
2733 * The transport will wait for any outstanding work (an op to the LLDD,
2734 * which the lldd should complete with error due to the ABTS; or the
2735 * completion from the nvmet layer of the nvme command), then will
2736 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2737 * return the i/o context to the LLDD. The LLDD may send the BA_ACC
2738 * to the ABTS either after return from this function (assuming any
2739 * outstanding op work has been terminated) or upon the callback being
2742 * @target_port: pointer to the (registered) target port the FCP CMD IU
2744 * @fcpreq: pointer to the fcpreq request structure that corresponds
2745 * to the exchange that received the ABTS.
2748 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port
*target_port
,
2749 struct nvmefc_tgt_fcp_req
*fcpreq
)
2751 struct nvmet_fc_fcp_iod
*fod
= fcpreq
->nvmet_fc_private
;
2752 struct nvmet_fc_tgt_queue
*queue
;
2753 unsigned long flags
;
2755 if (!fod
|| fod
->fcpreq
!= fcpreq
)
2756 /* job appears to have already completed, ignore abort */
2761 spin_lock_irqsave(&queue
->qlock
, flags
);
2764 * mark as abort. The abort handler, invoked upon completion
2765 * of any work, will detect the aborted status and do the
2768 spin_lock(&fod
->flock
);
2770 fod
->aborted
= true;
2771 spin_unlock(&fod
->flock
);
2773 spin_unlock_irqrestore(&queue
->qlock
, flags
);
2775 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort
);
2778 struct nvmet_fc_traddr
{
2784 __nvme_fc_parse_u64(substring_t
*sstr
, u64
*val
)
2788 if (match_u64(sstr
, &token64
))
2796 * This routine validates and extracts the WWN's from the TRADDR string.
2797 * As kernel parsers need the 0x to determine number base, universally
2798 * build string to parse with 0x prefix before parsing name strings.
2801 nvme_fc_parse_traddr(struct nvmet_fc_traddr
*traddr
, char *buf
, size_t blen
)
2803 char name
[2 + NVME_FC_TRADDR_HEXNAMELEN
+ 1];
2804 substring_t wwn
= { name
, &name
[sizeof(name
)-1] };
2805 int nnoffset
, pnoffset
;
2807 /* validate if string is one of the 2 allowed formats */
2808 if (strnlen(buf
, blen
) == NVME_FC_TRADDR_MAXLENGTH
&&
2809 !strncmp(buf
, "nn-0x", NVME_FC_TRADDR_OXNNLEN
) &&
2810 !strncmp(&buf
[NVME_FC_TRADDR_MAX_PN_OFFSET
],
2811 "pn-0x", NVME_FC_TRADDR_OXNNLEN
)) {
2812 nnoffset
= NVME_FC_TRADDR_OXNNLEN
;
2813 pnoffset
= NVME_FC_TRADDR_MAX_PN_OFFSET
+
2814 NVME_FC_TRADDR_OXNNLEN
;
2815 } else if ((strnlen(buf
, blen
) == NVME_FC_TRADDR_MINLENGTH
&&
2816 !strncmp(buf
, "nn-", NVME_FC_TRADDR_NNLEN
) &&
2817 !strncmp(&buf
[NVME_FC_TRADDR_MIN_PN_OFFSET
],
2818 "pn-", NVME_FC_TRADDR_NNLEN
))) {
2819 nnoffset
= NVME_FC_TRADDR_NNLEN
;
2820 pnoffset
= NVME_FC_TRADDR_MIN_PN_OFFSET
+ NVME_FC_TRADDR_NNLEN
;
2826 name
[2 + NVME_FC_TRADDR_HEXNAMELEN
] = 0;
2828 memcpy(&name
[2], &buf
[nnoffset
], NVME_FC_TRADDR_HEXNAMELEN
);
2829 if (__nvme_fc_parse_u64(&wwn
, &traddr
->nn
))
2832 memcpy(&name
[2], &buf
[pnoffset
], NVME_FC_TRADDR_HEXNAMELEN
);
2833 if (__nvme_fc_parse_u64(&wwn
, &traddr
->pn
))
2839 pr_warn("%s: bad traddr string\n", __func__
);
2844 nvmet_fc_add_port(struct nvmet_port
*port
)
2846 struct nvmet_fc_tgtport
*tgtport
;
2847 struct nvmet_fc_port_entry
*pe
;
2848 struct nvmet_fc_traddr traddr
= { 0L, 0L };
2849 unsigned long flags
;
2852 /* validate the address info */
2853 if ((port
->disc_addr
.trtype
!= NVMF_TRTYPE_FC
) ||
2854 (port
->disc_addr
.adrfam
!= NVMF_ADDR_FAMILY_FC
))
2857 /* map the traddr address info to a target port */
2859 ret
= nvme_fc_parse_traddr(&traddr
, port
->disc_addr
.traddr
,
2860 sizeof(port
->disc_addr
.traddr
));
2864 pe
= kzalloc(sizeof(*pe
), GFP_KERNEL
);
2869 spin_lock_irqsave(&nvmet_fc_tgtlock
, flags
);
2870 list_for_each_entry(tgtport
, &nvmet_fc_target_list
, tgt_list
) {
2871 if ((tgtport
->fc_target_port
.node_name
== traddr
.nn
) &&
2872 (tgtport
->fc_target_port
.port_name
== traddr
.pn
)) {
2873 /* a FC port can only be 1 nvmet port id */
2875 nvmet_fc_portentry_bind(tgtport
, pe
, port
);
2882 spin_unlock_irqrestore(&nvmet_fc_tgtlock
, flags
);
2891 nvmet_fc_remove_port(struct nvmet_port
*port
)
2893 struct nvmet_fc_port_entry
*pe
= port
->priv
;
2895 nvmet_fc_portentry_unbind(pe
);
2901 nvmet_fc_discovery_chg(struct nvmet_port
*port
)
2903 struct nvmet_fc_port_entry
*pe
= port
->priv
;
2904 struct nvmet_fc_tgtport
*tgtport
= pe
->tgtport
;
2906 if (tgtport
&& tgtport
->ops
->discovery_event
)
2907 tgtport
->ops
->discovery_event(&tgtport
->fc_target_port
);
2910 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops
= {
2911 .owner
= THIS_MODULE
,
2912 .type
= NVMF_TRTYPE_FC
,
2914 .add_port
= nvmet_fc_add_port
,
2915 .remove_port
= nvmet_fc_remove_port
,
2916 .queue_response
= nvmet_fc_fcp_nvme_cmd_done
,
2917 .delete_ctrl
= nvmet_fc_delete_ctrl
,
2918 .discovery_chg
= nvmet_fc_discovery_chg
,
2921 static int __init
nvmet_fc_init_module(void)
2923 return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops
);
2926 static void __exit
nvmet_fc_exit_module(void)
2928 /* sanity check - all lports should be removed */
2929 if (!list_empty(&nvmet_fc_target_list
))
2930 pr_warn("%s: targetport list not empty\n", __func__
);
2932 nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops
);
2934 ida_destroy(&nvmet_fc_tgtport_cnt
);
2937 module_init(nvmet_fc_init_module
);
2938 module_exit(nvmet_fc_exit_module
);
2940 MODULE_LICENSE("GPL v2");