2 * Sleepable Read-Copy Update mechanism for mutual exclusion.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright (C) IBM Corporation, 2006
19 * Copyright (C) Fujitsu, 2012
21 * Author: Paul McKenney <paulmck@us.ibm.com>
22 * Lai Jiangshan <laijs@cn.fujitsu.com>
24 * For detailed explanation of Read-Copy Update mechanism see -
25 * Documentation/RCU/ *.txt
29 #include <linux/export.h>
30 #include <linux/mutex.h>
31 #include <linux/percpu.h>
32 #include <linux/preempt.h>
33 #include <linux/rcupdate_wait.h>
34 #include <linux/sched.h>
35 #include <linux/smp.h>
36 #include <linux/delay.h>
37 #include <linux/module.h>
38 #include <linux/srcu.h>
41 #include "rcu_segcblist.h"
43 /* Holdoff in nanoseconds for auto-expediting. */
44 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
45 static ulong exp_holdoff
= DEFAULT_SRCU_EXP_HOLDOFF
;
46 module_param(exp_holdoff
, ulong
, 0444);
48 /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */
49 static ulong counter_wrap_check
= (ULONG_MAX
>> 2);
50 module_param(counter_wrap_check
, ulong
, 0444);
52 static void srcu_invoke_callbacks(struct work_struct
*work
);
53 static void srcu_reschedule(struct srcu_struct
*sp
, unsigned long delay
);
54 static void process_srcu(struct work_struct
*work
);
56 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
57 #define spin_lock_rcu_node(p) \
59 spin_lock(&ACCESS_PRIVATE(p, lock)); \
60 smp_mb__after_unlock_lock(); \
63 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
65 #define spin_lock_irq_rcu_node(p) \
67 spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \
68 smp_mb__after_unlock_lock(); \
71 #define spin_unlock_irq_rcu_node(p) \
72 spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
74 #define spin_lock_irqsave_rcu_node(p, flags) \
76 spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
77 smp_mb__after_unlock_lock(); \
80 #define spin_unlock_irqrestore_rcu_node(p, flags) \
81 spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \
84 * Initialize SRCU combining tree. Note that statically allocated
85 * srcu_struct structures might already have srcu_read_lock() and
86 * srcu_read_unlock() running against them. So if the is_static parameter
87 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
89 static void init_srcu_struct_nodes(struct srcu_struct
*sp
, bool is_static
)
94 int levelspread
[RCU_NUM_LVLS
];
95 struct srcu_data
*sdp
;
96 struct srcu_node
*snp
;
97 struct srcu_node
*snp_first
;
99 /* Work out the overall tree geometry. */
100 sp
->level
[0] = &sp
->node
[0];
101 for (i
= 1; i
< rcu_num_lvls
; i
++)
102 sp
->level
[i
] = sp
->level
[i
- 1] + num_rcu_lvl
[i
- 1];
103 rcu_init_levelspread(levelspread
, num_rcu_lvl
);
105 /* Each pass through this loop initializes one srcu_node structure. */
106 rcu_for_each_node_breadth_first(sp
, snp
) {
107 spin_lock_init(&ACCESS_PRIVATE(snp
, lock
));
108 WARN_ON_ONCE(ARRAY_SIZE(snp
->srcu_have_cbs
) !=
109 ARRAY_SIZE(snp
->srcu_data_have_cbs
));
110 for (i
= 0; i
< ARRAY_SIZE(snp
->srcu_have_cbs
); i
++) {
111 snp
->srcu_have_cbs
[i
] = 0;
112 snp
->srcu_data_have_cbs
[i
] = 0;
114 snp
->srcu_gp_seq_needed_exp
= 0;
117 if (snp
== &sp
->node
[0]) {
118 /* Root node, special case. */
119 snp
->srcu_parent
= NULL
;
124 if (snp
== sp
->level
[level
+ 1])
126 snp
->srcu_parent
= sp
->level
[level
- 1] +
127 (snp
- sp
->level
[level
]) /
128 levelspread
[level
- 1];
132 * Initialize the per-CPU srcu_data array, which feeds into the
133 * leaves of the srcu_node tree.
135 WARN_ON_ONCE(ARRAY_SIZE(sdp
->srcu_lock_count
) !=
136 ARRAY_SIZE(sdp
->srcu_unlock_count
));
137 level
= rcu_num_lvls
- 1;
138 snp_first
= sp
->level
[level
];
139 for_each_possible_cpu(cpu
) {
140 sdp
= per_cpu_ptr(sp
->sda
, cpu
);
141 spin_lock_init(&ACCESS_PRIVATE(sdp
, lock
));
142 rcu_segcblist_init(&sdp
->srcu_cblist
);
143 sdp
->srcu_cblist_invoking
= false;
144 sdp
->srcu_gp_seq_needed
= sp
->srcu_gp_seq
;
145 sdp
->srcu_gp_seq_needed_exp
= sp
->srcu_gp_seq
;
146 sdp
->mynode
= &snp_first
[cpu
/ levelspread
[level
]];
147 for (snp
= sdp
->mynode
; snp
!= NULL
; snp
= snp
->srcu_parent
) {
153 INIT_DELAYED_WORK(&sdp
->work
, srcu_invoke_callbacks
);
155 sdp
->grpmask
= 1 << (cpu
- sdp
->mynode
->grplo
);
159 /* Dynamically allocated, better be no srcu_read_locks()! */
160 for (i
= 0; i
< ARRAY_SIZE(sdp
->srcu_lock_count
); i
++) {
161 sdp
->srcu_lock_count
[i
] = 0;
162 sdp
->srcu_unlock_count
[i
] = 0;
168 * Initialize non-compile-time initialized fields, including the
169 * associated srcu_node and srcu_data structures. The is_static
170 * parameter is passed through to init_srcu_struct_nodes(), and
171 * also tells us that ->sda has already been wired up to srcu_data.
173 static int init_srcu_struct_fields(struct srcu_struct
*sp
, bool is_static
)
175 mutex_init(&sp
->srcu_cb_mutex
);
176 mutex_init(&sp
->srcu_gp_mutex
);
179 sp
->srcu_barrier_seq
= 0;
180 mutex_init(&sp
->srcu_barrier_mutex
);
181 atomic_set(&sp
->srcu_barrier_cpu_cnt
, 0);
182 INIT_DELAYED_WORK(&sp
->work
, process_srcu
);
184 sp
->sda
= alloc_percpu(struct srcu_data
);
185 init_srcu_struct_nodes(sp
, is_static
);
186 sp
->srcu_gp_seq_needed_exp
= 0;
187 sp
->srcu_last_gp_end
= ktime_get_mono_fast_ns();
188 smp_store_release(&sp
->srcu_gp_seq_needed
, 0); /* Init done. */
189 return sp
->sda
? 0 : -ENOMEM
;
192 #ifdef CONFIG_DEBUG_LOCK_ALLOC
194 int __init_srcu_struct(struct srcu_struct
*sp
, const char *name
,
195 struct lock_class_key
*key
)
197 /* Don't re-initialize a lock while it is held. */
198 debug_check_no_locks_freed((void *)sp
, sizeof(*sp
));
199 lockdep_init_map(&sp
->dep_map
, name
, key
, 0);
200 spin_lock_init(&ACCESS_PRIVATE(sp
, lock
));
201 return init_srcu_struct_fields(sp
, false);
203 EXPORT_SYMBOL_GPL(__init_srcu_struct
);
205 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
208 * init_srcu_struct - initialize a sleep-RCU structure
209 * @sp: structure to initialize.
211 * Must invoke this on a given srcu_struct before passing that srcu_struct
212 * to any other function. Each srcu_struct represents a separate domain
213 * of SRCU protection.
215 int init_srcu_struct(struct srcu_struct
*sp
)
217 spin_lock_init(&ACCESS_PRIVATE(sp
, lock
));
218 return init_srcu_struct_fields(sp
, false);
220 EXPORT_SYMBOL_GPL(init_srcu_struct
);
222 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
225 * First-use initialization of statically allocated srcu_struct
226 * structure. Wiring up the combining tree is more than can be
227 * done with compile-time initialization, so this check is added
228 * to each update-side SRCU primitive. Use sp->lock, which -is-
229 * compile-time initialized, to resolve races involving multiple
230 * CPUs trying to garner first-use privileges.
232 static void check_init_srcu_struct(struct srcu_struct
*sp
)
236 WARN_ON_ONCE(rcu_scheduler_active
== RCU_SCHEDULER_INIT
);
237 /* The smp_load_acquire() pairs with the smp_store_release(). */
238 if (!rcu_seq_state(smp_load_acquire(&sp
->srcu_gp_seq_needed
))) /*^^^*/
239 return; /* Already initialized. */
240 spin_lock_irqsave_rcu_node(sp
, flags
);
241 if (!rcu_seq_state(sp
->srcu_gp_seq_needed
)) {
242 spin_unlock_irqrestore_rcu_node(sp
, flags
);
245 init_srcu_struct_fields(sp
, true);
246 spin_unlock_irqrestore_rcu_node(sp
, flags
);
250 * Returns approximate total of the readers' ->srcu_lock_count[] values
251 * for the rank of per-CPU counters specified by idx.
253 static unsigned long srcu_readers_lock_idx(struct srcu_struct
*sp
, int idx
)
256 unsigned long sum
= 0;
258 for_each_possible_cpu(cpu
) {
259 struct srcu_data
*cpuc
= per_cpu_ptr(sp
->sda
, cpu
);
261 sum
+= READ_ONCE(cpuc
->srcu_lock_count
[idx
]);
267 * Returns approximate total of the readers' ->srcu_unlock_count[] values
268 * for the rank of per-CPU counters specified by idx.
270 static unsigned long srcu_readers_unlock_idx(struct srcu_struct
*sp
, int idx
)
273 unsigned long sum
= 0;
275 for_each_possible_cpu(cpu
) {
276 struct srcu_data
*cpuc
= per_cpu_ptr(sp
->sda
, cpu
);
278 sum
+= READ_ONCE(cpuc
->srcu_unlock_count
[idx
]);
284 * Return true if the number of pre-existing readers is determined to
287 static bool srcu_readers_active_idx_check(struct srcu_struct
*sp
, int idx
)
289 unsigned long unlocks
;
291 unlocks
= srcu_readers_unlock_idx(sp
, idx
);
294 * Make sure that a lock is always counted if the corresponding
295 * unlock is counted. Needs to be a smp_mb() as the read side may
296 * contain a read from a variable that is written to before the
297 * synchronize_srcu() in the write side. In this case smp_mb()s
298 * A and B act like the store buffering pattern.
300 * This smp_mb() also pairs with smp_mb() C to prevent accesses
301 * after the synchronize_srcu() from being executed before the
307 * If the locks are the same as the unlocks, then there must have
308 * been no readers on this index at some time in between. This does
309 * not mean that there are no more readers, as one could have read
310 * the current index but not have incremented the lock counter yet.
312 * So suppose that the updater is preempted here for so long
313 * that more than ULONG_MAX non-nested readers come and go in
314 * the meantime. It turns out that this cannot result in overflow
315 * because if a reader modifies its unlock count after we read it
316 * above, then that reader's next load of ->srcu_idx is guaranteed
317 * to get the new value, which will cause it to operate on the
318 * other bank of counters, where it cannot contribute to the
319 * overflow of these counters. This means that there is a maximum
320 * of 2*NR_CPUS increments, which cannot overflow given current
321 * systems, especially not on 64-bit systems.
323 * OK, how about nesting? This does impose a limit on nesting
324 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient,
325 * especially on 64-bit systems.
327 return srcu_readers_lock_idx(sp
, idx
) == unlocks
;
331 * srcu_readers_active - returns true if there are readers. and false
333 * @sp: which srcu_struct to count active readers (holding srcu_read_lock).
335 * Note that this is not an atomic primitive, and can therefore suffer
336 * severe errors when invoked on an active srcu_struct. That said, it
337 * can be useful as an error check at cleanup time.
339 static bool srcu_readers_active(struct srcu_struct
*sp
)
342 unsigned long sum
= 0;
344 for_each_possible_cpu(cpu
) {
345 struct srcu_data
*cpuc
= per_cpu_ptr(sp
->sda
, cpu
);
347 sum
+= READ_ONCE(cpuc
->srcu_lock_count
[0]);
348 sum
+= READ_ONCE(cpuc
->srcu_lock_count
[1]);
349 sum
-= READ_ONCE(cpuc
->srcu_unlock_count
[0]);
350 sum
-= READ_ONCE(cpuc
->srcu_unlock_count
[1]);
355 #define SRCU_INTERVAL 1
358 * Return grace-period delay, zero if there are expedited grace
359 * periods pending, SRCU_INTERVAL otherwise.
361 static unsigned long srcu_get_delay(struct srcu_struct
*sp
)
363 if (ULONG_CMP_LT(READ_ONCE(sp
->srcu_gp_seq
),
364 READ_ONCE(sp
->srcu_gp_seq_needed_exp
)))
366 return SRCU_INTERVAL
;
369 /* Helper for cleanup_srcu_struct() and cleanup_srcu_struct_quiesced(). */
370 void _cleanup_srcu_struct(struct srcu_struct
*sp
, bool quiesced
)
374 if (WARN_ON(!srcu_get_delay(sp
)))
375 return; /* Just leak it! */
376 if (WARN_ON(srcu_readers_active(sp
)))
377 return; /* Just leak it! */
379 if (WARN_ON(delayed_work_pending(&sp
->work
)))
380 return; /* Just leak it! */
382 flush_delayed_work(&sp
->work
);
384 for_each_possible_cpu(cpu
)
386 if (WARN_ON(delayed_work_pending(&per_cpu_ptr(sp
->sda
, cpu
)->work
)))
387 return; /* Just leak it! */
389 flush_delayed_work(&per_cpu_ptr(sp
->sda
, cpu
)->work
);
391 if (WARN_ON(rcu_seq_state(READ_ONCE(sp
->srcu_gp_seq
)) != SRCU_STATE_IDLE
) ||
392 WARN_ON(srcu_readers_active(sp
))) {
393 pr_info("%s: Active srcu_struct %p state: %d\n", __func__
, sp
, rcu_seq_state(READ_ONCE(sp
->srcu_gp_seq
)));
394 return; /* Caller forgot to stop doing call_srcu()? */
396 free_percpu(sp
->sda
);
399 EXPORT_SYMBOL_GPL(_cleanup_srcu_struct
);
402 * Counts the new reader in the appropriate per-CPU element of the
404 * Returns an index that must be passed to the matching srcu_read_unlock().
406 int __srcu_read_lock(struct srcu_struct
*sp
)
410 idx
= READ_ONCE(sp
->srcu_idx
) & 0x1;
411 this_cpu_inc(sp
->sda
->srcu_lock_count
[idx
]);
412 smp_mb(); /* B */ /* Avoid leaking the critical section. */
415 EXPORT_SYMBOL_GPL(__srcu_read_lock
);
418 * Removes the count for the old reader from the appropriate per-CPU
419 * element of the srcu_struct. Note that this may well be a different
420 * CPU than that which was incremented by the corresponding srcu_read_lock().
422 void __srcu_read_unlock(struct srcu_struct
*sp
, int idx
)
424 smp_mb(); /* C */ /* Avoid leaking the critical section. */
425 this_cpu_inc(sp
->sda
->srcu_unlock_count
[idx
]);
427 EXPORT_SYMBOL_GPL(__srcu_read_unlock
);
430 * We use an adaptive strategy for synchronize_srcu() and especially for
431 * synchronize_srcu_expedited(). We spin for a fixed time period
432 * (defined below) to allow SRCU readers to exit their read-side critical
433 * sections. If there are still some readers after a few microseconds,
434 * we repeatedly block for 1-millisecond time periods.
436 #define SRCU_RETRY_CHECK_DELAY 5
439 * Start an SRCU grace period.
441 static void srcu_gp_start(struct srcu_struct
*sp
)
443 struct srcu_data
*sdp
= this_cpu_ptr(sp
->sda
);
446 lockdep_assert_held(&ACCESS_PRIVATE(sp
, lock
));
447 WARN_ON_ONCE(ULONG_CMP_GE(sp
->srcu_gp_seq
, sp
->srcu_gp_seq_needed
));
448 rcu_segcblist_advance(&sdp
->srcu_cblist
,
449 rcu_seq_current(&sp
->srcu_gp_seq
));
450 (void)rcu_segcblist_accelerate(&sdp
->srcu_cblist
,
451 rcu_seq_snap(&sp
->srcu_gp_seq
));
452 smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
453 rcu_seq_start(&sp
->srcu_gp_seq
);
454 state
= rcu_seq_state(READ_ONCE(sp
->srcu_gp_seq
));
455 WARN_ON_ONCE(state
!= SRCU_STATE_SCAN1
);
459 * Track online CPUs to guide callback workqueue placement.
461 DEFINE_PER_CPU(bool, srcu_online
);
463 void srcu_online_cpu(unsigned int cpu
)
465 WRITE_ONCE(per_cpu(srcu_online
, cpu
), true);
468 void srcu_offline_cpu(unsigned int cpu
)
470 WRITE_ONCE(per_cpu(srcu_online
, cpu
), false);
474 * Place the workqueue handler on the specified CPU if online, otherwise
475 * just run it whereever. This is useful for placing workqueue handlers
476 * that are to invoke the specified CPU's callbacks.
478 static bool srcu_queue_delayed_work_on(int cpu
, struct workqueue_struct
*wq
,
479 struct delayed_work
*dwork
,
485 if (READ_ONCE(per_cpu(srcu_online
, cpu
)))
486 ret
= queue_delayed_work_on(cpu
, wq
, dwork
, delay
);
488 ret
= queue_delayed_work(wq
, dwork
, delay
);
494 * Schedule callback invocation for the specified srcu_data structure,
495 * if possible, on the corresponding CPU.
497 static void srcu_schedule_cbs_sdp(struct srcu_data
*sdp
, unsigned long delay
)
499 srcu_queue_delayed_work_on(sdp
->cpu
, rcu_gp_wq
, &sdp
->work
, delay
);
503 * Schedule callback invocation for all srcu_data structures associated
504 * with the specified srcu_node structure that have callbacks for the
505 * just-completed grace period, the one corresponding to idx. If possible,
506 * schedule this invocation on the corresponding CPUs.
508 static void srcu_schedule_cbs_snp(struct srcu_struct
*sp
, struct srcu_node
*snp
,
509 unsigned long mask
, unsigned long delay
)
513 for (cpu
= snp
->grplo
; cpu
<= snp
->grphi
; cpu
++) {
514 if (!(mask
& (1 << (cpu
- snp
->grplo
))))
516 srcu_schedule_cbs_sdp(per_cpu_ptr(sp
->sda
, cpu
), delay
);
521 * Note the end of an SRCU grace period. Initiates callback invocation
522 * and starts a new grace period if needed.
524 * The ->srcu_cb_mutex acquisition does not protect any data, but
525 * instead prevents more than one grace period from starting while we
526 * are initiating callback invocation. This allows the ->srcu_have_cbs[]
527 * array to have a finite number of elements.
529 static void srcu_gp_end(struct srcu_struct
*sp
)
531 unsigned long cbdelay
;
539 struct srcu_data
*sdp
;
540 struct srcu_node
*snp
;
542 /* Prevent more than one additional grace period. */
543 mutex_lock(&sp
->srcu_cb_mutex
);
545 /* End the current grace period. */
546 spin_lock_irq_rcu_node(sp
);
547 idx
= rcu_seq_state(sp
->srcu_gp_seq
);
548 WARN_ON_ONCE(idx
!= SRCU_STATE_SCAN2
);
549 cbdelay
= srcu_get_delay(sp
);
550 sp
->srcu_last_gp_end
= ktime_get_mono_fast_ns();
551 rcu_seq_end(&sp
->srcu_gp_seq
);
552 gpseq
= rcu_seq_current(&sp
->srcu_gp_seq
);
553 if (ULONG_CMP_LT(sp
->srcu_gp_seq_needed_exp
, gpseq
))
554 sp
->srcu_gp_seq_needed_exp
= gpseq
;
555 spin_unlock_irq_rcu_node(sp
);
556 mutex_unlock(&sp
->srcu_gp_mutex
);
557 /* A new grace period can start at this point. But only one. */
559 /* Initiate callback invocation as needed. */
560 idx
= rcu_seq_ctr(gpseq
) % ARRAY_SIZE(snp
->srcu_have_cbs
);
561 rcu_for_each_node_breadth_first(sp
, snp
) {
562 spin_lock_irq_rcu_node(snp
);
564 last_lvl
= snp
>= sp
->level
[rcu_num_lvls
- 1];
566 cbs
= snp
->srcu_have_cbs
[idx
] == gpseq
;
567 snp
->srcu_have_cbs
[idx
] = gpseq
;
568 rcu_seq_set_state(&snp
->srcu_have_cbs
[idx
], 1);
569 if (ULONG_CMP_LT(snp
->srcu_gp_seq_needed_exp
, gpseq
))
570 snp
->srcu_gp_seq_needed_exp
= gpseq
;
571 mask
= snp
->srcu_data_have_cbs
[idx
];
572 snp
->srcu_data_have_cbs
[idx
] = 0;
573 spin_unlock_irq_rcu_node(snp
);
575 srcu_schedule_cbs_snp(sp
, snp
, mask
, cbdelay
);
577 /* Occasionally prevent srcu_data counter wrap. */
578 if (!(gpseq
& counter_wrap_check
) && last_lvl
)
579 for (cpu
= snp
->grplo
; cpu
<= snp
->grphi
; cpu
++) {
580 sdp
= per_cpu_ptr(sp
->sda
, cpu
);
581 spin_lock_irqsave_rcu_node(sdp
, flags
);
582 if (ULONG_CMP_GE(gpseq
,
583 sdp
->srcu_gp_seq_needed
+ 100))
584 sdp
->srcu_gp_seq_needed
= gpseq
;
585 if (ULONG_CMP_GE(gpseq
,
586 sdp
->srcu_gp_seq_needed_exp
+ 100))
587 sdp
->srcu_gp_seq_needed_exp
= gpseq
;
588 spin_unlock_irqrestore_rcu_node(sdp
, flags
);
592 /* Callback initiation done, allow grace periods after next. */
593 mutex_unlock(&sp
->srcu_cb_mutex
);
595 /* Start a new grace period if needed. */
596 spin_lock_irq_rcu_node(sp
);
597 gpseq
= rcu_seq_current(&sp
->srcu_gp_seq
);
598 if (!rcu_seq_state(gpseq
) &&
599 ULONG_CMP_LT(gpseq
, sp
->srcu_gp_seq_needed
)) {
601 spin_unlock_irq_rcu_node(sp
);
602 srcu_reschedule(sp
, 0);
604 spin_unlock_irq_rcu_node(sp
);
609 * Funnel-locking scheme to scalably mediate many concurrent expedited
610 * grace-period requests. This function is invoked for the first known
611 * expedited request for a grace period that has already been requested,
612 * but without expediting. To start a completely new grace period,
613 * whether expedited or not, use srcu_funnel_gp_start() instead.
615 static void srcu_funnel_exp_start(struct srcu_struct
*sp
, struct srcu_node
*snp
,
620 for (; snp
!= NULL
; snp
= snp
->srcu_parent
) {
621 if (rcu_seq_done(&sp
->srcu_gp_seq
, s
) ||
622 ULONG_CMP_GE(READ_ONCE(snp
->srcu_gp_seq_needed_exp
), s
))
624 spin_lock_irqsave_rcu_node(snp
, flags
);
625 if (ULONG_CMP_GE(snp
->srcu_gp_seq_needed_exp
, s
)) {
626 spin_unlock_irqrestore_rcu_node(snp
, flags
);
629 WRITE_ONCE(snp
->srcu_gp_seq_needed_exp
, s
);
630 spin_unlock_irqrestore_rcu_node(snp
, flags
);
632 spin_lock_irqsave_rcu_node(sp
, flags
);
633 if (ULONG_CMP_LT(sp
->srcu_gp_seq_needed_exp
, s
))
634 sp
->srcu_gp_seq_needed_exp
= s
;
635 spin_unlock_irqrestore_rcu_node(sp
, flags
);
639 * Funnel-locking scheme to scalably mediate many concurrent grace-period
640 * requests. The winner has to do the work of actually starting grace
641 * period s. Losers must either ensure that their desired grace-period
642 * number is recorded on at least their leaf srcu_node structure, or they
643 * must take steps to invoke their own callbacks.
645 static void srcu_funnel_gp_start(struct srcu_struct
*sp
, struct srcu_data
*sdp
,
646 unsigned long s
, bool do_norm
)
649 int idx
= rcu_seq_ctr(s
) % ARRAY_SIZE(sdp
->mynode
->srcu_have_cbs
);
650 struct srcu_node
*snp
= sdp
->mynode
;
651 unsigned long snp_seq
;
653 /* Each pass through the loop does one level of the srcu_node tree. */
654 for (; snp
!= NULL
; snp
= snp
->srcu_parent
) {
655 if (rcu_seq_done(&sp
->srcu_gp_seq
, s
) && snp
!= sdp
->mynode
)
656 return; /* GP already done and CBs recorded. */
657 spin_lock_irqsave_rcu_node(snp
, flags
);
658 if (ULONG_CMP_GE(snp
->srcu_have_cbs
[idx
], s
)) {
659 snp_seq
= snp
->srcu_have_cbs
[idx
];
660 if (snp
== sdp
->mynode
&& snp_seq
== s
)
661 snp
->srcu_data_have_cbs
[idx
] |= sdp
->grpmask
;
662 spin_unlock_irqrestore_rcu_node(snp
, flags
);
663 if (snp
== sdp
->mynode
&& snp_seq
!= s
) {
664 srcu_schedule_cbs_sdp(sdp
, do_norm
670 srcu_funnel_exp_start(sp
, snp
, s
);
673 snp
->srcu_have_cbs
[idx
] = s
;
674 if (snp
== sdp
->mynode
)
675 snp
->srcu_data_have_cbs
[idx
] |= sdp
->grpmask
;
676 if (!do_norm
&& ULONG_CMP_LT(snp
->srcu_gp_seq_needed_exp
, s
))
677 snp
->srcu_gp_seq_needed_exp
= s
;
678 spin_unlock_irqrestore_rcu_node(snp
, flags
);
681 /* Top of tree, must ensure the grace period will be started. */
682 spin_lock_irqsave_rcu_node(sp
, flags
);
683 if (ULONG_CMP_LT(sp
->srcu_gp_seq_needed
, s
)) {
685 * Record need for grace period s. Pair with load
686 * acquire setting up for initialization.
688 smp_store_release(&sp
->srcu_gp_seq_needed
, s
); /*^^^*/
690 if (!do_norm
&& ULONG_CMP_LT(sp
->srcu_gp_seq_needed_exp
, s
))
691 sp
->srcu_gp_seq_needed_exp
= s
;
693 /* If grace period not already done and none in progress, start it. */
694 if (!rcu_seq_done(&sp
->srcu_gp_seq
, s
) &&
695 rcu_seq_state(sp
->srcu_gp_seq
) == SRCU_STATE_IDLE
) {
696 WARN_ON_ONCE(ULONG_CMP_GE(sp
->srcu_gp_seq
, sp
->srcu_gp_seq_needed
));
698 queue_delayed_work(rcu_gp_wq
, &sp
->work
, srcu_get_delay(sp
));
700 spin_unlock_irqrestore_rcu_node(sp
, flags
);
704 * Wait until all readers counted by array index idx complete, but
705 * loop an additional time if there is an expedited grace period pending.
706 * The caller must ensure that ->srcu_idx is not changed while checking.
708 static bool try_check_zero(struct srcu_struct
*sp
, int idx
, int trycount
)
711 if (srcu_readers_active_idx_check(sp
, idx
))
713 if (--trycount
+ !srcu_get_delay(sp
) <= 0)
715 udelay(SRCU_RETRY_CHECK_DELAY
);
720 * Increment the ->srcu_idx counter so that future SRCU readers will
721 * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows
722 * us to wait for pre-existing readers in a starvation-free manner.
724 static void srcu_flip(struct srcu_struct
*sp
)
727 * Ensure that if this updater saw a given reader's increment
728 * from __srcu_read_lock(), that reader was using an old value
729 * of ->srcu_idx. Also ensure that if a given reader sees the
730 * new value of ->srcu_idx, this updater's earlier scans cannot
731 * have seen that reader's increments (which is OK, because this
732 * grace period need not wait on that reader).
734 smp_mb(); /* E */ /* Pairs with B and C. */
736 WRITE_ONCE(sp
->srcu_idx
, sp
->srcu_idx
+ 1);
739 * Ensure that if the updater misses an __srcu_read_unlock()
740 * increment, that task's next __srcu_read_lock() will see the
741 * above counter update. Note that both this memory barrier
742 * and the one in srcu_readers_active_idx_check() provide the
743 * guarantee for __srcu_read_lock().
745 smp_mb(); /* D */ /* Pairs with C. */
749 * If SRCU is likely idle, return true, otherwise return false.
751 * Note that it is OK for several current from-idle requests for a new
752 * grace period from idle to specify expediting because they will all end
753 * up requesting the same grace period anyhow. So no loss.
755 * Note also that if any CPU (including the current one) is still invoking
756 * callbacks, this function will nevertheless say "idle". This is not
757 * ideal, but the overhead of checking all CPUs' callback lists is even
758 * less ideal, especially on large systems. Furthermore, the wakeup
759 * can happen before the callback is fully removed, so we have no choice
760 * but to accept this type of error.
762 * This function is also subject to counter-wrap errors, but let's face
763 * it, if this function was preempted for enough time for the counters
764 * to wrap, it really doesn't matter whether or not we expedite the grace
765 * period. The extra overhead of a needlessly expedited grace period is
766 * negligible when amoritized over that time period, and the extra latency
767 * of a needlessly non-expedited grace period is similarly negligible.
769 static bool srcu_might_be_idle(struct srcu_struct
*sp
)
771 unsigned long curseq
;
773 struct srcu_data
*sdp
;
776 /* If the local srcu_data structure has callbacks, not idle. */
777 local_irq_save(flags
);
778 sdp
= this_cpu_ptr(sp
->sda
);
779 if (rcu_segcblist_pend_cbs(&sdp
->srcu_cblist
)) {
780 local_irq_restore(flags
);
781 return false; /* Callbacks already present, so not idle. */
783 local_irq_restore(flags
);
786 * No local callbacks, so probabalistically probe global state.
787 * Exact information would require acquiring locks, which would
788 * kill scalability, hence the probabalistic nature of the probe.
791 /* First, see if enough time has passed since the last GP. */
792 t
= ktime_get_mono_fast_ns();
793 if (exp_holdoff
== 0 ||
794 time_in_range_open(t
, sp
->srcu_last_gp_end
,
795 sp
->srcu_last_gp_end
+ exp_holdoff
))
796 return false; /* Too soon after last GP. */
798 /* Next, check for probable idleness. */
799 curseq
= rcu_seq_current(&sp
->srcu_gp_seq
);
800 smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
801 if (ULONG_CMP_LT(curseq
, READ_ONCE(sp
->srcu_gp_seq_needed
)))
802 return false; /* Grace period in progress, so not idle. */
803 smp_mb(); /* Order ->srcu_gp_seq with prior access. */
804 if (curseq
!= rcu_seq_current(&sp
->srcu_gp_seq
))
805 return false; /* GP # changed, so not idle. */
806 return true; /* With reasonable probability, idle! */
810 * SRCU callback function to leak a callback.
812 static void srcu_leak_callback(struct rcu_head
*rhp
)
817 * Enqueue an SRCU callback on the srcu_data structure associated with
818 * the current CPU and the specified srcu_struct structure, initiating
819 * grace-period processing if it is not already running.
821 * Note that all CPUs must agree that the grace period extended beyond
822 * all pre-existing SRCU read-side critical section. On systems with
823 * more than one CPU, this means that when "func()" is invoked, each CPU
824 * is guaranteed to have executed a full memory barrier since the end of
825 * its last corresponding SRCU read-side critical section whose beginning
826 * preceded the call to call_rcu(). It also means that each CPU executing
827 * an SRCU read-side critical section that continues beyond the start of
828 * "func()" must have executed a memory barrier after the call_rcu()
829 * but before the beginning of that SRCU read-side critical section.
830 * Note that these guarantees include CPUs that are offline, idle, or
831 * executing in user mode, as well as CPUs that are executing in the kernel.
833 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
834 * resulting SRCU callback function "func()", then both CPU A and CPU
835 * B are guaranteed to execute a full memory barrier during the time
836 * interval between the call to call_rcu() and the invocation of "func()".
837 * This guarantee applies even if CPU A and CPU B are the same CPU (but
838 * again only if the system has more than one CPU).
840 * Of course, these guarantees apply only for invocations of call_srcu(),
841 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
842 * srcu_struct structure.
844 void __call_srcu(struct srcu_struct
*sp
, struct rcu_head
*rhp
,
845 rcu_callback_t func
, bool do_norm
)
848 bool needexp
= false;
851 struct srcu_data
*sdp
;
853 check_init_srcu_struct(sp
);
854 if (debug_rcu_head_queue(rhp
)) {
855 /* Probable double call_srcu(), so leak the callback. */
856 WRITE_ONCE(rhp
->func
, srcu_leak_callback
);
857 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
861 local_irq_save(flags
);
862 sdp
= this_cpu_ptr(sp
->sda
);
863 spin_lock_rcu_node(sdp
);
864 rcu_segcblist_enqueue(&sdp
->srcu_cblist
, rhp
, false);
865 rcu_segcblist_advance(&sdp
->srcu_cblist
,
866 rcu_seq_current(&sp
->srcu_gp_seq
));
867 s
= rcu_seq_snap(&sp
->srcu_gp_seq
);
868 (void)rcu_segcblist_accelerate(&sdp
->srcu_cblist
, s
);
869 if (ULONG_CMP_LT(sdp
->srcu_gp_seq_needed
, s
)) {
870 sdp
->srcu_gp_seq_needed
= s
;
873 if (!do_norm
&& ULONG_CMP_LT(sdp
->srcu_gp_seq_needed_exp
, s
)) {
874 sdp
->srcu_gp_seq_needed_exp
= s
;
877 spin_unlock_irqrestore_rcu_node(sdp
, flags
);
879 srcu_funnel_gp_start(sp
, sdp
, s
, do_norm
);
881 srcu_funnel_exp_start(sp
, sdp
->mynode
, s
);
885 * call_srcu() - Queue a callback for invocation after an SRCU grace period
886 * @sp: srcu_struct in queue the callback
887 * @rhp: structure to be used for queueing the SRCU callback.
888 * @func: function to be invoked after the SRCU grace period
890 * The callback function will be invoked some time after a full SRCU
891 * grace period elapses, in other words after all pre-existing SRCU
892 * read-side critical sections have completed. However, the callback
893 * function might well execute concurrently with other SRCU read-side
894 * critical sections that started after call_srcu() was invoked. SRCU
895 * read-side critical sections are delimited by srcu_read_lock() and
896 * srcu_read_unlock(), and may be nested.
898 * The callback will be invoked from process context, but must nevertheless
899 * be fast and must not block.
901 void call_srcu(struct srcu_struct
*sp
, struct rcu_head
*rhp
,
904 __call_srcu(sp
, rhp
, func
, true);
906 EXPORT_SYMBOL_GPL(call_srcu
);
909 * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
911 static void __synchronize_srcu(struct srcu_struct
*sp
, bool do_norm
)
913 struct rcu_synchronize rcu
;
915 RCU_LOCKDEP_WARN(lock_is_held(&sp
->dep_map
) ||
916 lock_is_held(&rcu_bh_lock_map
) ||
917 lock_is_held(&rcu_lock_map
) ||
918 lock_is_held(&rcu_sched_lock_map
),
919 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
921 if (rcu_scheduler_active
== RCU_SCHEDULER_INACTIVE
)
924 check_init_srcu_struct(sp
);
925 init_completion(&rcu
.completion
);
926 init_rcu_head_on_stack(&rcu
.head
);
927 __call_srcu(sp
, &rcu
.head
, wakeme_after_rcu
, do_norm
);
928 wait_for_completion(&rcu
.completion
);
929 destroy_rcu_head_on_stack(&rcu
.head
);
932 * Make sure that later code is ordered after the SRCU grace
933 * period. This pairs with the spin_lock_irq_rcu_node()
934 * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed
935 * because the current CPU might have been totally uninvolved with
936 * (and thus unordered against) that grace period.
942 * synchronize_srcu_expedited - Brute-force SRCU grace period
943 * @sp: srcu_struct with which to synchronize.
945 * Wait for an SRCU grace period to elapse, but be more aggressive about
946 * spinning rather than blocking when waiting.
948 * Note that synchronize_srcu_expedited() has the same deadlock and
949 * memory-ordering properties as does synchronize_srcu().
951 void synchronize_srcu_expedited(struct srcu_struct
*sp
)
953 __synchronize_srcu(sp
, rcu_gp_is_normal());
955 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited
);
958 * synchronize_srcu - wait for prior SRCU read-side critical-section completion
959 * @sp: srcu_struct with which to synchronize.
961 * Wait for the count to drain to zero of both indexes. To avoid the
962 * possible starvation of synchronize_srcu(), it waits for the count of
963 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
964 * and then flip the srcu_idx and wait for the count of the other index.
966 * Can block; must be called from process context.
968 * Note that it is illegal to call synchronize_srcu() from the corresponding
969 * SRCU read-side critical section; doing so will result in deadlock.
970 * However, it is perfectly legal to call synchronize_srcu() on one
971 * srcu_struct from some other srcu_struct's read-side critical section,
972 * as long as the resulting graph of srcu_structs is acyclic.
974 * There are memory-ordering constraints implied by synchronize_srcu().
975 * On systems with more than one CPU, when synchronize_srcu() returns,
976 * each CPU is guaranteed to have executed a full memory barrier since
977 * the end of its last corresponding SRCU-sched read-side critical section
978 * whose beginning preceded the call to synchronize_srcu(). In addition,
979 * each CPU having an SRCU read-side critical section that extends beyond
980 * the return from synchronize_srcu() is guaranteed to have executed a
981 * full memory barrier after the beginning of synchronize_srcu() and before
982 * the beginning of that SRCU read-side critical section. Note that these
983 * guarantees include CPUs that are offline, idle, or executing in user mode,
984 * as well as CPUs that are executing in the kernel.
986 * Furthermore, if CPU A invoked synchronize_srcu(), which returned
987 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
988 * to have executed a full memory barrier during the execution of
989 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B
990 * are the same CPU, but again only if the system has more than one CPU.
992 * Of course, these memory-ordering guarantees apply only when
993 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
994 * passed the same srcu_struct structure.
996 * If SRCU is likely idle, expedite the first request. This semantic
997 * was provided by Classic SRCU, and is relied upon by its users, so TREE
998 * SRCU must also provide it. Note that detecting idleness is heuristic
999 * and subject to both false positives and negatives.
1001 void synchronize_srcu(struct srcu_struct
*sp
)
1003 if (srcu_might_be_idle(sp
) || rcu_gp_is_expedited())
1004 synchronize_srcu_expedited(sp
);
1006 __synchronize_srcu(sp
, true);
1008 EXPORT_SYMBOL_GPL(synchronize_srcu
);
1011 * Callback function for srcu_barrier() use.
1013 static void srcu_barrier_cb(struct rcu_head
*rhp
)
1015 struct srcu_data
*sdp
;
1016 struct srcu_struct
*sp
;
1018 sdp
= container_of(rhp
, struct srcu_data
, srcu_barrier_head
);
1020 if (atomic_dec_and_test(&sp
->srcu_barrier_cpu_cnt
))
1021 complete(&sp
->srcu_barrier_completion
);
1025 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1026 * @sp: srcu_struct on which to wait for in-flight callbacks.
1028 void srcu_barrier(struct srcu_struct
*sp
)
1031 struct srcu_data
*sdp
;
1032 unsigned long s
= rcu_seq_snap(&sp
->srcu_barrier_seq
);
1034 check_init_srcu_struct(sp
);
1035 mutex_lock(&sp
->srcu_barrier_mutex
);
1036 if (rcu_seq_done(&sp
->srcu_barrier_seq
, s
)) {
1037 smp_mb(); /* Force ordering following return. */
1038 mutex_unlock(&sp
->srcu_barrier_mutex
);
1039 return; /* Someone else did our work for us. */
1041 rcu_seq_start(&sp
->srcu_barrier_seq
);
1042 init_completion(&sp
->srcu_barrier_completion
);
1044 /* Initial count prevents reaching zero until all CBs are posted. */
1045 atomic_set(&sp
->srcu_barrier_cpu_cnt
, 1);
1048 * Each pass through this loop enqueues a callback, but only
1049 * on CPUs already having callbacks enqueued. Note that if
1050 * a CPU already has callbacks enqueue, it must have already
1051 * registered the need for a future grace period, so all we
1052 * need do is enqueue a callback that will use the same
1053 * grace period as the last callback already in the queue.
1055 for_each_possible_cpu(cpu
) {
1056 sdp
= per_cpu_ptr(sp
->sda
, cpu
);
1057 spin_lock_irq_rcu_node(sdp
);
1058 atomic_inc(&sp
->srcu_barrier_cpu_cnt
);
1059 sdp
->srcu_barrier_head
.func
= srcu_barrier_cb
;
1060 debug_rcu_head_queue(&sdp
->srcu_barrier_head
);
1061 if (!rcu_segcblist_entrain(&sdp
->srcu_cblist
,
1062 &sdp
->srcu_barrier_head
, 0)) {
1063 debug_rcu_head_unqueue(&sdp
->srcu_barrier_head
);
1064 atomic_dec(&sp
->srcu_barrier_cpu_cnt
);
1066 spin_unlock_irq_rcu_node(sdp
);
1069 /* Remove the initial count, at which point reaching zero can happen. */
1070 if (atomic_dec_and_test(&sp
->srcu_barrier_cpu_cnt
))
1071 complete(&sp
->srcu_barrier_completion
);
1072 wait_for_completion(&sp
->srcu_barrier_completion
);
1074 rcu_seq_end(&sp
->srcu_barrier_seq
);
1075 mutex_unlock(&sp
->srcu_barrier_mutex
);
1077 EXPORT_SYMBOL_GPL(srcu_barrier
);
1080 * srcu_batches_completed - return batches completed.
1081 * @sp: srcu_struct on which to report batch completion.
1083 * Report the number of batches, correlated with, but not necessarily
1084 * precisely the same as, the number of grace periods that have elapsed.
1086 unsigned long srcu_batches_completed(struct srcu_struct
*sp
)
1088 return sp
->srcu_idx
;
1090 EXPORT_SYMBOL_GPL(srcu_batches_completed
);
1093 * Core SRCU state machine. Push state bits of ->srcu_gp_seq
1094 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1095 * completed in that state.
1097 static void srcu_advance_state(struct srcu_struct
*sp
)
1101 mutex_lock(&sp
->srcu_gp_mutex
);
1104 * Because readers might be delayed for an extended period after
1105 * fetching ->srcu_idx for their index, at any point in time there
1106 * might well be readers using both idx=0 and idx=1. We therefore
1107 * need to wait for readers to clear from both index values before
1108 * invoking a callback.
1110 * The load-acquire ensures that we see the accesses performed
1111 * by the prior grace period.
1113 idx
= rcu_seq_state(smp_load_acquire(&sp
->srcu_gp_seq
)); /* ^^^ */
1114 if (idx
== SRCU_STATE_IDLE
) {
1115 spin_lock_irq_rcu_node(sp
);
1116 if (ULONG_CMP_GE(sp
->srcu_gp_seq
, sp
->srcu_gp_seq_needed
)) {
1117 WARN_ON_ONCE(rcu_seq_state(sp
->srcu_gp_seq
));
1118 spin_unlock_irq_rcu_node(sp
);
1119 mutex_unlock(&sp
->srcu_gp_mutex
);
1122 idx
= rcu_seq_state(READ_ONCE(sp
->srcu_gp_seq
));
1123 if (idx
== SRCU_STATE_IDLE
)
1125 spin_unlock_irq_rcu_node(sp
);
1126 if (idx
!= SRCU_STATE_IDLE
) {
1127 mutex_unlock(&sp
->srcu_gp_mutex
);
1128 return; /* Someone else started the grace period. */
1132 if (rcu_seq_state(READ_ONCE(sp
->srcu_gp_seq
)) == SRCU_STATE_SCAN1
) {
1133 idx
= 1 ^ (sp
->srcu_idx
& 1);
1134 if (!try_check_zero(sp
, idx
, 1)) {
1135 mutex_unlock(&sp
->srcu_gp_mutex
);
1136 return; /* readers present, retry later. */
1139 rcu_seq_set_state(&sp
->srcu_gp_seq
, SRCU_STATE_SCAN2
);
1142 if (rcu_seq_state(READ_ONCE(sp
->srcu_gp_seq
)) == SRCU_STATE_SCAN2
) {
1145 * SRCU read-side critical sections are normally short,
1146 * so check at least twice in quick succession after a flip.
1148 idx
= 1 ^ (sp
->srcu_idx
& 1);
1149 if (!try_check_zero(sp
, idx
, 2)) {
1150 mutex_unlock(&sp
->srcu_gp_mutex
);
1151 return; /* readers present, retry later. */
1153 srcu_gp_end(sp
); /* Releases ->srcu_gp_mutex. */
1158 * Invoke a limited number of SRCU callbacks that have passed through
1159 * their grace period. If there are more to do, SRCU will reschedule
1160 * the workqueue. Note that needed memory barriers have been executed
1161 * in this task's context by srcu_readers_active_idx_check().
1163 static void srcu_invoke_callbacks(struct work_struct
*work
)
1166 struct rcu_cblist ready_cbs
;
1167 struct rcu_head
*rhp
;
1168 struct srcu_data
*sdp
;
1169 struct srcu_struct
*sp
;
1171 sdp
= container_of(work
, struct srcu_data
, work
.work
);
1173 rcu_cblist_init(&ready_cbs
);
1174 spin_lock_irq_rcu_node(sdp
);
1175 rcu_segcblist_advance(&sdp
->srcu_cblist
,
1176 rcu_seq_current(&sp
->srcu_gp_seq
));
1177 if (sdp
->srcu_cblist_invoking
||
1178 !rcu_segcblist_ready_cbs(&sdp
->srcu_cblist
)) {
1179 spin_unlock_irq_rcu_node(sdp
);
1180 return; /* Someone else on the job or nothing to do. */
1183 /* We are on the job! Extract and invoke ready callbacks. */
1184 sdp
->srcu_cblist_invoking
= true;
1185 rcu_segcblist_extract_done_cbs(&sdp
->srcu_cblist
, &ready_cbs
);
1186 spin_unlock_irq_rcu_node(sdp
);
1187 rhp
= rcu_cblist_dequeue(&ready_cbs
);
1188 for (; rhp
!= NULL
; rhp
= rcu_cblist_dequeue(&ready_cbs
)) {
1189 debug_rcu_head_unqueue(rhp
);
1196 * Update counts, accelerate new callbacks, and if needed,
1197 * schedule another round of callback invocation.
1199 spin_lock_irq_rcu_node(sdp
);
1200 rcu_segcblist_insert_count(&sdp
->srcu_cblist
, &ready_cbs
);
1201 (void)rcu_segcblist_accelerate(&sdp
->srcu_cblist
,
1202 rcu_seq_snap(&sp
->srcu_gp_seq
));
1203 sdp
->srcu_cblist_invoking
= false;
1204 more
= rcu_segcblist_ready_cbs(&sdp
->srcu_cblist
);
1205 spin_unlock_irq_rcu_node(sdp
);
1207 srcu_schedule_cbs_sdp(sdp
, 0);
1211 * Finished one round of SRCU grace period. Start another if there are
1212 * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1214 static void srcu_reschedule(struct srcu_struct
*sp
, unsigned long delay
)
1218 spin_lock_irq_rcu_node(sp
);
1219 if (ULONG_CMP_GE(sp
->srcu_gp_seq
, sp
->srcu_gp_seq_needed
)) {
1220 if (!WARN_ON_ONCE(rcu_seq_state(sp
->srcu_gp_seq
))) {
1221 /* All requests fulfilled, time to go idle. */
1224 } else if (!rcu_seq_state(sp
->srcu_gp_seq
)) {
1225 /* Outstanding request and no GP. Start one. */
1228 spin_unlock_irq_rcu_node(sp
);
1231 queue_delayed_work(rcu_gp_wq
, &sp
->work
, delay
);
1235 * This is the work-queue function that handles SRCU grace periods.
1237 static void process_srcu(struct work_struct
*work
)
1239 struct srcu_struct
*sp
;
1241 sp
= container_of(work
, struct srcu_struct
, work
.work
);
1243 srcu_advance_state(sp
);
1244 srcu_reschedule(sp
, srcu_get_delay(sp
));
1247 void srcutorture_get_gp_data(enum rcutorture_type test_type
,
1248 struct srcu_struct
*sp
, int *flags
,
1249 unsigned long *gpnum
, unsigned long *completed
)
1251 if (test_type
!= SRCU_FLAVOR
)
1254 *completed
= rcu_seq_ctr(sp
->srcu_gp_seq
);
1255 *gpnum
= rcu_seq_ctr(sp
->srcu_gp_seq_needed
);
1257 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data
);
1259 void srcu_torture_stats_print(struct srcu_struct
*sp
, char *tt
, char *tf
)
1263 unsigned long s0
= 0, s1
= 0;
1265 idx
= sp
->srcu_idx
& 0x1;
1266 pr_alert("%s%s Tree SRCU per-CPU(idx=%d):", tt
, tf
, idx
);
1267 for_each_possible_cpu(cpu
) {
1268 unsigned long l0
, l1
;
1269 unsigned long u0
, u1
;
1271 struct srcu_data
*counts
;
1273 counts
= per_cpu_ptr(sp
->sda
, cpu
);
1274 u0
= counts
->srcu_unlock_count
[!idx
];
1275 u1
= counts
->srcu_unlock_count
[idx
];
1278 * Make sure that a lock is always counted if the corresponding
1279 * unlock is counted.
1283 l0
= counts
->srcu_lock_count
[!idx
];
1284 l1
= counts
->srcu_lock_count
[idx
];
1288 pr_cont(" %d(%ld,%ld)", cpu
, c0
, c1
);
1292 pr_cont(" T(%ld,%ld)\n", s0
, s1
);
1294 EXPORT_SYMBOL_GPL(srcu_torture_stats_print
);
1296 static int __init
srcu_bootup_announce(void)
1298 pr_info("Hierarchical SRCU implementation.\n");
1299 if (exp_holdoff
!= DEFAULT_SRCU_EXP_HOLDOFF
)
1300 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff
);
1303 early_initcall(srcu_bootup_announce
);