4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
43 * dcache->d_inode->i_lock protects:
44 * - i_dentry, d_alias, d_inode of aliases
45 * dcache_hash_bucket lock protects:
46 * - the dcache hash table
47 * s_anon bl list spinlock protects:
48 * - the s_anon list (see __d_drop)
49 * dcache_lru_lock protects:
50 * - the dcache lru lists and counters
57 * - d_parent and d_subdirs
58 * - childrens' d_child and d_parent
62 * dentry->d_inode->i_lock
65 * dcache_hash_bucket lock
68 * If there is an ancestor relationship:
69 * dentry->d_parent->...->d_parent->d_lock
71 * dentry->d_parent->d_lock
74 * If no ancestor relationship:
75 * if (dentry1 < dentry2)
79 int sysctl_vfs_cache_pressure __read_mostly
= 100;
80 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
82 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lru_lock
);
83 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
85 EXPORT_SYMBOL(rename_lock
);
87 static struct kmem_cache
*dentry_cache __read_mostly
;
90 * This is the single most critical data structure when it comes
91 * to the dcache: the hashtable for lookups. Somebody should try
92 * to make this good - I've just made it work.
94 * This hash-function tries to avoid losing too many bits of hash
95 * information, yet avoid using a prime hash-size or similar.
97 #define D_HASHBITS d_hash_shift
98 #define D_HASHMASK d_hash_mask
100 static unsigned int d_hash_mask __read_mostly
;
101 static unsigned int d_hash_shift __read_mostly
;
103 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
105 static inline struct hlist_bl_head
*d_hash(struct dentry
*parent
,
108 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
109 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
110 return dentry_hashtable
+ (hash
& D_HASHMASK
);
113 /* Statistics gathering. */
114 struct dentry_stat_t dentry_stat
= {
118 static DEFINE_PER_CPU(unsigned int, nr_dentry
);
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121 static int get_nr_dentry(void)
125 for_each_possible_cpu(i
)
126 sum
+= per_cpu(nr_dentry
, i
);
127 return sum
< 0 ? 0 : sum
;
130 int proc_nr_dentry(ctl_table
*table
, int write
, void __user
*buffer
,
131 size_t *lenp
, loff_t
*ppos
)
133 dentry_stat
.nr_dentry
= get_nr_dentry();
134 return proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
138 static void __d_free(struct rcu_head
*head
)
140 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
142 WARN_ON(!list_empty(&dentry
->d_alias
));
143 if (dname_external(dentry
))
144 kfree(dentry
->d_name
.name
);
145 kmem_cache_free(dentry_cache
, dentry
);
151 static void d_free(struct dentry
*dentry
)
153 BUG_ON(dentry
->d_count
);
154 this_cpu_dec(nr_dentry
);
155 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
156 dentry
->d_op
->d_release(dentry
);
158 /* if dentry was never visible to RCU, immediate free is OK */
159 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
160 __d_free(&dentry
->d_u
.d_rcu
);
162 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
166 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
167 * @dentry: the target dentry
168 * After this call, in-progress rcu-walk path lookup will fail. This
169 * should be called after unhashing, and after changing d_inode (if
170 * the dentry has not already been unhashed).
172 static inline void dentry_rcuwalk_barrier(struct dentry
*dentry
)
174 assert_spin_locked(&dentry
->d_lock
);
175 /* Go through a barrier */
176 write_seqcount_barrier(&dentry
->d_seq
);
180 * Release the dentry's inode, using the filesystem
181 * d_iput() operation if defined. Dentry has no refcount
184 static void dentry_iput(struct dentry
* dentry
)
185 __releases(dentry
->d_lock
)
186 __releases(dentry
->d_inode
->i_lock
)
188 struct inode
*inode
= dentry
->d_inode
;
190 dentry
->d_inode
= NULL
;
191 list_del_init(&dentry
->d_alias
);
192 spin_unlock(&dentry
->d_lock
);
193 spin_unlock(&inode
->i_lock
);
195 fsnotify_inoderemove(inode
);
196 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
197 dentry
->d_op
->d_iput(dentry
, inode
);
201 spin_unlock(&dentry
->d_lock
);
206 * Release the dentry's inode, using the filesystem
207 * d_iput() operation if defined. dentry remains in-use.
209 static void dentry_unlink_inode(struct dentry
* dentry
)
210 __releases(dentry
->d_lock
)
211 __releases(dentry
->d_inode
->i_lock
)
213 struct inode
*inode
= dentry
->d_inode
;
214 dentry
->d_inode
= NULL
;
215 list_del_init(&dentry
->d_alias
);
216 dentry_rcuwalk_barrier(dentry
);
217 spin_unlock(&dentry
->d_lock
);
218 spin_unlock(&inode
->i_lock
);
220 fsnotify_inoderemove(inode
);
221 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
222 dentry
->d_op
->d_iput(dentry
, inode
);
228 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
230 static void dentry_lru_add(struct dentry
*dentry
)
232 if (list_empty(&dentry
->d_lru
)) {
233 spin_lock(&dcache_lru_lock
);
234 list_add(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
235 dentry
->d_sb
->s_nr_dentry_unused
++;
236 dentry_stat
.nr_unused
++;
237 spin_unlock(&dcache_lru_lock
);
241 static void __dentry_lru_del(struct dentry
*dentry
)
243 list_del_init(&dentry
->d_lru
);
244 dentry
->d_flags
&= ~DCACHE_SHRINK_LIST
;
245 dentry
->d_sb
->s_nr_dentry_unused
--;
246 dentry_stat
.nr_unused
--;
249 static void dentry_lru_del(struct dentry
*dentry
)
251 if (!list_empty(&dentry
->d_lru
)) {
252 spin_lock(&dcache_lru_lock
);
253 __dentry_lru_del(dentry
);
254 spin_unlock(&dcache_lru_lock
);
258 static void dentry_lru_move_tail(struct dentry
*dentry
)
260 spin_lock(&dcache_lru_lock
);
261 if (list_empty(&dentry
->d_lru
)) {
262 list_add_tail(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
263 dentry
->d_sb
->s_nr_dentry_unused
++;
264 dentry_stat
.nr_unused
++;
266 list_move_tail(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
268 spin_unlock(&dcache_lru_lock
);
272 * d_kill - kill dentry and return parent
273 * @dentry: dentry to kill
274 * @parent: parent dentry
276 * The dentry must already be unhashed and removed from the LRU.
278 * If this is the root of the dentry tree, return NULL.
280 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
283 static struct dentry
*d_kill(struct dentry
*dentry
, struct dentry
*parent
)
284 __releases(dentry
->d_lock
)
285 __releases(parent
->d_lock
)
286 __releases(dentry
->d_inode
->i_lock
)
288 list_del(&dentry
->d_u
.d_child
);
290 * Inform try_to_ascend() that we are no longer attached to the
293 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
295 spin_unlock(&parent
->d_lock
);
298 * dentry_iput drops the locks, at which point nobody (except
299 * transient RCU lookups) can reach this dentry.
306 * d_drop - drop a dentry
307 * @dentry: dentry to drop
309 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
310 * be found through a VFS lookup any more. Note that this is different from
311 * deleting the dentry - d_delete will try to mark the dentry negative if
312 * possible, giving a successful _negative_ lookup, while d_drop will
313 * just make the cache lookup fail.
315 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
316 * reason (NFS timeouts or autofs deletes).
318 * __d_drop requires dentry->d_lock.
320 void __d_drop(struct dentry
*dentry
)
322 if (!d_unhashed(dentry
)) {
323 struct hlist_bl_head
*b
;
324 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
325 b
= &dentry
->d_sb
->s_anon
;
327 b
= d_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
330 __hlist_bl_del(&dentry
->d_hash
);
331 dentry
->d_hash
.pprev
= NULL
;
334 dentry_rcuwalk_barrier(dentry
);
337 EXPORT_SYMBOL(__d_drop
);
339 void d_drop(struct dentry
*dentry
)
341 spin_lock(&dentry
->d_lock
);
343 spin_unlock(&dentry
->d_lock
);
345 EXPORT_SYMBOL(d_drop
);
348 * Finish off a dentry we've decided to kill.
349 * dentry->d_lock must be held, returns with it unlocked.
350 * If ref is non-zero, then decrement the refcount too.
351 * Returns dentry requiring refcount drop, or NULL if we're done.
353 static inline struct dentry
*dentry_kill(struct dentry
*dentry
, int ref
)
354 __releases(dentry
->d_lock
)
357 struct dentry
*parent
;
359 inode
= dentry
->d_inode
;
360 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
362 spin_unlock(&dentry
->d_lock
);
364 return dentry
; /* try again with same dentry */
369 parent
= dentry
->d_parent
;
370 if (parent
&& !spin_trylock(&parent
->d_lock
)) {
372 spin_unlock(&inode
->i_lock
);
378 /* if dentry was on the d_lru list delete it from there */
379 dentry_lru_del(dentry
);
380 /* if it was on the hash then remove it */
382 return d_kill(dentry
, parent
);
388 * This is complicated by the fact that we do not want to put
389 * dentries that are no longer on any hash chain on the unused
390 * list: we'd much rather just get rid of them immediately.
392 * However, that implies that we have to traverse the dentry
393 * tree upwards to the parents which might _also_ now be
394 * scheduled for deletion (it may have been only waiting for
395 * its last child to go away).
397 * This tail recursion is done by hand as we don't want to depend
398 * on the compiler to always get this right (gcc generally doesn't).
399 * Real recursion would eat up our stack space.
403 * dput - release a dentry
404 * @dentry: dentry to release
406 * Release a dentry. This will drop the usage count and if appropriate
407 * call the dentry unlink method as well as removing it from the queues and
408 * releasing its resources. If the parent dentries were scheduled for release
409 * they too may now get deleted.
411 void dput(struct dentry
*dentry
)
417 if (dentry
->d_count
== 1)
419 spin_lock(&dentry
->d_lock
);
420 BUG_ON(!dentry
->d_count
);
421 if (dentry
->d_count
> 1) {
423 spin_unlock(&dentry
->d_lock
);
427 if (dentry
->d_flags
& DCACHE_OP_DELETE
) {
428 if (dentry
->d_op
->d_delete(dentry
))
432 /* Unreachable? Get rid of it */
433 if (d_unhashed(dentry
))
436 /* Otherwise leave it cached and ensure it's on the LRU */
437 dentry
->d_flags
|= DCACHE_REFERENCED
;
438 dentry_lru_add(dentry
);
441 spin_unlock(&dentry
->d_lock
);
445 dentry
= dentry_kill(dentry
, 1);
452 * d_invalidate - invalidate a dentry
453 * @dentry: dentry to invalidate
455 * Try to invalidate the dentry if it turns out to be
456 * possible. If there are other dentries that can be
457 * reached through this one we can't delete it and we
458 * return -EBUSY. On success we return 0.
463 int d_invalidate(struct dentry
* dentry
)
466 * If it's already been dropped, return OK.
468 spin_lock(&dentry
->d_lock
);
469 if (d_unhashed(dentry
)) {
470 spin_unlock(&dentry
->d_lock
);
474 * Check whether to do a partial shrink_dcache
475 * to get rid of unused child entries.
477 if (!list_empty(&dentry
->d_subdirs
)) {
478 spin_unlock(&dentry
->d_lock
);
479 shrink_dcache_parent(dentry
);
480 spin_lock(&dentry
->d_lock
);
484 * Somebody else still using it?
486 * If it's a directory, we can't drop it
487 * for fear of somebody re-populating it
488 * with children (even though dropping it
489 * would make it unreachable from the root,
490 * we might still populate it if it was a
491 * working directory or similar).
493 if (dentry
->d_count
> 1) {
494 if (dentry
->d_inode
&& S_ISDIR(dentry
->d_inode
->i_mode
)) {
495 spin_unlock(&dentry
->d_lock
);
501 spin_unlock(&dentry
->d_lock
);
504 EXPORT_SYMBOL(d_invalidate
);
506 /* This must be called with d_lock held */
507 static inline void __dget_dlock(struct dentry
*dentry
)
512 static inline void __dget(struct dentry
*dentry
)
514 spin_lock(&dentry
->d_lock
);
515 __dget_dlock(dentry
);
516 spin_unlock(&dentry
->d_lock
);
519 struct dentry
*dget_parent(struct dentry
*dentry
)
525 * Don't need rcu_dereference because we re-check it was correct under
529 ret
= dentry
->d_parent
;
534 spin_lock(&ret
->d_lock
);
535 if (unlikely(ret
!= dentry
->d_parent
)) {
536 spin_unlock(&ret
->d_lock
);
541 BUG_ON(!ret
->d_count
);
543 spin_unlock(&ret
->d_lock
);
547 EXPORT_SYMBOL(dget_parent
);
550 * d_find_alias - grab a hashed alias of inode
551 * @inode: inode in question
552 * @want_discon: flag, used by d_splice_alias, to request
553 * that only a DISCONNECTED alias be returned.
555 * If inode has a hashed alias, or is a directory and has any alias,
556 * acquire the reference to alias and return it. Otherwise return NULL.
557 * Notice that if inode is a directory there can be only one alias and
558 * it can be unhashed only if it has no children, or if it is the root
561 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
562 * any other hashed alias over that one unless @want_discon is set,
563 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
565 static struct dentry
*__d_find_alias(struct inode
*inode
, int want_discon
)
567 struct dentry
*alias
, *discon_alias
;
571 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
572 spin_lock(&alias
->d_lock
);
573 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
574 if (IS_ROOT(alias
) &&
575 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
576 discon_alias
= alias
;
577 } else if (!want_discon
) {
579 spin_unlock(&alias
->d_lock
);
583 spin_unlock(&alias
->d_lock
);
586 alias
= discon_alias
;
587 spin_lock(&alias
->d_lock
);
588 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
589 if (IS_ROOT(alias
) &&
590 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
592 spin_unlock(&alias
->d_lock
);
596 spin_unlock(&alias
->d_lock
);
602 struct dentry
*d_find_alias(struct inode
*inode
)
604 struct dentry
*de
= NULL
;
606 if (!list_empty(&inode
->i_dentry
)) {
607 spin_lock(&inode
->i_lock
);
608 de
= __d_find_alias(inode
, 0);
609 spin_unlock(&inode
->i_lock
);
613 EXPORT_SYMBOL(d_find_alias
);
616 * Try to kill dentries associated with this inode.
617 * WARNING: you must own a reference to inode.
619 void d_prune_aliases(struct inode
*inode
)
621 struct dentry
*dentry
;
623 spin_lock(&inode
->i_lock
);
624 list_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
625 spin_lock(&dentry
->d_lock
);
626 if (!dentry
->d_count
) {
627 __dget_dlock(dentry
);
629 spin_unlock(&dentry
->d_lock
);
630 spin_unlock(&inode
->i_lock
);
634 spin_unlock(&dentry
->d_lock
);
636 spin_unlock(&inode
->i_lock
);
638 EXPORT_SYMBOL(d_prune_aliases
);
641 * Try to throw away a dentry - free the inode, dput the parent.
642 * Requires dentry->d_lock is held, and dentry->d_count == 0.
643 * Releases dentry->d_lock.
645 * This may fail if locks cannot be acquired no problem, just try again.
647 static void try_prune_one_dentry(struct dentry
*dentry
)
648 __releases(dentry
->d_lock
)
650 struct dentry
*parent
;
652 parent
= dentry_kill(dentry
, 0);
654 * If dentry_kill returns NULL, we have nothing more to do.
655 * if it returns the same dentry, trylocks failed. In either
656 * case, just loop again.
658 * Otherwise, we need to prune ancestors too. This is necessary
659 * to prevent quadratic behavior of shrink_dcache_parent(), but
660 * is also expected to be beneficial in reducing dentry cache
665 if (parent
== dentry
)
668 /* Prune ancestors. */
671 spin_lock(&dentry
->d_lock
);
672 if (dentry
->d_count
> 1) {
674 spin_unlock(&dentry
->d_lock
);
677 dentry
= dentry_kill(dentry
, 1);
681 static void shrink_dentry_list(struct list_head
*list
)
683 struct dentry
*dentry
;
687 dentry
= list_entry_rcu(list
->prev
, struct dentry
, d_lru
);
688 if (&dentry
->d_lru
== list
)
690 spin_lock(&dentry
->d_lock
);
691 if (dentry
!= list_entry(list
->prev
, struct dentry
, d_lru
)) {
692 spin_unlock(&dentry
->d_lock
);
697 * We found an inuse dentry which was not removed from
698 * the LRU because of laziness during lookup. Do not free
699 * it - just keep it off the LRU list.
701 if (dentry
->d_count
) {
702 dentry_lru_del(dentry
);
703 spin_unlock(&dentry
->d_lock
);
709 try_prune_one_dentry(dentry
);
717 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
718 * @sb: superblock to shrink dentry LRU.
719 * @count: number of entries to prune
720 * @flags: flags to control the dentry processing
722 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
724 static void __shrink_dcache_sb(struct super_block
*sb
, int *count
, int flags
)
726 /* called from prune_dcache() and shrink_dcache_parent() */
727 struct dentry
*dentry
;
728 LIST_HEAD(referenced
);
733 spin_lock(&dcache_lru_lock
);
734 while (!list_empty(&sb
->s_dentry_lru
)) {
735 dentry
= list_entry(sb
->s_dentry_lru
.prev
,
736 struct dentry
, d_lru
);
737 BUG_ON(dentry
->d_sb
!= sb
);
739 if (!spin_trylock(&dentry
->d_lock
)) {
740 spin_unlock(&dcache_lru_lock
);
746 * If we are honouring the DCACHE_REFERENCED flag and the
747 * dentry has this flag set, don't free it. Clear the flag
748 * and put it back on the LRU.
750 if (flags
& DCACHE_REFERENCED
&&
751 dentry
->d_flags
& DCACHE_REFERENCED
) {
752 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
753 list_move(&dentry
->d_lru
, &referenced
);
754 spin_unlock(&dentry
->d_lock
);
756 list_move_tail(&dentry
->d_lru
, &tmp
);
757 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
758 spin_unlock(&dentry
->d_lock
);
762 cond_resched_lock(&dcache_lru_lock
);
764 if (!list_empty(&referenced
))
765 list_splice(&referenced
, &sb
->s_dentry_lru
);
766 spin_unlock(&dcache_lru_lock
);
768 shrink_dentry_list(&tmp
);
774 * prune_dcache - shrink the dcache
775 * @count: number of entries to try to free
777 * Shrink the dcache. This is done when we need more memory, or simply when we
778 * need to unmount something (at which point we need to unuse all dentries).
780 * This function may fail to free any resources if all the dentries are in use.
782 static void prune_dcache(int count
)
784 struct super_block
*sb
, *p
= NULL
;
786 int unused
= dentry_stat
.nr_unused
;
790 if (unused
== 0 || count
== 0)
795 prune_ratio
= unused
/ count
;
797 list_for_each_entry(sb
, &super_blocks
, s_list
) {
798 if (list_empty(&sb
->s_instances
))
800 if (sb
->s_nr_dentry_unused
== 0)
803 /* Now, we reclaim unused dentrins with fairness.
804 * We reclaim them same percentage from each superblock.
805 * We calculate number of dentries to scan on this sb
806 * as follows, but the implementation is arranged to avoid
808 * number of dentries to scan on this sb =
809 * count * (number of dentries on this sb /
810 * number of dentries in the machine)
812 spin_unlock(&sb_lock
);
813 if (prune_ratio
!= 1)
814 w_count
= (sb
->s_nr_dentry_unused
/ prune_ratio
) + 1;
816 w_count
= sb
->s_nr_dentry_unused
;
819 * We need to be sure this filesystem isn't being unmounted,
820 * otherwise we could race with generic_shutdown_super(), and
821 * end up holding a reference to an inode while the filesystem
822 * is unmounted. So we try to get s_umount, and make sure
825 if (down_read_trylock(&sb
->s_umount
)) {
826 if ((sb
->s_root
!= NULL
) &&
827 (!list_empty(&sb
->s_dentry_lru
))) {
828 __shrink_dcache_sb(sb
, &w_count
,
832 up_read(&sb
->s_umount
);
839 /* more work left to do? */
845 spin_unlock(&sb_lock
);
849 * shrink_dcache_sb - shrink dcache for a superblock
852 * Shrink the dcache for the specified super block. This is used to free
853 * the dcache before unmounting a file system.
855 void shrink_dcache_sb(struct super_block
*sb
)
859 spin_lock(&dcache_lru_lock
);
860 while (!list_empty(&sb
->s_dentry_lru
)) {
861 list_splice_init(&sb
->s_dentry_lru
, &tmp
);
862 spin_unlock(&dcache_lru_lock
);
863 shrink_dentry_list(&tmp
);
864 spin_lock(&dcache_lru_lock
);
866 spin_unlock(&dcache_lru_lock
);
868 EXPORT_SYMBOL(shrink_dcache_sb
);
871 * destroy a single subtree of dentries for unmount
872 * - see the comments on shrink_dcache_for_umount() for a description of the
875 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
877 struct dentry
*parent
;
878 unsigned detached
= 0;
880 BUG_ON(!IS_ROOT(dentry
));
882 /* detach this root from the system */
883 spin_lock(&dentry
->d_lock
);
884 dentry_lru_del(dentry
);
886 spin_unlock(&dentry
->d_lock
);
889 /* descend to the first leaf in the current subtree */
890 while (!list_empty(&dentry
->d_subdirs
)) {
893 /* this is a branch with children - detach all of them
894 * from the system in one go */
895 spin_lock(&dentry
->d_lock
);
896 list_for_each_entry(loop
, &dentry
->d_subdirs
,
898 spin_lock_nested(&loop
->d_lock
,
899 DENTRY_D_LOCK_NESTED
);
900 dentry_lru_del(loop
);
902 spin_unlock(&loop
->d_lock
);
904 spin_unlock(&dentry
->d_lock
);
906 /* move to the first child */
907 dentry
= list_entry(dentry
->d_subdirs
.next
,
908 struct dentry
, d_u
.d_child
);
911 /* consume the dentries from this leaf up through its parents
912 * until we find one with children or run out altogether */
916 if (dentry
->d_count
!= 0) {
918 "BUG: Dentry %p{i=%lx,n=%s}"
920 " [unmount of %s %s]\n",
923 dentry
->d_inode
->i_ino
: 0UL,
926 dentry
->d_sb
->s_type
->name
,
931 if (IS_ROOT(dentry
)) {
933 list_del(&dentry
->d_u
.d_child
);
935 parent
= dentry
->d_parent
;
936 spin_lock(&parent
->d_lock
);
938 list_del(&dentry
->d_u
.d_child
);
939 spin_unlock(&parent
->d_lock
);
944 inode
= dentry
->d_inode
;
946 dentry
->d_inode
= NULL
;
947 list_del_init(&dentry
->d_alias
);
948 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
949 dentry
->d_op
->d_iput(dentry
, inode
);
956 /* finished when we fall off the top of the tree,
957 * otherwise we ascend to the parent and move to the
958 * next sibling if there is one */
962 } while (list_empty(&dentry
->d_subdirs
));
964 dentry
= list_entry(dentry
->d_subdirs
.next
,
965 struct dentry
, d_u
.d_child
);
970 * destroy the dentries attached to a superblock on unmounting
971 * - we don't need to use dentry->d_lock because:
972 * - the superblock is detached from all mountings and open files, so the
973 * dentry trees will not be rearranged by the VFS
974 * - s_umount is write-locked, so the memory pressure shrinker will ignore
975 * any dentries belonging to this superblock that it comes across
976 * - the filesystem itself is no longer permitted to rearrange the dentries
979 void shrink_dcache_for_umount(struct super_block
*sb
)
981 struct dentry
*dentry
;
983 if (down_read_trylock(&sb
->s_umount
))
988 spin_lock(&dentry
->d_lock
);
990 spin_unlock(&dentry
->d_lock
);
991 shrink_dcache_for_umount_subtree(dentry
);
993 while (!hlist_bl_empty(&sb
->s_anon
)) {
994 dentry
= hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
);
995 shrink_dcache_for_umount_subtree(dentry
);
1000 * This tries to ascend one level of parenthood, but
1001 * we can race with renaming, so we need to re-check
1002 * the parenthood after dropping the lock and check
1003 * that the sequence number still matches.
1005 static struct dentry
*try_to_ascend(struct dentry
*old
, int locked
, unsigned seq
)
1007 struct dentry
*new = old
->d_parent
;
1010 spin_unlock(&old
->d_lock
);
1011 spin_lock(&new->d_lock
);
1014 * might go back up the wrong parent if we have had a rename
1017 if (new != old
->d_parent
||
1018 (old
->d_flags
& DCACHE_DENTRY_KILLED
) ||
1019 (!locked
&& read_seqretry(&rename_lock
, seq
))) {
1020 spin_unlock(&new->d_lock
);
1029 * Search for at least 1 mount point in the dentry's subdirs.
1030 * We descend to the next level whenever the d_subdirs
1031 * list is non-empty and continue searching.
1035 * have_submounts - check for mounts over a dentry
1036 * @parent: dentry to check.
1038 * Return true if the parent or its subdirectories contain
1041 int have_submounts(struct dentry
*parent
)
1043 struct dentry
*this_parent
;
1044 struct list_head
*next
;
1048 seq
= read_seqbegin(&rename_lock
);
1050 this_parent
= parent
;
1052 if (d_mountpoint(parent
))
1054 spin_lock(&this_parent
->d_lock
);
1056 next
= this_parent
->d_subdirs
.next
;
1058 while (next
!= &this_parent
->d_subdirs
) {
1059 struct list_head
*tmp
= next
;
1060 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1063 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1064 /* Have we found a mount point ? */
1065 if (d_mountpoint(dentry
)) {
1066 spin_unlock(&dentry
->d_lock
);
1067 spin_unlock(&this_parent
->d_lock
);
1070 if (!list_empty(&dentry
->d_subdirs
)) {
1071 spin_unlock(&this_parent
->d_lock
);
1072 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1073 this_parent
= dentry
;
1074 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1077 spin_unlock(&dentry
->d_lock
);
1080 * All done at this level ... ascend and resume the search.
1082 if (this_parent
!= parent
) {
1083 struct dentry
*child
= this_parent
;
1084 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1087 next
= child
->d_u
.d_child
.next
;
1090 spin_unlock(&this_parent
->d_lock
);
1091 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1094 write_sequnlock(&rename_lock
);
1095 return 0; /* No mount points found in tree */
1097 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1100 write_sequnlock(&rename_lock
);
1107 write_seqlock(&rename_lock
);
1110 EXPORT_SYMBOL(have_submounts
);
1113 * Search the dentry child list for the specified parent,
1114 * and move any unused dentries to the end of the unused
1115 * list for prune_dcache(). We descend to the next level
1116 * whenever the d_subdirs list is non-empty and continue
1119 * It returns zero iff there are no unused children,
1120 * otherwise it returns the number of children moved to
1121 * the end of the unused list. This may not be the total
1122 * number of unused children, because select_parent can
1123 * drop the lock and return early due to latency
1126 static int select_parent(struct dentry
* parent
)
1128 struct dentry
*this_parent
;
1129 struct list_head
*next
;
1134 seq
= read_seqbegin(&rename_lock
);
1136 this_parent
= parent
;
1137 spin_lock(&this_parent
->d_lock
);
1139 next
= this_parent
->d_subdirs
.next
;
1141 while (next
!= &this_parent
->d_subdirs
) {
1142 struct list_head
*tmp
= next
;
1143 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1146 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1149 * move only zero ref count dentries to the end
1150 * of the unused list for prune_dcache
1152 * Those which are presently on the shrink list, being processed
1153 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1154 * loop in shrink_dcache_parent() might not make any progress
1157 if (dentry
->d_count
) {
1158 dentry_lru_del(dentry
);
1159 } else if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
)) {
1160 dentry_lru_move_tail(dentry
);
1164 * We can return to the caller if we have found some (this
1165 * ensures forward progress). We'll be coming back to find
1168 if (found
&& need_resched()) {
1169 spin_unlock(&dentry
->d_lock
);
1174 * Descend a level if the d_subdirs list is non-empty.
1176 if (!list_empty(&dentry
->d_subdirs
)) {
1177 spin_unlock(&this_parent
->d_lock
);
1178 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1179 this_parent
= dentry
;
1180 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1184 spin_unlock(&dentry
->d_lock
);
1187 * All done at this level ... ascend and resume the search.
1189 if (this_parent
!= parent
) {
1190 struct dentry
*child
= this_parent
;
1191 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1194 next
= child
->d_u
.d_child
.next
;
1198 spin_unlock(&this_parent
->d_lock
);
1199 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1202 write_sequnlock(&rename_lock
);
1211 write_seqlock(&rename_lock
);
1216 * shrink_dcache_parent - prune dcache
1217 * @parent: parent of entries to prune
1219 * Prune the dcache to remove unused children of the parent dentry.
1222 void shrink_dcache_parent(struct dentry
* parent
)
1224 struct super_block
*sb
= parent
->d_sb
;
1227 while ((found
= select_parent(parent
)) != 0)
1228 __shrink_dcache_sb(sb
, &found
, 0);
1230 EXPORT_SYMBOL(shrink_dcache_parent
);
1233 * Scan `sc->nr_slab_to_reclaim' dentries and return the number which remain.
1235 * We need to avoid reentering the filesystem if the caller is performing a
1236 * GFP_NOFS allocation attempt. One example deadlock is:
1238 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1239 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1240 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1242 * In this case we return -1 to tell the caller that we baled.
1244 static int shrink_dcache_memory(struct shrinker
*shrink
,
1245 struct shrink_control
*sc
)
1247 int nr
= sc
->nr_to_scan
;
1248 gfp_t gfp_mask
= sc
->gfp_mask
;
1251 if (!(gfp_mask
& __GFP_FS
))
1256 return (dentry_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
1259 static struct shrinker dcache_shrinker
= {
1260 .shrink
= shrink_dcache_memory
,
1261 .seeks
= DEFAULT_SEEKS
,
1265 * d_alloc - allocate a dcache entry
1266 * @parent: parent of entry to allocate
1267 * @name: qstr of the name
1269 * Allocates a dentry. It returns %NULL if there is insufficient memory
1270 * available. On a success the dentry is returned. The name passed in is
1271 * copied and the copy passed in may be reused after this call.
1274 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1276 struct dentry
*dentry
;
1279 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1283 if (name
->len
> DNAME_INLINE_LEN
-1) {
1284 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
1286 kmem_cache_free(dentry_cache
, dentry
);
1290 dname
= dentry
->d_iname
;
1292 dentry
->d_name
.name
= dname
;
1294 dentry
->d_name
.len
= name
->len
;
1295 dentry
->d_name
.hash
= name
->hash
;
1296 memcpy(dname
, name
->name
, name
->len
);
1297 dname
[name
->len
] = 0;
1299 dentry
->d_count
= 1;
1300 dentry
->d_flags
= 0;
1301 spin_lock_init(&dentry
->d_lock
);
1302 seqcount_init(&dentry
->d_seq
);
1303 dentry
->d_inode
= NULL
;
1304 dentry
->d_parent
= NULL
;
1305 dentry
->d_sb
= NULL
;
1306 dentry
->d_op
= NULL
;
1307 dentry
->d_fsdata
= NULL
;
1308 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1309 INIT_LIST_HEAD(&dentry
->d_lru
);
1310 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1311 INIT_LIST_HEAD(&dentry
->d_alias
);
1312 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1315 spin_lock(&parent
->d_lock
);
1317 * don't need child lock because it is not subject
1318 * to concurrency here
1320 __dget_dlock(parent
);
1321 dentry
->d_parent
= parent
;
1322 dentry
->d_sb
= parent
->d_sb
;
1323 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1324 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
1325 spin_unlock(&parent
->d_lock
);
1328 this_cpu_inc(nr_dentry
);
1332 EXPORT_SYMBOL(d_alloc
);
1334 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1336 struct dentry
*dentry
= d_alloc(NULL
, name
);
1339 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1340 dentry
->d_parent
= dentry
;
1341 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
1345 EXPORT_SYMBOL(d_alloc_pseudo
);
1347 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1352 q
.len
= strlen(name
);
1353 q
.hash
= full_name_hash(q
.name
, q
.len
);
1354 return d_alloc(parent
, &q
);
1356 EXPORT_SYMBOL(d_alloc_name
);
1358 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1360 WARN_ON_ONCE(dentry
->d_op
);
1361 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1363 DCACHE_OP_REVALIDATE
|
1364 DCACHE_OP_DELETE
));
1369 dentry
->d_flags
|= DCACHE_OP_HASH
;
1371 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1372 if (op
->d_revalidate
)
1373 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1375 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1378 EXPORT_SYMBOL(d_set_d_op
);
1380 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1382 spin_lock(&dentry
->d_lock
);
1384 if (unlikely(IS_AUTOMOUNT(inode
)))
1385 dentry
->d_flags
|= DCACHE_NEED_AUTOMOUNT
;
1386 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
1388 dentry
->d_inode
= inode
;
1389 dentry_rcuwalk_barrier(dentry
);
1390 spin_unlock(&dentry
->d_lock
);
1391 fsnotify_d_instantiate(dentry
, inode
);
1395 * d_instantiate - fill in inode information for a dentry
1396 * @entry: dentry to complete
1397 * @inode: inode to attach to this dentry
1399 * Fill in inode information in the entry.
1401 * This turns negative dentries into productive full members
1404 * NOTE! This assumes that the inode count has been incremented
1405 * (or otherwise set) by the caller to indicate that it is now
1406 * in use by the dcache.
1409 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1411 BUG_ON(!list_empty(&entry
->d_alias
));
1413 spin_lock(&inode
->i_lock
);
1414 __d_instantiate(entry
, inode
);
1416 spin_unlock(&inode
->i_lock
);
1417 security_d_instantiate(entry
, inode
);
1419 EXPORT_SYMBOL(d_instantiate
);
1422 * d_instantiate_unique - instantiate a non-aliased dentry
1423 * @entry: dentry to instantiate
1424 * @inode: inode to attach to this dentry
1426 * Fill in inode information in the entry. On success, it returns NULL.
1427 * If an unhashed alias of "entry" already exists, then we return the
1428 * aliased dentry instead and drop one reference to inode.
1430 * Note that in order to avoid conflicts with rename() etc, the caller
1431 * had better be holding the parent directory semaphore.
1433 * This also assumes that the inode count has been incremented
1434 * (or otherwise set) by the caller to indicate that it is now
1435 * in use by the dcache.
1437 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1438 struct inode
*inode
)
1440 struct dentry
*alias
;
1441 int len
= entry
->d_name
.len
;
1442 const char *name
= entry
->d_name
.name
;
1443 unsigned int hash
= entry
->d_name
.hash
;
1446 __d_instantiate(entry
, NULL
);
1450 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
1451 struct qstr
*qstr
= &alias
->d_name
;
1454 * Don't need alias->d_lock here, because aliases with
1455 * d_parent == entry->d_parent are not subject to name or
1456 * parent changes, because the parent inode i_mutex is held.
1458 if (qstr
->hash
!= hash
)
1460 if (alias
->d_parent
!= entry
->d_parent
)
1462 if (dentry_cmp(qstr
->name
, qstr
->len
, name
, len
))
1468 __d_instantiate(entry
, inode
);
1472 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1474 struct dentry
*result
;
1476 BUG_ON(!list_empty(&entry
->d_alias
));
1479 spin_lock(&inode
->i_lock
);
1480 result
= __d_instantiate_unique(entry
, inode
);
1482 spin_unlock(&inode
->i_lock
);
1485 security_d_instantiate(entry
, inode
);
1489 BUG_ON(!d_unhashed(result
));
1494 EXPORT_SYMBOL(d_instantiate_unique
);
1497 * d_alloc_root - allocate root dentry
1498 * @root_inode: inode to allocate the root for
1500 * Allocate a root ("/") dentry for the inode given. The inode is
1501 * instantiated and returned. %NULL is returned if there is insufficient
1502 * memory or the inode passed is %NULL.
1505 struct dentry
* d_alloc_root(struct inode
* root_inode
)
1507 struct dentry
*res
= NULL
;
1510 static const struct qstr name
= { .name
= "/", .len
= 1 };
1512 res
= d_alloc(NULL
, &name
);
1514 res
->d_sb
= root_inode
->i_sb
;
1515 d_set_d_op(res
, res
->d_sb
->s_d_op
);
1516 res
->d_parent
= res
;
1517 d_instantiate(res
, root_inode
);
1522 EXPORT_SYMBOL(d_alloc_root
);
1524 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1526 struct dentry
*alias
;
1528 if (list_empty(&inode
->i_dentry
))
1530 alias
= list_first_entry(&inode
->i_dentry
, struct dentry
, d_alias
);
1535 static struct dentry
* d_find_any_alias(struct inode
*inode
)
1539 spin_lock(&inode
->i_lock
);
1540 de
= __d_find_any_alias(inode
);
1541 spin_unlock(&inode
->i_lock
);
1547 * d_obtain_alias - find or allocate a dentry for a given inode
1548 * @inode: inode to allocate the dentry for
1550 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1551 * similar open by handle operations. The returned dentry may be anonymous,
1552 * or may have a full name (if the inode was already in the cache).
1554 * When called on a directory inode, we must ensure that the inode only ever
1555 * has one dentry. If a dentry is found, that is returned instead of
1556 * allocating a new one.
1558 * On successful return, the reference to the inode has been transferred
1559 * to the dentry. In case of an error the reference on the inode is released.
1560 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1561 * be passed in and will be the error will be propagate to the return value,
1562 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1564 struct dentry
*d_obtain_alias(struct inode
*inode
)
1566 static const struct qstr anonstring
= { .name
= "" };
1571 return ERR_PTR(-ESTALE
);
1573 return ERR_CAST(inode
);
1575 res
= d_find_any_alias(inode
);
1579 tmp
= d_alloc(NULL
, &anonstring
);
1581 res
= ERR_PTR(-ENOMEM
);
1584 tmp
->d_parent
= tmp
; /* make sure dput doesn't croak */
1587 spin_lock(&inode
->i_lock
);
1588 res
= __d_find_any_alias(inode
);
1590 spin_unlock(&inode
->i_lock
);
1595 /* attach a disconnected dentry */
1596 spin_lock(&tmp
->d_lock
);
1597 tmp
->d_sb
= inode
->i_sb
;
1598 d_set_d_op(tmp
, tmp
->d_sb
->s_d_op
);
1599 tmp
->d_inode
= inode
;
1600 tmp
->d_flags
|= DCACHE_DISCONNECTED
;
1601 list_add(&tmp
->d_alias
, &inode
->i_dentry
);
1602 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1603 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1604 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1605 spin_unlock(&tmp
->d_lock
);
1606 spin_unlock(&inode
->i_lock
);
1607 security_d_instantiate(tmp
, inode
);
1612 if (res
&& !IS_ERR(res
))
1613 security_d_instantiate(res
, inode
);
1617 EXPORT_SYMBOL(d_obtain_alias
);
1620 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1621 * @inode: the inode which may have a disconnected dentry
1622 * @dentry: a negative dentry which we want to point to the inode.
1624 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1625 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1626 * and return it, else simply d_add the inode to the dentry and return NULL.
1628 * This is needed in the lookup routine of any filesystem that is exportable
1629 * (via knfsd) so that we can build dcache paths to directories effectively.
1631 * If a dentry was found and moved, then it is returned. Otherwise NULL
1632 * is returned. This matches the expected return value of ->lookup.
1635 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1637 struct dentry
*new = NULL
;
1639 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1640 spin_lock(&inode
->i_lock
);
1641 new = __d_find_alias(inode
, 1);
1643 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1644 spin_unlock(&inode
->i_lock
);
1645 security_d_instantiate(new, inode
);
1646 d_move(new, dentry
);
1649 /* already taking inode->i_lock, so d_add() by hand */
1650 __d_instantiate(dentry
, inode
);
1651 spin_unlock(&inode
->i_lock
);
1652 security_d_instantiate(dentry
, inode
);
1656 d_add(dentry
, inode
);
1659 EXPORT_SYMBOL(d_splice_alias
);
1662 * d_add_ci - lookup or allocate new dentry with case-exact name
1663 * @inode: the inode case-insensitive lookup has found
1664 * @dentry: the negative dentry that was passed to the parent's lookup func
1665 * @name: the case-exact name to be associated with the returned dentry
1667 * This is to avoid filling the dcache with case-insensitive names to the
1668 * same inode, only the actual correct case is stored in the dcache for
1669 * case-insensitive filesystems.
1671 * For a case-insensitive lookup match and if the the case-exact dentry
1672 * already exists in in the dcache, use it and return it.
1674 * If no entry exists with the exact case name, allocate new dentry with
1675 * the exact case, and return the spliced entry.
1677 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1681 struct dentry
*found
;
1685 * First check if a dentry matching the name already exists,
1686 * if not go ahead and create it now.
1688 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1690 new = d_alloc(dentry
->d_parent
, name
);
1696 found
= d_splice_alias(inode
, new);
1705 * If a matching dentry exists, and it's not negative use it.
1707 * Decrement the reference count to balance the iget() done
1710 if (found
->d_inode
) {
1711 if (unlikely(found
->d_inode
!= inode
)) {
1712 /* This can't happen because bad inodes are unhashed. */
1713 BUG_ON(!is_bad_inode(inode
));
1714 BUG_ON(!is_bad_inode(found
->d_inode
));
1721 * Negative dentry: instantiate it unless the inode is a directory and
1722 * already has a dentry.
1724 spin_lock(&inode
->i_lock
);
1725 if (!S_ISDIR(inode
->i_mode
) || list_empty(&inode
->i_dentry
)) {
1726 __d_instantiate(found
, inode
);
1727 spin_unlock(&inode
->i_lock
);
1728 security_d_instantiate(found
, inode
);
1733 * In case a directory already has a (disconnected) entry grab a
1734 * reference to it, move it in place and use it.
1736 new = list_entry(inode
->i_dentry
.next
, struct dentry
, d_alias
);
1738 spin_unlock(&inode
->i_lock
);
1739 security_d_instantiate(found
, inode
);
1747 return ERR_PTR(error
);
1749 EXPORT_SYMBOL(d_add_ci
);
1752 * __d_lookup_rcu - search for a dentry (racy, store-free)
1753 * @parent: parent dentry
1754 * @name: qstr of name we wish to find
1755 * @seq: returns d_seq value at the point where the dentry was found
1756 * @inode: returns dentry->d_inode when the inode was found valid.
1757 * Returns: dentry, or NULL
1759 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1760 * resolution (store-free path walking) design described in
1761 * Documentation/filesystems/path-lookup.txt.
1763 * This is not to be used outside core vfs.
1765 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1766 * held, and rcu_read_lock held. The returned dentry must not be stored into
1767 * without taking d_lock and checking d_seq sequence count against @seq
1770 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1773 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1774 * the returned dentry, so long as its parent's seqlock is checked after the
1775 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1776 * is formed, giving integrity down the path walk.
1778 struct dentry
*__d_lookup_rcu(struct dentry
*parent
, struct qstr
*name
,
1779 unsigned *seq
, struct inode
**inode
)
1781 unsigned int len
= name
->len
;
1782 unsigned int hash
= name
->hash
;
1783 const unsigned char *str
= name
->name
;
1784 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
1785 struct hlist_bl_node
*node
;
1786 struct dentry
*dentry
;
1789 * Note: There is significant duplication with __d_lookup_rcu which is
1790 * required to prevent single threaded performance regressions
1791 * especially on architectures where smp_rmb (in seqcounts) are costly.
1792 * Keep the two functions in sync.
1796 * The hash list is protected using RCU.
1798 * Carefully use d_seq when comparing a candidate dentry, to avoid
1799 * races with d_move().
1801 * It is possible that concurrent renames can mess up our list
1802 * walk here and result in missing our dentry, resulting in the
1803 * false-negative result. d_lookup() protects against concurrent
1804 * renames using rename_lock seqlock.
1806 * See Documentation/filesystems/path-lookup.txt for more details.
1808 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1813 if (dentry
->d_name
.hash
!= hash
)
1817 *seq
= read_seqcount_begin(&dentry
->d_seq
);
1818 if (dentry
->d_parent
!= parent
)
1820 if (d_unhashed(dentry
))
1822 tlen
= dentry
->d_name
.len
;
1823 tname
= dentry
->d_name
.name
;
1824 i
= dentry
->d_inode
;
1827 * This seqcount check is required to ensure name and
1828 * len are loaded atomically, so as not to walk off the
1829 * edge of memory when walking. If we could load this
1830 * atomically some other way, we could drop this check.
1832 if (read_seqcount_retry(&dentry
->d_seq
, *seq
))
1834 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1835 if (parent
->d_op
->d_compare(parent
, *inode
,
1840 if (dentry_cmp(tname
, tlen
, str
, len
))
1844 * No extra seqcount check is required after the name
1845 * compare. The caller must perform a seqcount check in
1846 * order to do anything useful with the returned dentry
1856 * d_lookup - search for a dentry
1857 * @parent: parent dentry
1858 * @name: qstr of name we wish to find
1859 * Returns: dentry, or NULL
1861 * d_lookup searches the children of the parent dentry for the name in
1862 * question. If the dentry is found its reference count is incremented and the
1863 * dentry is returned. The caller must use dput to free the entry when it has
1864 * finished using it. %NULL is returned if the dentry does not exist.
1866 struct dentry
*d_lookup(struct dentry
*parent
, struct qstr
*name
)
1868 struct dentry
*dentry
;
1872 seq
= read_seqbegin(&rename_lock
);
1873 dentry
= __d_lookup(parent
, name
);
1876 } while (read_seqretry(&rename_lock
, seq
));
1879 EXPORT_SYMBOL(d_lookup
);
1882 * __d_lookup - search for a dentry (racy)
1883 * @parent: parent dentry
1884 * @name: qstr of name we wish to find
1885 * Returns: dentry, or NULL
1887 * __d_lookup is like d_lookup, however it may (rarely) return a
1888 * false-negative result due to unrelated rename activity.
1890 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1891 * however it must be used carefully, eg. with a following d_lookup in
1892 * the case of failure.
1894 * __d_lookup callers must be commented.
1896 struct dentry
*__d_lookup(struct dentry
*parent
, struct qstr
*name
)
1898 unsigned int len
= name
->len
;
1899 unsigned int hash
= name
->hash
;
1900 const unsigned char *str
= name
->name
;
1901 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
1902 struct hlist_bl_node
*node
;
1903 struct dentry
*found
= NULL
;
1904 struct dentry
*dentry
;
1907 * Note: There is significant duplication with __d_lookup_rcu which is
1908 * required to prevent single threaded performance regressions
1909 * especially on architectures where smp_rmb (in seqcounts) are costly.
1910 * Keep the two functions in sync.
1914 * The hash list is protected using RCU.
1916 * Take d_lock when comparing a candidate dentry, to avoid races
1919 * It is possible that concurrent renames can mess up our list
1920 * walk here and result in missing our dentry, resulting in the
1921 * false-negative result. d_lookup() protects against concurrent
1922 * renames using rename_lock seqlock.
1924 * See Documentation/filesystems/path-lookup.txt for more details.
1928 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1932 if (dentry
->d_name
.hash
!= hash
)
1935 spin_lock(&dentry
->d_lock
);
1936 if (dentry
->d_parent
!= parent
)
1938 if (d_unhashed(dentry
))
1942 * It is safe to compare names since d_move() cannot
1943 * change the qstr (protected by d_lock).
1945 tlen
= dentry
->d_name
.len
;
1946 tname
= dentry
->d_name
.name
;
1947 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1948 if (parent
->d_op
->d_compare(parent
, parent
->d_inode
,
1949 dentry
, dentry
->d_inode
,
1953 if (dentry_cmp(tname
, tlen
, str
, len
))
1959 spin_unlock(&dentry
->d_lock
);
1962 spin_unlock(&dentry
->d_lock
);
1970 * d_hash_and_lookup - hash the qstr then search for a dentry
1971 * @dir: Directory to search in
1972 * @name: qstr of name we wish to find
1974 * On hash failure or on lookup failure NULL is returned.
1976 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
1978 struct dentry
*dentry
= NULL
;
1981 * Check for a fs-specific hash function. Note that we must
1982 * calculate the standard hash first, as the d_op->d_hash()
1983 * routine may choose to leave the hash value unchanged.
1985 name
->hash
= full_name_hash(name
->name
, name
->len
);
1986 if (dir
->d_flags
& DCACHE_OP_HASH
) {
1987 if (dir
->d_op
->d_hash(dir
, dir
->d_inode
, name
) < 0)
1990 dentry
= d_lookup(dir
, name
);
1996 * d_validate - verify dentry provided from insecure source (deprecated)
1997 * @dentry: The dentry alleged to be valid child of @dparent
1998 * @dparent: The parent dentry (known to be valid)
2000 * An insecure source has sent us a dentry, here we verify it and dget() it.
2001 * This is used by ncpfs in its readdir implementation.
2002 * Zero is returned in the dentry is invalid.
2004 * This function is slow for big directories, and deprecated, do not use it.
2006 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
2008 struct dentry
*child
;
2010 spin_lock(&dparent
->d_lock
);
2011 list_for_each_entry(child
, &dparent
->d_subdirs
, d_u
.d_child
) {
2012 if (dentry
== child
) {
2013 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2014 __dget_dlock(dentry
);
2015 spin_unlock(&dentry
->d_lock
);
2016 spin_unlock(&dparent
->d_lock
);
2020 spin_unlock(&dparent
->d_lock
);
2024 EXPORT_SYMBOL(d_validate
);
2027 * When a file is deleted, we have two options:
2028 * - turn this dentry into a negative dentry
2029 * - unhash this dentry and free it.
2031 * Usually, we want to just turn this into
2032 * a negative dentry, but if anybody else is
2033 * currently using the dentry or the inode
2034 * we can't do that and we fall back on removing
2035 * it from the hash queues and waiting for
2036 * it to be deleted later when it has no users
2040 * d_delete - delete a dentry
2041 * @dentry: The dentry to delete
2043 * Turn the dentry into a negative dentry if possible, otherwise
2044 * remove it from the hash queues so it can be deleted later
2047 void d_delete(struct dentry
* dentry
)
2049 struct inode
*inode
;
2052 * Are we the only user?
2055 spin_lock(&dentry
->d_lock
);
2056 inode
= dentry
->d_inode
;
2057 isdir
= S_ISDIR(inode
->i_mode
);
2058 if (dentry
->d_count
== 1) {
2059 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
2060 spin_unlock(&dentry
->d_lock
);
2064 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2065 dentry_unlink_inode(dentry
);
2066 fsnotify_nameremove(dentry
, isdir
);
2070 if (!d_unhashed(dentry
))
2073 spin_unlock(&dentry
->d_lock
);
2075 fsnotify_nameremove(dentry
, isdir
);
2077 EXPORT_SYMBOL(d_delete
);
2079 static void __d_rehash(struct dentry
* entry
, struct hlist_bl_head
*b
)
2081 BUG_ON(!d_unhashed(entry
));
2083 entry
->d_flags
|= DCACHE_RCUACCESS
;
2084 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2088 static void _d_rehash(struct dentry
* entry
)
2090 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
2094 * d_rehash - add an entry back to the hash
2095 * @entry: dentry to add to the hash
2097 * Adds a dentry to the hash according to its name.
2100 void d_rehash(struct dentry
* entry
)
2102 spin_lock(&entry
->d_lock
);
2104 spin_unlock(&entry
->d_lock
);
2106 EXPORT_SYMBOL(d_rehash
);
2109 * dentry_update_name_case - update case insensitive dentry with a new name
2110 * @dentry: dentry to be updated
2113 * Update a case insensitive dentry with new case of name.
2115 * dentry must have been returned by d_lookup with name @name. Old and new
2116 * name lengths must match (ie. no d_compare which allows mismatched name
2119 * Parent inode i_mutex must be held over d_lookup and into this call (to
2120 * keep renames and concurrent inserts, and readdir(2) away).
2122 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2124 BUG_ON(!mutex_is_locked(&dentry
->d_parent
->d_inode
->i_mutex
));
2125 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2127 spin_lock(&dentry
->d_lock
);
2128 write_seqcount_begin(&dentry
->d_seq
);
2129 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2130 write_seqcount_end(&dentry
->d_seq
);
2131 spin_unlock(&dentry
->d_lock
);
2133 EXPORT_SYMBOL(dentry_update_name_case
);
2135 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
2137 if (dname_external(target
)) {
2138 if (dname_external(dentry
)) {
2140 * Both external: swap the pointers
2142 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2145 * dentry:internal, target:external. Steal target's
2146 * storage and make target internal.
2148 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2149 dentry
->d_name
.len
+ 1);
2150 dentry
->d_name
.name
= target
->d_name
.name
;
2151 target
->d_name
.name
= target
->d_iname
;
2154 if (dname_external(dentry
)) {
2156 * dentry:external, target:internal. Give dentry's
2157 * storage to target and make dentry internal
2159 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2160 target
->d_name
.len
+ 1);
2161 target
->d_name
.name
= dentry
->d_name
.name
;
2162 dentry
->d_name
.name
= dentry
->d_iname
;
2165 * Both are internal. Just copy target to dentry
2167 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2168 target
->d_name
.len
+ 1);
2169 dentry
->d_name
.len
= target
->d_name
.len
;
2173 swap(dentry
->d_name
.len
, target
->d_name
.len
);
2176 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2179 * XXXX: do we really need to take target->d_lock?
2181 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2182 spin_lock(&target
->d_parent
->d_lock
);
2184 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2185 spin_lock(&dentry
->d_parent
->d_lock
);
2186 spin_lock_nested(&target
->d_parent
->d_lock
,
2187 DENTRY_D_LOCK_NESTED
);
2189 spin_lock(&target
->d_parent
->d_lock
);
2190 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2191 DENTRY_D_LOCK_NESTED
);
2194 if (target
< dentry
) {
2195 spin_lock_nested(&target
->d_lock
, 2);
2196 spin_lock_nested(&dentry
->d_lock
, 3);
2198 spin_lock_nested(&dentry
->d_lock
, 2);
2199 spin_lock_nested(&target
->d_lock
, 3);
2203 static void dentry_unlock_parents_for_move(struct dentry
*dentry
,
2204 struct dentry
*target
)
2206 if (target
->d_parent
!= dentry
->d_parent
)
2207 spin_unlock(&dentry
->d_parent
->d_lock
);
2208 if (target
->d_parent
!= target
)
2209 spin_unlock(&target
->d_parent
->d_lock
);
2213 * When switching names, the actual string doesn't strictly have to
2214 * be preserved in the target - because we're dropping the target
2215 * anyway. As such, we can just do a simple memcpy() to copy over
2216 * the new name before we switch.
2218 * Note that we have to be a lot more careful about getting the hash
2219 * switched - we have to switch the hash value properly even if it
2220 * then no longer matches the actual (corrupted) string of the target.
2221 * The hash value has to match the hash queue that the dentry is on..
2224 * __d_move - move a dentry
2225 * @dentry: entry to move
2226 * @target: new dentry
2228 * Update the dcache to reflect the move of a file name. Negative
2229 * dcache entries should not be moved in this way. Caller hold
2232 static void __d_move(struct dentry
* dentry
, struct dentry
* target
)
2234 if (!dentry
->d_inode
)
2235 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2237 BUG_ON(d_ancestor(dentry
, target
));
2238 BUG_ON(d_ancestor(target
, dentry
));
2240 dentry_lock_for_move(dentry
, target
);
2242 write_seqcount_begin(&dentry
->d_seq
);
2243 write_seqcount_begin(&target
->d_seq
);
2245 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2248 * Move the dentry to the target hash queue. Don't bother checking
2249 * for the same hash queue because of how unlikely it is.
2252 __d_rehash(dentry
, d_hash(target
->d_parent
, target
->d_name
.hash
));
2254 /* Unhash the target: dput() will then get rid of it */
2257 list_del(&dentry
->d_u
.d_child
);
2258 list_del(&target
->d_u
.d_child
);
2260 /* Switch the names.. */
2261 switch_names(dentry
, target
);
2262 swap(dentry
->d_name
.hash
, target
->d_name
.hash
);
2264 /* ... and switch the parents */
2265 if (IS_ROOT(dentry
)) {
2266 dentry
->d_parent
= target
->d_parent
;
2267 target
->d_parent
= target
;
2268 INIT_LIST_HEAD(&target
->d_u
.d_child
);
2270 swap(dentry
->d_parent
, target
->d_parent
);
2272 /* And add them back to the (new) parent lists */
2273 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
2276 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2278 write_seqcount_end(&target
->d_seq
);
2279 write_seqcount_end(&dentry
->d_seq
);
2281 dentry_unlock_parents_for_move(dentry
, target
);
2282 spin_unlock(&target
->d_lock
);
2283 fsnotify_d_move(dentry
);
2284 spin_unlock(&dentry
->d_lock
);
2288 * d_move - move a dentry
2289 * @dentry: entry to move
2290 * @target: new dentry
2292 * Update the dcache to reflect the move of a file name. Negative
2293 * dcache entries should not be moved in this way.
2295 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2297 write_seqlock(&rename_lock
);
2298 __d_move(dentry
, target
);
2299 write_sequnlock(&rename_lock
);
2301 EXPORT_SYMBOL(d_move
);
2304 * d_ancestor - search for an ancestor
2305 * @p1: ancestor dentry
2308 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2309 * an ancestor of p2, else NULL.
2311 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2315 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2316 if (p
->d_parent
== p1
)
2323 * This helper attempts to cope with remotely renamed directories
2325 * It assumes that the caller is already holding
2326 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2328 * Note: If ever the locking in lock_rename() changes, then please
2329 * remember to update this too...
2331 static struct dentry
*__d_unalias(struct inode
*inode
,
2332 struct dentry
*dentry
, struct dentry
*alias
)
2334 struct mutex
*m1
= NULL
, *m2
= NULL
;
2337 /* If alias and dentry share a parent, then no extra locks required */
2338 if (alias
->d_parent
== dentry
->d_parent
)
2341 /* See lock_rename() */
2342 ret
= ERR_PTR(-EBUSY
);
2343 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2345 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2346 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
2348 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
2350 __d_move(alias
, dentry
);
2353 spin_unlock(&inode
->i_lock
);
2362 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2363 * named dentry in place of the dentry to be replaced.
2364 * returns with anon->d_lock held!
2366 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
2368 struct dentry
*dparent
, *aparent
;
2370 dentry_lock_for_move(anon
, dentry
);
2372 write_seqcount_begin(&dentry
->d_seq
);
2373 write_seqcount_begin(&anon
->d_seq
);
2375 dparent
= dentry
->d_parent
;
2376 aparent
= anon
->d_parent
;
2378 switch_names(dentry
, anon
);
2379 swap(dentry
->d_name
.hash
, anon
->d_name
.hash
);
2381 dentry
->d_parent
= (aparent
== anon
) ? dentry
: aparent
;
2382 list_del(&dentry
->d_u
.d_child
);
2383 if (!IS_ROOT(dentry
))
2384 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2386 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
2388 anon
->d_parent
= (dparent
== dentry
) ? anon
: dparent
;
2389 list_del(&anon
->d_u
.d_child
);
2391 list_add(&anon
->d_u
.d_child
, &anon
->d_parent
->d_subdirs
);
2393 INIT_LIST_HEAD(&anon
->d_u
.d_child
);
2395 write_seqcount_end(&dentry
->d_seq
);
2396 write_seqcount_end(&anon
->d_seq
);
2398 dentry_unlock_parents_for_move(anon
, dentry
);
2399 spin_unlock(&dentry
->d_lock
);
2401 /* anon->d_lock still locked, returns locked */
2402 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
2406 * d_materialise_unique - introduce an inode into the tree
2407 * @dentry: candidate dentry
2408 * @inode: inode to bind to the dentry, to which aliases may be attached
2410 * Introduces an dentry into the tree, substituting an extant disconnected
2411 * root directory alias in its place if there is one
2413 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
2415 struct dentry
*actual
;
2417 BUG_ON(!d_unhashed(dentry
));
2421 __d_instantiate(dentry
, NULL
);
2426 spin_lock(&inode
->i_lock
);
2428 if (S_ISDIR(inode
->i_mode
)) {
2429 struct dentry
*alias
;
2431 /* Does an aliased dentry already exist? */
2432 alias
= __d_find_alias(inode
, 0);
2435 write_seqlock(&rename_lock
);
2437 if (d_ancestor(alias
, dentry
)) {
2438 /* Check for loops */
2439 actual
= ERR_PTR(-ELOOP
);
2440 spin_unlock(&inode
->i_lock
);
2441 } else if (IS_ROOT(alias
)) {
2442 /* Is this an anonymous mountpoint that we
2443 * could splice into our tree? */
2444 __d_materialise_dentry(dentry
, alias
);
2445 write_sequnlock(&rename_lock
);
2449 /* Nope, but we must(!) avoid directory
2450 * aliasing. This drops inode->i_lock */
2451 actual
= __d_unalias(inode
, dentry
, alias
);
2453 write_sequnlock(&rename_lock
);
2460 /* Add a unique reference */
2461 actual
= __d_instantiate_unique(dentry
, inode
);
2465 BUG_ON(!d_unhashed(actual
));
2467 spin_lock(&actual
->d_lock
);
2470 spin_unlock(&actual
->d_lock
);
2471 spin_unlock(&inode
->i_lock
);
2473 if (actual
== dentry
) {
2474 security_d_instantiate(dentry
, inode
);
2481 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2483 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
2487 return -ENAMETOOLONG
;
2489 memcpy(*buffer
, str
, namelen
);
2493 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
2495 return prepend(buffer
, buflen
, name
->name
, name
->len
);
2499 * prepend_path - Prepend path string to a buffer
2500 * @path: the dentry/vfsmount to report
2501 * @root: root vfsmnt/dentry
2502 * @buffer: pointer to the end of the buffer
2503 * @buflen: pointer to buffer length
2505 * Caller holds the rename_lock.
2507 static int prepend_path(const struct path
*path
,
2508 const struct path
*root
,
2509 char **buffer
, int *buflen
)
2511 struct dentry
*dentry
= path
->dentry
;
2512 struct vfsmount
*vfsmnt
= path
->mnt
;
2516 br_read_lock(vfsmount_lock
);
2517 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
2518 struct dentry
* parent
;
2520 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
2522 if (vfsmnt
->mnt_parent
== vfsmnt
) {
2525 dentry
= vfsmnt
->mnt_mountpoint
;
2526 vfsmnt
= vfsmnt
->mnt_parent
;
2529 parent
= dentry
->d_parent
;
2531 spin_lock(&dentry
->d_lock
);
2532 error
= prepend_name(buffer
, buflen
, &dentry
->d_name
);
2533 spin_unlock(&dentry
->d_lock
);
2535 error
= prepend(buffer
, buflen
, "/", 1);
2543 if (!error
&& !slash
)
2544 error
= prepend(buffer
, buflen
, "/", 1);
2547 br_read_unlock(vfsmount_lock
);
2552 * Filesystems needing to implement special "root names"
2553 * should do so with ->d_dname()
2555 if (IS_ROOT(dentry
) &&
2556 (dentry
->d_name
.len
!= 1 || dentry
->d_name
.name
[0] != '/')) {
2557 WARN(1, "Root dentry has weird name <%.*s>\n",
2558 (int) dentry
->d_name
.len
, dentry
->d_name
.name
);
2561 error
= prepend(buffer
, buflen
, "/", 1);
2563 error
= vfsmnt
->mnt_ns
? 1 : 2;
2568 * __d_path - return the path of a dentry
2569 * @path: the dentry/vfsmount to report
2570 * @root: root vfsmnt/dentry
2571 * @buf: buffer to return value in
2572 * @buflen: buffer length
2574 * Convert a dentry into an ASCII path name.
2576 * Returns a pointer into the buffer or an error code if the
2577 * path was too long.
2579 * "buflen" should be positive.
2581 * If the path is not reachable from the supplied root, return %NULL.
2583 char *__d_path(const struct path
*path
,
2584 const struct path
*root
,
2585 char *buf
, int buflen
)
2587 char *res
= buf
+ buflen
;
2590 prepend(&res
, &buflen
, "\0", 1);
2591 write_seqlock(&rename_lock
);
2592 error
= prepend_path(path
, root
, &res
, &buflen
);
2593 write_sequnlock(&rename_lock
);
2596 return ERR_PTR(error
);
2602 char *d_absolute_path(const struct path
*path
,
2603 char *buf
, int buflen
)
2605 struct path root
= {};
2606 char *res
= buf
+ buflen
;
2609 prepend(&res
, &buflen
, "\0", 1);
2610 write_seqlock(&rename_lock
);
2611 error
= prepend_path(path
, &root
, &res
, &buflen
);
2612 write_sequnlock(&rename_lock
);
2617 return ERR_PTR(error
);
2622 * same as __d_path but appends "(deleted)" for unlinked files.
2624 static int path_with_deleted(const struct path
*path
,
2625 const struct path
*root
,
2626 char **buf
, int *buflen
)
2628 prepend(buf
, buflen
, "\0", 1);
2629 if (d_unlinked(path
->dentry
)) {
2630 int error
= prepend(buf
, buflen
, " (deleted)", 10);
2635 return prepend_path(path
, root
, buf
, buflen
);
2638 static int prepend_unreachable(char **buffer
, int *buflen
)
2640 return prepend(buffer
, buflen
, "(unreachable)", 13);
2644 * d_path - return the path of a dentry
2645 * @path: path to report
2646 * @buf: buffer to return value in
2647 * @buflen: buffer length
2649 * Convert a dentry into an ASCII path name. If the entry has been deleted
2650 * the string " (deleted)" is appended. Note that this is ambiguous.
2652 * Returns a pointer into the buffer or an error code if the path was
2653 * too long. Note: Callers should use the returned pointer, not the passed
2654 * in buffer, to use the name! The implementation often starts at an offset
2655 * into the buffer, and may leave 0 bytes at the start.
2657 * "buflen" should be positive.
2659 char *d_path(const struct path
*path
, char *buf
, int buflen
)
2661 char *res
= buf
+ buflen
;
2666 * We have various synthetic filesystems that never get mounted. On
2667 * these filesystems dentries are never used for lookup purposes, and
2668 * thus don't need to be hashed. They also don't need a name until a
2669 * user wants to identify the object in /proc/pid/fd/. The little hack
2670 * below allows us to generate a name for these objects on demand:
2672 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2673 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2675 get_fs_root(current
->fs
, &root
);
2676 write_seqlock(&rename_lock
);
2677 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
2679 res
= ERR_PTR(error
);
2680 write_sequnlock(&rename_lock
);
2684 EXPORT_SYMBOL(d_path
);
2687 * d_path_with_unreachable - return the path of a dentry
2688 * @path: path to report
2689 * @buf: buffer to return value in
2690 * @buflen: buffer length
2692 * The difference from d_path() is that this prepends "(unreachable)"
2693 * to paths which are unreachable from the current process' root.
2695 char *d_path_with_unreachable(const struct path
*path
, char *buf
, int buflen
)
2697 char *res
= buf
+ buflen
;
2701 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2702 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2704 get_fs_root(current
->fs
, &root
);
2705 write_seqlock(&rename_lock
);
2706 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
2708 error
= prepend_unreachable(&res
, &buflen
);
2709 write_sequnlock(&rename_lock
);
2712 res
= ERR_PTR(error
);
2718 * Helper function for dentry_operations.d_dname() members
2720 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
2721 const char *fmt
, ...)
2727 va_start(args
, fmt
);
2728 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
2731 if (sz
> sizeof(temp
) || sz
> buflen
)
2732 return ERR_PTR(-ENAMETOOLONG
);
2734 buffer
+= buflen
- sz
;
2735 return memcpy(buffer
, temp
, sz
);
2739 * Write full pathname from the root of the filesystem into the buffer.
2741 static char *__dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2743 char *end
= buf
+ buflen
;
2746 prepend(&end
, &buflen
, "\0", 1);
2753 while (!IS_ROOT(dentry
)) {
2754 struct dentry
*parent
= dentry
->d_parent
;
2758 spin_lock(&dentry
->d_lock
);
2759 error
= prepend_name(&end
, &buflen
, &dentry
->d_name
);
2760 spin_unlock(&dentry
->d_lock
);
2761 if (error
!= 0 || prepend(&end
, &buflen
, "/", 1) != 0)
2769 return ERR_PTR(-ENAMETOOLONG
);
2772 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
2776 write_seqlock(&rename_lock
);
2777 retval
= __dentry_path(dentry
, buf
, buflen
);
2778 write_sequnlock(&rename_lock
);
2782 EXPORT_SYMBOL(dentry_path_raw
);
2784 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2789 write_seqlock(&rename_lock
);
2790 if (d_unlinked(dentry
)) {
2792 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
2796 retval
= __dentry_path(dentry
, buf
, buflen
);
2797 write_sequnlock(&rename_lock
);
2798 if (!IS_ERR(retval
) && p
)
2799 *p
= '/'; /* restore '/' overriden with '\0' */
2802 return ERR_PTR(-ENAMETOOLONG
);
2806 * NOTE! The user-level library version returns a
2807 * character pointer. The kernel system call just
2808 * returns the length of the buffer filled (which
2809 * includes the ending '\0' character), or a negative
2810 * error value. So libc would do something like
2812 * char *getcwd(char * buf, size_t size)
2816 * retval = sys_getcwd(buf, size);
2823 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
2826 struct path pwd
, root
;
2827 char *page
= (char *) __get_free_page(GFP_USER
);
2832 get_fs_root_and_pwd(current
->fs
, &root
, &pwd
);
2835 write_seqlock(&rename_lock
);
2836 if (!d_unlinked(pwd
.dentry
)) {
2838 char *cwd
= page
+ PAGE_SIZE
;
2839 int buflen
= PAGE_SIZE
;
2841 prepend(&cwd
, &buflen
, "\0", 1);
2842 error
= prepend_path(&pwd
, &root
, &cwd
, &buflen
);
2843 write_sequnlock(&rename_lock
);
2848 /* Unreachable from current root */
2850 error
= prepend_unreachable(&cwd
, &buflen
);
2856 len
= PAGE_SIZE
+ page
- cwd
;
2859 if (copy_to_user(buf
, cwd
, len
))
2863 write_sequnlock(&rename_lock
);
2869 free_page((unsigned long) page
);
2874 * Test whether new_dentry is a subdirectory of old_dentry.
2876 * Trivially implemented using the dcache structure
2880 * is_subdir - is new dentry a subdirectory of old_dentry
2881 * @new_dentry: new dentry
2882 * @old_dentry: old dentry
2884 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2885 * Returns 0 otherwise.
2886 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2889 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
2894 if (new_dentry
== old_dentry
)
2898 /* for restarting inner loop in case of seq retry */
2899 seq
= read_seqbegin(&rename_lock
);
2901 * Need rcu_readlock to protect against the d_parent trashing
2905 if (d_ancestor(old_dentry
, new_dentry
))
2910 } while (read_seqretry(&rename_lock
, seq
));
2915 int path_is_under(struct path
*path1
, struct path
*path2
)
2917 struct vfsmount
*mnt
= path1
->mnt
;
2918 struct dentry
*dentry
= path1
->dentry
;
2921 br_read_lock(vfsmount_lock
);
2922 if (mnt
!= path2
->mnt
) {
2924 if (mnt
->mnt_parent
== mnt
) {
2925 br_read_unlock(vfsmount_lock
);
2928 if (mnt
->mnt_parent
== path2
->mnt
)
2930 mnt
= mnt
->mnt_parent
;
2932 dentry
= mnt
->mnt_mountpoint
;
2934 res
= is_subdir(dentry
, path2
->dentry
);
2935 br_read_unlock(vfsmount_lock
);
2938 EXPORT_SYMBOL(path_is_under
);
2940 void d_genocide(struct dentry
*root
)
2942 struct dentry
*this_parent
;
2943 struct list_head
*next
;
2947 seq
= read_seqbegin(&rename_lock
);
2950 spin_lock(&this_parent
->d_lock
);
2952 next
= this_parent
->d_subdirs
.next
;
2954 while (next
!= &this_parent
->d_subdirs
) {
2955 struct list_head
*tmp
= next
;
2956 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
2959 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2960 if (d_unhashed(dentry
) || !dentry
->d_inode
) {
2961 spin_unlock(&dentry
->d_lock
);
2964 if (!list_empty(&dentry
->d_subdirs
)) {
2965 spin_unlock(&this_parent
->d_lock
);
2966 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
2967 this_parent
= dentry
;
2968 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
2971 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
2972 dentry
->d_flags
|= DCACHE_GENOCIDE
;
2975 spin_unlock(&dentry
->d_lock
);
2977 if (this_parent
!= root
) {
2978 struct dentry
*child
= this_parent
;
2979 if (!(this_parent
->d_flags
& DCACHE_GENOCIDE
)) {
2980 this_parent
->d_flags
|= DCACHE_GENOCIDE
;
2981 this_parent
->d_count
--;
2983 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
2986 next
= child
->d_u
.d_child
.next
;
2989 spin_unlock(&this_parent
->d_lock
);
2990 if (!locked
&& read_seqretry(&rename_lock
, seq
))
2993 write_sequnlock(&rename_lock
);
3000 write_seqlock(&rename_lock
);
3005 * find_inode_number - check for dentry with name
3006 * @dir: directory to check
3007 * @name: Name to find.
3009 * Check whether a dentry already exists for the given name,
3010 * and return the inode number if it has an inode. Otherwise
3013 * This routine is used to post-process directory listings for
3014 * filesystems using synthetic inode numbers, and is necessary
3015 * to keep getcwd() working.
3018 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
3020 struct dentry
* dentry
;
3023 dentry
= d_hash_and_lookup(dir
, name
);
3025 if (dentry
->d_inode
)
3026 ino
= dentry
->d_inode
->i_ino
;
3031 EXPORT_SYMBOL(find_inode_number
);
3033 static __initdata
unsigned long dhash_entries
;
3034 static int __init
set_dhash_entries(char *str
)
3038 dhash_entries
= simple_strtoul(str
, &str
, 0);
3041 __setup("dhash_entries=", set_dhash_entries
);
3043 static void __init
dcache_init_early(void)
3047 /* If hashes are distributed across NUMA nodes, defer
3048 * hash allocation until vmalloc space is available.
3054 alloc_large_system_hash("Dentry cache",
3055 sizeof(struct hlist_bl_head
),
3063 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
3064 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3067 static void __init
dcache_init(void)
3072 * A constructor could be added for stable state like the lists,
3073 * but it is probably not worth it because of the cache nature
3076 dentry_cache
= KMEM_CACHE(dentry
,
3077 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
3079 register_shrinker(&dcache_shrinker
);
3081 /* Hash may have been set up in dcache_init_early */
3086 alloc_large_system_hash("Dentry cache",
3087 sizeof(struct hlist_bl_head
),
3095 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
3096 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3099 /* SLAB cache for __getname() consumers */
3100 struct kmem_cache
*names_cachep __read_mostly
;
3101 EXPORT_SYMBOL(names_cachep
);
3103 EXPORT_SYMBOL(d_genocide
);
3105 void __init
vfs_caches_init_early(void)
3107 dcache_init_early();
3111 void __init
vfs_caches_init(unsigned long mempages
)
3113 unsigned long reserve
;
3115 /* Base hash sizes on available memory, with a reserve equal to
3116 150% of current kernel size */
3118 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
3119 mempages
-= reserve
;
3121 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3122 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3126 files_init(mempages
);