net: sfc: Use pci_clear_master() to disable bus mastering
[linux/fpc-iii.git] / mm / swap_state.c
blob81c825f67a7f5bebfad1750d660551e2e2f9f2c3
1 /*
2 * linux/mm/swap_state.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/buffer_head.h>
17 #include <linux/backing-dev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
21 #include <asm/pgtable.h>
24 * swapper_space is a fiction, retained to simplify the path through
25 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
26 * future use of radix_tree tags in the swap cache.
28 static const struct address_space_operations swap_aops = {
29 .writepage = swap_writepage,
30 .sync_page = block_sync_page,
31 .set_page_dirty = __set_page_dirty_nobuffers,
32 .migratepage = migrate_page,
35 static struct backing_dev_info swap_backing_dev_info = {
36 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
37 .unplug_io_fn = swap_unplug_io_fn,
40 struct address_space swapper_space = {
41 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
42 .tree_lock = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
43 .a_ops = &swap_aops,
44 .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
45 .backing_dev_info = &swap_backing_dev_info,
48 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
50 static struct {
51 unsigned long add_total;
52 unsigned long del_total;
53 unsigned long find_success;
54 unsigned long find_total;
55 } swap_cache_info;
57 void show_swap_cache_info(void)
59 printk("%lu pages in swap cache\n", total_swapcache_pages);
60 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
61 swap_cache_info.add_total, swap_cache_info.del_total,
62 swap_cache_info.find_success, swap_cache_info.find_total);
63 printk("Free swap = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
64 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
68 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
69 * but sets SwapCache flag and private instead of mapping and index.
71 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
73 int error;
75 VM_BUG_ON(!PageLocked(page));
76 VM_BUG_ON(PageSwapCache(page));
77 VM_BUG_ON(!PageSwapBacked(page));
79 error = radix_tree_preload(gfp_mask);
80 if (!error) {
81 page_cache_get(page);
82 SetPageSwapCache(page);
83 set_page_private(page, entry.val);
85 spin_lock_irq(&swapper_space.tree_lock);
86 error = radix_tree_insert(&swapper_space.page_tree,
87 entry.val, page);
88 if (likely(!error)) {
89 total_swapcache_pages++;
90 __inc_zone_page_state(page, NR_FILE_PAGES);
91 INC_CACHE_INFO(add_total);
93 spin_unlock_irq(&swapper_space.tree_lock);
94 radix_tree_preload_end();
96 if (unlikely(error)) {
97 set_page_private(page, 0UL);
98 ClearPageSwapCache(page);
99 page_cache_release(page);
102 return error;
106 * This must be called only on pages that have
107 * been verified to be in the swap cache.
109 void __delete_from_swap_cache(struct page *page)
111 VM_BUG_ON(!PageLocked(page));
112 VM_BUG_ON(!PageSwapCache(page));
113 VM_BUG_ON(PageWriteback(page));
115 radix_tree_delete(&swapper_space.page_tree, page_private(page));
116 set_page_private(page, 0);
117 ClearPageSwapCache(page);
118 total_swapcache_pages--;
119 __dec_zone_page_state(page, NR_FILE_PAGES);
120 INC_CACHE_INFO(del_total);
124 * add_to_swap - allocate swap space for a page
125 * @page: page we want to move to swap
126 * @gfp_mask: memory allocation flags
128 * Allocate swap space for the page and add the page to the
129 * swap cache. Caller needs to hold the page lock.
131 int add_to_swap(struct page *page)
133 swp_entry_t entry;
134 int err;
136 VM_BUG_ON(!PageLocked(page));
137 VM_BUG_ON(!PageUptodate(page));
139 for (;;) {
140 entry = get_swap_page();
141 if (!entry.val)
142 return 0;
145 * Radix-tree node allocations from PF_MEMALLOC contexts could
146 * completely exhaust the page allocator. __GFP_NOMEMALLOC
147 * stops emergency reserves from being allocated.
149 * TODO: this could cause a theoretical memory reclaim
150 * deadlock in the swap out path.
153 * Add it to the swap cache and mark it dirty
155 err = add_to_swap_cache(page, entry,
156 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
158 switch (err) {
159 case 0: /* Success */
160 SetPageDirty(page);
161 return 1;
162 case -EEXIST:
163 /* Raced with "speculative" read_swap_cache_async */
164 swap_free(entry);
165 continue;
166 default:
167 /* -ENOMEM radix-tree allocation failure */
168 swap_free(entry);
169 return 0;
175 * This must be called only on pages that have
176 * been verified to be in the swap cache and locked.
177 * It will never put the page into the free list,
178 * the caller has a reference on the page.
180 void delete_from_swap_cache(struct page *page)
182 swp_entry_t entry;
184 entry.val = page_private(page);
186 spin_lock_irq(&swapper_space.tree_lock);
187 __delete_from_swap_cache(page);
188 spin_unlock_irq(&swapper_space.tree_lock);
190 swap_free(entry);
191 page_cache_release(page);
195 * If we are the only user, then try to free up the swap cache.
197 * Its ok to check for PageSwapCache without the page lock
198 * here because we are going to recheck again inside
199 * try_to_free_swap() _with_ the lock.
200 * - Marcelo
202 static inline void free_swap_cache(struct page *page)
204 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
205 try_to_free_swap(page);
206 unlock_page(page);
211 * Perform a free_page(), also freeing any swap cache associated with
212 * this page if it is the last user of the page.
214 void free_page_and_swap_cache(struct page *page)
216 free_swap_cache(page);
217 page_cache_release(page);
221 * Passed an array of pages, drop them all from swapcache and then release
222 * them. They are removed from the LRU and freed if this is their last use.
224 void free_pages_and_swap_cache(struct page **pages, int nr)
226 struct page **pagep = pages;
228 lru_add_drain();
229 while (nr) {
230 int todo = min(nr, PAGEVEC_SIZE);
231 int i;
233 for (i = 0; i < todo; i++)
234 free_swap_cache(pagep[i]);
235 release_pages(pagep, todo, 0);
236 pagep += todo;
237 nr -= todo;
242 * Lookup a swap entry in the swap cache. A found page will be returned
243 * unlocked and with its refcount incremented - we rely on the kernel
244 * lock getting page table operations atomic even if we drop the page
245 * lock before returning.
247 struct page * lookup_swap_cache(swp_entry_t entry)
249 struct page *page;
251 page = find_get_page(&swapper_space, entry.val);
253 if (page)
254 INC_CACHE_INFO(find_success);
256 INC_CACHE_INFO(find_total);
257 return page;
261 * Locate a page of swap in physical memory, reserving swap cache space
262 * and reading the disk if it is not already cached.
263 * A failure return means that either the page allocation failed or that
264 * the swap entry is no longer in use.
266 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
267 struct vm_area_struct *vma, unsigned long addr)
269 struct page *found_page, *new_page = NULL;
270 int err;
272 do {
274 * First check the swap cache. Since this is normally
275 * called after lookup_swap_cache() failed, re-calling
276 * that would confuse statistics.
278 found_page = find_get_page(&swapper_space, entry.val);
279 if (found_page)
280 break;
283 * Get a new page to read into from swap.
285 if (!new_page) {
286 new_page = alloc_page_vma(gfp_mask, vma, addr);
287 if (!new_page)
288 break; /* Out of memory */
292 * Swap entry may have been freed since our caller observed it.
294 if (!swap_duplicate(entry))
295 break;
298 * Associate the page with swap entry in the swap cache.
299 * May fail (-EEXIST) if there is already a page associated
300 * with this entry in the swap cache: added by a racing
301 * read_swap_cache_async, or add_to_swap or shmem_writepage
302 * re-using the just freed swap entry for an existing page.
303 * May fail (-ENOMEM) if radix-tree node allocation failed.
305 __set_page_locked(new_page);
306 SetPageSwapBacked(new_page);
307 err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL);
308 if (likely(!err)) {
310 * Initiate read into locked page and return.
312 lru_cache_add_anon(new_page);
313 swap_readpage(NULL, new_page);
314 return new_page;
316 ClearPageSwapBacked(new_page);
317 __clear_page_locked(new_page);
318 swap_free(entry);
319 } while (err != -ENOMEM);
321 if (new_page)
322 page_cache_release(new_page);
323 return found_page;
327 * swapin_readahead - swap in pages in hope we need them soon
328 * @entry: swap entry of this memory
329 * @gfp_mask: memory allocation flags
330 * @vma: user vma this address belongs to
331 * @addr: target address for mempolicy
333 * Returns the struct page for entry and addr, after queueing swapin.
335 * Primitive swap readahead code. We simply read an aligned block of
336 * (1 << page_cluster) entries in the swap area. This method is chosen
337 * because it doesn't cost us any seek time. We also make sure to queue
338 * the 'original' request together with the readahead ones...
340 * This has been extended to use the NUMA policies from the mm triggering
341 * the readahead.
343 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
345 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
346 struct vm_area_struct *vma, unsigned long addr)
348 int nr_pages;
349 struct page *page;
350 unsigned long offset;
351 unsigned long end_offset;
354 * Get starting offset for readaround, and number of pages to read.
355 * Adjust starting address by readbehind (for NUMA interleave case)?
356 * No, it's very unlikely that swap layout would follow vma layout,
357 * more likely that neighbouring swap pages came from the same node:
358 * so use the same "addr" to choose the same node for each swap read.
360 nr_pages = valid_swaphandles(entry, &offset);
361 for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
362 /* Ok, do the async read-ahead now */
363 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
364 gfp_mask, vma, addr);
365 if (!page)
366 break;
367 page_cache_release(page);
369 lru_add_drain(); /* Push any new pages onto the LRU now */
370 return read_swap_cache_async(entry, gfp_mask, vma, addr);