1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82571EB Gigabit Ethernet Controller
31 * 82571EB Gigabit Ethernet Controller (Fiber)
32 * 82571EB Dual Port Gigabit Mezzanine Adapter
33 * 82571EB Quad Port Gigabit Mezzanine Adapter
34 * 82571PT Gigabit PT Quad Port Server ExpressModule
35 * 82572EI Gigabit Ethernet Controller (Copper)
36 * 82572EI Gigabit Ethernet Controller (Fiber)
37 * 82572EI Gigabit Ethernet Controller
38 * 82573V Gigabit Ethernet Controller (Copper)
39 * 82573E Gigabit Ethernet Controller (Copper)
40 * 82573L Gigabit Ethernet Controller
43 #include <linux/netdevice.h>
44 #include <linux/delay.h>
45 #include <linux/pci.h>
49 #define ID_LED_RESERVED_F746 0xF746
50 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
51 (ID_LED_OFF1_ON2 << 8) | \
52 (ID_LED_DEF1_DEF2 << 4) | \
55 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
57 static s32
e1000_get_phy_id_82571(struct e1000_hw
*hw
);
58 static s32
e1000_setup_copper_link_82571(struct e1000_hw
*hw
);
59 static s32
e1000_setup_fiber_serdes_link_82571(struct e1000_hw
*hw
);
60 static s32
e1000_write_nvm_eewr_82571(struct e1000_hw
*hw
, u16 offset
,
61 u16 words
, u16
*data
);
62 static s32
e1000_fix_nvm_checksum_82571(struct e1000_hw
*hw
);
63 static void e1000_initialize_hw_bits_82571(struct e1000_hw
*hw
);
64 static s32
e1000_setup_link_82571(struct e1000_hw
*hw
);
65 static void e1000_clear_hw_cntrs_82571(struct e1000_hw
*hw
);
68 * e1000_init_phy_params_82571 - Init PHY func ptrs.
69 * @hw: pointer to the HW structure
71 * This is a function pointer entry point called by the api module.
73 static s32
e1000_init_phy_params_82571(struct e1000_hw
*hw
)
75 struct e1000_phy_info
*phy
= &hw
->phy
;
78 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
79 phy
->type
= e1000_phy_none
;
84 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
85 phy
->reset_delay_us
= 100;
87 switch (hw
->mac
.type
) {
90 phy
->type
= e1000_phy_igp_2
;
93 phy
->type
= e1000_phy_m88
;
96 return -E1000_ERR_PHY
;
100 /* This can only be done after all function pointers are setup. */
101 ret_val
= e1000_get_phy_id_82571(hw
);
104 switch (hw
->mac
.type
) {
107 if (phy
->id
!= IGP01E1000_I_PHY_ID
)
108 return -E1000_ERR_PHY
;
111 if (phy
->id
!= M88E1111_I_PHY_ID
)
112 return -E1000_ERR_PHY
;
115 return -E1000_ERR_PHY
;
123 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
124 * @hw: pointer to the HW structure
126 * This is a function pointer entry point called by the api module.
128 static s32
e1000_init_nvm_params_82571(struct e1000_hw
*hw
)
130 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
131 u32 eecd
= er32(EECD
);
134 nvm
->opcode_bits
= 8;
136 switch (nvm
->override
) {
137 case e1000_nvm_override_spi_large
:
139 nvm
->address_bits
= 16;
141 case e1000_nvm_override_spi_small
:
143 nvm
->address_bits
= 8;
146 nvm
->page_size
= eecd
& E1000_EECD_ADDR_BITS
? 32 : 8;
147 nvm
->address_bits
= eecd
& E1000_EECD_ADDR_BITS
? 16 : 8;
151 switch (hw
->mac
.type
) {
153 if (((eecd
>> 15) & 0x3) == 0x3) {
154 nvm
->type
= e1000_nvm_flash_hw
;
155 nvm
->word_size
= 2048;
157 * Autonomous Flash update bit must be cleared due
158 * to Flash update issue.
160 eecd
&= ~E1000_EECD_AUPDEN
;
166 nvm
->type
= e1000_nvm_eeprom_spi
;
167 size
= (u16
)((eecd
& E1000_EECD_SIZE_EX_MASK
) >>
168 E1000_EECD_SIZE_EX_SHIFT
);
170 * Added to a constant, "size" becomes the left-shift value
171 * for setting word_size.
173 size
+= NVM_WORD_SIZE_BASE_SHIFT
;
175 /* EEPROM access above 16k is unsupported */
178 nvm
->word_size
= 1 << size
;
186 * e1000_init_mac_params_82571 - Init MAC func ptrs.
187 * @hw: pointer to the HW structure
189 * This is a function pointer entry point called by the api module.
191 static s32
e1000_init_mac_params_82571(struct e1000_adapter
*adapter
)
193 struct e1000_hw
*hw
= &adapter
->hw
;
194 struct e1000_mac_info
*mac
= &hw
->mac
;
195 struct e1000_mac_operations
*func
= &mac
->ops
;
198 switch (adapter
->pdev
->device
) {
199 case E1000_DEV_ID_82571EB_FIBER
:
200 case E1000_DEV_ID_82572EI_FIBER
:
201 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
202 hw
->phy
.media_type
= e1000_media_type_fiber
;
204 case E1000_DEV_ID_82571EB_SERDES
:
205 case E1000_DEV_ID_82572EI_SERDES
:
206 case E1000_DEV_ID_82571EB_SERDES_DUAL
:
207 case E1000_DEV_ID_82571EB_SERDES_QUAD
:
208 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
211 hw
->phy
.media_type
= e1000_media_type_copper
;
215 /* Set mta register count */
216 mac
->mta_reg_count
= 128;
217 /* Set rar entry count */
218 mac
->rar_entry_count
= E1000_RAR_ENTRIES
;
219 /* Set if manageability features are enabled. */
220 mac
->arc_subsystem_valid
= (er32(FWSM
) & E1000_FWSM_MODE_MASK
) ? 1 : 0;
223 switch (hw
->phy
.media_type
) {
224 case e1000_media_type_copper
:
225 func
->setup_physical_interface
= e1000_setup_copper_link_82571
;
226 func
->check_for_link
= e1000e_check_for_copper_link
;
227 func
->get_link_up_info
= e1000e_get_speed_and_duplex_copper
;
229 case e1000_media_type_fiber
:
230 func
->setup_physical_interface
=
231 e1000_setup_fiber_serdes_link_82571
;
232 func
->check_for_link
= e1000e_check_for_fiber_link
;
233 func
->get_link_up_info
=
234 e1000e_get_speed_and_duplex_fiber_serdes
;
236 case e1000_media_type_internal_serdes
:
237 func
->setup_physical_interface
=
238 e1000_setup_fiber_serdes_link_82571
;
239 func
->check_for_link
= e1000e_check_for_serdes_link
;
240 func
->get_link_up_info
=
241 e1000e_get_speed_and_duplex_fiber_serdes
;
244 return -E1000_ERR_CONFIG
;
251 static s32
e1000_get_variants_82571(struct e1000_adapter
*adapter
)
253 struct e1000_hw
*hw
= &adapter
->hw
;
254 static int global_quad_port_a
; /* global port a indication */
255 struct pci_dev
*pdev
= adapter
->pdev
;
257 int is_port_b
= er32(STATUS
) & E1000_STATUS_FUNC_1
;
260 rc
= e1000_init_mac_params_82571(adapter
);
264 rc
= e1000_init_nvm_params_82571(hw
);
268 rc
= e1000_init_phy_params_82571(hw
);
272 /* tag quad port adapters first, it's used below */
273 switch (pdev
->device
) {
274 case E1000_DEV_ID_82571EB_QUAD_COPPER
:
275 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
276 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP
:
277 case E1000_DEV_ID_82571PT_QUAD_COPPER
:
278 adapter
->flags
|= FLAG_IS_QUAD_PORT
;
279 /* mark the first port */
280 if (global_quad_port_a
== 0)
281 adapter
->flags
|= FLAG_IS_QUAD_PORT_A
;
282 /* Reset for multiple quad port adapters */
283 global_quad_port_a
++;
284 if (global_quad_port_a
== 4)
285 global_quad_port_a
= 0;
291 switch (adapter
->hw
.mac
.type
) {
293 /* these dual ports don't have WoL on port B at all */
294 if (((pdev
->device
== E1000_DEV_ID_82571EB_FIBER
) ||
295 (pdev
->device
== E1000_DEV_ID_82571EB_SERDES
) ||
296 (pdev
->device
== E1000_DEV_ID_82571EB_COPPER
)) &&
298 adapter
->flags
&= ~FLAG_HAS_WOL
;
299 /* quad ports only support WoL on port A */
300 if (adapter
->flags
& FLAG_IS_QUAD_PORT
&&
301 (!(adapter
->flags
& FLAG_IS_QUAD_PORT_A
)))
302 adapter
->flags
&= ~FLAG_HAS_WOL
;
303 /* Does not support WoL on any port */
304 if (pdev
->device
== E1000_DEV_ID_82571EB_SERDES_QUAD
)
305 adapter
->flags
&= ~FLAG_HAS_WOL
;
309 if (pdev
->device
== E1000_DEV_ID_82573L
) {
310 e1000_read_nvm(&adapter
->hw
, NVM_INIT_3GIO_3
, 1,
312 if (eeprom_data
& NVM_WORD1A_ASPM_MASK
)
313 adapter
->flags
&= ~FLAG_HAS_JUMBO_FRAMES
;
324 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
325 * @hw: pointer to the HW structure
327 * Reads the PHY registers and stores the PHY ID and possibly the PHY
328 * revision in the hardware structure.
330 static s32
e1000_get_phy_id_82571(struct e1000_hw
*hw
)
332 struct e1000_phy_info
*phy
= &hw
->phy
;
334 switch (hw
->mac
.type
) {
338 * The 82571 firmware may still be configuring the PHY.
339 * In this case, we cannot access the PHY until the
340 * configuration is done. So we explicitly set the
343 phy
->id
= IGP01E1000_I_PHY_ID
;
346 return e1000e_get_phy_id(hw
);
349 return -E1000_ERR_PHY
;
357 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
358 * @hw: pointer to the HW structure
360 * Acquire the HW semaphore to access the PHY or NVM
362 static s32
e1000_get_hw_semaphore_82571(struct e1000_hw
*hw
)
365 s32 timeout
= hw
->nvm
.word_size
+ 1;
368 /* Get the FW semaphore. */
369 for (i
= 0; i
< timeout
; i
++) {
371 ew32(SWSM
, swsm
| E1000_SWSM_SWESMBI
);
373 /* Semaphore acquired if bit latched */
374 if (er32(SWSM
) & E1000_SWSM_SWESMBI
)
381 /* Release semaphores */
382 e1000e_put_hw_semaphore(hw
);
383 hw_dbg(hw
, "Driver can't access the NVM\n");
384 return -E1000_ERR_NVM
;
391 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
392 * @hw: pointer to the HW structure
394 * Release hardware semaphore used to access the PHY or NVM
396 static void e1000_put_hw_semaphore_82571(struct e1000_hw
*hw
)
402 swsm
&= ~E1000_SWSM_SWESMBI
;
408 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
409 * @hw: pointer to the HW structure
411 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
412 * Then for non-82573 hardware, set the EEPROM access request bit and wait
413 * for EEPROM access grant bit. If the access grant bit is not set, release
414 * hardware semaphore.
416 static s32
e1000_acquire_nvm_82571(struct e1000_hw
*hw
)
420 ret_val
= e1000_get_hw_semaphore_82571(hw
);
424 if (hw
->mac
.type
!= e1000_82573
)
425 ret_val
= e1000e_acquire_nvm(hw
);
428 e1000_put_hw_semaphore_82571(hw
);
434 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
435 * @hw: pointer to the HW structure
437 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
439 static void e1000_release_nvm_82571(struct e1000_hw
*hw
)
441 e1000e_release_nvm(hw
);
442 e1000_put_hw_semaphore_82571(hw
);
446 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
447 * @hw: pointer to the HW structure
448 * @offset: offset within the EEPROM to be written to
449 * @words: number of words to write
450 * @data: 16 bit word(s) to be written to the EEPROM
452 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
454 * If e1000e_update_nvm_checksum is not called after this function, the
455 * EEPROM will most likely contain an invalid checksum.
457 static s32
e1000_write_nvm_82571(struct e1000_hw
*hw
, u16 offset
, u16 words
,
462 switch (hw
->mac
.type
) {
464 ret_val
= e1000_write_nvm_eewr_82571(hw
, offset
, words
, data
);
468 ret_val
= e1000e_write_nvm_spi(hw
, offset
, words
, data
);
471 ret_val
= -E1000_ERR_NVM
;
479 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
480 * @hw: pointer to the HW structure
482 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
483 * up to the checksum. Then calculates the EEPROM checksum and writes the
484 * value to the EEPROM.
486 static s32
e1000_update_nvm_checksum_82571(struct e1000_hw
*hw
)
492 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
497 * If our nvm is an EEPROM, then we're done
498 * otherwise, commit the checksum to the flash NVM.
500 if (hw
->nvm
.type
!= e1000_nvm_flash_hw
)
503 /* Check for pending operations. */
504 for (i
= 0; i
< E1000_FLASH_UPDATES
; i
++) {
506 if ((er32(EECD
) & E1000_EECD_FLUPD
) == 0)
510 if (i
== E1000_FLASH_UPDATES
)
511 return -E1000_ERR_NVM
;
513 /* Reset the firmware if using STM opcode. */
514 if ((er32(FLOP
) & 0xFF00) == E1000_STM_OPCODE
) {
516 * The enabling of and the actual reset must be done
517 * in two write cycles.
519 ew32(HICR
, E1000_HICR_FW_RESET_ENABLE
);
521 ew32(HICR
, E1000_HICR_FW_RESET
);
524 /* Commit the write to flash */
525 eecd
= er32(EECD
) | E1000_EECD_FLUPD
;
528 for (i
= 0; i
< E1000_FLASH_UPDATES
; i
++) {
530 if ((er32(EECD
) & E1000_EECD_FLUPD
) == 0)
534 if (i
== E1000_FLASH_UPDATES
)
535 return -E1000_ERR_NVM
;
541 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
542 * @hw: pointer to the HW structure
544 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
545 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
547 static s32
e1000_validate_nvm_checksum_82571(struct e1000_hw
*hw
)
549 if (hw
->nvm
.type
== e1000_nvm_flash_hw
)
550 e1000_fix_nvm_checksum_82571(hw
);
552 return e1000e_validate_nvm_checksum_generic(hw
);
556 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
557 * @hw: pointer to the HW structure
558 * @offset: offset within the EEPROM to be written to
559 * @words: number of words to write
560 * @data: 16 bit word(s) to be written to the EEPROM
562 * After checking for invalid values, poll the EEPROM to ensure the previous
563 * command has completed before trying to write the next word. After write
564 * poll for completion.
566 * If e1000e_update_nvm_checksum is not called after this function, the
567 * EEPROM will most likely contain an invalid checksum.
569 static s32
e1000_write_nvm_eewr_82571(struct e1000_hw
*hw
, u16 offset
,
570 u16 words
, u16
*data
)
572 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
578 * A check for invalid values: offset too large, too many words,
579 * and not enough words.
581 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
583 hw_dbg(hw
, "nvm parameter(s) out of bounds\n");
584 return -E1000_ERR_NVM
;
587 for (i
= 0; i
< words
; i
++) {
588 eewr
= (data
[i
] << E1000_NVM_RW_REG_DATA
) |
589 ((offset
+i
) << E1000_NVM_RW_ADDR_SHIFT
) |
590 E1000_NVM_RW_REG_START
;
592 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_WRITE
);
598 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_WRITE
);
607 * e1000_get_cfg_done_82571 - Poll for configuration done
608 * @hw: pointer to the HW structure
610 * Reads the management control register for the config done bit to be set.
612 static s32
e1000_get_cfg_done_82571(struct e1000_hw
*hw
)
614 s32 timeout
= PHY_CFG_TIMEOUT
;
618 E1000_NVM_CFG_DONE_PORT_0
)
624 hw_dbg(hw
, "MNG configuration cycle has not completed.\n");
625 return -E1000_ERR_RESET
;
632 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
633 * @hw: pointer to the HW structure
634 * @active: TRUE to enable LPLU, FALSE to disable
636 * Sets the LPLU D0 state according to the active flag. When activating LPLU
637 * this function also disables smart speed and vice versa. LPLU will not be
638 * activated unless the device autonegotiation advertisement meets standards
639 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
640 * pointer entry point only called by PHY setup routines.
642 static s32
e1000_set_d0_lplu_state_82571(struct e1000_hw
*hw
, bool active
)
644 struct e1000_phy_info
*phy
= &hw
->phy
;
648 ret_val
= e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
653 data
|= IGP02E1000_PM_D0_LPLU
;
654 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
658 /* When LPLU is enabled, we should disable SmartSpeed */
659 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
660 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
661 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
665 data
&= ~IGP02E1000_PM_D0_LPLU
;
666 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
668 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
669 * during Dx states where the power conservation is most
670 * important. During driver activity we should enable
671 * SmartSpeed, so performance is maintained.
673 if (phy
->smart_speed
== e1000_smart_speed_on
) {
674 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
679 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
680 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
684 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
685 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
690 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
691 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
702 * e1000_reset_hw_82571 - Reset hardware
703 * @hw: pointer to the HW structure
705 * This resets the hardware into a known state. This is a
706 * function pointer entry point called by the api module.
708 static s32
e1000_reset_hw_82571(struct e1000_hw
*hw
)
718 * Prevent the PCI-E bus from sticking if there is no TLP connection
719 * on the last TLP read/write transaction when MAC is reset.
721 ret_val
= e1000e_disable_pcie_master(hw
);
723 hw_dbg(hw
, "PCI-E Master disable polling has failed.\n");
725 hw_dbg(hw
, "Masking off all interrupts\n");
726 ew32(IMC
, 0xffffffff);
729 ew32(TCTL
, E1000_TCTL_PSP
);
735 * Must acquire the MDIO ownership before MAC reset.
736 * Ownership defaults to firmware after a reset.
738 if (hw
->mac
.type
== e1000_82573
) {
739 extcnf_ctrl
= er32(EXTCNF_CTRL
);
740 extcnf_ctrl
|= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
743 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
744 extcnf_ctrl
= er32(EXTCNF_CTRL
);
746 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
)
749 extcnf_ctrl
|= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
753 } while (i
< MDIO_OWNERSHIP_TIMEOUT
);
758 hw_dbg(hw
, "Issuing a global reset to MAC\n");
759 ew32(CTRL
, ctrl
| E1000_CTRL_RST
);
761 if (hw
->nvm
.type
== e1000_nvm_flash_hw
) {
763 ctrl_ext
= er32(CTRL_EXT
);
764 ctrl_ext
|= E1000_CTRL_EXT_EE_RST
;
765 ew32(CTRL_EXT
, ctrl_ext
);
769 ret_val
= e1000e_get_auto_rd_done(hw
);
771 /* We don't want to continue accessing MAC registers. */
775 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
776 * Need to wait for Phy configuration completion before accessing
779 if (hw
->mac
.type
== e1000_82573
)
782 /* Clear any pending interrupt events. */
783 ew32(IMC
, 0xffffffff);
786 if (hw
->mac
.type
== e1000_82571
&&
787 hw
->dev_spec
.e82571
.alt_mac_addr_is_present
)
788 e1000e_set_laa_state_82571(hw
, true);
794 * e1000_init_hw_82571 - Initialize hardware
795 * @hw: pointer to the HW structure
797 * This inits the hardware readying it for operation.
799 static s32
e1000_init_hw_82571(struct e1000_hw
*hw
)
801 struct e1000_mac_info
*mac
= &hw
->mac
;
805 u16 rar_count
= mac
->rar_entry_count
;
807 e1000_initialize_hw_bits_82571(hw
);
809 /* Initialize identification LED */
810 ret_val
= e1000e_id_led_init(hw
);
812 hw_dbg(hw
, "Error initializing identification LED\n");
816 /* Disabling VLAN filtering */
817 hw_dbg(hw
, "Initializing the IEEE VLAN\n");
818 e1000e_clear_vfta(hw
);
820 /* Setup the receive address. */
822 * If, however, a locally administered address was assigned to the
823 * 82571, we must reserve a RAR for it to work around an issue where
824 * resetting one port will reload the MAC on the other port.
826 if (e1000e_get_laa_state_82571(hw
))
828 e1000e_init_rx_addrs(hw
, rar_count
);
830 /* Zero out the Multicast HASH table */
831 hw_dbg(hw
, "Zeroing the MTA\n");
832 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
833 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
835 /* Setup link and flow control */
836 ret_val
= e1000_setup_link_82571(hw
);
838 /* Set the transmit descriptor write-back policy */
839 reg_data
= er32(TXDCTL(0));
840 reg_data
= (reg_data
& ~E1000_TXDCTL_WTHRESH
) |
841 E1000_TXDCTL_FULL_TX_DESC_WB
|
842 E1000_TXDCTL_COUNT_DESC
;
843 ew32(TXDCTL(0), reg_data
);
845 /* ...for both queues. */
846 if (mac
->type
!= e1000_82573
) {
847 reg_data
= er32(TXDCTL(1));
848 reg_data
= (reg_data
& ~E1000_TXDCTL_WTHRESH
) |
849 E1000_TXDCTL_FULL_TX_DESC_WB
|
850 E1000_TXDCTL_COUNT_DESC
;
851 ew32(TXDCTL(1), reg_data
);
853 e1000e_enable_tx_pkt_filtering(hw
);
854 reg_data
= er32(GCR
);
855 reg_data
|= E1000_GCR_L1_ACT_WITHOUT_L0S_RX
;
860 * Clear all of the statistics registers (clear on read). It is
861 * important that we do this after we have tried to establish link
862 * because the symbol error count will increment wildly if there
865 e1000_clear_hw_cntrs_82571(hw
);
871 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
872 * @hw: pointer to the HW structure
874 * Initializes required hardware-dependent bits needed for normal operation.
876 static void e1000_initialize_hw_bits_82571(struct e1000_hw
*hw
)
880 /* Transmit Descriptor Control 0 */
881 reg
= er32(TXDCTL(0));
883 ew32(TXDCTL(0), reg
);
885 /* Transmit Descriptor Control 1 */
886 reg
= er32(TXDCTL(1));
888 ew32(TXDCTL(1), reg
);
890 /* Transmit Arbitration Control 0 */
892 reg
&= ~(0xF << 27); /* 30:27 */
893 switch (hw
->mac
.type
) {
896 reg
|= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
903 /* Transmit Arbitration Control 1 */
905 switch (hw
->mac
.type
) {
908 reg
&= ~((1 << 29) | (1 << 30));
909 reg
|= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
910 if (er32(TCTL
) & E1000_TCTL_MULR
)
921 if (hw
->mac
.type
== e1000_82573
) {
927 /* Extended Device Control */
928 if (hw
->mac
.type
== e1000_82573
) {
929 reg
= er32(CTRL_EXT
);
937 * e1000e_clear_vfta - Clear VLAN filter table
938 * @hw: pointer to the HW structure
940 * Clears the register array which contains the VLAN filter table by
941 * setting all the values to 0.
943 void e1000e_clear_vfta(struct e1000_hw
*hw
)
948 u32 vfta_bit_in_reg
= 0;
950 if (hw
->mac
.type
== e1000_82573
) {
951 if (hw
->mng_cookie
.vlan_id
!= 0) {
953 * The VFTA is a 4096b bit-field, each identifying
954 * a single VLAN ID. The following operations
955 * determine which 32b entry (i.e. offset) into the
956 * array we want to set the VLAN ID (i.e. bit) of
957 * the manageability unit.
959 vfta_offset
= (hw
->mng_cookie
.vlan_id
>>
960 E1000_VFTA_ENTRY_SHIFT
) &
961 E1000_VFTA_ENTRY_MASK
;
962 vfta_bit_in_reg
= 1 << (hw
->mng_cookie
.vlan_id
&
963 E1000_VFTA_ENTRY_BIT_SHIFT_MASK
);
966 for (offset
= 0; offset
< E1000_VLAN_FILTER_TBL_SIZE
; offset
++) {
968 * If the offset we want to clear is the same offset of the
969 * manageability VLAN ID, then clear all bits except that of
970 * the manageability unit.
972 vfta_value
= (offset
== vfta_offset
) ? vfta_bit_in_reg
: 0;
973 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, vfta_value
);
979 * e1000_update_mc_addr_list_82571 - Update Multicast addresses
980 * @hw: pointer to the HW structure
981 * @mc_addr_list: array of multicast addresses to program
982 * @mc_addr_count: number of multicast addresses to program
983 * @rar_used_count: the first RAR register free to program
984 * @rar_count: total number of supported Receive Address Registers
986 * Updates the Receive Address Registers and Multicast Table Array.
987 * The caller must have a packed mc_addr_list of multicast addresses.
988 * The parameter rar_count will usually be hw->mac.rar_entry_count
989 * unless there are workarounds that change this.
991 static void e1000_update_mc_addr_list_82571(struct e1000_hw
*hw
,
997 if (e1000e_get_laa_state_82571(hw
))
1000 e1000e_update_mc_addr_list_generic(hw
, mc_addr_list
, mc_addr_count
,
1001 rar_used_count
, rar_count
);
1005 * e1000_setup_link_82571 - Setup flow control and link settings
1006 * @hw: pointer to the HW structure
1008 * Determines which flow control settings to use, then configures flow
1009 * control. Calls the appropriate media-specific link configuration
1010 * function. Assuming the adapter has a valid link partner, a valid link
1011 * should be established. Assumes the hardware has previously been reset
1012 * and the transmitter and receiver are not enabled.
1014 static s32
e1000_setup_link_82571(struct e1000_hw
*hw
)
1017 * 82573 does not have a word in the NVM to determine
1018 * the default flow control setting, so we explicitly
1021 if (hw
->mac
.type
== e1000_82573
)
1022 hw
->fc
.type
= e1000_fc_full
;
1024 return e1000e_setup_link(hw
);
1028 * e1000_setup_copper_link_82571 - Configure copper link settings
1029 * @hw: pointer to the HW structure
1031 * Configures the link for auto-neg or forced speed and duplex. Then we check
1032 * for link, once link is established calls to configure collision distance
1033 * and flow control are called.
1035 static s32
e1000_setup_copper_link_82571(struct e1000_hw
*hw
)
1042 ctrl
|= E1000_CTRL_SLU
;
1043 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1046 switch (hw
->phy
.type
) {
1048 ret_val
= e1000e_copper_link_setup_m88(hw
);
1050 case e1000_phy_igp_2
:
1051 ret_val
= e1000e_copper_link_setup_igp(hw
);
1052 /* Setup activity LED */
1053 led_ctrl
= er32(LEDCTL
);
1054 led_ctrl
&= IGP_ACTIVITY_LED_MASK
;
1055 led_ctrl
|= (IGP_ACTIVITY_LED_ENABLE
| IGP_LED3_MODE
);
1056 ew32(LEDCTL
, led_ctrl
);
1059 return -E1000_ERR_PHY
;
1066 ret_val
= e1000e_setup_copper_link(hw
);
1072 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1073 * @hw: pointer to the HW structure
1075 * Configures collision distance and flow control for fiber and serdes links.
1076 * Upon successful setup, poll for link.
1078 static s32
e1000_setup_fiber_serdes_link_82571(struct e1000_hw
*hw
)
1080 switch (hw
->mac
.type
) {
1084 * If SerDes loopback mode is entered, there is no form
1085 * of reset to take the adapter out of that mode. So we
1086 * have to explicitly take the adapter out of loopback
1087 * mode. This prevents drivers from twiddling their thumbs
1088 * if another tool failed to take it out of loopback mode.
1090 ew32(SCTL
, E1000_SCTL_DISABLE_SERDES_LOOPBACK
);
1096 return e1000e_setup_fiber_serdes_link(hw
);
1100 * e1000_valid_led_default_82571 - Verify a valid default LED config
1101 * @hw: pointer to the HW structure
1102 * @data: pointer to the NVM (EEPROM)
1104 * Read the EEPROM for the current default LED configuration. If the
1105 * LED configuration is not valid, set to a valid LED configuration.
1107 static s32
e1000_valid_led_default_82571(struct e1000_hw
*hw
, u16
*data
)
1111 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1113 hw_dbg(hw
, "NVM Read Error\n");
1117 if (hw
->mac
.type
== e1000_82573
&&
1118 *data
== ID_LED_RESERVED_F746
)
1119 *data
= ID_LED_DEFAULT_82573
;
1120 else if (*data
== ID_LED_RESERVED_0000
||
1121 *data
== ID_LED_RESERVED_FFFF
)
1122 *data
= ID_LED_DEFAULT
;
1128 * e1000e_get_laa_state_82571 - Get locally administered address state
1129 * @hw: pointer to the HW structure
1131 * Retrieve and return the current locally administered address state.
1133 bool e1000e_get_laa_state_82571(struct e1000_hw
*hw
)
1135 if (hw
->mac
.type
!= e1000_82571
)
1138 return hw
->dev_spec
.e82571
.laa_is_present
;
1142 * e1000e_set_laa_state_82571 - Set locally administered address state
1143 * @hw: pointer to the HW structure
1144 * @state: enable/disable locally administered address
1146 * Enable/Disable the current locally administers address state.
1148 void e1000e_set_laa_state_82571(struct e1000_hw
*hw
, bool state
)
1150 if (hw
->mac
.type
!= e1000_82571
)
1153 hw
->dev_spec
.e82571
.laa_is_present
= state
;
1155 /* If workaround is activated... */
1158 * Hold a copy of the LAA in RAR[14] This is done so that
1159 * between the time RAR[0] gets clobbered and the time it
1160 * gets fixed, the actual LAA is in one of the RARs and no
1161 * incoming packets directed to this port are dropped.
1162 * Eventually the LAA will be in RAR[0] and RAR[14].
1164 e1000e_rar_set(hw
, hw
->mac
.addr
, hw
->mac
.rar_entry_count
- 1);
1168 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1169 * @hw: pointer to the HW structure
1171 * Verifies that the EEPROM has completed the update. After updating the
1172 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1173 * the checksum fix is not implemented, we need to set the bit and update
1174 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1175 * we need to return bad checksum.
1177 static s32
e1000_fix_nvm_checksum_82571(struct e1000_hw
*hw
)
1179 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1183 if (nvm
->type
!= e1000_nvm_flash_hw
)
1187 * Check bit 4 of word 10h. If it is 0, firmware is done updating
1188 * 10h-12h. Checksum may need to be fixed.
1190 ret_val
= e1000_read_nvm(hw
, 0x10, 1, &data
);
1194 if (!(data
& 0x10)) {
1196 * Read 0x23 and check bit 15. This bit is a 1
1197 * when the checksum has already been fixed. If
1198 * the checksum is still wrong and this bit is a
1199 * 1, we need to return bad checksum. Otherwise,
1200 * we need to set this bit to a 1 and update the
1203 ret_val
= e1000_read_nvm(hw
, 0x23, 1, &data
);
1207 if (!(data
& 0x8000)) {
1209 ret_val
= e1000_write_nvm(hw
, 0x23, 1, &data
);
1212 ret_val
= e1000e_update_nvm_checksum(hw
);
1220 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1221 * @hw: pointer to the HW structure
1223 * Clears the hardware counters by reading the counter registers.
1225 static void e1000_clear_hw_cntrs_82571(struct e1000_hw
*hw
)
1229 e1000e_clear_hw_cntrs_base(hw
);
1232 temp
= er32(PRC127
);
1233 temp
= er32(PRC255
);
1234 temp
= er32(PRC511
);
1235 temp
= er32(PRC1023
);
1236 temp
= er32(PRC1522
);
1238 temp
= er32(PTC127
);
1239 temp
= er32(PTC255
);
1240 temp
= er32(PTC511
);
1241 temp
= er32(PTC1023
);
1242 temp
= er32(PTC1522
);
1244 temp
= er32(ALGNERRC
);
1245 temp
= er32(RXERRC
);
1247 temp
= er32(CEXTERR
);
1249 temp
= er32(TSCTFC
);
1251 temp
= er32(MGTPRC
);
1252 temp
= er32(MGTPDC
);
1253 temp
= er32(MGTPTC
);
1256 temp
= er32(ICRXOC
);
1258 temp
= er32(ICRXPTC
);
1259 temp
= er32(ICRXATC
);
1260 temp
= er32(ICTXPTC
);
1261 temp
= er32(ICTXATC
);
1262 temp
= er32(ICTXQEC
);
1263 temp
= er32(ICTXQMTC
);
1264 temp
= er32(ICRXDMTC
);
1267 static struct e1000_mac_operations e82571_mac_ops
= {
1268 .mng_mode_enab
= E1000_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
,
1269 /* .check_for_link: media type dependent */
1270 .cleanup_led
= e1000e_cleanup_led_generic
,
1271 .clear_hw_cntrs
= e1000_clear_hw_cntrs_82571
,
1272 .get_bus_info
= e1000e_get_bus_info_pcie
,
1273 /* .get_link_up_info: media type dependent */
1274 .led_on
= e1000e_led_on_generic
,
1275 .led_off
= e1000e_led_off_generic
,
1276 .update_mc_addr_list
= e1000_update_mc_addr_list_82571
,
1277 .reset_hw
= e1000_reset_hw_82571
,
1278 .init_hw
= e1000_init_hw_82571
,
1279 .setup_link
= e1000_setup_link_82571
,
1280 /* .setup_physical_interface: media type dependent */
1283 static struct e1000_phy_operations e82_phy_ops_igp
= {
1284 .acquire_phy
= e1000_get_hw_semaphore_82571
,
1285 .check_reset_block
= e1000e_check_reset_block_generic
,
1287 .force_speed_duplex
= e1000e_phy_force_speed_duplex_igp
,
1288 .get_cfg_done
= e1000_get_cfg_done_82571
,
1289 .get_cable_length
= e1000e_get_cable_length_igp_2
,
1290 .get_phy_info
= e1000e_get_phy_info_igp
,
1291 .read_phy_reg
= e1000e_read_phy_reg_igp
,
1292 .release_phy
= e1000_put_hw_semaphore_82571
,
1293 .reset_phy
= e1000e_phy_hw_reset_generic
,
1294 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1295 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1296 .write_phy_reg
= e1000e_write_phy_reg_igp
,
1299 static struct e1000_phy_operations e82_phy_ops_m88
= {
1300 .acquire_phy
= e1000_get_hw_semaphore_82571
,
1301 .check_reset_block
= e1000e_check_reset_block_generic
,
1302 .commit_phy
= e1000e_phy_sw_reset
,
1303 .force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
,
1304 .get_cfg_done
= e1000e_get_cfg_done
,
1305 .get_cable_length
= e1000e_get_cable_length_m88
,
1306 .get_phy_info
= e1000e_get_phy_info_m88
,
1307 .read_phy_reg
= e1000e_read_phy_reg_m88
,
1308 .release_phy
= e1000_put_hw_semaphore_82571
,
1309 .reset_phy
= e1000e_phy_hw_reset_generic
,
1310 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1311 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1312 .write_phy_reg
= e1000e_write_phy_reg_m88
,
1315 static struct e1000_nvm_operations e82571_nvm_ops
= {
1316 .acquire_nvm
= e1000_acquire_nvm_82571
,
1317 .read_nvm
= e1000e_read_nvm_eerd
,
1318 .release_nvm
= e1000_release_nvm_82571
,
1319 .update_nvm
= e1000_update_nvm_checksum_82571
,
1320 .valid_led_default
= e1000_valid_led_default_82571
,
1321 .validate_nvm
= e1000_validate_nvm_checksum_82571
,
1322 .write_nvm
= e1000_write_nvm_82571
,
1325 struct e1000_info e1000_82571_info
= {
1327 .flags
= FLAG_HAS_HW_VLAN_FILTER
1328 | FLAG_HAS_JUMBO_FRAMES
1330 | FLAG_APME_IN_CTRL3
1331 | FLAG_RX_CSUM_ENABLED
1332 | FLAG_HAS_CTRLEXT_ON_LOAD
1333 | FLAG_HAS_SMART_POWER_DOWN
1334 | FLAG_RESET_OVERWRITES_LAA
/* errata */
1335 | FLAG_TARC_SPEED_MODE_BIT
/* errata */
1336 | FLAG_APME_CHECK_PORT_B
,
1338 .get_variants
= e1000_get_variants_82571
,
1339 .mac_ops
= &e82571_mac_ops
,
1340 .phy_ops
= &e82_phy_ops_igp
,
1341 .nvm_ops
= &e82571_nvm_ops
,
1344 struct e1000_info e1000_82572_info
= {
1346 .flags
= FLAG_HAS_HW_VLAN_FILTER
1347 | FLAG_HAS_JUMBO_FRAMES
1349 | FLAG_APME_IN_CTRL3
1350 | FLAG_RX_CSUM_ENABLED
1351 | FLAG_HAS_CTRLEXT_ON_LOAD
1352 | FLAG_TARC_SPEED_MODE_BIT
, /* errata */
1354 .get_variants
= e1000_get_variants_82571
,
1355 .mac_ops
= &e82571_mac_ops
,
1356 .phy_ops
= &e82_phy_ops_igp
,
1357 .nvm_ops
= &e82571_nvm_ops
,
1360 struct e1000_info e1000_82573_info
= {
1362 .flags
= FLAG_HAS_HW_VLAN_FILTER
1363 | FLAG_HAS_JUMBO_FRAMES
1365 | FLAG_APME_IN_CTRL3
1366 | FLAG_RX_CSUM_ENABLED
1367 | FLAG_HAS_SMART_POWER_DOWN
1370 | FLAG_HAS_SWSM_ON_LOAD
,
1372 .get_variants
= e1000_get_variants_82571
,
1373 .mac_ops
= &e82571_mac_ops
,
1374 .phy_ops
= &e82_phy_ops_m88
,
1375 .nvm_ops
= &e82571_nvm_ops
,