2 * sata_mv.c - Marvell SATA support
4 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc. All rights reserved.
8 * Originally written by Brett Russ.
9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; version 2 of the License.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 * --> Develop a low-power-consumption strategy, and implement it.
33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
35 * --> [Experiment, Marvell value added] Is it possible to use target
36 * mode to cross-connect two Linux boxes with Marvell cards? If so,
37 * creating LibATA target mode support would be very interesting.
39 * Target mode, for those without docs, is the ability to directly
40 * connect two SATA ports.
44 * 80x1-B2 errata PCI#11:
46 * Users of the 6041/6081 Rev.B2 chips (current is C0)
47 * should be careful to insert those cards only onto PCI-X bus #0,
48 * and only in device slots 0..7, not higher. The chips may not
49 * work correctly otherwise (note: this is a pretty rare condition).
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/pci.h>
55 #include <linux/init.h>
56 #include <linux/blkdev.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/dmapool.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/device.h>
62 #include <linux/clk.h>
63 #include <linux/phy/phy.h>
64 #include <linux/platform_device.h>
65 #include <linux/ata_platform.h>
66 #include <linux/mbus.h>
67 #include <linux/bitops.h>
68 #include <linux/gfp.h>
70 #include <linux/of_irq.h>
71 #include <scsi/scsi_host.h>
72 #include <scsi/scsi_cmnd.h>
73 #include <scsi/scsi_device.h>
74 #include <linux/libata.h>
76 #define DRV_NAME "sata_mv"
77 #define DRV_VERSION "1.28"
85 module_param(msi
, int, S_IRUGO
);
86 MODULE_PARM_DESC(msi
, "Enable use of PCI MSI (0=off, 1=on)");
89 static int irq_coalescing_io_count
;
90 module_param(irq_coalescing_io_count
, int, S_IRUGO
);
91 MODULE_PARM_DESC(irq_coalescing_io_count
,
92 "IRQ coalescing I/O count threshold (0..255)");
94 static int irq_coalescing_usecs
;
95 module_param(irq_coalescing_usecs
, int, S_IRUGO
);
96 MODULE_PARM_DESC(irq_coalescing_usecs
,
97 "IRQ coalescing time threshold in usecs");
100 /* BAR's are enumerated in terms of pci_resource_start() terms */
101 MV_PRIMARY_BAR
= 0, /* offset 0x10: memory space */
102 MV_IO_BAR
= 2, /* offset 0x18: IO space */
103 MV_MISC_BAR
= 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
105 MV_MAJOR_REG_AREA_SZ
= 0x10000, /* 64KB */
106 MV_MINOR_REG_AREA_SZ
= 0x2000, /* 8KB */
108 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
109 COAL_CLOCKS_PER_USEC
= 150, /* for calculating COAL_TIMEs */
110 MAX_COAL_TIME_THRESHOLD
= ((1 << 24) - 1), /* internal clocks count */
111 MAX_COAL_IO_COUNT
= 255, /* completed I/O count */
116 * Per-chip ("all ports") interrupt coalescing feature.
117 * This is only for GEN_II / GEN_IIE hardware.
119 * Coalescing defers the interrupt until either the IO_THRESHOLD
120 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
122 COAL_REG_BASE
= 0x18000,
123 IRQ_COAL_CAUSE
= (COAL_REG_BASE
+ 0x08),
124 ALL_PORTS_COAL_IRQ
= (1 << 4), /* all ports irq event */
126 IRQ_COAL_IO_THRESHOLD
= (COAL_REG_BASE
+ 0xcc),
127 IRQ_COAL_TIME_THRESHOLD
= (COAL_REG_BASE
+ 0xd0),
130 * Registers for the (unused here) transaction coalescing feature:
132 TRAN_COAL_CAUSE_LO
= (COAL_REG_BASE
+ 0x88),
133 TRAN_COAL_CAUSE_HI
= (COAL_REG_BASE
+ 0x8c),
135 SATAHC0_REG_BASE
= 0x20000,
137 GPIO_PORT_CTL
= 0x104f0,
140 MV_PCI_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
141 MV_SATAHC_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
142 MV_SATAHC_ARBTR_REG_SZ
= MV_MINOR_REG_AREA_SZ
, /* arbiter */
143 MV_PORT_REG_SZ
= MV_MINOR_REG_AREA_SZ
,
146 MV_MAX_Q_DEPTH_MASK
= MV_MAX_Q_DEPTH
- 1,
148 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
149 * CRPB needs alignment on a 256B boundary. Size == 256B
150 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
152 MV_CRQB_Q_SZ
= (32 * MV_MAX_Q_DEPTH
),
153 MV_CRPB_Q_SZ
= (8 * MV_MAX_Q_DEPTH
),
155 MV_SG_TBL_SZ
= (16 * MV_MAX_SG_CT
),
157 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
158 MV_PORT_HC_SHIFT
= 2,
159 MV_PORTS_PER_HC
= (1 << MV_PORT_HC_SHIFT
), /* 4 */
160 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
161 MV_PORT_MASK
= (MV_PORTS_PER_HC
- 1), /* 3 */
164 MV_FLAG_DUAL_HC
= (1 << 30), /* two SATA Host Controllers */
166 MV_COMMON_FLAGS
= ATA_FLAG_SATA
| ATA_FLAG_PIO_POLLING
,
168 MV_GEN_I_FLAGS
= MV_COMMON_FLAGS
| ATA_FLAG_NO_ATAPI
,
170 MV_GEN_II_FLAGS
= MV_COMMON_FLAGS
| ATA_FLAG_NCQ
|
171 ATA_FLAG_PMP
| ATA_FLAG_ACPI_SATA
,
173 MV_GEN_IIE_FLAGS
= MV_GEN_II_FLAGS
| ATA_FLAG_AN
,
175 CRQB_FLAG_READ
= (1 << 0),
177 CRQB_IOID_SHIFT
= 6, /* CRQB Gen-II/IIE IO Id shift */
178 CRQB_PMP_SHIFT
= 12, /* CRQB Gen-II/IIE PMP shift */
179 CRQB_HOSTQ_SHIFT
= 17, /* CRQB Gen-II/IIE HostQueTag shift */
180 CRQB_CMD_ADDR_SHIFT
= 8,
181 CRQB_CMD_CS
= (0x2 << 11),
182 CRQB_CMD_LAST
= (1 << 15),
184 CRPB_FLAG_STATUS_SHIFT
= 8,
185 CRPB_IOID_SHIFT_6
= 5, /* CRPB Gen-II IO Id shift */
186 CRPB_IOID_SHIFT_7
= 7, /* CRPB Gen-IIE IO Id shift */
188 EPRD_FLAG_END_OF_TBL
= (1 << 31),
190 /* PCI interface registers */
192 MV_PCI_COMMAND
= 0xc00,
193 MV_PCI_COMMAND_MWRCOM
= (1 << 4), /* PCI Master Write Combining */
194 MV_PCI_COMMAND_MRDTRIG
= (1 << 7), /* PCI Master Read Trigger */
196 PCI_MAIN_CMD_STS
= 0xd30,
197 STOP_PCI_MASTER
= (1 << 2),
198 PCI_MASTER_EMPTY
= (1 << 3),
199 GLOB_SFT_RST
= (1 << 4),
202 MV_PCI_MODE_MASK
= 0x30,
204 MV_PCI_EXP_ROM_BAR_CTL
= 0xd2c,
205 MV_PCI_DISC_TIMER
= 0xd04,
206 MV_PCI_MSI_TRIGGER
= 0xc38,
207 MV_PCI_SERR_MASK
= 0xc28,
208 MV_PCI_XBAR_TMOUT
= 0x1d04,
209 MV_PCI_ERR_LOW_ADDRESS
= 0x1d40,
210 MV_PCI_ERR_HIGH_ADDRESS
= 0x1d44,
211 MV_PCI_ERR_ATTRIBUTE
= 0x1d48,
212 MV_PCI_ERR_COMMAND
= 0x1d50,
214 PCI_IRQ_CAUSE
= 0x1d58,
215 PCI_IRQ_MASK
= 0x1d5c,
216 PCI_UNMASK_ALL_IRQS
= 0x7fffff, /* bits 22-0 */
218 PCIE_IRQ_CAUSE
= 0x1900,
219 PCIE_IRQ_MASK
= 0x1910,
220 PCIE_UNMASK_ALL_IRQS
= 0x40a, /* assorted bits */
222 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
223 PCI_HC_MAIN_IRQ_CAUSE
= 0x1d60,
224 PCI_HC_MAIN_IRQ_MASK
= 0x1d64,
225 SOC_HC_MAIN_IRQ_CAUSE
= 0x20020,
226 SOC_HC_MAIN_IRQ_MASK
= 0x20024,
227 ERR_IRQ
= (1 << 0), /* shift by (2 * port #) */
228 DONE_IRQ
= (1 << 1), /* shift by (2 * port #) */
229 HC0_IRQ_PEND
= 0x1ff, /* bits 0-8 = HC0's ports */
230 HC_SHIFT
= 9, /* bits 9-17 = HC1's ports */
231 DONE_IRQ_0_3
= 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
232 DONE_IRQ_4_7
= (DONE_IRQ_0_3
<< HC_SHIFT
), /* 4,5,6,7 */
234 TRAN_COAL_LO_DONE
= (1 << 19), /* transaction coalescing */
235 TRAN_COAL_HI_DONE
= (1 << 20), /* transaction coalescing */
236 PORTS_0_3_COAL_DONE
= (1 << 8), /* HC0 IRQ coalescing */
237 PORTS_4_7_COAL_DONE
= (1 << 17), /* HC1 IRQ coalescing */
238 ALL_PORTS_COAL_DONE
= (1 << 21), /* GEN_II(E) IRQ coalescing */
239 GPIO_INT
= (1 << 22),
240 SELF_INT
= (1 << 23),
241 TWSI_INT
= (1 << 24),
242 HC_MAIN_RSVD
= (0x7f << 25), /* bits 31-25 */
243 HC_MAIN_RSVD_5
= (0x1fff << 19), /* bits 31-19 */
244 HC_MAIN_RSVD_SOC
= (0x3fffffb << 6), /* bits 31-9, 7-6 */
246 /* SATAHC registers */
250 DMA_IRQ
= (1 << 0), /* shift by port # */
251 HC_COAL_IRQ
= (1 << 4), /* IRQ coalescing */
252 DEV_IRQ
= (1 << 8), /* shift by port # */
255 * Per-HC (Host-Controller) interrupt coalescing feature.
256 * This is present on all chip generations.
258 * Coalescing defers the interrupt until either the IO_THRESHOLD
259 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
261 HC_IRQ_COAL_IO_THRESHOLD
= 0x000c,
262 HC_IRQ_COAL_TIME_THRESHOLD
= 0x0010,
265 SOC_LED_CTRL_BLINK
= (1 << 0), /* Active LED blink */
266 SOC_LED_CTRL_ACT_PRESENCE
= (1 << 2), /* Multiplex dev presence */
267 /* with dev activity LED */
269 /* Shadow block registers */
271 SHD_CTL_AST
= 0x20, /* ofs from SHD_BLK */
274 SATA_STATUS
= 0x300, /* ctrl, err regs follow status */
276 FIS_IRQ_CAUSE
= 0x364,
277 FIS_IRQ_CAUSE_AN
= (1 << 9), /* async notification */
279 LTMODE
= 0x30c, /* requires read-after-write */
280 LTMODE_BIT8
= (1 << 8), /* unknown, but necessary */
285 PHY_MODE4
= 0x314, /* requires read-after-write */
286 PHY_MODE4_CFG_MASK
= 0x00000003, /* phy internal config field */
287 PHY_MODE4_CFG_VALUE
= 0x00000001, /* phy internal config field */
288 PHY_MODE4_RSVD_ZEROS
= 0x5de3fffa, /* Gen2e always write zeros */
289 PHY_MODE4_RSVD_ONES
= 0x00000005, /* Gen2e always write ones */
292 SATA_TESTCTL
= 0x348,
294 VENDOR_UNIQUE_FIS
= 0x35c,
297 FISCFG_WAIT_DEV_ERR
= (1 << 8), /* wait for host on DevErr */
298 FISCFG_SINGLE_SYNC
= (1 << 16), /* SYNC on DMA activation */
300 PHY_MODE9_GEN2
= 0x398,
301 PHY_MODE9_GEN1
= 0x39c,
302 PHYCFG_OFS
= 0x3a0, /* only in 65n devices */
310 MV_M2_PREAMP_MASK
= 0x7e0,
314 EDMA_CFG_Q_DEPTH
= 0x1f, /* max device queue depth */
315 EDMA_CFG_NCQ
= (1 << 5), /* for R/W FPDMA queued */
316 EDMA_CFG_NCQ_GO_ON_ERR
= (1 << 14), /* continue on error */
317 EDMA_CFG_RD_BRST_EXT
= (1 << 11), /* read burst 512B */
318 EDMA_CFG_WR_BUFF_LEN
= (1 << 13), /* write buffer 512B */
319 EDMA_CFG_EDMA_FBS
= (1 << 16), /* EDMA FIS-Based Switching */
320 EDMA_CFG_FBS
= (1 << 26), /* FIS-Based Switching */
322 EDMA_ERR_IRQ_CAUSE
= 0x8,
323 EDMA_ERR_IRQ_MASK
= 0xc,
324 EDMA_ERR_D_PAR
= (1 << 0), /* UDMA data parity err */
325 EDMA_ERR_PRD_PAR
= (1 << 1), /* UDMA PRD parity err */
326 EDMA_ERR_DEV
= (1 << 2), /* device error */
327 EDMA_ERR_DEV_DCON
= (1 << 3), /* device disconnect */
328 EDMA_ERR_DEV_CON
= (1 << 4), /* device connected */
329 EDMA_ERR_SERR
= (1 << 5), /* SError bits [WBDST] raised */
330 EDMA_ERR_SELF_DIS
= (1 << 7), /* Gen II/IIE self-disable */
331 EDMA_ERR_SELF_DIS_5
= (1 << 8), /* Gen I self-disable */
332 EDMA_ERR_BIST_ASYNC
= (1 << 8), /* BIST FIS or Async Notify */
333 EDMA_ERR_TRANS_IRQ_7
= (1 << 8), /* Gen IIE transprt layer irq */
334 EDMA_ERR_CRQB_PAR
= (1 << 9), /* CRQB parity error */
335 EDMA_ERR_CRPB_PAR
= (1 << 10), /* CRPB parity error */
336 EDMA_ERR_INTRL_PAR
= (1 << 11), /* internal parity error */
337 EDMA_ERR_IORDY
= (1 << 12), /* IORdy timeout */
339 EDMA_ERR_LNK_CTRL_RX
= (0xf << 13), /* link ctrl rx error */
340 EDMA_ERR_LNK_CTRL_RX_0
= (1 << 13), /* transient: CRC err */
341 EDMA_ERR_LNK_CTRL_RX_1
= (1 << 14), /* transient: FIFO err */
342 EDMA_ERR_LNK_CTRL_RX_2
= (1 << 15), /* fatal: caught SYNC */
343 EDMA_ERR_LNK_CTRL_RX_3
= (1 << 16), /* transient: FIS rx err */
345 EDMA_ERR_LNK_DATA_RX
= (0xf << 17), /* link data rx error */
347 EDMA_ERR_LNK_CTRL_TX
= (0x1f << 21), /* link ctrl tx error */
348 EDMA_ERR_LNK_CTRL_TX_0
= (1 << 21), /* transient: CRC err */
349 EDMA_ERR_LNK_CTRL_TX_1
= (1 << 22), /* transient: FIFO err */
350 EDMA_ERR_LNK_CTRL_TX_2
= (1 << 23), /* transient: caught SYNC */
351 EDMA_ERR_LNK_CTRL_TX_3
= (1 << 24), /* transient: caught DMAT */
352 EDMA_ERR_LNK_CTRL_TX_4
= (1 << 25), /* transient: FIS collision */
354 EDMA_ERR_LNK_DATA_TX
= (0x1f << 26), /* link data tx error */
356 EDMA_ERR_TRANS_PROTO
= (1 << 31), /* transport protocol error */
357 EDMA_ERR_OVERRUN_5
= (1 << 5),
358 EDMA_ERR_UNDERRUN_5
= (1 << 6),
360 EDMA_ERR_IRQ_TRANSIENT
= EDMA_ERR_LNK_CTRL_RX_0
|
361 EDMA_ERR_LNK_CTRL_RX_1
|
362 EDMA_ERR_LNK_CTRL_RX_3
|
363 EDMA_ERR_LNK_CTRL_TX
,
365 EDMA_EH_FREEZE
= EDMA_ERR_D_PAR
|
375 EDMA_ERR_LNK_CTRL_RX_2
|
376 EDMA_ERR_LNK_DATA_RX
|
377 EDMA_ERR_LNK_DATA_TX
|
378 EDMA_ERR_TRANS_PROTO
,
380 EDMA_EH_FREEZE_5
= EDMA_ERR_D_PAR
|
385 EDMA_ERR_UNDERRUN_5
|
386 EDMA_ERR_SELF_DIS_5
|
392 EDMA_REQ_Q_BASE_HI
= 0x10,
393 EDMA_REQ_Q_IN_PTR
= 0x14, /* also contains BASE_LO */
395 EDMA_REQ_Q_OUT_PTR
= 0x18,
396 EDMA_REQ_Q_PTR_SHIFT
= 5,
398 EDMA_RSP_Q_BASE_HI
= 0x1c,
399 EDMA_RSP_Q_IN_PTR
= 0x20,
400 EDMA_RSP_Q_OUT_PTR
= 0x24, /* also contains BASE_LO */
401 EDMA_RSP_Q_PTR_SHIFT
= 3,
403 EDMA_CMD
= 0x28, /* EDMA command register */
404 EDMA_EN
= (1 << 0), /* enable EDMA */
405 EDMA_DS
= (1 << 1), /* disable EDMA; self-negated */
406 EDMA_RESET
= (1 << 2), /* reset eng/trans/link/phy */
408 EDMA_STATUS
= 0x30, /* EDMA engine status */
409 EDMA_STATUS_CACHE_EMPTY
= (1 << 6), /* GenIIe command cache empty */
410 EDMA_STATUS_IDLE
= (1 << 7), /* GenIIe EDMA enabled/idle */
412 EDMA_IORDY_TMOUT
= 0x34,
415 EDMA_HALTCOND
= 0x60, /* GenIIe halt conditions */
416 EDMA_UNKNOWN_RSVD
= 0x6C, /* GenIIe unknown/reserved */
418 BMDMA_CMD
= 0x224, /* bmdma command register */
419 BMDMA_STATUS
= 0x228, /* bmdma status register */
420 BMDMA_PRD_LOW
= 0x22c, /* bmdma PRD addr 31:0 */
421 BMDMA_PRD_HIGH
= 0x230, /* bmdma PRD addr 63:32 */
423 /* Host private flags (hp_flags) */
424 MV_HP_FLAG_MSI
= (1 << 0),
425 MV_HP_ERRATA_50XXB0
= (1 << 1),
426 MV_HP_ERRATA_50XXB2
= (1 << 2),
427 MV_HP_ERRATA_60X1B2
= (1 << 3),
428 MV_HP_ERRATA_60X1C0
= (1 << 4),
429 MV_HP_GEN_I
= (1 << 6), /* Generation I: 50xx */
430 MV_HP_GEN_II
= (1 << 7), /* Generation II: 60xx */
431 MV_HP_GEN_IIE
= (1 << 8), /* Generation IIE: 6042/7042 */
432 MV_HP_PCIE
= (1 << 9), /* PCIe bus/regs: 7042 */
433 MV_HP_CUT_THROUGH
= (1 << 10), /* can use EDMA cut-through */
434 MV_HP_FLAG_SOC
= (1 << 11), /* SystemOnChip, no PCI */
435 MV_HP_QUIRK_LED_BLINK_EN
= (1 << 12), /* is led blinking enabled? */
436 MV_HP_FIX_LP_PHY_CTL
= (1 << 13), /* fix speed in LP_PHY_CTL ? */
438 /* Port private flags (pp_flags) */
439 MV_PP_FLAG_EDMA_EN
= (1 << 0), /* is EDMA engine enabled? */
440 MV_PP_FLAG_NCQ_EN
= (1 << 1), /* is EDMA set up for NCQ? */
441 MV_PP_FLAG_FBS_EN
= (1 << 2), /* is EDMA set up for FBS? */
442 MV_PP_FLAG_DELAYED_EH
= (1 << 3), /* delayed dev err handling */
443 MV_PP_FLAG_FAKE_ATA_BUSY
= (1 << 4), /* ignore initial ATA_DRDY */
446 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
447 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
448 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
449 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
450 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
452 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
453 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
456 /* DMA boundary 0xffff is required by the s/g splitting
457 * we need on /length/ in mv_fill-sg().
459 MV_DMA_BOUNDARY
= 0xffffU
,
461 /* mask of register bits containing lower 32 bits
462 * of EDMA request queue DMA address
464 EDMA_REQ_Q_BASE_LO_MASK
= 0xfffffc00U
,
466 /* ditto, for response queue */
467 EDMA_RSP_Q_BASE_LO_MASK
= 0xffffff00U
,
481 /* Command ReQuest Block: 32B */
497 /* Command ResPonse Block: 8B */
504 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
513 * We keep a local cache of a few frequently accessed port
514 * registers here, to avoid having to read them (very slow)
515 * when switching between EDMA and non-EDMA modes.
517 struct mv_cached_regs
{
524 struct mv_port_priv
{
525 struct mv_crqb
*crqb
;
527 struct mv_crpb
*crpb
;
529 struct mv_sg
*sg_tbl
[MV_MAX_Q_DEPTH
];
530 dma_addr_t sg_tbl_dma
[MV_MAX_Q_DEPTH
];
532 unsigned int req_idx
;
533 unsigned int resp_idx
;
536 struct mv_cached_regs cached
;
537 unsigned int delayed_eh_pmp_map
;
540 struct mv_port_signal
{
545 struct mv_host_priv
{
547 unsigned int board_idx
;
549 struct mv_port_signal signal
[8];
550 const struct mv_hw_ops
*ops
;
553 void __iomem
*main_irq_cause_addr
;
554 void __iomem
*main_irq_mask_addr
;
555 u32 irq_cause_offset
;
560 * Needed on some devices that require their clocks to be enabled.
561 * These are optional: if the platform device does not have any
562 * clocks, they won't be used. Also, if the underlying hardware
563 * does not support the common clock framework (CONFIG_HAVE_CLK=n),
564 * all the clock operations become no-ops (see clk.h).
567 struct clk
**port_clks
;
569 * Some devices have a SATA PHY which can be enabled/disabled
570 * in order to save power. These are optional: if the platform
571 * devices does not have any phy, they won't be used.
573 struct phy
**port_phys
;
575 * These consistent DMA memory pools give us guaranteed
576 * alignment for hardware-accessed data structures,
577 * and less memory waste in accomplishing the alignment.
579 struct dma_pool
*crqb_pool
;
580 struct dma_pool
*crpb_pool
;
581 struct dma_pool
*sg_tbl_pool
;
585 void (*phy_errata
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
587 void (*enable_leds
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
588 void (*read_preamp
)(struct mv_host_priv
*hpriv
, int idx
,
590 int (*reset_hc
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
592 void (*reset_flash
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
593 void (*reset_bus
)(struct ata_host
*host
, void __iomem
*mmio
);
596 static int mv_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
);
597 static int mv_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
);
598 static int mv5_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
);
599 static int mv5_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
);
600 static int mv_port_start(struct ata_port
*ap
);
601 static void mv_port_stop(struct ata_port
*ap
);
602 static int mv_qc_defer(struct ata_queued_cmd
*qc
);
603 static void mv_qc_prep(struct ata_queued_cmd
*qc
);
604 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
);
605 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
);
606 static int mv_hardreset(struct ata_link
*link
, unsigned int *class,
607 unsigned long deadline
);
608 static void mv_eh_freeze(struct ata_port
*ap
);
609 static void mv_eh_thaw(struct ata_port
*ap
);
610 static void mv6_dev_config(struct ata_device
*dev
);
612 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
614 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
615 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
617 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
619 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
620 static void mv5_reset_bus(struct ata_host
*host
, void __iomem
*mmio
);
622 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
624 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
625 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
627 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
629 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
630 static void mv_soc_enable_leds(struct mv_host_priv
*hpriv
,
632 static void mv_soc_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
634 static int mv_soc_reset_hc(struct mv_host_priv
*hpriv
,
635 void __iomem
*mmio
, unsigned int n_hc
);
636 static void mv_soc_reset_flash(struct mv_host_priv
*hpriv
,
638 static void mv_soc_reset_bus(struct ata_host
*host
, void __iomem
*mmio
);
639 static void mv_soc_65n_phy_errata(struct mv_host_priv
*hpriv
,
640 void __iomem
*mmio
, unsigned int port
);
641 static void mv_reset_pci_bus(struct ata_host
*host
, void __iomem
*mmio
);
642 static void mv_reset_channel(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
643 unsigned int port_no
);
644 static int mv_stop_edma(struct ata_port
*ap
);
645 static int mv_stop_edma_engine(void __iomem
*port_mmio
);
646 static void mv_edma_cfg(struct ata_port
*ap
, int want_ncq
, int want_edma
);
648 static void mv_pmp_select(struct ata_port
*ap
, int pmp
);
649 static int mv_pmp_hardreset(struct ata_link
*link
, unsigned int *class,
650 unsigned long deadline
);
651 static int mv_softreset(struct ata_link
*link
, unsigned int *class,
652 unsigned long deadline
);
653 static void mv_pmp_error_handler(struct ata_port
*ap
);
654 static void mv_process_crpb_entries(struct ata_port
*ap
,
655 struct mv_port_priv
*pp
);
657 static void mv_sff_irq_clear(struct ata_port
*ap
);
658 static int mv_check_atapi_dma(struct ata_queued_cmd
*qc
);
659 static void mv_bmdma_setup(struct ata_queued_cmd
*qc
);
660 static void mv_bmdma_start(struct ata_queued_cmd
*qc
);
661 static void mv_bmdma_stop(struct ata_queued_cmd
*qc
);
662 static u8
mv_bmdma_status(struct ata_port
*ap
);
663 static u8
mv_sff_check_status(struct ata_port
*ap
);
665 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
666 * because we have to allow room for worst case splitting of
667 * PRDs for 64K boundaries in mv_fill_sg().
670 static struct scsi_host_template mv5_sht
= {
671 ATA_BASE_SHT(DRV_NAME
),
672 .sg_tablesize
= MV_MAX_SG_CT
/ 2,
673 .dma_boundary
= MV_DMA_BOUNDARY
,
676 static struct scsi_host_template mv6_sht
= {
677 ATA_NCQ_SHT(DRV_NAME
),
678 .can_queue
= MV_MAX_Q_DEPTH
- 1,
679 .sg_tablesize
= MV_MAX_SG_CT
/ 2,
680 .dma_boundary
= MV_DMA_BOUNDARY
,
683 static struct ata_port_operations mv5_ops
= {
684 .inherits
= &ata_sff_port_ops
,
686 .lost_interrupt
= ATA_OP_NULL
,
688 .qc_defer
= mv_qc_defer
,
689 .qc_prep
= mv_qc_prep
,
690 .qc_issue
= mv_qc_issue
,
692 .freeze
= mv_eh_freeze
,
694 .hardreset
= mv_hardreset
,
696 .scr_read
= mv5_scr_read
,
697 .scr_write
= mv5_scr_write
,
699 .port_start
= mv_port_start
,
700 .port_stop
= mv_port_stop
,
703 static struct ata_port_operations mv6_ops
= {
704 .inherits
= &ata_bmdma_port_ops
,
706 .lost_interrupt
= ATA_OP_NULL
,
708 .qc_defer
= mv_qc_defer
,
709 .qc_prep
= mv_qc_prep
,
710 .qc_issue
= mv_qc_issue
,
712 .dev_config
= mv6_dev_config
,
714 .freeze
= mv_eh_freeze
,
716 .hardreset
= mv_hardreset
,
717 .softreset
= mv_softreset
,
718 .pmp_hardreset
= mv_pmp_hardreset
,
719 .pmp_softreset
= mv_softreset
,
720 .error_handler
= mv_pmp_error_handler
,
722 .scr_read
= mv_scr_read
,
723 .scr_write
= mv_scr_write
,
725 .sff_check_status
= mv_sff_check_status
,
726 .sff_irq_clear
= mv_sff_irq_clear
,
727 .check_atapi_dma
= mv_check_atapi_dma
,
728 .bmdma_setup
= mv_bmdma_setup
,
729 .bmdma_start
= mv_bmdma_start
,
730 .bmdma_stop
= mv_bmdma_stop
,
731 .bmdma_status
= mv_bmdma_status
,
733 .port_start
= mv_port_start
,
734 .port_stop
= mv_port_stop
,
737 static struct ata_port_operations mv_iie_ops
= {
738 .inherits
= &mv6_ops
,
739 .dev_config
= ATA_OP_NULL
,
740 .qc_prep
= mv_qc_prep_iie
,
743 static const struct ata_port_info mv_port_info
[] = {
745 .flags
= MV_GEN_I_FLAGS
,
746 .pio_mask
= ATA_PIO4
,
747 .udma_mask
= ATA_UDMA6
,
748 .port_ops
= &mv5_ops
,
751 .flags
= MV_GEN_I_FLAGS
| MV_FLAG_DUAL_HC
,
752 .pio_mask
= ATA_PIO4
,
753 .udma_mask
= ATA_UDMA6
,
754 .port_ops
= &mv5_ops
,
757 .flags
= MV_GEN_I_FLAGS
| MV_FLAG_DUAL_HC
,
758 .pio_mask
= ATA_PIO4
,
759 .udma_mask
= ATA_UDMA6
,
760 .port_ops
= &mv5_ops
,
763 .flags
= MV_GEN_II_FLAGS
,
764 .pio_mask
= ATA_PIO4
,
765 .udma_mask
= ATA_UDMA6
,
766 .port_ops
= &mv6_ops
,
769 .flags
= MV_GEN_II_FLAGS
| MV_FLAG_DUAL_HC
,
770 .pio_mask
= ATA_PIO4
,
771 .udma_mask
= ATA_UDMA6
,
772 .port_ops
= &mv6_ops
,
775 .flags
= MV_GEN_IIE_FLAGS
,
776 .pio_mask
= ATA_PIO4
,
777 .udma_mask
= ATA_UDMA6
,
778 .port_ops
= &mv_iie_ops
,
781 .flags
= MV_GEN_IIE_FLAGS
,
782 .pio_mask
= ATA_PIO4
,
783 .udma_mask
= ATA_UDMA6
,
784 .port_ops
= &mv_iie_ops
,
787 .flags
= MV_GEN_IIE_FLAGS
,
788 .pio_mask
= ATA_PIO4
,
789 .udma_mask
= ATA_UDMA6
,
790 .port_ops
= &mv_iie_ops
,
794 static const struct pci_device_id mv_pci_tbl
[] = {
795 { PCI_VDEVICE(MARVELL
, 0x5040), chip_504x
},
796 { PCI_VDEVICE(MARVELL
, 0x5041), chip_504x
},
797 { PCI_VDEVICE(MARVELL
, 0x5080), chip_5080
},
798 { PCI_VDEVICE(MARVELL
, 0x5081), chip_508x
},
799 /* RocketRAID 1720/174x have different identifiers */
800 { PCI_VDEVICE(TTI
, 0x1720), chip_6042
},
801 { PCI_VDEVICE(TTI
, 0x1740), chip_6042
},
802 { PCI_VDEVICE(TTI
, 0x1742), chip_6042
},
804 { PCI_VDEVICE(MARVELL
, 0x6040), chip_604x
},
805 { PCI_VDEVICE(MARVELL
, 0x6041), chip_604x
},
806 { PCI_VDEVICE(MARVELL
, 0x6042), chip_6042
},
807 { PCI_VDEVICE(MARVELL
, 0x6080), chip_608x
},
808 { PCI_VDEVICE(MARVELL
, 0x6081), chip_608x
},
810 { PCI_VDEVICE(ADAPTEC2
, 0x0241), chip_604x
},
813 { PCI_VDEVICE(ADAPTEC2
, 0x0243), chip_7042
},
815 /* Marvell 7042 support */
816 { PCI_VDEVICE(MARVELL
, 0x7042), chip_7042
},
818 /* Highpoint RocketRAID PCIe series */
819 { PCI_VDEVICE(TTI
, 0x2300), chip_7042
},
820 { PCI_VDEVICE(TTI
, 0x2310), chip_7042
},
822 { } /* terminate list */
825 static const struct mv_hw_ops mv5xxx_ops
= {
826 .phy_errata
= mv5_phy_errata
,
827 .enable_leds
= mv5_enable_leds
,
828 .read_preamp
= mv5_read_preamp
,
829 .reset_hc
= mv5_reset_hc
,
830 .reset_flash
= mv5_reset_flash
,
831 .reset_bus
= mv5_reset_bus
,
834 static const struct mv_hw_ops mv6xxx_ops
= {
835 .phy_errata
= mv6_phy_errata
,
836 .enable_leds
= mv6_enable_leds
,
837 .read_preamp
= mv6_read_preamp
,
838 .reset_hc
= mv6_reset_hc
,
839 .reset_flash
= mv6_reset_flash
,
840 .reset_bus
= mv_reset_pci_bus
,
843 static const struct mv_hw_ops mv_soc_ops
= {
844 .phy_errata
= mv6_phy_errata
,
845 .enable_leds
= mv_soc_enable_leds
,
846 .read_preamp
= mv_soc_read_preamp
,
847 .reset_hc
= mv_soc_reset_hc
,
848 .reset_flash
= mv_soc_reset_flash
,
849 .reset_bus
= mv_soc_reset_bus
,
852 static const struct mv_hw_ops mv_soc_65n_ops
= {
853 .phy_errata
= mv_soc_65n_phy_errata
,
854 .enable_leds
= mv_soc_enable_leds
,
855 .reset_hc
= mv_soc_reset_hc
,
856 .reset_flash
= mv_soc_reset_flash
,
857 .reset_bus
= mv_soc_reset_bus
,
864 static inline void writelfl(unsigned long data
, void __iomem
*addr
)
867 (void) readl(addr
); /* flush to avoid PCI posted write */
870 static inline unsigned int mv_hc_from_port(unsigned int port
)
872 return port
>> MV_PORT_HC_SHIFT
;
875 static inline unsigned int mv_hardport_from_port(unsigned int port
)
877 return port
& MV_PORT_MASK
;
881 * Consolidate some rather tricky bit shift calculations.
882 * This is hot-path stuff, so not a function.
883 * Simple code, with two return values, so macro rather than inline.
885 * port is the sole input, in range 0..7.
886 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
887 * hardport is the other output, in range 0..3.
889 * Note that port and hardport may be the same variable in some cases.
891 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
893 shift = mv_hc_from_port(port) * HC_SHIFT; \
894 hardport = mv_hardport_from_port(port); \
895 shift += hardport * 2; \
898 static inline void __iomem
*mv_hc_base(void __iomem
*base
, unsigned int hc
)
900 return (base
+ SATAHC0_REG_BASE
+ (hc
* MV_SATAHC_REG_SZ
));
903 static inline void __iomem
*mv_hc_base_from_port(void __iomem
*base
,
906 return mv_hc_base(base
, mv_hc_from_port(port
));
909 static inline void __iomem
*mv_port_base(void __iomem
*base
, unsigned int port
)
911 return mv_hc_base_from_port(base
, port
) +
912 MV_SATAHC_ARBTR_REG_SZ
+
913 (mv_hardport_from_port(port
) * MV_PORT_REG_SZ
);
916 static void __iomem
*mv5_phy_base(void __iomem
*mmio
, unsigned int port
)
918 void __iomem
*hc_mmio
= mv_hc_base_from_port(mmio
, port
);
919 unsigned long ofs
= (mv_hardport_from_port(port
) + 1) * 0x100UL
;
921 return hc_mmio
+ ofs
;
924 static inline void __iomem
*mv_host_base(struct ata_host
*host
)
926 struct mv_host_priv
*hpriv
= host
->private_data
;
930 static inline void __iomem
*mv_ap_base(struct ata_port
*ap
)
932 return mv_port_base(mv_host_base(ap
->host
), ap
->port_no
);
935 static inline int mv_get_hc_count(unsigned long port_flags
)
937 return ((port_flags
& MV_FLAG_DUAL_HC
) ? 2 : 1);
941 * mv_save_cached_regs - (re-)initialize cached port registers
942 * @ap: the port whose registers we are caching
944 * Initialize the local cache of port registers,
945 * so that reading them over and over again can
946 * be avoided on the hotter paths of this driver.
947 * This saves a few microseconds each time we switch
948 * to/from EDMA mode to perform (eg.) a drive cache flush.
950 static void mv_save_cached_regs(struct ata_port
*ap
)
952 void __iomem
*port_mmio
= mv_ap_base(ap
);
953 struct mv_port_priv
*pp
= ap
->private_data
;
955 pp
->cached
.fiscfg
= readl(port_mmio
+ FISCFG
);
956 pp
->cached
.ltmode
= readl(port_mmio
+ LTMODE
);
957 pp
->cached
.haltcond
= readl(port_mmio
+ EDMA_HALTCOND
);
958 pp
->cached
.unknown_rsvd
= readl(port_mmio
+ EDMA_UNKNOWN_RSVD
);
962 * mv_write_cached_reg - write to a cached port register
963 * @addr: hardware address of the register
964 * @old: pointer to cached value of the register
965 * @new: new value for the register
967 * Write a new value to a cached register,
968 * but only if the value is different from before.
970 static inline void mv_write_cached_reg(void __iomem
*addr
, u32
*old
, u32
new)
976 * Workaround for 88SX60x1-B2 FEr SATA#13:
977 * Read-after-write is needed to prevent generating 64-bit
978 * write cycles on the PCI bus for SATA interface registers
979 * at offsets ending in 0x4 or 0xc.
981 * Looks like a lot of fuss, but it avoids an unnecessary
982 * +1 usec read-after-write delay for unaffected registers.
984 laddr
= (long)addr
& 0xffff;
985 if (laddr
>= 0x300 && laddr
<= 0x33c) {
987 if (laddr
== 0x4 || laddr
== 0xc) {
988 writelfl(new, addr
); /* read after write */
992 writel(new, addr
); /* unaffected by the errata */
996 static void mv_set_edma_ptrs(void __iomem
*port_mmio
,
997 struct mv_host_priv
*hpriv
,
998 struct mv_port_priv
*pp
)
1003 * initialize request queue
1005 pp
->req_idx
&= MV_MAX_Q_DEPTH_MASK
; /* paranoia */
1006 index
= pp
->req_idx
<< EDMA_REQ_Q_PTR_SHIFT
;
1008 WARN_ON(pp
->crqb_dma
& 0x3ff);
1009 writel((pp
->crqb_dma
>> 16) >> 16, port_mmio
+ EDMA_REQ_Q_BASE_HI
);
1010 writelfl((pp
->crqb_dma
& EDMA_REQ_Q_BASE_LO_MASK
) | index
,
1011 port_mmio
+ EDMA_REQ_Q_IN_PTR
);
1012 writelfl(index
, port_mmio
+ EDMA_REQ_Q_OUT_PTR
);
1015 * initialize response queue
1017 pp
->resp_idx
&= MV_MAX_Q_DEPTH_MASK
; /* paranoia */
1018 index
= pp
->resp_idx
<< EDMA_RSP_Q_PTR_SHIFT
;
1020 WARN_ON(pp
->crpb_dma
& 0xff);
1021 writel((pp
->crpb_dma
>> 16) >> 16, port_mmio
+ EDMA_RSP_Q_BASE_HI
);
1022 writelfl(index
, port_mmio
+ EDMA_RSP_Q_IN_PTR
);
1023 writelfl((pp
->crpb_dma
& EDMA_RSP_Q_BASE_LO_MASK
) | index
,
1024 port_mmio
+ EDMA_RSP_Q_OUT_PTR
);
1027 static void mv_write_main_irq_mask(u32 mask
, struct mv_host_priv
*hpriv
)
1030 * When writing to the main_irq_mask in hardware,
1031 * we must ensure exclusivity between the interrupt coalescing bits
1032 * and the corresponding individual port DONE_IRQ bits.
1034 * Note that this register is really an "IRQ enable" register,
1035 * not an "IRQ mask" register as Marvell's naming might suggest.
1037 if (mask
& (ALL_PORTS_COAL_DONE
| PORTS_0_3_COAL_DONE
))
1038 mask
&= ~DONE_IRQ_0_3
;
1039 if (mask
& (ALL_PORTS_COAL_DONE
| PORTS_4_7_COAL_DONE
))
1040 mask
&= ~DONE_IRQ_4_7
;
1041 writelfl(mask
, hpriv
->main_irq_mask_addr
);
1044 static void mv_set_main_irq_mask(struct ata_host
*host
,
1045 u32 disable_bits
, u32 enable_bits
)
1047 struct mv_host_priv
*hpriv
= host
->private_data
;
1048 u32 old_mask
, new_mask
;
1050 old_mask
= hpriv
->main_irq_mask
;
1051 new_mask
= (old_mask
& ~disable_bits
) | enable_bits
;
1052 if (new_mask
!= old_mask
) {
1053 hpriv
->main_irq_mask
= new_mask
;
1054 mv_write_main_irq_mask(new_mask
, hpriv
);
1058 static void mv_enable_port_irqs(struct ata_port
*ap
,
1059 unsigned int port_bits
)
1061 unsigned int shift
, hardport
, port
= ap
->port_no
;
1062 u32 disable_bits
, enable_bits
;
1064 MV_PORT_TO_SHIFT_AND_HARDPORT(port
, shift
, hardport
);
1066 disable_bits
= (DONE_IRQ
| ERR_IRQ
) << shift
;
1067 enable_bits
= port_bits
<< shift
;
1068 mv_set_main_irq_mask(ap
->host
, disable_bits
, enable_bits
);
1071 static void mv_clear_and_enable_port_irqs(struct ata_port
*ap
,
1072 void __iomem
*port_mmio
,
1073 unsigned int port_irqs
)
1075 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1076 int hardport
= mv_hardport_from_port(ap
->port_no
);
1077 void __iomem
*hc_mmio
= mv_hc_base_from_port(
1078 mv_host_base(ap
->host
), ap
->port_no
);
1081 /* clear EDMA event indicators, if any */
1082 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE
);
1084 /* clear pending irq events */
1085 hc_irq_cause
= ~((DEV_IRQ
| DMA_IRQ
) << hardport
);
1086 writelfl(hc_irq_cause
, hc_mmio
+ HC_IRQ_CAUSE
);
1088 /* clear FIS IRQ Cause */
1089 if (IS_GEN_IIE(hpriv
))
1090 writelfl(0, port_mmio
+ FIS_IRQ_CAUSE
);
1092 mv_enable_port_irqs(ap
, port_irqs
);
1095 static void mv_set_irq_coalescing(struct ata_host
*host
,
1096 unsigned int count
, unsigned int usecs
)
1098 struct mv_host_priv
*hpriv
= host
->private_data
;
1099 void __iomem
*mmio
= hpriv
->base
, *hc_mmio
;
1100 u32 coal_enable
= 0;
1101 unsigned long flags
;
1102 unsigned int clks
, is_dual_hc
= hpriv
->n_ports
> MV_PORTS_PER_HC
;
1103 const u32 coal_disable
= PORTS_0_3_COAL_DONE
| PORTS_4_7_COAL_DONE
|
1104 ALL_PORTS_COAL_DONE
;
1106 /* Disable IRQ coalescing if either threshold is zero */
1107 if (!usecs
|| !count
) {
1110 /* Respect maximum limits of the hardware */
1111 clks
= usecs
* COAL_CLOCKS_PER_USEC
;
1112 if (clks
> MAX_COAL_TIME_THRESHOLD
)
1113 clks
= MAX_COAL_TIME_THRESHOLD
;
1114 if (count
> MAX_COAL_IO_COUNT
)
1115 count
= MAX_COAL_IO_COUNT
;
1118 spin_lock_irqsave(&host
->lock
, flags
);
1119 mv_set_main_irq_mask(host
, coal_disable
, 0);
1121 if (is_dual_hc
&& !IS_GEN_I(hpriv
)) {
1123 * GEN_II/GEN_IIE with dual host controllers:
1124 * one set of global thresholds for the entire chip.
1126 writel(clks
, mmio
+ IRQ_COAL_TIME_THRESHOLD
);
1127 writel(count
, mmio
+ IRQ_COAL_IO_THRESHOLD
);
1128 /* clear leftover coal IRQ bit */
1129 writel(~ALL_PORTS_COAL_IRQ
, mmio
+ IRQ_COAL_CAUSE
);
1131 coal_enable
= ALL_PORTS_COAL_DONE
;
1132 clks
= count
= 0; /* force clearing of regular regs below */
1136 * All chips: independent thresholds for each HC on the chip.
1138 hc_mmio
= mv_hc_base_from_port(mmio
, 0);
1139 writel(clks
, hc_mmio
+ HC_IRQ_COAL_TIME_THRESHOLD
);
1140 writel(count
, hc_mmio
+ HC_IRQ_COAL_IO_THRESHOLD
);
1141 writel(~HC_COAL_IRQ
, hc_mmio
+ HC_IRQ_CAUSE
);
1143 coal_enable
|= PORTS_0_3_COAL_DONE
;
1145 hc_mmio
= mv_hc_base_from_port(mmio
, MV_PORTS_PER_HC
);
1146 writel(clks
, hc_mmio
+ HC_IRQ_COAL_TIME_THRESHOLD
);
1147 writel(count
, hc_mmio
+ HC_IRQ_COAL_IO_THRESHOLD
);
1148 writel(~HC_COAL_IRQ
, hc_mmio
+ HC_IRQ_CAUSE
);
1150 coal_enable
|= PORTS_4_7_COAL_DONE
;
1153 mv_set_main_irq_mask(host
, 0, coal_enable
);
1154 spin_unlock_irqrestore(&host
->lock
, flags
);
1158 * mv_start_edma - Enable eDMA engine
1159 * @base: port base address
1160 * @pp: port private data
1162 * Verify the local cache of the eDMA state is accurate with a
1166 * Inherited from caller.
1168 static void mv_start_edma(struct ata_port
*ap
, void __iomem
*port_mmio
,
1169 struct mv_port_priv
*pp
, u8 protocol
)
1171 int want_ncq
= (protocol
== ATA_PROT_NCQ
);
1173 if (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
) {
1174 int using_ncq
= ((pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) != 0);
1175 if (want_ncq
!= using_ncq
)
1178 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
)) {
1179 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1181 mv_edma_cfg(ap
, want_ncq
, 1);
1183 mv_set_edma_ptrs(port_mmio
, hpriv
, pp
);
1184 mv_clear_and_enable_port_irqs(ap
, port_mmio
, DONE_IRQ
|ERR_IRQ
);
1186 writelfl(EDMA_EN
, port_mmio
+ EDMA_CMD
);
1187 pp
->pp_flags
|= MV_PP_FLAG_EDMA_EN
;
1191 static void mv_wait_for_edma_empty_idle(struct ata_port
*ap
)
1193 void __iomem
*port_mmio
= mv_ap_base(ap
);
1194 const u32 empty_idle
= (EDMA_STATUS_CACHE_EMPTY
| EDMA_STATUS_IDLE
);
1195 const int per_loop
= 5, timeout
= (15 * 1000 / per_loop
);
1199 * Wait for the EDMA engine to finish transactions in progress.
1200 * No idea what a good "timeout" value might be, but measurements
1201 * indicate that it often requires hundreds of microseconds
1202 * with two drives in-use. So we use the 15msec value above
1203 * as a rough guess at what even more drives might require.
1205 for (i
= 0; i
< timeout
; ++i
) {
1206 u32 edma_stat
= readl(port_mmio
+ EDMA_STATUS
);
1207 if ((edma_stat
& empty_idle
) == empty_idle
)
1211 /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1215 * mv_stop_edma_engine - Disable eDMA engine
1216 * @port_mmio: io base address
1219 * Inherited from caller.
1221 static int mv_stop_edma_engine(void __iomem
*port_mmio
)
1225 /* Disable eDMA. The disable bit auto clears. */
1226 writelfl(EDMA_DS
, port_mmio
+ EDMA_CMD
);
1228 /* Wait for the chip to confirm eDMA is off. */
1229 for (i
= 10000; i
> 0; i
--) {
1230 u32 reg
= readl(port_mmio
+ EDMA_CMD
);
1231 if (!(reg
& EDMA_EN
))
1238 static int mv_stop_edma(struct ata_port
*ap
)
1240 void __iomem
*port_mmio
= mv_ap_base(ap
);
1241 struct mv_port_priv
*pp
= ap
->private_data
;
1244 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
))
1246 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
1247 mv_wait_for_edma_empty_idle(ap
);
1248 if (mv_stop_edma_engine(port_mmio
)) {
1249 ata_port_err(ap
, "Unable to stop eDMA\n");
1252 mv_edma_cfg(ap
, 0, 0);
1257 static void mv_dump_mem(void __iomem
*start
, unsigned bytes
)
1260 for (b
= 0; b
< bytes
; ) {
1261 DPRINTK("%p: ", start
+ b
);
1262 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
1263 printk("%08x ", readl(start
+ b
));
1270 #if defined(ATA_DEBUG) || defined(CONFIG_PCI)
1271 static void mv_dump_pci_cfg(struct pci_dev
*pdev
, unsigned bytes
)
1276 for (b
= 0; b
< bytes
; ) {
1277 DPRINTK("%02x: ", b
);
1278 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
1279 (void) pci_read_config_dword(pdev
, b
, &dw
);
1280 printk("%08x ", dw
);
1288 static void mv_dump_all_regs(void __iomem
*mmio_base
, int port
,
1289 struct pci_dev
*pdev
)
1292 void __iomem
*hc_base
= mv_hc_base(mmio_base
,
1293 port
>> MV_PORT_HC_SHIFT
);
1294 void __iomem
*port_base
;
1295 int start_port
, num_ports
, p
, start_hc
, num_hcs
, hc
;
1298 start_hc
= start_port
= 0;
1299 num_ports
= 8; /* shld be benign for 4 port devs */
1302 start_hc
= port
>> MV_PORT_HC_SHIFT
;
1304 num_ports
= num_hcs
= 1;
1306 DPRINTK("All registers for port(s) %u-%u:\n", start_port
,
1307 num_ports
> 1 ? num_ports
- 1 : start_port
);
1310 DPRINTK("PCI config space regs:\n");
1311 mv_dump_pci_cfg(pdev
, 0x68);
1313 DPRINTK("PCI regs:\n");
1314 mv_dump_mem(mmio_base
+0xc00, 0x3c);
1315 mv_dump_mem(mmio_base
+0xd00, 0x34);
1316 mv_dump_mem(mmio_base
+0xf00, 0x4);
1317 mv_dump_mem(mmio_base
+0x1d00, 0x6c);
1318 for (hc
= start_hc
; hc
< start_hc
+ num_hcs
; hc
++) {
1319 hc_base
= mv_hc_base(mmio_base
, hc
);
1320 DPRINTK("HC regs (HC %i):\n", hc
);
1321 mv_dump_mem(hc_base
, 0x1c);
1323 for (p
= start_port
; p
< start_port
+ num_ports
; p
++) {
1324 port_base
= mv_port_base(mmio_base
, p
);
1325 DPRINTK("EDMA regs (port %i):\n", p
);
1326 mv_dump_mem(port_base
, 0x54);
1327 DPRINTK("SATA regs (port %i):\n", p
);
1328 mv_dump_mem(port_base
+0x300, 0x60);
1333 static unsigned int mv_scr_offset(unsigned int sc_reg_in
)
1337 switch (sc_reg_in
) {
1341 ofs
= SATA_STATUS
+ (sc_reg_in
* sizeof(u32
));
1344 ofs
= SATA_ACTIVE
; /* active is not with the others */
1353 static int mv_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
)
1355 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
1357 if (ofs
!= 0xffffffffU
) {
1358 *val
= readl(mv_ap_base(link
->ap
) + ofs
);
1364 static int mv_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
)
1366 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
1368 if (ofs
!= 0xffffffffU
) {
1369 void __iomem
*addr
= mv_ap_base(link
->ap
) + ofs
;
1370 struct mv_host_priv
*hpriv
= link
->ap
->host
->private_data
;
1371 if (sc_reg_in
== SCR_CONTROL
) {
1373 * Workaround for 88SX60x1 FEr SATA#26:
1375 * COMRESETs have to take care not to accidentally
1376 * put the drive to sleep when writing SCR_CONTROL.
1377 * Setting bits 12..15 prevents this problem.
1379 * So if we see an outbound COMMRESET, set those bits.
1380 * Ditto for the followup write that clears the reset.
1382 * The proprietary driver does this for
1383 * all chip versions, and so do we.
1385 if ((val
& 0xf) == 1 || (readl(addr
) & 0xf) == 1)
1388 if (hpriv
->hp_flags
& MV_HP_FIX_LP_PHY_CTL
) {
1389 void __iomem
*lp_phy_addr
=
1390 mv_ap_base(link
->ap
) + LP_PHY_CTL
;
1392 * Set PHY speed according to SControl speed.
1394 if ((val
& 0xf0) == 0x10)
1395 writelfl(0x7, lp_phy_addr
);
1397 writelfl(0x227, lp_phy_addr
);
1400 writelfl(val
, addr
);
1406 static void mv6_dev_config(struct ata_device
*adev
)
1409 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1411 * Gen-II does not support NCQ over a port multiplier
1412 * (no FIS-based switching).
1414 if (adev
->flags
& ATA_DFLAG_NCQ
) {
1415 if (sata_pmp_attached(adev
->link
->ap
)) {
1416 adev
->flags
&= ~ATA_DFLAG_NCQ
;
1418 "NCQ disabled for command-based switching\n");
1423 static int mv_qc_defer(struct ata_queued_cmd
*qc
)
1425 struct ata_link
*link
= qc
->dev
->link
;
1426 struct ata_port
*ap
= link
->ap
;
1427 struct mv_port_priv
*pp
= ap
->private_data
;
1430 * Don't allow new commands if we're in a delayed EH state
1431 * for NCQ and/or FIS-based switching.
1433 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)
1434 return ATA_DEFER_PORT
;
1436 /* PIO commands need exclusive link: no other commands [DMA or PIO]
1437 * can run concurrently.
1438 * set excl_link when we want to send a PIO command in DMA mode
1439 * or a non-NCQ command in NCQ mode.
1440 * When we receive a command from that link, and there are no
1441 * outstanding commands, mark a flag to clear excl_link and let
1442 * the command go through.
1444 if (unlikely(ap
->excl_link
)) {
1445 if (link
== ap
->excl_link
) {
1446 if (ap
->nr_active_links
)
1447 return ATA_DEFER_PORT
;
1448 qc
->flags
|= ATA_QCFLAG_CLEAR_EXCL
;
1451 return ATA_DEFER_PORT
;
1455 * If the port is completely idle, then allow the new qc.
1457 if (ap
->nr_active_links
== 0)
1461 * The port is operating in host queuing mode (EDMA) with NCQ
1462 * enabled, allow multiple NCQ commands. EDMA also allows
1463 * queueing multiple DMA commands but libata core currently
1466 if ((pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
) &&
1467 (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
)) {
1468 if (ata_is_ncq(qc
->tf
.protocol
))
1471 ap
->excl_link
= link
;
1472 return ATA_DEFER_PORT
;
1476 return ATA_DEFER_PORT
;
1479 static void mv_config_fbs(struct ata_port
*ap
, int want_ncq
, int want_fbs
)
1481 struct mv_port_priv
*pp
= ap
->private_data
;
1482 void __iomem
*port_mmio
;
1484 u32 fiscfg
, *old_fiscfg
= &pp
->cached
.fiscfg
;
1485 u32 ltmode
, *old_ltmode
= &pp
->cached
.ltmode
;
1486 u32 haltcond
, *old_haltcond
= &pp
->cached
.haltcond
;
1488 ltmode
= *old_ltmode
& ~LTMODE_BIT8
;
1489 haltcond
= *old_haltcond
| EDMA_ERR_DEV
;
1492 fiscfg
= *old_fiscfg
| FISCFG_SINGLE_SYNC
;
1493 ltmode
= *old_ltmode
| LTMODE_BIT8
;
1495 haltcond
&= ~EDMA_ERR_DEV
;
1497 fiscfg
|= FISCFG_WAIT_DEV_ERR
;
1499 fiscfg
= *old_fiscfg
& ~(FISCFG_SINGLE_SYNC
| FISCFG_WAIT_DEV_ERR
);
1502 port_mmio
= mv_ap_base(ap
);
1503 mv_write_cached_reg(port_mmio
+ FISCFG
, old_fiscfg
, fiscfg
);
1504 mv_write_cached_reg(port_mmio
+ LTMODE
, old_ltmode
, ltmode
);
1505 mv_write_cached_reg(port_mmio
+ EDMA_HALTCOND
, old_haltcond
, haltcond
);
1508 static void mv_60x1_errata_sata25(struct ata_port
*ap
, int want_ncq
)
1510 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1513 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1514 old
= readl(hpriv
->base
+ GPIO_PORT_CTL
);
1516 new = old
| (1 << 22);
1518 new = old
& ~(1 << 22);
1520 writel(new, hpriv
->base
+ GPIO_PORT_CTL
);
1524 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1525 * @ap: Port being initialized
1527 * There are two DMA modes on these chips: basic DMA, and EDMA.
1529 * Bit-0 of the "EDMA RESERVED" register enables/disables use
1530 * of basic DMA on the GEN_IIE versions of the chips.
1532 * This bit survives EDMA resets, and must be set for basic DMA
1533 * to function, and should be cleared when EDMA is active.
1535 static void mv_bmdma_enable_iie(struct ata_port
*ap
, int enable_bmdma
)
1537 struct mv_port_priv
*pp
= ap
->private_data
;
1538 u32
new, *old
= &pp
->cached
.unknown_rsvd
;
1544 mv_write_cached_reg(mv_ap_base(ap
) + EDMA_UNKNOWN_RSVD
, old
, new);
1548 * SOC chips have an issue whereby the HDD LEDs don't always blink
1549 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1550 * of the SOC takes care of it, generating a steady blink rate when
1551 * any drive on the chip is active.
1553 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1554 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1556 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1557 * LED operation works then, and provides better (more accurate) feedback.
1559 * Note that this code assumes that an SOC never has more than one HC onboard.
1561 static void mv_soc_led_blink_enable(struct ata_port
*ap
)
1563 struct ata_host
*host
= ap
->host
;
1564 struct mv_host_priv
*hpriv
= host
->private_data
;
1565 void __iomem
*hc_mmio
;
1568 if (hpriv
->hp_flags
& MV_HP_QUIRK_LED_BLINK_EN
)
1570 hpriv
->hp_flags
|= MV_HP_QUIRK_LED_BLINK_EN
;
1571 hc_mmio
= mv_hc_base_from_port(mv_host_base(host
), ap
->port_no
);
1572 led_ctrl
= readl(hc_mmio
+ SOC_LED_CTRL
);
1573 writel(led_ctrl
| SOC_LED_CTRL_BLINK
, hc_mmio
+ SOC_LED_CTRL
);
1576 static void mv_soc_led_blink_disable(struct ata_port
*ap
)
1578 struct ata_host
*host
= ap
->host
;
1579 struct mv_host_priv
*hpriv
= host
->private_data
;
1580 void __iomem
*hc_mmio
;
1584 if (!(hpriv
->hp_flags
& MV_HP_QUIRK_LED_BLINK_EN
))
1587 /* disable led-blink only if no ports are using NCQ */
1588 for (port
= 0; port
< hpriv
->n_ports
; port
++) {
1589 struct ata_port
*this_ap
= host
->ports
[port
];
1590 struct mv_port_priv
*pp
= this_ap
->private_data
;
1592 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
)
1596 hpriv
->hp_flags
&= ~MV_HP_QUIRK_LED_BLINK_EN
;
1597 hc_mmio
= mv_hc_base_from_port(mv_host_base(host
), ap
->port_no
);
1598 led_ctrl
= readl(hc_mmio
+ SOC_LED_CTRL
);
1599 writel(led_ctrl
& ~SOC_LED_CTRL_BLINK
, hc_mmio
+ SOC_LED_CTRL
);
1602 static void mv_edma_cfg(struct ata_port
*ap
, int want_ncq
, int want_edma
)
1605 struct mv_port_priv
*pp
= ap
->private_data
;
1606 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1607 void __iomem
*port_mmio
= mv_ap_base(ap
);
1609 /* set up non-NCQ EDMA configuration */
1610 cfg
= EDMA_CFG_Q_DEPTH
; /* always 0x1f for *all* chips */
1612 ~(MV_PP_FLAG_FBS_EN
| MV_PP_FLAG_NCQ_EN
| MV_PP_FLAG_FAKE_ATA_BUSY
);
1614 if (IS_GEN_I(hpriv
))
1615 cfg
|= (1 << 8); /* enab config burst size mask */
1617 else if (IS_GEN_II(hpriv
)) {
1618 cfg
|= EDMA_CFG_RD_BRST_EXT
| EDMA_CFG_WR_BUFF_LEN
;
1619 mv_60x1_errata_sata25(ap
, want_ncq
);
1621 } else if (IS_GEN_IIE(hpriv
)) {
1622 int want_fbs
= sata_pmp_attached(ap
);
1624 * Possible future enhancement:
1626 * The chip can use FBS with non-NCQ, if we allow it,
1627 * But first we need to have the error handling in place
1628 * for this mode (datasheet section 7.3.15.4.2.3).
1629 * So disallow non-NCQ FBS for now.
1631 want_fbs
&= want_ncq
;
1633 mv_config_fbs(ap
, want_ncq
, want_fbs
);
1636 pp
->pp_flags
|= MV_PP_FLAG_FBS_EN
;
1637 cfg
|= EDMA_CFG_EDMA_FBS
; /* FIS-based switching */
1640 cfg
|= (1 << 23); /* do not mask PM field in rx'd FIS */
1642 cfg
|= (1 << 22); /* enab 4-entry host queue cache */
1644 cfg
|= (1 << 18); /* enab early completion */
1646 if (hpriv
->hp_flags
& MV_HP_CUT_THROUGH
)
1647 cfg
|= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1648 mv_bmdma_enable_iie(ap
, !want_edma
);
1650 if (IS_SOC(hpriv
)) {
1652 mv_soc_led_blink_enable(ap
);
1654 mv_soc_led_blink_disable(ap
);
1659 cfg
|= EDMA_CFG_NCQ
;
1660 pp
->pp_flags
|= MV_PP_FLAG_NCQ_EN
;
1663 writelfl(cfg
, port_mmio
+ EDMA_CFG
);
1666 static void mv_port_free_dma_mem(struct ata_port
*ap
)
1668 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1669 struct mv_port_priv
*pp
= ap
->private_data
;
1673 dma_pool_free(hpriv
->crqb_pool
, pp
->crqb
, pp
->crqb_dma
);
1677 dma_pool_free(hpriv
->crpb_pool
, pp
->crpb
, pp
->crpb_dma
);
1681 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1682 * For later hardware, we have one unique sg_tbl per NCQ tag.
1684 for (tag
= 0; tag
< MV_MAX_Q_DEPTH
; ++tag
) {
1685 if (pp
->sg_tbl
[tag
]) {
1686 if (tag
== 0 || !IS_GEN_I(hpriv
))
1687 dma_pool_free(hpriv
->sg_tbl_pool
,
1689 pp
->sg_tbl_dma
[tag
]);
1690 pp
->sg_tbl
[tag
] = NULL
;
1696 * mv_port_start - Port specific init/start routine.
1697 * @ap: ATA channel to manipulate
1699 * Allocate and point to DMA memory, init port private memory,
1703 * Inherited from caller.
1705 static int mv_port_start(struct ata_port
*ap
)
1707 struct device
*dev
= ap
->host
->dev
;
1708 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1709 struct mv_port_priv
*pp
;
1710 unsigned long flags
;
1713 pp
= devm_kzalloc(dev
, sizeof(*pp
), GFP_KERNEL
);
1716 ap
->private_data
= pp
;
1718 pp
->crqb
= dma_pool_alloc(hpriv
->crqb_pool
, GFP_KERNEL
, &pp
->crqb_dma
);
1721 memset(pp
->crqb
, 0, MV_CRQB_Q_SZ
);
1723 pp
->crpb
= dma_pool_alloc(hpriv
->crpb_pool
, GFP_KERNEL
, &pp
->crpb_dma
);
1725 goto out_port_free_dma_mem
;
1726 memset(pp
->crpb
, 0, MV_CRPB_Q_SZ
);
1728 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1729 if (hpriv
->hp_flags
& MV_HP_ERRATA_60X1C0
)
1730 ap
->flags
|= ATA_FLAG_AN
;
1732 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1733 * For later hardware, we need one unique sg_tbl per NCQ tag.
1735 for (tag
= 0; tag
< MV_MAX_Q_DEPTH
; ++tag
) {
1736 if (tag
== 0 || !IS_GEN_I(hpriv
)) {
1737 pp
->sg_tbl
[tag
] = dma_pool_alloc(hpriv
->sg_tbl_pool
,
1738 GFP_KERNEL
, &pp
->sg_tbl_dma
[tag
]);
1739 if (!pp
->sg_tbl
[tag
])
1740 goto out_port_free_dma_mem
;
1742 pp
->sg_tbl
[tag
] = pp
->sg_tbl
[0];
1743 pp
->sg_tbl_dma
[tag
] = pp
->sg_tbl_dma
[0];
1747 spin_lock_irqsave(ap
->lock
, flags
);
1748 mv_save_cached_regs(ap
);
1749 mv_edma_cfg(ap
, 0, 0);
1750 spin_unlock_irqrestore(ap
->lock
, flags
);
1754 out_port_free_dma_mem
:
1755 mv_port_free_dma_mem(ap
);
1760 * mv_port_stop - Port specific cleanup/stop routine.
1761 * @ap: ATA channel to manipulate
1763 * Stop DMA, cleanup port memory.
1766 * This routine uses the host lock to protect the DMA stop.
1768 static void mv_port_stop(struct ata_port
*ap
)
1770 unsigned long flags
;
1772 spin_lock_irqsave(ap
->lock
, flags
);
1774 mv_enable_port_irqs(ap
, 0);
1775 spin_unlock_irqrestore(ap
->lock
, flags
);
1776 mv_port_free_dma_mem(ap
);
1780 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1781 * @qc: queued command whose SG list to source from
1783 * Populate the SG list and mark the last entry.
1786 * Inherited from caller.
1788 static void mv_fill_sg(struct ata_queued_cmd
*qc
)
1790 struct mv_port_priv
*pp
= qc
->ap
->private_data
;
1791 struct scatterlist
*sg
;
1792 struct mv_sg
*mv_sg
, *last_sg
= NULL
;
1795 mv_sg
= pp
->sg_tbl
[qc
->tag
];
1796 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
1797 dma_addr_t addr
= sg_dma_address(sg
);
1798 u32 sg_len
= sg_dma_len(sg
);
1801 u32 offset
= addr
& 0xffff;
1804 if (offset
+ len
> 0x10000)
1805 len
= 0x10000 - offset
;
1807 mv_sg
->addr
= cpu_to_le32(addr
& 0xffffffff);
1808 mv_sg
->addr_hi
= cpu_to_le32((addr
>> 16) >> 16);
1809 mv_sg
->flags_size
= cpu_to_le32(len
& 0xffff);
1810 mv_sg
->reserved
= 0;
1820 if (likely(last_sg
))
1821 last_sg
->flags_size
|= cpu_to_le32(EPRD_FLAG_END_OF_TBL
);
1822 mb(); /* ensure data structure is visible to the chipset */
1825 static void mv_crqb_pack_cmd(__le16
*cmdw
, u8 data
, u8 addr
, unsigned last
)
1827 u16 tmp
= data
| (addr
<< CRQB_CMD_ADDR_SHIFT
) | CRQB_CMD_CS
|
1828 (last
? CRQB_CMD_LAST
: 0);
1829 *cmdw
= cpu_to_le16(tmp
);
1833 * mv_sff_irq_clear - Clear hardware interrupt after DMA.
1834 * @ap: Port associated with this ATA transaction.
1836 * We need this only for ATAPI bmdma transactions,
1837 * as otherwise we experience spurious interrupts
1838 * after libata-sff handles the bmdma interrupts.
1840 static void mv_sff_irq_clear(struct ata_port
*ap
)
1842 mv_clear_and_enable_port_irqs(ap
, mv_ap_base(ap
), ERR_IRQ
);
1846 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1847 * @qc: queued command to check for chipset/DMA compatibility.
1849 * The bmdma engines cannot handle speculative data sizes
1850 * (bytecount under/over flow). So only allow DMA for
1851 * data transfer commands with known data sizes.
1854 * Inherited from caller.
1856 static int mv_check_atapi_dma(struct ata_queued_cmd
*qc
)
1858 struct scsi_cmnd
*scmd
= qc
->scsicmd
;
1861 switch (scmd
->cmnd
[0]) {
1869 case GPCMD_SEND_DVD_STRUCTURE
:
1870 case GPCMD_SEND_CUE_SHEET
:
1871 return 0; /* DMA is safe */
1874 return -EOPNOTSUPP
; /* use PIO instead */
1878 * mv_bmdma_setup - Set up BMDMA transaction
1879 * @qc: queued command to prepare DMA for.
1882 * Inherited from caller.
1884 static void mv_bmdma_setup(struct ata_queued_cmd
*qc
)
1886 struct ata_port
*ap
= qc
->ap
;
1887 void __iomem
*port_mmio
= mv_ap_base(ap
);
1888 struct mv_port_priv
*pp
= ap
->private_data
;
1892 /* clear all DMA cmd bits */
1893 writel(0, port_mmio
+ BMDMA_CMD
);
1895 /* load PRD table addr. */
1896 writel((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16,
1897 port_mmio
+ BMDMA_PRD_HIGH
);
1898 writelfl(pp
->sg_tbl_dma
[qc
->tag
],
1899 port_mmio
+ BMDMA_PRD_LOW
);
1901 /* issue r/w command */
1902 ap
->ops
->sff_exec_command(ap
, &qc
->tf
);
1906 * mv_bmdma_start - Start a BMDMA transaction
1907 * @qc: queued command to start DMA on.
1910 * Inherited from caller.
1912 static void mv_bmdma_start(struct ata_queued_cmd
*qc
)
1914 struct ata_port
*ap
= qc
->ap
;
1915 void __iomem
*port_mmio
= mv_ap_base(ap
);
1916 unsigned int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
1917 u32 cmd
= (rw
? 0 : ATA_DMA_WR
) | ATA_DMA_START
;
1919 /* start host DMA transaction */
1920 writelfl(cmd
, port_mmio
+ BMDMA_CMD
);
1924 * mv_bmdma_stop - Stop BMDMA transfer
1925 * @qc: queued command to stop DMA on.
1927 * Clears the ATA_DMA_START flag in the bmdma control register
1930 * Inherited from caller.
1932 static void mv_bmdma_stop_ap(struct ata_port
*ap
)
1934 void __iomem
*port_mmio
= mv_ap_base(ap
);
1937 /* clear start/stop bit */
1938 cmd
= readl(port_mmio
+ BMDMA_CMD
);
1939 if (cmd
& ATA_DMA_START
) {
1940 cmd
&= ~ATA_DMA_START
;
1941 writelfl(cmd
, port_mmio
+ BMDMA_CMD
);
1943 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1944 ata_sff_dma_pause(ap
);
1948 static void mv_bmdma_stop(struct ata_queued_cmd
*qc
)
1950 mv_bmdma_stop_ap(qc
->ap
);
1954 * mv_bmdma_status - Read BMDMA status
1955 * @ap: port for which to retrieve DMA status.
1957 * Read and return equivalent of the sff BMDMA status register.
1960 * Inherited from caller.
1962 static u8
mv_bmdma_status(struct ata_port
*ap
)
1964 void __iomem
*port_mmio
= mv_ap_base(ap
);
1968 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1969 * and the ATA_DMA_INTR bit doesn't exist.
1971 reg
= readl(port_mmio
+ BMDMA_STATUS
);
1972 if (reg
& ATA_DMA_ACTIVE
)
1973 status
= ATA_DMA_ACTIVE
;
1974 else if (reg
& ATA_DMA_ERR
)
1975 status
= (reg
& ATA_DMA_ERR
) | ATA_DMA_INTR
;
1978 * Just because DMA_ACTIVE is 0 (DMA completed),
1979 * this does _not_ mean the device is "done".
1980 * So we should not yet be signalling ATA_DMA_INTR
1981 * in some cases. Eg. DSM/TRIM, and perhaps others.
1983 mv_bmdma_stop_ap(ap
);
1984 if (ioread8(ap
->ioaddr
.altstatus_addr
) & ATA_BUSY
)
1987 status
= ATA_DMA_INTR
;
1992 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd
*qc
)
1994 struct ata_taskfile
*tf
= &qc
->tf
;
1996 * Workaround for 88SX60x1 FEr SATA#24.
1998 * Chip may corrupt WRITEs if multi_count >= 4kB.
1999 * Note that READs are unaffected.
2001 * It's not clear if this errata really means "4K bytes",
2002 * or if it always happens for multi_count > 7
2003 * regardless of device sector_size.
2005 * So, for safety, any write with multi_count > 7
2006 * gets converted here into a regular PIO write instead:
2008 if ((tf
->flags
& ATA_TFLAG_WRITE
) && is_multi_taskfile(tf
)) {
2009 if (qc
->dev
->multi_count
> 7) {
2010 switch (tf
->command
) {
2011 case ATA_CMD_WRITE_MULTI
:
2012 tf
->command
= ATA_CMD_PIO_WRITE
;
2014 case ATA_CMD_WRITE_MULTI_FUA_EXT
:
2015 tf
->flags
&= ~ATA_TFLAG_FUA
; /* ugh */
2017 case ATA_CMD_WRITE_MULTI_EXT
:
2018 tf
->command
= ATA_CMD_PIO_WRITE_EXT
;
2026 * mv_qc_prep - Host specific command preparation.
2027 * @qc: queued command to prepare
2029 * This routine simply redirects to the general purpose routine
2030 * if command is not DMA. Else, it handles prep of the CRQB
2031 * (command request block), does some sanity checking, and calls
2032 * the SG load routine.
2035 * Inherited from caller.
2037 static void mv_qc_prep(struct ata_queued_cmd
*qc
)
2039 struct ata_port
*ap
= qc
->ap
;
2040 struct mv_port_priv
*pp
= ap
->private_data
;
2042 struct ata_taskfile
*tf
= &qc
->tf
;
2046 switch (tf
->protocol
) {
2048 if (tf
->command
== ATA_CMD_DSM
)
2052 break; /* continue below */
2054 mv_rw_multi_errata_sata24(qc
);
2060 /* Fill in command request block
2062 if (!(tf
->flags
& ATA_TFLAG_WRITE
))
2063 flags
|= CRQB_FLAG_READ
;
2064 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
2065 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
2066 flags
|= (qc
->dev
->link
->pmp
& 0xf) << CRQB_PMP_SHIFT
;
2068 /* get current queue index from software */
2069 in_index
= pp
->req_idx
;
2071 pp
->crqb
[in_index
].sg_addr
=
2072 cpu_to_le32(pp
->sg_tbl_dma
[qc
->tag
] & 0xffffffff);
2073 pp
->crqb
[in_index
].sg_addr_hi
=
2074 cpu_to_le32((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16);
2075 pp
->crqb
[in_index
].ctrl_flags
= cpu_to_le16(flags
);
2077 cw
= &pp
->crqb
[in_index
].ata_cmd
[0];
2079 /* Sadly, the CRQB cannot accommodate all registers--there are
2080 * only 11 bytes...so we must pick and choose required
2081 * registers based on the command. So, we drop feature and
2082 * hob_feature for [RW] DMA commands, but they are needed for
2083 * NCQ. NCQ will drop hob_nsect, which is not needed there
2084 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2086 switch (tf
->command
) {
2088 case ATA_CMD_READ_EXT
:
2090 case ATA_CMD_WRITE_EXT
:
2091 case ATA_CMD_WRITE_FUA_EXT
:
2092 mv_crqb_pack_cmd(cw
++, tf
->hob_nsect
, ATA_REG_NSECT
, 0);
2094 case ATA_CMD_FPDMA_READ
:
2095 case ATA_CMD_FPDMA_WRITE
:
2096 mv_crqb_pack_cmd(cw
++, tf
->hob_feature
, ATA_REG_FEATURE
, 0);
2097 mv_crqb_pack_cmd(cw
++, tf
->feature
, ATA_REG_FEATURE
, 0);
2100 /* The only other commands EDMA supports in non-queued and
2101 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2102 * of which are defined/used by Linux. If we get here, this
2103 * driver needs work.
2105 * FIXME: modify libata to give qc_prep a return value and
2106 * return error here.
2108 BUG_ON(tf
->command
);
2111 mv_crqb_pack_cmd(cw
++, tf
->nsect
, ATA_REG_NSECT
, 0);
2112 mv_crqb_pack_cmd(cw
++, tf
->hob_lbal
, ATA_REG_LBAL
, 0);
2113 mv_crqb_pack_cmd(cw
++, tf
->lbal
, ATA_REG_LBAL
, 0);
2114 mv_crqb_pack_cmd(cw
++, tf
->hob_lbam
, ATA_REG_LBAM
, 0);
2115 mv_crqb_pack_cmd(cw
++, tf
->lbam
, ATA_REG_LBAM
, 0);
2116 mv_crqb_pack_cmd(cw
++, tf
->hob_lbah
, ATA_REG_LBAH
, 0);
2117 mv_crqb_pack_cmd(cw
++, tf
->lbah
, ATA_REG_LBAH
, 0);
2118 mv_crqb_pack_cmd(cw
++, tf
->device
, ATA_REG_DEVICE
, 0);
2119 mv_crqb_pack_cmd(cw
++, tf
->command
, ATA_REG_CMD
, 1); /* last */
2121 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2127 * mv_qc_prep_iie - Host specific command preparation.
2128 * @qc: queued command to prepare
2130 * This routine simply redirects to the general purpose routine
2131 * if command is not DMA. Else, it handles prep of the CRQB
2132 * (command request block), does some sanity checking, and calls
2133 * the SG load routine.
2136 * Inherited from caller.
2138 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
)
2140 struct ata_port
*ap
= qc
->ap
;
2141 struct mv_port_priv
*pp
= ap
->private_data
;
2142 struct mv_crqb_iie
*crqb
;
2143 struct ata_taskfile
*tf
= &qc
->tf
;
2147 if ((tf
->protocol
!= ATA_PROT_DMA
) &&
2148 (tf
->protocol
!= ATA_PROT_NCQ
))
2150 if (tf
->command
== ATA_CMD_DSM
)
2151 return; /* use bmdma for this */
2153 /* Fill in Gen IIE command request block */
2154 if (!(tf
->flags
& ATA_TFLAG_WRITE
))
2155 flags
|= CRQB_FLAG_READ
;
2157 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
2158 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
2159 flags
|= qc
->tag
<< CRQB_HOSTQ_SHIFT
;
2160 flags
|= (qc
->dev
->link
->pmp
& 0xf) << CRQB_PMP_SHIFT
;
2162 /* get current queue index from software */
2163 in_index
= pp
->req_idx
;
2165 crqb
= (struct mv_crqb_iie
*) &pp
->crqb
[in_index
];
2166 crqb
->addr
= cpu_to_le32(pp
->sg_tbl_dma
[qc
->tag
] & 0xffffffff);
2167 crqb
->addr_hi
= cpu_to_le32((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16);
2168 crqb
->flags
= cpu_to_le32(flags
);
2170 crqb
->ata_cmd
[0] = cpu_to_le32(
2171 (tf
->command
<< 16) |
2174 crqb
->ata_cmd
[1] = cpu_to_le32(
2180 crqb
->ata_cmd
[2] = cpu_to_le32(
2181 (tf
->hob_lbal
<< 0) |
2182 (tf
->hob_lbam
<< 8) |
2183 (tf
->hob_lbah
<< 16) |
2184 (tf
->hob_feature
<< 24)
2186 crqb
->ata_cmd
[3] = cpu_to_le32(
2188 (tf
->hob_nsect
<< 8)
2191 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2197 * mv_sff_check_status - fetch device status, if valid
2198 * @ap: ATA port to fetch status from
2200 * When using command issue via mv_qc_issue_fis(),
2201 * the initial ATA_BUSY state does not show up in the
2202 * ATA status (shadow) register. This can confuse libata!
2204 * So we have a hook here to fake ATA_BUSY for that situation,
2205 * until the first time a BUSY, DRQ, or ERR bit is seen.
2207 * The rest of the time, it simply returns the ATA status register.
2209 static u8
mv_sff_check_status(struct ata_port
*ap
)
2211 u8 stat
= ioread8(ap
->ioaddr
.status_addr
);
2212 struct mv_port_priv
*pp
= ap
->private_data
;
2214 if (pp
->pp_flags
& MV_PP_FLAG_FAKE_ATA_BUSY
) {
2215 if (stat
& (ATA_BUSY
| ATA_DRQ
| ATA_ERR
))
2216 pp
->pp_flags
&= ~MV_PP_FLAG_FAKE_ATA_BUSY
;
2224 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2225 * @fis: fis to be sent
2226 * @nwords: number of 32-bit words in the fis
2228 static unsigned int mv_send_fis(struct ata_port
*ap
, u32
*fis
, int nwords
)
2230 void __iomem
*port_mmio
= mv_ap_base(ap
);
2231 u32 ifctl
, old_ifctl
, ifstat
;
2232 int i
, timeout
= 200, final_word
= nwords
- 1;
2234 /* Initiate FIS transmission mode */
2235 old_ifctl
= readl(port_mmio
+ SATA_IFCTL
);
2236 ifctl
= 0x100 | (old_ifctl
& 0xf);
2237 writelfl(ifctl
, port_mmio
+ SATA_IFCTL
);
2239 /* Send all words of the FIS except for the final word */
2240 for (i
= 0; i
< final_word
; ++i
)
2241 writel(fis
[i
], port_mmio
+ VENDOR_UNIQUE_FIS
);
2243 /* Flag end-of-transmission, and then send the final word */
2244 writelfl(ifctl
| 0x200, port_mmio
+ SATA_IFCTL
);
2245 writelfl(fis
[final_word
], port_mmio
+ VENDOR_UNIQUE_FIS
);
2248 * Wait for FIS transmission to complete.
2249 * This typically takes just a single iteration.
2252 ifstat
= readl(port_mmio
+ SATA_IFSTAT
);
2253 } while (!(ifstat
& 0x1000) && --timeout
);
2255 /* Restore original port configuration */
2256 writelfl(old_ifctl
, port_mmio
+ SATA_IFCTL
);
2258 /* See if it worked */
2259 if ((ifstat
& 0x3000) != 0x1000) {
2260 ata_port_warn(ap
, "%s transmission error, ifstat=%08x\n",
2262 return AC_ERR_OTHER
;
2268 * mv_qc_issue_fis - Issue a command directly as a FIS
2269 * @qc: queued command to start
2271 * Note that the ATA shadow registers are not updated
2272 * after command issue, so the device will appear "READY"
2273 * if polled, even while it is BUSY processing the command.
2275 * So we use a status hook to fake ATA_BUSY until the drive changes state.
2277 * Note: we don't get updated shadow regs on *completion*
2278 * of non-data commands. So avoid sending them via this function,
2279 * as they will appear to have completed immediately.
2281 * GEN_IIE has special registers that we could get the result tf from,
2282 * but earlier chipsets do not. For now, we ignore those registers.
2284 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd
*qc
)
2286 struct ata_port
*ap
= qc
->ap
;
2287 struct mv_port_priv
*pp
= ap
->private_data
;
2288 struct ata_link
*link
= qc
->dev
->link
;
2292 ata_tf_to_fis(&qc
->tf
, link
->pmp
, 1, (void *)fis
);
2293 err
= mv_send_fis(ap
, fis
, ARRAY_SIZE(fis
));
2297 switch (qc
->tf
.protocol
) {
2298 case ATAPI_PROT_PIO
:
2299 pp
->pp_flags
|= MV_PP_FLAG_FAKE_ATA_BUSY
;
2301 case ATAPI_PROT_NODATA
:
2302 ap
->hsm_task_state
= HSM_ST_FIRST
;
2305 pp
->pp_flags
|= MV_PP_FLAG_FAKE_ATA_BUSY
;
2306 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
)
2307 ap
->hsm_task_state
= HSM_ST_FIRST
;
2309 ap
->hsm_task_state
= HSM_ST
;
2312 ap
->hsm_task_state
= HSM_ST_LAST
;
2316 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
2317 ata_sff_queue_pio_task(link
, 0);
2322 * mv_qc_issue - Initiate a command to the host
2323 * @qc: queued command to start
2325 * This routine simply redirects to the general purpose routine
2326 * if command is not DMA. Else, it sanity checks our local
2327 * caches of the request producer/consumer indices then enables
2328 * DMA and bumps the request producer index.
2331 * Inherited from caller.
2333 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
)
2335 static int limit_warnings
= 10;
2336 struct ata_port
*ap
= qc
->ap
;
2337 void __iomem
*port_mmio
= mv_ap_base(ap
);
2338 struct mv_port_priv
*pp
= ap
->private_data
;
2340 unsigned int port_irqs
;
2342 pp
->pp_flags
&= ~MV_PP_FLAG_FAKE_ATA_BUSY
; /* paranoia */
2344 switch (qc
->tf
.protocol
) {
2346 if (qc
->tf
.command
== ATA_CMD_DSM
) {
2347 if (!ap
->ops
->bmdma_setup
) /* no bmdma on GEN_I */
2348 return AC_ERR_OTHER
;
2349 break; /* use bmdma for this */
2353 mv_start_edma(ap
, port_mmio
, pp
, qc
->tf
.protocol
);
2354 pp
->req_idx
= (pp
->req_idx
+ 1) & MV_MAX_Q_DEPTH_MASK
;
2355 in_index
= pp
->req_idx
<< EDMA_REQ_Q_PTR_SHIFT
;
2357 /* Write the request in pointer to kick the EDMA to life */
2358 writelfl((pp
->crqb_dma
& EDMA_REQ_Q_BASE_LO_MASK
) | in_index
,
2359 port_mmio
+ EDMA_REQ_Q_IN_PTR
);
2364 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2366 * Someday, we might implement special polling workarounds
2367 * for these, but it all seems rather unnecessary since we
2368 * normally use only DMA for commands which transfer more
2369 * than a single block of data.
2371 * Much of the time, this could just work regardless.
2372 * So for now, just log the incident, and allow the attempt.
2374 if (limit_warnings
> 0 && (qc
->nbytes
/ qc
->sect_size
) > 1) {
2376 ata_link_warn(qc
->dev
->link
, DRV_NAME
2377 ": attempting PIO w/multiple DRQ: "
2378 "this may fail due to h/w errata\n");
2381 case ATA_PROT_NODATA
:
2382 case ATAPI_PROT_PIO
:
2383 case ATAPI_PROT_NODATA
:
2384 if (ap
->flags
& ATA_FLAG_PIO_POLLING
)
2385 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
2389 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
2390 port_irqs
= ERR_IRQ
; /* mask device interrupt when polling */
2392 port_irqs
= ERR_IRQ
| DONE_IRQ
; /* unmask all interrupts */
2395 * We're about to send a non-EDMA capable command to the
2396 * port. Turn off EDMA so there won't be problems accessing
2397 * shadow block, etc registers.
2400 mv_clear_and_enable_port_irqs(ap
, mv_ap_base(ap
), port_irqs
);
2401 mv_pmp_select(ap
, qc
->dev
->link
->pmp
);
2403 if (qc
->tf
.command
== ATA_CMD_READ_LOG_EXT
) {
2404 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2406 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2408 * After any NCQ error, the READ_LOG_EXT command
2409 * from libata-eh *must* use mv_qc_issue_fis().
2410 * Otherwise it might fail, due to chip errata.
2412 * Rather than special-case it, we'll just *always*
2413 * use this method here for READ_LOG_EXT, making for
2416 if (IS_GEN_II(hpriv
))
2417 return mv_qc_issue_fis(qc
);
2419 return ata_bmdma_qc_issue(qc
);
2422 static struct ata_queued_cmd
*mv_get_active_qc(struct ata_port
*ap
)
2424 struct mv_port_priv
*pp
= ap
->private_data
;
2425 struct ata_queued_cmd
*qc
;
2427 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
)
2429 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2430 if (qc
&& !(qc
->tf
.flags
& ATA_TFLAG_POLLING
))
2435 static void mv_pmp_error_handler(struct ata_port
*ap
)
2437 unsigned int pmp
, pmp_map
;
2438 struct mv_port_priv
*pp
= ap
->private_data
;
2440 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
) {
2442 * Perform NCQ error analysis on failed PMPs
2443 * before we freeze the port entirely.
2445 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2447 pmp_map
= pp
->delayed_eh_pmp_map
;
2448 pp
->pp_flags
&= ~MV_PP_FLAG_DELAYED_EH
;
2449 for (pmp
= 0; pmp_map
!= 0; pmp
++) {
2450 unsigned int this_pmp
= (1 << pmp
);
2451 if (pmp_map
& this_pmp
) {
2452 struct ata_link
*link
= &ap
->pmp_link
[pmp
];
2453 pmp_map
&= ~this_pmp
;
2454 ata_eh_analyze_ncq_error(link
);
2457 ata_port_freeze(ap
);
2459 sata_pmp_error_handler(ap
);
2462 static unsigned int mv_get_err_pmp_map(struct ata_port
*ap
)
2464 void __iomem
*port_mmio
= mv_ap_base(ap
);
2466 return readl(port_mmio
+ SATA_TESTCTL
) >> 16;
2469 static void mv_pmp_eh_prep(struct ata_port
*ap
, unsigned int pmp_map
)
2471 struct ata_eh_info
*ehi
;
2475 * Initialize EH info for PMPs which saw device errors
2477 ehi
= &ap
->link
.eh_info
;
2478 for (pmp
= 0; pmp_map
!= 0; pmp
++) {
2479 unsigned int this_pmp
= (1 << pmp
);
2480 if (pmp_map
& this_pmp
) {
2481 struct ata_link
*link
= &ap
->pmp_link
[pmp
];
2483 pmp_map
&= ~this_pmp
;
2484 ehi
= &link
->eh_info
;
2485 ata_ehi_clear_desc(ehi
);
2486 ata_ehi_push_desc(ehi
, "dev err");
2487 ehi
->err_mask
|= AC_ERR_DEV
;
2488 ehi
->action
|= ATA_EH_RESET
;
2489 ata_link_abort(link
);
2494 static int mv_req_q_empty(struct ata_port
*ap
)
2496 void __iomem
*port_mmio
= mv_ap_base(ap
);
2497 u32 in_ptr
, out_ptr
;
2499 in_ptr
= (readl(port_mmio
+ EDMA_REQ_Q_IN_PTR
)
2500 >> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
2501 out_ptr
= (readl(port_mmio
+ EDMA_REQ_Q_OUT_PTR
)
2502 >> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
2503 return (in_ptr
== out_ptr
); /* 1 == queue_is_empty */
2506 static int mv_handle_fbs_ncq_dev_err(struct ata_port
*ap
)
2508 struct mv_port_priv
*pp
= ap
->private_data
;
2510 unsigned int old_map
, new_map
;
2513 * Device error during FBS+NCQ operation:
2515 * Set a port flag to prevent further I/O being enqueued.
2516 * Leave the EDMA running to drain outstanding commands from this port.
2517 * Perform the post-mortem/EH only when all responses are complete.
2518 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2520 if (!(pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)) {
2521 pp
->pp_flags
|= MV_PP_FLAG_DELAYED_EH
;
2522 pp
->delayed_eh_pmp_map
= 0;
2524 old_map
= pp
->delayed_eh_pmp_map
;
2525 new_map
= old_map
| mv_get_err_pmp_map(ap
);
2527 if (old_map
!= new_map
) {
2528 pp
->delayed_eh_pmp_map
= new_map
;
2529 mv_pmp_eh_prep(ap
, new_map
& ~old_map
);
2531 failed_links
= hweight16(new_map
);
2534 "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n",
2535 __func__
, pp
->delayed_eh_pmp_map
,
2536 ap
->qc_active
, failed_links
,
2537 ap
->nr_active_links
);
2539 if (ap
->nr_active_links
<= failed_links
&& mv_req_q_empty(ap
)) {
2540 mv_process_crpb_entries(ap
, pp
);
2543 ata_port_info(ap
, "%s: done\n", __func__
);
2544 return 1; /* handled */
2546 ata_port_info(ap
, "%s: waiting\n", __func__
);
2547 return 1; /* handled */
2550 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port
*ap
)
2553 * Possible future enhancement:
2555 * FBS+non-NCQ operation is not yet implemented.
2556 * See related notes in mv_edma_cfg().
2558 * Device error during FBS+non-NCQ operation:
2560 * We need to snapshot the shadow registers for each failed command.
2561 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2563 return 0; /* not handled */
2566 static int mv_handle_dev_err(struct ata_port
*ap
, u32 edma_err_cause
)
2568 struct mv_port_priv
*pp
= ap
->private_data
;
2570 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
))
2571 return 0; /* EDMA was not active: not handled */
2572 if (!(pp
->pp_flags
& MV_PP_FLAG_FBS_EN
))
2573 return 0; /* FBS was not active: not handled */
2575 if (!(edma_err_cause
& EDMA_ERR_DEV
))
2576 return 0; /* non DEV error: not handled */
2577 edma_err_cause
&= ~EDMA_ERR_IRQ_TRANSIENT
;
2578 if (edma_err_cause
& ~(EDMA_ERR_DEV
| EDMA_ERR_SELF_DIS
))
2579 return 0; /* other problems: not handled */
2581 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) {
2583 * EDMA should NOT have self-disabled for this case.
2584 * If it did, then something is wrong elsewhere,
2585 * and we cannot handle it here.
2587 if (edma_err_cause
& EDMA_ERR_SELF_DIS
) {
2588 ata_port_warn(ap
, "%s: err_cause=0x%x pp_flags=0x%x\n",
2589 __func__
, edma_err_cause
, pp
->pp_flags
);
2590 return 0; /* not handled */
2592 return mv_handle_fbs_ncq_dev_err(ap
);
2595 * EDMA should have self-disabled for this case.
2596 * If it did not, then something is wrong elsewhere,
2597 * and we cannot handle it here.
2599 if (!(edma_err_cause
& EDMA_ERR_SELF_DIS
)) {
2600 ata_port_warn(ap
, "%s: err_cause=0x%x pp_flags=0x%x\n",
2601 __func__
, edma_err_cause
, pp
->pp_flags
);
2602 return 0; /* not handled */
2604 return mv_handle_fbs_non_ncq_dev_err(ap
);
2606 return 0; /* not handled */
2609 static void mv_unexpected_intr(struct ata_port
*ap
, int edma_was_enabled
)
2611 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
2612 char *when
= "idle";
2614 ata_ehi_clear_desc(ehi
);
2615 if (edma_was_enabled
) {
2616 when
= "EDMA enabled";
2618 struct ata_queued_cmd
*qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2619 if (qc
&& (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
2622 ata_ehi_push_desc(ehi
, "unexpected device interrupt while %s", when
);
2623 ehi
->err_mask
|= AC_ERR_OTHER
;
2624 ehi
->action
|= ATA_EH_RESET
;
2625 ata_port_freeze(ap
);
2629 * mv_err_intr - Handle error interrupts on the port
2630 * @ap: ATA channel to manipulate
2632 * Most cases require a full reset of the chip's state machine,
2633 * which also performs a COMRESET.
2634 * Also, if the port disabled DMA, update our cached copy to match.
2637 * Inherited from caller.
2639 static void mv_err_intr(struct ata_port
*ap
)
2641 void __iomem
*port_mmio
= mv_ap_base(ap
);
2642 u32 edma_err_cause
, eh_freeze_mask
, serr
= 0;
2644 struct mv_port_priv
*pp
= ap
->private_data
;
2645 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2646 unsigned int action
= 0, err_mask
= 0;
2647 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
2648 struct ata_queued_cmd
*qc
;
2652 * Read and clear the SError and err_cause bits.
2653 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2654 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2656 sata_scr_read(&ap
->link
, SCR_ERROR
, &serr
);
2657 sata_scr_write_flush(&ap
->link
, SCR_ERROR
, serr
);
2659 edma_err_cause
= readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE
);
2660 if (IS_GEN_IIE(hpriv
) && (edma_err_cause
& EDMA_ERR_TRANS_IRQ_7
)) {
2661 fis_cause
= readl(port_mmio
+ FIS_IRQ_CAUSE
);
2662 writelfl(~fis_cause
, port_mmio
+ FIS_IRQ_CAUSE
);
2664 writelfl(~edma_err_cause
, port_mmio
+ EDMA_ERR_IRQ_CAUSE
);
2666 if (edma_err_cause
& EDMA_ERR_DEV
) {
2668 * Device errors during FIS-based switching operation
2669 * require special handling.
2671 if (mv_handle_dev_err(ap
, edma_err_cause
))
2675 qc
= mv_get_active_qc(ap
);
2676 ata_ehi_clear_desc(ehi
);
2677 ata_ehi_push_desc(ehi
, "edma_err_cause=%08x pp_flags=%08x",
2678 edma_err_cause
, pp
->pp_flags
);
2680 if (IS_GEN_IIE(hpriv
) && (edma_err_cause
& EDMA_ERR_TRANS_IRQ_7
)) {
2681 ata_ehi_push_desc(ehi
, "fis_cause=%08x", fis_cause
);
2682 if (fis_cause
& FIS_IRQ_CAUSE_AN
) {
2683 u32 ec
= edma_err_cause
&
2684 ~(EDMA_ERR_TRANS_IRQ_7
| EDMA_ERR_IRQ_TRANSIENT
);
2685 sata_async_notification(ap
);
2687 return; /* Just an AN; no need for the nukes */
2688 ata_ehi_push_desc(ehi
, "SDB notify");
2692 * All generations share these EDMA error cause bits:
2694 if (edma_err_cause
& EDMA_ERR_DEV
) {
2695 err_mask
|= AC_ERR_DEV
;
2696 action
|= ATA_EH_RESET
;
2697 ata_ehi_push_desc(ehi
, "dev error");
2699 if (edma_err_cause
& (EDMA_ERR_D_PAR
| EDMA_ERR_PRD_PAR
|
2700 EDMA_ERR_CRQB_PAR
| EDMA_ERR_CRPB_PAR
|
2701 EDMA_ERR_INTRL_PAR
)) {
2702 err_mask
|= AC_ERR_ATA_BUS
;
2703 action
|= ATA_EH_RESET
;
2704 ata_ehi_push_desc(ehi
, "parity error");
2706 if (edma_err_cause
& (EDMA_ERR_DEV_DCON
| EDMA_ERR_DEV_CON
)) {
2707 ata_ehi_hotplugged(ehi
);
2708 ata_ehi_push_desc(ehi
, edma_err_cause
& EDMA_ERR_DEV_DCON
?
2709 "dev disconnect" : "dev connect");
2710 action
|= ATA_EH_RESET
;
2714 * Gen-I has a different SELF_DIS bit,
2715 * different FREEZE bits, and no SERR bit:
2717 if (IS_GEN_I(hpriv
)) {
2718 eh_freeze_mask
= EDMA_EH_FREEZE_5
;
2719 if (edma_err_cause
& EDMA_ERR_SELF_DIS_5
) {
2720 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
2721 ata_ehi_push_desc(ehi
, "EDMA self-disable");
2724 eh_freeze_mask
= EDMA_EH_FREEZE
;
2725 if (edma_err_cause
& EDMA_ERR_SELF_DIS
) {
2726 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
2727 ata_ehi_push_desc(ehi
, "EDMA self-disable");
2729 if (edma_err_cause
& EDMA_ERR_SERR
) {
2730 ata_ehi_push_desc(ehi
, "SError=%08x", serr
);
2731 err_mask
|= AC_ERR_ATA_BUS
;
2732 action
|= ATA_EH_RESET
;
2737 err_mask
= AC_ERR_OTHER
;
2738 action
|= ATA_EH_RESET
;
2741 ehi
->serror
|= serr
;
2742 ehi
->action
|= action
;
2745 qc
->err_mask
|= err_mask
;
2747 ehi
->err_mask
|= err_mask
;
2749 if (err_mask
== AC_ERR_DEV
) {
2751 * Cannot do ata_port_freeze() here,
2752 * because it would kill PIO access,
2753 * which is needed for further diagnosis.
2757 } else if (edma_err_cause
& eh_freeze_mask
) {
2759 * Note to self: ata_port_freeze() calls ata_port_abort()
2761 ata_port_freeze(ap
);
2768 ata_link_abort(qc
->dev
->link
);
2774 static bool mv_process_crpb_response(struct ata_port
*ap
,
2775 struct mv_crpb
*response
, unsigned int tag
, int ncq_enabled
)
2778 u16 edma_status
= le16_to_cpu(response
->flags
);
2781 * edma_status from a response queue entry:
2782 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2783 * MSB is saved ATA status from command completion.
2786 u8 err_cause
= edma_status
& 0xff & ~EDMA_ERR_DEV
;
2789 * Error will be seen/handled by
2790 * mv_err_intr(). So do nothing at all here.
2795 ata_status
= edma_status
>> CRPB_FLAG_STATUS_SHIFT
;
2796 if (!ac_err_mask(ata_status
))
2798 /* else: leave it for mv_err_intr() */
2802 static void mv_process_crpb_entries(struct ata_port
*ap
, struct mv_port_priv
*pp
)
2804 void __iomem
*port_mmio
= mv_ap_base(ap
);
2805 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2807 bool work_done
= false;
2809 int ncq_enabled
= (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
);
2811 /* Get the hardware queue position index */
2812 in_index
= (readl(port_mmio
+ EDMA_RSP_Q_IN_PTR
)
2813 >> EDMA_RSP_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
2815 /* Process new responses from since the last time we looked */
2816 while (in_index
!= pp
->resp_idx
) {
2818 struct mv_crpb
*response
= &pp
->crpb
[pp
->resp_idx
];
2820 pp
->resp_idx
= (pp
->resp_idx
+ 1) & MV_MAX_Q_DEPTH_MASK
;
2822 if (IS_GEN_I(hpriv
)) {
2823 /* 50xx: no NCQ, only one command active at a time */
2824 tag
= ap
->link
.active_tag
;
2826 /* Gen II/IIE: get command tag from CRPB entry */
2827 tag
= le16_to_cpu(response
->id
) & 0x1f;
2829 if (mv_process_crpb_response(ap
, response
, tag
, ncq_enabled
))
2830 done_mask
|= 1 << tag
;
2835 ata_qc_complete_multiple(ap
, ap
->qc_active
^ done_mask
);
2837 /* Update the software queue position index in hardware */
2838 writelfl((pp
->crpb_dma
& EDMA_RSP_Q_BASE_LO_MASK
) |
2839 (pp
->resp_idx
<< EDMA_RSP_Q_PTR_SHIFT
),
2840 port_mmio
+ EDMA_RSP_Q_OUT_PTR
);
2844 static void mv_port_intr(struct ata_port
*ap
, u32 port_cause
)
2846 struct mv_port_priv
*pp
;
2847 int edma_was_enabled
;
2850 * Grab a snapshot of the EDMA_EN flag setting,
2851 * so that we have a consistent view for this port,
2852 * even if something we call of our routines changes it.
2854 pp
= ap
->private_data
;
2855 edma_was_enabled
= (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
);
2857 * Process completed CRPB response(s) before other events.
2859 if (edma_was_enabled
&& (port_cause
& DONE_IRQ
)) {
2860 mv_process_crpb_entries(ap
, pp
);
2861 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)
2862 mv_handle_fbs_ncq_dev_err(ap
);
2865 * Handle chip-reported errors, or continue on to handle PIO.
2867 if (unlikely(port_cause
& ERR_IRQ
)) {
2869 } else if (!edma_was_enabled
) {
2870 struct ata_queued_cmd
*qc
= mv_get_active_qc(ap
);
2872 ata_bmdma_port_intr(ap
, qc
);
2874 mv_unexpected_intr(ap
, edma_was_enabled
);
2879 * mv_host_intr - Handle all interrupts on the given host controller
2880 * @host: host specific structure
2881 * @main_irq_cause: Main interrupt cause register for the chip.
2884 * Inherited from caller.
2886 static int mv_host_intr(struct ata_host
*host
, u32 main_irq_cause
)
2888 struct mv_host_priv
*hpriv
= host
->private_data
;
2889 void __iomem
*mmio
= hpriv
->base
, *hc_mmio
;
2890 unsigned int handled
= 0, port
;
2892 /* If asserted, clear the "all ports" IRQ coalescing bit */
2893 if (main_irq_cause
& ALL_PORTS_COAL_DONE
)
2894 writel(~ALL_PORTS_COAL_IRQ
, mmio
+ IRQ_COAL_CAUSE
);
2896 for (port
= 0; port
< hpriv
->n_ports
; port
++) {
2897 struct ata_port
*ap
= host
->ports
[port
];
2898 unsigned int p
, shift
, hardport
, port_cause
;
2900 MV_PORT_TO_SHIFT_AND_HARDPORT(port
, shift
, hardport
);
2902 * Each hc within the host has its own hc_irq_cause register,
2903 * where the interrupting ports bits get ack'd.
2905 if (hardport
== 0) { /* first port on this hc ? */
2906 u32 hc_cause
= (main_irq_cause
>> shift
) & HC0_IRQ_PEND
;
2907 u32 port_mask
, ack_irqs
;
2909 * Skip this entire hc if nothing pending for any ports
2912 port
+= MV_PORTS_PER_HC
- 1;
2916 * We don't need/want to read the hc_irq_cause register,
2917 * because doing so hurts performance, and
2918 * main_irq_cause already gives us everything we need.
2920 * But we do have to *write* to the hc_irq_cause to ack
2921 * the ports that we are handling this time through.
2923 * This requires that we create a bitmap for those
2924 * ports which interrupted us, and use that bitmap
2925 * to ack (only) those ports via hc_irq_cause.
2928 if (hc_cause
& PORTS_0_3_COAL_DONE
)
2929 ack_irqs
= HC_COAL_IRQ
;
2930 for (p
= 0; p
< MV_PORTS_PER_HC
; ++p
) {
2931 if ((port
+ p
) >= hpriv
->n_ports
)
2933 port_mask
= (DONE_IRQ
| ERR_IRQ
) << (p
* 2);
2934 if (hc_cause
& port_mask
)
2935 ack_irqs
|= (DMA_IRQ
| DEV_IRQ
) << p
;
2937 hc_mmio
= mv_hc_base_from_port(mmio
, port
);
2938 writelfl(~ack_irqs
, hc_mmio
+ HC_IRQ_CAUSE
);
2942 * Handle interrupts signalled for this port:
2944 port_cause
= (main_irq_cause
>> shift
) & (DONE_IRQ
| ERR_IRQ
);
2946 mv_port_intr(ap
, port_cause
);
2951 static int mv_pci_error(struct ata_host
*host
, void __iomem
*mmio
)
2953 struct mv_host_priv
*hpriv
= host
->private_data
;
2954 struct ata_port
*ap
;
2955 struct ata_queued_cmd
*qc
;
2956 struct ata_eh_info
*ehi
;
2957 unsigned int i
, err_mask
, printed
= 0;
2960 err_cause
= readl(mmio
+ hpriv
->irq_cause_offset
);
2962 dev_err(host
->dev
, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause
);
2964 DPRINTK("All regs @ PCI error\n");
2965 mv_dump_all_regs(mmio
, -1, to_pci_dev(host
->dev
));
2967 writelfl(0, mmio
+ hpriv
->irq_cause_offset
);
2969 for (i
= 0; i
< host
->n_ports
; i
++) {
2970 ap
= host
->ports
[i
];
2971 if (!ata_link_offline(&ap
->link
)) {
2972 ehi
= &ap
->link
.eh_info
;
2973 ata_ehi_clear_desc(ehi
);
2975 ata_ehi_push_desc(ehi
,
2976 "PCI err cause 0x%08x", err_cause
);
2977 err_mask
= AC_ERR_HOST_BUS
;
2978 ehi
->action
= ATA_EH_RESET
;
2979 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2981 qc
->err_mask
|= err_mask
;
2983 ehi
->err_mask
|= err_mask
;
2985 ata_port_freeze(ap
);
2988 return 1; /* handled */
2992 * mv_interrupt - Main interrupt event handler
2994 * @dev_instance: private data; in this case the host structure
2996 * Read the read only register to determine if any host
2997 * controllers have pending interrupts. If so, call lower level
2998 * routine to handle. Also check for PCI errors which are only
3002 * This routine holds the host lock while processing pending
3005 static irqreturn_t
mv_interrupt(int irq
, void *dev_instance
)
3007 struct ata_host
*host
= dev_instance
;
3008 struct mv_host_priv
*hpriv
= host
->private_data
;
3009 unsigned int handled
= 0;
3010 int using_msi
= hpriv
->hp_flags
& MV_HP_FLAG_MSI
;
3011 u32 main_irq_cause
, pending_irqs
;
3013 spin_lock(&host
->lock
);
3015 /* for MSI: block new interrupts while in here */
3017 mv_write_main_irq_mask(0, hpriv
);
3019 main_irq_cause
= readl(hpriv
->main_irq_cause_addr
);
3020 pending_irqs
= main_irq_cause
& hpriv
->main_irq_mask
;
3022 * Deal with cases where we either have nothing pending, or have read
3023 * a bogus register value which can indicate HW removal or PCI fault.
3025 if (pending_irqs
&& main_irq_cause
!= 0xffffffffU
) {
3026 if (unlikely((pending_irqs
& PCI_ERR
) && !IS_SOC(hpriv
)))
3027 handled
= mv_pci_error(host
, hpriv
->base
);
3029 handled
= mv_host_intr(host
, pending_irqs
);
3032 /* for MSI: unmask; interrupt cause bits will retrigger now */
3034 mv_write_main_irq_mask(hpriv
->main_irq_mask
, hpriv
);
3036 spin_unlock(&host
->lock
);
3038 return IRQ_RETVAL(handled
);
3041 static unsigned int mv5_scr_offset(unsigned int sc_reg_in
)
3045 switch (sc_reg_in
) {
3049 ofs
= sc_reg_in
* sizeof(u32
);
3058 static int mv5_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
)
3060 struct mv_host_priv
*hpriv
= link
->ap
->host
->private_data
;
3061 void __iomem
*mmio
= hpriv
->base
;
3062 void __iomem
*addr
= mv5_phy_base(mmio
, link
->ap
->port_no
);
3063 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
3065 if (ofs
!= 0xffffffffU
) {
3066 *val
= readl(addr
+ ofs
);
3072 static int mv5_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
)
3074 struct mv_host_priv
*hpriv
= link
->ap
->host
->private_data
;
3075 void __iomem
*mmio
= hpriv
->base
;
3076 void __iomem
*addr
= mv5_phy_base(mmio
, link
->ap
->port_no
);
3077 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
3079 if (ofs
!= 0xffffffffU
) {
3080 writelfl(val
, addr
+ ofs
);
3086 static void mv5_reset_bus(struct ata_host
*host
, void __iomem
*mmio
)
3088 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
3091 early_5080
= (pdev
->device
== 0x5080) && (pdev
->revision
== 0);
3094 u32 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
3096 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
3099 mv_reset_pci_bus(host
, mmio
);
3102 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
3104 writel(0x0fcfffff, mmio
+ FLASH_CTL
);
3107 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
3110 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, idx
);
3113 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
3115 hpriv
->signal
[idx
].pre
= tmp
& 0x1800; /* bits 12:11 */
3116 hpriv
->signal
[idx
].amps
= tmp
& 0xe0; /* bits 7:5 */
3119 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
3123 writel(0, mmio
+ GPIO_PORT_CTL
);
3125 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3127 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
3129 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
3132 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3135 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, port
);
3136 const u32 mask
= (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3138 int fix_apm_sq
= (hpriv
->hp_flags
& MV_HP_ERRATA_50XXB0
);
3141 tmp
= readl(phy_mmio
+ MV5_LTMODE
);
3143 writel(tmp
, phy_mmio
+ MV5_LTMODE
);
3145 tmp
= readl(phy_mmio
+ MV5_PHY_CTL
);
3148 writel(tmp
, phy_mmio
+ MV5_PHY_CTL
);
3151 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
3153 tmp
|= hpriv
->signal
[port
].pre
;
3154 tmp
|= hpriv
->signal
[port
].amps
;
3155 writel(tmp
, phy_mmio
+ MV5_PHY_MODE
);
3160 #define ZERO(reg) writel(0, port_mmio + (reg))
3161 static void mv5_reset_hc_port(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3164 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3166 mv_reset_channel(hpriv
, mmio
, port
);
3168 ZERO(0x028); /* command */
3169 writel(0x11f, port_mmio
+ EDMA_CFG
);
3170 ZERO(0x004); /* timer */
3171 ZERO(0x008); /* irq err cause */
3172 ZERO(0x00c); /* irq err mask */
3173 ZERO(0x010); /* rq bah */
3174 ZERO(0x014); /* rq inp */
3175 ZERO(0x018); /* rq outp */
3176 ZERO(0x01c); /* respq bah */
3177 ZERO(0x024); /* respq outp */
3178 ZERO(0x020); /* respq inp */
3179 ZERO(0x02c); /* test control */
3180 writel(0xbc, port_mmio
+ EDMA_IORDY_TMOUT
);
3184 #define ZERO(reg) writel(0, hc_mmio + (reg))
3185 static void mv5_reset_one_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3188 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
3196 tmp
= readl(hc_mmio
+ 0x20);
3199 writel(tmp
, hc_mmio
+ 0x20);
3203 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3206 unsigned int hc
, port
;
3208 for (hc
= 0; hc
< n_hc
; hc
++) {
3209 for (port
= 0; port
< MV_PORTS_PER_HC
; port
++)
3210 mv5_reset_hc_port(hpriv
, mmio
,
3211 (hc
* MV_PORTS_PER_HC
) + port
);
3213 mv5_reset_one_hc(hpriv
, mmio
, hc
);
3220 #define ZERO(reg) writel(0, mmio + (reg))
3221 static void mv_reset_pci_bus(struct ata_host
*host
, void __iomem
*mmio
)
3223 struct mv_host_priv
*hpriv
= host
->private_data
;
3226 tmp
= readl(mmio
+ MV_PCI_MODE
);
3228 writel(tmp
, mmio
+ MV_PCI_MODE
);
3230 ZERO(MV_PCI_DISC_TIMER
);
3231 ZERO(MV_PCI_MSI_TRIGGER
);
3232 writel(0x000100ff, mmio
+ MV_PCI_XBAR_TMOUT
);
3233 ZERO(MV_PCI_SERR_MASK
);
3234 ZERO(hpriv
->irq_cause_offset
);
3235 ZERO(hpriv
->irq_mask_offset
);
3236 ZERO(MV_PCI_ERR_LOW_ADDRESS
);
3237 ZERO(MV_PCI_ERR_HIGH_ADDRESS
);
3238 ZERO(MV_PCI_ERR_ATTRIBUTE
);
3239 ZERO(MV_PCI_ERR_COMMAND
);
3243 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
3247 mv5_reset_flash(hpriv
, mmio
);
3249 tmp
= readl(mmio
+ GPIO_PORT_CTL
);
3251 tmp
|= (1 << 5) | (1 << 6);
3252 writel(tmp
, mmio
+ GPIO_PORT_CTL
);
3256 * mv6_reset_hc - Perform the 6xxx global soft reset
3257 * @mmio: base address of the HBA
3259 * This routine only applies to 6xxx parts.
3262 * Inherited from caller.
3264 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3267 void __iomem
*reg
= mmio
+ PCI_MAIN_CMD_STS
;
3271 /* Following procedure defined in PCI "main command and status
3275 writel(t
| STOP_PCI_MASTER
, reg
);
3277 for (i
= 0; i
< 1000; i
++) {
3280 if (PCI_MASTER_EMPTY
& t
)
3283 if (!(PCI_MASTER_EMPTY
& t
)) {
3284 printk(KERN_ERR DRV_NAME
": PCI master won't flush\n");
3292 writel(t
| GLOB_SFT_RST
, reg
);
3295 } while (!(GLOB_SFT_RST
& t
) && (i
-- > 0));
3297 if (!(GLOB_SFT_RST
& t
)) {
3298 printk(KERN_ERR DRV_NAME
": can't set global reset\n");
3303 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3306 writel(t
& ~(GLOB_SFT_RST
| STOP_PCI_MASTER
), reg
);
3309 } while ((GLOB_SFT_RST
& t
) && (i
-- > 0));
3311 if (GLOB_SFT_RST
& t
) {
3312 printk(KERN_ERR DRV_NAME
": can't clear global reset\n");
3319 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
3322 void __iomem
*port_mmio
;
3325 tmp
= readl(mmio
+ RESET_CFG
);
3326 if ((tmp
& (1 << 0)) == 0) {
3327 hpriv
->signal
[idx
].amps
= 0x7 << 8;
3328 hpriv
->signal
[idx
].pre
= 0x1 << 5;
3332 port_mmio
= mv_port_base(mmio
, idx
);
3333 tmp
= readl(port_mmio
+ PHY_MODE2
);
3335 hpriv
->signal
[idx
].amps
= tmp
& 0x700; /* bits 10:8 */
3336 hpriv
->signal
[idx
].pre
= tmp
& 0xe0; /* bits 7:5 */
3339 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
3341 writel(0x00000060, mmio
+ GPIO_PORT_CTL
);
3344 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3347 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3349 u32 hp_flags
= hpriv
->hp_flags
;
3351 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
3353 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
3356 if (fix_phy_mode2
) {
3357 m2
= readl(port_mmio
+ PHY_MODE2
);
3360 writel(m2
, port_mmio
+ PHY_MODE2
);
3364 m2
= readl(port_mmio
+ PHY_MODE2
);
3365 m2
&= ~((1 << 16) | (1 << 31));
3366 writel(m2
, port_mmio
+ PHY_MODE2
);
3372 * Gen-II/IIe PHY_MODE3 errata RM#2:
3373 * Achieves better receiver noise performance than the h/w default:
3375 m3
= readl(port_mmio
+ PHY_MODE3
);
3376 m3
= (m3
& 0x1f) | (0x5555601 << 5);
3378 /* Guideline 88F5182 (GL# SATA-S11) */
3382 if (fix_phy_mode4
) {
3383 u32 m4
= readl(port_mmio
+ PHY_MODE4
);
3385 * Enforce reserved-bit restrictions on GenIIe devices only.
3386 * For earlier chipsets, force only the internal config field
3387 * (workaround for errata FEr SATA#10 part 1).
3389 if (IS_GEN_IIE(hpriv
))
3390 m4
= (m4
& ~PHY_MODE4_RSVD_ZEROS
) | PHY_MODE4_RSVD_ONES
;
3392 m4
= (m4
& ~PHY_MODE4_CFG_MASK
) | PHY_MODE4_CFG_VALUE
;
3393 writel(m4
, port_mmio
+ PHY_MODE4
);
3396 * Workaround for 60x1-B2 errata SATA#13:
3397 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3398 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3399 * Or ensure we use writelfl() when writing PHY_MODE4.
3401 writel(m3
, port_mmio
+ PHY_MODE3
);
3403 /* Revert values of pre-emphasis and signal amps to the saved ones */
3404 m2
= readl(port_mmio
+ PHY_MODE2
);
3406 m2
&= ~MV_M2_PREAMP_MASK
;
3407 m2
|= hpriv
->signal
[port
].amps
;
3408 m2
|= hpriv
->signal
[port
].pre
;
3411 /* according to mvSata 3.6.1, some IIE values are fixed */
3412 if (IS_GEN_IIE(hpriv
)) {
3417 writel(m2
, port_mmio
+ PHY_MODE2
);
3420 /* TODO: use the generic LED interface to configure the SATA Presence */
3421 /* & Acitivy LEDs on the board */
3422 static void mv_soc_enable_leds(struct mv_host_priv
*hpriv
,
3428 static void mv_soc_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
3431 void __iomem
*port_mmio
;
3434 port_mmio
= mv_port_base(mmio
, idx
);
3435 tmp
= readl(port_mmio
+ PHY_MODE2
);
3437 hpriv
->signal
[idx
].amps
= tmp
& 0x700; /* bits 10:8 */
3438 hpriv
->signal
[idx
].pre
= tmp
& 0xe0; /* bits 7:5 */
3442 #define ZERO(reg) writel(0, port_mmio + (reg))
3443 static void mv_soc_reset_hc_port(struct mv_host_priv
*hpriv
,
3444 void __iomem
*mmio
, unsigned int port
)
3446 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3448 mv_reset_channel(hpriv
, mmio
, port
);
3450 ZERO(0x028); /* command */
3451 writel(0x101f, port_mmio
+ EDMA_CFG
);
3452 ZERO(0x004); /* timer */
3453 ZERO(0x008); /* irq err cause */
3454 ZERO(0x00c); /* irq err mask */
3455 ZERO(0x010); /* rq bah */
3456 ZERO(0x014); /* rq inp */
3457 ZERO(0x018); /* rq outp */
3458 ZERO(0x01c); /* respq bah */
3459 ZERO(0x024); /* respq outp */
3460 ZERO(0x020); /* respq inp */
3461 ZERO(0x02c); /* test control */
3462 writel(0x800, port_mmio
+ EDMA_IORDY_TMOUT
);
3467 #define ZERO(reg) writel(0, hc_mmio + (reg))
3468 static void mv_soc_reset_one_hc(struct mv_host_priv
*hpriv
,
3471 void __iomem
*hc_mmio
= mv_hc_base(mmio
, 0);
3481 static int mv_soc_reset_hc(struct mv_host_priv
*hpriv
,
3482 void __iomem
*mmio
, unsigned int n_hc
)
3486 for (port
= 0; port
< hpriv
->n_ports
; port
++)
3487 mv_soc_reset_hc_port(hpriv
, mmio
, port
);
3489 mv_soc_reset_one_hc(hpriv
, mmio
);
3494 static void mv_soc_reset_flash(struct mv_host_priv
*hpriv
,
3500 static void mv_soc_reset_bus(struct ata_host
*host
, void __iomem
*mmio
)
3505 static void mv_soc_65n_phy_errata(struct mv_host_priv
*hpriv
,
3506 void __iomem
*mmio
, unsigned int port
)
3508 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3511 reg
= readl(port_mmio
+ PHY_MODE3
);
3512 reg
&= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
3514 reg
&= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
3516 writel(reg
, port_mmio
+ PHY_MODE3
);
3518 reg
= readl(port_mmio
+ PHY_MODE4
);
3519 reg
&= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3521 writel(reg
, port_mmio
+ PHY_MODE4
);
3523 reg
= readl(port_mmio
+ PHY_MODE9_GEN2
);
3524 reg
&= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3526 reg
&= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3527 writel(reg
, port_mmio
+ PHY_MODE9_GEN2
);
3529 reg
= readl(port_mmio
+ PHY_MODE9_GEN1
);
3530 reg
&= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3532 reg
&= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3533 writel(reg
, port_mmio
+ PHY_MODE9_GEN1
);
3537 * soc_is_65 - check if the soc is 65 nano device
3539 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3540 * register, this register should contain non-zero value and it exists only
3541 * in the 65 nano devices, when reading it from older devices we get 0.
3543 static bool soc_is_65n(struct mv_host_priv
*hpriv
)
3545 void __iomem
*port0_mmio
= mv_port_base(hpriv
->base
, 0);
3547 if (readl(port0_mmio
+ PHYCFG_OFS
))
3552 static void mv_setup_ifcfg(void __iomem
*port_mmio
, int want_gen2i
)
3554 u32 ifcfg
= readl(port_mmio
+ SATA_IFCFG
);
3556 ifcfg
= (ifcfg
& 0xf7f) | 0x9b1000; /* from chip spec */
3558 ifcfg
|= (1 << 7); /* enable gen2i speed */
3559 writelfl(ifcfg
, port_mmio
+ SATA_IFCFG
);
3562 static void mv_reset_channel(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3563 unsigned int port_no
)
3565 void __iomem
*port_mmio
= mv_port_base(mmio
, port_no
);
3568 * The datasheet warns against setting EDMA_RESET when EDMA is active
3569 * (but doesn't say what the problem might be). So we first try
3570 * to disable the EDMA engine before doing the EDMA_RESET operation.
3572 mv_stop_edma_engine(port_mmio
);
3573 writelfl(EDMA_RESET
, port_mmio
+ EDMA_CMD
);
3575 if (!IS_GEN_I(hpriv
)) {
3576 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3577 mv_setup_ifcfg(port_mmio
, 1);
3580 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3581 * link, and physical layers. It resets all SATA interface registers
3582 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3584 writelfl(EDMA_RESET
, port_mmio
+ EDMA_CMD
);
3585 udelay(25); /* allow reset propagation */
3586 writelfl(0, port_mmio
+ EDMA_CMD
);
3588 hpriv
->ops
->phy_errata(hpriv
, mmio
, port_no
);
3590 if (IS_GEN_I(hpriv
))
3594 static void mv_pmp_select(struct ata_port
*ap
, int pmp
)
3596 if (sata_pmp_supported(ap
)) {
3597 void __iomem
*port_mmio
= mv_ap_base(ap
);
3598 u32 reg
= readl(port_mmio
+ SATA_IFCTL
);
3599 int old
= reg
& 0xf;
3602 reg
= (reg
& ~0xf) | pmp
;
3603 writelfl(reg
, port_mmio
+ SATA_IFCTL
);
3608 static int mv_pmp_hardreset(struct ata_link
*link
, unsigned int *class,
3609 unsigned long deadline
)
3611 mv_pmp_select(link
->ap
, sata_srst_pmp(link
));
3612 return sata_std_hardreset(link
, class, deadline
);
3615 static int mv_softreset(struct ata_link
*link
, unsigned int *class,
3616 unsigned long deadline
)
3618 mv_pmp_select(link
->ap
, sata_srst_pmp(link
));
3619 return ata_sff_softreset(link
, class, deadline
);
3622 static int mv_hardreset(struct ata_link
*link
, unsigned int *class,
3623 unsigned long deadline
)
3625 struct ata_port
*ap
= link
->ap
;
3626 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
3627 struct mv_port_priv
*pp
= ap
->private_data
;
3628 void __iomem
*mmio
= hpriv
->base
;
3629 int rc
, attempts
= 0, extra
= 0;
3633 mv_reset_channel(hpriv
, mmio
, ap
->port_no
);
3634 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
3636 ~(MV_PP_FLAG_FBS_EN
| MV_PP_FLAG_NCQ_EN
| MV_PP_FLAG_FAKE_ATA_BUSY
);
3638 /* Workaround for errata FEr SATA#10 (part 2) */
3640 const unsigned long *timing
=
3641 sata_ehc_deb_timing(&link
->eh_context
);
3643 rc
= sata_link_hardreset(link
, timing
, deadline
+ extra
,
3645 rc
= online
? -EAGAIN
: rc
;
3648 sata_scr_read(link
, SCR_STATUS
, &sstatus
);
3649 if (!IS_GEN_I(hpriv
) && ++attempts
>= 5 && sstatus
== 0x121) {
3650 /* Force 1.5gb/s link speed and try again */
3651 mv_setup_ifcfg(mv_ap_base(ap
), 0);
3652 if (time_after(jiffies
+ HZ
, deadline
))
3653 extra
= HZ
; /* only extend it once, max */
3655 } while (sstatus
!= 0x0 && sstatus
!= 0x113 && sstatus
!= 0x123);
3656 mv_save_cached_regs(ap
);
3657 mv_edma_cfg(ap
, 0, 0);
3662 static void mv_eh_freeze(struct ata_port
*ap
)
3665 mv_enable_port_irqs(ap
, 0);
3668 static void mv_eh_thaw(struct ata_port
*ap
)
3670 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
3671 unsigned int port
= ap
->port_no
;
3672 unsigned int hardport
= mv_hardport_from_port(port
);
3673 void __iomem
*hc_mmio
= mv_hc_base_from_port(hpriv
->base
, port
);
3674 void __iomem
*port_mmio
= mv_ap_base(ap
);
3677 /* clear EDMA errors on this port */
3678 writel(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE
);
3680 /* clear pending irq events */
3681 hc_irq_cause
= ~((DEV_IRQ
| DMA_IRQ
) << hardport
);
3682 writelfl(hc_irq_cause
, hc_mmio
+ HC_IRQ_CAUSE
);
3684 mv_enable_port_irqs(ap
, ERR_IRQ
);
3688 * mv_port_init - Perform some early initialization on a single port.
3689 * @port: libata data structure storing shadow register addresses
3690 * @port_mmio: base address of the port
3692 * Initialize shadow register mmio addresses, clear outstanding
3693 * interrupts on the port, and unmask interrupts for the future
3694 * start of the port.
3697 * Inherited from caller.
3699 static void mv_port_init(struct ata_ioports
*port
, void __iomem
*port_mmio
)
3701 void __iomem
*serr
, *shd_base
= port_mmio
+ SHD_BLK
;
3703 /* PIO related setup
3705 port
->data_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DATA
);
3707 port
->feature_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_ERR
);
3708 port
->nsect_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_NSECT
);
3709 port
->lbal_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAL
);
3710 port
->lbam_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAM
);
3711 port
->lbah_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAH
);
3712 port
->device_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DEVICE
);
3714 port
->command_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_STATUS
);
3715 /* special case: control/altstatus doesn't have ATA_REG_ address */
3716 port
->altstatus_addr
= port
->ctl_addr
= shd_base
+ SHD_CTL_AST
;
3718 /* Clear any currently outstanding port interrupt conditions */
3719 serr
= port_mmio
+ mv_scr_offset(SCR_ERROR
);
3720 writelfl(readl(serr
), serr
);
3721 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE
);
3723 /* unmask all non-transient EDMA error interrupts */
3724 writelfl(~EDMA_ERR_IRQ_TRANSIENT
, port_mmio
+ EDMA_ERR_IRQ_MASK
);
3726 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3727 readl(port_mmio
+ EDMA_CFG
),
3728 readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE
),
3729 readl(port_mmio
+ EDMA_ERR_IRQ_MASK
));
3732 static unsigned int mv_in_pcix_mode(struct ata_host
*host
)
3734 struct mv_host_priv
*hpriv
= host
->private_data
;
3735 void __iomem
*mmio
= hpriv
->base
;
3738 if (IS_SOC(hpriv
) || !IS_PCIE(hpriv
))
3739 return 0; /* not PCI-X capable */
3740 reg
= readl(mmio
+ MV_PCI_MODE
);
3741 if ((reg
& MV_PCI_MODE_MASK
) == 0)
3742 return 0; /* conventional PCI mode */
3743 return 1; /* chip is in PCI-X mode */
3746 static int mv_pci_cut_through_okay(struct ata_host
*host
)
3748 struct mv_host_priv
*hpriv
= host
->private_data
;
3749 void __iomem
*mmio
= hpriv
->base
;
3752 if (!mv_in_pcix_mode(host
)) {
3753 reg
= readl(mmio
+ MV_PCI_COMMAND
);
3754 if (reg
& MV_PCI_COMMAND_MRDTRIG
)
3755 return 0; /* not okay */
3757 return 1; /* okay */
3760 static void mv_60x1b2_errata_pci7(struct ata_host
*host
)
3762 struct mv_host_priv
*hpriv
= host
->private_data
;
3763 void __iomem
*mmio
= hpriv
->base
;
3765 /* workaround for 60x1-B2 errata PCI#7 */
3766 if (mv_in_pcix_mode(host
)) {
3767 u32 reg
= readl(mmio
+ MV_PCI_COMMAND
);
3768 writelfl(reg
& ~MV_PCI_COMMAND_MWRCOM
, mmio
+ MV_PCI_COMMAND
);
3772 static int mv_chip_id(struct ata_host
*host
, unsigned int board_idx
)
3774 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
3775 struct mv_host_priv
*hpriv
= host
->private_data
;
3776 u32 hp_flags
= hpriv
->hp_flags
;
3778 switch (board_idx
) {
3780 hpriv
->ops
= &mv5xxx_ops
;
3781 hp_flags
|= MV_HP_GEN_I
;
3783 switch (pdev
->revision
) {
3785 hp_flags
|= MV_HP_ERRATA_50XXB0
;
3788 hp_flags
|= MV_HP_ERRATA_50XXB2
;
3791 dev_warn(&pdev
->dev
,
3792 "Applying 50XXB2 workarounds to unknown rev\n");
3793 hp_flags
|= MV_HP_ERRATA_50XXB2
;
3800 hpriv
->ops
= &mv5xxx_ops
;
3801 hp_flags
|= MV_HP_GEN_I
;
3803 switch (pdev
->revision
) {
3805 hp_flags
|= MV_HP_ERRATA_50XXB0
;
3808 hp_flags
|= MV_HP_ERRATA_50XXB2
;
3811 dev_warn(&pdev
->dev
,
3812 "Applying B2 workarounds to unknown rev\n");
3813 hp_flags
|= MV_HP_ERRATA_50XXB2
;
3820 hpriv
->ops
= &mv6xxx_ops
;
3821 hp_flags
|= MV_HP_GEN_II
;
3823 switch (pdev
->revision
) {
3825 mv_60x1b2_errata_pci7(host
);
3826 hp_flags
|= MV_HP_ERRATA_60X1B2
;
3829 hp_flags
|= MV_HP_ERRATA_60X1C0
;
3832 dev_warn(&pdev
->dev
,
3833 "Applying B2 workarounds to unknown rev\n");
3834 hp_flags
|= MV_HP_ERRATA_60X1B2
;
3840 hp_flags
|= MV_HP_PCIE
| MV_HP_CUT_THROUGH
;
3841 if (pdev
->vendor
== PCI_VENDOR_ID_TTI
&&
3842 (pdev
->device
== 0x2300 || pdev
->device
== 0x2310))
3845 * Highpoint RocketRAID PCIe 23xx series cards:
3847 * Unconfigured drives are treated as "Legacy"
3848 * by the BIOS, and it overwrites sector 8 with
3849 * a "Lgcy" metadata block prior to Linux boot.
3851 * Configured drives (RAID or JBOD) leave sector 8
3852 * alone, but instead overwrite a high numbered
3853 * sector for the RAID metadata. This sector can
3854 * be determined exactly, by truncating the physical
3855 * drive capacity to a nice even GB value.
3857 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3859 * Warn the user, lest they think we're just buggy.
3861 printk(KERN_WARNING DRV_NAME
": Highpoint RocketRAID"
3862 " BIOS CORRUPTS DATA on all attached drives,"
3863 " regardless of if/how they are configured."
3865 printk(KERN_WARNING DRV_NAME
": For data safety, do not"
3866 " use sectors 8-9 on \"Legacy\" drives,"
3867 " and avoid the final two gigabytes on"
3868 " all RocketRAID BIOS initialized drives.\n");
3872 hpriv
->ops
= &mv6xxx_ops
;
3873 hp_flags
|= MV_HP_GEN_IIE
;
3874 if (board_idx
== chip_6042
&& mv_pci_cut_through_okay(host
))
3875 hp_flags
|= MV_HP_CUT_THROUGH
;
3877 switch (pdev
->revision
) {
3878 case 0x2: /* Rev.B0: the first/only public release */
3879 hp_flags
|= MV_HP_ERRATA_60X1C0
;
3882 dev_warn(&pdev
->dev
,
3883 "Applying 60X1C0 workarounds to unknown rev\n");
3884 hp_flags
|= MV_HP_ERRATA_60X1C0
;
3889 if (soc_is_65n(hpriv
))
3890 hpriv
->ops
= &mv_soc_65n_ops
;
3892 hpriv
->ops
= &mv_soc_ops
;
3893 hp_flags
|= MV_HP_FLAG_SOC
| MV_HP_GEN_IIE
|
3894 MV_HP_ERRATA_60X1C0
;
3898 dev_err(host
->dev
, "BUG: invalid board index %u\n", board_idx
);
3902 hpriv
->hp_flags
= hp_flags
;
3903 if (hp_flags
& MV_HP_PCIE
) {
3904 hpriv
->irq_cause_offset
= PCIE_IRQ_CAUSE
;
3905 hpriv
->irq_mask_offset
= PCIE_IRQ_MASK
;
3906 hpriv
->unmask_all_irqs
= PCIE_UNMASK_ALL_IRQS
;
3908 hpriv
->irq_cause_offset
= PCI_IRQ_CAUSE
;
3909 hpriv
->irq_mask_offset
= PCI_IRQ_MASK
;
3910 hpriv
->unmask_all_irqs
= PCI_UNMASK_ALL_IRQS
;
3917 * mv_init_host - Perform some early initialization of the host.
3918 * @host: ATA host to initialize
3920 * If possible, do an early global reset of the host. Then do
3921 * our port init and clear/unmask all/relevant host interrupts.
3924 * Inherited from caller.
3926 static int mv_init_host(struct ata_host
*host
)
3928 int rc
= 0, n_hc
, port
, hc
;
3929 struct mv_host_priv
*hpriv
= host
->private_data
;
3930 void __iomem
*mmio
= hpriv
->base
;
3932 rc
= mv_chip_id(host
, hpriv
->board_idx
);
3936 if (IS_SOC(hpriv
)) {
3937 hpriv
->main_irq_cause_addr
= mmio
+ SOC_HC_MAIN_IRQ_CAUSE
;
3938 hpriv
->main_irq_mask_addr
= mmio
+ SOC_HC_MAIN_IRQ_MASK
;
3940 hpriv
->main_irq_cause_addr
= mmio
+ PCI_HC_MAIN_IRQ_CAUSE
;
3941 hpriv
->main_irq_mask_addr
= mmio
+ PCI_HC_MAIN_IRQ_MASK
;
3944 /* initialize shadow irq mask with register's value */
3945 hpriv
->main_irq_mask
= readl(hpriv
->main_irq_mask_addr
);
3947 /* global interrupt mask: 0 == mask everything */
3948 mv_set_main_irq_mask(host
, ~0, 0);
3950 n_hc
= mv_get_hc_count(host
->ports
[0]->flags
);
3952 for (port
= 0; port
< host
->n_ports
; port
++)
3953 if (hpriv
->ops
->read_preamp
)
3954 hpriv
->ops
->read_preamp(hpriv
, port
, mmio
);
3956 rc
= hpriv
->ops
->reset_hc(hpriv
, mmio
, n_hc
);
3960 hpriv
->ops
->reset_flash(hpriv
, mmio
);
3961 hpriv
->ops
->reset_bus(host
, mmio
);
3962 hpriv
->ops
->enable_leds(hpriv
, mmio
);
3964 for (port
= 0; port
< host
->n_ports
; port
++) {
3965 struct ata_port
*ap
= host
->ports
[port
];
3966 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3968 mv_port_init(&ap
->ioaddr
, port_mmio
);
3971 for (hc
= 0; hc
< n_hc
; hc
++) {
3972 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
3974 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3975 "(before clear)=0x%08x\n", hc
,
3976 readl(hc_mmio
+ HC_CFG
),
3977 readl(hc_mmio
+ HC_IRQ_CAUSE
));
3979 /* Clear any currently outstanding hc interrupt conditions */
3980 writelfl(0, hc_mmio
+ HC_IRQ_CAUSE
);
3983 if (!IS_SOC(hpriv
)) {
3984 /* Clear any currently outstanding host interrupt conditions */
3985 writelfl(0, mmio
+ hpriv
->irq_cause_offset
);
3987 /* and unmask interrupt generation for host regs */
3988 writelfl(hpriv
->unmask_all_irqs
, mmio
+ hpriv
->irq_mask_offset
);
3992 * enable only global host interrupts for now.
3993 * The per-port interrupts get done later as ports are set up.
3995 mv_set_main_irq_mask(host
, 0, PCI_ERR
);
3996 mv_set_irq_coalescing(host
, irq_coalescing_io_count
,
3997 irq_coalescing_usecs
);
4002 static int mv_create_dma_pools(struct mv_host_priv
*hpriv
, struct device
*dev
)
4004 hpriv
->crqb_pool
= dmam_pool_create("crqb_q", dev
, MV_CRQB_Q_SZ
,
4006 if (!hpriv
->crqb_pool
)
4009 hpriv
->crpb_pool
= dmam_pool_create("crpb_q", dev
, MV_CRPB_Q_SZ
,
4011 if (!hpriv
->crpb_pool
)
4014 hpriv
->sg_tbl_pool
= dmam_pool_create("sg_tbl", dev
, MV_SG_TBL_SZ
,
4016 if (!hpriv
->sg_tbl_pool
)
4022 static void mv_conf_mbus_windows(struct mv_host_priv
*hpriv
,
4023 const struct mbus_dram_target_info
*dram
)
4027 for (i
= 0; i
< 4; i
++) {
4028 writel(0, hpriv
->base
+ WINDOW_CTRL(i
));
4029 writel(0, hpriv
->base
+ WINDOW_BASE(i
));
4032 for (i
= 0; i
< dram
->num_cs
; i
++) {
4033 const struct mbus_dram_window
*cs
= dram
->cs
+ i
;
4035 writel(((cs
->size
- 1) & 0xffff0000) |
4036 (cs
->mbus_attr
<< 8) |
4037 (dram
->mbus_dram_target_id
<< 4) | 1,
4038 hpriv
->base
+ WINDOW_CTRL(i
));
4039 writel(cs
->base
, hpriv
->base
+ WINDOW_BASE(i
));
4044 * mv_platform_probe - handle a positive probe of an soc Marvell
4046 * @pdev: platform device found
4049 * Inherited from caller.
4051 static int mv_platform_probe(struct platform_device
*pdev
)
4053 const struct mv_sata_platform_data
*mv_platform_data
;
4054 const struct mbus_dram_target_info
*dram
;
4055 const struct ata_port_info
*ppi
[] =
4056 { &mv_port_info
[chip_soc
], NULL
};
4057 struct ata_host
*host
;
4058 struct mv_host_priv
*hpriv
;
4059 struct resource
*res
;
4060 int n_ports
= 0, irq
= 0;
4064 ata_print_version_once(&pdev
->dev
, DRV_VERSION
);
4067 * Simple resource validation ..
4069 if (unlikely(pdev
->num_resources
!= 2)) {
4070 dev_err(&pdev
->dev
, "invalid number of resources\n");
4075 * Get the register base first
4077 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
4082 if (pdev
->dev
.of_node
) {
4083 of_property_read_u32(pdev
->dev
.of_node
, "nr-ports", &n_ports
);
4084 irq
= irq_of_parse_and_map(pdev
->dev
.of_node
, 0);
4086 mv_platform_data
= dev_get_platdata(&pdev
->dev
);
4087 n_ports
= mv_platform_data
->n_ports
;
4088 irq
= platform_get_irq(pdev
, 0);
4091 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, n_ports
);
4092 hpriv
= devm_kzalloc(&pdev
->dev
, sizeof(*hpriv
), GFP_KERNEL
);
4094 if (!host
|| !hpriv
)
4096 hpriv
->port_clks
= devm_kzalloc(&pdev
->dev
,
4097 sizeof(struct clk
*) * n_ports
,
4099 if (!hpriv
->port_clks
)
4101 hpriv
->port_phys
= devm_kzalloc(&pdev
->dev
,
4102 sizeof(struct phy
*) * n_ports
,
4104 if (!hpriv
->port_phys
)
4106 host
->private_data
= hpriv
;
4107 hpriv
->board_idx
= chip_soc
;
4110 hpriv
->base
= devm_ioremap(&pdev
->dev
, res
->start
,
4111 resource_size(res
));
4112 hpriv
->base
-= SATAHC0_REG_BASE
;
4114 hpriv
->clk
= clk_get(&pdev
->dev
, NULL
);
4115 if (IS_ERR(hpriv
->clk
))
4116 dev_notice(&pdev
->dev
, "cannot get optional clkdev\n");
4118 clk_prepare_enable(hpriv
->clk
);
4120 for (port
= 0; port
< n_ports
; port
++) {
4121 char port_number
[16];
4122 sprintf(port_number
, "%d", port
);
4123 hpriv
->port_clks
[port
] = clk_get(&pdev
->dev
, port_number
);
4124 if (!IS_ERR(hpriv
->port_clks
[port
]))
4125 clk_prepare_enable(hpriv
->port_clks
[port
]);
4127 sprintf(port_number
, "port%d", port
);
4128 hpriv
->port_phys
[port
] = devm_phy_optional_get(&pdev
->dev
,
4130 if (IS_ERR(hpriv
->port_phys
[port
])) {
4131 rc
= PTR_ERR(hpriv
->port_phys
[port
]);
4132 hpriv
->port_phys
[port
] = NULL
;
4133 if (rc
!= -EPROBE_DEFER
)
4134 dev_warn(&pdev
->dev
, "error getting phy %d", rc
);
4136 /* Cleanup only the initialized ports */
4137 hpriv
->n_ports
= port
;
4140 phy_power_on(hpriv
->port_phys
[port
]);
4143 /* All the ports have been initialized */
4144 hpriv
->n_ports
= n_ports
;
4147 * (Re-)program MBUS remapping windows if we are asked to.
4149 dram
= mv_mbus_dram_info();
4151 mv_conf_mbus_windows(hpriv
, dram
);
4153 rc
= mv_create_dma_pools(hpriv
, &pdev
->dev
);
4158 * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
4159 * updated in the LP_PHY_CTL register.
4161 if (pdev
->dev
.of_node
&&
4162 of_device_is_compatible(pdev
->dev
.of_node
,
4163 "marvell,armada-370-sata"))
4164 hpriv
->hp_flags
|= MV_HP_FIX_LP_PHY_CTL
;
4166 /* initialize adapter */
4167 rc
= mv_init_host(host
);
4171 dev_info(&pdev
->dev
, "slots %u ports %d\n",
4172 (unsigned)MV_MAX_Q_DEPTH
, host
->n_ports
);
4174 rc
= ata_host_activate(host
, irq
, mv_interrupt
, IRQF_SHARED
, &mv6_sht
);
4179 if (!IS_ERR(hpriv
->clk
)) {
4180 clk_disable_unprepare(hpriv
->clk
);
4181 clk_put(hpriv
->clk
);
4183 for (port
= 0; port
< hpriv
->n_ports
; port
++) {
4184 if (!IS_ERR(hpriv
->port_clks
[port
])) {
4185 clk_disable_unprepare(hpriv
->port_clks
[port
]);
4186 clk_put(hpriv
->port_clks
[port
]);
4188 if (hpriv
->port_phys
[port
])
4189 phy_power_off(hpriv
->port_phys
[port
]);
4197 * mv_platform_remove - unplug a platform interface
4198 * @pdev: platform device
4200 * A platform bus SATA device has been unplugged. Perform the needed
4201 * cleanup. Also called on module unload for any active devices.
4203 static int mv_platform_remove(struct platform_device
*pdev
)
4205 struct ata_host
*host
= platform_get_drvdata(pdev
);
4206 struct mv_host_priv
*hpriv
= host
->private_data
;
4208 ata_host_detach(host
);
4210 if (!IS_ERR(hpriv
->clk
)) {
4211 clk_disable_unprepare(hpriv
->clk
);
4212 clk_put(hpriv
->clk
);
4214 for (port
= 0; port
< host
->n_ports
; port
++) {
4215 if (!IS_ERR(hpriv
->port_clks
[port
])) {
4216 clk_disable_unprepare(hpriv
->port_clks
[port
]);
4217 clk_put(hpriv
->port_clks
[port
]);
4219 if (hpriv
->port_phys
[port
])
4220 phy_power_off(hpriv
->port_phys
[port
]);
4226 static int mv_platform_suspend(struct platform_device
*pdev
, pm_message_t state
)
4228 struct ata_host
*host
= platform_get_drvdata(pdev
);
4230 return ata_host_suspend(host
, state
);
4235 static int mv_platform_resume(struct platform_device
*pdev
)
4237 struct ata_host
*host
= platform_get_drvdata(pdev
);
4238 const struct mbus_dram_target_info
*dram
;
4242 struct mv_host_priv
*hpriv
= host
->private_data
;
4245 * (Re-)program MBUS remapping windows if we are asked to.
4247 dram
= mv_mbus_dram_info();
4249 mv_conf_mbus_windows(hpriv
, dram
);
4251 /* initialize adapter */
4252 ret
= mv_init_host(host
);
4254 printk(KERN_ERR DRV_NAME
": Error during HW init\n");
4257 ata_host_resume(host
);
4263 #define mv_platform_suspend NULL
4264 #define mv_platform_resume NULL
4268 static struct of_device_id mv_sata_dt_ids
[] = {
4269 { .compatible
= "marvell,armada-370-sata", },
4270 { .compatible
= "marvell,orion-sata", },
4273 MODULE_DEVICE_TABLE(of
, mv_sata_dt_ids
);
4276 static struct platform_driver mv_platform_driver
= {
4277 .probe
= mv_platform_probe
,
4278 .remove
= mv_platform_remove
,
4279 .suspend
= mv_platform_suspend
,
4280 .resume
= mv_platform_resume
,
4283 .owner
= THIS_MODULE
,
4284 .of_match_table
= of_match_ptr(mv_sata_dt_ids
),
4290 static int mv_pci_init_one(struct pci_dev
*pdev
,
4291 const struct pci_device_id
*ent
);
4293 static int mv_pci_device_resume(struct pci_dev
*pdev
);
4297 static struct pci_driver mv_pci_driver
= {
4299 .id_table
= mv_pci_tbl
,
4300 .probe
= mv_pci_init_one
,
4301 .remove
= ata_pci_remove_one
,
4303 .suspend
= ata_pci_device_suspend
,
4304 .resume
= mv_pci_device_resume
,
4309 /* move to PCI layer or libata core? */
4310 static int pci_go_64(struct pci_dev
*pdev
)
4314 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
4315 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
4317 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
4320 "64-bit DMA enable failed\n");
4325 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
4327 dev_err(&pdev
->dev
, "32-bit DMA enable failed\n");
4330 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
4333 "32-bit consistent DMA enable failed\n");
4342 * mv_print_info - Dump key info to kernel log for perusal.
4343 * @host: ATA host to print info about
4345 * FIXME: complete this.
4348 * Inherited from caller.
4350 static void mv_print_info(struct ata_host
*host
)
4352 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
4353 struct mv_host_priv
*hpriv
= host
->private_data
;
4355 const char *scc_s
, *gen
;
4357 /* Use this to determine the HW stepping of the chip so we know
4358 * what errata to workaround
4360 pci_read_config_byte(pdev
, PCI_CLASS_DEVICE
, &scc
);
4363 else if (scc
== 0x01)
4368 if (IS_GEN_I(hpriv
))
4370 else if (IS_GEN_II(hpriv
))
4372 else if (IS_GEN_IIE(hpriv
))
4377 dev_info(&pdev
->dev
, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4378 gen
, (unsigned)MV_MAX_Q_DEPTH
, host
->n_ports
,
4379 scc_s
, (MV_HP_FLAG_MSI
& hpriv
->hp_flags
) ? "MSI" : "INTx");
4383 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
4384 * @pdev: PCI device found
4385 * @ent: PCI device ID entry for the matched host
4388 * Inherited from caller.
4390 static int mv_pci_init_one(struct pci_dev
*pdev
,
4391 const struct pci_device_id
*ent
)
4393 unsigned int board_idx
= (unsigned int)ent
->driver_data
;
4394 const struct ata_port_info
*ppi
[] = { &mv_port_info
[board_idx
], NULL
};
4395 struct ata_host
*host
;
4396 struct mv_host_priv
*hpriv
;
4397 int n_ports
, port
, rc
;
4399 ata_print_version_once(&pdev
->dev
, DRV_VERSION
);
4402 n_ports
= mv_get_hc_count(ppi
[0]->flags
) * MV_PORTS_PER_HC
;
4404 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, n_ports
);
4405 hpriv
= devm_kzalloc(&pdev
->dev
, sizeof(*hpriv
), GFP_KERNEL
);
4406 if (!host
|| !hpriv
)
4408 host
->private_data
= hpriv
;
4409 hpriv
->n_ports
= n_ports
;
4410 hpriv
->board_idx
= board_idx
;
4412 /* acquire resources */
4413 rc
= pcim_enable_device(pdev
);
4417 rc
= pcim_iomap_regions(pdev
, 1 << MV_PRIMARY_BAR
, DRV_NAME
);
4419 pcim_pin_device(pdev
);
4422 host
->iomap
= pcim_iomap_table(pdev
);
4423 hpriv
->base
= host
->iomap
[MV_PRIMARY_BAR
];
4425 rc
= pci_go_64(pdev
);
4429 rc
= mv_create_dma_pools(hpriv
, &pdev
->dev
);
4433 for (port
= 0; port
< host
->n_ports
; port
++) {
4434 struct ata_port
*ap
= host
->ports
[port
];
4435 void __iomem
*port_mmio
= mv_port_base(hpriv
->base
, port
);
4436 unsigned int offset
= port_mmio
- hpriv
->base
;
4438 ata_port_pbar_desc(ap
, MV_PRIMARY_BAR
, -1, "mmio");
4439 ata_port_pbar_desc(ap
, MV_PRIMARY_BAR
, offset
, "port");
4442 /* initialize adapter */
4443 rc
= mv_init_host(host
);
4447 /* Enable message-switched interrupts, if requested */
4448 if (msi
&& pci_enable_msi(pdev
) == 0)
4449 hpriv
->hp_flags
|= MV_HP_FLAG_MSI
;
4451 mv_dump_pci_cfg(pdev
, 0x68);
4452 mv_print_info(host
);
4454 pci_set_master(pdev
);
4455 pci_try_set_mwi(pdev
);
4456 return ata_host_activate(host
, pdev
->irq
, mv_interrupt
, IRQF_SHARED
,
4457 IS_GEN_I(hpriv
) ? &mv5_sht
: &mv6_sht
);
4461 static int mv_pci_device_resume(struct pci_dev
*pdev
)
4463 struct ata_host
*host
= pci_get_drvdata(pdev
);
4466 rc
= ata_pci_device_do_resume(pdev
);
4470 /* initialize adapter */
4471 rc
= mv_init_host(host
);
4475 ata_host_resume(host
);
4482 static int __init
mv_init(void)
4486 rc
= pci_register_driver(&mv_pci_driver
);
4490 rc
= platform_driver_register(&mv_platform_driver
);
4494 pci_unregister_driver(&mv_pci_driver
);
4499 static void __exit
mv_exit(void)
4502 pci_unregister_driver(&mv_pci_driver
);
4504 platform_driver_unregister(&mv_platform_driver
);
4507 MODULE_AUTHOR("Brett Russ");
4508 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4509 MODULE_LICENSE("GPL");
4510 MODULE_DEVICE_TABLE(pci
, mv_pci_tbl
);
4511 MODULE_VERSION(DRV_VERSION
);
4512 MODULE_ALIAS("platform:" DRV_NAME
);
4514 module_init(mv_init
);
4515 module_exit(mv_exit
);