Linux 5.1.15
[linux/fpc-iii.git] / drivers / scsi / sd.c
blobb894786df6c249ff0f3e5f88acf861869b59173a
1 /*
2 * sd.c Copyright (C) 1992 Drew Eckhardt
3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5 * Linux scsi disk driver
6 * Initial versions: Drew Eckhardt
7 * Subsequent revisions: Eric Youngdale
8 * Modification history:
9 * - Drew Eckhardt <drew@colorado.edu> original
10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11 * outstanding request, and other enhancements.
12 * Support loadable low-level scsi drivers.
13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14 * eight major numbers.
15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17 * sd_init and cleanups.
18 * - Alex Davis <letmein@erols.com> Fix problem where partition info
19 * not being read in sd_open. Fix problem where removable media
20 * could be ejected after sd_open.
21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24 * Support 32k/1M disks.
26 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30 * - entering other commands: SCSI_LOG_HLQUEUE level 3
31 * Note: when the logging level is set by the user, it must be greater
32 * than the level indicated above to trigger output.
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/mutex.h>
51 #include <linux/string_helpers.h>
52 #include <linux/async.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
71 #include "sd.h"
72 #include "scsi_priv.h"
73 #include "scsi_logging.h"
75 MODULE_AUTHOR("Eric Youngdale");
76 MODULE_DESCRIPTION("SCSI disk (sd) driver");
77 MODULE_LICENSE("GPL");
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
101 #define SD_MINORS 16
102 #else
103 #define SD_MINORS 0
104 #endif
106 static void sd_config_discard(struct scsi_disk *, unsigned int);
107 static void sd_config_write_same(struct scsi_disk *);
108 static int sd_revalidate_disk(struct gendisk *);
109 static void sd_unlock_native_capacity(struct gendisk *disk);
110 static int sd_probe(struct device *);
111 static int sd_remove(struct device *);
112 static void sd_shutdown(struct device *);
113 static int sd_suspend_system(struct device *);
114 static int sd_suspend_runtime(struct device *);
115 static int sd_resume(struct device *);
116 static void sd_rescan(struct device *);
117 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
118 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
119 static int sd_done(struct scsi_cmnd *);
120 static void sd_eh_reset(struct scsi_cmnd *);
121 static int sd_eh_action(struct scsi_cmnd *, int);
122 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
123 static void scsi_disk_release(struct device *cdev);
124 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
125 static void sd_print_result(const struct scsi_disk *, const char *, int);
127 static DEFINE_IDA(sd_index_ida);
129 /* This semaphore is used to mediate the 0->1 reference get in the
130 * face of object destruction (i.e. we can't allow a get on an
131 * object after last put) */
132 static DEFINE_MUTEX(sd_ref_mutex);
134 static struct kmem_cache *sd_cdb_cache;
135 static mempool_t *sd_cdb_pool;
136 static mempool_t *sd_page_pool;
138 static const char *sd_cache_types[] = {
139 "write through", "none", "write back",
140 "write back, no read (daft)"
143 static void sd_set_flush_flag(struct scsi_disk *sdkp)
145 bool wc = false, fua = false;
147 if (sdkp->WCE) {
148 wc = true;
149 if (sdkp->DPOFUA)
150 fua = true;
153 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
156 static ssize_t
157 cache_type_store(struct device *dev, struct device_attribute *attr,
158 const char *buf, size_t count)
160 int ct, rcd, wce, sp;
161 struct scsi_disk *sdkp = to_scsi_disk(dev);
162 struct scsi_device *sdp = sdkp->device;
163 char buffer[64];
164 char *buffer_data;
165 struct scsi_mode_data data;
166 struct scsi_sense_hdr sshdr;
167 static const char temp[] = "temporary ";
168 int len;
170 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
171 /* no cache control on RBC devices; theoretically they
172 * can do it, but there's probably so many exceptions
173 * it's not worth the risk */
174 return -EINVAL;
176 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
177 buf += sizeof(temp) - 1;
178 sdkp->cache_override = 1;
179 } else {
180 sdkp->cache_override = 0;
183 ct = sysfs_match_string(sd_cache_types, buf);
184 if (ct < 0)
185 return -EINVAL;
187 rcd = ct & 0x01 ? 1 : 0;
188 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
190 if (sdkp->cache_override) {
191 sdkp->WCE = wce;
192 sdkp->RCD = rcd;
193 sd_set_flush_flag(sdkp);
194 return count;
197 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
198 SD_MAX_RETRIES, &data, NULL))
199 return -EINVAL;
200 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
201 data.block_descriptor_length);
202 buffer_data = buffer + data.header_length +
203 data.block_descriptor_length;
204 buffer_data[2] &= ~0x05;
205 buffer_data[2] |= wce << 2 | rcd;
206 sp = buffer_data[0] & 0x80 ? 1 : 0;
207 buffer_data[0] &= ~0x80;
210 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
211 * received mode parameter buffer before doing MODE SELECT.
213 data.device_specific = 0;
215 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
216 SD_MAX_RETRIES, &data, &sshdr)) {
217 if (scsi_sense_valid(&sshdr))
218 sd_print_sense_hdr(sdkp, &sshdr);
219 return -EINVAL;
221 revalidate_disk(sdkp->disk);
222 return count;
225 static ssize_t
226 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
227 char *buf)
229 struct scsi_disk *sdkp = to_scsi_disk(dev);
230 struct scsi_device *sdp = sdkp->device;
232 return sprintf(buf, "%u\n", sdp->manage_start_stop);
235 static ssize_t
236 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
237 const char *buf, size_t count)
239 struct scsi_disk *sdkp = to_scsi_disk(dev);
240 struct scsi_device *sdp = sdkp->device;
241 bool v;
243 if (!capable(CAP_SYS_ADMIN))
244 return -EACCES;
246 if (kstrtobool(buf, &v))
247 return -EINVAL;
249 sdp->manage_start_stop = v;
251 return count;
253 static DEVICE_ATTR_RW(manage_start_stop);
255 static ssize_t
256 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
258 struct scsi_disk *sdkp = to_scsi_disk(dev);
260 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
263 static ssize_t
264 allow_restart_store(struct device *dev, struct device_attribute *attr,
265 const char *buf, size_t count)
267 bool v;
268 struct scsi_disk *sdkp = to_scsi_disk(dev);
269 struct scsi_device *sdp = sdkp->device;
271 if (!capable(CAP_SYS_ADMIN))
272 return -EACCES;
274 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
275 return -EINVAL;
277 if (kstrtobool(buf, &v))
278 return -EINVAL;
280 sdp->allow_restart = v;
282 return count;
284 static DEVICE_ATTR_RW(allow_restart);
286 static ssize_t
287 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
289 struct scsi_disk *sdkp = to_scsi_disk(dev);
290 int ct = sdkp->RCD + 2*sdkp->WCE;
292 return sprintf(buf, "%s\n", sd_cache_types[ct]);
294 static DEVICE_ATTR_RW(cache_type);
296 static ssize_t
297 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
299 struct scsi_disk *sdkp = to_scsi_disk(dev);
301 return sprintf(buf, "%u\n", sdkp->DPOFUA);
303 static DEVICE_ATTR_RO(FUA);
305 static ssize_t
306 protection_type_show(struct device *dev, struct device_attribute *attr,
307 char *buf)
309 struct scsi_disk *sdkp = to_scsi_disk(dev);
311 return sprintf(buf, "%u\n", sdkp->protection_type);
314 static ssize_t
315 protection_type_store(struct device *dev, struct device_attribute *attr,
316 const char *buf, size_t count)
318 struct scsi_disk *sdkp = to_scsi_disk(dev);
319 unsigned int val;
320 int err;
322 if (!capable(CAP_SYS_ADMIN))
323 return -EACCES;
325 err = kstrtouint(buf, 10, &val);
327 if (err)
328 return err;
330 if (val <= T10_PI_TYPE3_PROTECTION)
331 sdkp->protection_type = val;
333 return count;
335 static DEVICE_ATTR_RW(protection_type);
337 static ssize_t
338 protection_mode_show(struct device *dev, struct device_attribute *attr,
339 char *buf)
341 struct scsi_disk *sdkp = to_scsi_disk(dev);
342 struct scsi_device *sdp = sdkp->device;
343 unsigned int dif, dix;
345 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
346 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
348 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
349 dif = 0;
350 dix = 1;
353 if (!dif && !dix)
354 return sprintf(buf, "none\n");
356 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
358 static DEVICE_ATTR_RO(protection_mode);
360 static ssize_t
361 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
363 struct scsi_disk *sdkp = to_scsi_disk(dev);
365 return sprintf(buf, "%u\n", sdkp->ATO);
367 static DEVICE_ATTR_RO(app_tag_own);
369 static ssize_t
370 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
371 char *buf)
373 struct scsi_disk *sdkp = to_scsi_disk(dev);
375 return sprintf(buf, "%u\n", sdkp->lbpme);
377 static DEVICE_ATTR_RO(thin_provisioning);
379 /* sysfs_match_string() requires dense arrays */
380 static const char *lbp_mode[] = {
381 [SD_LBP_FULL] = "full",
382 [SD_LBP_UNMAP] = "unmap",
383 [SD_LBP_WS16] = "writesame_16",
384 [SD_LBP_WS10] = "writesame_10",
385 [SD_LBP_ZERO] = "writesame_zero",
386 [SD_LBP_DISABLE] = "disabled",
389 static ssize_t
390 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
391 char *buf)
393 struct scsi_disk *sdkp = to_scsi_disk(dev);
395 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
398 static ssize_t
399 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
400 const char *buf, size_t count)
402 struct scsi_disk *sdkp = to_scsi_disk(dev);
403 struct scsi_device *sdp = sdkp->device;
404 int mode;
406 if (!capable(CAP_SYS_ADMIN))
407 return -EACCES;
409 if (sd_is_zoned(sdkp)) {
410 sd_config_discard(sdkp, SD_LBP_DISABLE);
411 return count;
414 if (sdp->type != TYPE_DISK)
415 return -EINVAL;
417 mode = sysfs_match_string(lbp_mode, buf);
418 if (mode < 0)
419 return -EINVAL;
421 sd_config_discard(sdkp, mode);
423 return count;
425 static DEVICE_ATTR_RW(provisioning_mode);
427 /* sysfs_match_string() requires dense arrays */
428 static const char *zeroing_mode[] = {
429 [SD_ZERO_WRITE] = "write",
430 [SD_ZERO_WS] = "writesame",
431 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
432 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
435 static ssize_t
436 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
437 char *buf)
439 struct scsi_disk *sdkp = to_scsi_disk(dev);
441 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
444 static ssize_t
445 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
446 const char *buf, size_t count)
448 struct scsi_disk *sdkp = to_scsi_disk(dev);
449 int mode;
451 if (!capable(CAP_SYS_ADMIN))
452 return -EACCES;
454 mode = sysfs_match_string(zeroing_mode, buf);
455 if (mode < 0)
456 return -EINVAL;
458 sdkp->zeroing_mode = mode;
460 return count;
462 static DEVICE_ATTR_RW(zeroing_mode);
464 static ssize_t
465 max_medium_access_timeouts_show(struct device *dev,
466 struct device_attribute *attr, char *buf)
468 struct scsi_disk *sdkp = to_scsi_disk(dev);
470 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
473 static ssize_t
474 max_medium_access_timeouts_store(struct device *dev,
475 struct device_attribute *attr, const char *buf,
476 size_t count)
478 struct scsi_disk *sdkp = to_scsi_disk(dev);
479 int err;
481 if (!capable(CAP_SYS_ADMIN))
482 return -EACCES;
484 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
486 return err ? err : count;
488 static DEVICE_ATTR_RW(max_medium_access_timeouts);
490 static ssize_t
491 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
492 char *buf)
494 struct scsi_disk *sdkp = to_scsi_disk(dev);
496 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
499 static ssize_t
500 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
501 const char *buf, size_t count)
503 struct scsi_disk *sdkp = to_scsi_disk(dev);
504 struct scsi_device *sdp = sdkp->device;
505 unsigned long max;
506 int err;
508 if (!capable(CAP_SYS_ADMIN))
509 return -EACCES;
511 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
512 return -EINVAL;
514 err = kstrtoul(buf, 10, &max);
516 if (err)
517 return err;
519 if (max == 0)
520 sdp->no_write_same = 1;
521 else if (max <= SD_MAX_WS16_BLOCKS) {
522 sdp->no_write_same = 0;
523 sdkp->max_ws_blocks = max;
526 sd_config_write_same(sdkp);
528 return count;
530 static DEVICE_ATTR_RW(max_write_same_blocks);
532 static struct attribute *sd_disk_attrs[] = {
533 &dev_attr_cache_type.attr,
534 &dev_attr_FUA.attr,
535 &dev_attr_allow_restart.attr,
536 &dev_attr_manage_start_stop.attr,
537 &dev_attr_protection_type.attr,
538 &dev_attr_protection_mode.attr,
539 &dev_attr_app_tag_own.attr,
540 &dev_attr_thin_provisioning.attr,
541 &dev_attr_provisioning_mode.attr,
542 &dev_attr_zeroing_mode.attr,
543 &dev_attr_max_write_same_blocks.attr,
544 &dev_attr_max_medium_access_timeouts.attr,
545 NULL,
547 ATTRIBUTE_GROUPS(sd_disk);
549 static struct class sd_disk_class = {
550 .name = "scsi_disk",
551 .owner = THIS_MODULE,
552 .dev_release = scsi_disk_release,
553 .dev_groups = sd_disk_groups,
556 static const struct dev_pm_ops sd_pm_ops = {
557 .suspend = sd_suspend_system,
558 .resume = sd_resume,
559 .poweroff = sd_suspend_system,
560 .restore = sd_resume,
561 .runtime_suspend = sd_suspend_runtime,
562 .runtime_resume = sd_resume,
565 static struct scsi_driver sd_template = {
566 .gendrv = {
567 .name = "sd",
568 .owner = THIS_MODULE,
569 .probe = sd_probe,
570 .remove = sd_remove,
571 .shutdown = sd_shutdown,
572 .pm = &sd_pm_ops,
574 .rescan = sd_rescan,
575 .init_command = sd_init_command,
576 .uninit_command = sd_uninit_command,
577 .done = sd_done,
578 .eh_action = sd_eh_action,
579 .eh_reset = sd_eh_reset,
583 * Dummy kobj_map->probe function.
584 * The default ->probe function will call modprobe, which is
585 * pointless as this module is already loaded.
587 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
589 return NULL;
593 * Device no to disk mapping:
595 * major disc2 disc p1
596 * |............|.............|....|....| <- dev_t
597 * 31 20 19 8 7 4 3 0
599 * Inside a major, we have 16k disks, however mapped non-
600 * contiguously. The first 16 disks are for major0, the next
601 * ones with major1, ... Disk 256 is for major0 again, disk 272
602 * for major1, ...
603 * As we stay compatible with our numbering scheme, we can reuse
604 * the well-know SCSI majors 8, 65--71, 136--143.
606 static int sd_major(int major_idx)
608 switch (major_idx) {
609 case 0:
610 return SCSI_DISK0_MAJOR;
611 case 1 ... 7:
612 return SCSI_DISK1_MAJOR + major_idx - 1;
613 case 8 ... 15:
614 return SCSI_DISK8_MAJOR + major_idx - 8;
615 default:
616 BUG();
617 return 0; /* shut up gcc */
621 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
623 struct scsi_disk *sdkp = NULL;
625 mutex_lock(&sd_ref_mutex);
627 if (disk->private_data) {
628 sdkp = scsi_disk(disk);
629 if (scsi_device_get(sdkp->device) == 0)
630 get_device(&sdkp->dev);
631 else
632 sdkp = NULL;
634 mutex_unlock(&sd_ref_mutex);
635 return sdkp;
638 static void scsi_disk_put(struct scsi_disk *sdkp)
640 struct scsi_device *sdev = sdkp->device;
642 mutex_lock(&sd_ref_mutex);
643 put_device(&sdkp->dev);
644 scsi_device_put(sdev);
645 mutex_unlock(&sd_ref_mutex);
648 #ifdef CONFIG_BLK_SED_OPAL
649 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
650 size_t len, bool send)
652 struct scsi_device *sdev = data;
653 u8 cdb[12] = { 0, };
654 int ret;
656 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
657 cdb[1] = secp;
658 put_unaligned_be16(spsp, &cdb[2]);
659 put_unaligned_be32(len, &cdb[6]);
661 ret = scsi_execute_req(sdev, cdb,
662 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
663 buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
664 return ret <= 0 ? ret : -EIO;
666 #endif /* CONFIG_BLK_SED_OPAL */
669 * Look up the DIX operation based on whether the command is read or
670 * write and whether dix and dif are enabled.
672 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
674 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
675 static const unsigned int ops[] = { /* wrt dix dif */
676 SCSI_PROT_NORMAL, /* 0 0 0 */
677 SCSI_PROT_READ_STRIP, /* 0 0 1 */
678 SCSI_PROT_READ_INSERT, /* 0 1 0 */
679 SCSI_PROT_READ_PASS, /* 0 1 1 */
680 SCSI_PROT_NORMAL, /* 1 0 0 */
681 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */
682 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */
683 SCSI_PROT_WRITE_PASS, /* 1 1 1 */
686 return ops[write << 2 | dix << 1 | dif];
690 * Returns a mask of the protection flags that are valid for a given DIX
691 * operation.
693 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
695 static const unsigned int flag_mask[] = {
696 [SCSI_PROT_NORMAL] = 0,
698 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI |
699 SCSI_PROT_GUARD_CHECK |
700 SCSI_PROT_REF_CHECK |
701 SCSI_PROT_REF_INCREMENT,
703 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT |
704 SCSI_PROT_IP_CHECKSUM,
706 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI |
707 SCSI_PROT_GUARD_CHECK |
708 SCSI_PROT_REF_CHECK |
709 SCSI_PROT_REF_INCREMENT |
710 SCSI_PROT_IP_CHECKSUM,
712 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI |
713 SCSI_PROT_REF_INCREMENT,
715 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK |
716 SCSI_PROT_REF_CHECK |
717 SCSI_PROT_REF_INCREMENT |
718 SCSI_PROT_IP_CHECKSUM,
720 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI |
721 SCSI_PROT_GUARD_CHECK |
722 SCSI_PROT_REF_CHECK |
723 SCSI_PROT_REF_INCREMENT |
724 SCSI_PROT_IP_CHECKSUM,
727 return flag_mask[prot_op];
730 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
731 unsigned int dix, unsigned int dif)
733 struct bio *bio = scmd->request->bio;
734 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
735 unsigned int protect = 0;
737 if (dix) { /* DIX Type 0, 1, 2, 3 */
738 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
739 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
741 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
742 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
745 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
746 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
748 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
749 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
752 if (dif) { /* DIX/DIF Type 1, 2, 3 */
753 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
755 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
756 protect = 3 << 5; /* Disable target PI checking */
757 else
758 protect = 1 << 5; /* Enable target PI checking */
761 scsi_set_prot_op(scmd, prot_op);
762 scsi_set_prot_type(scmd, dif);
763 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
765 return protect;
768 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
770 struct request_queue *q = sdkp->disk->queue;
771 unsigned int logical_block_size = sdkp->device->sector_size;
772 unsigned int max_blocks = 0;
774 q->limits.discard_alignment =
775 sdkp->unmap_alignment * logical_block_size;
776 q->limits.discard_granularity =
777 max(sdkp->physical_block_size,
778 sdkp->unmap_granularity * logical_block_size);
779 sdkp->provisioning_mode = mode;
781 switch (mode) {
783 case SD_LBP_FULL:
784 case SD_LBP_DISABLE:
785 blk_queue_max_discard_sectors(q, 0);
786 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
787 return;
789 case SD_LBP_UNMAP:
790 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
791 (u32)SD_MAX_WS16_BLOCKS);
792 break;
794 case SD_LBP_WS16:
795 if (sdkp->device->unmap_limit_for_ws)
796 max_blocks = sdkp->max_unmap_blocks;
797 else
798 max_blocks = sdkp->max_ws_blocks;
800 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
801 break;
803 case SD_LBP_WS10:
804 if (sdkp->device->unmap_limit_for_ws)
805 max_blocks = sdkp->max_unmap_blocks;
806 else
807 max_blocks = sdkp->max_ws_blocks;
809 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
810 break;
812 case SD_LBP_ZERO:
813 max_blocks = min_not_zero(sdkp->max_ws_blocks,
814 (u32)SD_MAX_WS10_BLOCKS);
815 break;
818 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
819 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
822 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
824 struct scsi_device *sdp = cmd->device;
825 struct request *rq = cmd->request;
826 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
827 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
828 unsigned int data_len = 24;
829 char *buf;
831 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
832 if (!rq->special_vec.bv_page)
833 return BLK_STS_RESOURCE;
834 clear_highpage(rq->special_vec.bv_page);
835 rq->special_vec.bv_offset = 0;
836 rq->special_vec.bv_len = data_len;
837 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
839 cmd->cmd_len = 10;
840 cmd->cmnd[0] = UNMAP;
841 cmd->cmnd[8] = 24;
843 buf = page_address(rq->special_vec.bv_page);
844 put_unaligned_be16(6 + 16, &buf[0]);
845 put_unaligned_be16(16, &buf[2]);
846 put_unaligned_be64(lba, &buf[8]);
847 put_unaligned_be32(nr_blocks, &buf[16]);
849 cmd->allowed = SD_MAX_RETRIES;
850 cmd->transfersize = data_len;
851 rq->timeout = SD_TIMEOUT;
853 return scsi_init_io(cmd);
856 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
857 bool unmap)
859 struct scsi_device *sdp = cmd->device;
860 struct request *rq = cmd->request;
861 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
862 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
863 u32 data_len = sdp->sector_size;
865 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
866 if (!rq->special_vec.bv_page)
867 return BLK_STS_RESOURCE;
868 clear_highpage(rq->special_vec.bv_page);
869 rq->special_vec.bv_offset = 0;
870 rq->special_vec.bv_len = data_len;
871 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
873 cmd->cmd_len = 16;
874 cmd->cmnd[0] = WRITE_SAME_16;
875 if (unmap)
876 cmd->cmnd[1] = 0x8; /* UNMAP */
877 put_unaligned_be64(lba, &cmd->cmnd[2]);
878 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
880 cmd->allowed = SD_MAX_RETRIES;
881 cmd->transfersize = data_len;
882 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
884 return scsi_init_io(cmd);
887 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
888 bool unmap)
890 struct scsi_device *sdp = cmd->device;
891 struct request *rq = cmd->request;
892 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
893 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
894 u32 data_len = sdp->sector_size;
896 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
897 if (!rq->special_vec.bv_page)
898 return BLK_STS_RESOURCE;
899 clear_highpage(rq->special_vec.bv_page);
900 rq->special_vec.bv_offset = 0;
901 rq->special_vec.bv_len = data_len;
902 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
904 cmd->cmd_len = 10;
905 cmd->cmnd[0] = WRITE_SAME;
906 if (unmap)
907 cmd->cmnd[1] = 0x8; /* UNMAP */
908 put_unaligned_be32(lba, &cmd->cmnd[2]);
909 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
911 cmd->allowed = SD_MAX_RETRIES;
912 cmd->transfersize = data_len;
913 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
915 return scsi_init_io(cmd);
918 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
920 struct request *rq = cmd->request;
921 struct scsi_device *sdp = cmd->device;
922 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
923 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
924 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
926 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
927 switch (sdkp->zeroing_mode) {
928 case SD_ZERO_WS16_UNMAP:
929 return sd_setup_write_same16_cmnd(cmd, true);
930 case SD_ZERO_WS10_UNMAP:
931 return sd_setup_write_same10_cmnd(cmd, true);
935 if (sdp->no_write_same)
936 return BLK_STS_TARGET;
938 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
939 return sd_setup_write_same16_cmnd(cmd, false);
941 return sd_setup_write_same10_cmnd(cmd, false);
944 static void sd_config_write_same(struct scsi_disk *sdkp)
946 struct request_queue *q = sdkp->disk->queue;
947 unsigned int logical_block_size = sdkp->device->sector_size;
949 if (sdkp->device->no_write_same) {
950 sdkp->max_ws_blocks = 0;
951 goto out;
954 /* Some devices can not handle block counts above 0xffff despite
955 * supporting WRITE SAME(16). Consequently we default to 64k
956 * blocks per I/O unless the device explicitly advertises a
957 * bigger limit.
959 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
960 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
961 (u32)SD_MAX_WS16_BLOCKS);
962 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
963 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
964 (u32)SD_MAX_WS10_BLOCKS);
965 else {
966 sdkp->device->no_write_same = 1;
967 sdkp->max_ws_blocks = 0;
970 if (sdkp->lbprz && sdkp->lbpws)
971 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
972 else if (sdkp->lbprz && sdkp->lbpws10)
973 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
974 else if (sdkp->max_ws_blocks)
975 sdkp->zeroing_mode = SD_ZERO_WS;
976 else
977 sdkp->zeroing_mode = SD_ZERO_WRITE;
979 if (sdkp->max_ws_blocks &&
980 sdkp->physical_block_size > logical_block_size) {
982 * Reporting a maximum number of blocks that is not aligned
983 * on the device physical size would cause a large write same
984 * request to be split into physically unaligned chunks by
985 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
986 * even if the caller of these functions took care to align the
987 * large request. So make sure the maximum reported is aligned
988 * to the device physical block size. This is only an optional
989 * optimization for regular disks, but this is mandatory to
990 * avoid failure of large write same requests directed at
991 * sequential write required zones of host-managed ZBC disks.
993 sdkp->max_ws_blocks =
994 round_down(sdkp->max_ws_blocks,
995 bytes_to_logical(sdkp->device,
996 sdkp->physical_block_size));
999 out:
1000 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1001 (logical_block_size >> 9));
1002 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1003 (logical_block_size >> 9));
1007 * sd_setup_write_same_cmnd - write the same data to multiple blocks
1008 * @cmd: command to prepare
1010 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1011 * the preference indicated by the target device.
1013 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1015 struct request *rq = cmd->request;
1016 struct scsi_device *sdp = cmd->device;
1017 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1018 struct bio *bio = rq->bio;
1019 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1020 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1021 blk_status_t ret;
1023 if (sdkp->device->no_write_same)
1024 return BLK_STS_TARGET;
1026 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1028 rq->timeout = SD_WRITE_SAME_TIMEOUT;
1030 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1031 cmd->cmd_len = 16;
1032 cmd->cmnd[0] = WRITE_SAME_16;
1033 put_unaligned_be64(lba, &cmd->cmnd[2]);
1034 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1035 } else {
1036 cmd->cmd_len = 10;
1037 cmd->cmnd[0] = WRITE_SAME;
1038 put_unaligned_be32(lba, &cmd->cmnd[2]);
1039 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1042 cmd->transfersize = sdp->sector_size;
1043 cmd->allowed = SD_MAX_RETRIES;
1046 * For WRITE SAME the data transferred via the DATA OUT buffer is
1047 * different from the amount of data actually written to the target.
1049 * We set up __data_len to the amount of data transferred via the
1050 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1051 * to transfer a single sector of data first, but then reset it to
1052 * the amount of data to be written right after so that the I/O path
1053 * knows how much to actually write.
1055 rq->__data_len = sdp->sector_size;
1056 ret = scsi_init_io(cmd);
1057 rq->__data_len = blk_rq_bytes(rq);
1059 return ret;
1062 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1064 struct request *rq = cmd->request;
1066 /* flush requests don't perform I/O, zero the S/G table */
1067 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1069 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1070 cmd->cmd_len = 10;
1071 cmd->transfersize = 0;
1072 cmd->allowed = SD_MAX_RETRIES;
1074 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1075 return BLK_STS_OK;
1078 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1079 sector_t lba, unsigned int nr_blocks,
1080 unsigned char flags)
1082 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1083 if (unlikely(cmd->cmnd == NULL))
1084 return BLK_STS_RESOURCE;
1086 cmd->cmd_len = SD_EXT_CDB_SIZE;
1087 memset(cmd->cmnd, 0, cmd->cmd_len);
1089 cmd->cmnd[0] = VARIABLE_LENGTH_CMD;
1090 cmd->cmnd[7] = 0x18; /* Additional CDB len */
1091 cmd->cmnd[9] = write ? WRITE_32 : READ_32;
1092 cmd->cmnd[10] = flags;
1093 put_unaligned_be64(lba, &cmd->cmnd[12]);
1094 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1095 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1097 return BLK_STS_OK;
1100 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1101 sector_t lba, unsigned int nr_blocks,
1102 unsigned char flags)
1104 cmd->cmd_len = 16;
1105 cmd->cmnd[0] = write ? WRITE_16 : READ_16;
1106 cmd->cmnd[1] = flags;
1107 cmd->cmnd[14] = 0;
1108 cmd->cmnd[15] = 0;
1109 put_unaligned_be64(lba, &cmd->cmnd[2]);
1110 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1112 return BLK_STS_OK;
1115 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1116 sector_t lba, unsigned int nr_blocks,
1117 unsigned char flags)
1119 cmd->cmd_len = 10;
1120 cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1121 cmd->cmnd[1] = flags;
1122 cmd->cmnd[6] = 0;
1123 cmd->cmnd[9] = 0;
1124 put_unaligned_be32(lba, &cmd->cmnd[2]);
1125 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1127 return BLK_STS_OK;
1130 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1131 sector_t lba, unsigned int nr_blocks,
1132 unsigned char flags)
1134 /* Avoid that 0 blocks gets translated into 256 blocks. */
1135 if (WARN_ON_ONCE(nr_blocks == 0))
1136 return BLK_STS_IOERR;
1138 if (unlikely(flags & 0x8)) {
1140 * This happens only if this drive failed 10byte rw
1141 * command with ILLEGAL_REQUEST during operation and
1142 * thus turned off use_10_for_rw.
1144 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1145 return BLK_STS_IOERR;
1148 cmd->cmd_len = 6;
1149 cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1150 cmd->cmnd[1] = (lba >> 16) & 0x1f;
1151 cmd->cmnd[2] = (lba >> 8) & 0xff;
1152 cmd->cmnd[3] = lba & 0xff;
1153 cmd->cmnd[4] = nr_blocks;
1154 cmd->cmnd[5] = 0;
1156 return BLK_STS_OK;
1159 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1161 struct request *rq = cmd->request;
1162 struct scsi_device *sdp = cmd->device;
1163 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1164 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1165 sector_t threshold;
1166 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1167 bool dif, dix;
1168 unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1169 bool write = rq_data_dir(rq) == WRITE;
1170 unsigned char protect, fua;
1171 blk_status_t ret;
1173 ret = scsi_init_io(cmd);
1174 if (ret != BLK_STS_OK)
1175 return ret;
1177 if (!scsi_device_online(sdp) || sdp->changed) {
1178 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1179 return BLK_STS_IOERR;
1182 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1183 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1184 return BLK_STS_IOERR;
1187 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1188 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1189 return BLK_STS_IOERR;
1193 * Some SD card readers can't handle accesses which touch the
1194 * last one or two logical blocks. Split accesses as needed.
1196 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1198 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1199 if (lba < threshold) {
1200 /* Access up to the threshold but not beyond */
1201 nr_blocks = threshold - lba;
1202 } else {
1203 /* Access only a single logical block */
1204 nr_blocks = 1;
1208 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1209 dix = scsi_prot_sg_count(cmd);
1210 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1212 if (write && dix)
1213 t10_pi_prepare(cmd->request, sdkp->protection_type);
1215 if (dif || dix)
1216 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1217 else
1218 protect = 0;
1220 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1221 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1222 protect | fua);
1223 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1224 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1225 protect | fua);
1226 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1227 sdp->use_10_for_rw || protect) {
1228 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1229 protect | fua);
1230 } else {
1231 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1232 protect | fua);
1235 if (unlikely(ret != BLK_STS_OK))
1236 return ret;
1239 * We shouldn't disconnect in the middle of a sector, so with a dumb
1240 * host adapter, it's safe to assume that we can at least transfer
1241 * this many bytes between each connect / disconnect.
1243 cmd->transfersize = sdp->sector_size;
1244 cmd->underflow = nr_blocks << 9;
1245 cmd->allowed = SD_MAX_RETRIES;
1246 cmd->sdb.length = nr_blocks * sdp->sector_size;
1248 SCSI_LOG_HLQUEUE(1,
1249 scmd_printk(KERN_INFO, cmd,
1250 "%s: block=%llu, count=%d\n", __func__,
1251 (unsigned long long)blk_rq_pos(rq),
1252 blk_rq_sectors(rq)));
1253 SCSI_LOG_HLQUEUE(2,
1254 scmd_printk(KERN_INFO, cmd,
1255 "%s %d/%u 512 byte blocks.\n",
1256 write ? "writing" : "reading", nr_blocks,
1257 blk_rq_sectors(rq)));
1260 * This indicates that the command is ready from our end to be
1261 * queued.
1263 return BLK_STS_OK;
1266 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1268 struct request *rq = cmd->request;
1270 switch (req_op(rq)) {
1271 case REQ_OP_DISCARD:
1272 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1273 case SD_LBP_UNMAP:
1274 return sd_setup_unmap_cmnd(cmd);
1275 case SD_LBP_WS16:
1276 return sd_setup_write_same16_cmnd(cmd, true);
1277 case SD_LBP_WS10:
1278 return sd_setup_write_same10_cmnd(cmd, true);
1279 case SD_LBP_ZERO:
1280 return sd_setup_write_same10_cmnd(cmd, false);
1281 default:
1282 return BLK_STS_TARGET;
1284 case REQ_OP_WRITE_ZEROES:
1285 return sd_setup_write_zeroes_cmnd(cmd);
1286 case REQ_OP_WRITE_SAME:
1287 return sd_setup_write_same_cmnd(cmd);
1288 case REQ_OP_FLUSH:
1289 return sd_setup_flush_cmnd(cmd);
1290 case REQ_OP_READ:
1291 case REQ_OP_WRITE:
1292 return sd_setup_read_write_cmnd(cmd);
1293 case REQ_OP_ZONE_RESET:
1294 return sd_zbc_setup_reset_cmnd(cmd);
1295 default:
1296 WARN_ON_ONCE(1);
1297 return BLK_STS_NOTSUPP;
1301 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1303 struct request *rq = SCpnt->request;
1304 u8 *cmnd;
1306 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1307 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1309 if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1310 cmnd = SCpnt->cmnd;
1311 SCpnt->cmnd = NULL;
1312 SCpnt->cmd_len = 0;
1313 mempool_free(cmnd, sd_cdb_pool);
1318 * sd_open - open a scsi disk device
1319 * @bdev: Block device of the scsi disk to open
1320 * @mode: FMODE_* mask
1322 * Returns 0 if successful. Returns a negated errno value in case
1323 * of error.
1325 * Note: This can be called from a user context (e.g. fsck(1) )
1326 * or from within the kernel (e.g. as a result of a mount(1) ).
1327 * In the latter case @inode and @filp carry an abridged amount
1328 * of information as noted above.
1330 * Locking: called with bdev->bd_mutex held.
1332 static int sd_open(struct block_device *bdev, fmode_t mode)
1334 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1335 struct scsi_device *sdev;
1336 int retval;
1338 if (!sdkp)
1339 return -ENXIO;
1341 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1343 sdev = sdkp->device;
1346 * If the device is in error recovery, wait until it is done.
1347 * If the device is offline, then disallow any access to it.
1349 retval = -ENXIO;
1350 if (!scsi_block_when_processing_errors(sdev))
1351 goto error_out;
1353 if (sdev->removable || sdkp->write_prot)
1354 check_disk_change(bdev);
1357 * If the drive is empty, just let the open fail.
1359 retval = -ENOMEDIUM;
1360 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1361 goto error_out;
1364 * If the device has the write protect tab set, have the open fail
1365 * if the user expects to be able to write to the thing.
1367 retval = -EROFS;
1368 if (sdkp->write_prot && (mode & FMODE_WRITE))
1369 goto error_out;
1372 * It is possible that the disk changing stuff resulted in
1373 * the device being taken offline. If this is the case,
1374 * report this to the user, and don't pretend that the
1375 * open actually succeeded.
1377 retval = -ENXIO;
1378 if (!scsi_device_online(sdev))
1379 goto error_out;
1381 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1382 if (scsi_block_when_processing_errors(sdev))
1383 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1386 return 0;
1388 error_out:
1389 scsi_disk_put(sdkp);
1390 return retval;
1394 * sd_release - invoked when the (last) close(2) is called on this
1395 * scsi disk.
1396 * @disk: disk to release
1397 * @mode: FMODE_* mask
1399 * Returns 0.
1401 * Note: may block (uninterruptible) if error recovery is underway
1402 * on this disk.
1404 * Locking: called with bdev->bd_mutex held.
1406 static void sd_release(struct gendisk *disk, fmode_t mode)
1408 struct scsi_disk *sdkp = scsi_disk(disk);
1409 struct scsi_device *sdev = sdkp->device;
1411 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1413 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1414 if (scsi_block_when_processing_errors(sdev))
1415 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1418 scsi_disk_put(sdkp);
1421 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1423 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1424 struct scsi_device *sdp = sdkp->device;
1425 struct Scsi_Host *host = sdp->host;
1426 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1427 int diskinfo[4];
1429 /* default to most commonly used values */
1430 diskinfo[0] = 0x40; /* 1 << 6 */
1431 diskinfo[1] = 0x20; /* 1 << 5 */
1432 diskinfo[2] = capacity >> 11;
1434 /* override with calculated, extended default, or driver values */
1435 if (host->hostt->bios_param)
1436 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1437 else
1438 scsicam_bios_param(bdev, capacity, diskinfo);
1440 geo->heads = diskinfo[0];
1441 geo->sectors = diskinfo[1];
1442 geo->cylinders = diskinfo[2];
1443 return 0;
1447 * sd_ioctl - process an ioctl
1448 * @bdev: target block device
1449 * @mode: FMODE_* mask
1450 * @cmd: ioctl command number
1451 * @arg: this is third argument given to ioctl(2) system call.
1452 * Often contains a pointer.
1454 * Returns 0 if successful (some ioctls return positive numbers on
1455 * success as well). Returns a negated errno value in case of error.
1457 * Note: most ioctls are forward onto the block subsystem or further
1458 * down in the scsi subsystem.
1460 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1461 unsigned int cmd, unsigned long arg)
1463 struct gendisk *disk = bdev->bd_disk;
1464 struct scsi_disk *sdkp = scsi_disk(disk);
1465 struct scsi_device *sdp = sdkp->device;
1466 void __user *p = (void __user *)arg;
1467 int error;
1469 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1470 "cmd=0x%x\n", disk->disk_name, cmd));
1472 error = scsi_verify_blk_ioctl(bdev, cmd);
1473 if (error < 0)
1474 return error;
1477 * If we are in the middle of error recovery, don't let anyone
1478 * else try and use this device. Also, if error recovery fails, it
1479 * may try and take the device offline, in which case all further
1480 * access to the device is prohibited.
1482 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1483 (mode & FMODE_NDELAY) != 0);
1484 if (error)
1485 goto out;
1487 if (is_sed_ioctl(cmd))
1488 return sed_ioctl(sdkp->opal_dev, cmd, p);
1491 * Send SCSI addressing ioctls directly to mid level, send other
1492 * ioctls to block level and then onto mid level if they can't be
1493 * resolved.
1495 switch (cmd) {
1496 case SCSI_IOCTL_GET_IDLUN:
1497 case SCSI_IOCTL_GET_BUS_NUMBER:
1498 error = scsi_ioctl(sdp, cmd, p);
1499 break;
1500 default:
1501 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1502 if (error != -ENOTTY)
1503 break;
1504 error = scsi_ioctl(sdp, cmd, p);
1505 break;
1507 out:
1508 return error;
1511 static void set_media_not_present(struct scsi_disk *sdkp)
1513 if (sdkp->media_present)
1514 sdkp->device->changed = 1;
1516 if (sdkp->device->removable) {
1517 sdkp->media_present = 0;
1518 sdkp->capacity = 0;
1522 static int media_not_present(struct scsi_disk *sdkp,
1523 struct scsi_sense_hdr *sshdr)
1525 if (!scsi_sense_valid(sshdr))
1526 return 0;
1528 /* not invoked for commands that could return deferred errors */
1529 switch (sshdr->sense_key) {
1530 case UNIT_ATTENTION:
1531 case NOT_READY:
1532 /* medium not present */
1533 if (sshdr->asc == 0x3A) {
1534 set_media_not_present(sdkp);
1535 return 1;
1538 return 0;
1542 * sd_check_events - check media events
1543 * @disk: kernel device descriptor
1544 * @clearing: disk events currently being cleared
1546 * Returns mask of DISK_EVENT_*.
1548 * Note: this function is invoked from the block subsystem.
1550 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1552 struct scsi_disk *sdkp = scsi_disk_get(disk);
1553 struct scsi_device *sdp;
1554 int retval;
1556 if (!sdkp)
1557 return 0;
1559 sdp = sdkp->device;
1560 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1563 * If the device is offline, don't send any commands - just pretend as
1564 * if the command failed. If the device ever comes back online, we
1565 * can deal with it then. It is only because of unrecoverable errors
1566 * that we would ever take a device offline in the first place.
1568 if (!scsi_device_online(sdp)) {
1569 set_media_not_present(sdkp);
1570 goto out;
1574 * Using TEST_UNIT_READY enables differentiation between drive with
1575 * no cartridge loaded - NOT READY, drive with changed cartridge -
1576 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1578 * Drives that auto spin down. eg iomega jaz 1G, will be started
1579 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1580 * sd_revalidate() is called.
1582 if (scsi_block_when_processing_errors(sdp)) {
1583 struct scsi_sense_hdr sshdr = { 0, };
1585 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1586 &sshdr);
1588 /* failed to execute TUR, assume media not present */
1589 if (host_byte(retval)) {
1590 set_media_not_present(sdkp);
1591 goto out;
1594 if (media_not_present(sdkp, &sshdr))
1595 goto out;
1599 * For removable scsi disk we have to recognise the presence
1600 * of a disk in the drive.
1602 if (!sdkp->media_present)
1603 sdp->changed = 1;
1604 sdkp->media_present = 1;
1605 out:
1607 * sdp->changed is set under the following conditions:
1609 * Medium present state has changed in either direction.
1610 * Device has indicated UNIT_ATTENTION.
1612 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1613 sdp->changed = 0;
1614 scsi_disk_put(sdkp);
1615 return retval;
1618 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1620 int retries, res;
1621 struct scsi_device *sdp = sdkp->device;
1622 const int timeout = sdp->request_queue->rq_timeout
1623 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1624 struct scsi_sense_hdr my_sshdr;
1626 if (!scsi_device_online(sdp))
1627 return -ENODEV;
1629 /* caller might not be interested in sense, but we need it */
1630 if (!sshdr)
1631 sshdr = &my_sshdr;
1633 for (retries = 3; retries > 0; --retries) {
1634 unsigned char cmd[10] = { 0 };
1636 cmd[0] = SYNCHRONIZE_CACHE;
1638 * Leave the rest of the command zero to indicate
1639 * flush everything.
1641 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1642 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1643 if (res == 0)
1644 break;
1647 if (res) {
1648 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1650 if (driver_byte(res) == DRIVER_SENSE)
1651 sd_print_sense_hdr(sdkp, sshdr);
1653 /* we need to evaluate the error return */
1654 if (scsi_sense_valid(sshdr) &&
1655 (sshdr->asc == 0x3a || /* medium not present */
1656 sshdr->asc == 0x20)) /* invalid command */
1657 /* this is no error here */
1658 return 0;
1660 switch (host_byte(res)) {
1661 /* ignore errors due to racing a disconnection */
1662 case DID_BAD_TARGET:
1663 case DID_NO_CONNECT:
1664 return 0;
1665 /* signal the upper layer it might try again */
1666 case DID_BUS_BUSY:
1667 case DID_IMM_RETRY:
1668 case DID_REQUEUE:
1669 case DID_SOFT_ERROR:
1670 return -EBUSY;
1671 default:
1672 return -EIO;
1675 return 0;
1678 static void sd_rescan(struct device *dev)
1680 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1682 revalidate_disk(sdkp->disk);
1686 #ifdef CONFIG_COMPAT
1688 * This gets directly called from VFS. When the ioctl
1689 * is not recognized we go back to the other translation paths.
1691 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1692 unsigned int cmd, unsigned long arg)
1694 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1695 int error;
1697 error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1698 (mode & FMODE_NDELAY) != 0);
1699 if (error)
1700 return error;
1703 * Let the static ioctl translation table take care of it.
1705 if (!sdev->host->hostt->compat_ioctl)
1706 return -ENOIOCTLCMD;
1707 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1709 #endif
1711 static char sd_pr_type(enum pr_type type)
1713 switch (type) {
1714 case PR_WRITE_EXCLUSIVE:
1715 return 0x01;
1716 case PR_EXCLUSIVE_ACCESS:
1717 return 0x03;
1718 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1719 return 0x05;
1720 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1721 return 0x06;
1722 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1723 return 0x07;
1724 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1725 return 0x08;
1726 default:
1727 return 0;
1731 static int sd_pr_command(struct block_device *bdev, u8 sa,
1732 u64 key, u64 sa_key, u8 type, u8 flags)
1734 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1735 struct scsi_sense_hdr sshdr;
1736 int result;
1737 u8 cmd[16] = { 0, };
1738 u8 data[24] = { 0, };
1740 cmd[0] = PERSISTENT_RESERVE_OUT;
1741 cmd[1] = sa;
1742 cmd[2] = type;
1743 put_unaligned_be32(sizeof(data), &cmd[5]);
1745 put_unaligned_be64(key, &data[0]);
1746 put_unaligned_be64(sa_key, &data[8]);
1747 data[20] = flags;
1749 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1750 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1752 if (driver_byte(result) == DRIVER_SENSE &&
1753 scsi_sense_valid(&sshdr)) {
1754 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1755 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1758 return result;
1761 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1762 u32 flags)
1764 if (flags & ~PR_FL_IGNORE_KEY)
1765 return -EOPNOTSUPP;
1766 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1767 old_key, new_key, 0,
1768 (1 << 0) /* APTPL */);
1771 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1772 u32 flags)
1774 if (flags)
1775 return -EOPNOTSUPP;
1776 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1779 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1781 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1784 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1785 enum pr_type type, bool abort)
1787 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1788 sd_pr_type(type), 0);
1791 static int sd_pr_clear(struct block_device *bdev, u64 key)
1793 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1796 static const struct pr_ops sd_pr_ops = {
1797 .pr_register = sd_pr_register,
1798 .pr_reserve = sd_pr_reserve,
1799 .pr_release = sd_pr_release,
1800 .pr_preempt = sd_pr_preempt,
1801 .pr_clear = sd_pr_clear,
1804 static const struct block_device_operations sd_fops = {
1805 .owner = THIS_MODULE,
1806 .open = sd_open,
1807 .release = sd_release,
1808 .ioctl = sd_ioctl,
1809 .getgeo = sd_getgeo,
1810 #ifdef CONFIG_COMPAT
1811 .compat_ioctl = sd_compat_ioctl,
1812 #endif
1813 .check_events = sd_check_events,
1814 .revalidate_disk = sd_revalidate_disk,
1815 .unlock_native_capacity = sd_unlock_native_capacity,
1816 .report_zones = sd_zbc_report_zones,
1817 .pr_ops = &sd_pr_ops,
1821 * sd_eh_reset - reset error handling callback
1822 * @scmd: sd-issued command that has failed
1824 * This function is called by the SCSI midlayer before starting
1825 * SCSI EH. When counting medium access failures we have to be
1826 * careful to register it only only once per device and SCSI EH run;
1827 * there might be several timed out commands which will cause the
1828 * 'max_medium_access_timeouts' counter to trigger after the first
1829 * SCSI EH run already and set the device to offline.
1830 * So this function resets the internal counter before starting SCSI EH.
1832 static void sd_eh_reset(struct scsi_cmnd *scmd)
1834 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1836 /* New SCSI EH run, reset gate variable */
1837 sdkp->ignore_medium_access_errors = false;
1841 * sd_eh_action - error handling callback
1842 * @scmd: sd-issued command that has failed
1843 * @eh_disp: The recovery disposition suggested by the midlayer
1845 * This function is called by the SCSI midlayer upon completion of an
1846 * error test command (currently TEST UNIT READY). The result of sending
1847 * the eh command is passed in eh_disp. We're looking for devices that
1848 * fail medium access commands but are OK with non access commands like
1849 * test unit ready (so wrongly see the device as having a successful
1850 * recovery)
1852 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1854 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1855 struct scsi_device *sdev = scmd->device;
1857 if (!scsi_device_online(sdev) ||
1858 !scsi_medium_access_command(scmd) ||
1859 host_byte(scmd->result) != DID_TIME_OUT ||
1860 eh_disp != SUCCESS)
1861 return eh_disp;
1864 * The device has timed out executing a medium access command.
1865 * However, the TEST UNIT READY command sent during error
1866 * handling completed successfully. Either the device is in the
1867 * process of recovering or has it suffered an internal failure
1868 * that prevents access to the storage medium.
1870 if (!sdkp->ignore_medium_access_errors) {
1871 sdkp->medium_access_timed_out++;
1872 sdkp->ignore_medium_access_errors = true;
1876 * If the device keeps failing read/write commands but TEST UNIT
1877 * READY always completes successfully we assume that medium
1878 * access is no longer possible and take the device offline.
1880 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1881 scmd_printk(KERN_ERR, scmd,
1882 "Medium access timeout failure. Offlining disk!\n");
1883 mutex_lock(&sdev->state_mutex);
1884 scsi_device_set_state(sdev, SDEV_OFFLINE);
1885 mutex_unlock(&sdev->state_mutex);
1887 return SUCCESS;
1890 return eh_disp;
1893 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1895 struct request *req = scmd->request;
1896 struct scsi_device *sdev = scmd->device;
1897 unsigned int transferred, good_bytes;
1898 u64 start_lba, end_lba, bad_lba;
1901 * Some commands have a payload smaller than the device logical
1902 * block size (e.g. INQUIRY on a 4K disk).
1904 if (scsi_bufflen(scmd) <= sdev->sector_size)
1905 return 0;
1907 /* Check if we have a 'bad_lba' information */
1908 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1909 SCSI_SENSE_BUFFERSIZE,
1910 &bad_lba))
1911 return 0;
1914 * If the bad lba was reported incorrectly, we have no idea where
1915 * the error is.
1917 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1918 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1919 if (bad_lba < start_lba || bad_lba >= end_lba)
1920 return 0;
1923 * resid is optional but mostly filled in. When it's unused,
1924 * its value is zero, so we assume the whole buffer transferred
1926 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1928 /* This computation should always be done in terms of the
1929 * resolution of the device's medium.
1931 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1933 return min(good_bytes, transferred);
1937 * sd_done - bottom half handler: called when the lower level
1938 * driver has completed (successfully or otherwise) a scsi command.
1939 * @SCpnt: mid-level's per command structure.
1941 * Note: potentially run from within an ISR. Must not block.
1943 static int sd_done(struct scsi_cmnd *SCpnt)
1945 int result = SCpnt->result;
1946 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1947 unsigned int sector_size = SCpnt->device->sector_size;
1948 unsigned int resid;
1949 struct scsi_sense_hdr sshdr;
1950 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1951 struct request *req = SCpnt->request;
1952 int sense_valid = 0;
1953 int sense_deferred = 0;
1955 switch (req_op(req)) {
1956 case REQ_OP_DISCARD:
1957 case REQ_OP_WRITE_ZEROES:
1958 case REQ_OP_WRITE_SAME:
1959 case REQ_OP_ZONE_RESET:
1960 if (!result) {
1961 good_bytes = blk_rq_bytes(req);
1962 scsi_set_resid(SCpnt, 0);
1963 } else {
1964 good_bytes = 0;
1965 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1967 break;
1968 default:
1970 * In case of bogus fw or device, we could end up having
1971 * an unaligned partial completion. Check this here and force
1972 * alignment.
1974 resid = scsi_get_resid(SCpnt);
1975 if (resid & (sector_size - 1)) {
1976 sd_printk(KERN_INFO, sdkp,
1977 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1978 resid, sector_size);
1979 resid = min(scsi_bufflen(SCpnt),
1980 round_up(resid, sector_size));
1981 scsi_set_resid(SCpnt, resid);
1985 if (result) {
1986 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1987 if (sense_valid)
1988 sense_deferred = scsi_sense_is_deferred(&sshdr);
1990 sdkp->medium_access_timed_out = 0;
1992 if (driver_byte(result) != DRIVER_SENSE &&
1993 (!sense_valid || sense_deferred))
1994 goto out;
1996 switch (sshdr.sense_key) {
1997 case HARDWARE_ERROR:
1998 case MEDIUM_ERROR:
1999 good_bytes = sd_completed_bytes(SCpnt);
2000 break;
2001 case RECOVERED_ERROR:
2002 good_bytes = scsi_bufflen(SCpnt);
2003 break;
2004 case NO_SENSE:
2005 /* This indicates a false check condition, so ignore it. An
2006 * unknown amount of data was transferred so treat it as an
2007 * error.
2009 SCpnt->result = 0;
2010 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2011 break;
2012 case ABORTED_COMMAND:
2013 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2014 good_bytes = sd_completed_bytes(SCpnt);
2015 break;
2016 case ILLEGAL_REQUEST:
2017 switch (sshdr.asc) {
2018 case 0x10: /* DIX: Host detected corruption */
2019 good_bytes = sd_completed_bytes(SCpnt);
2020 break;
2021 case 0x20: /* INVALID COMMAND OPCODE */
2022 case 0x24: /* INVALID FIELD IN CDB */
2023 switch (SCpnt->cmnd[0]) {
2024 case UNMAP:
2025 sd_config_discard(sdkp, SD_LBP_DISABLE);
2026 break;
2027 case WRITE_SAME_16:
2028 case WRITE_SAME:
2029 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2030 sd_config_discard(sdkp, SD_LBP_DISABLE);
2031 } else {
2032 sdkp->device->no_write_same = 1;
2033 sd_config_write_same(sdkp);
2034 req->rq_flags |= RQF_QUIET;
2036 break;
2039 break;
2040 default:
2041 break;
2044 out:
2045 if (sd_is_zoned(sdkp))
2046 sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2048 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2049 "sd_done: completed %d of %d bytes\n",
2050 good_bytes, scsi_bufflen(SCpnt)));
2052 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt) &&
2053 good_bytes)
2054 t10_pi_complete(SCpnt->request, sdkp->protection_type,
2055 good_bytes / scsi_prot_interval(SCpnt));
2057 return good_bytes;
2061 * spinup disk - called only in sd_revalidate_disk()
2063 static void
2064 sd_spinup_disk(struct scsi_disk *sdkp)
2066 unsigned char cmd[10];
2067 unsigned long spintime_expire = 0;
2068 int retries, spintime;
2069 unsigned int the_result;
2070 struct scsi_sense_hdr sshdr;
2071 int sense_valid = 0;
2073 spintime = 0;
2075 /* Spin up drives, as required. Only do this at boot time */
2076 /* Spinup needs to be done for module loads too. */
2077 do {
2078 retries = 0;
2080 do {
2081 cmd[0] = TEST_UNIT_READY;
2082 memset((void *) &cmd[1], 0, 9);
2084 the_result = scsi_execute_req(sdkp->device, cmd,
2085 DMA_NONE, NULL, 0,
2086 &sshdr, SD_TIMEOUT,
2087 SD_MAX_RETRIES, NULL);
2090 * If the drive has indicated to us that it
2091 * doesn't have any media in it, don't bother
2092 * with any more polling.
2094 if (media_not_present(sdkp, &sshdr))
2095 return;
2097 if (the_result)
2098 sense_valid = scsi_sense_valid(&sshdr);
2099 retries++;
2100 } while (retries < 3 &&
2101 (!scsi_status_is_good(the_result) ||
2102 ((driver_byte(the_result) == DRIVER_SENSE) &&
2103 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2105 if (driver_byte(the_result) != DRIVER_SENSE) {
2106 /* no sense, TUR either succeeded or failed
2107 * with a status error */
2108 if(!spintime && !scsi_status_is_good(the_result)) {
2109 sd_print_result(sdkp, "Test Unit Ready failed",
2110 the_result);
2112 break;
2116 * The device does not want the automatic start to be issued.
2118 if (sdkp->device->no_start_on_add)
2119 break;
2121 if (sense_valid && sshdr.sense_key == NOT_READY) {
2122 if (sshdr.asc == 4 && sshdr.ascq == 3)
2123 break; /* manual intervention required */
2124 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2125 break; /* standby */
2126 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2127 break; /* unavailable */
2128 if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2129 break; /* sanitize in progress */
2131 * Issue command to spin up drive when not ready
2133 if (!spintime) {
2134 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2135 cmd[0] = START_STOP;
2136 cmd[1] = 1; /* Return immediately */
2137 memset((void *) &cmd[2], 0, 8);
2138 cmd[4] = 1; /* Start spin cycle */
2139 if (sdkp->device->start_stop_pwr_cond)
2140 cmd[4] |= 1 << 4;
2141 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2142 NULL, 0, &sshdr,
2143 SD_TIMEOUT, SD_MAX_RETRIES,
2144 NULL);
2145 spintime_expire = jiffies + 100 * HZ;
2146 spintime = 1;
2148 /* Wait 1 second for next try */
2149 msleep(1000);
2150 printk(KERN_CONT ".");
2153 * Wait for USB flash devices with slow firmware.
2154 * Yes, this sense key/ASC combination shouldn't
2155 * occur here. It's characteristic of these devices.
2157 } else if (sense_valid &&
2158 sshdr.sense_key == UNIT_ATTENTION &&
2159 sshdr.asc == 0x28) {
2160 if (!spintime) {
2161 spintime_expire = jiffies + 5 * HZ;
2162 spintime = 1;
2164 /* Wait 1 second for next try */
2165 msleep(1000);
2166 } else {
2167 /* we don't understand the sense code, so it's
2168 * probably pointless to loop */
2169 if(!spintime) {
2170 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2171 sd_print_sense_hdr(sdkp, &sshdr);
2173 break;
2176 } while (spintime && time_before_eq(jiffies, spintime_expire));
2178 if (spintime) {
2179 if (scsi_status_is_good(the_result))
2180 printk(KERN_CONT "ready\n");
2181 else
2182 printk(KERN_CONT "not responding...\n");
2187 * Determine whether disk supports Data Integrity Field.
2189 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2191 struct scsi_device *sdp = sdkp->device;
2192 u8 type;
2193 int ret = 0;
2195 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2196 return ret;
2198 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2200 if (type > T10_PI_TYPE3_PROTECTION)
2201 ret = -ENODEV;
2202 else if (scsi_host_dif_capable(sdp->host, type))
2203 ret = 1;
2205 if (sdkp->first_scan || type != sdkp->protection_type)
2206 switch (ret) {
2207 case -ENODEV:
2208 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2209 " protection type %u. Disabling disk!\n",
2210 type);
2211 break;
2212 case 1:
2213 sd_printk(KERN_NOTICE, sdkp,
2214 "Enabling DIF Type %u protection\n", type);
2215 break;
2216 case 0:
2217 sd_printk(KERN_NOTICE, sdkp,
2218 "Disabling DIF Type %u protection\n", type);
2219 break;
2222 sdkp->protection_type = type;
2224 return ret;
2227 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2228 struct scsi_sense_hdr *sshdr, int sense_valid,
2229 int the_result)
2231 if (driver_byte(the_result) == DRIVER_SENSE)
2232 sd_print_sense_hdr(sdkp, sshdr);
2233 else
2234 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2237 * Set dirty bit for removable devices if not ready -
2238 * sometimes drives will not report this properly.
2240 if (sdp->removable &&
2241 sense_valid && sshdr->sense_key == NOT_READY)
2242 set_media_not_present(sdkp);
2245 * We used to set media_present to 0 here to indicate no media
2246 * in the drive, but some drives fail read capacity even with
2247 * media present, so we can't do that.
2249 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2252 #define RC16_LEN 32
2253 #if RC16_LEN > SD_BUF_SIZE
2254 #error RC16_LEN must not be more than SD_BUF_SIZE
2255 #endif
2257 #define READ_CAPACITY_RETRIES_ON_RESET 10
2260 * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2261 * and the reported logical block size is bigger than 512 bytes. Note
2262 * that last_sector is a u64 and therefore logical_to_sectors() is not
2263 * applicable.
2265 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2267 u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2269 if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2270 return false;
2272 return true;
2275 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2276 unsigned char *buffer)
2278 unsigned char cmd[16];
2279 struct scsi_sense_hdr sshdr;
2280 int sense_valid = 0;
2281 int the_result;
2282 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2283 unsigned int alignment;
2284 unsigned long long lba;
2285 unsigned sector_size;
2287 if (sdp->no_read_capacity_16)
2288 return -EINVAL;
2290 do {
2291 memset(cmd, 0, 16);
2292 cmd[0] = SERVICE_ACTION_IN_16;
2293 cmd[1] = SAI_READ_CAPACITY_16;
2294 cmd[13] = RC16_LEN;
2295 memset(buffer, 0, RC16_LEN);
2297 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2298 buffer, RC16_LEN, &sshdr,
2299 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2301 if (media_not_present(sdkp, &sshdr))
2302 return -ENODEV;
2304 if (the_result) {
2305 sense_valid = scsi_sense_valid(&sshdr);
2306 if (sense_valid &&
2307 sshdr.sense_key == ILLEGAL_REQUEST &&
2308 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2309 sshdr.ascq == 0x00)
2310 /* Invalid Command Operation Code or
2311 * Invalid Field in CDB, just retry
2312 * silently with RC10 */
2313 return -EINVAL;
2314 if (sense_valid &&
2315 sshdr.sense_key == UNIT_ATTENTION &&
2316 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2317 /* Device reset might occur several times,
2318 * give it one more chance */
2319 if (--reset_retries > 0)
2320 continue;
2322 retries--;
2324 } while (the_result && retries);
2326 if (the_result) {
2327 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2328 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2329 return -EINVAL;
2332 sector_size = get_unaligned_be32(&buffer[8]);
2333 lba = get_unaligned_be64(&buffer[0]);
2335 if (sd_read_protection_type(sdkp, buffer) < 0) {
2336 sdkp->capacity = 0;
2337 return -ENODEV;
2340 if (!sd_addressable_capacity(lba, sector_size)) {
2341 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2342 "kernel compiled with support for large block "
2343 "devices.\n");
2344 sdkp->capacity = 0;
2345 return -EOVERFLOW;
2348 /* Logical blocks per physical block exponent */
2349 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2351 /* RC basis */
2352 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2354 /* Lowest aligned logical block */
2355 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2356 blk_queue_alignment_offset(sdp->request_queue, alignment);
2357 if (alignment && sdkp->first_scan)
2358 sd_printk(KERN_NOTICE, sdkp,
2359 "physical block alignment offset: %u\n", alignment);
2361 if (buffer[14] & 0x80) { /* LBPME */
2362 sdkp->lbpme = 1;
2364 if (buffer[14] & 0x40) /* LBPRZ */
2365 sdkp->lbprz = 1;
2367 sd_config_discard(sdkp, SD_LBP_WS16);
2370 sdkp->capacity = lba + 1;
2371 return sector_size;
2374 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2375 unsigned char *buffer)
2377 unsigned char cmd[16];
2378 struct scsi_sense_hdr sshdr;
2379 int sense_valid = 0;
2380 int the_result;
2381 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2382 sector_t lba;
2383 unsigned sector_size;
2385 do {
2386 cmd[0] = READ_CAPACITY;
2387 memset(&cmd[1], 0, 9);
2388 memset(buffer, 0, 8);
2390 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2391 buffer, 8, &sshdr,
2392 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2394 if (media_not_present(sdkp, &sshdr))
2395 return -ENODEV;
2397 if (the_result) {
2398 sense_valid = scsi_sense_valid(&sshdr);
2399 if (sense_valid &&
2400 sshdr.sense_key == UNIT_ATTENTION &&
2401 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2402 /* Device reset might occur several times,
2403 * give it one more chance */
2404 if (--reset_retries > 0)
2405 continue;
2407 retries--;
2409 } while (the_result && retries);
2411 if (the_result) {
2412 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2413 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2414 return -EINVAL;
2417 sector_size = get_unaligned_be32(&buffer[4]);
2418 lba = get_unaligned_be32(&buffer[0]);
2420 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2421 /* Some buggy (usb cardreader) devices return an lba of
2422 0xffffffff when the want to report a size of 0 (with
2423 which they really mean no media is present) */
2424 sdkp->capacity = 0;
2425 sdkp->physical_block_size = sector_size;
2426 return sector_size;
2429 if (!sd_addressable_capacity(lba, sector_size)) {
2430 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2431 "kernel compiled with support for large block "
2432 "devices.\n");
2433 sdkp->capacity = 0;
2434 return -EOVERFLOW;
2437 sdkp->capacity = lba + 1;
2438 sdkp->physical_block_size = sector_size;
2439 return sector_size;
2442 static int sd_try_rc16_first(struct scsi_device *sdp)
2444 if (sdp->host->max_cmd_len < 16)
2445 return 0;
2446 if (sdp->try_rc_10_first)
2447 return 0;
2448 if (sdp->scsi_level > SCSI_SPC_2)
2449 return 1;
2450 if (scsi_device_protection(sdp))
2451 return 1;
2452 return 0;
2456 * read disk capacity
2458 static void
2459 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2461 int sector_size;
2462 struct scsi_device *sdp = sdkp->device;
2464 if (sd_try_rc16_first(sdp)) {
2465 sector_size = read_capacity_16(sdkp, sdp, buffer);
2466 if (sector_size == -EOVERFLOW)
2467 goto got_data;
2468 if (sector_size == -ENODEV)
2469 return;
2470 if (sector_size < 0)
2471 sector_size = read_capacity_10(sdkp, sdp, buffer);
2472 if (sector_size < 0)
2473 return;
2474 } else {
2475 sector_size = read_capacity_10(sdkp, sdp, buffer);
2476 if (sector_size == -EOVERFLOW)
2477 goto got_data;
2478 if (sector_size < 0)
2479 return;
2480 if ((sizeof(sdkp->capacity) > 4) &&
2481 (sdkp->capacity > 0xffffffffULL)) {
2482 int old_sector_size = sector_size;
2483 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2484 "Trying to use READ CAPACITY(16).\n");
2485 sector_size = read_capacity_16(sdkp, sdp, buffer);
2486 if (sector_size < 0) {
2487 sd_printk(KERN_NOTICE, sdkp,
2488 "Using 0xffffffff as device size\n");
2489 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2490 sector_size = old_sector_size;
2491 goto got_data;
2493 /* Remember that READ CAPACITY(16) succeeded */
2494 sdp->try_rc_10_first = 0;
2498 /* Some devices are known to return the total number of blocks,
2499 * not the highest block number. Some devices have versions
2500 * which do this and others which do not. Some devices we might
2501 * suspect of doing this but we don't know for certain.
2503 * If we know the reported capacity is wrong, decrement it. If
2504 * we can only guess, then assume the number of blocks is even
2505 * (usually true but not always) and err on the side of lowering
2506 * the capacity.
2508 if (sdp->fix_capacity ||
2509 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2510 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2511 "from its reported value: %llu\n",
2512 (unsigned long long) sdkp->capacity);
2513 --sdkp->capacity;
2516 got_data:
2517 if (sector_size == 0) {
2518 sector_size = 512;
2519 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2520 "assuming 512.\n");
2523 if (sector_size != 512 &&
2524 sector_size != 1024 &&
2525 sector_size != 2048 &&
2526 sector_size != 4096) {
2527 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2528 sector_size);
2530 * The user might want to re-format the drive with
2531 * a supported sectorsize. Once this happens, it
2532 * would be relatively trivial to set the thing up.
2533 * For this reason, we leave the thing in the table.
2535 sdkp->capacity = 0;
2537 * set a bogus sector size so the normal read/write
2538 * logic in the block layer will eventually refuse any
2539 * request on this device without tripping over power
2540 * of two sector size assumptions
2542 sector_size = 512;
2544 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2545 blk_queue_physical_block_size(sdp->request_queue,
2546 sdkp->physical_block_size);
2547 sdkp->device->sector_size = sector_size;
2549 if (sdkp->capacity > 0xffffffff)
2550 sdp->use_16_for_rw = 1;
2555 * Print disk capacity
2557 static void
2558 sd_print_capacity(struct scsi_disk *sdkp,
2559 sector_t old_capacity)
2561 int sector_size = sdkp->device->sector_size;
2562 char cap_str_2[10], cap_str_10[10];
2564 if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2565 return;
2567 string_get_size(sdkp->capacity, sector_size,
2568 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2569 string_get_size(sdkp->capacity, sector_size,
2570 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2572 sd_printk(KERN_NOTICE, sdkp,
2573 "%llu %d-byte logical blocks: (%s/%s)\n",
2574 (unsigned long long)sdkp->capacity,
2575 sector_size, cap_str_10, cap_str_2);
2577 if (sdkp->physical_block_size != sector_size)
2578 sd_printk(KERN_NOTICE, sdkp,
2579 "%u-byte physical blocks\n",
2580 sdkp->physical_block_size);
2582 sd_zbc_print_zones(sdkp);
2585 /* called with buffer of length 512 */
2586 static inline int
2587 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2588 unsigned char *buffer, int len, struct scsi_mode_data *data,
2589 struct scsi_sense_hdr *sshdr)
2591 return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2592 SD_TIMEOUT, SD_MAX_RETRIES, data,
2593 sshdr);
2597 * read write protect setting, if possible - called only in sd_revalidate_disk()
2598 * called with buffer of length SD_BUF_SIZE
2600 static void
2601 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2603 int res;
2604 struct scsi_device *sdp = sdkp->device;
2605 struct scsi_mode_data data;
2606 int old_wp = sdkp->write_prot;
2608 set_disk_ro(sdkp->disk, 0);
2609 if (sdp->skip_ms_page_3f) {
2610 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2611 return;
2614 if (sdp->use_192_bytes_for_3f) {
2615 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2616 } else {
2618 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2619 * We have to start carefully: some devices hang if we ask
2620 * for more than is available.
2622 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2625 * Second attempt: ask for page 0 When only page 0 is
2626 * implemented, a request for page 3F may return Sense Key
2627 * 5: Illegal Request, Sense Code 24: Invalid field in
2628 * CDB.
2630 if (!scsi_status_is_good(res))
2631 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2634 * Third attempt: ask 255 bytes, as we did earlier.
2636 if (!scsi_status_is_good(res))
2637 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2638 &data, NULL);
2641 if (!scsi_status_is_good(res)) {
2642 sd_first_printk(KERN_WARNING, sdkp,
2643 "Test WP failed, assume Write Enabled\n");
2644 } else {
2645 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2646 set_disk_ro(sdkp->disk, sdkp->write_prot);
2647 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2648 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2649 sdkp->write_prot ? "on" : "off");
2650 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2656 * sd_read_cache_type - called only from sd_revalidate_disk()
2657 * called with buffer of length SD_BUF_SIZE
2659 static void
2660 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2662 int len = 0, res;
2663 struct scsi_device *sdp = sdkp->device;
2665 int dbd;
2666 int modepage;
2667 int first_len;
2668 struct scsi_mode_data data;
2669 struct scsi_sense_hdr sshdr;
2670 int old_wce = sdkp->WCE;
2671 int old_rcd = sdkp->RCD;
2672 int old_dpofua = sdkp->DPOFUA;
2675 if (sdkp->cache_override)
2676 return;
2678 first_len = 4;
2679 if (sdp->skip_ms_page_8) {
2680 if (sdp->type == TYPE_RBC)
2681 goto defaults;
2682 else {
2683 if (sdp->skip_ms_page_3f)
2684 goto defaults;
2685 modepage = 0x3F;
2686 if (sdp->use_192_bytes_for_3f)
2687 first_len = 192;
2688 dbd = 0;
2690 } else if (sdp->type == TYPE_RBC) {
2691 modepage = 6;
2692 dbd = 8;
2693 } else {
2694 modepage = 8;
2695 dbd = 0;
2698 /* cautiously ask */
2699 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2700 &data, &sshdr);
2702 if (!scsi_status_is_good(res))
2703 goto bad_sense;
2705 if (!data.header_length) {
2706 modepage = 6;
2707 first_len = 0;
2708 sd_first_printk(KERN_ERR, sdkp,
2709 "Missing header in MODE_SENSE response\n");
2712 /* that went OK, now ask for the proper length */
2713 len = data.length;
2716 * We're only interested in the first three bytes, actually.
2717 * But the data cache page is defined for the first 20.
2719 if (len < 3)
2720 goto bad_sense;
2721 else if (len > SD_BUF_SIZE) {
2722 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2723 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2724 len = SD_BUF_SIZE;
2726 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2727 len = 192;
2729 /* Get the data */
2730 if (len > first_len)
2731 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2732 &data, &sshdr);
2734 if (scsi_status_is_good(res)) {
2735 int offset = data.header_length + data.block_descriptor_length;
2737 while (offset < len) {
2738 u8 page_code = buffer[offset] & 0x3F;
2739 u8 spf = buffer[offset] & 0x40;
2741 if (page_code == 8 || page_code == 6) {
2742 /* We're interested only in the first 3 bytes.
2744 if (len - offset <= 2) {
2745 sd_first_printk(KERN_ERR, sdkp,
2746 "Incomplete mode parameter "
2747 "data\n");
2748 goto defaults;
2749 } else {
2750 modepage = page_code;
2751 goto Page_found;
2753 } else {
2754 /* Go to the next page */
2755 if (spf && len - offset > 3)
2756 offset += 4 + (buffer[offset+2] << 8) +
2757 buffer[offset+3];
2758 else if (!spf && len - offset > 1)
2759 offset += 2 + buffer[offset+1];
2760 else {
2761 sd_first_printk(KERN_ERR, sdkp,
2762 "Incomplete mode "
2763 "parameter data\n");
2764 goto defaults;
2769 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2770 goto defaults;
2772 Page_found:
2773 if (modepage == 8) {
2774 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2775 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2776 } else {
2777 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2778 sdkp->RCD = 0;
2781 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2782 if (sdp->broken_fua) {
2783 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2784 sdkp->DPOFUA = 0;
2785 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2786 !sdkp->device->use_16_for_rw) {
2787 sd_first_printk(KERN_NOTICE, sdkp,
2788 "Uses READ/WRITE(6), disabling FUA\n");
2789 sdkp->DPOFUA = 0;
2792 /* No cache flush allowed for write protected devices */
2793 if (sdkp->WCE && sdkp->write_prot)
2794 sdkp->WCE = 0;
2796 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2797 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2798 sd_printk(KERN_NOTICE, sdkp,
2799 "Write cache: %s, read cache: %s, %s\n",
2800 sdkp->WCE ? "enabled" : "disabled",
2801 sdkp->RCD ? "disabled" : "enabled",
2802 sdkp->DPOFUA ? "supports DPO and FUA"
2803 : "doesn't support DPO or FUA");
2805 return;
2808 bad_sense:
2809 if (scsi_sense_valid(&sshdr) &&
2810 sshdr.sense_key == ILLEGAL_REQUEST &&
2811 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2812 /* Invalid field in CDB */
2813 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2814 else
2815 sd_first_printk(KERN_ERR, sdkp,
2816 "Asking for cache data failed\n");
2818 defaults:
2819 if (sdp->wce_default_on) {
2820 sd_first_printk(KERN_NOTICE, sdkp,
2821 "Assuming drive cache: write back\n");
2822 sdkp->WCE = 1;
2823 } else {
2824 sd_first_printk(KERN_ERR, sdkp,
2825 "Assuming drive cache: write through\n");
2826 sdkp->WCE = 0;
2828 sdkp->RCD = 0;
2829 sdkp->DPOFUA = 0;
2833 * The ATO bit indicates whether the DIF application tag is available
2834 * for use by the operating system.
2836 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2838 int res, offset;
2839 struct scsi_device *sdp = sdkp->device;
2840 struct scsi_mode_data data;
2841 struct scsi_sense_hdr sshdr;
2843 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2844 return;
2846 if (sdkp->protection_type == 0)
2847 return;
2849 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2850 SD_MAX_RETRIES, &data, &sshdr);
2852 if (!scsi_status_is_good(res) || !data.header_length ||
2853 data.length < 6) {
2854 sd_first_printk(KERN_WARNING, sdkp,
2855 "getting Control mode page failed, assume no ATO\n");
2857 if (scsi_sense_valid(&sshdr))
2858 sd_print_sense_hdr(sdkp, &sshdr);
2860 return;
2863 offset = data.header_length + data.block_descriptor_length;
2865 if ((buffer[offset] & 0x3f) != 0x0a) {
2866 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2867 return;
2870 if ((buffer[offset + 5] & 0x80) == 0)
2871 return;
2873 sdkp->ATO = 1;
2875 return;
2879 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2880 * @sdkp: disk to query
2882 static void sd_read_block_limits(struct scsi_disk *sdkp)
2884 unsigned int sector_sz = sdkp->device->sector_size;
2885 const int vpd_len = 64;
2886 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2888 if (!buffer ||
2889 /* Block Limits VPD */
2890 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2891 goto out;
2893 blk_queue_io_min(sdkp->disk->queue,
2894 get_unaligned_be16(&buffer[6]) * sector_sz);
2896 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2897 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2899 if (buffer[3] == 0x3c) {
2900 unsigned int lba_count, desc_count;
2902 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2904 if (!sdkp->lbpme)
2905 goto out;
2907 lba_count = get_unaligned_be32(&buffer[20]);
2908 desc_count = get_unaligned_be32(&buffer[24]);
2910 if (lba_count && desc_count)
2911 sdkp->max_unmap_blocks = lba_count;
2913 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2915 if (buffer[32] & 0x80)
2916 sdkp->unmap_alignment =
2917 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2919 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2921 if (sdkp->max_unmap_blocks)
2922 sd_config_discard(sdkp, SD_LBP_UNMAP);
2923 else
2924 sd_config_discard(sdkp, SD_LBP_WS16);
2926 } else { /* LBP VPD page tells us what to use */
2927 if (sdkp->lbpu && sdkp->max_unmap_blocks)
2928 sd_config_discard(sdkp, SD_LBP_UNMAP);
2929 else if (sdkp->lbpws)
2930 sd_config_discard(sdkp, SD_LBP_WS16);
2931 else if (sdkp->lbpws10)
2932 sd_config_discard(sdkp, SD_LBP_WS10);
2933 else
2934 sd_config_discard(sdkp, SD_LBP_DISABLE);
2938 out:
2939 kfree(buffer);
2943 * sd_read_block_characteristics - Query block dev. characteristics
2944 * @sdkp: disk to query
2946 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2948 struct request_queue *q = sdkp->disk->queue;
2949 unsigned char *buffer;
2950 u16 rot;
2951 const int vpd_len = 64;
2953 buffer = kmalloc(vpd_len, GFP_KERNEL);
2955 if (!buffer ||
2956 /* Block Device Characteristics VPD */
2957 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2958 goto out;
2960 rot = get_unaligned_be16(&buffer[4]);
2962 if (rot == 1) {
2963 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2964 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2967 if (sdkp->device->type == TYPE_ZBC) {
2968 /* Host-managed */
2969 q->limits.zoned = BLK_ZONED_HM;
2970 } else {
2971 sdkp->zoned = (buffer[8] >> 4) & 3;
2972 if (sdkp->zoned == 1)
2973 /* Host-aware */
2974 q->limits.zoned = BLK_ZONED_HA;
2975 else
2977 * Treat drive-managed devices as
2978 * regular block devices.
2980 q->limits.zoned = BLK_ZONED_NONE;
2982 if (blk_queue_is_zoned(q) && sdkp->first_scan)
2983 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2984 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2986 out:
2987 kfree(buffer);
2991 * sd_read_block_provisioning - Query provisioning VPD page
2992 * @sdkp: disk to query
2994 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2996 unsigned char *buffer;
2997 const int vpd_len = 8;
2999 if (sdkp->lbpme == 0)
3000 return;
3002 buffer = kmalloc(vpd_len, GFP_KERNEL);
3004 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3005 goto out;
3007 sdkp->lbpvpd = 1;
3008 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
3009 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
3010 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
3012 out:
3013 kfree(buffer);
3016 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3018 struct scsi_device *sdev = sdkp->device;
3020 if (sdev->host->no_write_same) {
3021 sdev->no_write_same = 1;
3023 return;
3026 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3027 /* too large values might cause issues with arcmsr */
3028 int vpd_buf_len = 64;
3030 sdev->no_report_opcodes = 1;
3032 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3033 * CODES is unsupported and the device has an ATA
3034 * Information VPD page (SAT).
3036 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3037 sdev->no_write_same = 1;
3040 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3041 sdkp->ws16 = 1;
3043 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3044 sdkp->ws10 = 1;
3047 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3049 struct scsi_device *sdev = sdkp->device;
3051 if (!sdev->security_supported)
3052 return;
3054 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3055 SECURITY_PROTOCOL_IN) == 1 &&
3056 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3057 SECURITY_PROTOCOL_OUT) == 1)
3058 sdkp->security = 1;
3062 * Determine the device's preferred I/O size for reads and writes
3063 * unless the reported value is unreasonably small, large, not a
3064 * multiple of the physical block size, or simply garbage.
3066 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3067 unsigned int dev_max)
3069 struct scsi_device *sdp = sdkp->device;
3070 unsigned int opt_xfer_bytes =
3071 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3073 if (sdkp->opt_xfer_blocks == 0)
3074 return false;
3076 if (sdkp->opt_xfer_blocks > dev_max) {
3077 sd_first_printk(KERN_WARNING, sdkp,
3078 "Optimal transfer size %u logical blocks " \
3079 "> dev_max (%u logical blocks)\n",
3080 sdkp->opt_xfer_blocks, dev_max);
3081 return false;
3084 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3085 sd_first_printk(KERN_WARNING, sdkp,
3086 "Optimal transfer size %u logical blocks " \
3087 "> sd driver limit (%u logical blocks)\n",
3088 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3089 return false;
3092 if (opt_xfer_bytes < PAGE_SIZE) {
3093 sd_first_printk(KERN_WARNING, sdkp,
3094 "Optimal transfer size %u bytes < " \
3095 "PAGE_SIZE (%u bytes)\n",
3096 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3097 return false;
3100 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3101 sd_first_printk(KERN_WARNING, sdkp,
3102 "Optimal transfer size %u bytes not a " \
3103 "multiple of physical block size (%u bytes)\n",
3104 opt_xfer_bytes, sdkp->physical_block_size);
3105 return false;
3108 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3109 opt_xfer_bytes);
3110 return true;
3114 * sd_revalidate_disk - called the first time a new disk is seen,
3115 * performs disk spin up, read_capacity, etc.
3116 * @disk: struct gendisk we care about
3118 static int sd_revalidate_disk(struct gendisk *disk)
3120 struct scsi_disk *sdkp = scsi_disk(disk);
3121 struct scsi_device *sdp = sdkp->device;
3122 struct request_queue *q = sdkp->disk->queue;
3123 sector_t old_capacity = sdkp->capacity;
3124 unsigned char *buffer;
3125 unsigned int dev_max, rw_max;
3127 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3128 "sd_revalidate_disk\n"));
3131 * If the device is offline, don't try and read capacity or any
3132 * of the other niceties.
3134 if (!scsi_device_online(sdp))
3135 goto out;
3137 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3138 if (!buffer) {
3139 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3140 "allocation failure.\n");
3141 goto out;
3144 sd_spinup_disk(sdkp);
3147 * Without media there is no reason to ask; moreover, some devices
3148 * react badly if we do.
3150 if (sdkp->media_present) {
3151 sd_read_capacity(sdkp, buffer);
3154 * set the default to rotational. All non-rotational devices
3155 * support the block characteristics VPD page, which will
3156 * cause this to be updated correctly and any device which
3157 * doesn't support it should be treated as rotational.
3159 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3160 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3162 if (scsi_device_supports_vpd(sdp)) {
3163 sd_read_block_provisioning(sdkp);
3164 sd_read_block_limits(sdkp);
3165 sd_read_block_characteristics(sdkp);
3166 sd_zbc_read_zones(sdkp, buffer);
3169 sd_print_capacity(sdkp, old_capacity);
3171 sd_read_write_protect_flag(sdkp, buffer);
3172 sd_read_cache_type(sdkp, buffer);
3173 sd_read_app_tag_own(sdkp, buffer);
3174 sd_read_write_same(sdkp, buffer);
3175 sd_read_security(sdkp, buffer);
3179 * We now have all cache related info, determine how we deal
3180 * with flush requests.
3182 sd_set_flush_flag(sdkp);
3184 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3185 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3187 /* Some devices report a maximum block count for READ/WRITE requests. */
3188 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3189 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3191 if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3192 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3193 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3194 } else
3195 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3196 (sector_t)BLK_DEF_MAX_SECTORS);
3198 /* Do not exceed controller limit */
3199 rw_max = min(rw_max, queue_max_hw_sectors(q));
3202 * Only update max_sectors if previously unset or if the current value
3203 * exceeds the capabilities of the hardware.
3205 if (sdkp->first_scan ||
3206 q->limits.max_sectors > q->limits.max_dev_sectors ||
3207 q->limits.max_sectors > q->limits.max_hw_sectors)
3208 q->limits.max_sectors = rw_max;
3210 sdkp->first_scan = 0;
3212 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3213 sd_config_write_same(sdkp);
3214 kfree(buffer);
3216 out:
3217 return 0;
3221 * sd_unlock_native_capacity - unlock native capacity
3222 * @disk: struct gendisk to set capacity for
3224 * Block layer calls this function if it detects that partitions
3225 * on @disk reach beyond the end of the device. If the SCSI host
3226 * implements ->unlock_native_capacity() method, it's invoked to
3227 * give it a chance to adjust the device capacity.
3229 * CONTEXT:
3230 * Defined by block layer. Might sleep.
3232 static void sd_unlock_native_capacity(struct gendisk *disk)
3234 struct scsi_device *sdev = scsi_disk(disk)->device;
3236 if (sdev->host->hostt->unlock_native_capacity)
3237 sdev->host->hostt->unlock_native_capacity(sdev);
3241 * sd_format_disk_name - format disk name
3242 * @prefix: name prefix - ie. "sd" for SCSI disks
3243 * @index: index of the disk to format name for
3244 * @buf: output buffer
3245 * @buflen: length of the output buffer
3247 * SCSI disk names starts at sda. The 26th device is sdz and the
3248 * 27th is sdaa. The last one for two lettered suffix is sdzz
3249 * which is followed by sdaaa.
3251 * This is basically 26 base counting with one extra 'nil' entry
3252 * at the beginning from the second digit on and can be
3253 * determined using similar method as 26 base conversion with the
3254 * index shifted -1 after each digit is computed.
3256 * CONTEXT:
3257 * Don't care.
3259 * RETURNS:
3260 * 0 on success, -errno on failure.
3262 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3264 const int base = 'z' - 'a' + 1;
3265 char *begin = buf + strlen(prefix);
3266 char *end = buf + buflen;
3267 char *p;
3268 int unit;
3270 p = end - 1;
3271 *p = '\0';
3272 unit = base;
3273 do {
3274 if (p == begin)
3275 return -EINVAL;
3276 *--p = 'a' + (index % unit);
3277 index = (index / unit) - 1;
3278 } while (index >= 0);
3280 memmove(begin, p, end - p);
3281 memcpy(buf, prefix, strlen(prefix));
3283 return 0;
3287 * The asynchronous part of sd_probe
3289 static void sd_probe_async(void *data, async_cookie_t cookie)
3291 struct scsi_disk *sdkp = data;
3292 struct scsi_device *sdp;
3293 struct gendisk *gd;
3294 u32 index;
3295 struct device *dev;
3297 sdp = sdkp->device;
3298 gd = sdkp->disk;
3299 index = sdkp->index;
3300 dev = &sdp->sdev_gendev;
3302 gd->major = sd_major((index & 0xf0) >> 4);
3303 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3305 gd->fops = &sd_fops;
3306 gd->private_data = &sdkp->driver;
3307 gd->queue = sdkp->device->request_queue;
3309 /* defaults, until the device tells us otherwise */
3310 sdp->sector_size = 512;
3311 sdkp->capacity = 0;
3312 sdkp->media_present = 1;
3313 sdkp->write_prot = 0;
3314 sdkp->cache_override = 0;
3315 sdkp->WCE = 0;
3316 sdkp->RCD = 0;
3317 sdkp->ATO = 0;
3318 sdkp->first_scan = 1;
3319 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3321 sd_revalidate_disk(gd);
3323 gd->flags = GENHD_FL_EXT_DEVT;
3324 if (sdp->removable) {
3325 gd->flags |= GENHD_FL_REMOVABLE;
3326 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3329 blk_pm_runtime_init(sdp->request_queue, dev);
3330 device_add_disk(dev, gd, NULL);
3331 if (sdkp->capacity)
3332 sd_dif_config_host(sdkp);
3334 sd_revalidate_disk(gd);
3336 if (sdkp->security) {
3337 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3338 if (sdkp->opal_dev)
3339 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3342 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3343 sdp->removable ? "removable " : "");
3344 scsi_autopm_put_device(sdp);
3345 put_device(&sdkp->dev);
3349 * sd_probe - called during driver initialization and whenever a
3350 * new scsi device is attached to the system. It is called once
3351 * for each scsi device (not just disks) present.
3352 * @dev: pointer to device object
3354 * Returns 0 if successful (or not interested in this scsi device
3355 * (e.g. scanner)); 1 when there is an error.
3357 * Note: this function is invoked from the scsi mid-level.
3358 * This function sets up the mapping between a given
3359 * <host,channel,id,lun> (found in sdp) and new device name
3360 * (e.g. /dev/sda). More precisely it is the block device major
3361 * and minor number that is chosen here.
3363 * Assume sd_probe is not re-entrant (for time being)
3364 * Also think about sd_probe() and sd_remove() running coincidentally.
3366 static int sd_probe(struct device *dev)
3368 struct scsi_device *sdp = to_scsi_device(dev);
3369 struct scsi_disk *sdkp;
3370 struct gendisk *gd;
3371 int index;
3372 int error;
3374 scsi_autopm_get_device(sdp);
3375 error = -ENODEV;
3376 if (sdp->type != TYPE_DISK &&
3377 sdp->type != TYPE_ZBC &&
3378 sdp->type != TYPE_MOD &&
3379 sdp->type != TYPE_RBC)
3380 goto out;
3382 #ifndef CONFIG_BLK_DEV_ZONED
3383 if (sdp->type == TYPE_ZBC)
3384 goto out;
3385 #endif
3386 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3387 "sd_probe\n"));
3389 error = -ENOMEM;
3390 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3391 if (!sdkp)
3392 goto out;
3394 gd = alloc_disk(SD_MINORS);
3395 if (!gd)
3396 goto out_free;
3398 index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3399 if (index < 0) {
3400 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3401 goto out_put;
3404 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3405 if (error) {
3406 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3407 goto out_free_index;
3410 sdkp->device = sdp;
3411 sdkp->driver = &sd_template;
3412 sdkp->disk = gd;
3413 sdkp->index = index;
3414 atomic_set(&sdkp->openers, 0);
3415 atomic_set(&sdkp->device->ioerr_cnt, 0);
3417 if (!sdp->request_queue->rq_timeout) {
3418 if (sdp->type != TYPE_MOD)
3419 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3420 else
3421 blk_queue_rq_timeout(sdp->request_queue,
3422 SD_MOD_TIMEOUT);
3425 device_initialize(&sdkp->dev);
3426 sdkp->dev.parent = dev;
3427 sdkp->dev.class = &sd_disk_class;
3428 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3430 error = device_add(&sdkp->dev);
3431 if (error)
3432 goto out_free_index;
3434 get_device(dev);
3435 dev_set_drvdata(dev, sdkp);
3437 get_device(&sdkp->dev); /* prevent release before async_schedule */
3438 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3440 return 0;
3442 out_free_index:
3443 ida_free(&sd_index_ida, index);
3444 out_put:
3445 put_disk(gd);
3446 out_free:
3447 kfree(sdkp);
3448 out:
3449 scsi_autopm_put_device(sdp);
3450 return error;
3454 * sd_remove - called whenever a scsi disk (previously recognized by
3455 * sd_probe) is detached from the system. It is called (potentially
3456 * multiple times) during sd module unload.
3457 * @dev: pointer to device object
3459 * Note: this function is invoked from the scsi mid-level.
3460 * This function potentially frees up a device name (e.g. /dev/sdc)
3461 * that could be re-used by a subsequent sd_probe().
3462 * This function is not called when the built-in sd driver is "exit-ed".
3464 static int sd_remove(struct device *dev)
3466 struct scsi_disk *sdkp;
3467 dev_t devt;
3469 sdkp = dev_get_drvdata(dev);
3470 devt = disk_devt(sdkp->disk);
3471 scsi_autopm_get_device(sdkp->device);
3473 async_synchronize_full_domain(&scsi_sd_pm_domain);
3474 async_synchronize_full_domain(&scsi_sd_probe_domain);
3475 device_del(&sdkp->dev);
3476 del_gendisk(sdkp->disk);
3477 sd_shutdown(dev);
3479 free_opal_dev(sdkp->opal_dev);
3481 blk_register_region(devt, SD_MINORS, NULL,
3482 sd_default_probe, NULL, NULL);
3484 mutex_lock(&sd_ref_mutex);
3485 dev_set_drvdata(dev, NULL);
3486 put_device(&sdkp->dev);
3487 mutex_unlock(&sd_ref_mutex);
3489 return 0;
3493 * scsi_disk_release - Called to free the scsi_disk structure
3494 * @dev: pointer to embedded class device
3496 * sd_ref_mutex must be held entering this routine. Because it is
3497 * called on last put, you should always use the scsi_disk_get()
3498 * scsi_disk_put() helpers which manipulate the semaphore directly
3499 * and never do a direct put_device.
3501 static void scsi_disk_release(struct device *dev)
3503 struct scsi_disk *sdkp = to_scsi_disk(dev);
3504 struct gendisk *disk = sdkp->disk;
3505 struct request_queue *q = disk->queue;
3507 ida_free(&sd_index_ida, sdkp->index);
3510 * Wait until all requests that are in progress have completed.
3511 * This is necessary to avoid that e.g. scsi_end_request() crashes
3512 * due to clearing the disk->private_data pointer. Wait from inside
3513 * scsi_disk_release() instead of from sd_release() to avoid that
3514 * freezing and unfreezing the request queue affects user space I/O
3515 * in case multiple processes open a /dev/sd... node concurrently.
3517 blk_mq_freeze_queue(q);
3518 blk_mq_unfreeze_queue(q);
3520 disk->private_data = NULL;
3521 put_disk(disk);
3522 put_device(&sdkp->device->sdev_gendev);
3524 kfree(sdkp);
3527 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3529 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3530 struct scsi_sense_hdr sshdr;
3531 struct scsi_device *sdp = sdkp->device;
3532 int res;
3534 if (start)
3535 cmd[4] |= 1; /* START */
3537 if (sdp->start_stop_pwr_cond)
3538 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3540 if (!scsi_device_online(sdp))
3541 return -ENODEV;
3543 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3544 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3545 if (res) {
3546 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3547 if (driver_byte(res) == DRIVER_SENSE)
3548 sd_print_sense_hdr(sdkp, &sshdr);
3549 if (scsi_sense_valid(&sshdr) &&
3550 /* 0x3a is medium not present */
3551 sshdr.asc == 0x3a)
3552 res = 0;
3555 /* SCSI error codes must not go to the generic layer */
3556 if (res)
3557 return -EIO;
3559 return 0;
3563 * Send a SYNCHRONIZE CACHE instruction down to the device through
3564 * the normal SCSI command structure. Wait for the command to
3565 * complete.
3567 static void sd_shutdown(struct device *dev)
3569 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3571 if (!sdkp)
3572 return; /* this can happen */
3574 if (pm_runtime_suspended(dev))
3575 return;
3577 if (sdkp->WCE && sdkp->media_present) {
3578 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3579 sd_sync_cache(sdkp, NULL);
3582 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3583 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3584 sd_start_stop_device(sdkp, 0);
3588 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3590 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3591 struct scsi_sense_hdr sshdr;
3592 int ret = 0;
3594 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3595 return 0;
3597 if (sdkp->WCE && sdkp->media_present) {
3598 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3599 ret = sd_sync_cache(sdkp, &sshdr);
3601 if (ret) {
3602 /* ignore OFFLINE device */
3603 if (ret == -ENODEV)
3604 return 0;
3606 if (!scsi_sense_valid(&sshdr) ||
3607 sshdr.sense_key != ILLEGAL_REQUEST)
3608 return ret;
3611 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3612 * doesn't support sync. There's not much to do and
3613 * suspend shouldn't fail.
3615 ret = 0;
3619 if (sdkp->device->manage_start_stop) {
3620 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3621 /* an error is not worth aborting a system sleep */
3622 ret = sd_start_stop_device(sdkp, 0);
3623 if (ignore_stop_errors)
3624 ret = 0;
3627 return ret;
3630 static int sd_suspend_system(struct device *dev)
3632 return sd_suspend_common(dev, true);
3635 static int sd_suspend_runtime(struct device *dev)
3637 return sd_suspend_common(dev, false);
3640 static int sd_resume(struct device *dev)
3642 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3643 int ret;
3645 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3646 return 0;
3648 if (!sdkp->device->manage_start_stop)
3649 return 0;
3651 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3652 ret = sd_start_stop_device(sdkp, 1);
3653 if (!ret)
3654 opal_unlock_from_suspend(sdkp->opal_dev);
3655 return ret;
3659 * init_sd - entry point for this driver (both when built in or when
3660 * a module).
3662 * Note: this function registers this driver with the scsi mid-level.
3664 static int __init init_sd(void)
3666 int majors = 0, i, err;
3668 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3670 for (i = 0; i < SD_MAJORS; i++) {
3671 if (register_blkdev(sd_major(i), "sd") != 0)
3672 continue;
3673 majors++;
3674 blk_register_region(sd_major(i), SD_MINORS, NULL,
3675 sd_default_probe, NULL, NULL);
3678 if (!majors)
3679 return -ENODEV;
3681 err = class_register(&sd_disk_class);
3682 if (err)
3683 goto err_out;
3685 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3686 0, 0, NULL);
3687 if (!sd_cdb_cache) {
3688 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3689 err = -ENOMEM;
3690 goto err_out_class;
3693 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3694 if (!sd_cdb_pool) {
3695 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3696 err = -ENOMEM;
3697 goto err_out_cache;
3700 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3701 if (!sd_page_pool) {
3702 printk(KERN_ERR "sd: can't init discard page pool\n");
3703 err = -ENOMEM;
3704 goto err_out_ppool;
3707 err = scsi_register_driver(&sd_template.gendrv);
3708 if (err)
3709 goto err_out_driver;
3711 return 0;
3713 err_out_driver:
3714 mempool_destroy(sd_page_pool);
3716 err_out_ppool:
3717 mempool_destroy(sd_cdb_pool);
3719 err_out_cache:
3720 kmem_cache_destroy(sd_cdb_cache);
3722 err_out_class:
3723 class_unregister(&sd_disk_class);
3724 err_out:
3725 for (i = 0; i < SD_MAJORS; i++)
3726 unregister_blkdev(sd_major(i), "sd");
3727 return err;
3731 * exit_sd - exit point for this driver (when it is a module).
3733 * Note: this function unregisters this driver from the scsi mid-level.
3735 static void __exit exit_sd(void)
3737 int i;
3739 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3741 scsi_unregister_driver(&sd_template.gendrv);
3742 mempool_destroy(sd_cdb_pool);
3743 mempool_destroy(sd_page_pool);
3744 kmem_cache_destroy(sd_cdb_cache);
3746 class_unregister(&sd_disk_class);
3748 for (i = 0; i < SD_MAJORS; i++) {
3749 blk_unregister_region(sd_major(i), SD_MINORS);
3750 unregister_blkdev(sd_major(i), "sd");
3754 module_init(init_sd);
3755 module_exit(exit_sd);
3757 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3758 struct scsi_sense_hdr *sshdr)
3760 scsi_print_sense_hdr(sdkp->device,
3761 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3764 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3765 int result)
3767 const char *hb_string = scsi_hostbyte_string(result);
3768 const char *db_string = scsi_driverbyte_string(result);
3770 if (hb_string || db_string)
3771 sd_printk(KERN_INFO, sdkp,
3772 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3773 hb_string ? hb_string : "invalid",
3774 db_string ? db_string : "invalid");
3775 else
3776 sd_printk(KERN_INFO, sdkp,
3777 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3778 msg, host_byte(result), driver_byte(result));