PM / yenta: Split resume into early and late parts (rev. 4)
[linux/fpc-iii.git] / virt / kvm / kvm_main.c
blob198c750aa85190b1a9f26891fe82304c0d182b6b
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "iodev.h"
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
47 #include <asm/processor.h>
48 #include <asm/io.h>
49 #include <asm/uaccess.h>
50 #include <asm/pgtable.h>
52 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
53 #include "coalesced_mmio.h"
54 #endif
56 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
57 #include <linux/pci.h>
58 #include <linux/interrupt.h>
59 #include "irq.h"
60 #endif
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
65 DEFINE_SPINLOCK(kvm_lock);
66 LIST_HEAD(vm_list);
68 static cpumask_var_t cpus_hardware_enabled;
70 struct kmem_cache *kvm_vcpu_cache;
71 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
73 static __read_mostly struct preempt_ops kvm_preempt_ops;
75 struct dentry *kvm_debugfs_dir;
77 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
78 unsigned long arg);
80 static bool kvm_rebooting;
82 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
83 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
84 int assigned_dev_id)
86 struct list_head *ptr;
87 struct kvm_assigned_dev_kernel *match;
89 list_for_each(ptr, head) {
90 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
91 if (match->assigned_dev_id == assigned_dev_id)
92 return match;
94 return NULL;
97 static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
98 *assigned_dev, int irq)
100 int i, index;
101 struct msix_entry *host_msix_entries;
103 host_msix_entries = assigned_dev->host_msix_entries;
105 index = -1;
106 for (i = 0; i < assigned_dev->entries_nr; i++)
107 if (irq == host_msix_entries[i].vector) {
108 index = i;
109 break;
111 if (index < 0) {
112 printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
113 return 0;
116 return index;
119 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
121 struct kvm_assigned_dev_kernel *assigned_dev;
122 struct kvm *kvm;
123 int irq, i;
125 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
126 interrupt_work);
127 kvm = assigned_dev->kvm;
129 /* This is taken to safely inject irq inside the guest. When
130 * the interrupt injection (or the ioapic code) uses a
131 * finer-grained lock, update this
133 mutex_lock(&kvm->lock);
134 spin_lock_irq(&assigned_dev->assigned_dev_lock);
135 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
136 struct kvm_guest_msix_entry *guest_entries =
137 assigned_dev->guest_msix_entries;
138 for (i = 0; i < assigned_dev->entries_nr; i++) {
139 if (!(guest_entries[i].flags &
140 KVM_ASSIGNED_MSIX_PENDING))
141 continue;
142 guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
143 kvm_set_irq(assigned_dev->kvm,
144 assigned_dev->irq_source_id,
145 guest_entries[i].vector, 1);
146 irq = assigned_dev->host_msix_entries[i].vector;
147 if (irq != 0)
148 enable_irq(irq);
149 assigned_dev->host_irq_disabled = false;
151 } else {
152 kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
153 assigned_dev->guest_irq, 1);
154 if (assigned_dev->irq_requested_type &
155 KVM_DEV_IRQ_GUEST_MSI) {
156 enable_irq(assigned_dev->host_irq);
157 assigned_dev->host_irq_disabled = false;
161 spin_unlock_irq(&assigned_dev->assigned_dev_lock);
162 mutex_unlock(&assigned_dev->kvm->lock);
165 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
167 unsigned long flags;
168 struct kvm_assigned_dev_kernel *assigned_dev =
169 (struct kvm_assigned_dev_kernel *) dev_id;
171 spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
172 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
173 int index = find_index_from_host_irq(assigned_dev, irq);
174 if (index < 0)
175 goto out;
176 assigned_dev->guest_msix_entries[index].flags |=
177 KVM_ASSIGNED_MSIX_PENDING;
180 schedule_work(&assigned_dev->interrupt_work);
182 disable_irq_nosync(irq);
183 assigned_dev->host_irq_disabled = true;
185 out:
186 spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
187 return IRQ_HANDLED;
190 /* Ack the irq line for an assigned device */
191 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
193 struct kvm_assigned_dev_kernel *dev;
194 unsigned long flags;
196 if (kian->gsi == -1)
197 return;
199 dev = container_of(kian, struct kvm_assigned_dev_kernel,
200 ack_notifier);
202 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
204 /* The guest irq may be shared so this ack may be
205 * from another device.
207 spin_lock_irqsave(&dev->assigned_dev_lock, flags);
208 if (dev->host_irq_disabled) {
209 enable_irq(dev->host_irq);
210 dev->host_irq_disabled = false;
212 spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
215 static void deassign_guest_irq(struct kvm *kvm,
216 struct kvm_assigned_dev_kernel *assigned_dev)
218 kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
219 assigned_dev->ack_notifier.gsi = -1;
221 if (assigned_dev->irq_source_id != -1)
222 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
223 assigned_dev->irq_source_id = -1;
224 assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
227 /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
228 static void deassign_host_irq(struct kvm *kvm,
229 struct kvm_assigned_dev_kernel *assigned_dev)
232 * In kvm_free_device_irq, cancel_work_sync return true if:
233 * 1. work is scheduled, and then cancelled.
234 * 2. work callback is executed.
236 * The first one ensured that the irq is disabled and no more events
237 * would happen. But for the second one, the irq may be enabled (e.g.
238 * for MSI). So we disable irq here to prevent further events.
240 * Notice this maybe result in nested disable if the interrupt type is
241 * INTx, but it's OK for we are going to free it.
243 * If this function is a part of VM destroy, please ensure that till
244 * now, the kvm state is still legal for probably we also have to wait
245 * interrupt_work done.
247 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
248 int i;
249 for (i = 0; i < assigned_dev->entries_nr; i++)
250 disable_irq_nosync(assigned_dev->
251 host_msix_entries[i].vector);
253 cancel_work_sync(&assigned_dev->interrupt_work);
255 for (i = 0; i < assigned_dev->entries_nr; i++)
256 free_irq(assigned_dev->host_msix_entries[i].vector,
257 (void *)assigned_dev);
259 assigned_dev->entries_nr = 0;
260 kfree(assigned_dev->host_msix_entries);
261 kfree(assigned_dev->guest_msix_entries);
262 pci_disable_msix(assigned_dev->dev);
263 } else {
264 /* Deal with MSI and INTx */
265 disable_irq_nosync(assigned_dev->host_irq);
266 cancel_work_sync(&assigned_dev->interrupt_work);
268 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
270 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
271 pci_disable_msi(assigned_dev->dev);
274 assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
277 static int kvm_deassign_irq(struct kvm *kvm,
278 struct kvm_assigned_dev_kernel *assigned_dev,
279 unsigned long irq_requested_type)
281 unsigned long guest_irq_type, host_irq_type;
283 if (!irqchip_in_kernel(kvm))
284 return -EINVAL;
285 /* no irq assignment to deassign */
286 if (!assigned_dev->irq_requested_type)
287 return -ENXIO;
289 host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
290 guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
292 if (host_irq_type)
293 deassign_host_irq(kvm, assigned_dev);
294 if (guest_irq_type)
295 deassign_guest_irq(kvm, assigned_dev);
297 return 0;
300 static void kvm_free_assigned_irq(struct kvm *kvm,
301 struct kvm_assigned_dev_kernel *assigned_dev)
303 kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
306 static void kvm_free_assigned_device(struct kvm *kvm,
307 struct kvm_assigned_dev_kernel
308 *assigned_dev)
310 kvm_free_assigned_irq(kvm, assigned_dev);
312 pci_reset_function(assigned_dev->dev);
314 pci_release_regions(assigned_dev->dev);
315 pci_disable_device(assigned_dev->dev);
316 pci_dev_put(assigned_dev->dev);
318 list_del(&assigned_dev->list);
319 kfree(assigned_dev);
322 void kvm_free_all_assigned_devices(struct kvm *kvm)
324 struct list_head *ptr, *ptr2;
325 struct kvm_assigned_dev_kernel *assigned_dev;
327 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
328 assigned_dev = list_entry(ptr,
329 struct kvm_assigned_dev_kernel,
330 list);
332 kvm_free_assigned_device(kvm, assigned_dev);
336 static int assigned_device_enable_host_intx(struct kvm *kvm,
337 struct kvm_assigned_dev_kernel *dev)
339 dev->host_irq = dev->dev->irq;
340 /* Even though this is PCI, we don't want to use shared
341 * interrupts. Sharing host devices with guest-assigned devices
342 * on the same interrupt line is not a happy situation: there
343 * are going to be long delays in accepting, acking, etc.
345 if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
346 0, "kvm_assigned_intx_device", (void *)dev))
347 return -EIO;
348 return 0;
351 #ifdef __KVM_HAVE_MSI
352 static int assigned_device_enable_host_msi(struct kvm *kvm,
353 struct kvm_assigned_dev_kernel *dev)
355 int r;
357 if (!dev->dev->msi_enabled) {
358 r = pci_enable_msi(dev->dev);
359 if (r)
360 return r;
363 dev->host_irq = dev->dev->irq;
364 if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
365 "kvm_assigned_msi_device", (void *)dev)) {
366 pci_disable_msi(dev->dev);
367 return -EIO;
370 return 0;
372 #endif
374 #ifdef __KVM_HAVE_MSIX
375 static int assigned_device_enable_host_msix(struct kvm *kvm,
376 struct kvm_assigned_dev_kernel *dev)
378 int i, r = -EINVAL;
380 /* host_msix_entries and guest_msix_entries should have been
381 * initialized */
382 if (dev->entries_nr == 0)
383 return r;
385 r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
386 if (r)
387 return r;
389 for (i = 0; i < dev->entries_nr; i++) {
390 r = request_irq(dev->host_msix_entries[i].vector,
391 kvm_assigned_dev_intr, 0,
392 "kvm_assigned_msix_device",
393 (void *)dev);
394 /* FIXME: free requested_irq's on failure */
395 if (r)
396 return r;
399 return 0;
402 #endif
404 static int assigned_device_enable_guest_intx(struct kvm *kvm,
405 struct kvm_assigned_dev_kernel *dev,
406 struct kvm_assigned_irq *irq)
408 dev->guest_irq = irq->guest_irq;
409 dev->ack_notifier.gsi = irq->guest_irq;
410 return 0;
413 #ifdef __KVM_HAVE_MSI
414 static int assigned_device_enable_guest_msi(struct kvm *kvm,
415 struct kvm_assigned_dev_kernel *dev,
416 struct kvm_assigned_irq *irq)
418 dev->guest_irq = irq->guest_irq;
419 dev->ack_notifier.gsi = -1;
420 return 0;
422 #endif
423 #ifdef __KVM_HAVE_MSIX
424 static int assigned_device_enable_guest_msix(struct kvm *kvm,
425 struct kvm_assigned_dev_kernel *dev,
426 struct kvm_assigned_irq *irq)
428 dev->guest_irq = irq->guest_irq;
429 dev->ack_notifier.gsi = -1;
430 return 0;
432 #endif
434 static int assign_host_irq(struct kvm *kvm,
435 struct kvm_assigned_dev_kernel *dev,
436 __u32 host_irq_type)
438 int r = -EEXIST;
440 if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
441 return r;
443 switch (host_irq_type) {
444 case KVM_DEV_IRQ_HOST_INTX:
445 r = assigned_device_enable_host_intx(kvm, dev);
446 break;
447 #ifdef __KVM_HAVE_MSI
448 case KVM_DEV_IRQ_HOST_MSI:
449 r = assigned_device_enable_host_msi(kvm, dev);
450 break;
451 #endif
452 #ifdef __KVM_HAVE_MSIX
453 case KVM_DEV_IRQ_HOST_MSIX:
454 r = assigned_device_enable_host_msix(kvm, dev);
455 break;
456 #endif
457 default:
458 r = -EINVAL;
461 if (!r)
462 dev->irq_requested_type |= host_irq_type;
464 return r;
467 static int assign_guest_irq(struct kvm *kvm,
468 struct kvm_assigned_dev_kernel *dev,
469 struct kvm_assigned_irq *irq,
470 unsigned long guest_irq_type)
472 int id;
473 int r = -EEXIST;
475 if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
476 return r;
478 id = kvm_request_irq_source_id(kvm);
479 if (id < 0)
480 return id;
482 dev->irq_source_id = id;
484 switch (guest_irq_type) {
485 case KVM_DEV_IRQ_GUEST_INTX:
486 r = assigned_device_enable_guest_intx(kvm, dev, irq);
487 break;
488 #ifdef __KVM_HAVE_MSI
489 case KVM_DEV_IRQ_GUEST_MSI:
490 r = assigned_device_enable_guest_msi(kvm, dev, irq);
491 break;
492 #endif
493 #ifdef __KVM_HAVE_MSIX
494 case KVM_DEV_IRQ_GUEST_MSIX:
495 r = assigned_device_enable_guest_msix(kvm, dev, irq);
496 break;
497 #endif
498 default:
499 r = -EINVAL;
502 if (!r) {
503 dev->irq_requested_type |= guest_irq_type;
504 kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
505 } else
506 kvm_free_irq_source_id(kvm, dev->irq_source_id);
508 return r;
511 /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
512 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
513 struct kvm_assigned_irq *assigned_irq)
515 int r = -EINVAL;
516 struct kvm_assigned_dev_kernel *match;
517 unsigned long host_irq_type, guest_irq_type;
519 if (!capable(CAP_SYS_RAWIO))
520 return -EPERM;
522 if (!irqchip_in_kernel(kvm))
523 return r;
525 mutex_lock(&kvm->lock);
526 r = -ENODEV;
527 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
528 assigned_irq->assigned_dev_id);
529 if (!match)
530 goto out;
532 host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
533 guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
535 r = -EINVAL;
536 /* can only assign one type at a time */
537 if (hweight_long(host_irq_type) > 1)
538 goto out;
539 if (hweight_long(guest_irq_type) > 1)
540 goto out;
541 if (host_irq_type == 0 && guest_irq_type == 0)
542 goto out;
544 r = 0;
545 if (host_irq_type)
546 r = assign_host_irq(kvm, match, host_irq_type);
547 if (r)
548 goto out;
550 if (guest_irq_type)
551 r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
552 out:
553 mutex_unlock(&kvm->lock);
554 return r;
557 static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
558 struct kvm_assigned_irq
559 *assigned_irq)
561 int r = -ENODEV;
562 struct kvm_assigned_dev_kernel *match;
564 mutex_lock(&kvm->lock);
566 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
567 assigned_irq->assigned_dev_id);
568 if (!match)
569 goto out;
571 r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
572 out:
573 mutex_unlock(&kvm->lock);
574 return r;
577 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
578 struct kvm_assigned_pci_dev *assigned_dev)
580 int r = 0;
581 struct kvm_assigned_dev_kernel *match;
582 struct pci_dev *dev;
584 down_read(&kvm->slots_lock);
585 mutex_lock(&kvm->lock);
587 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
588 assigned_dev->assigned_dev_id);
589 if (match) {
590 /* device already assigned */
591 r = -EEXIST;
592 goto out;
595 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
596 if (match == NULL) {
597 printk(KERN_INFO "%s: Couldn't allocate memory\n",
598 __func__);
599 r = -ENOMEM;
600 goto out;
602 dev = pci_get_bus_and_slot(assigned_dev->busnr,
603 assigned_dev->devfn);
604 if (!dev) {
605 printk(KERN_INFO "%s: host device not found\n", __func__);
606 r = -EINVAL;
607 goto out_free;
609 if (pci_enable_device(dev)) {
610 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
611 r = -EBUSY;
612 goto out_put;
614 r = pci_request_regions(dev, "kvm_assigned_device");
615 if (r) {
616 printk(KERN_INFO "%s: Could not get access to device regions\n",
617 __func__);
618 goto out_disable;
621 pci_reset_function(dev);
623 match->assigned_dev_id = assigned_dev->assigned_dev_id;
624 match->host_busnr = assigned_dev->busnr;
625 match->host_devfn = assigned_dev->devfn;
626 match->flags = assigned_dev->flags;
627 match->dev = dev;
628 spin_lock_init(&match->assigned_dev_lock);
629 match->irq_source_id = -1;
630 match->kvm = kvm;
631 match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
632 INIT_WORK(&match->interrupt_work,
633 kvm_assigned_dev_interrupt_work_handler);
635 list_add(&match->list, &kvm->arch.assigned_dev_head);
637 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
638 if (!kvm->arch.iommu_domain) {
639 r = kvm_iommu_map_guest(kvm);
640 if (r)
641 goto out_list_del;
643 r = kvm_assign_device(kvm, match);
644 if (r)
645 goto out_list_del;
648 out:
649 mutex_unlock(&kvm->lock);
650 up_read(&kvm->slots_lock);
651 return r;
652 out_list_del:
653 list_del(&match->list);
654 pci_release_regions(dev);
655 out_disable:
656 pci_disable_device(dev);
657 out_put:
658 pci_dev_put(dev);
659 out_free:
660 kfree(match);
661 mutex_unlock(&kvm->lock);
662 up_read(&kvm->slots_lock);
663 return r;
665 #endif
667 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
668 static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
669 struct kvm_assigned_pci_dev *assigned_dev)
671 int r = 0;
672 struct kvm_assigned_dev_kernel *match;
674 mutex_lock(&kvm->lock);
676 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
677 assigned_dev->assigned_dev_id);
678 if (!match) {
679 printk(KERN_INFO "%s: device hasn't been assigned before, "
680 "so cannot be deassigned\n", __func__);
681 r = -EINVAL;
682 goto out;
685 if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
686 kvm_deassign_device(kvm, match);
688 kvm_free_assigned_device(kvm, match);
690 out:
691 mutex_unlock(&kvm->lock);
692 return r;
694 #endif
696 static inline int valid_vcpu(int n)
698 return likely(n >= 0 && n < KVM_MAX_VCPUS);
701 inline int kvm_is_mmio_pfn(pfn_t pfn)
703 if (pfn_valid(pfn)) {
704 struct page *page = compound_head(pfn_to_page(pfn));
705 return PageReserved(page);
708 return true;
712 * Switches to specified vcpu, until a matching vcpu_put()
714 void vcpu_load(struct kvm_vcpu *vcpu)
716 int cpu;
718 mutex_lock(&vcpu->mutex);
719 cpu = get_cpu();
720 preempt_notifier_register(&vcpu->preempt_notifier);
721 kvm_arch_vcpu_load(vcpu, cpu);
722 put_cpu();
725 void vcpu_put(struct kvm_vcpu *vcpu)
727 preempt_disable();
728 kvm_arch_vcpu_put(vcpu);
729 preempt_notifier_unregister(&vcpu->preempt_notifier);
730 preempt_enable();
731 mutex_unlock(&vcpu->mutex);
734 static void ack_flush(void *_completed)
738 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
740 int i, cpu, me;
741 cpumask_var_t cpus;
742 bool called = true;
743 struct kvm_vcpu *vcpu;
745 if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
746 cpumask_clear(cpus);
748 me = get_cpu();
749 spin_lock(&kvm->requests_lock);
750 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
751 vcpu = kvm->vcpus[i];
752 if (!vcpu)
753 continue;
754 if (test_and_set_bit(req, &vcpu->requests))
755 continue;
756 cpu = vcpu->cpu;
757 if (cpus != NULL && cpu != -1 && cpu != me)
758 cpumask_set_cpu(cpu, cpus);
760 if (unlikely(cpus == NULL))
761 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
762 else if (!cpumask_empty(cpus))
763 smp_call_function_many(cpus, ack_flush, NULL, 1);
764 else
765 called = false;
766 spin_unlock(&kvm->requests_lock);
767 put_cpu();
768 free_cpumask_var(cpus);
769 return called;
772 void kvm_flush_remote_tlbs(struct kvm *kvm)
774 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
775 ++kvm->stat.remote_tlb_flush;
778 void kvm_reload_remote_mmus(struct kvm *kvm)
780 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
783 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
785 struct page *page;
786 int r;
788 mutex_init(&vcpu->mutex);
789 vcpu->cpu = -1;
790 vcpu->kvm = kvm;
791 vcpu->vcpu_id = id;
792 init_waitqueue_head(&vcpu->wq);
794 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
795 if (!page) {
796 r = -ENOMEM;
797 goto fail;
799 vcpu->run = page_address(page);
801 r = kvm_arch_vcpu_init(vcpu);
802 if (r < 0)
803 goto fail_free_run;
804 return 0;
806 fail_free_run:
807 free_page((unsigned long)vcpu->run);
808 fail:
809 return r;
811 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
813 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
815 kvm_arch_vcpu_uninit(vcpu);
816 free_page((unsigned long)vcpu->run);
818 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
820 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
821 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
823 return container_of(mn, struct kvm, mmu_notifier);
826 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
827 struct mm_struct *mm,
828 unsigned long address)
830 struct kvm *kvm = mmu_notifier_to_kvm(mn);
831 int need_tlb_flush;
834 * When ->invalidate_page runs, the linux pte has been zapped
835 * already but the page is still allocated until
836 * ->invalidate_page returns. So if we increase the sequence
837 * here the kvm page fault will notice if the spte can't be
838 * established because the page is going to be freed. If
839 * instead the kvm page fault establishes the spte before
840 * ->invalidate_page runs, kvm_unmap_hva will release it
841 * before returning.
843 * The sequence increase only need to be seen at spin_unlock
844 * time, and not at spin_lock time.
846 * Increasing the sequence after the spin_unlock would be
847 * unsafe because the kvm page fault could then establish the
848 * pte after kvm_unmap_hva returned, without noticing the page
849 * is going to be freed.
851 spin_lock(&kvm->mmu_lock);
852 kvm->mmu_notifier_seq++;
853 need_tlb_flush = kvm_unmap_hva(kvm, address);
854 spin_unlock(&kvm->mmu_lock);
856 /* we've to flush the tlb before the pages can be freed */
857 if (need_tlb_flush)
858 kvm_flush_remote_tlbs(kvm);
862 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
863 struct mm_struct *mm,
864 unsigned long start,
865 unsigned long end)
867 struct kvm *kvm = mmu_notifier_to_kvm(mn);
868 int need_tlb_flush = 0;
870 spin_lock(&kvm->mmu_lock);
872 * The count increase must become visible at unlock time as no
873 * spte can be established without taking the mmu_lock and
874 * count is also read inside the mmu_lock critical section.
876 kvm->mmu_notifier_count++;
877 for (; start < end; start += PAGE_SIZE)
878 need_tlb_flush |= kvm_unmap_hva(kvm, start);
879 spin_unlock(&kvm->mmu_lock);
881 /* we've to flush the tlb before the pages can be freed */
882 if (need_tlb_flush)
883 kvm_flush_remote_tlbs(kvm);
886 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
887 struct mm_struct *mm,
888 unsigned long start,
889 unsigned long end)
891 struct kvm *kvm = mmu_notifier_to_kvm(mn);
893 spin_lock(&kvm->mmu_lock);
895 * This sequence increase will notify the kvm page fault that
896 * the page that is going to be mapped in the spte could have
897 * been freed.
899 kvm->mmu_notifier_seq++;
901 * The above sequence increase must be visible before the
902 * below count decrease but both values are read by the kvm
903 * page fault under mmu_lock spinlock so we don't need to add
904 * a smb_wmb() here in between the two.
906 kvm->mmu_notifier_count--;
907 spin_unlock(&kvm->mmu_lock);
909 BUG_ON(kvm->mmu_notifier_count < 0);
912 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
913 struct mm_struct *mm,
914 unsigned long address)
916 struct kvm *kvm = mmu_notifier_to_kvm(mn);
917 int young;
919 spin_lock(&kvm->mmu_lock);
920 young = kvm_age_hva(kvm, address);
921 spin_unlock(&kvm->mmu_lock);
923 if (young)
924 kvm_flush_remote_tlbs(kvm);
926 return young;
929 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
930 struct mm_struct *mm)
932 struct kvm *kvm = mmu_notifier_to_kvm(mn);
933 kvm_arch_flush_shadow(kvm);
936 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
937 .invalidate_page = kvm_mmu_notifier_invalidate_page,
938 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
939 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
940 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
941 .release = kvm_mmu_notifier_release,
943 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
945 static struct kvm *kvm_create_vm(void)
947 struct kvm *kvm = kvm_arch_create_vm();
948 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
949 struct page *page;
950 #endif
952 if (IS_ERR(kvm))
953 goto out;
954 #ifdef CONFIG_HAVE_KVM_IRQCHIP
955 INIT_LIST_HEAD(&kvm->irq_routing);
956 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
957 #endif
959 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
960 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
961 if (!page) {
962 kfree(kvm);
963 return ERR_PTR(-ENOMEM);
965 kvm->coalesced_mmio_ring =
966 (struct kvm_coalesced_mmio_ring *)page_address(page);
967 #endif
969 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
971 int err;
972 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
973 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
974 if (err) {
975 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
976 put_page(page);
977 #endif
978 kfree(kvm);
979 return ERR_PTR(err);
982 #endif
984 kvm->mm = current->mm;
985 atomic_inc(&kvm->mm->mm_count);
986 spin_lock_init(&kvm->mmu_lock);
987 spin_lock_init(&kvm->requests_lock);
988 kvm_io_bus_init(&kvm->pio_bus);
989 mutex_init(&kvm->lock);
990 kvm_io_bus_init(&kvm->mmio_bus);
991 init_rwsem(&kvm->slots_lock);
992 atomic_set(&kvm->users_count, 1);
993 spin_lock(&kvm_lock);
994 list_add(&kvm->vm_list, &vm_list);
995 spin_unlock(&kvm_lock);
996 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
997 kvm_coalesced_mmio_init(kvm);
998 #endif
999 out:
1000 return kvm;
1004 * Free any memory in @free but not in @dont.
1006 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
1007 struct kvm_memory_slot *dont)
1009 if (!dont || free->rmap != dont->rmap)
1010 vfree(free->rmap);
1012 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
1013 vfree(free->dirty_bitmap);
1015 if (!dont || free->lpage_info != dont->lpage_info)
1016 vfree(free->lpage_info);
1018 free->npages = 0;
1019 free->dirty_bitmap = NULL;
1020 free->rmap = NULL;
1021 free->lpage_info = NULL;
1024 void kvm_free_physmem(struct kvm *kvm)
1026 int i;
1028 for (i = 0; i < kvm->nmemslots; ++i)
1029 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
1032 static void kvm_destroy_vm(struct kvm *kvm)
1034 struct mm_struct *mm = kvm->mm;
1036 kvm_arch_sync_events(kvm);
1037 spin_lock(&kvm_lock);
1038 list_del(&kvm->vm_list);
1039 spin_unlock(&kvm_lock);
1040 kvm_free_irq_routing(kvm);
1041 kvm_io_bus_destroy(&kvm->pio_bus);
1042 kvm_io_bus_destroy(&kvm->mmio_bus);
1043 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1044 if (kvm->coalesced_mmio_ring != NULL)
1045 free_page((unsigned long)kvm->coalesced_mmio_ring);
1046 #endif
1047 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1048 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1049 #else
1050 kvm_arch_flush_shadow(kvm);
1051 #endif
1052 kvm_arch_destroy_vm(kvm);
1053 mmdrop(mm);
1056 void kvm_get_kvm(struct kvm *kvm)
1058 atomic_inc(&kvm->users_count);
1060 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1062 void kvm_put_kvm(struct kvm *kvm)
1064 if (atomic_dec_and_test(&kvm->users_count))
1065 kvm_destroy_vm(kvm);
1067 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1070 static int kvm_vm_release(struct inode *inode, struct file *filp)
1072 struct kvm *kvm = filp->private_data;
1074 kvm_put_kvm(kvm);
1075 return 0;
1079 * Allocate some memory and give it an address in the guest physical address
1080 * space.
1082 * Discontiguous memory is allowed, mostly for framebuffers.
1084 * Must be called holding mmap_sem for write.
1086 int __kvm_set_memory_region(struct kvm *kvm,
1087 struct kvm_userspace_memory_region *mem,
1088 int user_alloc)
1090 int r;
1091 gfn_t base_gfn;
1092 unsigned long npages, ugfn;
1093 unsigned long largepages, i;
1094 struct kvm_memory_slot *memslot;
1095 struct kvm_memory_slot old, new;
1097 r = -EINVAL;
1098 /* General sanity checks */
1099 if (mem->memory_size & (PAGE_SIZE - 1))
1100 goto out;
1101 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1102 goto out;
1103 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
1104 goto out;
1105 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
1106 goto out;
1107 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1108 goto out;
1110 memslot = &kvm->memslots[mem->slot];
1111 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1112 npages = mem->memory_size >> PAGE_SHIFT;
1114 if (!npages)
1115 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1117 new = old = *memslot;
1119 new.base_gfn = base_gfn;
1120 new.npages = npages;
1121 new.flags = mem->flags;
1123 /* Disallow changing a memory slot's size. */
1124 r = -EINVAL;
1125 if (npages && old.npages && npages != old.npages)
1126 goto out_free;
1128 /* Check for overlaps */
1129 r = -EEXIST;
1130 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1131 struct kvm_memory_slot *s = &kvm->memslots[i];
1133 if (s == memslot || !s->npages)
1134 continue;
1135 if (!((base_gfn + npages <= s->base_gfn) ||
1136 (base_gfn >= s->base_gfn + s->npages)))
1137 goto out_free;
1140 /* Free page dirty bitmap if unneeded */
1141 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1142 new.dirty_bitmap = NULL;
1144 r = -ENOMEM;
1146 /* Allocate if a slot is being created */
1147 #ifndef CONFIG_S390
1148 if (npages && !new.rmap) {
1149 new.rmap = vmalloc(npages * sizeof(struct page *));
1151 if (!new.rmap)
1152 goto out_free;
1154 memset(new.rmap, 0, npages * sizeof(*new.rmap));
1156 new.user_alloc = user_alloc;
1158 * hva_to_rmmap() serialzies with the mmu_lock and to be
1159 * safe it has to ignore memslots with !user_alloc &&
1160 * !userspace_addr.
1162 if (user_alloc)
1163 new.userspace_addr = mem->userspace_addr;
1164 else
1165 new.userspace_addr = 0;
1167 if (npages && !new.lpage_info) {
1168 largepages = 1 + (base_gfn + npages - 1) / KVM_PAGES_PER_HPAGE;
1169 largepages -= base_gfn / KVM_PAGES_PER_HPAGE;
1171 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
1173 if (!new.lpage_info)
1174 goto out_free;
1176 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
1178 if (base_gfn % KVM_PAGES_PER_HPAGE)
1179 new.lpage_info[0].write_count = 1;
1180 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
1181 new.lpage_info[largepages-1].write_count = 1;
1182 ugfn = new.userspace_addr >> PAGE_SHIFT;
1184 * If the gfn and userspace address are not aligned wrt each
1185 * other, disable large page support for this slot
1187 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE - 1))
1188 for (i = 0; i < largepages; ++i)
1189 new.lpage_info[i].write_count = 1;
1192 /* Allocate page dirty bitmap if needed */
1193 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1194 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1196 new.dirty_bitmap = vmalloc(dirty_bytes);
1197 if (!new.dirty_bitmap)
1198 goto out_free;
1199 memset(new.dirty_bitmap, 0, dirty_bytes);
1200 if (old.npages)
1201 kvm_arch_flush_shadow(kvm);
1203 #endif /* not defined CONFIG_S390 */
1205 if (!npages)
1206 kvm_arch_flush_shadow(kvm);
1208 spin_lock(&kvm->mmu_lock);
1209 if (mem->slot >= kvm->nmemslots)
1210 kvm->nmemslots = mem->slot + 1;
1212 *memslot = new;
1213 spin_unlock(&kvm->mmu_lock);
1215 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1216 if (r) {
1217 spin_lock(&kvm->mmu_lock);
1218 *memslot = old;
1219 spin_unlock(&kvm->mmu_lock);
1220 goto out_free;
1223 kvm_free_physmem_slot(&old, npages ? &new : NULL);
1224 /* Slot deletion case: we have to update the current slot */
1225 spin_lock(&kvm->mmu_lock);
1226 if (!npages)
1227 *memslot = old;
1228 spin_unlock(&kvm->mmu_lock);
1229 #ifdef CONFIG_DMAR
1230 /* map the pages in iommu page table */
1231 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1232 if (r)
1233 goto out;
1234 #endif
1235 return 0;
1237 out_free:
1238 kvm_free_physmem_slot(&new, &old);
1239 out:
1240 return r;
1243 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1245 int kvm_set_memory_region(struct kvm *kvm,
1246 struct kvm_userspace_memory_region *mem,
1247 int user_alloc)
1249 int r;
1251 down_write(&kvm->slots_lock);
1252 r = __kvm_set_memory_region(kvm, mem, user_alloc);
1253 up_write(&kvm->slots_lock);
1254 return r;
1256 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1258 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1259 struct
1260 kvm_userspace_memory_region *mem,
1261 int user_alloc)
1263 if (mem->slot >= KVM_MEMORY_SLOTS)
1264 return -EINVAL;
1265 return kvm_set_memory_region(kvm, mem, user_alloc);
1268 int kvm_get_dirty_log(struct kvm *kvm,
1269 struct kvm_dirty_log *log, int *is_dirty)
1271 struct kvm_memory_slot *memslot;
1272 int r, i;
1273 int n;
1274 unsigned long any = 0;
1276 r = -EINVAL;
1277 if (log->slot >= KVM_MEMORY_SLOTS)
1278 goto out;
1280 memslot = &kvm->memslots[log->slot];
1281 r = -ENOENT;
1282 if (!memslot->dirty_bitmap)
1283 goto out;
1285 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1287 for (i = 0; !any && i < n/sizeof(long); ++i)
1288 any = memslot->dirty_bitmap[i];
1290 r = -EFAULT;
1291 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1292 goto out;
1294 if (any)
1295 *is_dirty = 1;
1297 r = 0;
1298 out:
1299 return r;
1302 int is_error_page(struct page *page)
1304 return page == bad_page;
1306 EXPORT_SYMBOL_GPL(is_error_page);
1308 int is_error_pfn(pfn_t pfn)
1310 return pfn == bad_pfn;
1312 EXPORT_SYMBOL_GPL(is_error_pfn);
1314 static inline unsigned long bad_hva(void)
1316 return PAGE_OFFSET;
1319 int kvm_is_error_hva(unsigned long addr)
1321 return addr == bad_hva();
1323 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1325 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1327 int i;
1329 for (i = 0; i < kvm->nmemslots; ++i) {
1330 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1332 if (gfn >= memslot->base_gfn
1333 && gfn < memslot->base_gfn + memslot->npages)
1334 return memslot;
1336 return NULL;
1338 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1340 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1342 gfn = unalias_gfn(kvm, gfn);
1343 return gfn_to_memslot_unaliased(kvm, gfn);
1346 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1348 int i;
1350 gfn = unalias_gfn(kvm, gfn);
1351 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1352 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1354 if (gfn >= memslot->base_gfn
1355 && gfn < memslot->base_gfn + memslot->npages)
1356 return 1;
1358 return 0;
1360 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1362 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1364 struct kvm_memory_slot *slot;
1366 gfn = unalias_gfn(kvm, gfn);
1367 slot = gfn_to_memslot_unaliased(kvm, gfn);
1368 if (!slot)
1369 return bad_hva();
1370 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1372 EXPORT_SYMBOL_GPL(gfn_to_hva);
1374 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1376 struct page *page[1];
1377 unsigned long addr;
1378 int npages;
1379 pfn_t pfn;
1381 might_sleep();
1383 addr = gfn_to_hva(kvm, gfn);
1384 if (kvm_is_error_hva(addr)) {
1385 get_page(bad_page);
1386 return page_to_pfn(bad_page);
1389 npages = get_user_pages_fast(addr, 1, 1, page);
1391 if (unlikely(npages != 1)) {
1392 struct vm_area_struct *vma;
1394 down_read(&current->mm->mmap_sem);
1395 vma = find_vma(current->mm, addr);
1397 if (vma == NULL || addr < vma->vm_start ||
1398 !(vma->vm_flags & VM_PFNMAP)) {
1399 up_read(&current->mm->mmap_sem);
1400 get_page(bad_page);
1401 return page_to_pfn(bad_page);
1404 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1405 up_read(&current->mm->mmap_sem);
1406 BUG_ON(!kvm_is_mmio_pfn(pfn));
1407 } else
1408 pfn = page_to_pfn(page[0]);
1410 return pfn;
1413 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1415 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1417 pfn_t pfn;
1419 pfn = gfn_to_pfn(kvm, gfn);
1420 if (!kvm_is_mmio_pfn(pfn))
1421 return pfn_to_page(pfn);
1423 WARN_ON(kvm_is_mmio_pfn(pfn));
1425 get_page(bad_page);
1426 return bad_page;
1429 EXPORT_SYMBOL_GPL(gfn_to_page);
1431 void kvm_release_page_clean(struct page *page)
1433 kvm_release_pfn_clean(page_to_pfn(page));
1435 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1437 void kvm_release_pfn_clean(pfn_t pfn)
1439 if (!kvm_is_mmio_pfn(pfn))
1440 put_page(pfn_to_page(pfn));
1442 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1444 void kvm_release_page_dirty(struct page *page)
1446 kvm_release_pfn_dirty(page_to_pfn(page));
1448 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1450 void kvm_release_pfn_dirty(pfn_t pfn)
1452 kvm_set_pfn_dirty(pfn);
1453 kvm_release_pfn_clean(pfn);
1455 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1457 void kvm_set_page_dirty(struct page *page)
1459 kvm_set_pfn_dirty(page_to_pfn(page));
1461 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1463 void kvm_set_pfn_dirty(pfn_t pfn)
1465 if (!kvm_is_mmio_pfn(pfn)) {
1466 struct page *page = pfn_to_page(pfn);
1467 if (!PageReserved(page))
1468 SetPageDirty(page);
1471 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1473 void kvm_set_pfn_accessed(pfn_t pfn)
1475 if (!kvm_is_mmio_pfn(pfn))
1476 mark_page_accessed(pfn_to_page(pfn));
1478 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1480 void kvm_get_pfn(pfn_t pfn)
1482 if (!kvm_is_mmio_pfn(pfn))
1483 get_page(pfn_to_page(pfn));
1485 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1487 static int next_segment(unsigned long len, int offset)
1489 if (len > PAGE_SIZE - offset)
1490 return PAGE_SIZE - offset;
1491 else
1492 return len;
1495 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1496 int len)
1498 int r;
1499 unsigned long addr;
1501 addr = gfn_to_hva(kvm, gfn);
1502 if (kvm_is_error_hva(addr))
1503 return -EFAULT;
1504 r = copy_from_user(data, (void __user *)addr + offset, len);
1505 if (r)
1506 return -EFAULT;
1507 return 0;
1509 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1511 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1513 gfn_t gfn = gpa >> PAGE_SHIFT;
1514 int seg;
1515 int offset = offset_in_page(gpa);
1516 int ret;
1518 while ((seg = next_segment(len, offset)) != 0) {
1519 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1520 if (ret < 0)
1521 return ret;
1522 offset = 0;
1523 len -= seg;
1524 data += seg;
1525 ++gfn;
1527 return 0;
1529 EXPORT_SYMBOL_GPL(kvm_read_guest);
1531 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1532 unsigned long len)
1534 int r;
1535 unsigned long addr;
1536 gfn_t gfn = gpa >> PAGE_SHIFT;
1537 int offset = offset_in_page(gpa);
1539 addr = gfn_to_hva(kvm, gfn);
1540 if (kvm_is_error_hva(addr))
1541 return -EFAULT;
1542 pagefault_disable();
1543 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1544 pagefault_enable();
1545 if (r)
1546 return -EFAULT;
1547 return 0;
1549 EXPORT_SYMBOL(kvm_read_guest_atomic);
1551 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1552 int offset, int len)
1554 int r;
1555 unsigned long addr;
1557 addr = gfn_to_hva(kvm, gfn);
1558 if (kvm_is_error_hva(addr))
1559 return -EFAULT;
1560 r = copy_to_user((void __user *)addr + offset, data, len);
1561 if (r)
1562 return -EFAULT;
1563 mark_page_dirty(kvm, gfn);
1564 return 0;
1566 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1568 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1569 unsigned long len)
1571 gfn_t gfn = gpa >> PAGE_SHIFT;
1572 int seg;
1573 int offset = offset_in_page(gpa);
1574 int ret;
1576 while ((seg = next_segment(len, offset)) != 0) {
1577 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1578 if (ret < 0)
1579 return ret;
1580 offset = 0;
1581 len -= seg;
1582 data += seg;
1583 ++gfn;
1585 return 0;
1588 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1590 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1592 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1594 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1596 gfn_t gfn = gpa >> PAGE_SHIFT;
1597 int seg;
1598 int offset = offset_in_page(gpa);
1599 int ret;
1601 while ((seg = next_segment(len, offset)) != 0) {
1602 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1603 if (ret < 0)
1604 return ret;
1605 offset = 0;
1606 len -= seg;
1607 ++gfn;
1609 return 0;
1611 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1613 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1615 struct kvm_memory_slot *memslot;
1617 gfn = unalias_gfn(kvm, gfn);
1618 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1619 if (memslot && memslot->dirty_bitmap) {
1620 unsigned long rel_gfn = gfn - memslot->base_gfn;
1622 /* avoid RMW */
1623 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1624 set_bit(rel_gfn, memslot->dirty_bitmap);
1629 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1631 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1633 DEFINE_WAIT(wait);
1635 for (;;) {
1636 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1638 if ((kvm_arch_interrupt_allowed(vcpu) &&
1639 kvm_cpu_has_interrupt(vcpu)) ||
1640 kvm_arch_vcpu_runnable(vcpu)) {
1641 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1642 break;
1644 if (kvm_cpu_has_pending_timer(vcpu))
1645 break;
1646 if (signal_pending(current))
1647 break;
1649 vcpu_put(vcpu);
1650 schedule();
1651 vcpu_load(vcpu);
1654 finish_wait(&vcpu->wq, &wait);
1657 void kvm_resched(struct kvm_vcpu *vcpu)
1659 if (!need_resched())
1660 return;
1661 cond_resched();
1663 EXPORT_SYMBOL_GPL(kvm_resched);
1665 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1667 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1668 struct page *page;
1670 if (vmf->pgoff == 0)
1671 page = virt_to_page(vcpu->run);
1672 #ifdef CONFIG_X86
1673 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1674 page = virt_to_page(vcpu->arch.pio_data);
1675 #endif
1676 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1677 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1678 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1679 #endif
1680 else
1681 return VM_FAULT_SIGBUS;
1682 get_page(page);
1683 vmf->page = page;
1684 return 0;
1687 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1688 .fault = kvm_vcpu_fault,
1691 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1693 vma->vm_ops = &kvm_vcpu_vm_ops;
1694 return 0;
1697 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1699 struct kvm_vcpu *vcpu = filp->private_data;
1701 kvm_put_kvm(vcpu->kvm);
1702 return 0;
1705 static struct file_operations kvm_vcpu_fops = {
1706 .release = kvm_vcpu_release,
1707 .unlocked_ioctl = kvm_vcpu_ioctl,
1708 .compat_ioctl = kvm_vcpu_ioctl,
1709 .mmap = kvm_vcpu_mmap,
1713 * Allocates an inode for the vcpu.
1715 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1717 int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1718 if (fd < 0)
1719 kvm_put_kvm(vcpu->kvm);
1720 return fd;
1724 * Creates some virtual cpus. Good luck creating more than one.
1726 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1728 int r;
1729 struct kvm_vcpu *vcpu;
1731 if (!valid_vcpu(n))
1732 return -EINVAL;
1734 vcpu = kvm_arch_vcpu_create(kvm, n);
1735 if (IS_ERR(vcpu))
1736 return PTR_ERR(vcpu);
1738 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1740 r = kvm_arch_vcpu_setup(vcpu);
1741 if (r)
1742 return r;
1744 mutex_lock(&kvm->lock);
1745 if (kvm->vcpus[n]) {
1746 r = -EEXIST;
1747 goto vcpu_destroy;
1749 kvm->vcpus[n] = vcpu;
1750 mutex_unlock(&kvm->lock);
1752 /* Now it's all set up, let userspace reach it */
1753 kvm_get_kvm(kvm);
1754 r = create_vcpu_fd(vcpu);
1755 if (r < 0)
1756 goto unlink;
1757 return r;
1759 unlink:
1760 mutex_lock(&kvm->lock);
1761 kvm->vcpus[n] = NULL;
1762 vcpu_destroy:
1763 mutex_unlock(&kvm->lock);
1764 kvm_arch_vcpu_destroy(vcpu);
1765 return r;
1768 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1770 if (sigset) {
1771 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1772 vcpu->sigset_active = 1;
1773 vcpu->sigset = *sigset;
1774 } else
1775 vcpu->sigset_active = 0;
1776 return 0;
1779 #ifdef __KVM_HAVE_MSIX
1780 static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
1781 struct kvm_assigned_msix_nr *entry_nr)
1783 int r = 0;
1784 struct kvm_assigned_dev_kernel *adev;
1786 mutex_lock(&kvm->lock);
1788 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1789 entry_nr->assigned_dev_id);
1790 if (!adev) {
1791 r = -EINVAL;
1792 goto msix_nr_out;
1795 if (adev->entries_nr == 0) {
1796 adev->entries_nr = entry_nr->entry_nr;
1797 if (adev->entries_nr == 0 ||
1798 adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
1799 r = -EINVAL;
1800 goto msix_nr_out;
1803 adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
1804 entry_nr->entry_nr,
1805 GFP_KERNEL);
1806 if (!adev->host_msix_entries) {
1807 r = -ENOMEM;
1808 goto msix_nr_out;
1810 adev->guest_msix_entries = kzalloc(
1811 sizeof(struct kvm_guest_msix_entry) *
1812 entry_nr->entry_nr, GFP_KERNEL);
1813 if (!adev->guest_msix_entries) {
1814 kfree(adev->host_msix_entries);
1815 r = -ENOMEM;
1816 goto msix_nr_out;
1818 } else /* Not allowed set MSI-X number twice */
1819 r = -EINVAL;
1820 msix_nr_out:
1821 mutex_unlock(&kvm->lock);
1822 return r;
1825 static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
1826 struct kvm_assigned_msix_entry *entry)
1828 int r = 0, i;
1829 struct kvm_assigned_dev_kernel *adev;
1831 mutex_lock(&kvm->lock);
1833 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1834 entry->assigned_dev_id);
1836 if (!adev) {
1837 r = -EINVAL;
1838 goto msix_entry_out;
1841 for (i = 0; i < adev->entries_nr; i++)
1842 if (adev->guest_msix_entries[i].vector == 0 ||
1843 adev->guest_msix_entries[i].entry == entry->entry) {
1844 adev->guest_msix_entries[i].entry = entry->entry;
1845 adev->guest_msix_entries[i].vector = entry->gsi;
1846 adev->host_msix_entries[i].entry = entry->entry;
1847 break;
1849 if (i == adev->entries_nr) {
1850 r = -ENOSPC;
1851 goto msix_entry_out;
1854 msix_entry_out:
1855 mutex_unlock(&kvm->lock);
1857 return r;
1859 #endif
1861 static long kvm_vcpu_ioctl(struct file *filp,
1862 unsigned int ioctl, unsigned long arg)
1864 struct kvm_vcpu *vcpu = filp->private_data;
1865 void __user *argp = (void __user *)arg;
1866 int r;
1867 struct kvm_fpu *fpu = NULL;
1868 struct kvm_sregs *kvm_sregs = NULL;
1870 if (vcpu->kvm->mm != current->mm)
1871 return -EIO;
1872 switch (ioctl) {
1873 case KVM_RUN:
1874 r = -EINVAL;
1875 if (arg)
1876 goto out;
1877 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1878 break;
1879 case KVM_GET_REGS: {
1880 struct kvm_regs *kvm_regs;
1882 r = -ENOMEM;
1883 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1884 if (!kvm_regs)
1885 goto out;
1886 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1887 if (r)
1888 goto out_free1;
1889 r = -EFAULT;
1890 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1891 goto out_free1;
1892 r = 0;
1893 out_free1:
1894 kfree(kvm_regs);
1895 break;
1897 case KVM_SET_REGS: {
1898 struct kvm_regs *kvm_regs;
1900 r = -ENOMEM;
1901 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1902 if (!kvm_regs)
1903 goto out;
1904 r = -EFAULT;
1905 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1906 goto out_free2;
1907 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1908 if (r)
1909 goto out_free2;
1910 r = 0;
1911 out_free2:
1912 kfree(kvm_regs);
1913 break;
1915 case KVM_GET_SREGS: {
1916 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1917 r = -ENOMEM;
1918 if (!kvm_sregs)
1919 goto out;
1920 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1921 if (r)
1922 goto out;
1923 r = -EFAULT;
1924 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1925 goto out;
1926 r = 0;
1927 break;
1929 case KVM_SET_SREGS: {
1930 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1931 r = -ENOMEM;
1932 if (!kvm_sregs)
1933 goto out;
1934 r = -EFAULT;
1935 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1936 goto out;
1937 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1938 if (r)
1939 goto out;
1940 r = 0;
1941 break;
1943 case KVM_GET_MP_STATE: {
1944 struct kvm_mp_state mp_state;
1946 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1947 if (r)
1948 goto out;
1949 r = -EFAULT;
1950 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1951 goto out;
1952 r = 0;
1953 break;
1955 case KVM_SET_MP_STATE: {
1956 struct kvm_mp_state mp_state;
1958 r = -EFAULT;
1959 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1960 goto out;
1961 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1962 if (r)
1963 goto out;
1964 r = 0;
1965 break;
1967 case KVM_TRANSLATE: {
1968 struct kvm_translation tr;
1970 r = -EFAULT;
1971 if (copy_from_user(&tr, argp, sizeof tr))
1972 goto out;
1973 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1974 if (r)
1975 goto out;
1976 r = -EFAULT;
1977 if (copy_to_user(argp, &tr, sizeof tr))
1978 goto out;
1979 r = 0;
1980 break;
1982 case KVM_SET_GUEST_DEBUG: {
1983 struct kvm_guest_debug dbg;
1985 r = -EFAULT;
1986 if (copy_from_user(&dbg, argp, sizeof dbg))
1987 goto out;
1988 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1989 if (r)
1990 goto out;
1991 r = 0;
1992 break;
1994 case KVM_SET_SIGNAL_MASK: {
1995 struct kvm_signal_mask __user *sigmask_arg = argp;
1996 struct kvm_signal_mask kvm_sigmask;
1997 sigset_t sigset, *p;
1999 p = NULL;
2000 if (argp) {
2001 r = -EFAULT;
2002 if (copy_from_user(&kvm_sigmask, argp,
2003 sizeof kvm_sigmask))
2004 goto out;
2005 r = -EINVAL;
2006 if (kvm_sigmask.len != sizeof sigset)
2007 goto out;
2008 r = -EFAULT;
2009 if (copy_from_user(&sigset, sigmask_arg->sigset,
2010 sizeof sigset))
2011 goto out;
2012 p = &sigset;
2014 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2015 break;
2017 case KVM_GET_FPU: {
2018 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2019 r = -ENOMEM;
2020 if (!fpu)
2021 goto out;
2022 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2023 if (r)
2024 goto out;
2025 r = -EFAULT;
2026 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2027 goto out;
2028 r = 0;
2029 break;
2031 case KVM_SET_FPU: {
2032 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2033 r = -ENOMEM;
2034 if (!fpu)
2035 goto out;
2036 r = -EFAULT;
2037 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
2038 goto out;
2039 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2040 if (r)
2041 goto out;
2042 r = 0;
2043 break;
2045 default:
2046 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2048 out:
2049 kfree(fpu);
2050 kfree(kvm_sregs);
2051 return r;
2054 static long kvm_vm_ioctl(struct file *filp,
2055 unsigned int ioctl, unsigned long arg)
2057 struct kvm *kvm = filp->private_data;
2058 void __user *argp = (void __user *)arg;
2059 int r;
2061 if (kvm->mm != current->mm)
2062 return -EIO;
2063 switch (ioctl) {
2064 case KVM_CREATE_VCPU:
2065 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2066 if (r < 0)
2067 goto out;
2068 break;
2069 case KVM_SET_USER_MEMORY_REGION: {
2070 struct kvm_userspace_memory_region kvm_userspace_mem;
2072 r = -EFAULT;
2073 if (copy_from_user(&kvm_userspace_mem, argp,
2074 sizeof kvm_userspace_mem))
2075 goto out;
2077 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2078 if (r)
2079 goto out;
2080 break;
2082 case KVM_GET_DIRTY_LOG: {
2083 struct kvm_dirty_log log;
2085 r = -EFAULT;
2086 if (copy_from_user(&log, argp, sizeof log))
2087 goto out;
2088 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2089 if (r)
2090 goto out;
2091 break;
2093 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2094 case KVM_REGISTER_COALESCED_MMIO: {
2095 struct kvm_coalesced_mmio_zone zone;
2096 r = -EFAULT;
2097 if (copy_from_user(&zone, argp, sizeof zone))
2098 goto out;
2099 r = -ENXIO;
2100 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2101 if (r)
2102 goto out;
2103 r = 0;
2104 break;
2106 case KVM_UNREGISTER_COALESCED_MMIO: {
2107 struct kvm_coalesced_mmio_zone zone;
2108 r = -EFAULT;
2109 if (copy_from_user(&zone, argp, sizeof zone))
2110 goto out;
2111 r = -ENXIO;
2112 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2113 if (r)
2114 goto out;
2115 r = 0;
2116 break;
2118 #endif
2119 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
2120 case KVM_ASSIGN_PCI_DEVICE: {
2121 struct kvm_assigned_pci_dev assigned_dev;
2123 r = -EFAULT;
2124 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2125 goto out;
2126 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
2127 if (r)
2128 goto out;
2129 break;
2131 case KVM_ASSIGN_IRQ: {
2132 r = -EOPNOTSUPP;
2133 break;
2135 #ifdef KVM_CAP_ASSIGN_DEV_IRQ
2136 case KVM_ASSIGN_DEV_IRQ: {
2137 struct kvm_assigned_irq assigned_irq;
2139 r = -EFAULT;
2140 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2141 goto out;
2142 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
2143 if (r)
2144 goto out;
2145 break;
2147 case KVM_DEASSIGN_DEV_IRQ: {
2148 struct kvm_assigned_irq assigned_irq;
2150 r = -EFAULT;
2151 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2152 goto out;
2153 r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
2154 if (r)
2155 goto out;
2156 break;
2158 #endif
2159 #endif
2160 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
2161 case KVM_DEASSIGN_PCI_DEVICE: {
2162 struct kvm_assigned_pci_dev assigned_dev;
2164 r = -EFAULT;
2165 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2166 goto out;
2167 r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
2168 if (r)
2169 goto out;
2170 break;
2172 #endif
2173 #ifdef KVM_CAP_IRQ_ROUTING
2174 case KVM_SET_GSI_ROUTING: {
2175 struct kvm_irq_routing routing;
2176 struct kvm_irq_routing __user *urouting;
2177 struct kvm_irq_routing_entry *entries;
2179 r = -EFAULT;
2180 if (copy_from_user(&routing, argp, sizeof(routing)))
2181 goto out;
2182 r = -EINVAL;
2183 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2184 goto out;
2185 if (routing.flags)
2186 goto out;
2187 r = -ENOMEM;
2188 entries = vmalloc(routing.nr * sizeof(*entries));
2189 if (!entries)
2190 goto out;
2191 r = -EFAULT;
2192 urouting = argp;
2193 if (copy_from_user(entries, urouting->entries,
2194 routing.nr * sizeof(*entries)))
2195 goto out_free_irq_routing;
2196 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2197 routing.flags);
2198 out_free_irq_routing:
2199 vfree(entries);
2200 break;
2202 #ifdef __KVM_HAVE_MSIX
2203 case KVM_ASSIGN_SET_MSIX_NR: {
2204 struct kvm_assigned_msix_nr entry_nr;
2205 r = -EFAULT;
2206 if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
2207 goto out;
2208 r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
2209 if (r)
2210 goto out;
2211 break;
2213 case KVM_ASSIGN_SET_MSIX_ENTRY: {
2214 struct kvm_assigned_msix_entry entry;
2215 r = -EFAULT;
2216 if (copy_from_user(&entry, argp, sizeof entry))
2217 goto out;
2218 r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
2219 if (r)
2220 goto out;
2221 break;
2223 #endif
2224 #endif /* KVM_CAP_IRQ_ROUTING */
2225 default:
2226 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2228 out:
2229 return r;
2232 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2234 struct page *page[1];
2235 unsigned long addr;
2236 int npages;
2237 gfn_t gfn = vmf->pgoff;
2238 struct kvm *kvm = vma->vm_file->private_data;
2240 addr = gfn_to_hva(kvm, gfn);
2241 if (kvm_is_error_hva(addr))
2242 return VM_FAULT_SIGBUS;
2244 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2245 NULL);
2246 if (unlikely(npages != 1))
2247 return VM_FAULT_SIGBUS;
2249 vmf->page = page[0];
2250 return 0;
2253 static struct vm_operations_struct kvm_vm_vm_ops = {
2254 .fault = kvm_vm_fault,
2257 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2259 vma->vm_ops = &kvm_vm_vm_ops;
2260 return 0;
2263 static struct file_operations kvm_vm_fops = {
2264 .release = kvm_vm_release,
2265 .unlocked_ioctl = kvm_vm_ioctl,
2266 .compat_ioctl = kvm_vm_ioctl,
2267 .mmap = kvm_vm_mmap,
2270 static int kvm_dev_ioctl_create_vm(void)
2272 int fd;
2273 struct kvm *kvm;
2275 kvm = kvm_create_vm();
2276 if (IS_ERR(kvm))
2277 return PTR_ERR(kvm);
2278 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
2279 if (fd < 0)
2280 kvm_put_kvm(kvm);
2282 return fd;
2285 static long kvm_dev_ioctl_check_extension_generic(long arg)
2287 switch (arg) {
2288 case KVM_CAP_USER_MEMORY:
2289 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2290 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2291 return 1;
2292 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2293 case KVM_CAP_IRQ_ROUTING:
2294 return KVM_MAX_IRQ_ROUTES;
2295 #endif
2296 default:
2297 break;
2299 return kvm_dev_ioctl_check_extension(arg);
2302 static long kvm_dev_ioctl(struct file *filp,
2303 unsigned int ioctl, unsigned long arg)
2305 long r = -EINVAL;
2307 switch (ioctl) {
2308 case KVM_GET_API_VERSION:
2309 r = -EINVAL;
2310 if (arg)
2311 goto out;
2312 r = KVM_API_VERSION;
2313 break;
2314 case KVM_CREATE_VM:
2315 r = -EINVAL;
2316 if (arg)
2317 goto out;
2318 r = kvm_dev_ioctl_create_vm();
2319 break;
2320 case KVM_CHECK_EXTENSION:
2321 r = kvm_dev_ioctl_check_extension_generic(arg);
2322 break;
2323 case KVM_GET_VCPU_MMAP_SIZE:
2324 r = -EINVAL;
2325 if (arg)
2326 goto out;
2327 r = PAGE_SIZE; /* struct kvm_run */
2328 #ifdef CONFIG_X86
2329 r += PAGE_SIZE; /* pio data page */
2330 #endif
2331 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2332 r += PAGE_SIZE; /* coalesced mmio ring page */
2333 #endif
2334 break;
2335 case KVM_TRACE_ENABLE:
2336 case KVM_TRACE_PAUSE:
2337 case KVM_TRACE_DISABLE:
2338 r = kvm_trace_ioctl(ioctl, arg);
2339 break;
2340 default:
2341 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2343 out:
2344 return r;
2347 static struct file_operations kvm_chardev_ops = {
2348 .unlocked_ioctl = kvm_dev_ioctl,
2349 .compat_ioctl = kvm_dev_ioctl,
2352 static struct miscdevice kvm_dev = {
2353 KVM_MINOR,
2354 "kvm",
2355 &kvm_chardev_ops,
2358 static void hardware_enable(void *junk)
2360 int cpu = raw_smp_processor_id();
2362 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2363 return;
2364 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2365 kvm_arch_hardware_enable(NULL);
2368 static void hardware_disable(void *junk)
2370 int cpu = raw_smp_processor_id();
2372 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2373 return;
2374 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2375 kvm_arch_hardware_disable(NULL);
2378 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2379 void *v)
2381 int cpu = (long)v;
2383 val &= ~CPU_TASKS_FROZEN;
2384 switch (val) {
2385 case CPU_DYING:
2386 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2387 cpu);
2388 hardware_disable(NULL);
2389 break;
2390 case CPU_UP_CANCELED:
2391 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2392 cpu);
2393 smp_call_function_single(cpu, hardware_disable, NULL, 1);
2394 break;
2395 case CPU_ONLINE:
2396 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2397 cpu);
2398 smp_call_function_single(cpu, hardware_enable, NULL, 1);
2399 break;
2401 return NOTIFY_OK;
2405 asmlinkage void kvm_handle_fault_on_reboot(void)
2407 if (kvm_rebooting)
2408 /* spin while reset goes on */
2409 while (true)
2411 /* Fault while not rebooting. We want the trace. */
2412 BUG();
2414 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2416 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2417 void *v)
2420 * Some (well, at least mine) BIOSes hang on reboot if
2421 * in vmx root mode.
2423 * And Intel TXT required VMX off for all cpu when system shutdown.
2425 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2426 kvm_rebooting = true;
2427 on_each_cpu(hardware_disable, NULL, 1);
2428 return NOTIFY_OK;
2431 static struct notifier_block kvm_reboot_notifier = {
2432 .notifier_call = kvm_reboot,
2433 .priority = 0,
2436 void kvm_io_bus_init(struct kvm_io_bus *bus)
2438 memset(bus, 0, sizeof(*bus));
2441 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2443 int i;
2445 for (i = 0; i < bus->dev_count; i++) {
2446 struct kvm_io_device *pos = bus->devs[i];
2448 kvm_iodevice_destructor(pos);
2452 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2453 gpa_t addr, int len, int is_write)
2455 int i;
2457 for (i = 0; i < bus->dev_count; i++) {
2458 struct kvm_io_device *pos = bus->devs[i];
2460 if (pos->in_range(pos, addr, len, is_write))
2461 return pos;
2464 return NULL;
2467 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2469 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2471 bus->devs[bus->dev_count++] = dev;
2474 static struct notifier_block kvm_cpu_notifier = {
2475 .notifier_call = kvm_cpu_hotplug,
2476 .priority = 20, /* must be > scheduler priority */
2479 static int vm_stat_get(void *_offset, u64 *val)
2481 unsigned offset = (long)_offset;
2482 struct kvm *kvm;
2484 *val = 0;
2485 spin_lock(&kvm_lock);
2486 list_for_each_entry(kvm, &vm_list, vm_list)
2487 *val += *(u32 *)((void *)kvm + offset);
2488 spin_unlock(&kvm_lock);
2489 return 0;
2492 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2494 static int vcpu_stat_get(void *_offset, u64 *val)
2496 unsigned offset = (long)_offset;
2497 struct kvm *kvm;
2498 struct kvm_vcpu *vcpu;
2499 int i;
2501 *val = 0;
2502 spin_lock(&kvm_lock);
2503 list_for_each_entry(kvm, &vm_list, vm_list)
2504 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2505 vcpu = kvm->vcpus[i];
2506 if (vcpu)
2507 *val += *(u32 *)((void *)vcpu + offset);
2509 spin_unlock(&kvm_lock);
2510 return 0;
2513 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2515 static struct file_operations *stat_fops[] = {
2516 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2517 [KVM_STAT_VM] = &vm_stat_fops,
2520 static void kvm_init_debug(void)
2522 struct kvm_stats_debugfs_item *p;
2524 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2525 for (p = debugfs_entries; p->name; ++p)
2526 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2527 (void *)(long)p->offset,
2528 stat_fops[p->kind]);
2531 static void kvm_exit_debug(void)
2533 struct kvm_stats_debugfs_item *p;
2535 for (p = debugfs_entries; p->name; ++p)
2536 debugfs_remove(p->dentry);
2537 debugfs_remove(kvm_debugfs_dir);
2540 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2542 hardware_disable(NULL);
2543 return 0;
2546 static int kvm_resume(struct sys_device *dev)
2548 hardware_enable(NULL);
2549 return 0;
2552 static struct sysdev_class kvm_sysdev_class = {
2553 .name = "kvm",
2554 .suspend = kvm_suspend,
2555 .resume = kvm_resume,
2558 static struct sys_device kvm_sysdev = {
2559 .id = 0,
2560 .cls = &kvm_sysdev_class,
2563 struct page *bad_page;
2564 pfn_t bad_pfn;
2566 static inline
2567 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2569 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2572 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2574 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2576 kvm_arch_vcpu_load(vcpu, cpu);
2579 static void kvm_sched_out(struct preempt_notifier *pn,
2580 struct task_struct *next)
2582 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2584 kvm_arch_vcpu_put(vcpu);
2587 int kvm_init(void *opaque, unsigned int vcpu_size,
2588 struct module *module)
2590 int r;
2591 int cpu;
2593 r = kvm_arch_init(opaque);
2594 if (r)
2595 goto out_fail;
2597 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2599 if (bad_page == NULL) {
2600 r = -ENOMEM;
2601 goto out;
2604 bad_pfn = page_to_pfn(bad_page);
2606 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2607 r = -ENOMEM;
2608 goto out_free_0;
2611 r = kvm_arch_hardware_setup();
2612 if (r < 0)
2613 goto out_free_0a;
2615 for_each_online_cpu(cpu) {
2616 smp_call_function_single(cpu,
2617 kvm_arch_check_processor_compat,
2618 &r, 1);
2619 if (r < 0)
2620 goto out_free_1;
2623 on_each_cpu(hardware_enable, NULL, 1);
2624 r = register_cpu_notifier(&kvm_cpu_notifier);
2625 if (r)
2626 goto out_free_2;
2627 register_reboot_notifier(&kvm_reboot_notifier);
2629 r = sysdev_class_register(&kvm_sysdev_class);
2630 if (r)
2631 goto out_free_3;
2633 r = sysdev_register(&kvm_sysdev);
2634 if (r)
2635 goto out_free_4;
2637 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2638 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2639 __alignof__(struct kvm_vcpu),
2640 0, NULL);
2641 if (!kvm_vcpu_cache) {
2642 r = -ENOMEM;
2643 goto out_free_5;
2646 kvm_chardev_ops.owner = module;
2647 kvm_vm_fops.owner = module;
2648 kvm_vcpu_fops.owner = module;
2650 r = misc_register(&kvm_dev);
2651 if (r) {
2652 printk(KERN_ERR "kvm: misc device register failed\n");
2653 goto out_free;
2656 kvm_preempt_ops.sched_in = kvm_sched_in;
2657 kvm_preempt_ops.sched_out = kvm_sched_out;
2659 kvm_init_debug();
2661 return 0;
2663 out_free:
2664 kmem_cache_destroy(kvm_vcpu_cache);
2665 out_free_5:
2666 sysdev_unregister(&kvm_sysdev);
2667 out_free_4:
2668 sysdev_class_unregister(&kvm_sysdev_class);
2669 out_free_3:
2670 unregister_reboot_notifier(&kvm_reboot_notifier);
2671 unregister_cpu_notifier(&kvm_cpu_notifier);
2672 out_free_2:
2673 on_each_cpu(hardware_disable, NULL, 1);
2674 out_free_1:
2675 kvm_arch_hardware_unsetup();
2676 out_free_0a:
2677 free_cpumask_var(cpus_hardware_enabled);
2678 out_free_0:
2679 __free_page(bad_page);
2680 out:
2681 kvm_arch_exit();
2682 out_fail:
2683 return r;
2685 EXPORT_SYMBOL_GPL(kvm_init);
2687 void kvm_exit(void)
2689 kvm_trace_cleanup();
2690 kvm_exit_debug();
2691 misc_deregister(&kvm_dev);
2692 kmem_cache_destroy(kvm_vcpu_cache);
2693 sysdev_unregister(&kvm_sysdev);
2694 sysdev_class_unregister(&kvm_sysdev_class);
2695 unregister_reboot_notifier(&kvm_reboot_notifier);
2696 unregister_cpu_notifier(&kvm_cpu_notifier);
2697 on_each_cpu(hardware_disable, NULL, 1);
2698 kvm_arch_hardware_unsetup();
2699 kvm_arch_exit();
2700 free_cpumask_var(cpus_hardware_enabled);
2701 __free_page(bad_page);
2703 EXPORT_SYMBOL_GPL(kvm_exit);