1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004-2008 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/bitops.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #ifdef NETIF_F_HW_VLAN_TX
39 #include <linux/if_vlan.h>
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/zlib.h>
50 #include <linux/log2.h>
56 #define FW_BUF_SIZE 0x10000
58 #define DRV_MODULE_NAME "bnx2"
59 #define PFX DRV_MODULE_NAME ": "
60 #define DRV_MODULE_VERSION "1.7.9"
61 #define DRV_MODULE_RELDATE "July 18, 2008"
63 #define RUN_AT(x) (jiffies + (x))
65 /* Time in jiffies before concluding the transmitter is hung. */
66 #define TX_TIMEOUT (5*HZ)
68 static char version
[] __devinitdata
=
69 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME
" v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
71 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
72 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709 Driver");
73 MODULE_LICENSE("GPL");
74 MODULE_VERSION(DRV_MODULE_VERSION
);
76 static int disable_msi
= 0;
78 module_param(disable_msi
, int, 0);
79 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
94 /* indexed by board_t, above */
97 } board_info
[] __devinitdata
= {
98 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
99 { "HP NC370T Multifunction Gigabit Server Adapter" },
100 { "HP NC370i Multifunction Gigabit Server Adapter" },
101 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
102 { "HP NC370F Multifunction Gigabit Server Adapter" },
103 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
104 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
105 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
106 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
107 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
110 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl
) = {
111 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
112 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
113 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
114 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
115 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
116 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
117 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708
,
118 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708
},
119 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
120 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
121 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
122 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
123 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708S
,
124 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708S
},
125 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709
,
126 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709
},
127 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709S
,
128 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709S
},
129 { PCI_VENDOR_ID_BROADCOM
, 0x163b,
130 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716
},
134 static struct flash_spec flash_table
[] =
136 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
137 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
139 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
140 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
141 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
143 /* Expansion entry 0001 */
144 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
145 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
146 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
148 /* Saifun SA25F010 (non-buffered flash) */
149 /* strap, cfg1, & write1 need updates */
150 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
151 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
152 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
153 "Non-buffered flash (128kB)"},
154 /* Saifun SA25F020 (non-buffered flash) */
155 /* strap, cfg1, & write1 need updates */
156 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
157 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
158 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
159 "Non-buffered flash (256kB)"},
160 /* Expansion entry 0100 */
161 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
162 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
163 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
165 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
166 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
167 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
168 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*2,
169 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
170 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
171 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
172 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
173 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*4,
174 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
175 /* Saifun SA25F005 (non-buffered flash) */
176 /* strap, cfg1, & write1 need updates */
177 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
178 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
179 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
180 "Non-buffered flash (64kB)"},
182 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
183 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
184 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
186 /* Expansion entry 1001 */
187 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
188 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
189 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
191 /* Expansion entry 1010 */
192 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
193 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
194 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
196 /* ATMEL AT45DB011B (buffered flash) */
197 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
198 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
199 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
200 "Buffered flash (128kB)"},
201 /* Expansion entry 1100 */
202 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
203 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
204 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
206 /* Expansion entry 1101 */
207 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
208 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
209 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
211 /* Ateml Expansion entry 1110 */
212 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
213 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
214 BUFFERED_FLASH_BYTE_ADDR_MASK
, 0,
215 "Entry 1110 (Atmel)"},
216 /* ATMEL AT45DB021B (buffered flash) */
217 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
218 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
219 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
*2,
220 "Buffered flash (256kB)"},
223 static struct flash_spec flash_5709
= {
224 .flags
= BNX2_NV_BUFFERED
,
225 .page_bits
= BCM5709_FLASH_PAGE_BITS
,
226 .page_size
= BCM5709_FLASH_PAGE_SIZE
,
227 .addr_mask
= BCM5709_FLASH_BYTE_ADDR_MASK
,
228 .total_size
= BUFFERED_FLASH_TOTAL_SIZE
*2,
229 .name
= "5709 Buffered flash (256kB)",
232 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
234 static inline u32
bnx2_tx_avail(struct bnx2
*bp
, struct bnx2_tx_ring_info
*txr
)
240 /* The ring uses 256 indices for 255 entries, one of them
241 * needs to be skipped.
243 diff
= txr
->tx_prod
- txr
->tx_cons
;
244 if (unlikely(diff
>= TX_DESC_CNT
)) {
246 if (diff
== TX_DESC_CNT
)
247 diff
= MAX_TX_DESC_CNT
;
249 return (bp
->tx_ring_size
- diff
);
253 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
257 spin_lock_bh(&bp
->indirect_lock
);
258 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
259 val
= REG_RD(bp
, BNX2_PCICFG_REG_WINDOW
);
260 spin_unlock_bh(&bp
->indirect_lock
);
265 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
267 spin_lock_bh(&bp
->indirect_lock
);
268 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
269 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
270 spin_unlock_bh(&bp
->indirect_lock
);
274 bnx2_shmem_wr(struct bnx2
*bp
, u32 offset
, u32 val
)
276 bnx2_reg_wr_ind(bp
, bp
->shmem_base
+ offset
, val
);
280 bnx2_shmem_rd(struct bnx2
*bp
, u32 offset
)
282 return (bnx2_reg_rd_ind(bp
, bp
->shmem_base
+ offset
));
286 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
289 spin_lock_bh(&bp
->indirect_lock
);
290 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
293 REG_WR(bp
, BNX2_CTX_CTX_DATA
, val
);
294 REG_WR(bp
, BNX2_CTX_CTX_CTRL
,
295 offset
| BNX2_CTX_CTX_CTRL_WRITE_REQ
);
296 for (i
= 0; i
< 5; i
++) {
297 val
= REG_RD(bp
, BNX2_CTX_CTX_CTRL
);
298 if ((val
& BNX2_CTX_CTX_CTRL_WRITE_REQ
) == 0)
303 REG_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
304 REG_WR(bp
, BNX2_CTX_DATA
, val
);
306 spin_unlock_bh(&bp
->indirect_lock
);
310 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
315 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
316 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
317 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
319 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
320 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
325 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
326 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
327 BNX2_EMAC_MDIO_COMM_START_BUSY
;
328 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
330 for (i
= 0; i
< 50; i
++) {
333 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
334 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
337 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
338 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
344 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
353 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
354 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
355 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
357 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
358 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
367 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
372 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
373 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
374 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
376 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
377 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
382 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
383 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
384 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
385 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
387 for (i
= 0; i
< 50; i
++) {
390 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
391 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
397 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
402 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
403 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
404 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
406 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
407 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
416 bnx2_disable_int(struct bnx2
*bp
)
419 struct bnx2_napi
*bnapi
;
421 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
422 bnapi
= &bp
->bnx2_napi
[i
];
423 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
424 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
426 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
430 bnx2_enable_int(struct bnx2
*bp
)
433 struct bnx2_napi
*bnapi
;
435 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
436 bnapi
= &bp
->bnx2_napi
[i
];
438 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
439 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
440 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
441 bnapi
->last_status_idx
);
443 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
444 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
445 bnapi
->last_status_idx
);
447 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
451 bnx2_disable_int_sync(struct bnx2
*bp
)
455 atomic_inc(&bp
->intr_sem
);
456 bnx2_disable_int(bp
);
457 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
458 synchronize_irq(bp
->irq_tbl
[i
].vector
);
462 bnx2_napi_disable(struct bnx2
*bp
)
466 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
467 napi_disable(&bp
->bnx2_napi
[i
].napi
);
471 bnx2_napi_enable(struct bnx2
*bp
)
475 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
476 napi_enable(&bp
->bnx2_napi
[i
].napi
);
480 bnx2_netif_stop(struct bnx2
*bp
)
482 bnx2_disable_int_sync(bp
);
483 if (netif_running(bp
->dev
)) {
484 bnx2_napi_disable(bp
);
485 netif_tx_disable(bp
->dev
);
486 bp
->dev
->trans_start
= jiffies
; /* prevent tx timeout */
491 bnx2_netif_start(struct bnx2
*bp
)
493 if (atomic_dec_and_test(&bp
->intr_sem
)) {
494 if (netif_running(bp
->dev
)) {
495 netif_tx_wake_all_queues(bp
->dev
);
496 bnx2_napi_enable(bp
);
503 bnx2_free_tx_mem(struct bnx2
*bp
)
507 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
508 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
509 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
511 if (txr
->tx_desc_ring
) {
512 pci_free_consistent(bp
->pdev
, TXBD_RING_SIZE
,
514 txr
->tx_desc_mapping
);
515 txr
->tx_desc_ring
= NULL
;
517 kfree(txr
->tx_buf_ring
);
518 txr
->tx_buf_ring
= NULL
;
523 bnx2_free_rx_mem(struct bnx2
*bp
)
527 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
528 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
529 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
532 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
533 if (rxr
->rx_desc_ring
[j
])
534 pci_free_consistent(bp
->pdev
, RXBD_RING_SIZE
,
535 rxr
->rx_desc_ring
[j
],
536 rxr
->rx_desc_mapping
[j
]);
537 rxr
->rx_desc_ring
[j
] = NULL
;
539 if (rxr
->rx_buf_ring
)
540 vfree(rxr
->rx_buf_ring
);
541 rxr
->rx_buf_ring
= NULL
;
543 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
544 if (rxr
->rx_pg_desc_ring
[j
])
545 pci_free_consistent(bp
->pdev
, RXBD_RING_SIZE
,
546 rxr
->rx_pg_desc_ring
[i
],
547 rxr
->rx_pg_desc_mapping
[i
]);
548 rxr
->rx_pg_desc_ring
[i
] = NULL
;
551 vfree(rxr
->rx_pg_ring
);
552 rxr
->rx_pg_ring
= NULL
;
557 bnx2_alloc_tx_mem(struct bnx2
*bp
)
561 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
562 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
563 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
565 txr
->tx_buf_ring
= kzalloc(SW_TXBD_RING_SIZE
, GFP_KERNEL
);
566 if (txr
->tx_buf_ring
== NULL
)
570 pci_alloc_consistent(bp
->pdev
, TXBD_RING_SIZE
,
571 &txr
->tx_desc_mapping
);
572 if (txr
->tx_desc_ring
== NULL
)
579 bnx2_alloc_rx_mem(struct bnx2
*bp
)
583 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
584 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
585 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
589 vmalloc(SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
590 if (rxr
->rx_buf_ring
== NULL
)
593 memset(rxr
->rx_buf_ring
, 0,
594 SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
596 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
597 rxr
->rx_desc_ring
[j
] =
598 pci_alloc_consistent(bp
->pdev
, RXBD_RING_SIZE
,
599 &rxr
->rx_desc_mapping
[j
]);
600 if (rxr
->rx_desc_ring
[j
] == NULL
)
605 if (bp
->rx_pg_ring_size
) {
606 rxr
->rx_pg_ring
= vmalloc(SW_RXPG_RING_SIZE
*
608 if (rxr
->rx_pg_ring
== NULL
)
611 memset(rxr
->rx_pg_ring
, 0, SW_RXPG_RING_SIZE
*
615 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
616 rxr
->rx_pg_desc_ring
[j
] =
617 pci_alloc_consistent(bp
->pdev
, RXBD_RING_SIZE
,
618 &rxr
->rx_pg_desc_mapping
[j
]);
619 if (rxr
->rx_pg_desc_ring
[j
] == NULL
)
628 bnx2_free_mem(struct bnx2
*bp
)
631 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
633 bnx2_free_tx_mem(bp
);
634 bnx2_free_rx_mem(bp
);
636 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
637 if (bp
->ctx_blk
[i
]) {
638 pci_free_consistent(bp
->pdev
, BCM_PAGE_SIZE
,
640 bp
->ctx_blk_mapping
[i
]);
641 bp
->ctx_blk
[i
] = NULL
;
644 if (bnapi
->status_blk
.msi
) {
645 pci_free_consistent(bp
->pdev
, bp
->status_stats_size
,
646 bnapi
->status_blk
.msi
,
647 bp
->status_blk_mapping
);
648 bnapi
->status_blk
.msi
= NULL
;
649 bp
->stats_blk
= NULL
;
654 bnx2_alloc_mem(struct bnx2
*bp
)
656 int i
, status_blk_size
, err
;
657 struct bnx2_napi
*bnapi
;
660 /* Combine status and statistics blocks into one allocation. */
661 status_blk_size
= L1_CACHE_ALIGN(sizeof(struct status_block
));
662 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
)
663 status_blk_size
= L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC
*
664 BNX2_SBLK_MSIX_ALIGN_SIZE
);
665 bp
->status_stats_size
= status_blk_size
+
666 sizeof(struct statistics_block
);
668 status_blk
= pci_alloc_consistent(bp
->pdev
, bp
->status_stats_size
,
669 &bp
->status_blk_mapping
);
670 if (status_blk
== NULL
)
673 memset(status_blk
, 0, bp
->status_stats_size
);
675 bnapi
= &bp
->bnx2_napi
[0];
676 bnapi
->status_blk
.msi
= status_blk
;
677 bnapi
->hw_tx_cons_ptr
=
678 &bnapi
->status_blk
.msi
->status_tx_quick_consumer_index0
;
679 bnapi
->hw_rx_cons_ptr
=
680 &bnapi
->status_blk
.msi
->status_rx_quick_consumer_index0
;
681 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
) {
682 for (i
= 1; i
< BNX2_MAX_MSIX_VEC
; i
++) {
683 struct status_block_msix
*sblk
;
685 bnapi
= &bp
->bnx2_napi
[i
];
687 sblk
= (void *) (status_blk
+
688 BNX2_SBLK_MSIX_ALIGN_SIZE
* i
);
689 bnapi
->status_blk
.msix
= sblk
;
690 bnapi
->hw_tx_cons_ptr
=
691 &sblk
->status_tx_quick_consumer_index
;
692 bnapi
->hw_rx_cons_ptr
=
693 &sblk
->status_rx_quick_consumer_index
;
694 bnapi
->int_num
= i
<< 24;
698 bp
->stats_blk
= status_blk
+ status_blk_size
;
700 bp
->stats_blk_mapping
= bp
->status_blk_mapping
+ status_blk_size
;
702 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
703 bp
->ctx_pages
= 0x2000 / BCM_PAGE_SIZE
;
704 if (bp
->ctx_pages
== 0)
706 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
707 bp
->ctx_blk
[i
] = pci_alloc_consistent(bp
->pdev
,
709 &bp
->ctx_blk_mapping
[i
]);
710 if (bp
->ctx_blk
[i
] == NULL
)
715 err
= bnx2_alloc_rx_mem(bp
);
719 err
= bnx2_alloc_tx_mem(bp
);
731 bnx2_report_fw_link(struct bnx2
*bp
)
733 u32 fw_link_status
= 0;
735 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
741 switch (bp
->line_speed
) {
743 if (bp
->duplex
== DUPLEX_HALF
)
744 fw_link_status
= BNX2_LINK_STATUS_10HALF
;
746 fw_link_status
= BNX2_LINK_STATUS_10FULL
;
749 if (bp
->duplex
== DUPLEX_HALF
)
750 fw_link_status
= BNX2_LINK_STATUS_100HALF
;
752 fw_link_status
= BNX2_LINK_STATUS_100FULL
;
755 if (bp
->duplex
== DUPLEX_HALF
)
756 fw_link_status
= BNX2_LINK_STATUS_1000HALF
;
758 fw_link_status
= BNX2_LINK_STATUS_1000FULL
;
761 if (bp
->duplex
== DUPLEX_HALF
)
762 fw_link_status
= BNX2_LINK_STATUS_2500HALF
;
764 fw_link_status
= BNX2_LINK_STATUS_2500FULL
;
768 fw_link_status
|= BNX2_LINK_STATUS_LINK_UP
;
771 fw_link_status
|= BNX2_LINK_STATUS_AN_ENABLED
;
773 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
774 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
776 if (!(bmsr
& BMSR_ANEGCOMPLETE
) ||
777 bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)
778 fw_link_status
|= BNX2_LINK_STATUS_PARALLEL_DET
;
780 fw_link_status
|= BNX2_LINK_STATUS_AN_COMPLETE
;
784 fw_link_status
= BNX2_LINK_STATUS_LINK_DOWN
;
786 bnx2_shmem_wr(bp
, BNX2_LINK_STATUS
, fw_link_status
);
790 bnx2_xceiver_str(struct bnx2
*bp
)
792 return ((bp
->phy_port
== PORT_FIBRE
) ? "SerDes" :
793 ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) ? "Remote Copper" :
798 bnx2_report_link(struct bnx2
*bp
)
801 netif_carrier_on(bp
->dev
);
802 printk(KERN_INFO PFX
"%s NIC %s Link is Up, ", bp
->dev
->name
,
803 bnx2_xceiver_str(bp
));
805 printk("%d Mbps ", bp
->line_speed
);
807 if (bp
->duplex
== DUPLEX_FULL
)
808 printk("full duplex");
810 printk("half duplex");
813 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
814 printk(", receive ");
815 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
816 printk("& transmit ");
819 printk(", transmit ");
821 printk("flow control ON");
826 netif_carrier_off(bp
->dev
);
827 printk(KERN_ERR PFX
"%s NIC %s Link is Down\n", bp
->dev
->name
,
828 bnx2_xceiver_str(bp
));
831 bnx2_report_fw_link(bp
);
835 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
837 u32 local_adv
, remote_adv
;
840 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
841 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
843 if (bp
->duplex
== DUPLEX_FULL
) {
844 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
849 if (bp
->duplex
!= DUPLEX_FULL
) {
853 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
854 (CHIP_NUM(bp
) == CHIP_NUM_5708
)) {
857 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
858 if (val
& BCM5708S_1000X_STAT1_TX_PAUSE
)
859 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
860 if (val
& BCM5708S_1000X_STAT1_RX_PAUSE
)
861 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
865 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
866 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
868 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
869 u32 new_local_adv
= 0;
870 u32 new_remote_adv
= 0;
872 if (local_adv
& ADVERTISE_1000XPAUSE
)
873 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
874 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
875 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
876 if (remote_adv
& ADVERTISE_1000XPAUSE
)
877 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
878 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
879 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
881 local_adv
= new_local_adv
;
882 remote_adv
= new_remote_adv
;
885 /* See Table 28B-3 of 802.3ab-1999 spec. */
886 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
887 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
888 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
889 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
891 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
892 bp
->flow_ctrl
= FLOW_CTRL_RX
;
896 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
897 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
901 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
902 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
903 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
905 bp
->flow_ctrl
= FLOW_CTRL_TX
;
911 bnx2_5709s_linkup(struct bnx2
*bp
)
917 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_GP_STATUS
);
918 bnx2_read_phy(bp
, MII_BNX2_GP_TOP_AN_STATUS1
, &val
);
919 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
921 if ((bp
->autoneg
& AUTONEG_SPEED
) == 0) {
922 bp
->line_speed
= bp
->req_line_speed
;
923 bp
->duplex
= bp
->req_duplex
;
926 speed
= val
& MII_BNX2_GP_TOP_AN_SPEED_MSK
;
928 case MII_BNX2_GP_TOP_AN_SPEED_10
:
929 bp
->line_speed
= SPEED_10
;
931 case MII_BNX2_GP_TOP_AN_SPEED_100
:
932 bp
->line_speed
= SPEED_100
;
934 case MII_BNX2_GP_TOP_AN_SPEED_1G
:
935 case MII_BNX2_GP_TOP_AN_SPEED_1GKV
:
936 bp
->line_speed
= SPEED_1000
;
938 case MII_BNX2_GP_TOP_AN_SPEED_2_5G
:
939 bp
->line_speed
= SPEED_2500
;
942 if (val
& MII_BNX2_GP_TOP_AN_FD
)
943 bp
->duplex
= DUPLEX_FULL
;
945 bp
->duplex
= DUPLEX_HALF
;
950 bnx2_5708s_linkup(struct bnx2
*bp
)
955 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
956 switch (val
& BCM5708S_1000X_STAT1_SPEED_MASK
) {
957 case BCM5708S_1000X_STAT1_SPEED_10
:
958 bp
->line_speed
= SPEED_10
;
960 case BCM5708S_1000X_STAT1_SPEED_100
:
961 bp
->line_speed
= SPEED_100
;
963 case BCM5708S_1000X_STAT1_SPEED_1G
:
964 bp
->line_speed
= SPEED_1000
;
966 case BCM5708S_1000X_STAT1_SPEED_2G5
:
967 bp
->line_speed
= SPEED_2500
;
970 if (val
& BCM5708S_1000X_STAT1_FD
)
971 bp
->duplex
= DUPLEX_FULL
;
973 bp
->duplex
= DUPLEX_HALF
;
979 bnx2_5706s_linkup(struct bnx2
*bp
)
981 u32 bmcr
, local_adv
, remote_adv
, common
;
984 bp
->line_speed
= SPEED_1000
;
986 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
987 if (bmcr
& BMCR_FULLDPLX
) {
988 bp
->duplex
= DUPLEX_FULL
;
991 bp
->duplex
= DUPLEX_HALF
;
994 if (!(bmcr
& BMCR_ANENABLE
)) {
998 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
999 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1001 common
= local_adv
& remote_adv
;
1002 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
1004 if (common
& ADVERTISE_1000XFULL
) {
1005 bp
->duplex
= DUPLEX_FULL
;
1008 bp
->duplex
= DUPLEX_HALF
;
1016 bnx2_copper_linkup(struct bnx2
*bp
)
1020 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1021 if (bmcr
& BMCR_ANENABLE
) {
1022 u32 local_adv
, remote_adv
, common
;
1024 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
1025 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
1027 common
= local_adv
& (remote_adv
>> 2);
1028 if (common
& ADVERTISE_1000FULL
) {
1029 bp
->line_speed
= SPEED_1000
;
1030 bp
->duplex
= DUPLEX_FULL
;
1032 else if (common
& ADVERTISE_1000HALF
) {
1033 bp
->line_speed
= SPEED_1000
;
1034 bp
->duplex
= DUPLEX_HALF
;
1037 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1038 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1040 common
= local_adv
& remote_adv
;
1041 if (common
& ADVERTISE_100FULL
) {
1042 bp
->line_speed
= SPEED_100
;
1043 bp
->duplex
= DUPLEX_FULL
;
1045 else if (common
& ADVERTISE_100HALF
) {
1046 bp
->line_speed
= SPEED_100
;
1047 bp
->duplex
= DUPLEX_HALF
;
1049 else if (common
& ADVERTISE_10FULL
) {
1050 bp
->line_speed
= SPEED_10
;
1051 bp
->duplex
= DUPLEX_FULL
;
1053 else if (common
& ADVERTISE_10HALF
) {
1054 bp
->line_speed
= SPEED_10
;
1055 bp
->duplex
= DUPLEX_HALF
;
1064 if (bmcr
& BMCR_SPEED100
) {
1065 bp
->line_speed
= SPEED_100
;
1068 bp
->line_speed
= SPEED_10
;
1070 if (bmcr
& BMCR_FULLDPLX
) {
1071 bp
->duplex
= DUPLEX_FULL
;
1074 bp
->duplex
= DUPLEX_HALF
;
1082 bnx2_init_rx_context(struct bnx2
*bp
, u32 cid
)
1084 u32 val
, rx_cid_addr
= GET_CID_ADDR(cid
);
1086 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
1087 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
1090 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1091 u32 lo_water
, hi_water
;
1093 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1094 lo_water
= BNX2_L2CTX_LO_WATER_MARK_DEFAULT
;
1096 lo_water
= BNX2_L2CTX_LO_WATER_MARK_DIS
;
1097 if (lo_water
>= bp
->rx_ring_size
)
1100 hi_water
= bp
->rx_ring_size
/ 4;
1102 if (hi_water
<= lo_water
)
1105 hi_water
/= BNX2_L2CTX_HI_WATER_MARK_SCALE
;
1106 lo_water
/= BNX2_L2CTX_LO_WATER_MARK_SCALE
;
1110 else if (hi_water
== 0)
1112 val
|= lo_water
| (hi_water
<< BNX2_L2CTX_HI_WATER_MARK_SHIFT
);
1114 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_CTX_TYPE
, val
);
1118 bnx2_init_all_rx_contexts(struct bnx2
*bp
)
1123 for (i
= 0, cid
= RX_CID
; i
< bp
->num_rx_rings
; i
++, cid
++) {
1126 bnx2_init_rx_context(bp
, cid
);
1131 bnx2_set_mac_link(struct bnx2
*bp
)
1135 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
1136 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
1137 (bp
->duplex
== DUPLEX_HALF
)) {
1138 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
1141 /* Configure the EMAC mode register. */
1142 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
1144 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
1145 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
1146 BNX2_EMAC_MODE_25G_MODE
);
1149 switch (bp
->line_speed
) {
1151 if (CHIP_NUM(bp
) != CHIP_NUM_5706
) {
1152 val
|= BNX2_EMAC_MODE_PORT_MII_10M
;
1157 val
|= BNX2_EMAC_MODE_PORT_MII
;
1160 val
|= BNX2_EMAC_MODE_25G_MODE
;
1163 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1168 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1171 /* Set the MAC to operate in the appropriate duplex mode. */
1172 if (bp
->duplex
== DUPLEX_HALF
)
1173 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
1174 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
1176 /* Enable/disable rx PAUSE. */
1177 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
1179 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
1180 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
1181 REG_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
1183 /* Enable/disable tx PAUSE. */
1184 val
= REG_RD(bp
, BNX2_EMAC_TX_MODE
);
1185 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
1187 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1188 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
1189 REG_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
1191 /* Acknowledge the interrupt. */
1192 REG_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
1194 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1195 bnx2_init_all_rx_contexts(bp
);
1201 bnx2_enable_bmsr1(struct bnx2
*bp
)
1203 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1204 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1205 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1206 MII_BNX2_BLK_ADDR_GP_STATUS
);
1210 bnx2_disable_bmsr1(struct bnx2
*bp
)
1212 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1213 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1214 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1215 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1219 bnx2_test_and_enable_2g5(struct bnx2
*bp
)
1224 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1227 if (bp
->autoneg
& AUTONEG_SPEED
)
1228 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1230 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1231 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1233 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1234 if (!(up1
& BCM5708S_UP1_2G5
)) {
1235 up1
|= BCM5708S_UP1_2G5
;
1236 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1240 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1241 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1242 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1248 bnx2_test_and_disable_2g5(struct bnx2
*bp
)
1253 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1256 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1257 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1259 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1260 if (up1
& BCM5708S_UP1_2G5
) {
1261 up1
&= ~BCM5708S_UP1_2G5
;
1262 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1266 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1267 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1268 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1274 bnx2_enable_forced_2g5(struct bnx2
*bp
)
1278 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1281 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1284 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1285 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1286 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
);
1287 val
&= ~MII_BNX2_SD_MISC1_FORCE_MSK
;
1288 val
|= MII_BNX2_SD_MISC1_FORCE
| MII_BNX2_SD_MISC1_FORCE_2_5G
;
1289 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1291 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1292 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1293 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1295 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1296 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1297 bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1300 if (bp
->autoneg
& AUTONEG_SPEED
) {
1301 bmcr
&= ~BMCR_ANENABLE
;
1302 if (bp
->req_duplex
== DUPLEX_FULL
)
1303 bmcr
|= BMCR_FULLDPLX
;
1305 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1309 bnx2_disable_forced_2g5(struct bnx2
*bp
)
1313 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1316 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1319 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1320 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1321 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
);
1322 val
&= ~MII_BNX2_SD_MISC1_FORCE
;
1323 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1325 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1326 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1327 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1329 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1330 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1331 bmcr
&= ~BCM5708S_BMCR_FORCE_2500
;
1334 if (bp
->autoneg
& AUTONEG_SPEED
)
1335 bmcr
|= BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_ANRESTART
;
1336 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1340 bnx2_5706s_force_link_dn(struct bnx2
*bp
, int start
)
1344 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_SERDES_CTL
);
1345 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
1347 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
& 0xff0f);
1349 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
| 0xc0);
1353 bnx2_set_link(struct bnx2
*bp
)
1358 if (bp
->loopback
== MAC_LOOPBACK
|| bp
->loopback
== PHY_LOOPBACK
) {
1363 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1366 link_up
= bp
->link_up
;
1368 bnx2_enable_bmsr1(bp
);
1369 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1370 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1371 bnx2_disable_bmsr1(bp
);
1373 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1374 (CHIP_NUM(bp
) == CHIP_NUM_5706
)) {
1377 if (bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
) {
1378 bnx2_5706s_force_link_dn(bp
, 0);
1379 bp
->phy_flags
&= ~BNX2_PHY_FLAG_FORCED_DOWN
;
1381 val
= REG_RD(bp
, BNX2_EMAC_STATUS
);
1383 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
1384 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1385 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1387 if ((val
& BNX2_EMAC_STATUS_LINK
) &&
1388 !(an_dbg
& MISC_SHDW_AN_DBG_NOSYNC
))
1389 bmsr
|= BMSR_LSTATUS
;
1391 bmsr
&= ~BMSR_LSTATUS
;
1394 if (bmsr
& BMSR_LSTATUS
) {
1397 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1398 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
1399 bnx2_5706s_linkup(bp
);
1400 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
1401 bnx2_5708s_linkup(bp
);
1402 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1403 bnx2_5709s_linkup(bp
);
1406 bnx2_copper_linkup(bp
);
1408 bnx2_resolve_flow_ctrl(bp
);
1411 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1412 (bp
->autoneg
& AUTONEG_SPEED
))
1413 bnx2_disable_forced_2g5(bp
);
1415 if (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
) {
1418 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1419 bmcr
|= BMCR_ANENABLE
;
1420 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1422 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
1427 if (bp
->link_up
!= link_up
) {
1428 bnx2_report_link(bp
);
1431 bnx2_set_mac_link(bp
);
1437 bnx2_reset_phy(struct bnx2
*bp
)
1442 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_RESET
);
1444 #define PHY_RESET_MAX_WAIT 100
1445 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
1448 bnx2_read_phy(bp
, bp
->mii_bmcr
, ®
);
1449 if (!(reg
& BMCR_RESET
)) {
1454 if (i
== PHY_RESET_MAX_WAIT
) {
1461 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
1465 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
1466 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
1468 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1469 adv
= ADVERTISE_1000XPAUSE
;
1472 adv
= ADVERTISE_PAUSE_CAP
;
1475 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
1476 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1477 adv
= ADVERTISE_1000XPSE_ASYM
;
1480 adv
= ADVERTISE_PAUSE_ASYM
;
1483 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
1484 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1485 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
1488 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1494 static int bnx2_fw_sync(struct bnx2
*, u32
, int, int);
1497 bnx2_setup_remote_phy(struct bnx2
*bp
, u8 port
)
1499 u32 speed_arg
= 0, pause_adv
;
1501 pause_adv
= bnx2_phy_get_pause_adv(bp
);
1503 if (bp
->autoneg
& AUTONEG_SPEED
) {
1504 speed_arg
|= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
;
1505 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1506 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1507 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1508 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1509 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1510 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1511 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1512 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1513 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1514 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1515 if (bp
->advertising
& ADVERTISED_2500baseX_Full
)
1516 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1518 if (bp
->req_line_speed
== SPEED_2500
)
1519 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1520 else if (bp
->req_line_speed
== SPEED_1000
)
1521 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1522 else if (bp
->req_line_speed
== SPEED_100
) {
1523 if (bp
->req_duplex
== DUPLEX_FULL
)
1524 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1526 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1527 } else if (bp
->req_line_speed
== SPEED_10
) {
1528 if (bp
->req_duplex
== DUPLEX_FULL
)
1529 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1531 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1535 if (pause_adv
& (ADVERTISE_1000XPAUSE
| ADVERTISE_PAUSE_CAP
))
1536 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE
;
1537 if (pause_adv
& (ADVERTISE_1000XPSE_ASYM
| ADVERTISE_PAUSE_ASYM
))
1538 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE
;
1540 if (port
== PORT_TP
)
1541 speed_arg
|= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE
|
1542 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED
;
1544 bnx2_shmem_wr(bp
, BNX2_DRV_MB_ARG0
, speed_arg
);
1546 spin_unlock_bh(&bp
->phy_lock
);
1547 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_CMD_SET_LINK
, 1, 0);
1548 spin_lock_bh(&bp
->phy_lock
);
1554 bnx2_setup_serdes_phy(struct bnx2
*bp
, u8 port
)
1559 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1560 return (bnx2_setup_remote_phy(bp
, port
));
1562 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
1564 int force_link_down
= 0;
1566 if (bp
->req_line_speed
== SPEED_2500
) {
1567 if (!bnx2_test_and_enable_2g5(bp
))
1568 force_link_down
= 1;
1569 } else if (bp
->req_line_speed
== SPEED_1000
) {
1570 if (bnx2_test_and_disable_2g5(bp
))
1571 force_link_down
= 1;
1573 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1574 adv
&= ~(ADVERTISE_1000XFULL
| ADVERTISE_1000XHALF
);
1576 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1577 new_bmcr
= bmcr
& ~BMCR_ANENABLE
;
1578 new_bmcr
|= BMCR_SPEED1000
;
1580 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1581 if (bp
->req_line_speed
== SPEED_2500
)
1582 bnx2_enable_forced_2g5(bp
);
1583 else if (bp
->req_line_speed
== SPEED_1000
) {
1584 bnx2_disable_forced_2g5(bp
);
1585 new_bmcr
&= ~0x2000;
1588 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1589 if (bp
->req_line_speed
== SPEED_2500
)
1590 new_bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1592 new_bmcr
= bmcr
& ~BCM5708S_BMCR_FORCE_2500
;
1595 if (bp
->req_duplex
== DUPLEX_FULL
) {
1596 adv
|= ADVERTISE_1000XFULL
;
1597 new_bmcr
|= BMCR_FULLDPLX
;
1600 adv
|= ADVERTISE_1000XHALF
;
1601 new_bmcr
&= ~BMCR_FULLDPLX
;
1603 if ((new_bmcr
!= bmcr
) || (force_link_down
)) {
1604 /* Force a link down visible on the other side */
1606 bnx2_write_phy(bp
, bp
->mii_adv
, adv
&
1607 ~(ADVERTISE_1000XFULL
|
1608 ADVERTISE_1000XHALF
));
1609 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
|
1610 BMCR_ANRESTART
| BMCR_ANENABLE
);
1613 netif_carrier_off(bp
->dev
);
1614 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1615 bnx2_report_link(bp
);
1617 bnx2_write_phy(bp
, bp
->mii_adv
, adv
);
1618 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1620 bnx2_resolve_flow_ctrl(bp
);
1621 bnx2_set_mac_link(bp
);
1626 bnx2_test_and_enable_2g5(bp
);
1628 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1629 new_adv
|= ADVERTISE_1000XFULL
;
1631 new_adv
|= bnx2_phy_get_pause_adv(bp
);
1633 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1634 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1636 bp
->serdes_an_pending
= 0;
1637 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
1638 /* Force a link down visible on the other side */
1640 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1641 spin_unlock_bh(&bp
->phy_lock
);
1643 spin_lock_bh(&bp
->phy_lock
);
1646 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
1647 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
|
1649 /* Speed up link-up time when the link partner
1650 * does not autonegotiate which is very common
1651 * in blade servers. Some blade servers use
1652 * IPMI for kerboard input and it's important
1653 * to minimize link disruptions. Autoneg. involves
1654 * exchanging base pages plus 3 next pages and
1655 * normally completes in about 120 msec.
1657 bp
->current_interval
= SERDES_AN_TIMEOUT
;
1658 bp
->serdes_an_pending
= 1;
1659 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
1661 bnx2_resolve_flow_ctrl(bp
);
1662 bnx2_set_mac_link(bp
);
1668 #define ETHTOOL_ALL_FIBRE_SPEED \
1669 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1670 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1671 (ADVERTISED_1000baseT_Full)
1673 #define ETHTOOL_ALL_COPPER_SPEED \
1674 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1675 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1676 ADVERTISED_1000baseT_Full)
1678 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1679 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1681 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1684 bnx2_set_default_remote_link(struct bnx2
*bp
)
1688 if (bp
->phy_port
== PORT_TP
)
1689 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_COPPER_LINK
);
1691 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_SERDES_LINK
);
1693 if (link
& BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
) {
1694 bp
->req_line_speed
= 0;
1695 bp
->autoneg
|= AUTONEG_SPEED
;
1696 bp
->advertising
= ADVERTISED_Autoneg
;
1697 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1698 bp
->advertising
|= ADVERTISED_10baseT_Half
;
1699 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10FULL
)
1700 bp
->advertising
|= ADVERTISED_10baseT_Full
;
1701 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1702 bp
->advertising
|= ADVERTISED_100baseT_Half
;
1703 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100FULL
)
1704 bp
->advertising
|= ADVERTISED_100baseT_Full
;
1705 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1706 bp
->advertising
|= ADVERTISED_1000baseT_Full
;
1707 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1708 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1711 bp
->advertising
= 0;
1712 bp
->req_duplex
= DUPLEX_FULL
;
1713 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10
) {
1714 bp
->req_line_speed
= SPEED_10
;
1715 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1716 bp
->req_duplex
= DUPLEX_HALF
;
1718 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100
) {
1719 bp
->req_line_speed
= SPEED_100
;
1720 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1721 bp
->req_duplex
= DUPLEX_HALF
;
1723 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1724 bp
->req_line_speed
= SPEED_1000
;
1725 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1726 bp
->req_line_speed
= SPEED_2500
;
1731 bnx2_set_default_link(struct bnx2
*bp
)
1733 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
1734 bnx2_set_default_remote_link(bp
);
1738 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
1739 bp
->req_line_speed
= 0;
1740 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1743 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
1745 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
);
1746 reg
&= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK
;
1747 if (reg
== BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G
) {
1749 bp
->req_line_speed
= bp
->line_speed
= SPEED_1000
;
1750 bp
->req_duplex
= DUPLEX_FULL
;
1753 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
1757 bnx2_send_heart_beat(struct bnx2
*bp
)
1762 spin_lock(&bp
->indirect_lock
);
1763 msg
= (u32
) (++bp
->fw_drv_pulse_wr_seq
& BNX2_DRV_PULSE_SEQ_MASK
);
1764 addr
= bp
->shmem_base
+ BNX2_DRV_PULSE_MB
;
1765 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, addr
);
1766 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, msg
);
1767 spin_unlock(&bp
->indirect_lock
);
1771 bnx2_remote_phy_event(struct bnx2
*bp
)
1774 u8 link_up
= bp
->link_up
;
1777 msg
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
1779 if (msg
& BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
)
1780 bnx2_send_heart_beat(bp
);
1782 msg
&= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
;
1784 if ((msg
& BNX2_LINK_STATUS_LINK_UP
) == BNX2_LINK_STATUS_LINK_DOWN
)
1790 speed
= msg
& BNX2_LINK_STATUS_SPEED_MASK
;
1791 bp
->duplex
= DUPLEX_FULL
;
1793 case BNX2_LINK_STATUS_10HALF
:
1794 bp
->duplex
= DUPLEX_HALF
;
1795 case BNX2_LINK_STATUS_10FULL
:
1796 bp
->line_speed
= SPEED_10
;
1798 case BNX2_LINK_STATUS_100HALF
:
1799 bp
->duplex
= DUPLEX_HALF
;
1800 case BNX2_LINK_STATUS_100BASE_T4
:
1801 case BNX2_LINK_STATUS_100FULL
:
1802 bp
->line_speed
= SPEED_100
;
1804 case BNX2_LINK_STATUS_1000HALF
:
1805 bp
->duplex
= DUPLEX_HALF
;
1806 case BNX2_LINK_STATUS_1000FULL
:
1807 bp
->line_speed
= SPEED_1000
;
1809 case BNX2_LINK_STATUS_2500HALF
:
1810 bp
->duplex
= DUPLEX_HALF
;
1811 case BNX2_LINK_STATUS_2500FULL
:
1812 bp
->line_speed
= SPEED_2500
;
1820 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1821 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1822 if (bp
->duplex
== DUPLEX_FULL
)
1823 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
1825 if (msg
& BNX2_LINK_STATUS_TX_FC_ENABLED
)
1826 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
1827 if (msg
& BNX2_LINK_STATUS_RX_FC_ENABLED
)
1828 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
1831 old_port
= bp
->phy_port
;
1832 if (msg
& BNX2_LINK_STATUS_SERDES_LINK
)
1833 bp
->phy_port
= PORT_FIBRE
;
1835 bp
->phy_port
= PORT_TP
;
1837 if (old_port
!= bp
->phy_port
)
1838 bnx2_set_default_link(bp
);
1841 if (bp
->link_up
!= link_up
)
1842 bnx2_report_link(bp
);
1844 bnx2_set_mac_link(bp
);
1848 bnx2_set_remote_link(struct bnx2
*bp
)
1852 evt_code
= bnx2_shmem_rd(bp
, BNX2_FW_EVT_CODE_MB
);
1854 case BNX2_FW_EVT_CODE_LINK_EVENT
:
1855 bnx2_remote_phy_event(bp
);
1857 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT
:
1859 bnx2_send_heart_beat(bp
);
1866 bnx2_setup_copper_phy(struct bnx2
*bp
)
1871 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1873 if (bp
->autoneg
& AUTONEG_SPEED
) {
1874 u32 adv_reg
, adv1000_reg
;
1875 u32 new_adv_reg
= 0;
1876 u32 new_adv1000_reg
= 0;
1878 bnx2_read_phy(bp
, bp
->mii_adv
, &adv_reg
);
1879 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
1880 ADVERTISE_PAUSE_ASYM
);
1882 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
1883 adv1000_reg
&= PHY_ALL_1000_SPEED
;
1885 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1886 new_adv_reg
|= ADVERTISE_10HALF
;
1887 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1888 new_adv_reg
|= ADVERTISE_10FULL
;
1889 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1890 new_adv_reg
|= ADVERTISE_100HALF
;
1891 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1892 new_adv_reg
|= ADVERTISE_100FULL
;
1893 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1894 new_adv1000_reg
|= ADVERTISE_1000FULL
;
1896 new_adv_reg
|= ADVERTISE_CSMA
;
1898 new_adv_reg
|= bnx2_phy_get_pause_adv(bp
);
1900 if ((adv1000_reg
!= new_adv1000_reg
) ||
1901 (adv_reg
!= new_adv_reg
) ||
1902 ((bmcr
& BMCR_ANENABLE
) == 0)) {
1904 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv_reg
);
1905 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000_reg
);
1906 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_ANRESTART
|
1909 else if (bp
->link_up
) {
1910 /* Flow ctrl may have changed from auto to forced */
1911 /* or vice-versa. */
1913 bnx2_resolve_flow_ctrl(bp
);
1914 bnx2_set_mac_link(bp
);
1920 if (bp
->req_line_speed
== SPEED_100
) {
1921 new_bmcr
|= BMCR_SPEED100
;
1923 if (bp
->req_duplex
== DUPLEX_FULL
) {
1924 new_bmcr
|= BMCR_FULLDPLX
;
1926 if (new_bmcr
!= bmcr
) {
1929 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1930 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1932 if (bmsr
& BMSR_LSTATUS
) {
1933 /* Force link down */
1934 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1935 spin_unlock_bh(&bp
->phy_lock
);
1937 spin_lock_bh(&bp
->phy_lock
);
1939 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1940 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1943 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1945 /* Normally, the new speed is setup after the link has
1946 * gone down and up again. In some cases, link will not go
1947 * down so we need to set up the new speed here.
1949 if (bmsr
& BMSR_LSTATUS
) {
1950 bp
->line_speed
= bp
->req_line_speed
;
1951 bp
->duplex
= bp
->req_duplex
;
1952 bnx2_resolve_flow_ctrl(bp
);
1953 bnx2_set_mac_link(bp
);
1956 bnx2_resolve_flow_ctrl(bp
);
1957 bnx2_set_mac_link(bp
);
1963 bnx2_setup_phy(struct bnx2
*bp
, u8 port
)
1965 if (bp
->loopback
== MAC_LOOPBACK
)
1968 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1969 return (bnx2_setup_serdes_phy(bp
, port
));
1972 return (bnx2_setup_copper_phy(bp
));
1977 bnx2_init_5709s_phy(struct bnx2
*bp
, int reset_phy
)
1981 bp
->mii_bmcr
= MII_BMCR
+ 0x10;
1982 bp
->mii_bmsr
= MII_BMSR
+ 0x10;
1983 bp
->mii_bmsr1
= MII_BNX2_GP_TOP_AN_STATUS1
;
1984 bp
->mii_adv
= MII_ADVERTISE
+ 0x10;
1985 bp
->mii_lpa
= MII_LPA
+ 0x10;
1986 bp
->mii_up1
= MII_BNX2_OVER1G_UP1
;
1988 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_AER
);
1989 bnx2_write_phy(bp
, MII_BNX2_AER_AER
, MII_BNX2_AER_AER_AN_MMD
);
1991 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1995 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_SERDES_DIG
);
1997 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, &val
);
1998 val
&= ~MII_BNX2_SD_1000XCTL1_AUTODET
;
1999 val
|= MII_BNX2_SD_1000XCTL1_FIBER
;
2000 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, val
);
2002 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
2003 bnx2_read_phy(bp
, MII_BNX2_OVER1G_UP1
, &val
);
2004 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
2005 val
|= BCM5708S_UP1_2G5
;
2007 val
&= ~BCM5708S_UP1_2G5
;
2008 bnx2_write_phy(bp
, MII_BNX2_OVER1G_UP1
, val
);
2010 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_BAM_NXTPG
);
2011 bnx2_read_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, &val
);
2012 val
|= MII_BNX2_NXTPG_CTL_T2
| MII_BNX2_NXTPG_CTL_BAM
;
2013 bnx2_write_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, val
);
2015 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_CL73_USERB0
);
2017 val
= MII_BNX2_CL73_BAM_EN
| MII_BNX2_CL73_BAM_STA_MGR_EN
|
2018 MII_BNX2_CL73_BAM_NP_AFT_BP_EN
;
2019 bnx2_write_phy(bp
, MII_BNX2_CL73_BAM_CTL1
, val
);
2021 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2027 bnx2_init_5708s_phy(struct bnx2
*bp
, int reset_phy
)
2034 bp
->mii_up1
= BCM5708S_UP1
;
2036 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG3
);
2037 bnx2_write_phy(bp
, BCM5708S_DIG_3_0
, BCM5708S_DIG_3_0_USE_IEEE
);
2038 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2040 bnx2_read_phy(bp
, BCM5708S_1000X_CTL1
, &val
);
2041 val
|= BCM5708S_1000X_CTL1_FIBER_MODE
| BCM5708S_1000X_CTL1_AUTODET_EN
;
2042 bnx2_write_phy(bp
, BCM5708S_1000X_CTL1
, val
);
2044 bnx2_read_phy(bp
, BCM5708S_1000X_CTL2
, &val
);
2045 val
|= BCM5708S_1000X_CTL2_PLLEL_DET_EN
;
2046 bnx2_write_phy(bp
, BCM5708S_1000X_CTL2
, val
);
2048 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) {
2049 bnx2_read_phy(bp
, BCM5708S_UP1
, &val
);
2050 val
|= BCM5708S_UP1_2G5
;
2051 bnx2_write_phy(bp
, BCM5708S_UP1
, val
);
2054 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
2055 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
2056 (CHIP_ID(bp
) == CHIP_ID_5708_B1
)) {
2057 /* increase tx signal amplitude */
2058 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2059 BCM5708S_BLK_ADDR_TX_MISC
);
2060 bnx2_read_phy(bp
, BCM5708S_TX_ACTL1
, &val
);
2061 val
&= ~BCM5708S_TX_ACTL1_DRIVER_VCM
;
2062 bnx2_write_phy(bp
, BCM5708S_TX_ACTL1
, val
);
2063 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2066 val
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
) &
2067 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK
;
2072 is_backplane
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
2073 if (is_backplane
& BNX2_SHARED_HW_CFG_PHY_BACKPLANE
) {
2074 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2075 BCM5708S_BLK_ADDR_TX_MISC
);
2076 bnx2_write_phy(bp
, BCM5708S_TX_ACTL3
, val
);
2077 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2078 BCM5708S_BLK_ADDR_DIG
);
2085 bnx2_init_5706s_phy(struct bnx2
*bp
, int reset_phy
)
2090 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
2092 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2093 REG_WR(bp
, BNX2_MISC_GP_HW_CTL0
, 0x300);
2095 if (bp
->dev
->mtu
> 1500) {
2098 /* Set extended packet length bit */
2099 bnx2_write_phy(bp
, 0x18, 0x7);
2100 bnx2_read_phy(bp
, 0x18, &val
);
2101 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
2103 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2104 bnx2_read_phy(bp
, 0x1c, &val
);
2105 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
2110 bnx2_write_phy(bp
, 0x18, 0x7);
2111 bnx2_read_phy(bp
, 0x18, &val
);
2112 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2114 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2115 bnx2_read_phy(bp
, 0x1c, &val
);
2116 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
2123 bnx2_init_copper_phy(struct bnx2
*bp
, int reset_phy
)
2130 if (bp
->phy_flags
& BNX2_PHY_FLAG_CRC_FIX
) {
2131 bnx2_write_phy(bp
, 0x18, 0x0c00);
2132 bnx2_write_phy(bp
, 0x17, 0x000a);
2133 bnx2_write_phy(bp
, 0x15, 0x310b);
2134 bnx2_write_phy(bp
, 0x17, 0x201f);
2135 bnx2_write_phy(bp
, 0x15, 0x9506);
2136 bnx2_write_phy(bp
, 0x17, 0x401f);
2137 bnx2_write_phy(bp
, 0x15, 0x14e2);
2138 bnx2_write_phy(bp
, 0x18, 0x0400);
2141 if (bp
->phy_flags
& BNX2_PHY_FLAG_DIS_EARLY_DAC
) {
2142 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
,
2143 MII_BNX2_DSP_EXPAND_REG
| 0x8);
2144 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
2146 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
);
2149 if (bp
->dev
->mtu
> 1500) {
2150 /* Set extended packet length bit */
2151 bnx2_write_phy(bp
, 0x18, 0x7);
2152 bnx2_read_phy(bp
, 0x18, &val
);
2153 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
2155 bnx2_read_phy(bp
, 0x10, &val
);
2156 bnx2_write_phy(bp
, 0x10, val
| 0x1);
2159 bnx2_write_phy(bp
, 0x18, 0x7);
2160 bnx2_read_phy(bp
, 0x18, &val
);
2161 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2163 bnx2_read_phy(bp
, 0x10, &val
);
2164 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
2167 /* ethernet@wirespeed */
2168 bnx2_write_phy(bp
, 0x18, 0x7007);
2169 bnx2_read_phy(bp
, 0x18, &val
);
2170 bnx2_write_phy(bp
, 0x18, val
| (1 << 15) | (1 << 4));
2176 bnx2_init_phy(struct bnx2
*bp
, int reset_phy
)
2181 bp
->phy_flags
&= ~BNX2_PHY_FLAG_INT_MODE_MASK
;
2182 bp
->phy_flags
|= BNX2_PHY_FLAG_INT_MODE_LINK_READY
;
2184 bp
->mii_bmcr
= MII_BMCR
;
2185 bp
->mii_bmsr
= MII_BMSR
;
2186 bp
->mii_bmsr1
= MII_BMSR
;
2187 bp
->mii_adv
= MII_ADVERTISE
;
2188 bp
->mii_lpa
= MII_LPA
;
2190 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
2192 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
2195 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
2196 bp
->phy_id
= val
<< 16;
2197 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
2198 bp
->phy_id
|= val
& 0xffff;
2200 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2201 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2202 rc
= bnx2_init_5706s_phy(bp
, reset_phy
);
2203 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
2204 rc
= bnx2_init_5708s_phy(bp
, reset_phy
);
2205 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
2206 rc
= bnx2_init_5709s_phy(bp
, reset_phy
);
2209 rc
= bnx2_init_copper_phy(bp
, reset_phy
);
2214 rc
= bnx2_setup_phy(bp
, bp
->phy_port
);
2220 bnx2_set_mac_loopback(struct bnx2
*bp
)
2224 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2225 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
2226 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
2227 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2232 static int bnx2_test_link(struct bnx2
*);
2235 bnx2_set_phy_loopback(struct bnx2
*bp
)
2240 spin_lock_bh(&bp
->phy_lock
);
2241 rc
= bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
| BMCR_FULLDPLX
|
2243 spin_unlock_bh(&bp
->phy_lock
);
2247 for (i
= 0; i
< 10; i
++) {
2248 if (bnx2_test_link(bp
) == 0)
2253 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2254 mac_mode
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
2255 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
2256 BNX2_EMAC_MODE_25G_MODE
);
2258 mac_mode
|= BNX2_EMAC_MODE_PORT_GMII
;
2259 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2265 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
, int ack
, int silent
)
2271 msg_data
|= bp
->fw_wr_seq
;
2273 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2278 /* wait for an acknowledgement. */
2279 for (i
= 0; i
< (FW_ACK_TIME_OUT_MS
/ 10); i
++) {
2282 val
= bnx2_shmem_rd(bp
, BNX2_FW_MB
);
2284 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
2287 if ((msg_data
& BNX2_DRV_MSG_DATA
) == BNX2_DRV_MSG_DATA_WAIT0
)
2290 /* If we timed out, inform the firmware that this is the case. */
2291 if ((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) {
2293 printk(KERN_ERR PFX
"fw sync timeout, reset code = "
2296 msg_data
&= ~BNX2_DRV_MSG_CODE
;
2297 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
2299 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2304 if ((val
& BNX2_FW_MSG_STATUS_MASK
) != BNX2_FW_MSG_STATUS_OK
)
2311 bnx2_init_5709_context(struct bnx2
*bp
)
2316 val
= BNX2_CTX_COMMAND_ENABLED
| BNX2_CTX_COMMAND_MEM_INIT
| (1 << 12);
2317 val
|= (BCM_PAGE_BITS
- 8) << 16;
2318 REG_WR(bp
, BNX2_CTX_COMMAND
, val
);
2319 for (i
= 0; i
< 10; i
++) {
2320 val
= REG_RD(bp
, BNX2_CTX_COMMAND
);
2321 if (!(val
& BNX2_CTX_COMMAND_MEM_INIT
))
2325 if (val
& BNX2_CTX_COMMAND_MEM_INIT
)
2328 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
2332 memset(bp
->ctx_blk
[i
], 0, BCM_PAGE_SIZE
);
2336 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA0
,
2337 (bp
->ctx_blk_mapping
[i
] & 0xffffffff) |
2338 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID
);
2339 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA1
,
2340 (u64
) bp
->ctx_blk_mapping
[i
] >> 32);
2341 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
, i
|
2342 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
);
2343 for (j
= 0; j
< 10; j
++) {
2345 val
= REG_RD(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
);
2346 if (!(val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
))
2350 if (val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
) {
2359 bnx2_init_context(struct bnx2
*bp
)
2365 u32 vcid_addr
, pcid_addr
, offset
;
2370 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
2373 vcid_addr
= GET_PCID_ADDR(vcid
);
2375 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
2380 pcid_addr
= GET_PCID_ADDR(new_vcid
);
2383 vcid_addr
= GET_CID_ADDR(vcid
);
2384 pcid_addr
= vcid_addr
;
2387 for (i
= 0; i
< (CTX_SIZE
/ PHY_CTX_SIZE
); i
++) {
2388 vcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2389 pcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2391 REG_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
2392 REG_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
2394 /* Zero out the context. */
2395 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4)
2396 bnx2_ctx_wr(bp
, vcid_addr
, offset
, 0);
2402 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
2408 good_mbuf
= kmalloc(512 * sizeof(u16
), GFP_KERNEL
);
2409 if (good_mbuf
== NULL
) {
2410 printk(KERN_ERR PFX
"Failed to allocate memory in "
2411 "bnx2_alloc_bad_rbuf\n");
2415 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2416 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
2420 /* Allocate a bunch of mbufs and save the good ones in an array. */
2421 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2422 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
2423 bnx2_reg_wr_ind(bp
, BNX2_RBUF_COMMAND
,
2424 BNX2_RBUF_COMMAND_ALLOC_REQ
);
2426 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
2428 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
2430 /* The addresses with Bit 9 set are bad memory blocks. */
2431 if (!(val
& (1 << 9))) {
2432 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
2436 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2439 /* Free the good ones back to the mbuf pool thus discarding
2440 * all the bad ones. */
2441 while (good_mbuf_cnt
) {
2444 val
= good_mbuf
[good_mbuf_cnt
];
2445 val
= (val
<< 9) | val
| 1;
2447 bnx2_reg_wr_ind(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
2454 bnx2_set_mac_addr(struct bnx2
*bp
, u8
*mac_addr
, u32 pos
)
2458 val
= (mac_addr
[0] << 8) | mac_addr
[1];
2460 REG_WR(bp
, BNX2_EMAC_MAC_MATCH0
+ (pos
* 8), val
);
2462 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
2463 (mac_addr
[4] << 8) | mac_addr
[5];
2465 REG_WR(bp
, BNX2_EMAC_MAC_MATCH1
+ (pos
* 8), val
);
2469 bnx2_alloc_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2472 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2473 struct rx_bd
*rxbd
=
2474 &rxr
->rx_pg_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2475 struct page
*page
= alloc_page(GFP_ATOMIC
);
2479 mapping
= pci_map_page(bp
->pdev
, page
, 0, PAGE_SIZE
,
2480 PCI_DMA_FROMDEVICE
);
2482 pci_unmap_addr_set(rx_pg
, mapping
, mapping
);
2483 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2484 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2489 bnx2_free_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2491 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2492 struct page
*page
= rx_pg
->page
;
2497 pci_unmap_page(bp
->pdev
, pci_unmap_addr(rx_pg
, mapping
), PAGE_SIZE
,
2498 PCI_DMA_FROMDEVICE
);
2505 bnx2_alloc_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2507 struct sk_buff
*skb
;
2508 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[index
];
2510 struct rx_bd
*rxbd
= &rxr
->rx_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2511 unsigned long align
;
2513 skb
= netdev_alloc_skb(bp
->dev
, bp
->rx_buf_size
);
2518 if (unlikely((align
= (unsigned long) skb
->data
& (BNX2_RX_ALIGN
- 1))))
2519 skb_reserve(skb
, BNX2_RX_ALIGN
- align
);
2521 mapping
= pci_map_single(bp
->pdev
, skb
->data
, bp
->rx_buf_use_size
,
2522 PCI_DMA_FROMDEVICE
);
2525 pci_unmap_addr_set(rx_buf
, mapping
, mapping
);
2527 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2528 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2530 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2536 bnx2_phy_event_is_set(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, u32 event
)
2538 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
2539 u32 new_link_state
, old_link_state
;
2542 new_link_state
= sblk
->status_attn_bits
& event
;
2543 old_link_state
= sblk
->status_attn_bits_ack
& event
;
2544 if (new_link_state
!= old_link_state
) {
2546 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
, event
);
2548 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
, event
);
2556 bnx2_phy_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
2558 spin_lock(&bp
->phy_lock
);
2560 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_LINK_STATE
))
2562 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_TIMER_ABORT
))
2563 bnx2_set_remote_link(bp
);
2565 spin_unlock(&bp
->phy_lock
);
2570 bnx2_get_hw_tx_cons(struct bnx2_napi
*bnapi
)
2574 /* Tell compiler that status block fields can change. */
2576 cons
= *bnapi
->hw_tx_cons_ptr
;
2577 if (unlikely((cons
& MAX_TX_DESC_CNT
) == MAX_TX_DESC_CNT
))
2583 bnx2_tx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2585 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
2586 u16 hw_cons
, sw_cons
, sw_ring_cons
;
2587 int tx_pkt
= 0, index
;
2588 struct netdev_queue
*txq
;
2590 index
= (bnapi
- bp
->bnx2_napi
);
2591 txq
= netdev_get_tx_queue(bp
->dev
, index
);
2593 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2594 sw_cons
= txr
->tx_cons
;
2596 while (sw_cons
!= hw_cons
) {
2597 struct sw_bd
*tx_buf
;
2598 struct sk_buff
*skb
;
2601 sw_ring_cons
= TX_RING_IDX(sw_cons
);
2603 tx_buf
= &txr
->tx_buf_ring
[sw_ring_cons
];
2606 /* partial BD completions possible with TSO packets */
2607 if (skb_is_gso(skb
)) {
2608 u16 last_idx
, last_ring_idx
;
2610 last_idx
= sw_cons
+
2611 skb_shinfo(skb
)->nr_frags
+ 1;
2612 last_ring_idx
= sw_ring_cons
+
2613 skb_shinfo(skb
)->nr_frags
+ 1;
2614 if (unlikely(last_ring_idx
>= MAX_TX_DESC_CNT
)) {
2617 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
2622 pci_unmap_single(bp
->pdev
, pci_unmap_addr(tx_buf
, mapping
),
2623 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2626 last
= skb_shinfo(skb
)->nr_frags
;
2628 for (i
= 0; i
< last
; i
++) {
2629 sw_cons
= NEXT_TX_BD(sw_cons
);
2631 pci_unmap_page(bp
->pdev
,
2633 &txr
->tx_buf_ring
[TX_RING_IDX(sw_cons
)],
2635 skb_shinfo(skb
)->frags
[i
].size
,
2639 sw_cons
= NEXT_TX_BD(sw_cons
);
2643 if (tx_pkt
== budget
)
2646 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2649 txr
->hw_tx_cons
= hw_cons
;
2650 txr
->tx_cons
= sw_cons
;
2652 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2653 * before checking for netif_tx_queue_stopped(). Without the
2654 * memory barrier, there is a small possibility that bnx2_start_xmit()
2655 * will miss it and cause the queue to be stopped forever.
2659 if (unlikely(netif_tx_queue_stopped(txq
)) &&
2660 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)) {
2661 __netif_tx_lock(txq
, smp_processor_id());
2662 if ((netif_tx_queue_stopped(txq
)) &&
2663 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
))
2664 netif_tx_wake_queue(txq
);
2665 __netif_tx_unlock(txq
);
2672 bnx2_reuse_rx_skb_pages(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2673 struct sk_buff
*skb
, int count
)
2675 struct sw_pg
*cons_rx_pg
, *prod_rx_pg
;
2676 struct rx_bd
*cons_bd
, *prod_bd
;
2679 u16 hw_prod
= rxr
->rx_pg_prod
, prod
;
2680 u16 cons
= rxr
->rx_pg_cons
;
2682 for (i
= 0; i
< count
; i
++) {
2683 prod
= RX_PG_RING_IDX(hw_prod
);
2685 prod_rx_pg
= &rxr
->rx_pg_ring
[prod
];
2686 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2687 cons_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2688 prod_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2690 if (i
== 0 && skb
) {
2692 struct skb_shared_info
*shinfo
;
2694 shinfo
= skb_shinfo(skb
);
2696 page
= shinfo
->frags
[shinfo
->nr_frags
].page
;
2697 shinfo
->frags
[shinfo
->nr_frags
].page
= NULL
;
2698 mapping
= pci_map_page(bp
->pdev
, page
, 0, PAGE_SIZE
,
2699 PCI_DMA_FROMDEVICE
);
2700 cons_rx_pg
->page
= page
;
2701 pci_unmap_addr_set(cons_rx_pg
, mapping
, mapping
);
2705 prod_rx_pg
->page
= cons_rx_pg
->page
;
2706 cons_rx_pg
->page
= NULL
;
2707 pci_unmap_addr_set(prod_rx_pg
, mapping
,
2708 pci_unmap_addr(cons_rx_pg
, mapping
));
2710 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2711 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2714 cons
= RX_PG_RING_IDX(NEXT_RX_BD(cons
));
2715 hw_prod
= NEXT_RX_BD(hw_prod
);
2717 rxr
->rx_pg_prod
= hw_prod
;
2718 rxr
->rx_pg_cons
= cons
;
2722 bnx2_reuse_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2723 struct sk_buff
*skb
, u16 cons
, u16 prod
)
2725 struct sw_bd
*cons_rx_buf
, *prod_rx_buf
;
2726 struct rx_bd
*cons_bd
, *prod_bd
;
2728 cons_rx_buf
= &rxr
->rx_buf_ring
[cons
];
2729 prod_rx_buf
= &rxr
->rx_buf_ring
[prod
];
2731 pci_dma_sync_single_for_device(bp
->pdev
,
2732 pci_unmap_addr(cons_rx_buf
, mapping
),
2733 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
2735 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2737 prod_rx_buf
->skb
= skb
;
2742 pci_unmap_addr_set(prod_rx_buf
, mapping
,
2743 pci_unmap_addr(cons_rx_buf
, mapping
));
2745 cons_bd
= &rxr
->rx_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2746 prod_bd
= &rxr
->rx_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2747 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2748 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2752 bnx2_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, struct sk_buff
*skb
,
2753 unsigned int len
, unsigned int hdr_len
, dma_addr_t dma_addr
,
2757 u16 prod
= ring_idx
& 0xffff;
2759 err
= bnx2_alloc_rx_skb(bp
, rxr
, prod
);
2760 if (unlikely(err
)) {
2761 bnx2_reuse_rx_skb(bp
, rxr
, skb
, (u16
) (ring_idx
>> 16), prod
);
2763 unsigned int raw_len
= len
+ 4;
2764 int pages
= PAGE_ALIGN(raw_len
- hdr_len
) >> PAGE_SHIFT
;
2766 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
2771 skb_reserve(skb
, BNX2_RX_OFFSET
);
2772 pci_unmap_single(bp
->pdev
, dma_addr
, bp
->rx_buf_use_size
,
2773 PCI_DMA_FROMDEVICE
);
2779 unsigned int i
, frag_len
, frag_size
, pages
;
2780 struct sw_pg
*rx_pg
;
2781 u16 pg_cons
= rxr
->rx_pg_cons
;
2782 u16 pg_prod
= rxr
->rx_pg_prod
;
2784 frag_size
= len
+ 4 - hdr_len
;
2785 pages
= PAGE_ALIGN(frag_size
) >> PAGE_SHIFT
;
2786 skb_put(skb
, hdr_len
);
2788 for (i
= 0; i
< pages
; i
++) {
2789 frag_len
= min(frag_size
, (unsigned int) PAGE_SIZE
);
2790 if (unlikely(frag_len
<= 4)) {
2791 unsigned int tail
= 4 - frag_len
;
2793 rxr
->rx_pg_cons
= pg_cons
;
2794 rxr
->rx_pg_prod
= pg_prod
;
2795 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
,
2802 &skb_shinfo(skb
)->frags
[i
- 1];
2804 skb
->data_len
-= tail
;
2805 skb
->truesize
-= tail
;
2809 rx_pg
= &rxr
->rx_pg_ring
[pg_cons
];
2811 pci_unmap_page(bp
->pdev
, pci_unmap_addr(rx_pg
, mapping
),
2812 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
2817 skb_fill_page_desc(skb
, i
, rx_pg
->page
, 0, frag_len
);
2820 err
= bnx2_alloc_rx_page(bp
, rxr
,
2821 RX_PG_RING_IDX(pg_prod
));
2822 if (unlikely(err
)) {
2823 rxr
->rx_pg_cons
= pg_cons
;
2824 rxr
->rx_pg_prod
= pg_prod
;
2825 bnx2_reuse_rx_skb_pages(bp
, rxr
, skb
,
2830 frag_size
-= frag_len
;
2831 skb
->data_len
+= frag_len
;
2832 skb
->truesize
+= frag_len
;
2833 skb
->len
+= frag_len
;
2835 pg_prod
= NEXT_RX_BD(pg_prod
);
2836 pg_cons
= RX_PG_RING_IDX(NEXT_RX_BD(pg_cons
));
2838 rxr
->rx_pg_prod
= pg_prod
;
2839 rxr
->rx_pg_cons
= pg_cons
;
2845 bnx2_get_hw_rx_cons(struct bnx2_napi
*bnapi
)
2849 /* Tell compiler that status block fields can change. */
2851 cons
= *bnapi
->hw_rx_cons_ptr
;
2852 if (unlikely((cons
& MAX_RX_DESC_CNT
) == MAX_RX_DESC_CNT
))
2858 bnx2_rx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2860 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
2861 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
2862 struct l2_fhdr
*rx_hdr
;
2863 int rx_pkt
= 0, pg_ring_used
= 0;
2865 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
2866 sw_cons
= rxr
->rx_cons
;
2867 sw_prod
= rxr
->rx_prod
;
2869 /* Memory barrier necessary as speculative reads of the rx
2870 * buffer can be ahead of the index in the status block
2873 while (sw_cons
!= hw_cons
) {
2874 unsigned int len
, hdr_len
;
2876 struct sw_bd
*rx_buf
;
2877 struct sk_buff
*skb
;
2878 dma_addr_t dma_addr
;
2880 sw_ring_cons
= RX_RING_IDX(sw_cons
);
2881 sw_ring_prod
= RX_RING_IDX(sw_prod
);
2883 rx_buf
= &rxr
->rx_buf_ring
[sw_ring_cons
];
2888 dma_addr
= pci_unmap_addr(rx_buf
, mapping
);
2890 pci_dma_sync_single_for_cpu(bp
->pdev
, dma_addr
,
2891 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
,
2892 PCI_DMA_FROMDEVICE
);
2894 rx_hdr
= (struct l2_fhdr
*) skb
->data
;
2895 len
= rx_hdr
->l2_fhdr_pkt_len
;
2897 if ((status
= rx_hdr
->l2_fhdr_status
) &
2898 (L2_FHDR_ERRORS_BAD_CRC
|
2899 L2_FHDR_ERRORS_PHY_DECODE
|
2900 L2_FHDR_ERRORS_ALIGNMENT
|
2901 L2_FHDR_ERRORS_TOO_SHORT
|
2902 L2_FHDR_ERRORS_GIANT_FRAME
)) {
2904 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
2909 if (status
& L2_FHDR_STATUS_SPLIT
) {
2910 hdr_len
= rx_hdr
->l2_fhdr_ip_xsum
;
2912 } else if (len
> bp
->rx_jumbo_thresh
) {
2913 hdr_len
= bp
->rx_jumbo_thresh
;
2919 if (len
<= bp
->rx_copy_thresh
) {
2920 struct sk_buff
*new_skb
;
2922 new_skb
= netdev_alloc_skb(bp
->dev
, len
+ 2);
2923 if (new_skb
== NULL
) {
2924 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
2930 skb_copy_from_linear_data_offset(skb
,
2932 new_skb
->data
, len
+ 2);
2933 skb_reserve(new_skb
, 2);
2934 skb_put(new_skb
, len
);
2936 bnx2_reuse_rx_skb(bp
, rxr
, skb
,
2937 sw_ring_cons
, sw_ring_prod
);
2940 } else if (unlikely(bnx2_rx_skb(bp
, rxr
, skb
, len
, hdr_len
,
2941 dma_addr
, (sw_ring_cons
<< 16) | sw_ring_prod
)))
2944 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
2946 if ((len
> (bp
->dev
->mtu
+ ETH_HLEN
)) &&
2947 (ntohs(skb
->protocol
) != 0x8100)) {
2954 skb
->ip_summed
= CHECKSUM_NONE
;
2956 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
2957 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
2959 if (likely((status
& (L2_FHDR_ERRORS_TCP_XSUM
|
2960 L2_FHDR_ERRORS_UDP_XSUM
)) == 0))
2961 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2965 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) && bp
->vlgrp
) {
2966 vlan_hwaccel_receive_skb(skb
, bp
->vlgrp
,
2967 rx_hdr
->l2_fhdr_vlan_tag
);
2971 netif_receive_skb(skb
);
2973 bp
->dev
->last_rx
= jiffies
;
2977 sw_cons
= NEXT_RX_BD(sw_cons
);
2978 sw_prod
= NEXT_RX_BD(sw_prod
);
2980 if ((rx_pkt
== budget
))
2983 /* Refresh hw_cons to see if there is new work */
2984 if (sw_cons
== hw_cons
) {
2985 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
2989 rxr
->rx_cons
= sw_cons
;
2990 rxr
->rx_prod
= sw_prod
;
2993 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
2995 REG_WR16(bp
, rxr
->rx_bidx_addr
, sw_prod
);
2997 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
3005 /* MSI ISR - The only difference between this and the INTx ISR
3006 * is that the MSI interrupt is always serviced.
3009 bnx2_msi(int irq
, void *dev_instance
)
3011 struct bnx2_napi
*bnapi
= dev_instance
;
3012 struct bnx2
*bp
= bnapi
->bp
;
3013 struct net_device
*dev
= bp
->dev
;
3015 prefetch(bnapi
->status_blk
.msi
);
3016 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3017 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3018 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3020 /* Return here if interrupt is disabled. */
3021 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3024 netif_rx_schedule(dev
, &bnapi
->napi
);
3030 bnx2_msi_1shot(int irq
, void *dev_instance
)
3032 struct bnx2_napi
*bnapi
= dev_instance
;
3033 struct bnx2
*bp
= bnapi
->bp
;
3034 struct net_device
*dev
= bp
->dev
;
3036 prefetch(bnapi
->status_blk
.msi
);
3038 /* Return here if interrupt is disabled. */
3039 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3042 netif_rx_schedule(dev
, &bnapi
->napi
);
3048 bnx2_interrupt(int irq
, void *dev_instance
)
3050 struct bnx2_napi
*bnapi
= dev_instance
;
3051 struct bnx2
*bp
= bnapi
->bp
;
3052 struct net_device
*dev
= bp
->dev
;
3053 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3055 /* When using INTx, it is possible for the interrupt to arrive
3056 * at the CPU before the status block posted prior to the
3057 * interrupt. Reading a register will flush the status block.
3058 * When using MSI, the MSI message will always complete after
3059 * the status block write.
3061 if ((sblk
->status_idx
== bnapi
->last_status_idx
) &&
3062 (REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
3063 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
3066 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3067 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3068 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3070 /* Read back to deassert IRQ immediately to avoid too many
3071 * spurious interrupts.
3073 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
3075 /* Return here if interrupt is shared and is disabled. */
3076 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3079 if (netif_rx_schedule_prep(dev
, &bnapi
->napi
)) {
3080 bnapi
->last_status_idx
= sblk
->status_idx
;
3081 __netif_rx_schedule(dev
, &bnapi
->napi
);
3088 bnx2_has_fast_work(struct bnx2_napi
*bnapi
)
3090 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3091 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3093 if ((bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
) ||
3094 (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
))
3099 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3100 STATUS_ATTN_BITS_TIMER_ABORT)
3103 bnx2_has_work(struct bnx2_napi
*bnapi
)
3105 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3107 if (bnx2_has_fast_work(bnapi
))
3110 if ((sblk
->status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3111 (sblk
->status_attn_bits_ack
& STATUS_ATTN_EVENTS
))
3117 static void bnx2_poll_link(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3119 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3120 u32 status_attn_bits
= sblk
->status_attn_bits
;
3121 u32 status_attn_bits_ack
= sblk
->status_attn_bits_ack
;
3123 if ((status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3124 (status_attn_bits_ack
& STATUS_ATTN_EVENTS
)) {
3126 bnx2_phy_int(bp
, bnapi
);
3128 /* This is needed to take care of transient status
3129 * during link changes.
3131 REG_WR(bp
, BNX2_HC_COMMAND
,
3132 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
3133 REG_RD(bp
, BNX2_HC_COMMAND
);
3137 static int bnx2_poll_work(struct bnx2
*bp
, struct bnx2_napi
*bnapi
,
3138 int work_done
, int budget
)
3140 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3141 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3143 if (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
)
3144 bnx2_tx_int(bp
, bnapi
, 0);
3146 if (bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
)
3147 work_done
+= bnx2_rx_int(bp
, bnapi
, budget
- work_done
);
3152 static int bnx2_poll_msix(struct napi_struct
*napi
, int budget
)
3154 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3155 struct bnx2
*bp
= bnapi
->bp
;
3157 struct status_block_msix
*sblk
= bnapi
->status_blk
.msix
;
3160 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3161 if (unlikely(work_done
>= budget
))
3164 bnapi
->last_status_idx
= sblk
->status_idx
;
3165 /* status idx must be read before checking for more work. */
3167 if (likely(!bnx2_has_fast_work(bnapi
))) {
3169 netif_rx_complete(bp
->dev
, napi
);
3170 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
3171 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3172 bnapi
->last_status_idx
);
3179 static int bnx2_poll(struct napi_struct
*napi
, int budget
)
3181 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3182 struct bnx2
*bp
= bnapi
->bp
;
3184 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3187 bnx2_poll_link(bp
, bnapi
);
3189 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3191 if (unlikely(work_done
>= budget
))
3194 /* bnapi->last_status_idx is used below to tell the hw how
3195 * much work has been processed, so we must read it before
3196 * checking for more work.
3198 bnapi
->last_status_idx
= sblk
->status_idx
;
3200 if (likely(!bnx2_has_work(bnapi
))) {
3201 netif_rx_complete(bp
->dev
, napi
);
3202 if (likely(bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)) {
3203 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3204 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3205 bnapi
->last_status_idx
);
3208 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3209 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3210 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
3211 bnapi
->last_status_idx
);
3213 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3214 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3215 bnapi
->last_status_idx
);
3223 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3224 * from set_multicast.
3227 bnx2_set_rx_mode(struct net_device
*dev
)
3229 struct bnx2
*bp
= netdev_priv(dev
);
3230 u32 rx_mode
, sort_mode
;
3231 struct dev_addr_list
*uc_ptr
;
3234 spin_lock_bh(&bp
->phy_lock
);
3236 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
3237 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
3238 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
3240 if (!bp
->vlgrp
&& !(bp
->flags
& BNX2_FLAG_ASF_ENABLE
))
3241 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3243 if (!(bp
->flags
& BNX2_FLAG_ASF_ENABLE
))
3244 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3246 if (dev
->flags
& IFF_PROMISC
) {
3247 /* Promiscuous mode. */
3248 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3249 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3250 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3252 else if (dev
->flags
& IFF_ALLMULTI
) {
3253 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3254 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3257 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
3260 /* Accept one or more multicast(s). */
3261 struct dev_mc_list
*mclist
;
3262 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
3267 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
3269 for (i
= 0, mclist
= dev
->mc_list
; mclist
&& i
< dev
->mc_count
;
3270 i
++, mclist
= mclist
->next
) {
3272 crc
= ether_crc_le(ETH_ALEN
, mclist
->dmi_addr
);
3274 regidx
= (bit
& 0xe0) >> 5;
3276 mc_filter
[regidx
] |= (1 << bit
);
3279 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3280 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3284 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
3288 if (dev
->uc_count
> BNX2_MAX_UNICAST_ADDRESSES
) {
3289 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3290 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3291 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3292 } else if (!(dev
->flags
& IFF_PROMISC
)) {
3293 uc_ptr
= dev
->uc_list
;
3295 /* Add all entries into to the match filter list */
3296 for (i
= 0; i
< dev
->uc_count
; i
++) {
3297 bnx2_set_mac_addr(bp
, uc_ptr
->da_addr
,
3298 i
+ BNX2_START_UNICAST_ADDRESS_INDEX
);
3300 (i
+ BNX2_START_UNICAST_ADDRESS_INDEX
));
3301 uc_ptr
= uc_ptr
->next
;
3306 if (rx_mode
!= bp
->rx_mode
) {
3307 bp
->rx_mode
= rx_mode
;
3308 REG_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
3311 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3312 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
3313 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
3315 spin_unlock_bh(&bp
->phy_lock
);
3319 load_rv2p_fw(struct bnx2
*bp
, __le32
*rv2p_code
, u32 rv2p_code_len
,
3325 if (rv2p_proc
== RV2P_PROC2
&& CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3326 val
= le32_to_cpu(rv2p_code
[XI_RV2P_PROC2_MAX_BD_PAGE_LOC
]);
3327 val
&= ~XI_RV2P_PROC2_BD_PAGE_SIZE_MSK
;
3328 val
|= XI_RV2P_PROC2_BD_PAGE_SIZE
;
3329 rv2p_code
[XI_RV2P_PROC2_MAX_BD_PAGE_LOC
] = cpu_to_le32(val
);
3332 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
3333 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, le32_to_cpu(*rv2p_code
));
3335 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, le32_to_cpu(*rv2p_code
));
3338 if (rv2p_proc
== RV2P_PROC1
) {
3339 val
= (i
/ 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
3340 REG_WR(bp
, BNX2_RV2P_PROC1_ADDR_CMD
, val
);
3343 val
= (i
/ 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
3344 REG_WR(bp
, BNX2_RV2P_PROC2_ADDR_CMD
, val
);
3348 /* Reset the processor, un-stall is done later. */
3349 if (rv2p_proc
== RV2P_PROC1
) {
3350 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
3353 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
3358 load_cpu_fw(struct bnx2
*bp
, const struct cpu_reg
*cpu_reg
, struct fw_info
*fw
)
3365 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3366 val
|= cpu_reg
->mode_value_halt
;
3367 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3368 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3370 /* Load the Text area. */
3371 offset
= cpu_reg
->spad_base
+ (fw
->text_addr
- cpu_reg
->mips_view_base
);
3375 rc
= zlib_inflate_blob(fw
->text
, FW_BUF_SIZE
, fw
->gz_text
,
3380 for (j
= 0; j
< (fw
->text_len
/ 4); j
++, offset
+= 4) {
3381 bnx2_reg_wr_ind(bp
, offset
, le32_to_cpu(fw
->text
[j
]));
3385 /* Load the Data area. */
3386 offset
= cpu_reg
->spad_base
+ (fw
->data_addr
- cpu_reg
->mips_view_base
);
3390 for (j
= 0; j
< (fw
->data_len
/ 4); j
++, offset
+= 4) {
3391 bnx2_reg_wr_ind(bp
, offset
, fw
->data
[j
]);
3395 /* Load the SBSS area. */
3396 offset
= cpu_reg
->spad_base
+ (fw
->sbss_addr
- cpu_reg
->mips_view_base
);
3400 for (j
= 0; j
< (fw
->sbss_len
/ 4); j
++, offset
+= 4) {
3401 bnx2_reg_wr_ind(bp
, offset
, 0);
3405 /* Load the BSS area. */
3406 offset
= cpu_reg
->spad_base
+ (fw
->bss_addr
- cpu_reg
->mips_view_base
);
3410 for (j
= 0; j
< (fw
->bss_len
/4); j
++, offset
+= 4) {
3411 bnx2_reg_wr_ind(bp
, offset
, 0);
3415 /* Load the Read-Only area. */
3416 offset
= cpu_reg
->spad_base
+
3417 (fw
->rodata_addr
- cpu_reg
->mips_view_base
);
3421 for (j
= 0; j
< (fw
->rodata_len
/ 4); j
++, offset
+= 4) {
3422 bnx2_reg_wr_ind(bp
, offset
, fw
->rodata
[j
]);
3426 /* Clear the pre-fetch instruction. */
3427 bnx2_reg_wr_ind(bp
, cpu_reg
->inst
, 0);
3428 bnx2_reg_wr_ind(bp
, cpu_reg
->pc
, fw
->start_addr
);
3430 /* Start the CPU. */
3431 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3432 val
&= ~cpu_reg
->mode_value_halt
;
3433 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3434 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3440 bnx2_init_cpus(struct bnx2
*bp
)
3446 /* Initialize the RV2P processor. */
3447 text
= vmalloc(FW_BUF_SIZE
);
3450 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3451 rv2p
= bnx2_xi_rv2p_proc1
;
3452 rv2p_len
= sizeof(bnx2_xi_rv2p_proc1
);
3454 rv2p
= bnx2_rv2p_proc1
;
3455 rv2p_len
= sizeof(bnx2_rv2p_proc1
);
3457 rc
= zlib_inflate_blob(text
, FW_BUF_SIZE
, rv2p
, rv2p_len
);
3461 load_rv2p_fw(bp
, text
, rc
/* == len */, RV2P_PROC1
);
3463 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3464 rv2p
= bnx2_xi_rv2p_proc2
;
3465 rv2p_len
= sizeof(bnx2_xi_rv2p_proc2
);
3467 rv2p
= bnx2_rv2p_proc2
;
3468 rv2p_len
= sizeof(bnx2_rv2p_proc2
);
3470 rc
= zlib_inflate_blob(text
, FW_BUF_SIZE
, rv2p
, rv2p_len
);
3474 load_rv2p_fw(bp
, text
, rc
/* == len */, RV2P_PROC2
);
3476 /* Initialize the RX Processor. */
3477 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3478 fw
= &bnx2_rxp_fw_09
;
3480 fw
= &bnx2_rxp_fw_06
;
3483 rc
= load_cpu_fw(bp
, &cpu_reg_rxp
, fw
);
3487 /* Initialize the TX Processor. */
3488 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3489 fw
= &bnx2_txp_fw_09
;
3491 fw
= &bnx2_txp_fw_06
;
3494 rc
= load_cpu_fw(bp
, &cpu_reg_txp
, fw
);
3498 /* Initialize the TX Patch-up Processor. */
3499 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3500 fw
= &bnx2_tpat_fw_09
;
3502 fw
= &bnx2_tpat_fw_06
;
3505 rc
= load_cpu_fw(bp
, &cpu_reg_tpat
, fw
);
3509 /* Initialize the Completion Processor. */
3510 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3511 fw
= &bnx2_com_fw_09
;
3513 fw
= &bnx2_com_fw_06
;
3516 rc
= load_cpu_fw(bp
, &cpu_reg_com
, fw
);
3520 /* Initialize the Command Processor. */
3521 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3522 fw
= &bnx2_cp_fw_09
;
3524 fw
= &bnx2_cp_fw_06
;
3527 rc
= load_cpu_fw(bp
, &cpu_reg_cp
, fw
);
3535 bnx2_set_power_state(struct bnx2
*bp
, pci_power_t state
)
3539 pci_read_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
3545 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3546 (pmcsr
& ~PCI_PM_CTRL_STATE_MASK
) |
3547 PCI_PM_CTRL_PME_STATUS
);
3549 if (pmcsr
& PCI_PM_CTRL_STATE_MASK
)
3550 /* delay required during transition out of D3hot */
3553 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3554 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
3555 val
&= ~BNX2_EMAC_MODE_MPKT
;
3556 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3558 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3559 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3560 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3571 autoneg
= bp
->autoneg
;
3572 advertising
= bp
->advertising
;
3574 if (bp
->phy_port
== PORT_TP
) {
3575 bp
->autoneg
= AUTONEG_SPEED
;
3576 bp
->advertising
= ADVERTISED_10baseT_Half
|
3577 ADVERTISED_10baseT_Full
|
3578 ADVERTISED_100baseT_Half
|
3579 ADVERTISED_100baseT_Full
|
3583 spin_lock_bh(&bp
->phy_lock
);
3584 bnx2_setup_phy(bp
, bp
->phy_port
);
3585 spin_unlock_bh(&bp
->phy_lock
);
3587 bp
->autoneg
= autoneg
;
3588 bp
->advertising
= advertising
;
3590 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
3592 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3594 /* Enable port mode. */
3595 val
&= ~BNX2_EMAC_MODE_PORT
;
3596 val
|= BNX2_EMAC_MODE_MPKT_RCVD
|
3597 BNX2_EMAC_MODE_ACPI_RCVD
|
3598 BNX2_EMAC_MODE_MPKT
;
3599 if (bp
->phy_port
== PORT_TP
)
3600 val
|= BNX2_EMAC_MODE_PORT_MII
;
3602 val
|= BNX2_EMAC_MODE_PORT_GMII
;
3603 if (bp
->line_speed
== SPEED_2500
)
3604 val
|= BNX2_EMAC_MODE_25G_MODE
;
3607 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3609 /* receive all multicast */
3610 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3611 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3614 REG_WR(bp
, BNX2_EMAC_RX_MODE
,
3615 BNX2_EMAC_RX_MODE_SORT_MODE
);
3617 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
|
3618 BNX2_RPM_SORT_USER0_MC_EN
;
3619 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3620 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
3621 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
|
3622 BNX2_RPM_SORT_USER0_ENA
);
3624 /* Need to enable EMAC and RPM for WOL. */
3625 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
3626 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
3627 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
3628 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
3630 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3631 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3632 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3634 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
3637 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
3640 if (!(bp
->flags
& BNX2_FLAG_NO_WOL
))
3641 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT3
| wol_msg
,
3644 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3645 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
3646 (CHIP_ID(bp
) == CHIP_ID_5706_A1
)) {
3655 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
3657 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3660 /* No more memory access after this point until
3661 * device is brought back to D0.
3673 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
3678 /* Request access to the flash interface. */
3679 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
3680 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3681 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
3682 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
3688 if (j
>= NVRAM_TIMEOUT_COUNT
)
3695 bnx2_release_nvram_lock(struct bnx2
*bp
)
3700 /* Relinquish nvram interface. */
3701 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
3703 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3704 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
3705 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
3711 if (j
>= NVRAM_TIMEOUT_COUNT
)
3719 bnx2_enable_nvram_write(struct bnx2
*bp
)
3723 val
= REG_RD(bp
, BNX2_MISC_CFG
);
3724 REG_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
3726 if (bp
->flash_info
->flags
& BNX2_NV_WREN
) {
3729 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3730 REG_WR(bp
, BNX2_NVM_COMMAND
,
3731 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
3733 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3736 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
3737 if (val
& BNX2_NVM_COMMAND_DONE
)
3741 if (j
>= NVRAM_TIMEOUT_COUNT
)
3748 bnx2_disable_nvram_write(struct bnx2
*bp
)
3752 val
= REG_RD(bp
, BNX2_MISC_CFG
);
3753 REG_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
3758 bnx2_enable_nvram_access(struct bnx2
*bp
)
3762 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
3763 /* Enable both bits, even on read. */
3764 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
3765 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
3769 bnx2_disable_nvram_access(struct bnx2
*bp
)
3773 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
3774 /* Disable both bits, even after read. */
3775 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
3776 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
3777 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
3781 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
3786 if (bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)
3787 /* Buffered flash, no erase needed */
3790 /* Build an erase command */
3791 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
3792 BNX2_NVM_COMMAND_DOIT
;
3794 /* Need to clear DONE bit separately. */
3795 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3797 /* Address of the NVRAM to read from. */
3798 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
3800 /* Issue an erase command. */
3801 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
3803 /* Wait for completion. */
3804 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3809 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
3810 if (val
& BNX2_NVM_COMMAND_DONE
)
3814 if (j
>= NVRAM_TIMEOUT_COUNT
)
3821 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
3826 /* Build the command word. */
3827 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
3829 /* Calculate an offset of a buffered flash, not needed for 5709. */
3830 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
3831 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
3832 bp
->flash_info
->page_bits
) +
3833 (offset
% bp
->flash_info
->page_size
);
3836 /* Need to clear DONE bit separately. */
3837 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3839 /* Address of the NVRAM to read from. */
3840 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
3842 /* Issue a read command. */
3843 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
3845 /* Wait for completion. */
3846 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3851 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
3852 if (val
& BNX2_NVM_COMMAND_DONE
) {
3853 __be32 v
= cpu_to_be32(REG_RD(bp
, BNX2_NVM_READ
));
3854 memcpy(ret_val
, &v
, 4);
3858 if (j
>= NVRAM_TIMEOUT_COUNT
)
3866 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
3872 /* Build the command word. */
3873 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
3875 /* Calculate an offset of a buffered flash, not needed for 5709. */
3876 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
3877 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
3878 bp
->flash_info
->page_bits
) +
3879 (offset
% bp
->flash_info
->page_size
);
3882 /* Need to clear DONE bit separately. */
3883 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3885 memcpy(&val32
, val
, 4);
3887 /* Write the data. */
3888 REG_WR(bp
, BNX2_NVM_WRITE
, be32_to_cpu(val32
));
3890 /* Address of the NVRAM to write to. */
3891 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
3893 /* Issue the write command. */
3894 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
3896 /* Wait for completion. */
3897 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3900 if (REG_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
3903 if (j
>= NVRAM_TIMEOUT_COUNT
)
3910 bnx2_init_nvram(struct bnx2
*bp
)
3913 int j
, entry_count
, rc
= 0;
3914 struct flash_spec
*flash
;
3916 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3917 bp
->flash_info
= &flash_5709
;
3918 goto get_flash_size
;
3921 /* Determine the selected interface. */
3922 val
= REG_RD(bp
, BNX2_NVM_CFG1
);
3924 entry_count
= ARRAY_SIZE(flash_table
);
3926 if (val
& 0x40000000) {
3928 /* Flash interface has been reconfigured */
3929 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
3931 if ((val
& FLASH_BACKUP_STRAP_MASK
) ==
3932 (flash
->config1
& FLASH_BACKUP_STRAP_MASK
)) {
3933 bp
->flash_info
= flash
;
3940 /* Not yet been reconfigured */
3942 if (val
& (1 << 23))
3943 mask
= FLASH_BACKUP_STRAP_MASK
;
3945 mask
= FLASH_STRAP_MASK
;
3947 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
3950 if ((val
& mask
) == (flash
->strapping
& mask
)) {
3951 bp
->flash_info
= flash
;
3953 /* Request access to the flash interface. */
3954 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
3957 /* Enable access to flash interface */
3958 bnx2_enable_nvram_access(bp
);
3960 /* Reconfigure the flash interface */
3961 REG_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
3962 REG_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
3963 REG_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
3964 REG_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
3966 /* Disable access to flash interface */
3967 bnx2_disable_nvram_access(bp
);
3968 bnx2_release_nvram_lock(bp
);
3973 } /* if (val & 0x40000000) */
3975 if (j
== entry_count
) {
3976 bp
->flash_info
= NULL
;
3977 printk(KERN_ALERT PFX
"Unknown flash/EEPROM type.\n");
3982 val
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG2
);
3983 val
&= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK
;
3985 bp
->flash_size
= val
;
3987 bp
->flash_size
= bp
->flash_info
->total_size
;
3993 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
3997 u32 cmd_flags
, offset32
, len32
, extra
;
4002 /* Request access to the flash interface. */
4003 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4006 /* Enable access to flash interface */
4007 bnx2_enable_nvram_access(bp
);
4020 pre_len
= 4 - (offset
& 3);
4022 if (pre_len
>= len32
) {
4024 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4025 BNX2_NVM_COMMAND_LAST
;
4028 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4031 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4036 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
4043 extra
= 4 - (len32
& 3);
4044 len32
= (len32
+ 4) & ~3;
4051 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4053 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4054 BNX2_NVM_COMMAND_LAST
;
4056 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4058 memcpy(ret_buf
, buf
, 4 - extra
);
4060 else if (len32
> 0) {
4063 /* Read the first word. */
4067 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4069 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
4071 /* Advance to the next dword. */
4076 while (len32
> 4 && rc
== 0) {
4077 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
4079 /* Advance to the next dword. */
4088 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4089 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4091 memcpy(ret_buf
, buf
, 4 - extra
);
4094 /* Disable access to flash interface */
4095 bnx2_disable_nvram_access(bp
);
4097 bnx2_release_nvram_lock(bp
);
4103 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
4106 u32 written
, offset32
, len32
;
4107 u8
*buf
, start
[4], end
[4], *align_buf
= NULL
, *flash_buffer
= NULL
;
4109 int align_start
, align_end
;
4114 align_start
= align_end
= 0;
4116 if ((align_start
= (offset32
& 3))) {
4118 len32
+= align_start
;
4121 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
4126 align_end
= 4 - (len32
& 3);
4128 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4, end
, 4)))
4132 if (align_start
|| align_end
) {
4133 align_buf
= kmalloc(len32
, GFP_KERNEL
);
4134 if (align_buf
== NULL
)
4137 memcpy(align_buf
, start
, 4);
4140 memcpy(align_buf
+ len32
- 4, end
, 4);
4142 memcpy(align_buf
+ align_start
, data_buf
, buf_size
);
4146 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4147 flash_buffer
= kmalloc(264, GFP_KERNEL
);
4148 if (flash_buffer
== NULL
) {
4150 goto nvram_write_end
;
4155 while ((written
< len32
) && (rc
== 0)) {
4156 u32 page_start
, page_end
, data_start
, data_end
;
4157 u32 addr
, cmd_flags
;
4160 /* Find the page_start addr */
4161 page_start
= offset32
+ written
;
4162 page_start
-= (page_start
% bp
->flash_info
->page_size
);
4163 /* Find the page_end addr */
4164 page_end
= page_start
+ bp
->flash_info
->page_size
;
4165 /* Find the data_start addr */
4166 data_start
= (written
== 0) ? offset32
: page_start
;
4167 /* Find the data_end addr */
4168 data_end
= (page_end
> offset32
+ len32
) ?
4169 (offset32
+ len32
) : page_end
;
4171 /* Request access to the flash interface. */
4172 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4173 goto nvram_write_end
;
4175 /* Enable access to flash interface */
4176 bnx2_enable_nvram_access(bp
);
4178 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4179 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4182 /* Read the whole page into the buffer
4183 * (non-buffer flash only) */
4184 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
4185 if (j
== (bp
->flash_info
->page_size
- 4)) {
4186 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4188 rc
= bnx2_nvram_read_dword(bp
,
4194 goto nvram_write_end
;
4200 /* Enable writes to flash interface (unlock write-protect) */
4201 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
4202 goto nvram_write_end
;
4204 /* Loop to write back the buffer data from page_start to
4207 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4208 /* Erase the page */
4209 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
4210 goto nvram_write_end
;
4212 /* Re-enable the write again for the actual write */
4213 bnx2_enable_nvram_write(bp
);
4215 for (addr
= page_start
; addr
< data_start
;
4216 addr
+= 4, i
+= 4) {
4218 rc
= bnx2_nvram_write_dword(bp
, addr
,
4219 &flash_buffer
[i
], cmd_flags
);
4222 goto nvram_write_end
;
4228 /* Loop to write the new data from data_start to data_end */
4229 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
+= 4) {
4230 if ((addr
== page_end
- 4) ||
4231 ((bp
->flash_info
->flags
& BNX2_NV_BUFFERED
) &&
4232 (addr
== data_end
- 4))) {
4234 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4236 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
4240 goto nvram_write_end
;
4246 /* Loop to write back the buffer data from data_end
4248 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4249 for (addr
= data_end
; addr
< page_end
;
4250 addr
+= 4, i
+= 4) {
4252 if (addr
== page_end
-4) {
4253 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4255 rc
= bnx2_nvram_write_dword(bp
, addr
,
4256 &flash_buffer
[i
], cmd_flags
);
4259 goto nvram_write_end
;
4265 /* Disable writes to flash interface (lock write-protect) */
4266 bnx2_disable_nvram_write(bp
);
4268 /* Disable access to flash interface */
4269 bnx2_disable_nvram_access(bp
);
4270 bnx2_release_nvram_lock(bp
);
4272 /* Increment written */
4273 written
+= data_end
- data_start
;
4277 kfree(flash_buffer
);
4283 bnx2_init_fw_cap(struct bnx2
*bp
)
4287 bp
->phy_flags
&= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4288 bp
->flags
&= ~BNX2_FLAG_CAN_KEEP_VLAN
;
4290 if (!(bp
->flags
& BNX2_FLAG_ASF_ENABLE
))
4291 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4293 val
= bnx2_shmem_rd(bp
, BNX2_FW_CAP_MB
);
4294 if ((val
& BNX2_FW_CAP_SIGNATURE_MASK
) != BNX2_FW_CAP_SIGNATURE
)
4297 if ((val
& BNX2_FW_CAP_CAN_KEEP_VLAN
) == BNX2_FW_CAP_CAN_KEEP_VLAN
) {
4298 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4299 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
| BNX2_FW_CAP_CAN_KEEP_VLAN
;
4302 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
4303 (val
& BNX2_FW_CAP_REMOTE_PHY_CAPABLE
)) {
4306 bp
->phy_flags
|= BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4308 link
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
4309 if (link
& BNX2_LINK_STATUS_SERDES_LINK
)
4310 bp
->phy_port
= PORT_FIBRE
;
4312 bp
->phy_port
= PORT_TP
;
4314 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
|
4315 BNX2_FW_CAP_REMOTE_PHY_CAPABLE
;
4318 if (netif_running(bp
->dev
) && sig
)
4319 bnx2_shmem_wr(bp
, BNX2_DRV_ACK_CAP_MB
, sig
);
4323 bnx2_setup_msix_tbl(struct bnx2
*bp
)
4325 REG_WR(bp
, BNX2_PCI_GRC_WINDOW_ADDR
, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN
);
4327 REG_WR(bp
, BNX2_PCI_GRC_WINDOW2_ADDR
, BNX2_MSIX_TABLE_ADDR
);
4328 REG_WR(bp
, BNX2_PCI_GRC_WINDOW3_ADDR
, BNX2_MSIX_PBA_ADDR
);
4332 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
4338 /* Wait for the current PCI transaction to complete before
4339 * issuing a reset. */
4340 REG_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
4341 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
4342 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
4343 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
4344 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
4345 val
= REG_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
4348 /* Wait for the firmware to tell us it is ok to issue a reset. */
4349 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
, 1, 1);
4351 /* Deposit a driver reset signature so the firmware knows that
4352 * this is a soft reset. */
4353 bnx2_shmem_wr(bp
, BNX2_DRV_RESET_SIGNATURE
,
4354 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
4356 /* Do a dummy read to force the chip to complete all current transaction
4357 * before we issue a reset. */
4358 val
= REG_RD(bp
, BNX2_MISC_ID
);
4360 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4361 REG_WR(bp
, BNX2_MISC_COMMAND
, BNX2_MISC_COMMAND_SW_RESET
);
4362 REG_RD(bp
, BNX2_MISC_COMMAND
);
4365 val
= BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4366 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4368 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, val
);
4371 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4372 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4373 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4376 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4378 /* Reading back any register after chip reset will hang the
4379 * bus on 5706 A0 and A1. The msleep below provides plenty
4380 * of margin for write posting.
4382 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
4383 (CHIP_ID(bp
) == CHIP_ID_5706_A1
))
4386 /* Reset takes approximate 30 usec */
4387 for (i
= 0; i
< 10; i
++) {
4388 val
= REG_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
4389 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4390 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0)
4395 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4396 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
4397 printk(KERN_ERR PFX
"Chip reset did not complete\n");
4402 /* Make sure byte swapping is properly configured. */
4403 val
= REG_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
4404 if (val
!= 0x01020304) {
4405 printk(KERN_ERR PFX
"Chip not in correct endian mode\n");
4409 /* Wait for the firmware to finish its initialization. */
4410 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
, 1, 0);
4414 spin_lock_bh(&bp
->phy_lock
);
4415 old_port
= bp
->phy_port
;
4416 bnx2_init_fw_cap(bp
);
4417 if ((bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) &&
4418 old_port
!= bp
->phy_port
)
4419 bnx2_set_default_remote_link(bp
);
4420 spin_unlock_bh(&bp
->phy_lock
);
4422 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4423 /* Adjust the voltage regular to two steps lower. The default
4424 * of this register is 0x0000000e. */
4425 REG_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
4427 /* Remove bad rbuf memory from the free pool. */
4428 rc
= bnx2_alloc_bad_rbuf(bp
);
4431 if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
4432 bnx2_setup_msix_tbl(bp
);
4438 bnx2_init_chip(struct bnx2
*bp
)
4443 /* Make sure the interrupt is not active. */
4444 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
4446 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
4447 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
4449 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
4451 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
4452 DMA_READ_CHANS
<< 12 |
4453 DMA_WRITE_CHANS
<< 16;
4455 val
|= (0x2 << 20) | (1 << 11);
4457 if ((bp
->flags
& BNX2_FLAG_PCIX
) && (bp
->bus_speed_mhz
== 133))
4460 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) &&
4461 (CHIP_ID(bp
) != CHIP_ID_5706_A0
) && !(bp
->flags
& BNX2_FLAG_PCIX
))
4462 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
4464 REG_WR(bp
, BNX2_DMA_CONFIG
, val
);
4466 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4467 val
= REG_RD(bp
, BNX2_TDMA_CONFIG
);
4468 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
4469 REG_WR(bp
, BNX2_TDMA_CONFIG
, val
);
4472 if (bp
->flags
& BNX2_FLAG_PCIX
) {
4475 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4477 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4478 val16
& ~PCI_X_CMD_ERO
);
4481 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4482 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
4483 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
4484 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
4486 /* Initialize context mapping and zero out the quick contexts. The
4487 * context block must have already been enabled. */
4488 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4489 rc
= bnx2_init_5709_context(bp
);
4493 bnx2_init_context(bp
);
4495 if ((rc
= bnx2_init_cpus(bp
)) != 0)
4498 bnx2_init_nvram(bp
);
4500 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
4502 val
= REG_RD(bp
, BNX2_MQ_CONFIG
);
4503 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
4504 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
4505 if (CHIP_ID(bp
) == CHIP_ID_5709_A0
|| CHIP_ID(bp
) == CHIP_ID_5709_A1
)
4506 val
|= BNX2_MQ_CONFIG_HALT_DIS
;
4508 REG_WR(bp
, BNX2_MQ_CONFIG
, val
);
4510 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
4511 REG_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
4512 REG_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
4514 val
= (BCM_PAGE_BITS
- 8) << 24;
4515 REG_WR(bp
, BNX2_RV2P_CONFIG
, val
);
4517 /* Configure page size. */
4518 val
= REG_RD(bp
, BNX2_TBDR_CONFIG
);
4519 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
4520 val
|= (BCM_PAGE_BITS
- 8) << 24 | 0x40;
4521 REG_WR(bp
, BNX2_TBDR_CONFIG
, val
);
4523 val
= bp
->mac_addr
[0] +
4524 (bp
->mac_addr
[1] << 8) +
4525 (bp
->mac_addr
[2] << 16) +
4527 (bp
->mac_addr
[4] << 8) +
4528 (bp
->mac_addr
[5] << 16);
4529 REG_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
4531 /* Program the MTU. Also include 4 bytes for CRC32. */
4532 val
= bp
->dev
->mtu
+ ETH_HLEN
+ 4;
4533 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ 4))
4534 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
4535 REG_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
4537 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
4538 bp
->bnx2_napi
[i
].last_status_idx
= 0;
4540 bp
->rx_mode
= BNX2_EMAC_RX_MODE_SORT_MODE
;
4542 /* Set up how to generate a link change interrupt. */
4543 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
4545 REG_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
4546 (u64
) bp
->status_blk_mapping
& 0xffffffff);
4547 REG_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
4549 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
4550 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
4551 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
4552 (u64
) bp
->stats_blk_mapping
>> 32);
4554 REG_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
4555 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
4557 REG_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
4558 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
4560 REG_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
4561 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
4563 REG_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4565 REG_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4567 REG_WR(bp
, BNX2_HC_COM_TICKS
,
4568 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
4570 REG_WR(bp
, BNX2_HC_CMD_TICKS
,
4571 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
4573 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
4574 REG_WR(bp
, BNX2_HC_STATS_TICKS
, 0);
4576 REG_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
);
4577 REG_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
4579 if (CHIP_ID(bp
) == CHIP_ID_5706_A1
)
4580 val
= BNX2_HC_CONFIG_COLLECT_STATS
;
4582 val
= BNX2_HC_CONFIG_RX_TMR_MODE
| BNX2_HC_CONFIG_TX_TMR_MODE
|
4583 BNX2_HC_CONFIG_COLLECT_STATS
;
4586 if (bp
->irq_nvecs
> 1) {
4587 REG_WR(bp
, BNX2_HC_MSIX_BIT_VECTOR
,
4588 BNX2_HC_MSIX_BIT_VECTOR_VAL
);
4590 val
|= BNX2_HC_CONFIG_SB_ADDR_INC_128B
;
4593 if (bp
->flags
& BNX2_FLAG_ONE_SHOT_MSI
)
4594 val
|= BNX2_HC_CONFIG_ONE_SHOT
;
4596 REG_WR(bp
, BNX2_HC_CONFIG
, val
);
4598 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
4599 u32 base
= ((i
- 1) * BNX2_HC_SB_CONFIG_SIZE
) +
4600 BNX2_HC_SB_CONFIG_1
;
4603 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE
|
4604 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE
|
4605 BNX2_HC_SB_CONFIG_1_ONE_SHOT
);
4607 REG_WR(bp
, base
+ BNX2_HC_TX_QUICK_CONS_TRIP_OFF
,
4608 (bp
->tx_quick_cons_trip_int
<< 16) |
4609 bp
->tx_quick_cons_trip
);
4611 REG_WR(bp
, base
+ BNX2_HC_TX_TICKS_OFF
,
4612 (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4614 REG_WR(bp
, base
+ BNX2_HC_RX_QUICK_CONS_TRIP_OFF
,
4615 (bp
->rx_quick_cons_trip_int
<< 16) |
4616 bp
->rx_quick_cons_trip
);
4618 REG_WR(bp
, base
+ BNX2_HC_RX_TICKS_OFF
,
4619 (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4622 /* Clear internal stats counters. */
4623 REG_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
4625 REG_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_EVENTS
);
4627 /* Initialize the receive filter. */
4628 bnx2_set_rx_mode(bp
->dev
);
4630 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4631 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4632 val
|= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
4633 REG_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
4635 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
,
4638 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, BNX2_MISC_ENABLE_DEFAULT
);
4639 REG_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
4643 bp
->hc_cmd
= REG_RD(bp
, BNX2_HC_COMMAND
);
4649 bnx2_clear_ring_states(struct bnx2
*bp
)
4651 struct bnx2_napi
*bnapi
;
4652 struct bnx2_tx_ring_info
*txr
;
4653 struct bnx2_rx_ring_info
*rxr
;
4656 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
4657 bnapi
= &bp
->bnx2_napi
[i
];
4658 txr
= &bnapi
->tx_ring
;
4659 rxr
= &bnapi
->rx_ring
;
4662 txr
->hw_tx_cons
= 0;
4663 rxr
->rx_prod_bseq
= 0;
4666 rxr
->rx_pg_prod
= 0;
4667 rxr
->rx_pg_cons
= 0;
4672 bnx2_init_tx_context(struct bnx2
*bp
, u32 cid
, struct bnx2_tx_ring_info
*txr
)
4674 u32 val
, offset0
, offset1
, offset2
, offset3
;
4675 u32 cid_addr
= GET_CID_ADDR(cid
);
4677 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4678 offset0
= BNX2_L2CTX_TYPE_XI
;
4679 offset1
= BNX2_L2CTX_CMD_TYPE_XI
;
4680 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI_XI
;
4681 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO_XI
;
4683 offset0
= BNX2_L2CTX_TYPE
;
4684 offset1
= BNX2_L2CTX_CMD_TYPE
;
4685 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI
;
4686 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO
;
4688 val
= BNX2_L2CTX_TYPE_TYPE_L2
| BNX2_L2CTX_TYPE_SIZE_L2
;
4689 bnx2_ctx_wr(bp
, cid_addr
, offset0
, val
);
4691 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
| (8 << 16);
4692 bnx2_ctx_wr(bp
, cid_addr
, offset1
, val
);
4694 val
= (u64
) txr
->tx_desc_mapping
>> 32;
4695 bnx2_ctx_wr(bp
, cid_addr
, offset2
, val
);
4697 val
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
4698 bnx2_ctx_wr(bp
, cid_addr
, offset3
, val
);
4702 bnx2_init_tx_ring(struct bnx2
*bp
, int ring_num
)
4706 struct bnx2_napi
*bnapi
;
4707 struct bnx2_tx_ring_info
*txr
;
4709 bnapi
= &bp
->bnx2_napi
[ring_num
];
4710 txr
= &bnapi
->tx_ring
;
4715 cid
= TX_TSS_CID
+ ring_num
- 1;
4717 bp
->tx_wake_thresh
= bp
->tx_ring_size
/ 2;
4719 txbd
= &txr
->tx_desc_ring
[MAX_TX_DESC_CNT
];
4721 txbd
->tx_bd_haddr_hi
= (u64
) txr
->tx_desc_mapping
>> 32;
4722 txbd
->tx_bd_haddr_lo
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
4725 txr
->tx_prod_bseq
= 0;
4727 txr
->tx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BIDX
;
4728 txr
->tx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BSEQ
;
4730 bnx2_init_tx_context(bp
, cid
, txr
);
4734 bnx2_init_rxbd_rings(struct rx_bd
*rx_ring
[], dma_addr_t dma
[], u32 buf_size
,
4740 for (i
= 0; i
< num_rings
; i
++) {
4743 rxbd
= &rx_ring
[i
][0];
4744 for (j
= 0; j
< MAX_RX_DESC_CNT
; j
++, rxbd
++) {
4745 rxbd
->rx_bd_len
= buf_size
;
4746 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
4748 if (i
== (num_rings
- 1))
4752 rxbd
->rx_bd_haddr_hi
= (u64
) dma
[j
] >> 32;
4753 rxbd
->rx_bd_haddr_lo
= (u64
) dma
[j
] & 0xffffffff;
4758 bnx2_init_rx_ring(struct bnx2
*bp
, int ring_num
)
4761 u16 prod
, ring_prod
;
4762 u32 cid
, rx_cid_addr
, val
;
4763 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[ring_num
];
4764 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
4769 cid
= RX_RSS_CID
+ ring_num
- 1;
4771 rx_cid_addr
= GET_CID_ADDR(cid
);
4773 bnx2_init_rxbd_rings(rxr
->rx_desc_ring
, rxr
->rx_desc_mapping
,
4774 bp
->rx_buf_use_size
, bp
->rx_max_ring
);
4776 bnx2_init_rx_context(bp
, cid
);
4778 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4779 val
= REG_RD(bp
, BNX2_MQ_MAP_L2_5
);
4780 REG_WR(bp
, BNX2_MQ_MAP_L2_5
, val
| BNX2_MQ_MAP_L2_5_ARM
);
4783 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, 0);
4784 if (bp
->rx_pg_ring_size
) {
4785 bnx2_init_rxbd_rings(rxr
->rx_pg_desc_ring
,
4786 rxr
->rx_pg_desc_mapping
,
4787 PAGE_SIZE
, bp
->rx_max_pg_ring
);
4788 val
= (bp
->rx_buf_use_size
<< 16) | PAGE_SIZE
;
4789 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, val
);
4790 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_RBDC_KEY
,
4791 BNX2_L2CTX_RBDC_JUMBO_KEY
- ring_num
);
4793 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] >> 32;
4794 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_HI
, val
);
4796 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] & 0xffffffff;
4797 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_LO
, val
);
4799 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
4800 REG_WR(bp
, BNX2_MQ_MAP_L2_3
, BNX2_MQ_MAP_L2_3_DEFAULT
);
4803 val
= (u64
) rxr
->rx_desc_mapping
[0] >> 32;
4804 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_HI
, val
);
4806 val
= (u64
) rxr
->rx_desc_mapping
[0] & 0xffffffff;
4807 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_LO
, val
);
4809 ring_prod
= prod
= rxr
->rx_pg_prod
;
4810 for (i
= 0; i
< bp
->rx_pg_ring_size
; i
++) {
4811 if (bnx2_alloc_rx_page(bp
, rxr
, ring_prod
) < 0)
4813 prod
= NEXT_RX_BD(prod
);
4814 ring_prod
= RX_PG_RING_IDX(prod
);
4816 rxr
->rx_pg_prod
= prod
;
4818 ring_prod
= prod
= rxr
->rx_prod
;
4819 for (i
= 0; i
< bp
->rx_ring_size
; i
++) {
4820 if (bnx2_alloc_rx_skb(bp
, rxr
, ring_prod
) < 0)
4822 prod
= NEXT_RX_BD(prod
);
4823 ring_prod
= RX_RING_IDX(prod
);
4825 rxr
->rx_prod
= prod
;
4827 rxr
->rx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BDIDX
;
4828 rxr
->rx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BSEQ
;
4829 rxr
->rx_pg_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_PG_BDIDX
;
4831 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
4832 REG_WR16(bp
, rxr
->rx_bidx_addr
, prod
);
4834 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
4838 bnx2_init_all_rings(struct bnx2
*bp
)
4843 bnx2_clear_ring_states(bp
);
4845 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, 0);
4846 for (i
= 0; i
< bp
->num_tx_rings
; i
++)
4847 bnx2_init_tx_ring(bp
, i
);
4849 if (bp
->num_tx_rings
> 1)
4850 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, ((bp
->num_tx_rings
- 1) << 24) |
4853 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, 0);
4854 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
, 0);
4856 for (i
= 0; i
< bp
->num_rx_rings
; i
++)
4857 bnx2_init_rx_ring(bp
, i
);
4859 if (bp
->num_rx_rings
> 1) {
4861 u8
*tbl
= (u8
*) &tbl_32
;
4863 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
,
4864 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
);
4866 for (i
= 0; i
< BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
; i
++) {
4867 tbl
[i
% 4] = i
% (bp
->num_rx_rings
- 1);
4870 BNX2_RXP_SCRATCH_RSS_TBL
+ i
,
4871 cpu_to_be32(tbl_32
));
4874 val
= BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI
|
4875 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI
;
4877 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, val
);
4882 static u32
bnx2_find_max_ring(u32 ring_size
, u32 max_size
)
4884 u32 max
, num_rings
= 1;
4886 while (ring_size
> MAX_RX_DESC_CNT
) {
4887 ring_size
-= MAX_RX_DESC_CNT
;
4890 /* round to next power of 2 */
4892 while ((max
& num_rings
) == 0)
4895 if (num_rings
!= max
)
4902 bnx2_set_rx_ring_size(struct bnx2
*bp
, u32 size
)
4904 u32 rx_size
, rx_space
, jumbo_size
;
4906 /* 8 for CRC and VLAN */
4907 rx_size
= bp
->dev
->mtu
+ ETH_HLEN
+ BNX2_RX_OFFSET
+ 8;
4909 rx_space
= SKB_DATA_ALIGN(rx_size
+ BNX2_RX_ALIGN
) + NET_SKB_PAD
+
4910 sizeof(struct skb_shared_info
);
4912 bp
->rx_copy_thresh
= BNX2_RX_COPY_THRESH
;
4913 bp
->rx_pg_ring_size
= 0;
4914 bp
->rx_max_pg_ring
= 0;
4915 bp
->rx_max_pg_ring_idx
= 0;
4916 if ((rx_space
> PAGE_SIZE
) && !(bp
->flags
& BNX2_FLAG_JUMBO_BROKEN
)) {
4917 int pages
= PAGE_ALIGN(bp
->dev
->mtu
- 40) >> PAGE_SHIFT
;
4919 jumbo_size
= size
* pages
;
4920 if (jumbo_size
> MAX_TOTAL_RX_PG_DESC_CNT
)
4921 jumbo_size
= MAX_TOTAL_RX_PG_DESC_CNT
;
4923 bp
->rx_pg_ring_size
= jumbo_size
;
4924 bp
->rx_max_pg_ring
= bnx2_find_max_ring(jumbo_size
,
4926 bp
->rx_max_pg_ring_idx
= (bp
->rx_max_pg_ring
* RX_DESC_CNT
) - 1;
4927 rx_size
= BNX2_RX_COPY_THRESH
+ BNX2_RX_OFFSET
;
4928 bp
->rx_copy_thresh
= 0;
4931 bp
->rx_buf_use_size
= rx_size
;
4933 bp
->rx_buf_size
= bp
->rx_buf_use_size
+ BNX2_RX_ALIGN
;
4934 bp
->rx_jumbo_thresh
= rx_size
- BNX2_RX_OFFSET
;
4935 bp
->rx_ring_size
= size
;
4936 bp
->rx_max_ring
= bnx2_find_max_ring(size
, MAX_RX_RINGS
);
4937 bp
->rx_max_ring_idx
= (bp
->rx_max_ring
* RX_DESC_CNT
) - 1;
4941 bnx2_free_tx_skbs(struct bnx2
*bp
)
4945 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
4946 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
4947 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
4950 if (txr
->tx_buf_ring
== NULL
)
4953 for (j
= 0; j
< TX_DESC_CNT
; ) {
4954 struct sw_bd
*tx_buf
= &txr
->tx_buf_ring
[j
];
4955 struct sk_buff
*skb
= tx_buf
->skb
;
4963 pci_unmap_single(bp
->pdev
,
4964 pci_unmap_addr(tx_buf
, mapping
),
4965 skb_headlen(skb
), PCI_DMA_TODEVICE
);
4969 last
= skb_shinfo(skb
)->nr_frags
;
4970 for (k
= 0; k
< last
; k
++) {
4971 tx_buf
= &txr
->tx_buf_ring
[j
+ k
+ 1];
4972 pci_unmap_page(bp
->pdev
,
4973 pci_unmap_addr(tx_buf
, mapping
),
4974 skb_shinfo(skb
)->frags
[j
].size
,
4984 bnx2_free_rx_skbs(struct bnx2
*bp
)
4988 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
4989 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
4990 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
4993 if (rxr
->rx_buf_ring
== NULL
)
4996 for (j
= 0; j
< bp
->rx_max_ring_idx
; j
++) {
4997 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[j
];
4998 struct sk_buff
*skb
= rx_buf
->skb
;
5003 pci_unmap_single(bp
->pdev
,
5004 pci_unmap_addr(rx_buf
, mapping
),
5005 bp
->rx_buf_use_size
,
5006 PCI_DMA_FROMDEVICE
);
5012 for (j
= 0; j
< bp
->rx_max_pg_ring_idx
; j
++)
5013 bnx2_free_rx_page(bp
, rxr
, j
);
5018 bnx2_free_skbs(struct bnx2
*bp
)
5020 bnx2_free_tx_skbs(bp
);
5021 bnx2_free_rx_skbs(bp
);
5025 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
5029 rc
= bnx2_reset_chip(bp
, reset_code
);
5034 if ((rc
= bnx2_init_chip(bp
)) != 0)
5037 bnx2_init_all_rings(bp
);
5042 bnx2_init_nic(struct bnx2
*bp
, int reset_phy
)
5046 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
5049 spin_lock_bh(&bp
->phy_lock
);
5050 bnx2_init_phy(bp
, reset_phy
);
5052 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5053 bnx2_remote_phy_event(bp
);
5054 spin_unlock_bh(&bp
->phy_lock
);
5059 bnx2_test_registers(struct bnx2
*bp
)
5063 static const struct {
5066 #define BNX2_FL_NOT_5709 1
5070 { 0x006c, 0, 0x00000000, 0x0000003f },
5071 { 0x0090, 0, 0xffffffff, 0x00000000 },
5072 { 0x0094, 0, 0x00000000, 0x00000000 },
5074 { 0x0404, BNX2_FL_NOT_5709
, 0x00003f00, 0x00000000 },
5075 { 0x0418, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5076 { 0x041c, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5077 { 0x0420, BNX2_FL_NOT_5709
, 0x00000000, 0x80ffffff },
5078 { 0x0424, BNX2_FL_NOT_5709
, 0x00000000, 0x00000000 },
5079 { 0x0428, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5080 { 0x0450, BNX2_FL_NOT_5709
, 0x00000000, 0x0000ffff },
5081 { 0x0454, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5082 { 0x0458, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5084 { 0x0808, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5085 { 0x0854, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5086 { 0x0868, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5087 { 0x086c, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5088 { 0x0870, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5089 { 0x0874, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5091 { 0x0c00, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5092 { 0x0c04, BNX2_FL_NOT_5709
, 0x00000000, 0x03ff0001 },
5093 { 0x0c08, BNX2_FL_NOT_5709
, 0x0f0ff073, 0x00000000 },
5095 { 0x1000, 0, 0x00000000, 0x00000001 },
5096 { 0x1004, BNX2_FL_NOT_5709
, 0x00000000, 0x000f0001 },
5098 { 0x1408, 0, 0x01c00800, 0x00000000 },
5099 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5100 { 0x14a8, 0, 0x00000000, 0x000001ff },
5101 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5102 { 0x14b0, 0, 0x00000002, 0x00000001 },
5103 { 0x14b8, 0, 0x00000000, 0x00000000 },
5104 { 0x14c0, 0, 0x00000000, 0x00000009 },
5105 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5106 { 0x14cc, 0, 0x00000000, 0x00000001 },
5107 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5109 { 0x1800, 0, 0x00000000, 0x00000001 },
5110 { 0x1804, 0, 0x00000000, 0x00000003 },
5112 { 0x2800, 0, 0x00000000, 0x00000001 },
5113 { 0x2804, 0, 0x00000000, 0x00003f01 },
5114 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5115 { 0x2810, 0, 0xffff0000, 0x00000000 },
5116 { 0x2814, 0, 0xffff0000, 0x00000000 },
5117 { 0x2818, 0, 0xffff0000, 0x00000000 },
5118 { 0x281c, 0, 0xffff0000, 0x00000000 },
5119 { 0x2834, 0, 0xffffffff, 0x00000000 },
5120 { 0x2840, 0, 0x00000000, 0xffffffff },
5121 { 0x2844, 0, 0x00000000, 0xffffffff },
5122 { 0x2848, 0, 0xffffffff, 0x00000000 },
5123 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5125 { 0x2c00, 0, 0x00000000, 0x00000011 },
5126 { 0x2c04, 0, 0x00000000, 0x00030007 },
5128 { 0x3c00, 0, 0x00000000, 0x00000001 },
5129 { 0x3c04, 0, 0x00000000, 0x00070000 },
5130 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5131 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5132 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5133 { 0x3c14, 0, 0x00000000, 0xffffffff },
5134 { 0x3c18, 0, 0x00000000, 0xffffffff },
5135 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5136 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5138 { 0x5004, 0, 0x00000000, 0x0000007f },
5139 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5141 { 0x5c00, 0, 0x00000000, 0x00000001 },
5142 { 0x5c04, 0, 0x00000000, 0x0003000f },
5143 { 0x5c08, 0, 0x00000003, 0x00000000 },
5144 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5145 { 0x5c10, 0, 0x00000000, 0xffffffff },
5146 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5147 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5148 { 0x5c88, 0, 0x00000000, 0x00077373 },
5149 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5151 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5152 { 0x680c, 0, 0xffffffff, 0x00000000 },
5153 { 0x6810, 0, 0xffffffff, 0x00000000 },
5154 { 0x6814, 0, 0xffffffff, 0x00000000 },
5155 { 0x6818, 0, 0xffffffff, 0x00000000 },
5156 { 0x681c, 0, 0xffffffff, 0x00000000 },
5157 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5158 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5159 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5160 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5161 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5162 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5163 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5164 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5165 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5166 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5167 { 0x684c, 0, 0xffffffff, 0x00000000 },
5168 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5169 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5170 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5171 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5172 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5173 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5175 { 0xffff, 0, 0x00000000, 0x00000000 },
5180 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5183 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
5184 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
5185 u16 flags
= reg_tbl
[i
].flags
;
5187 if (is_5709
&& (flags
& BNX2_FL_NOT_5709
))
5190 offset
= (u32
) reg_tbl
[i
].offset
;
5191 rw_mask
= reg_tbl
[i
].rw_mask
;
5192 ro_mask
= reg_tbl
[i
].ro_mask
;
5194 save_val
= readl(bp
->regview
+ offset
);
5196 writel(0, bp
->regview
+ offset
);
5198 val
= readl(bp
->regview
+ offset
);
5199 if ((val
& rw_mask
) != 0) {
5203 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5207 writel(0xffffffff, bp
->regview
+ offset
);
5209 val
= readl(bp
->regview
+ offset
);
5210 if ((val
& rw_mask
) != rw_mask
) {
5214 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5218 writel(save_val
, bp
->regview
+ offset
);
5222 writel(save_val
, bp
->regview
+ offset
);
5230 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
5232 static const u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
5233 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5236 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
5239 for (offset
= 0; offset
< size
; offset
+= 4) {
5241 bnx2_reg_wr_ind(bp
, start
+ offset
, test_pattern
[i
]);
5243 if (bnx2_reg_rd_ind(bp
, start
+ offset
) !=
5253 bnx2_test_memory(struct bnx2
*bp
)
5257 static struct mem_entry
{
5260 } mem_tbl_5706
[] = {
5261 { 0x60000, 0x4000 },
5262 { 0xa0000, 0x3000 },
5263 { 0xe0000, 0x4000 },
5264 { 0x120000, 0x4000 },
5265 { 0x1a0000, 0x4000 },
5266 { 0x160000, 0x4000 },
5270 { 0x60000, 0x4000 },
5271 { 0xa0000, 0x3000 },
5272 { 0xe0000, 0x4000 },
5273 { 0x120000, 0x4000 },
5274 { 0x1a0000, 0x4000 },
5277 struct mem_entry
*mem_tbl
;
5279 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5280 mem_tbl
= mem_tbl_5709
;
5282 mem_tbl
= mem_tbl_5706
;
5284 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
5285 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
5286 mem_tbl
[i
].len
)) != 0) {
5294 #define BNX2_MAC_LOOPBACK 0
5295 #define BNX2_PHY_LOOPBACK 1
5298 bnx2_run_loopback(struct bnx2
*bp
, int loopback_mode
)
5300 unsigned int pkt_size
, num_pkts
, i
;
5301 struct sk_buff
*skb
, *rx_skb
;
5302 unsigned char *packet
;
5303 u16 rx_start_idx
, rx_idx
;
5306 struct sw_bd
*rx_buf
;
5307 struct l2_fhdr
*rx_hdr
;
5309 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0], *tx_napi
;
5310 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5311 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5315 txr
= &tx_napi
->tx_ring
;
5316 rxr
= &bnapi
->rx_ring
;
5317 if (loopback_mode
== BNX2_MAC_LOOPBACK
) {
5318 bp
->loopback
= MAC_LOOPBACK
;
5319 bnx2_set_mac_loopback(bp
);
5321 else if (loopback_mode
== BNX2_PHY_LOOPBACK
) {
5322 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5325 bp
->loopback
= PHY_LOOPBACK
;
5326 bnx2_set_phy_loopback(bp
);
5331 pkt_size
= min(bp
->dev
->mtu
+ ETH_HLEN
, bp
->rx_jumbo_thresh
- 4);
5332 skb
= netdev_alloc_skb(bp
->dev
, pkt_size
);
5335 packet
= skb_put(skb
, pkt_size
);
5336 memcpy(packet
, bp
->dev
->dev_addr
, 6);
5337 memset(packet
+ 6, 0x0, 8);
5338 for (i
= 14; i
< pkt_size
; i
++)
5339 packet
[i
] = (unsigned char) (i
& 0xff);
5341 map
= pci_map_single(bp
->pdev
, skb
->data
, pkt_size
,
5344 REG_WR(bp
, BNX2_HC_COMMAND
,
5345 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5347 REG_RD(bp
, BNX2_HC_COMMAND
);
5350 rx_start_idx
= bnx2_get_hw_rx_cons(bnapi
);
5354 txbd
= &txr
->tx_desc_ring
[TX_RING_IDX(txr
->tx_prod
)];
5356 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
5357 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
5358 txbd
->tx_bd_mss_nbytes
= pkt_size
;
5359 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
5362 txr
->tx_prod
= NEXT_TX_BD(txr
->tx_prod
);
5363 txr
->tx_prod_bseq
+= pkt_size
;
5365 REG_WR16(bp
, txr
->tx_bidx_addr
, txr
->tx_prod
);
5366 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
5370 REG_WR(bp
, BNX2_HC_COMMAND
,
5371 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5373 REG_RD(bp
, BNX2_HC_COMMAND
);
5377 pci_unmap_single(bp
->pdev
, map
, pkt_size
, PCI_DMA_TODEVICE
);
5380 if (bnx2_get_hw_tx_cons(tx_napi
) != txr
->tx_prod
)
5381 goto loopback_test_done
;
5383 rx_idx
= bnx2_get_hw_rx_cons(bnapi
);
5384 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
5385 goto loopback_test_done
;
5388 rx_buf
= &rxr
->rx_buf_ring
[rx_start_idx
];
5389 rx_skb
= rx_buf
->skb
;
5391 rx_hdr
= (struct l2_fhdr
*) rx_skb
->data
;
5392 skb_reserve(rx_skb
, BNX2_RX_OFFSET
);
5394 pci_dma_sync_single_for_cpu(bp
->pdev
,
5395 pci_unmap_addr(rx_buf
, mapping
),
5396 bp
->rx_buf_size
, PCI_DMA_FROMDEVICE
);
5398 if (rx_hdr
->l2_fhdr_status
&
5399 (L2_FHDR_ERRORS_BAD_CRC
|
5400 L2_FHDR_ERRORS_PHY_DECODE
|
5401 L2_FHDR_ERRORS_ALIGNMENT
|
5402 L2_FHDR_ERRORS_TOO_SHORT
|
5403 L2_FHDR_ERRORS_GIANT_FRAME
)) {
5405 goto loopback_test_done
;
5408 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
5409 goto loopback_test_done
;
5412 for (i
= 14; i
< pkt_size
; i
++) {
5413 if (*(rx_skb
->data
+ i
) != (unsigned char) (i
& 0xff)) {
5414 goto loopback_test_done
;
5425 #define BNX2_MAC_LOOPBACK_FAILED 1
5426 #define BNX2_PHY_LOOPBACK_FAILED 2
5427 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5428 BNX2_PHY_LOOPBACK_FAILED)
5431 bnx2_test_loopback(struct bnx2
*bp
)
5435 if (!netif_running(bp
->dev
))
5436 return BNX2_LOOPBACK_FAILED
;
5438 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
5439 spin_lock_bh(&bp
->phy_lock
);
5440 bnx2_init_phy(bp
, 1);
5441 spin_unlock_bh(&bp
->phy_lock
);
5442 if (bnx2_run_loopback(bp
, BNX2_MAC_LOOPBACK
))
5443 rc
|= BNX2_MAC_LOOPBACK_FAILED
;
5444 if (bnx2_run_loopback(bp
, BNX2_PHY_LOOPBACK
))
5445 rc
|= BNX2_PHY_LOOPBACK_FAILED
;
5449 #define NVRAM_SIZE 0x200
5450 #define CRC32_RESIDUAL 0xdebb20e3
5453 bnx2_test_nvram(struct bnx2
*bp
)
5455 __be32 buf
[NVRAM_SIZE
/ 4];
5456 u8
*data
= (u8
*) buf
;
5460 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
5461 goto test_nvram_done
;
5463 magic
= be32_to_cpu(buf
[0]);
5464 if (magic
!= 0x669955aa) {
5466 goto test_nvram_done
;
5469 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
5470 goto test_nvram_done
;
5472 csum
= ether_crc_le(0x100, data
);
5473 if (csum
!= CRC32_RESIDUAL
) {
5475 goto test_nvram_done
;
5478 csum
= ether_crc_le(0x100, data
+ 0x100);
5479 if (csum
!= CRC32_RESIDUAL
) {
5488 bnx2_test_link(struct bnx2
*bp
)
5492 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
5497 spin_lock_bh(&bp
->phy_lock
);
5498 bnx2_enable_bmsr1(bp
);
5499 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5500 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5501 bnx2_disable_bmsr1(bp
);
5502 spin_unlock_bh(&bp
->phy_lock
);
5504 if (bmsr
& BMSR_LSTATUS
) {
5511 bnx2_test_intr(struct bnx2
*bp
)
5516 if (!netif_running(bp
->dev
))
5519 status_idx
= REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
5521 /* This register is not touched during run-time. */
5522 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
5523 REG_RD(bp
, BNX2_HC_COMMAND
);
5525 for (i
= 0; i
< 10; i
++) {
5526 if ((REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
5532 msleep_interruptible(10);
5540 /* Determining link for parallel detection. */
5542 bnx2_5706_serdes_has_link(struct bnx2
*bp
)
5544 u32 mode_ctl
, an_dbg
, exp
;
5546 if (bp
->phy_flags
& BNX2_PHY_FLAG_NO_PARALLEL
)
5549 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_MODE_CTL
);
5550 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &mode_ctl
);
5552 if (!(mode_ctl
& MISC_SHDW_MODE_CTL_SIG_DET
))
5555 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5556 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5557 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5559 if (an_dbg
& (MISC_SHDW_AN_DBG_NOSYNC
| MISC_SHDW_AN_DBG_RUDI_INVALID
))
5562 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_REG1
);
5563 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5564 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5566 if (exp
& MII_EXPAND_REG1_RUDI_C
) /* receiving CONFIG */
5573 bnx2_5706_serdes_timer(struct bnx2
*bp
)
5577 spin_lock(&bp
->phy_lock
);
5578 if (bp
->serdes_an_pending
) {
5579 bp
->serdes_an_pending
--;
5581 } else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
5584 bp
->current_interval
= bp
->timer_interval
;
5586 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5588 if (bmcr
& BMCR_ANENABLE
) {
5589 if (bnx2_5706_serdes_has_link(bp
)) {
5590 bmcr
&= ~BMCR_ANENABLE
;
5591 bmcr
|= BMCR_SPEED1000
| BMCR_FULLDPLX
;
5592 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5593 bp
->phy_flags
|= BNX2_PHY_FLAG_PARALLEL_DETECT
;
5597 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
5598 (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)) {
5601 bnx2_write_phy(bp
, 0x17, 0x0f01);
5602 bnx2_read_phy(bp
, 0x15, &phy2
);
5606 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5607 bmcr
|= BMCR_ANENABLE
;
5608 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5610 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
5613 bp
->current_interval
= bp
->timer_interval
;
5618 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5619 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
5620 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
5622 if (bp
->link_up
&& (val
& MISC_SHDW_AN_DBG_NOSYNC
)) {
5623 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
)) {
5624 bnx2_5706s_force_link_dn(bp
, 1);
5625 bp
->phy_flags
|= BNX2_PHY_FLAG_FORCED_DOWN
;
5628 } else if (!bp
->link_up
&& !(val
& MISC_SHDW_AN_DBG_NOSYNC
))
5631 spin_unlock(&bp
->phy_lock
);
5635 bnx2_5708_serdes_timer(struct bnx2
*bp
)
5637 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5640 if ((bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) == 0) {
5641 bp
->serdes_an_pending
= 0;
5645 spin_lock(&bp
->phy_lock
);
5646 if (bp
->serdes_an_pending
)
5647 bp
->serdes_an_pending
--;
5648 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
5651 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5652 if (bmcr
& BMCR_ANENABLE
) {
5653 bnx2_enable_forced_2g5(bp
);
5654 bp
->current_interval
= SERDES_FORCED_TIMEOUT
;
5656 bnx2_disable_forced_2g5(bp
);
5657 bp
->serdes_an_pending
= 2;
5658 bp
->current_interval
= bp
->timer_interval
;
5662 bp
->current_interval
= bp
->timer_interval
;
5664 spin_unlock(&bp
->phy_lock
);
5668 bnx2_timer(unsigned long data
)
5670 struct bnx2
*bp
= (struct bnx2
*) data
;
5672 if (!netif_running(bp
->dev
))
5675 if (atomic_read(&bp
->intr_sem
) != 0)
5676 goto bnx2_restart_timer
;
5678 bnx2_send_heart_beat(bp
);
5680 bp
->stats_blk
->stat_FwRxDrop
=
5681 bnx2_reg_rd_ind(bp
, BNX2_FW_RX_DROP_COUNT
);
5683 /* workaround occasional corrupted counters */
5684 if (CHIP_NUM(bp
) == CHIP_NUM_5708
&& bp
->stats_ticks
)
5685 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
|
5686 BNX2_HC_COMMAND_STATS_NOW
);
5688 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
5689 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
5690 bnx2_5706_serdes_timer(bp
);
5692 bnx2_5708_serdes_timer(bp
);
5696 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
5700 bnx2_request_irq(struct bnx2
*bp
)
5702 unsigned long flags
;
5703 struct bnx2_irq
*irq
;
5706 if (bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)
5709 flags
= IRQF_SHARED
;
5711 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
5712 irq
= &bp
->irq_tbl
[i
];
5713 rc
= request_irq(irq
->vector
, irq
->handler
, flags
, irq
->name
,
5723 bnx2_free_irq(struct bnx2
*bp
)
5725 struct bnx2_irq
*irq
;
5728 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
5729 irq
= &bp
->irq_tbl
[i
];
5731 free_irq(irq
->vector
, &bp
->bnx2_napi
[i
]);
5734 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
5735 pci_disable_msi(bp
->pdev
);
5736 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
5737 pci_disable_msix(bp
->pdev
);
5739 bp
->flags
&= ~(BNX2_FLAG_USING_MSI_OR_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
);
5743 bnx2_enable_msix(struct bnx2
*bp
, int msix_vecs
)
5746 struct msix_entry msix_ent
[BNX2_MAX_MSIX_VEC
];
5748 bnx2_setup_msix_tbl(bp
);
5749 REG_WR(bp
, BNX2_PCI_MSIX_CONTROL
, BNX2_MAX_MSIX_HW_VEC
- 1);
5750 REG_WR(bp
, BNX2_PCI_MSIX_TBL_OFF_BIR
, BNX2_PCI_GRC_WINDOW2_BASE
);
5751 REG_WR(bp
, BNX2_PCI_MSIX_PBA_OFF_BIT
, BNX2_PCI_GRC_WINDOW3_BASE
);
5753 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
5754 msix_ent
[i
].entry
= i
;
5755 msix_ent
[i
].vector
= 0;
5757 strcpy(bp
->irq_tbl
[i
].name
, bp
->dev
->name
);
5758 bp
->irq_tbl
[i
].handler
= bnx2_msi_1shot
;
5761 rc
= pci_enable_msix(bp
->pdev
, msix_ent
, BNX2_MAX_MSIX_VEC
);
5765 bp
->irq_nvecs
= msix_vecs
;
5766 bp
->flags
|= BNX2_FLAG_USING_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
;
5767 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
5768 bp
->irq_tbl
[i
].vector
= msix_ent
[i
].vector
;
5772 bnx2_setup_int_mode(struct bnx2
*bp
, int dis_msi
)
5774 int cpus
= num_online_cpus();
5775 int msix_vecs
= min(cpus
+ 1, RX_MAX_RINGS
);
5777 bp
->irq_tbl
[0].handler
= bnx2_interrupt
;
5778 strcpy(bp
->irq_tbl
[0].name
, bp
->dev
->name
);
5780 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
5782 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !dis_msi
&& cpus
> 1)
5783 bnx2_enable_msix(bp
, msix_vecs
);
5785 if ((bp
->flags
& BNX2_FLAG_MSI_CAP
) && !dis_msi
&&
5786 !(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
5787 if (pci_enable_msi(bp
->pdev
) == 0) {
5788 bp
->flags
|= BNX2_FLAG_USING_MSI
;
5789 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5790 bp
->flags
|= BNX2_FLAG_ONE_SHOT_MSI
;
5791 bp
->irq_tbl
[0].handler
= bnx2_msi_1shot
;
5793 bp
->irq_tbl
[0].handler
= bnx2_msi
;
5795 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
5799 bp
->num_tx_rings
= rounddown_pow_of_two(bp
->irq_nvecs
);
5800 bp
->dev
->real_num_tx_queues
= bp
->num_tx_rings
;
5802 bp
->num_rx_rings
= bp
->irq_nvecs
;
5805 /* Called with rtnl_lock */
5807 bnx2_open(struct net_device
*dev
)
5809 struct bnx2
*bp
= netdev_priv(dev
);
5812 netif_carrier_off(dev
);
5814 bnx2_set_power_state(bp
, PCI_D0
);
5815 bnx2_disable_int(bp
);
5817 bnx2_setup_int_mode(bp
, disable_msi
);
5818 bnx2_napi_enable(bp
);
5819 rc
= bnx2_alloc_mem(bp
);
5823 rc
= bnx2_request_irq(bp
);
5827 rc
= bnx2_init_nic(bp
, 1);
5831 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
5833 atomic_set(&bp
->intr_sem
, 0);
5835 bnx2_enable_int(bp
);
5837 if (bp
->flags
& BNX2_FLAG_USING_MSI
) {
5838 /* Test MSI to make sure it is working
5839 * If MSI test fails, go back to INTx mode
5841 if (bnx2_test_intr(bp
) != 0) {
5842 printk(KERN_WARNING PFX
"%s: No interrupt was generated"
5843 " using MSI, switching to INTx mode. Please"
5844 " report this failure to the PCI maintainer"
5845 " and include system chipset information.\n",
5848 bnx2_disable_int(bp
);
5851 bnx2_setup_int_mode(bp
, 1);
5853 rc
= bnx2_init_nic(bp
, 0);
5856 rc
= bnx2_request_irq(bp
);
5859 del_timer_sync(&bp
->timer
);
5862 bnx2_enable_int(bp
);
5865 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
5866 printk(KERN_INFO PFX
"%s: using MSI\n", dev
->name
);
5867 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
5868 printk(KERN_INFO PFX
"%s: using MSIX\n", dev
->name
);
5870 netif_tx_start_all_queues(dev
);
5875 bnx2_napi_disable(bp
);
5883 bnx2_reset_task(struct work_struct
*work
)
5885 struct bnx2
*bp
= container_of(work
, struct bnx2
, reset_task
);
5887 if (!netif_running(bp
->dev
))
5890 bnx2_netif_stop(bp
);
5892 bnx2_init_nic(bp
, 1);
5894 atomic_set(&bp
->intr_sem
, 1);
5895 bnx2_netif_start(bp
);
5899 bnx2_tx_timeout(struct net_device
*dev
)
5901 struct bnx2
*bp
= netdev_priv(dev
);
5903 /* This allows the netif to be shutdown gracefully before resetting */
5904 schedule_work(&bp
->reset_task
);
5908 /* Called with rtnl_lock */
5910 bnx2_vlan_rx_register(struct net_device
*dev
, struct vlan_group
*vlgrp
)
5912 struct bnx2
*bp
= netdev_priv(dev
);
5914 bnx2_netif_stop(bp
);
5917 bnx2_set_rx_mode(dev
);
5918 if (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
)
5919 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE
, 0, 1);
5921 bnx2_netif_start(bp
);
5925 /* Called with netif_tx_lock.
5926 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
5927 * netif_wake_queue().
5930 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
5932 struct bnx2
*bp
= netdev_priv(dev
);
5935 struct sw_bd
*tx_buf
;
5936 u32 len
, vlan_tag_flags
, last_frag
, mss
;
5937 u16 prod
, ring_prod
;
5939 struct bnx2_napi
*bnapi
;
5940 struct bnx2_tx_ring_info
*txr
;
5941 struct netdev_queue
*txq
;
5943 /* Determine which tx ring we will be placed on */
5944 i
= skb_get_queue_mapping(skb
);
5945 bnapi
= &bp
->bnx2_napi
[i
];
5946 txr
= &bnapi
->tx_ring
;
5947 txq
= netdev_get_tx_queue(dev
, i
);
5949 if (unlikely(bnx2_tx_avail(bp
, txr
) <
5950 (skb_shinfo(skb
)->nr_frags
+ 1))) {
5951 netif_tx_stop_queue(txq
);
5952 printk(KERN_ERR PFX
"%s: BUG! Tx ring full when queue awake!\n",
5955 return NETDEV_TX_BUSY
;
5957 len
= skb_headlen(skb
);
5958 prod
= txr
->tx_prod
;
5959 ring_prod
= TX_RING_IDX(prod
);
5962 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
5963 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
5966 if (bp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
5968 (TX_BD_FLAGS_VLAN_TAG
| (vlan_tx_tag_get(skb
) << 16));
5970 if ((mss
= skb_shinfo(skb
)->gso_size
)) {
5971 u32 tcp_opt_len
, ip_tcp_len
;
5974 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
5976 tcp_opt_len
= tcp_optlen(skb
);
5978 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
) {
5979 u32 tcp_off
= skb_transport_offset(skb
) -
5980 sizeof(struct ipv6hdr
) - ETH_HLEN
;
5982 vlan_tag_flags
|= ((tcp_opt_len
>> 2) << 8) |
5983 TX_BD_FLAGS_SW_FLAGS
;
5984 if (likely(tcp_off
== 0))
5985 vlan_tag_flags
&= ~TX_BD_FLAGS_TCP6_OFF0_MSK
;
5988 vlan_tag_flags
|= ((tcp_off
& 0x3) <<
5989 TX_BD_FLAGS_TCP6_OFF0_SHL
) |
5990 ((tcp_off
& 0x10) <<
5991 TX_BD_FLAGS_TCP6_OFF4_SHL
);
5992 mss
|= (tcp_off
& 0xc) << TX_BD_TCP6_OFF2_SHL
;
5995 if (skb_header_cloned(skb
) &&
5996 pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
)) {
5998 return NETDEV_TX_OK
;
6001 ip_tcp_len
= ip_hdrlen(skb
) + sizeof(struct tcphdr
);
6005 iph
->tot_len
= htons(mss
+ ip_tcp_len
+ tcp_opt_len
);
6006 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
6010 if (tcp_opt_len
|| (iph
->ihl
> 5)) {
6011 vlan_tag_flags
|= ((iph
->ihl
- 5) +
6012 (tcp_opt_len
>> 2)) << 8;
6018 mapping
= pci_map_single(bp
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
6020 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6022 pci_unmap_addr_set(tx_buf
, mapping
, mapping
);
6024 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6026 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6027 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6028 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6029 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
6031 last_frag
= skb_shinfo(skb
)->nr_frags
;
6033 for (i
= 0; i
< last_frag
; i
++) {
6034 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
6036 prod
= NEXT_TX_BD(prod
);
6037 ring_prod
= TX_RING_IDX(prod
);
6038 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6041 mapping
= pci_map_page(bp
->pdev
, frag
->page
, frag
->page_offset
,
6042 len
, PCI_DMA_TODEVICE
);
6043 pci_unmap_addr_set(&txr
->tx_buf_ring
[ring_prod
],
6046 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6047 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6048 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6049 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
6052 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
6054 prod
= NEXT_TX_BD(prod
);
6055 txr
->tx_prod_bseq
+= skb
->len
;
6057 REG_WR16(bp
, txr
->tx_bidx_addr
, prod
);
6058 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
6062 txr
->tx_prod
= prod
;
6063 dev
->trans_start
= jiffies
;
6065 if (unlikely(bnx2_tx_avail(bp
, txr
) <= MAX_SKB_FRAGS
)) {
6066 netif_tx_stop_queue(txq
);
6067 if (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)
6068 netif_tx_wake_queue(txq
);
6071 return NETDEV_TX_OK
;
6074 /* Called with rtnl_lock */
6076 bnx2_close(struct net_device
*dev
)
6078 struct bnx2
*bp
= netdev_priv(dev
);
6081 cancel_work_sync(&bp
->reset_task
);
6083 bnx2_disable_int_sync(bp
);
6084 bnx2_napi_disable(bp
);
6085 del_timer_sync(&bp
->timer
);
6086 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
6087 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
6089 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
6091 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
6092 bnx2_reset_chip(bp
, reset_code
);
6097 netif_carrier_off(bp
->dev
);
6098 bnx2_set_power_state(bp
, PCI_D3hot
);
6102 #define GET_NET_STATS64(ctr) \
6103 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
6104 (unsigned long) (ctr##_lo)
6106 #define GET_NET_STATS32(ctr) \
6109 #if (BITS_PER_LONG == 64)
6110 #define GET_NET_STATS GET_NET_STATS64
6112 #define GET_NET_STATS GET_NET_STATS32
6115 static struct net_device_stats
*
6116 bnx2_get_stats(struct net_device
*dev
)
6118 struct bnx2
*bp
= netdev_priv(dev
);
6119 struct statistics_block
*stats_blk
= bp
->stats_blk
;
6120 struct net_device_stats
*net_stats
= &bp
->net_stats
;
6122 if (bp
->stats_blk
== NULL
) {
6125 net_stats
->rx_packets
=
6126 GET_NET_STATS(stats_blk
->stat_IfHCInUcastPkts
) +
6127 GET_NET_STATS(stats_blk
->stat_IfHCInMulticastPkts
) +
6128 GET_NET_STATS(stats_blk
->stat_IfHCInBroadcastPkts
);
6130 net_stats
->tx_packets
=
6131 GET_NET_STATS(stats_blk
->stat_IfHCOutUcastPkts
) +
6132 GET_NET_STATS(stats_blk
->stat_IfHCOutMulticastPkts
) +
6133 GET_NET_STATS(stats_blk
->stat_IfHCOutBroadcastPkts
);
6135 net_stats
->rx_bytes
=
6136 GET_NET_STATS(stats_blk
->stat_IfHCInOctets
);
6138 net_stats
->tx_bytes
=
6139 GET_NET_STATS(stats_blk
->stat_IfHCOutOctets
);
6141 net_stats
->multicast
=
6142 GET_NET_STATS(stats_blk
->stat_IfHCOutMulticastPkts
);
6144 net_stats
->collisions
=
6145 (unsigned long) stats_blk
->stat_EtherStatsCollisions
;
6147 net_stats
->rx_length_errors
=
6148 (unsigned long) (stats_blk
->stat_EtherStatsUndersizePkts
+
6149 stats_blk
->stat_EtherStatsOverrsizePkts
);
6151 net_stats
->rx_over_errors
=
6152 (unsigned long) stats_blk
->stat_IfInMBUFDiscards
;
6154 net_stats
->rx_frame_errors
=
6155 (unsigned long) stats_blk
->stat_Dot3StatsAlignmentErrors
;
6157 net_stats
->rx_crc_errors
=
6158 (unsigned long) stats_blk
->stat_Dot3StatsFCSErrors
;
6160 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
6161 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
6162 net_stats
->rx_crc_errors
;
6164 net_stats
->tx_aborted_errors
=
6165 (unsigned long) (stats_blk
->stat_Dot3StatsExcessiveCollisions
+
6166 stats_blk
->stat_Dot3StatsLateCollisions
);
6168 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) ||
6169 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
6170 net_stats
->tx_carrier_errors
= 0;
6172 net_stats
->tx_carrier_errors
=
6174 stats_blk
->stat_Dot3StatsCarrierSenseErrors
;
6177 net_stats
->tx_errors
=
6179 stats_blk
->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
6181 net_stats
->tx_aborted_errors
+
6182 net_stats
->tx_carrier_errors
;
6184 net_stats
->rx_missed_errors
=
6185 (unsigned long) (stats_blk
->stat_IfInMBUFDiscards
+
6186 stats_blk
->stat_FwRxDrop
);
6191 /* All ethtool functions called with rtnl_lock */
6194 bnx2_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6196 struct bnx2
*bp
= netdev_priv(dev
);
6197 int support_serdes
= 0, support_copper
= 0;
6199 cmd
->supported
= SUPPORTED_Autoneg
;
6200 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6203 } else if (bp
->phy_port
== PORT_FIBRE
)
6208 if (support_serdes
) {
6209 cmd
->supported
|= SUPPORTED_1000baseT_Full
|
6211 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
6212 cmd
->supported
|= SUPPORTED_2500baseX_Full
;
6215 if (support_copper
) {
6216 cmd
->supported
|= SUPPORTED_10baseT_Half
|
6217 SUPPORTED_10baseT_Full
|
6218 SUPPORTED_100baseT_Half
|
6219 SUPPORTED_100baseT_Full
|
6220 SUPPORTED_1000baseT_Full
|
6225 spin_lock_bh(&bp
->phy_lock
);
6226 cmd
->port
= bp
->phy_port
;
6227 cmd
->advertising
= bp
->advertising
;
6229 if (bp
->autoneg
& AUTONEG_SPEED
) {
6230 cmd
->autoneg
= AUTONEG_ENABLE
;
6233 cmd
->autoneg
= AUTONEG_DISABLE
;
6236 if (netif_carrier_ok(dev
)) {
6237 cmd
->speed
= bp
->line_speed
;
6238 cmd
->duplex
= bp
->duplex
;
6244 spin_unlock_bh(&bp
->phy_lock
);
6246 cmd
->transceiver
= XCVR_INTERNAL
;
6247 cmd
->phy_address
= bp
->phy_addr
;
6253 bnx2_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6255 struct bnx2
*bp
= netdev_priv(dev
);
6256 u8 autoneg
= bp
->autoneg
;
6257 u8 req_duplex
= bp
->req_duplex
;
6258 u16 req_line_speed
= bp
->req_line_speed
;
6259 u32 advertising
= bp
->advertising
;
6262 spin_lock_bh(&bp
->phy_lock
);
6264 if (cmd
->port
!= PORT_TP
&& cmd
->port
!= PORT_FIBRE
)
6265 goto err_out_unlock
;
6267 if (cmd
->port
!= bp
->phy_port
&&
6268 !(bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
))
6269 goto err_out_unlock
;
6271 /* If device is down, we can store the settings only if the user
6272 * is setting the currently active port.
6274 if (!netif_running(dev
) && cmd
->port
!= bp
->phy_port
)
6275 goto err_out_unlock
;
6277 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
6278 autoneg
|= AUTONEG_SPEED
;
6280 cmd
->advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
6282 /* allow advertising 1 speed */
6283 if ((cmd
->advertising
== ADVERTISED_10baseT_Half
) ||
6284 (cmd
->advertising
== ADVERTISED_10baseT_Full
) ||
6285 (cmd
->advertising
== ADVERTISED_100baseT_Half
) ||
6286 (cmd
->advertising
== ADVERTISED_100baseT_Full
)) {
6288 if (cmd
->port
== PORT_FIBRE
)
6289 goto err_out_unlock
;
6291 advertising
= cmd
->advertising
;
6293 } else if (cmd
->advertising
== ADVERTISED_2500baseX_Full
) {
6294 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) ||
6295 (cmd
->port
== PORT_TP
))
6296 goto err_out_unlock
;
6297 } else if (cmd
->advertising
== ADVERTISED_1000baseT_Full
)
6298 advertising
= cmd
->advertising
;
6299 else if (cmd
->advertising
== ADVERTISED_1000baseT_Half
)
6300 goto err_out_unlock
;
6302 if (cmd
->port
== PORT_FIBRE
)
6303 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
6305 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
6307 advertising
|= ADVERTISED_Autoneg
;
6310 if (cmd
->port
== PORT_FIBRE
) {
6311 if ((cmd
->speed
!= SPEED_1000
&&
6312 cmd
->speed
!= SPEED_2500
) ||
6313 (cmd
->duplex
!= DUPLEX_FULL
))
6314 goto err_out_unlock
;
6316 if (cmd
->speed
== SPEED_2500
&&
6317 !(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
6318 goto err_out_unlock
;
6320 else if (cmd
->speed
== SPEED_1000
|| cmd
->speed
== SPEED_2500
)
6321 goto err_out_unlock
;
6323 autoneg
&= ~AUTONEG_SPEED
;
6324 req_line_speed
= cmd
->speed
;
6325 req_duplex
= cmd
->duplex
;
6329 bp
->autoneg
= autoneg
;
6330 bp
->advertising
= advertising
;
6331 bp
->req_line_speed
= req_line_speed
;
6332 bp
->req_duplex
= req_duplex
;
6335 /* If device is down, the new settings will be picked up when it is
6338 if (netif_running(dev
))
6339 err
= bnx2_setup_phy(bp
, cmd
->port
);
6342 spin_unlock_bh(&bp
->phy_lock
);
6348 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
6350 struct bnx2
*bp
= netdev_priv(dev
);
6352 strcpy(info
->driver
, DRV_MODULE_NAME
);
6353 strcpy(info
->version
, DRV_MODULE_VERSION
);
6354 strcpy(info
->bus_info
, pci_name(bp
->pdev
));
6355 strcpy(info
->fw_version
, bp
->fw_version
);
6358 #define BNX2_REGDUMP_LEN (32 * 1024)
6361 bnx2_get_regs_len(struct net_device
*dev
)
6363 return BNX2_REGDUMP_LEN
;
6367 bnx2_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *_p
)
6369 u32
*p
= _p
, i
, offset
;
6371 struct bnx2
*bp
= netdev_priv(dev
);
6372 u32 reg_boundaries
[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6373 0x0800, 0x0880, 0x0c00, 0x0c10,
6374 0x0c30, 0x0d08, 0x1000, 0x101c,
6375 0x1040, 0x1048, 0x1080, 0x10a4,
6376 0x1400, 0x1490, 0x1498, 0x14f0,
6377 0x1500, 0x155c, 0x1580, 0x15dc,
6378 0x1600, 0x1658, 0x1680, 0x16d8,
6379 0x1800, 0x1820, 0x1840, 0x1854,
6380 0x1880, 0x1894, 0x1900, 0x1984,
6381 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6382 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6383 0x2000, 0x2030, 0x23c0, 0x2400,
6384 0x2800, 0x2820, 0x2830, 0x2850,
6385 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6386 0x3c00, 0x3c94, 0x4000, 0x4010,
6387 0x4080, 0x4090, 0x43c0, 0x4458,
6388 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6389 0x4fc0, 0x5010, 0x53c0, 0x5444,
6390 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6391 0x5fc0, 0x6000, 0x6400, 0x6428,
6392 0x6800, 0x6848, 0x684c, 0x6860,
6393 0x6888, 0x6910, 0x8000 };
6397 memset(p
, 0, BNX2_REGDUMP_LEN
);
6399 if (!netif_running(bp
->dev
))
6403 offset
= reg_boundaries
[0];
6405 while (offset
< BNX2_REGDUMP_LEN
) {
6406 *p
++ = REG_RD(bp
, offset
);
6408 if (offset
== reg_boundaries
[i
+ 1]) {
6409 offset
= reg_boundaries
[i
+ 2];
6410 p
= (u32
*) (orig_p
+ offset
);
6417 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6419 struct bnx2
*bp
= netdev_priv(dev
);
6421 if (bp
->flags
& BNX2_FLAG_NO_WOL
) {
6426 wol
->supported
= WAKE_MAGIC
;
6428 wol
->wolopts
= WAKE_MAGIC
;
6432 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
6436 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6438 struct bnx2
*bp
= netdev_priv(dev
);
6440 if (wol
->wolopts
& ~WAKE_MAGIC
)
6443 if (wol
->wolopts
& WAKE_MAGIC
) {
6444 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
6456 bnx2_nway_reset(struct net_device
*dev
)
6458 struct bnx2
*bp
= netdev_priv(dev
);
6461 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
6465 spin_lock_bh(&bp
->phy_lock
);
6467 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6470 rc
= bnx2_setup_remote_phy(bp
, bp
->phy_port
);
6471 spin_unlock_bh(&bp
->phy_lock
);
6475 /* Force a link down visible on the other side */
6476 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6477 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
6478 spin_unlock_bh(&bp
->phy_lock
);
6482 spin_lock_bh(&bp
->phy_lock
);
6484 bp
->current_interval
= SERDES_AN_TIMEOUT
;
6485 bp
->serdes_an_pending
= 1;
6486 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6489 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6490 bmcr
&= ~BMCR_LOOPBACK
;
6491 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
6493 spin_unlock_bh(&bp
->phy_lock
);
6499 bnx2_get_eeprom_len(struct net_device
*dev
)
6501 struct bnx2
*bp
= netdev_priv(dev
);
6503 if (bp
->flash_info
== NULL
)
6506 return (int) bp
->flash_size
;
6510 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
6513 struct bnx2
*bp
= netdev_priv(dev
);
6516 /* parameters already validated in ethtool_get_eeprom */
6518 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
6524 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
6527 struct bnx2
*bp
= netdev_priv(dev
);
6530 /* parameters already validated in ethtool_set_eeprom */
6532 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
6538 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
6540 struct bnx2
*bp
= netdev_priv(dev
);
6542 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
6544 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
6545 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
6546 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
6547 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
6549 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
6550 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
6551 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
6552 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
6554 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
6560 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
6562 struct bnx2
*bp
= netdev_priv(dev
);
6564 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
6565 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
6567 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
6568 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
6570 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
6571 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
6573 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
6574 if (bp
->rx_quick_cons_trip_int
> 0xff)
6575 bp
->rx_quick_cons_trip_int
= 0xff;
6577 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
6578 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
6580 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
6581 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
6583 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
6584 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
6586 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
6587 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
6590 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
6591 if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
6592 if (bp
->stats_ticks
!= 0 && bp
->stats_ticks
!= USEC_PER_SEC
)
6593 bp
->stats_ticks
= USEC_PER_SEC
;
6595 if (bp
->stats_ticks
> BNX2_HC_STATS_TICKS_HC_STAT_TICKS
)
6596 bp
->stats_ticks
= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
6597 bp
->stats_ticks
&= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
6599 if (netif_running(bp
->dev
)) {
6600 bnx2_netif_stop(bp
);
6601 bnx2_init_nic(bp
, 0);
6602 bnx2_netif_start(bp
);
6609 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
6611 struct bnx2
*bp
= netdev_priv(dev
);
6613 ering
->rx_max_pending
= MAX_TOTAL_RX_DESC_CNT
;
6614 ering
->rx_mini_max_pending
= 0;
6615 ering
->rx_jumbo_max_pending
= MAX_TOTAL_RX_PG_DESC_CNT
;
6617 ering
->rx_pending
= bp
->rx_ring_size
;
6618 ering
->rx_mini_pending
= 0;
6619 ering
->rx_jumbo_pending
= bp
->rx_pg_ring_size
;
6621 ering
->tx_max_pending
= MAX_TX_DESC_CNT
;
6622 ering
->tx_pending
= bp
->tx_ring_size
;
6626 bnx2_change_ring_size(struct bnx2
*bp
, u32 rx
, u32 tx
)
6628 if (netif_running(bp
->dev
)) {
6629 bnx2_netif_stop(bp
);
6630 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
6635 bnx2_set_rx_ring_size(bp
, rx
);
6636 bp
->tx_ring_size
= tx
;
6638 if (netif_running(bp
->dev
)) {
6641 rc
= bnx2_alloc_mem(bp
);
6644 bnx2_init_nic(bp
, 0);
6645 bnx2_netif_start(bp
);
6651 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
6653 struct bnx2
*bp
= netdev_priv(dev
);
6656 if ((ering
->rx_pending
> MAX_TOTAL_RX_DESC_CNT
) ||
6657 (ering
->tx_pending
> MAX_TX_DESC_CNT
) ||
6658 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
6662 rc
= bnx2_change_ring_size(bp
, ering
->rx_pending
, ering
->tx_pending
);
6667 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
6669 struct bnx2
*bp
= netdev_priv(dev
);
6671 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
6672 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
6673 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
6677 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
6679 struct bnx2
*bp
= netdev_priv(dev
);
6681 bp
->req_flow_ctrl
= 0;
6682 if (epause
->rx_pause
)
6683 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
6684 if (epause
->tx_pause
)
6685 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
6687 if (epause
->autoneg
) {
6688 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
6691 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
6694 spin_lock_bh(&bp
->phy_lock
);
6696 bnx2_setup_phy(bp
, bp
->phy_port
);
6698 spin_unlock_bh(&bp
->phy_lock
);
6704 bnx2_get_rx_csum(struct net_device
*dev
)
6706 struct bnx2
*bp
= netdev_priv(dev
);
6712 bnx2_set_rx_csum(struct net_device
*dev
, u32 data
)
6714 struct bnx2
*bp
= netdev_priv(dev
);
6721 bnx2_set_tso(struct net_device
*dev
, u32 data
)
6723 struct bnx2
*bp
= netdev_priv(dev
);
6726 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
6727 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
6728 dev
->features
|= NETIF_F_TSO6
;
6730 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
|
6735 #define BNX2_NUM_STATS 46
6738 char string
[ETH_GSTRING_LEN
];
6739 } bnx2_stats_str_arr
[BNX2_NUM_STATS
] = {
6741 { "rx_error_bytes" },
6743 { "tx_error_bytes" },
6744 { "rx_ucast_packets" },
6745 { "rx_mcast_packets" },
6746 { "rx_bcast_packets" },
6747 { "tx_ucast_packets" },
6748 { "tx_mcast_packets" },
6749 { "tx_bcast_packets" },
6750 { "tx_mac_errors" },
6751 { "tx_carrier_errors" },
6752 { "rx_crc_errors" },
6753 { "rx_align_errors" },
6754 { "tx_single_collisions" },
6755 { "tx_multi_collisions" },
6757 { "tx_excess_collisions" },
6758 { "tx_late_collisions" },
6759 { "tx_total_collisions" },
6762 { "rx_undersize_packets" },
6763 { "rx_oversize_packets" },
6764 { "rx_64_byte_packets" },
6765 { "rx_65_to_127_byte_packets" },
6766 { "rx_128_to_255_byte_packets" },
6767 { "rx_256_to_511_byte_packets" },
6768 { "rx_512_to_1023_byte_packets" },
6769 { "rx_1024_to_1522_byte_packets" },
6770 { "rx_1523_to_9022_byte_packets" },
6771 { "tx_64_byte_packets" },
6772 { "tx_65_to_127_byte_packets" },
6773 { "tx_128_to_255_byte_packets" },
6774 { "tx_256_to_511_byte_packets" },
6775 { "tx_512_to_1023_byte_packets" },
6776 { "tx_1024_to_1522_byte_packets" },
6777 { "tx_1523_to_9022_byte_packets" },
6778 { "rx_xon_frames" },
6779 { "rx_xoff_frames" },
6780 { "tx_xon_frames" },
6781 { "tx_xoff_frames" },
6782 { "rx_mac_ctrl_frames" },
6783 { "rx_filtered_packets" },
6785 { "rx_fw_discards" },
6788 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
6790 static const unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
6791 STATS_OFFSET32(stat_IfHCInOctets_hi
),
6792 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
6793 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
6794 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
6795 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
6796 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
6797 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
6798 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
6799 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
6800 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
6801 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
6802 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
6803 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
6804 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
6805 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
6806 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
6807 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
6808 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
6809 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
6810 STATS_OFFSET32(stat_EtherStatsCollisions
),
6811 STATS_OFFSET32(stat_EtherStatsFragments
),
6812 STATS_OFFSET32(stat_EtherStatsJabbers
),
6813 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
6814 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
6815 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
6816 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
6817 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
6818 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
6819 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
6820 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
6821 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
6822 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
6823 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
6824 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
6825 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
6826 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
6827 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
6828 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
6829 STATS_OFFSET32(stat_XonPauseFramesReceived
),
6830 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
6831 STATS_OFFSET32(stat_OutXonSent
),
6832 STATS_OFFSET32(stat_OutXoffSent
),
6833 STATS_OFFSET32(stat_MacControlFramesReceived
),
6834 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
6835 STATS_OFFSET32(stat_IfInMBUFDiscards
),
6836 STATS_OFFSET32(stat_FwRxDrop
),
6839 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
6840 * skipped because of errata.
6842 static u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
6843 8,0,8,8,8,8,8,8,8,8,
6844 4,0,4,4,4,4,4,4,4,4,
6845 4,4,4,4,4,4,4,4,4,4,
6846 4,4,4,4,4,4,4,4,4,4,
6850 static u8 bnx2_5708_stats_len_arr
[BNX2_NUM_STATS
] = {
6851 8,0,8,8,8,8,8,8,8,8,
6852 4,4,4,4,4,4,4,4,4,4,
6853 4,4,4,4,4,4,4,4,4,4,
6854 4,4,4,4,4,4,4,4,4,4,
6858 #define BNX2_NUM_TESTS 6
6861 char string
[ETH_GSTRING_LEN
];
6862 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
6863 { "register_test (offline)" },
6864 { "memory_test (offline)" },
6865 { "loopback_test (offline)" },
6866 { "nvram_test (online)" },
6867 { "interrupt_test (online)" },
6868 { "link_test (online)" },
6872 bnx2_get_sset_count(struct net_device
*dev
, int sset
)
6876 return BNX2_NUM_TESTS
;
6878 return BNX2_NUM_STATS
;
6885 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
6887 struct bnx2
*bp
= netdev_priv(dev
);
6889 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
6890 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
6893 bnx2_netif_stop(bp
);
6894 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
6897 if (bnx2_test_registers(bp
) != 0) {
6899 etest
->flags
|= ETH_TEST_FL_FAILED
;
6901 if (bnx2_test_memory(bp
) != 0) {
6903 etest
->flags
|= ETH_TEST_FL_FAILED
;
6905 if ((buf
[2] = bnx2_test_loopback(bp
)) != 0)
6906 etest
->flags
|= ETH_TEST_FL_FAILED
;
6908 if (!netif_running(bp
->dev
)) {
6909 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
6912 bnx2_init_nic(bp
, 1);
6913 bnx2_netif_start(bp
);
6916 /* wait for link up */
6917 for (i
= 0; i
< 7; i
++) {
6920 msleep_interruptible(1000);
6924 if (bnx2_test_nvram(bp
) != 0) {
6926 etest
->flags
|= ETH_TEST_FL_FAILED
;
6928 if (bnx2_test_intr(bp
) != 0) {
6930 etest
->flags
|= ETH_TEST_FL_FAILED
;
6933 if (bnx2_test_link(bp
) != 0) {
6935 etest
->flags
|= ETH_TEST_FL_FAILED
;
6941 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
6943 switch (stringset
) {
6945 memcpy(buf
, bnx2_stats_str_arr
,
6946 sizeof(bnx2_stats_str_arr
));
6949 memcpy(buf
, bnx2_tests_str_arr
,
6950 sizeof(bnx2_tests_str_arr
));
6956 bnx2_get_ethtool_stats(struct net_device
*dev
,
6957 struct ethtool_stats
*stats
, u64
*buf
)
6959 struct bnx2
*bp
= netdev_priv(dev
);
6961 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
6962 u8
*stats_len_arr
= NULL
;
6964 if (hw_stats
== NULL
) {
6965 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
6969 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
6970 (CHIP_ID(bp
) == CHIP_ID_5706_A1
) ||
6971 (CHIP_ID(bp
) == CHIP_ID_5706_A2
) ||
6972 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
6973 stats_len_arr
= bnx2_5706_stats_len_arr
;
6975 stats_len_arr
= bnx2_5708_stats_len_arr
;
6977 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
6978 if (stats_len_arr
[i
] == 0) {
6979 /* skip this counter */
6983 if (stats_len_arr
[i
] == 4) {
6984 /* 4-byte counter */
6986 *(hw_stats
+ bnx2_stats_offset_arr
[i
]);
6989 /* 8-byte counter */
6990 buf
[i
] = (((u64
) *(hw_stats
+
6991 bnx2_stats_offset_arr
[i
])) << 32) +
6992 *(hw_stats
+ bnx2_stats_offset_arr
[i
] + 1);
6997 bnx2_phys_id(struct net_device
*dev
, u32 data
)
6999 struct bnx2
*bp
= netdev_priv(dev
);
7006 save
= REG_RD(bp
, BNX2_MISC_CFG
);
7007 REG_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
7009 for (i
= 0; i
< (data
* 2); i
++) {
7011 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
7014 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
7015 BNX2_EMAC_LED_1000MB_OVERRIDE
|
7016 BNX2_EMAC_LED_100MB_OVERRIDE
|
7017 BNX2_EMAC_LED_10MB_OVERRIDE
|
7018 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
7019 BNX2_EMAC_LED_TRAFFIC
);
7021 msleep_interruptible(500);
7022 if (signal_pending(current
))
7025 REG_WR(bp
, BNX2_EMAC_LED
, 0);
7026 REG_WR(bp
, BNX2_MISC_CFG
, save
);
7031 bnx2_set_tx_csum(struct net_device
*dev
, u32 data
)
7033 struct bnx2
*bp
= netdev_priv(dev
);
7035 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7036 return (ethtool_op_set_tx_ipv6_csum(dev
, data
));
7038 return (ethtool_op_set_tx_csum(dev
, data
));
7041 static const struct ethtool_ops bnx2_ethtool_ops
= {
7042 .get_settings
= bnx2_get_settings
,
7043 .set_settings
= bnx2_set_settings
,
7044 .get_drvinfo
= bnx2_get_drvinfo
,
7045 .get_regs_len
= bnx2_get_regs_len
,
7046 .get_regs
= bnx2_get_regs
,
7047 .get_wol
= bnx2_get_wol
,
7048 .set_wol
= bnx2_set_wol
,
7049 .nway_reset
= bnx2_nway_reset
,
7050 .get_link
= ethtool_op_get_link
,
7051 .get_eeprom_len
= bnx2_get_eeprom_len
,
7052 .get_eeprom
= bnx2_get_eeprom
,
7053 .set_eeprom
= bnx2_set_eeprom
,
7054 .get_coalesce
= bnx2_get_coalesce
,
7055 .set_coalesce
= bnx2_set_coalesce
,
7056 .get_ringparam
= bnx2_get_ringparam
,
7057 .set_ringparam
= bnx2_set_ringparam
,
7058 .get_pauseparam
= bnx2_get_pauseparam
,
7059 .set_pauseparam
= bnx2_set_pauseparam
,
7060 .get_rx_csum
= bnx2_get_rx_csum
,
7061 .set_rx_csum
= bnx2_set_rx_csum
,
7062 .set_tx_csum
= bnx2_set_tx_csum
,
7063 .set_sg
= ethtool_op_set_sg
,
7064 .set_tso
= bnx2_set_tso
,
7065 .self_test
= bnx2_self_test
,
7066 .get_strings
= bnx2_get_strings
,
7067 .phys_id
= bnx2_phys_id
,
7068 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
7069 .get_sset_count
= bnx2_get_sset_count
,
7072 /* Called with rtnl_lock */
7074 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
7076 struct mii_ioctl_data
*data
= if_mii(ifr
);
7077 struct bnx2
*bp
= netdev_priv(dev
);
7082 data
->phy_id
= bp
->phy_addr
;
7088 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7091 if (!netif_running(dev
))
7094 spin_lock_bh(&bp
->phy_lock
);
7095 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
7096 spin_unlock_bh(&bp
->phy_lock
);
7098 data
->val_out
= mii_regval
;
7104 if (!capable(CAP_NET_ADMIN
))
7107 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7110 if (!netif_running(dev
))
7113 spin_lock_bh(&bp
->phy_lock
);
7114 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
7115 spin_unlock_bh(&bp
->phy_lock
);
7126 /* Called with rtnl_lock */
7128 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
7130 struct sockaddr
*addr
= p
;
7131 struct bnx2
*bp
= netdev_priv(dev
);
7133 if (!is_valid_ether_addr(addr
->sa_data
))
7136 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
7137 if (netif_running(dev
))
7138 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
7143 /* Called with rtnl_lock */
7145 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
7147 struct bnx2
*bp
= netdev_priv(dev
);
7149 if (((new_mtu
+ ETH_HLEN
) > MAX_ETHERNET_JUMBO_PACKET_SIZE
) ||
7150 ((new_mtu
+ ETH_HLEN
) < MIN_ETHERNET_PACKET_SIZE
))
7154 return (bnx2_change_ring_size(bp
, bp
->rx_ring_size
, bp
->tx_ring_size
));
7157 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7159 poll_bnx2(struct net_device
*dev
)
7161 struct bnx2
*bp
= netdev_priv(dev
);
7163 disable_irq(bp
->pdev
->irq
);
7164 bnx2_interrupt(bp
->pdev
->irq
, dev
);
7165 enable_irq(bp
->pdev
->irq
);
7169 static void __devinit
7170 bnx2_get_5709_media(struct bnx2
*bp
)
7172 u32 val
= REG_RD(bp
, BNX2_MISC_DUAL_MEDIA_CTRL
);
7173 u32 bond_id
= val
& BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID
;
7176 if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C
)
7178 else if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S
) {
7179 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7183 if (val
& BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE
)
7184 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL
) >> 21;
7186 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP
) >> 8;
7188 if (PCI_FUNC(bp
->pdev
->devfn
) == 0) {
7193 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7201 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7207 static void __devinit
7208 bnx2_get_pci_speed(struct bnx2
*bp
)
7212 reg
= REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
7213 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
7216 bp
->flags
|= BNX2_FLAG_PCIX
;
7218 clkreg
= REG_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
7220 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
7222 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
7223 bp
->bus_speed_mhz
= 133;
7226 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
7227 bp
->bus_speed_mhz
= 100;
7230 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
7231 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
7232 bp
->bus_speed_mhz
= 66;
7235 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
7236 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
7237 bp
->bus_speed_mhz
= 50;
7240 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
7241 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
7242 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
7243 bp
->bus_speed_mhz
= 33;
7248 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
7249 bp
->bus_speed_mhz
= 66;
7251 bp
->bus_speed_mhz
= 33;
7254 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
7255 bp
->flags
|= BNX2_FLAG_PCI_32BIT
;
7259 static int __devinit
7260 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
7263 unsigned long mem_len
;
7266 u64 dma_mask
, persist_dma_mask
;
7268 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7269 bp
= netdev_priv(dev
);
7274 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7275 rc
= pci_enable_device(pdev
);
7277 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting.\n");
7281 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
7283 "Cannot find PCI device base address, aborting.\n");
7285 goto err_out_disable
;
7288 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
7290 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting.\n");
7291 goto err_out_disable
;
7294 pci_set_master(pdev
);
7295 pci_save_state(pdev
);
7297 bp
->pm_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
7298 if (bp
->pm_cap
== 0) {
7300 "Cannot find power management capability, aborting.\n");
7302 goto err_out_release
;
7308 spin_lock_init(&bp
->phy_lock
);
7309 spin_lock_init(&bp
->indirect_lock
);
7310 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
);
7312 dev
->base_addr
= dev
->mem_start
= pci_resource_start(pdev
, 0);
7313 mem_len
= MB_GET_CID_ADDR(TX_TSS_CID
+ TX_MAX_TSS_RINGS
);
7314 dev
->mem_end
= dev
->mem_start
+ mem_len
;
7315 dev
->irq
= pdev
->irq
;
7317 bp
->regview
= ioremap_nocache(dev
->base_addr
, mem_len
);
7320 dev_err(&pdev
->dev
, "Cannot map register space, aborting.\n");
7322 goto err_out_release
;
7325 /* Configure byte swap and enable write to the reg_window registers.
7326 * Rely on CPU to do target byte swapping on big endian systems
7327 * The chip's target access swapping will not swap all accesses
7329 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
,
7330 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
7331 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
7333 bnx2_set_power_state(bp
, PCI_D0
);
7335 bp
->chip_id
= REG_RD(bp
, BNX2_MISC_ID
);
7337 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
7338 if (pci_find_capability(pdev
, PCI_CAP_ID_EXP
) == 0) {
7340 "Cannot find PCIE capability, aborting.\n");
7344 bp
->flags
|= BNX2_FLAG_PCIE
;
7345 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
7346 bp
->flags
|= BNX2_FLAG_JUMBO_BROKEN
;
7348 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
7349 if (bp
->pcix_cap
== 0) {
7351 "Cannot find PCIX capability, aborting.\n");
7357 if (CHIP_NUM(bp
) == CHIP_NUM_5709
&& CHIP_REV(bp
) != CHIP_REV_Ax
) {
7358 if (pci_find_capability(pdev
, PCI_CAP_ID_MSIX
))
7359 bp
->flags
|= BNX2_FLAG_MSIX_CAP
;
7362 if (CHIP_ID(bp
) != CHIP_ID_5706_A0
&& CHIP_ID(bp
) != CHIP_ID_5706_A1
) {
7363 if (pci_find_capability(pdev
, PCI_CAP_ID_MSI
))
7364 bp
->flags
|= BNX2_FLAG_MSI_CAP
;
7367 /* 5708 cannot support DMA addresses > 40-bit. */
7368 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
7369 persist_dma_mask
= dma_mask
= DMA_40BIT_MASK
;
7371 persist_dma_mask
= dma_mask
= DMA_64BIT_MASK
;
7373 /* Configure DMA attributes. */
7374 if (pci_set_dma_mask(pdev
, dma_mask
) == 0) {
7375 dev
->features
|= NETIF_F_HIGHDMA
;
7376 rc
= pci_set_consistent_dma_mask(pdev
, persist_dma_mask
);
7379 "pci_set_consistent_dma_mask failed, aborting.\n");
7382 } else if ((rc
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) != 0) {
7383 dev_err(&pdev
->dev
, "System does not support DMA, aborting.\n");
7387 if (!(bp
->flags
& BNX2_FLAG_PCIE
))
7388 bnx2_get_pci_speed(bp
);
7390 /* 5706A0 may falsely detect SERR and PERR. */
7391 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
7392 reg
= REG_RD(bp
, PCI_COMMAND
);
7393 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
7394 REG_WR(bp
, PCI_COMMAND
, reg
);
7396 else if ((CHIP_ID(bp
) == CHIP_ID_5706_A1
) &&
7397 !(bp
->flags
& BNX2_FLAG_PCIX
)) {
7400 "5706 A1 can only be used in a PCIX bus, aborting.\n");
7404 bnx2_init_nvram(bp
);
7406 reg
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_SIGNATURE
);
7408 if ((reg
& BNX2_SHM_HDR_SIGNATURE_SIG_MASK
) ==
7409 BNX2_SHM_HDR_SIGNATURE_SIG
) {
7410 u32 off
= PCI_FUNC(pdev
->devfn
) << 2;
7412 bp
->shmem_base
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_ADDR_0
+ off
);
7414 bp
->shmem_base
= HOST_VIEW_SHMEM_BASE
;
7416 /* Get the permanent MAC address. First we need to make sure the
7417 * firmware is actually running.
7419 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
);
7421 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
7422 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
7423 dev_err(&pdev
->dev
, "Firmware not running, aborting.\n");
7428 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_BC_REV
);
7429 for (i
= 0, j
= 0; i
< 3; i
++) {
7432 num
= (u8
) (reg
>> (24 - (i
* 8)));
7433 for (k
= 100, skip0
= 1; k
>= 1; num
%= k
, k
/= 10) {
7434 if (num
>= k
|| !skip0
|| k
== 1) {
7435 bp
->fw_version
[j
++] = (num
/ k
) + '0';
7440 bp
->fw_version
[j
++] = '.';
7442 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_FEATURE
);
7443 if (reg
& BNX2_PORT_FEATURE_WOL_ENABLED
)
7446 if (reg
& BNX2_PORT_FEATURE_ASF_ENABLED
) {
7447 bp
->flags
|= BNX2_FLAG_ASF_ENABLE
;
7449 for (i
= 0; i
< 30; i
++) {
7450 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
7451 if (reg
& BNX2_CONDITION_MFW_RUN_MASK
)
7456 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
7457 reg
&= BNX2_CONDITION_MFW_RUN_MASK
;
7458 if (reg
!= BNX2_CONDITION_MFW_RUN_UNKNOWN
&&
7459 reg
!= BNX2_CONDITION_MFW_RUN_NONE
) {
7460 u32 addr
= bnx2_shmem_rd(bp
, BNX2_MFW_VER_PTR
);
7462 bp
->fw_version
[j
++] = ' ';
7463 for (i
= 0; i
< 3; i
++) {
7464 reg
= bnx2_reg_rd_ind(bp
, addr
+ i
* 4);
7466 memcpy(&bp
->fw_version
[j
], ®
, 4);
7471 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_UPPER
);
7472 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
7473 bp
->mac_addr
[1] = (u8
) reg
;
7475 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_LOWER
);
7476 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
7477 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
7478 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
7479 bp
->mac_addr
[5] = (u8
) reg
;
7481 bp
->tx_ring_size
= MAX_TX_DESC_CNT
;
7482 bnx2_set_rx_ring_size(bp
, 255);
7486 bp
->tx_quick_cons_trip_int
= 20;
7487 bp
->tx_quick_cons_trip
= 20;
7488 bp
->tx_ticks_int
= 80;
7491 bp
->rx_quick_cons_trip_int
= 6;
7492 bp
->rx_quick_cons_trip
= 6;
7493 bp
->rx_ticks_int
= 18;
7496 bp
->stats_ticks
= USEC_PER_SEC
& BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7498 bp
->timer_interval
= HZ
;
7499 bp
->current_interval
= HZ
;
7503 /* Disable WOL support if we are running on a SERDES chip. */
7504 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7505 bnx2_get_5709_media(bp
);
7506 else if (CHIP_BOND_ID(bp
) & CHIP_BOND_ID_SERDES_BIT
)
7507 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7509 bp
->phy_port
= PORT_TP
;
7510 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
7511 bp
->phy_port
= PORT_FIBRE
;
7512 reg
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
7513 if (!(reg
& BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX
)) {
7514 bp
->flags
|= BNX2_FLAG_NO_WOL
;
7517 if (CHIP_NUM(bp
) == CHIP_NUM_5706
) {
7518 /* Don't do parallel detect on this board because of
7519 * some board problems. The link will not go down
7520 * if we do parallel detect.
7522 if (pdev
->subsystem_vendor
== PCI_VENDOR_ID_HP
&&
7523 pdev
->subsystem_device
== 0x310c)
7524 bp
->phy_flags
|= BNX2_PHY_FLAG_NO_PARALLEL
;
7527 if (reg
& BNX2_SHARED_HW_CFG_PHY_2_5G
)
7528 bp
->phy_flags
|= BNX2_PHY_FLAG_2_5G_CAPABLE
;
7530 } else if (CHIP_NUM(bp
) == CHIP_NUM_5706
||
7531 CHIP_NUM(bp
) == CHIP_NUM_5708
)
7532 bp
->phy_flags
|= BNX2_PHY_FLAG_CRC_FIX
;
7533 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
&&
7534 (CHIP_REV(bp
) == CHIP_REV_Ax
||
7535 CHIP_REV(bp
) == CHIP_REV_Bx
))
7536 bp
->phy_flags
|= BNX2_PHY_FLAG_DIS_EARLY_DAC
;
7538 bnx2_init_fw_cap(bp
);
7540 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
7541 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
7542 (CHIP_ID(bp
) == CHIP_ID_5708_B1
)) {
7543 bp
->flags
|= BNX2_FLAG_NO_WOL
;
7547 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
7548 bp
->tx_quick_cons_trip_int
=
7549 bp
->tx_quick_cons_trip
;
7550 bp
->tx_ticks_int
= bp
->tx_ticks
;
7551 bp
->rx_quick_cons_trip_int
=
7552 bp
->rx_quick_cons_trip
;
7553 bp
->rx_ticks_int
= bp
->rx_ticks
;
7554 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
7555 bp
->com_ticks_int
= bp
->com_ticks
;
7556 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
7559 /* Disable MSI on 5706 if AMD 8132 bridge is found.
7561 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
7562 * with byte enables disabled on the unused 32-bit word. This is legal
7563 * but causes problems on the AMD 8132 which will eventually stop
7564 * responding after a while.
7566 * AMD believes this incompatibility is unique to the 5706, and
7567 * prefers to locally disable MSI rather than globally disabling it.
7569 if (CHIP_NUM(bp
) == CHIP_NUM_5706
&& disable_msi
== 0) {
7570 struct pci_dev
*amd_8132
= NULL
;
7572 while ((amd_8132
= pci_get_device(PCI_VENDOR_ID_AMD
,
7573 PCI_DEVICE_ID_AMD_8132_BRIDGE
,
7576 if (amd_8132
->revision
>= 0x10 &&
7577 amd_8132
->revision
<= 0x13) {
7579 pci_dev_put(amd_8132
);
7585 bnx2_set_default_link(bp
);
7586 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
7588 init_timer(&bp
->timer
);
7589 bp
->timer
.expires
= RUN_AT(bp
->timer_interval
);
7590 bp
->timer
.data
= (unsigned long) bp
;
7591 bp
->timer
.function
= bnx2_timer
;
7597 iounmap(bp
->regview
);
7602 pci_release_regions(pdev
);
7605 pci_disable_device(pdev
);
7606 pci_set_drvdata(pdev
, NULL
);
7612 static char * __devinit
7613 bnx2_bus_string(struct bnx2
*bp
, char *str
)
7617 if (bp
->flags
& BNX2_FLAG_PCIE
) {
7618 s
+= sprintf(s
, "PCI Express");
7620 s
+= sprintf(s
, "PCI");
7621 if (bp
->flags
& BNX2_FLAG_PCIX
)
7622 s
+= sprintf(s
, "-X");
7623 if (bp
->flags
& BNX2_FLAG_PCI_32BIT
)
7624 s
+= sprintf(s
, " 32-bit");
7626 s
+= sprintf(s
, " 64-bit");
7627 s
+= sprintf(s
, " %dMHz", bp
->bus_speed_mhz
);
7632 static void __devinit
7633 bnx2_init_napi(struct bnx2
*bp
)
7637 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
7638 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
7639 int (*poll
)(struct napi_struct
*, int);
7644 poll
= bnx2_poll_msix
;
7646 netif_napi_add(bp
->dev
, &bp
->bnx2_napi
[i
].napi
, poll
, 64);
7651 static int __devinit
7652 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
7654 static int version_printed
= 0;
7655 struct net_device
*dev
= NULL
;
7659 DECLARE_MAC_BUF(mac
);
7661 if (version_printed
++ == 0)
7662 printk(KERN_INFO
"%s", version
);
7664 /* dev zeroed in init_etherdev */
7665 dev
= alloc_etherdev_mq(sizeof(*bp
), TX_MAX_RINGS
);
7670 rc
= bnx2_init_board(pdev
, dev
);
7676 dev
->open
= bnx2_open
;
7677 dev
->hard_start_xmit
= bnx2_start_xmit
;
7678 dev
->stop
= bnx2_close
;
7679 dev
->get_stats
= bnx2_get_stats
;
7680 dev
->set_rx_mode
= bnx2_set_rx_mode
;
7681 dev
->do_ioctl
= bnx2_ioctl
;
7682 dev
->set_mac_address
= bnx2_change_mac_addr
;
7683 dev
->change_mtu
= bnx2_change_mtu
;
7684 dev
->tx_timeout
= bnx2_tx_timeout
;
7685 dev
->watchdog_timeo
= TX_TIMEOUT
;
7687 dev
->vlan_rx_register
= bnx2_vlan_rx_register
;
7689 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
7691 bp
= netdev_priv(dev
);
7694 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7695 dev
->poll_controller
= poll_bnx2
;
7698 pci_set_drvdata(pdev
, dev
);
7700 memcpy(dev
->dev_addr
, bp
->mac_addr
, 6);
7701 memcpy(dev
->perm_addr
, bp
->mac_addr
, 6);
7702 bp
->name
= board_info
[ent
->driver_data
].name
;
7704 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
;
7705 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7706 dev
->features
|= NETIF_F_IPV6_CSUM
;
7709 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
7711 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
7712 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7713 dev
->features
|= NETIF_F_TSO6
;
7715 if ((rc
= register_netdev(dev
))) {
7716 dev_err(&pdev
->dev
, "Cannot register net device\n");
7718 iounmap(bp
->regview
);
7719 pci_release_regions(pdev
);
7720 pci_disable_device(pdev
);
7721 pci_set_drvdata(pdev
, NULL
);
7726 printk(KERN_INFO
"%s: %s (%c%d) %s found at mem %lx, "
7727 "IRQ %d, node addr %s\n",
7730 ((CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
7731 ((CHIP_ID(bp
) & 0x0ff0) >> 4),
7732 bnx2_bus_string(bp
, str
),
7734 bp
->pdev
->irq
, print_mac(mac
, dev
->dev_addr
));
7739 static void __devexit
7740 bnx2_remove_one(struct pci_dev
*pdev
)
7742 struct net_device
*dev
= pci_get_drvdata(pdev
);
7743 struct bnx2
*bp
= netdev_priv(dev
);
7745 flush_scheduled_work();
7747 unregister_netdev(dev
);
7750 iounmap(bp
->regview
);
7753 pci_release_regions(pdev
);
7754 pci_disable_device(pdev
);
7755 pci_set_drvdata(pdev
, NULL
);
7759 bnx2_suspend(struct pci_dev
*pdev
, pm_message_t state
)
7761 struct net_device
*dev
= pci_get_drvdata(pdev
);
7762 struct bnx2
*bp
= netdev_priv(dev
);
7765 /* PCI register 4 needs to be saved whether netif_running() or not.
7766 * MSI address and data need to be saved if using MSI and
7769 pci_save_state(pdev
);
7770 if (!netif_running(dev
))
7773 flush_scheduled_work();
7774 bnx2_netif_stop(bp
);
7775 netif_device_detach(dev
);
7776 del_timer_sync(&bp
->timer
);
7777 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
7778 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
7780 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
7782 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
7783 bnx2_reset_chip(bp
, reset_code
);
7785 bnx2_set_power_state(bp
, pci_choose_state(pdev
, state
));
7790 bnx2_resume(struct pci_dev
*pdev
)
7792 struct net_device
*dev
= pci_get_drvdata(pdev
);
7793 struct bnx2
*bp
= netdev_priv(dev
);
7795 pci_restore_state(pdev
);
7796 if (!netif_running(dev
))
7799 bnx2_set_power_state(bp
, PCI_D0
);
7800 netif_device_attach(dev
);
7801 bnx2_init_nic(bp
, 1);
7802 bnx2_netif_start(bp
);
7807 * bnx2_io_error_detected - called when PCI error is detected
7808 * @pdev: Pointer to PCI device
7809 * @state: The current pci connection state
7811 * This function is called after a PCI bus error affecting
7812 * this device has been detected.
7814 static pci_ers_result_t
bnx2_io_error_detected(struct pci_dev
*pdev
,
7815 pci_channel_state_t state
)
7817 struct net_device
*dev
= pci_get_drvdata(pdev
);
7818 struct bnx2
*bp
= netdev_priv(dev
);
7821 netif_device_detach(dev
);
7823 if (netif_running(dev
)) {
7824 bnx2_netif_stop(bp
);
7825 del_timer_sync(&bp
->timer
);
7826 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
7829 pci_disable_device(pdev
);
7832 /* Request a slot slot reset. */
7833 return PCI_ERS_RESULT_NEED_RESET
;
7837 * bnx2_io_slot_reset - called after the pci bus has been reset.
7838 * @pdev: Pointer to PCI device
7840 * Restart the card from scratch, as if from a cold-boot.
7842 static pci_ers_result_t
bnx2_io_slot_reset(struct pci_dev
*pdev
)
7844 struct net_device
*dev
= pci_get_drvdata(pdev
);
7845 struct bnx2
*bp
= netdev_priv(dev
);
7848 if (pci_enable_device(pdev
)) {
7850 "Cannot re-enable PCI device after reset.\n");
7852 return PCI_ERS_RESULT_DISCONNECT
;
7854 pci_set_master(pdev
);
7855 pci_restore_state(pdev
);
7857 if (netif_running(dev
)) {
7858 bnx2_set_power_state(bp
, PCI_D0
);
7859 bnx2_init_nic(bp
, 1);
7863 return PCI_ERS_RESULT_RECOVERED
;
7867 * bnx2_io_resume - called when traffic can start flowing again.
7868 * @pdev: Pointer to PCI device
7870 * This callback is called when the error recovery driver tells us that
7871 * its OK to resume normal operation.
7873 static void bnx2_io_resume(struct pci_dev
*pdev
)
7875 struct net_device
*dev
= pci_get_drvdata(pdev
);
7876 struct bnx2
*bp
= netdev_priv(dev
);
7879 if (netif_running(dev
))
7880 bnx2_netif_start(bp
);
7882 netif_device_attach(dev
);
7886 static struct pci_error_handlers bnx2_err_handler
= {
7887 .error_detected
= bnx2_io_error_detected
,
7888 .slot_reset
= bnx2_io_slot_reset
,
7889 .resume
= bnx2_io_resume
,
7892 static struct pci_driver bnx2_pci_driver
= {
7893 .name
= DRV_MODULE_NAME
,
7894 .id_table
= bnx2_pci_tbl
,
7895 .probe
= bnx2_init_one
,
7896 .remove
= __devexit_p(bnx2_remove_one
),
7897 .suspend
= bnx2_suspend
,
7898 .resume
= bnx2_resume
,
7899 .err_handler
= &bnx2_err_handler
,
7902 static int __init
bnx2_init(void)
7904 return pci_register_driver(&bnx2_pci_driver
);
7907 static void __exit
bnx2_cleanup(void)
7909 pci_unregister_driver(&bnx2_pci_driver
);
7912 module_init(bnx2_init
);
7913 module_exit(bnx2_cleanup
);