2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
48 #include <asm/irq_regs.h>
50 static struct workqueue_struct
*perf_wq
;
52 struct remote_function_call
{
53 struct task_struct
*p
;
54 int (*func
)(void *info
);
59 static void remote_function(void *data
)
61 struct remote_function_call
*tfc
= data
;
62 struct task_struct
*p
= tfc
->p
;
66 if (task_cpu(p
) != smp_processor_id() || !task_curr(p
))
70 tfc
->ret
= tfc
->func(tfc
->info
);
74 * task_function_call - call a function on the cpu on which a task runs
75 * @p: the task to evaluate
76 * @func: the function to be called
77 * @info: the function call argument
79 * Calls the function @func when the task is currently running. This might
80 * be on the current CPU, which just calls the function directly
82 * returns: @func return value, or
83 * -ESRCH - when the process isn't running
84 * -EAGAIN - when the process moved away
87 task_function_call(struct task_struct
*p
, int (*func
) (void *info
), void *info
)
89 struct remote_function_call data
= {
93 .ret
= -ESRCH
, /* No such (running) process */
97 smp_call_function_single(task_cpu(p
), remote_function
, &data
, 1);
103 * cpu_function_call - call a function on the cpu
104 * @func: the function to be called
105 * @info: the function call argument
107 * Calls the function @func on the remote cpu.
109 * returns: @func return value or -ENXIO when the cpu is offline
111 static int cpu_function_call(int cpu
, int (*func
) (void *info
), void *info
)
113 struct remote_function_call data
= {
117 .ret
= -ENXIO
, /* No such CPU */
120 smp_call_function_single(cpu
, remote_function
, &data
, 1);
125 #define EVENT_OWNER_KERNEL ((void *) -1)
127 static bool is_kernel_event(struct perf_event
*event
)
129 return event
->owner
== EVENT_OWNER_KERNEL
;
132 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
133 PERF_FLAG_FD_OUTPUT |\
134 PERF_FLAG_PID_CGROUP |\
135 PERF_FLAG_FD_CLOEXEC)
138 * branch priv levels that need permission checks
140 #define PERF_SAMPLE_BRANCH_PERM_PLM \
141 (PERF_SAMPLE_BRANCH_KERNEL |\
142 PERF_SAMPLE_BRANCH_HV)
145 EVENT_FLEXIBLE
= 0x1,
147 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
151 * perf_sched_events : >0 events exist
152 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
154 struct static_key_deferred perf_sched_events __read_mostly
;
155 static DEFINE_PER_CPU(atomic_t
, perf_cgroup_events
);
156 static DEFINE_PER_CPU(atomic_t
, perf_branch_stack_events
);
158 static atomic_t nr_mmap_events __read_mostly
;
159 static atomic_t nr_comm_events __read_mostly
;
160 static atomic_t nr_task_events __read_mostly
;
161 static atomic_t nr_freq_events __read_mostly
;
163 static LIST_HEAD(pmus
);
164 static DEFINE_MUTEX(pmus_lock
);
165 static struct srcu_struct pmus_srcu
;
168 * perf event paranoia level:
169 * -1 - not paranoid at all
170 * 0 - disallow raw tracepoint access for unpriv
171 * 1 - disallow cpu events for unpriv
172 * 2 - disallow kernel profiling for unpriv
174 int sysctl_perf_event_paranoid __read_mostly
= 1;
176 /* Minimum for 512 kiB + 1 user control page */
177 int sysctl_perf_event_mlock __read_mostly
= 512 + (PAGE_SIZE
/ 1024); /* 'free' kiB per user */
180 * max perf event sample rate
182 #define DEFAULT_MAX_SAMPLE_RATE 100000
183 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
184 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
186 int sysctl_perf_event_sample_rate __read_mostly
= DEFAULT_MAX_SAMPLE_RATE
;
188 static int max_samples_per_tick __read_mostly
= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE
, HZ
);
189 static int perf_sample_period_ns __read_mostly
= DEFAULT_SAMPLE_PERIOD_NS
;
191 static int perf_sample_allowed_ns __read_mostly
=
192 DEFAULT_SAMPLE_PERIOD_NS
* DEFAULT_CPU_TIME_MAX_PERCENT
/ 100;
194 void update_perf_cpu_limits(void)
196 u64 tmp
= perf_sample_period_ns
;
198 tmp
*= sysctl_perf_cpu_time_max_percent
;
200 ACCESS_ONCE(perf_sample_allowed_ns
) = tmp
;
203 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
);
205 int perf_proc_update_handler(struct ctl_table
*table
, int write
,
206 void __user
*buffer
, size_t *lenp
,
209 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
214 max_samples_per_tick
= DIV_ROUND_UP(sysctl_perf_event_sample_rate
, HZ
);
215 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
216 update_perf_cpu_limits();
221 int sysctl_perf_cpu_time_max_percent __read_mostly
= DEFAULT_CPU_TIME_MAX_PERCENT
;
223 int perf_cpu_time_max_percent_handler(struct ctl_table
*table
, int write
,
224 void __user
*buffer
, size_t *lenp
,
227 int ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
232 update_perf_cpu_limits();
238 * perf samples are done in some very critical code paths (NMIs).
239 * If they take too much CPU time, the system can lock up and not
240 * get any real work done. This will drop the sample rate when
241 * we detect that events are taking too long.
243 #define NR_ACCUMULATED_SAMPLES 128
244 static DEFINE_PER_CPU(u64
, running_sample_length
);
246 static void perf_duration_warn(struct irq_work
*w
)
248 u64 allowed_ns
= ACCESS_ONCE(perf_sample_allowed_ns
);
249 u64 avg_local_sample_len
;
250 u64 local_samples_len
;
252 local_samples_len
= __this_cpu_read(running_sample_length
);
253 avg_local_sample_len
= local_samples_len
/NR_ACCUMULATED_SAMPLES
;
255 printk_ratelimited(KERN_WARNING
256 "perf interrupt took too long (%lld > %lld), lowering "
257 "kernel.perf_event_max_sample_rate to %d\n",
258 avg_local_sample_len
, allowed_ns
>> 1,
259 sysctl_perf_event_sample_rate
);
262 static DEFINE_IRQ_WORK(perf_duration_work
, perf_duration_warn
);
264 void perf_sample_event_took(u64 sample_len_ns
)
266 u64 allowed_ns
= ACCESS_ONCE(perf_sample_allowed_ns
);
267 u64 avg_local_sample_len
;
268 u64 local_samples_len
;
273 /* decay the counter by 1 average sample */
274 local_samples_len
= __this_cpu_read(running_sample_length
);
275 local_samples_len
-= local_samples_len
/NR_ACCUMULATED_SAMPLES
;
276 local_samples_len
+= sample_len_ns
;
277 __this_cpu_write(running_sample_length
, local_samples_len
);
280 * note: this will be biased artifically low until we have
281 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
282 * from having to maintain a count.
284 avg_local_sample_len
= local_samples_len
/NR_ACCUMULATED_SAMPLES
;
286 if (avg_local_sample_len
<= allowed_ns
)
289 if (max_samples_per_tick
<= 1)
292 max_samples_per_tick
= DIV_ROUND_UP(max_samples_per_tick
, 2);
293 sysctl_perf_event_sample_rate
= max_samples_per_tick
* HZ
;
294 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
296 update_perf_cpu_limits();
298 if (!irq_work_queue(&perf_duration_work
)) {
299 early_printk("perf interrupt took too long (%lld > %lld), lowering "
300 "kernel.perf_event_max_sample_rate to %d\n",
301 avg_local_sample_len
, allowed_ns
>> 1,
302 sysctl_perf_event_sample_rate
);
306 static atomic64_t perf_event_id
;
308 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
309 enum event_type_t event_type
);
311 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
312 enum event_type_t event_type
,
313 struct task_struct
*task
);
315 static void update_context_time(struct perf_event_context
*ctx
);
316 static u64
perf_event_time(struct perf_event
*event
);
318 void __weak
perf_event_print_debug(void) { }
320 extern __weak
const char *perf_pmu_name(void)
325 static inline u64
perf_clock(void)
327 return local_clock();
330 static inline struct perf_cpu_context
*
331 __get_cpu_context(struct perf_event_context
*ctx
)
333 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
336 static void perf_ctx_lock(struct perf_cpu_context
*cpuctx
,
337 struct perf_event_context
*ctx
)
339 raw_spin_lock(&cpuctx
->ctx
.lock
);
341 raw_spin_lock(&ctx
->lock
);
344 static void perf_ctx_unlock(struct perf_cpu_context
*cpuctx
,
345 struct perf_event_context
*ctx
)
348 raw_spin_unlock(&ctx
->lock
);
349 raw_spin_unlock(&cpuctx
->ctx
.lock
);
352 #ifdef CONFIG_CGROUP_PERF
355 * perf_cgroup_info keeps track of time_enabled for a cgroup.
356 * This is a per-cpu dynamically allocated data structure.
358 struct perf_cgroup_info
{
364 struct cgroup_subsys_state css
;
365 struct perf_cgroup_info __percpu
*info
;
369 * Must ensure cgroup is pinned (css_get) before calling
370 * this function. In other words, we cannot call this function
371 * if there is no cgroup event for the current CPU context.
373 static inline struct perf_cgroup
*
374 perf_cgroup_from_task(struct task_struct
*task
)
376 return container_of(task_css(task
, perf_event_cgrp_id
),
377 struct perf_cgroup
, css
);
381 perf_cgroup_match(struct perf_event
*event
)
383 struct perf_event_context
*ctx
= event
->ctx
;
384 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
386 /* @event doesn't care about cgroup */
390 /* wants specific cgroup scope but @cpuctx isn't associated with any */
395 * Cgroup scoping is recursive. An event enabled for a cgroup is
396 * also enabled for all its descendant cgroups. If @cpuctx's
397 * cgroup is a descendant of @event's (the test covers identity
398 * case), it's a match.
400 return cgroup_is_descendant(cpuctx
->cgrp
->css
.cgroup
,
401 event
->cgrp
->css
.cgroup
);
404 static inline void perf_detach_cgroup(struct perf_event
*event
)
406 css_put(&event
->cgrp
->css
);
410 static inline int is_cgroup_event(struct perf_event
*event
)
412 return event
->cgrp
!= NULL
;
415 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
417 struct perf_cgroup_info
*t
;
419 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
423 static inline void __update_cgrp_time(struct perf_cgroup
*cgrp
)
425 struct perf_cgroup_info
*info
;
430 info
= this_cpu_ptr(cgrp
->info
);
432 info
->time
+= now
- info
->timestamp
;
433 info
->timestamp
= now
;
436 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
438 struct perf_cgroup
*cgrp_out
= cpuctx
->cgrp
;
440 __update_cgrp_time(cgrp_out
);
443 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
445 struct perf_cgroup
*cgrp
;
448 * ensure we access cgroup data only when needed and
449 * when we know the cgroup is pinned (css_get)
451 if (!is_cgroup_event(event
))
454 cgrp
= perf_cgroup_from_task(current
);
456 * Do not update time when cgroup is not active
458 if (cgrp
== event
->cgrp
)
459 __update_cgrp_time(event
->cgrp
);
463 perf_cgroup_set_timestamp(struct task_struct
*task
,
464 struct perf_event_context
*ctx
)
466 struct perf_cgroup
*cgrp
;
467 struct perf_cgroup_info
*info
;
470 * ctx->lock held by caller
471 * ensure we do not access cgroup data
472 * unless we have the cgroup pinned (css_get)
474 if (!task
|| !ctx
->nr_cgroups
)
477 cgrp
= perf_cgroup_from_task(task
);
478 info
= this_cpu_ptr(cgrp
->info
);
479 info
->timestamp
= ctx
->timestamp
;
482 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
483 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
486 * reschedule events based on the cgroup constraint of task.
488 * mode SWOUT : schedule out everything
489 * mode SWIN : schedule in based on cgroup for next
491 void perf_cgroup_switch(struct task_struct
*task
, int mode
)
493 struct perf_cpu_context
*cpuctx
;
498 * disable interrupts to avoid geting nr_cgroup
499 * changes via __perf_event_disable(). Also
502 local_irq_save(flags
);
505 * we reschedule only in the presence of cgroup
506 * constrained events.
510 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
511 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
512 if (cpuctx
->unique_pmu
!= pmu
)
513 continue; /* ensure we process each cpuctx once */
516 * perf_cgroup_events says at least one
517 * context on this CPU has cgroup events.
519 * ctx->nr_cgroups reports the number of cgroup
520 * events for a context.
522 if (cpuctx
->ctx
.nr_cgroups
> 0) {
523 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
524 perf_pmu_disable(cpuctx
->ctx
.pmu
);
526 if (mode
& PERF_CGROUP_SWOUT
) {
527 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
529 * must not be done before ctxswout due
530 * to event_filter_match() in event_sched_out()
535 if (mode
& PERF_CGROUP_SWIN
) {
536 WARN_ON_ONCE(cpuctx
->cgrp
);
538 * set cgrp before ctxsw in to allow
539 * event_filter_match() to not have to pass
542 cpuctx
->cgrp
= perf_cgroup_from_task(task
);
543 cpu_ctx_sched_in(cpuctx
, EVENT_ALL
, task
);
545 perf_pmu_enable(cpuctx
->ctx
.pmu
);
546 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
552 local_irq_restore(flags
);
555 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
556 struct task_struct
*next
)
558 struct perf_cgroup
*cgrp1
;
559 struct perf_cgroup
*cgrp2
= NULL
;
562 * we come here when we know perf_cgroup_events > 0
564 cgrp1
= perf_cgroup_from_task(task
);
567 * next is NULL when called from perf_event_enable_on_exec()
568 * that will systematically cause a cgroup_switch()
571 cgrp2
= perf_cgroup_from_task(next
);
574 * only schedule out current cgroup events if we know
575 * that we are switching to a different cgroup. Otherwise,
576 * do no touch the cgroup events.
579 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
);
582 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
583 struct task_struct
*task
)
585 struct perf_cgroup
*cgrp1
;
586 struct perf_cgroup
*cgrp2
= NULL
;
589 * we come here when we know perf_cgroup_events > 0
591 cgrp1
= perf_cgroup_from_task(task
);
593 /* prev can never be NULL */
594 cgrp2
= perf_cgroup_from_task(prev
);
597 * only need to schedule in cgroup events if we are changing
598 * cgroup during ctxsw. Cgroup events were not scheduled
599 * out of ctxsw out if that was not the case.
602 perf_cgroup_switch(task
, PERF_CGROUP_SWIN
);
605 static inline int perf_cgroup_connect(int fd
, struct perf_event
*event
,
606 struct perf_event_attr
*attr
,
607 struct perf_event
*group_leader
)
609 struct perf_cgroup
*cgrp
;
610 struct cgroup_subsys_state
*css
;
611 struct fd f
= fdget(fd
);
617 css
= css_tryget_online_from_dir(f
.file
->f_dentry
,
618 &perf_event_cgrp_subsys
);
624 cgrp
= container_of(css
, struct perf_cgroup
, css
);
628 * all events in a group must monitor
629 * the same cgroup because a task belongs
630 * to only one perf cgroup at a time
632 if (group_leader
&& group_leader
->cgrp
!= cgrp
) {
633 perf_detach_cgroup(event
);
642 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
644 struct perf_cgroup_info
*t
;
645 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
646 event
->shadow_ctx_time
= now
- t
->timestamp
;
650 perf_cgroup_defer_enabled(struct perf_event
*event
)
653 * when the current task's perf cgroup does not match
654 * the event's, we need to remember to call the
655 * perf_mark_enable() function the first time a task with
656 * a matching perf cgroup is scheduled in.
658 if (is_cgroup_event(event
) && !perf_cgroup_match(event
))
659 event
->cgrp_defer_enabled
= 1;
663 perf_cgroup_mark_enabled(struct perf_event
*event
,
664 struct perf_event_context
*ctx
)
666 struct perf_event
*sub
;
667 u64 tstamp
= perf_event_time(event
);
669 if (!event
->cgrp_defer_enabled
)
672 event
->cgrp_defer_enabled
= 0;
674 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
675 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
676 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
) {
677 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
678 sub
->cgrp_defer_enabled
= 0;
682 #else /* !CONFIG_CGROUP_PERF */
685 perf_cgroup_match(struct perf_event
*event
)
690 static inline void perf_detach_cgroup(struct perf_event
*event
)
693 static inline int is_cgroup_event(struct perf_event
*event
)
698 static inline u64
perf_cgroup_event_cgrp_time(struct perf_event
*event
)
703 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
707 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
711 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
712 struct task_struct
*next
)
716 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
717 struct task_struct
*task
)
721 static inline int perf_cgroup_connect(pid_t pid
, struct perf_event
*event
,
722 struct perf_event_attr
*attr
,
723 struct perf_event
*group_leader
)
729 perf_cgroup_set_timestamp(struct task_struct
*task
,
730 struct perf_event_context
*ctx
)
735 perf_cgroup_switch(struct task_struct
*task
, struct task_struct
*next
)
740 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
744 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
750 perf_cgroup_defer_enabled(struct perf_event
*event
)
755 perf_cgroup_mark_enabled(struct perf_event
*event
,
756 struct perf_event_context
*ctx
)
762 * set default to be dependent on timer tick just
765 #define PERF_CPU_HRTIMER (1000 / HZ)
767 * function must be called with interrupts disbled
769 static enum hrtimer_restart
perf_cpu_hrtimer_handler(struct hrtimer
*hr
)
771 struct perf_cpu_context
*cpuctx
;
772 enum hrtimer_restart ret
= HRTIMER_NORESTART
;
775 WARN_ON(!irqs_disabled());
777 cpuctx
= container_of(hr
, struct perf_cpu_context
, hrtimer
);
779 rotations
= perf_rotate_context(cpuctx
);
782 * arm timer if needed
785 hrtimer_forward_now(hr
, cpuctx
->hrtimer_interval
);
786 ret
= HRTIMER_RESTART
;
792 /* CPU is going down */
793 void perf_cpu_hrtimer_cancel(int cpu
)
795 struct perf_cpu_context
*cpuctx
;
799 if (WARN_ON(cpu
!= smp_processor_id()))
802 local_irq_save(flags
);
806 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
807 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
809 if (pmu
->task_ctx_nr
== perf_sw_context
)
812 hrtimer_cancel(&cpuctx
->hrtimer
);
817 local_irq_restore(flags
);
820 static void __perf_cpu_hrtimer_init(struct perf_cpu_context
*cpuctx
, int cpu
)
822 struct hrtimer
*hr
= &cpuctx
->hrtimer
;
823 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
826 /* no multiplexing needed for SW PMU */
827 if (pmu
->task_ctx_nr
== perf_sw_context
)
831 * check default is sane, if not set then force to
832 * default interval (1/tick)
834 timer
= pmu
->hrtimer_interval_ms
;
836 timer
= pmu
->hrtimer_interval_ms
= PERF_CPU_HRTIMER
;
838 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* timer
);
840 hrtimer_init(hr
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_PINNED
);
841 hr
->function
= perf_cpu_hrtimer_handler
;
844 static void perf_cpu_hrtimer_restart(struct perf_cpu_context
*cpuctx
)
846 struct hrtimer
*hr
= &cpuctx
->hrtimer
;
847 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
850 if (pmu
->task_ctx_nr
== perf_sw_context
)
853 if (hrtimer_active(hr
))
856 if (!hrtimer_callback_running(hr
))
857 __hrtimer_start_range_ns(hr
, cpuctx
->hrtimer_interval
,
858 0, HRTIMER_MODE_REL_PINNED
, 0);
861 void perf_pmu_disable(struct pmu
*pmu
)
863 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
865 pmu
->pmu_disable(pmu
);
868 void perf_pmu_enable(struct pmu
*pmu
)
870 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
872 pmu
->pmu_enable(pmu
);
875 static DEFINE_PER_CPU(struct list_head
, rotation_list
);
878 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
879 * because they're strictly cpu affine and rotate_start is called with IRQs
880 * disabled, while rotate_context is called from IRQ context.
882 static void perf_pmu_rotate_start(struct pmu
*pmu
)
884 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
885 struct list_head
*head
= this_cpu_ptr(&rotation_list
);
887 WARN_ON(!irqs_disabled());
889 if (list_empty(&cpuctx
->rotation_list
))
890 list_add(&cpuctx
->rotation_list
, head
);
893 static void get_ctx(struct perf_event_context
*ctx
)
895 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
898 static void put_ctx(struct perf_event_context
*ctx
)
900 if (atomic_dec_and_test(&ctx
->refcount
)) {
902 put_ctx(ctx
->parent_ctx
);
904 put_task_struct(ctx
->task
);
905 kfree_rcu(ctx
, rcu_head
);
910 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
911 * perf_pmu_migrate_context() we need some magic.
913 * Those places that change perf_event::ctx will hold both
914 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
916 * Lock ordering is by mutex address. There is one other site where
917 * perf_event_context::mutex nests and that is put_event(). But remember that
918 * that is a parent<->child context relation, and migration does not affect
919 * children, therefore these two orderings should not interact.
921 * The change in perf_event::ctx does not affect children (as claimed above)
922 * because the sys_perf_event_open() case will install a new event and break
923 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
924 * concerned with cpuctx and that doesn't have children.
926 * The places that change perf_event::ctx will issue:
928 * perf_remove_from_context();
930 * perf_install_in_context();
932 * to affect the change. The remove_from_context() + synchronize_rcu() should
933 * quiesce the event, after which we can install it in the new location. This
934 * means that only external vectors (perf_fops, prctl) can perturb the event
935 * while in transit. Therefore all such accessors should also acquire
936 * perf_event_context::mutex to serialize against this.
938 * However; because event->ctx can change while we're waiting to acquire
939 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
943 * task_struct::perf_event_mutex
944 * perf_event_context::mutex
945 * perf_event_context::lock
946 * perf_event::child_mutex;
947 * perf_event::mmap_mutex
950 static struct perf_event_context
*perf_event_ctx_lock(struct perf_event
*event
)
952 struct perf_event_context
*ctx
;
956 ctx
= ACCESS_ONCE(event
->ctx
);
957 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
963 mutex_lock(&ctx
->mutex
);
964 if (event
->ctx
!= ctx
) {
965 mutex_unlock(&ctx
->mutex
);
973 static void perf_event_ctx_unlock(struct perf_event
*event
,
974 struct perf_event_context
*ctx
)
976 mutex_unlock(&ctx
->mutex
);
981 * This must be done under the ctx->lock, such as to serialize against
982 * context_equiv(), therefore we cannot call put_ctx() since that might end up
983 * calling scheduler related locks and ctx->lock nests inside those.
985 static __must_check
struct perf_event_context
*
986 unclone_ctx(struct perf_event_context
*ctx
)
988 struct perf_event_context
*parent_ctx
= ctx
->parent_ctx
;
990 lockdep_assert_held(&ctx
->lock
);
993 ctx
->parent_ctx
= NULL
;
999 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
1002 * only top level events have the pid namespace they were created in
1005 event
= event
->parent
;
1007 return task_tgid_nr_ns(p
, event
->ns
);
1010 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
1013 * only top level events have the pid namespace they were created in
1016 event
= event
->parent
;
1018 return task_pid_nr_ns(p
, event
->ns
);
1022 * If we inherit events we want to return the parent event id
1025 static u64
primary_event_id(struct perf_event
*event
)
1030 id
= event
->parent
->id
;
1036 * Get the perf_event_context for a task and lock it.
1037 * This has to cope with with the fact that until it is locked,
1038 * the context could get moved to another task.
1040 static struct perf_event_context
*
1041 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
1043 struct perf_event_context
*ctx
;
1047 * One of the few rules of preemptible RCU is that one cannot do
1048 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1049 * part of the read side critical section was preemptible -- see
1050 * rcu_read_unlock_special().
1052 * Since ctx->lock nests under rq->lock we must ensure the entire read
1053 * side critical section is non-preemptible.
1057 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
1060 * If this context is a clone of another, it might
1061 * get swapped for another underneath us by
1062 * perf_event_task_sched_out, though the
1063 * rcu_read_lock() protects us from any context
1064 * getting freed. Lock the context and check if it
1065 * got swapped before we could get the lock, and retry
1066 * if so. If we locked the right context, then it
1067 * can't get swapped on us any more.
1069 raw_spin_lock_irqsave(&ctx
->lock
, *flags
);
1070 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
1071 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
1077 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
1078 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
1088 * Get the context for a task and increment its pin_count so it
1089 * can't get swapped to another task. This also increments its
1090 * reference count so that the context can't get freed.
1092 static struct perf_event_context
*
1093 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
1095 struct perf_event_context
*ctx
;
1096 unsigned long flags
;
1098 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
1101 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1106 static void perf_unpin_context(struct perf_event_context
*ctx
)
1108 unsigned long flags
;
1110 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1112 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1116 * Update the record of the current time in a context.
1118 static void update_context_time(struct perf_event_context
*ctx
)
1120 u64 now
= perf_clock();
1122 ctx
->time
+= now
- ctx
->timestamp
;
1123 ctx
->timestamp
= now
;
1126 static u64
perf_event_time(struct perf_event
*event
)
1128 struct perf_event_context
*ctx
= event
->ctx
;
1130 if (is_cgroup_event(event
))
1131 return perf_cgroup_event_time(event
);
1133 return ctx
? ctx
->time
: 0;
1137 * Update the total_time_enabled and total_time_running fields for a event.
1138 * The caller of this function needs to hold the ctx->lock.
1140 static void update_event_times(struct perf_event
*event
)
1142 struct perf_event_context
*ctx
= event
->ctx
;
1145 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
1146 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
1149 * in cgroup mode, time_enabled represents
1150 * the time the event was enabled AND active
1151 * tasks were in the monitored cgroup. This is
1152 * independent of the activity of the context as
1153 * there may be a mix of cgroup and non-cgroup events.
1155 * That is why we treat cgroup events differently
1158 if (is_cgroup_event(event
))
1159 run_end
= perf_cgroup_event_time(event
);
1160 else if (ctx
->is_active
)
1161 run_end
= ctx
->time
;
1163 run_end
= event
->tstamp_stopped
;
1165 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
1167 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
1168 run_end
= event
->tstamp_stopped
;
1170 run_end
= perf_event_time(event
);
1172 event
->total_time_running
= run_end
- event
->tstamp_running
;
1177 * Update total_time_enabled and total_time_running for all events in a group.
1179 static void update_group_times(struct perf_event
*leader
)
1181 struct perf_event
*event
;
1183 update_event_times(leader
);
1184 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
1185 update_event_times(event
);
1188 static struct list_head
*
1189 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
1191 if (event
->attr
.pinned
)
1192 return &ctx
->pinned_groups
;
1194 return &ctx
->flexible_groups
;
1198 * Add a event from the lists for its context.
1199 * Must be called with ctx->mutex and ctx->lock held.
1202 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1204 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
1205 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
1208 * If we're a stand alone event or group leader, we go to the context
1209 * list, group events are kept attached to the group so that
1210 * perf_group_detach can, at all times, locate all siblings.
1212 if (event
->group_leader
== event
) {
1213 struct list_head
*list
;
1215 if (is_software_event(event
))
1216 event
->group_flags
|= PERF_GROUP_SOFTWARE
;
1218 list
= ctx_group_list(event
, ctx
);
1219 list_add_tail(&event
->group_entry
, list
);
1222 if (is_cgroup_event(event
))
1225 if (has_branch_stack(event
))
1226 ctx
->nr_branch_stack
++;
1228 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
1229 if (!ctx
->nr_events
)
1230 perf_pmu_rotate_start(ctx
->pmu
);
1232 if (event
->attr
.inherit_stat
)
1239 * Initialize event state based on the perf_event_attr::disabled.
1241 static inline void perf_event__state_init(struct perf_event
*event
)
1243 event
->state
= event
->attr
.disabled
? PERF_EVENT_STATE_OFF
:
1244 PERF_EVENT_STATE_INACTIVE
;
1248 * Called at perf_event creation and when events are attached/detached from a
1251 static void perf_event__read_size(struct perf_event
*event
)
1253 int entry
= sizeof(u64
); /* value */
1257 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1258 size
+= sizeof(u64
);
1260 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1261 size
+= sizeof(u64
);
1263 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1264 entry
+= sizeof(u64
);
1266 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1267 nr
+= event
->group_leader
->nr_siblings
;
1268 size
+= sizeof(u64
);
1272 event
->read_size
= size
;
1275 static void perf_event__header_size(struct perf_event
*event
)
1277 struct perf_sample_data
*data
;
1278 u64 sample_type
= event
->attr
.sample_type
;
1281 perf_event__read_size(event
);
1283 if (sample_type
& PERF_SAMPLE_IP
)
1284 size
+= sizeof(data
->ip
);
1286 if (sample_type
& PERF_SAMPLE_ADDR
)
1287 size
+= sizeof(data
->addr
);
1289 if (sample_type
& PERF_SAMPLE_PERIOD
)
1290 size
+= sizeof(data
->period
);
1292 if (sample_type
& PERF_SAMPLE_WEIGHT
)
1293 size
+= sizeof(data
->weight
);
1295 if (sample_type
& PERF_SAMPLE_READ
)
1296 size
+= event
->read_size
;
1298 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
1299 size
+= sizeof(data
->data_src
.val
);
1301 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
1302 size
+= sizeof(data
->txn
);
1304 event
->header_size
= size
;
1307 static void perf_event__id_header_size(struct perf_event
*event
)
1309 struct perf_sample_data
*data
;
1310 u64 sample_type
= event
->attr
.sample_type
;
1313 if (sample_type
& PERF_SAMPLE_TID
)
1314 size
+= sizeof(data
->tid_entry
);
1316 if (sample_type
& PERF_SAMPLE_TIME
)
1317 size
+= sizeof(data
->time
);
1319 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
1320 size
+= sizeof(data
->id
);
1322 if (sample_type
& PERF_SAMPLE_ID
)
1323 size
+= sizeof(data
->id
);
1325 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
1326 size
+= sizeof(data
->stream_id
);
1328 if (sample_type
& PERF_SAMPLE_CPU
)
1329 size
+= sizeof(data
->cpu_entry
);
1331 event
->id_header_size
= size
;
1334 static void perf_group_attach(struct perf_event
*event
)
1336 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
1339 * We can have double attach due to group movement in perf_event_open.
1341 if (event
->attach_state
& PERF_ATTACH_GROUP
)
1344 event
->attach_state
|= PERF_ATTACH_GROUP
;
1346 if (group_leader
== event
)
1349 if (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
&&
1350 !is_software_event(event
))
1351 group_leader
->group_flags
&= ~PERF_GROUP_SOFTWARE
;
1353 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
1354 group_leader
->nr_siblings
++;
1356 perf_event__header_size(group_leader
);
1358 list_for_each_entry(pos
, &group_leader
->sibling_list
, group_entry
)
1359 perf_event__header_size(pos
);
1363 * Remove a event from the lists for its context.
1364 * Must be called with ctx->mutex and ctx->lock held.
1367 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1369 struct perf_cpu_context
*cpuctx
;
1371 * We can have double detach due to exit/hot-unplug + close.
1373 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
1376 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
1378 if (is_cgroup_event(event
)) {
1380 cpuctx
= __get_cpu_context(ctx
);
1382 * if there are no more cgroup events
1383 * then cler cgrp to avoid stale pointer
1384 * in update_cgrp_time_from_cpuctx()
1386 if (!ctx
->nr_cgroups
)
1387 cpuctx
->cgrp
= NULL
;
1390 if (has_branch_stack(event
))
1391 ctx
->nr_branch_stack
--;
1394 if (event
->attr
.inherit_stat
)
1397 list_del_rcu(&event
->event_entry
);
1399 if (event
->group_leader
== event
)
1400 list_del_init(&event
->group_entry
);
1402 update_group_times(event
);
1405 * If event was in error state, then keep it
1406 * that way, otherwise bogus counts will be
1407 * returned on read(). The only way to get out
1408 * of error state is by explicit re-enabling
1411 if (event
->state
> PERF_EVENT_STATE_OFF
)
1412 event
->state
= PERF_EVENT_STATE_OFF
;
1417 static void perf_group_detach(struct perf_event
*event
)
1419 struct perf_event
*sibling
, *tmp
;
1420 struct list_head
*list
= NULL
;
1423 * We can have double detach due to exit/hot-unplug + close.
1425 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
1428 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
1431 * If this is a sibling, remove it from its group.
1433 if (event
->group_leader
!= event
) {
1434 list_del_init(&event
->group_entry
);
1435 event
->group_leader
->nr_siblings
--;
1439 if (!list_empty(&event
->group_entry
))
1440 list
= &event
->group_entry
;
1443 * If this was a group event with sibling events then
1444 * upgrade the siblings to singleton events by adding them
1445 * to whatever list we are on.
1447 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
1449 list_move_tail(&sibling
->group_entry
, list
);
1450 sibling
->group_leader
= sibling
;
1452 /* Inherit group flags from the previous leader */
1453 sibling
->group_flags
= event
->group_flags
;
1457 perf_event__header_size(event
->group_leader
);
1459 list_for_each_entry(tmp
, &event
->group_leader
->sibling_list
, group_entry
)
1460 perf_event__header_size(tmp
);
1464 * User event without the task.
1466 static bool is_orphaned_event(struct perf_event
*event
)
1468 return event
&& !is_kernel_event(event
) && !event
->owner
;
1472 * Event has a parent but parent's task finished and it's
1473 * alive only because of children holding refference.
1475 static bool is_orphaned_child(struct perf_event
*event
)
1477 return is_orphaned_event(event
->parent
);
1480 static void orphans_remove_work(struct work_struct
*work
);
1482 static void schedule_orphans_remove(struct perf_event_context
*ctx
)
1484 if (!ctx
->task
|| ctx
->orphans_remove_sched
|| !perf_wq
)
1487 if (queue_delayed_work(perf_wq
, &ctx
->orphans_remove
, 1)) {
1489 ctx
->orphans_remove_sched
= true;
1493 static int __init
perf_workqueue_init(void)
1495 perf_wq
= create_singlethread_workqueue("perf");
1496 WARN(!perf_wq
, "failed to create perf workqueue\n");
1497 return perf_wq
? 0 : -1;
1500 core_initcall(perf_workqueue_init
);
1503 event_filter_match(struct perf_event
*event
)
1505 return (event
->cpu
== -1 || event
->cpu
== smp_processor_id())
1506 && perf_cgroup_match(event
);
1510 event_sched_out(struct perf_event
*event
,
1511 struct perf_cpu_context
*cpuctx
,
1512 struct perf_event_context
*ctx
)
1514 u64 tstamp
= perf_event_time(event
);
1517 * An event which could not be activated because of
1518 * filter mismatch still needs to have its timings
1519 * maintained, otherwise bogus information is return
1520 * via read() for time_enabled, time_running:
1522 if (event
->state
== PERF_EVENT_STATE_INACTIVE
1523 && !event_filter_match(event
)) {
1524 delta
= tstamp
- event
->tstamp_stopped
;
1525 event
->tstamp_running
+= delta
;
1526 event
->tstamp_stopped
= tstamp
;
1529 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1532 perf_pmu_disable(event
->pmu
);
1534 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1535 if (event
->pending_disable
) {
1536 event
->pending_disable
= 0;
1537 event
->state
= PERF_EVENT_STATE_OFF
;
1539 event
->tstamp_stopped
= tstamp
;
1540 event
->pmu
->del(event
, 0);
1543 if (!is_software_event(event
))
1544 cpuctx
->active_oncpu
--;
1546 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
1548 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
1549 cpuctx
->exclusive
= 0;
1551 if (is_orphaned_child(event
))
1552 schedule_orphans_remove(ctx
);
1554 perf_pmu_enable(event
->pmu
);
1558 group_sched_out(struct perf_event
*group_event
,
1559 struct perf_cpu_context
*cpuctx
,
1560 struct perf_event_context
*ctx
)
1562 struct perf_event
*event
;
1563 int state
= group_event
->state
;
1565 event_sched_out(group_event
, cpuctx
, ctx
);
1568 * Schedule out siblings (if any):
1570 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
1571 event_sched_out(event
, cpuctx
, ctx
);
1573 if (state
== PERF_EVENT_STATE_ACTIVE
&& group_event
->attr
.exclusive
)
1574 cpuctx
->exclusive
= 0;
1577 struct remove_event
{
1578 struct perf_event
*event
;
1583 * Cross CPU call to remove a performance event
1585 * We disable the event on the hardware level first. After that we
1586 * remove it from the context list.
1588 static int __perf_remove_from_context(void *info
)
1590 struct remove_event
*re
= info
;
1591 struct perf_event
*event
= re
->event
;
1592 struct perf_event_context
*ctx
= event
->ctx
;
1593 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1595 raw_spin_lock(&ctx
->lock
);
1596 event_sched_out(event
, cpuctx
, ctx
);
1597 if (re
->detach_group
)
1598 perf_group_detach(event
);
1599 list_del_event(event
, ctx
);
1600 if (!ctx
->nr_events
&& cpuctx
->task_ctx
== ctx
) {
1602 cpuctx
->task_ctx
= NULL
;
1604 raw_spin_unlock(&ctx
->lock
);
1611 * Remove the event from a task's (or a CPU's) list of events.
1613 * CPU events are removed with a smp call. For task events we only
1614 * call when the task is on a CPU.
1616 * If event->ctx is a cloned context, callers must make sure that
1617 * every task struct that event->ctx->task could possibly point to
1618 * remains valid. This is OK when called from perf_release since
1619 * that only calls us on the top-level context, which can't be a clone.
1620 * When called from perf_event_exit_task, it's OK because the
1621 * context has been detached from its task.
1623 static void perf_remove_from_context(struct perf_event
*event
, bool detach_group
)
1625 struct perf_event_context
*ctx
= event
->ctx
;
1626 struct task_struct
*task
= ctx
->task
;
1627 struct remove_event re
= {
1629 .detach_group
= detach_group
,
1632 lockdep_assert_held(&ctx
->mutex
);
1636 * Per cpu events are removed via an smp call. The removal can
1637 * fail if the CPU is currently offline, but in that case we
1638 * already called __perf_remove_from_context from
1639 * perf_event_exit_cpu.
1641 cpu_function_call(event
->cpu
, __perf_remove_from_context
, &re
);
1646 if (!task_function_call(task
, __perf_remove_from_context
, &re
))
1649 raw_spin_lock_irq(&ctx
->lock
);
1651 * If we failed to find a running task, but find the context active now
1652 * that we've acquired the ctx->lock, retry.
1654 if (ctx
->is_active
) {
1655 raw_spin_unlock_irq(&ctx
->lock
);
1657 * Reload the task pointer, it might have been changed by
1658 * a concurrent perf_event_context_sched_out().
1665 * Since the task isn't running, its safe to remove the event, us
1666 * holding the ctx->lock ensures the task won't get scheduled in.
1669 perf_group_detach(event
);
1670 list_del_event(event
, ctx
);
1671 raw_spin_unlock_irq(&ctx
->lock
);
1675 * Cross CPU call to disable a performance event
1677 int __perf_event_disable(void *info
)
1679 struct perf_event
*event
= info
;
1680 struct perf_event_context
*ctx
= event
->ctx
;
1681 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1684 * If this is a per-task event, need to check whether this
1685 * event's task is the current task on this cpu.
1687 * Can trigger due to concurrent perf_event_context_sched_out()
1688 * flipping contexts around.
1690 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1693 raw_spin_lock(&ctx
->lock
);
1696 * If the event is on, turn it off.
1697 * If it is in error state, leave it in error state.
1699 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
1700 update_context_time(ctx
);
1701 update_cgrp_time_from_event(event
);
1702 update_group_times(event
);
1703 if (event
== event
->group_leader
)
1704 group_sched_out(event
, cpuctx
, ctx
);
1706 event_sched_out(event
, cpuctx
, ctx
);
1707 event
->state
= PERF_EVENT_STATE_OFF
;
1710 raw_spin_unlock(&ctx
->lock
);
1718 * If event->ctx is a cloned context, callers must make sure that
1719 * every task struct that event->ctx->task could possibly point to
1720 * remains valid. This condition is satisifed when called through
1721 * perf_event_for_each_child or perf_event_for_each because they
1722 * hold the top-level event's child_mutex, so any descendant that
1723 * goes to exit will block in sync_child_event.
1724 * When called from perf_pending_event it's OK because event->ctx
1725 * is the current context on this CPU and preemption is disabled,
1726 * hence we can't get into perf_event_task_sched_out for this context.
1728 static void _perf_event_disable(struct perf_event
*event
)
1730 struct perf_event_context
*ctx
= event
->ctx
;
1731 struct task_struct
*task
= ctx
->task
;
1735 * Disable the event on the cpu that it's on
1737 cpu_function_call(event
->cpu
, __perf_event_disable
, event
);
1742 if (!task_function_call(task
, __perf_event_disable
, event
))
1745 raw_spin_lock_irq(&ctx
->lock
);
1747 * If the event is still active, we need to retry the cross-call.
1749 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1750 raw_spin_unlock_irq(&ctx
->lock
);
1752 * Reload the task pointer, it might have been changed by
1753 * a concurrent perf_event_context_sched_out().
1760 * Since we have the lock this context can't be scheduled
1761 * in, so we can change the state safely.
1763 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1764 update_group_times(event
);
1765 event
->state
= PERF_EVENT_STATE_OFF
;
1767 raw_spin_unlock_irq(&ctx
->lock
);
1771 * Strictly speaking kernel users cannot create groups and therefore this
1772 * interface does not need the perf_event_ctx_lock() magic.
1774 void perf_event_disable(struct perf_event
*event
)
1776 struct perf_event_context
*ctx
;
1778 ctx
= perf_event_ctx_lock(event
);
1779 _perf_event_disable(event
);
1780 perf_event_ctx_unlock(event
, ctx
);
1782 EXPORT_SYMBOL_GPL(perf_event_disable
);
1784 static void perf_set_shadow_time(struct perf_event
*event
,
1785 struct perf_event_context
*ctx
,
1789 * use the correct time source for the time snapshot
1791 * We could get by without this by leveraging the
1792 * fact that to get to this function, the caller
1793 * has most likely already called update_context_time()
1794 * and update_cgrp_time_xx() and thus both timestamp
1795 * are identical (or very close). Given that tstamp is,
1796 * already adjusted for cgroup, we could say that:
1797 * tstamp - ctx->timestamp
1799 * tstamp - cgrp->timestamp.
1801 * Then, in perf_output_read(), the calculation would
1802 * work with no changes because:
1803 * - event is guaranteed scheduled in
1804 * - no scheduled out in between
1805 * - thus the timestamp would be the same
1807 * But this is a bit hairy.
1809 * So instead, we have an explicit cgroup call to remain
1810 * within the time time source all along. We believe it
1811 * is cleaner and simpler to understand.
1813 if (is_cgroup_event(event
))
1814 perf_cgroup_set_shadow_time(event
, tstamp
);
1816 event
->shadow_ctx_time
= tstamp
- ctx
->timestamp
;
1819 #define MAX_INTERRUPTS (~0ULL)
1821 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1824 event_sched_in(struct perf_event
*event
,
1825 struct perf_cpu_context
*cpuctx
,
1826 struct perf_event_context
*ctx
)
1828 u64 tstamp
= perf_event_time(event
);
1831 lockdep_assert_held(&ctx
->lock
);
1833 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1836 event
->state
= PERF_EVENT_STATE_ACTIVE
;
1837 event
->oncpu
= smp_processor_id();
1840 * Unthrottle events, since we scheduled we might have missed several
1841 * ticks already, also for a heavily scheduling task there is little
1842 * guarantee it'll get a tick in a timely manner.
1844 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
1845 perf_log_throttle(event
, 1);
1846 event
->hw
.interrupts
= 0;
1850 * The new state must be visible before we turn it on in the hardware:
1854 perf_pmu_disable(event
->pmu
);
1856 if (event
->pmu
->add(event
, PERF_EF_START
)) {
1857 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1863 event
->tstamp_running
+= tstamp
- event
->tstamp_stopped
;
1865 perf_set_shadow_time(event
, ctx
, tstamp
);
1867 if (!is_software_event(event
))
1868 cpuctx
->active_oncpu
++;
1870 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
1873 if (event
->attr
.exclusive
)
1874 cpuctx
->exclusive
= 1;
1876 if (is_orphaned_child(event
))
1877 schedule_orphans_remove(ctx
);
1880 perf_pmu_enable(event
->pmu
);
1886 group_sched_in(struct perf_event
*group_event
,
1887 struct perf_cpu_context
*cpuctx
,
1888 struct perf_event_context
*ctx
)
1890 struct perf_event
*event
, *partial_group
= NULL
;
1891 struct pmu
*pmu
= ctx
->pmu
;
1892 u64 now
= ctx
->time
;
1893 bool simulate
= false;
1895 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
1898 pmu
->start_txn(pmu
);
1900 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
1901 pmu
->cancel_txn(pmu
);
1902 perf_cpu_hrtimer_restart(cpuctx
);
1907 * Schedule in siblings as one group (if any):
1909 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
1910 if (event_sched_in(event
, cpuctx
, ctx
)) {
1911 partial_group
= event
;
1916 if (!pmu
->commit_txn(pmu
))
1921 * Groups can be scheduled in as one unit only, so undo any
1922 * partial group before returning:
1923 * The events up to the failed event are scheduled out normally,
1924 * tstamp_stopped will be updated.
1926 * The failed events and the remaining siblings need to have
1927 * their timings updated as if they had gone thru event_sched_in()
1928 * and event_sched_out(). This is required to get consistent timings
1929 * across the group. This also takes care of the case where the group
1930 * could never be scheduled by ensuring tstamp_stopped is set to mark
1931 * the time the event was actually stopped, such that time delta
1932 * calculation in update_event_times() is correct.
1934 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
1935 if (event
== partial_group
)
1939 event
->tstamp_running
+= now
- event
->tstamp_stopped
;
1940 event
->tstamp_stopped
= now
;
1942 event_sched_out(event
, cpuctx
, ctx
);
1945 event_sched_out(group_event
, cpuctx
, ctx
);
1947 pmu
->cancel_txn(pmu
);
1949 perf_cpu_hrtimer_restart(cpuctx
);
1955 * Work out whether we can put this event group on the CPU now.
1957 static int group_can_go_on(struct perf_event
*event
,
1958 struct perf_cpu_context
*cpuctx
,
1962 * Groups consisting entirely of software events can always go on.
1964 if (event
->group_flags
& PERF_GROUP_SOFTWARE
)
1967 * If an exclusive group is already on, no other hardware
1970 if (cpuctx
->exclusive
)
1973 * If this group is exclusive and there are already
1974 * events on the CPU, it can't go on.
1976 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
1979 * Otherwise, try to add it if all previous groups were able
1985 static void add_event_to_ctx(struct perf_event
*event
,
1986 struct perf_event_context
*ctx
)
1988 u64 tstamp
= perf_event_time(event
);
1990 list_add_event(event
, ctx
);
1991 perf_group_attach(event
);
1992 event
->tstamp_enabled
= tstamp
;
1993 event
->tstamp_running
= tstamp
;
1994 event
->tstamp_stopped
= tstamp
;
1997 static void task_ctx_sched_out(struct perf_event_context
*ctx
);
1999 ctx_sched_in(struct perf_event_context
*ctx
,
2000 struct perf_cpu_context
*cpuctx
,
2001 enum event_type_t event_type
,
2002 struct task_struct
*task
);
2004 static void perf_event_sched_in(struct perf_cpu_context
*cpuctx
,
2005 struct perf_event_context
*ctx
,
2006 struct task_struct
*task
)
2008 cpu_ctx_sched_in(cpuctx
, EVENT_PINNED
, task
);
2010 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
, task
);
2011 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, task
);
2013 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
, task
);
2017 * Cross CPU call to install and enable a performance event
2019 * Must be called with ctx->mutex held
2021 static int __perf_install_in_context(void *info
)
2023 struct perf_event
*event
= info
;
2024 struct perf_event_context
*ctx
= event
->ctx
;
2025 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2026 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
2027 struct task_struct
*task
= current
;
2029 perf_ctx_lock(cpuctx
, task_ctx
);
2030 perf_pmu_disable(cpuctx
->ctx
.pmu
);
2033 * If there was an active task_ctx schedule it out.
2036 task_ctx_sched_out(task_ctx
);
2039 * If the context we're installing events in is not the
2040 * active task_ctx, flip them.
2042 if (ctx
->task
&& task_ctx
!= ctx
) {
2044 raw_spin_unlock(&task_ctx
->lock
);
2045 raw_spin_lock(&ctx
->lock
);
2050 cpuctx
->task_ctx
= task_ctx
;
2051 task
= task_ctx
->task
;
2054 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
2056 update_context_time(ctx
);
2058 * update cgrp time only if current cgrp
2059 * matches event->cgrp. Must be done before
2060 * calling add_event_to_ctx()
2062 update_cgrp_time_from_event(event
);
2064 add_event_to_ctx(event
, ctx
);
2067 * Schedule everything back in
2069 perf_event_sched_in(cpuctx
, task_ctx
, task
);
2071 perf_pmu_enable(cpuctx
->ctx
.pmu
);
2072 perf_ctx_unlock(cpuctx
, task_ctx
);
2078 * Attach a performance event to a context
2080 * First we add the event to the list with the hardware enable bit
2081 * in event->hw_config cleared.
2083 * If the event is attached to a task which is on a CPU we use a smp
2084 * call to enable it in the task context. The task might have been
2085 * scheduled away, but we check this in the smp call again.
2088 perf_install_in_context(struct perf_event_context
*ctx
,
2089 struct perf_event
*event
,
2092 struct task_struct
*task
= ctx
->task
;
2094 lockdep_assert_held(&ctx
->mutex
);
2097 if (event
->cpu
!= -1)
2102 * Per cpu events are installed via an smp call and
2103 * the install is always successful.
2105 cpu_function_call(cpu
, __perf_install_in_context
, event
);
2110 if (!task_function_call(task
, __perf_install_in_context
, event
))
2113 raw_spin_lock_irq(&ctx
->lock
);
2115 * If we failed to find a running task, but find the context active now
2116 * that we've acquired the ctx->lock, retry.
2118 if (ctx
->is_active
) {
2119 raw_spin_unlock_irq(&ctx
->lock
);
2121 * Reload the task pointer, it might have been changed by
2122 * a concurrent perf_event_context_sched_out().
2129 * Since the task isn't running, its safe to add the event, us holding
2130 * the ctx->lock ensures the task won't get scheduled in.
2132 add_event_to_ctx(event
, ctx
);
2133 raw_spin_unlock_irq(&ctx
->lock
);
2137 * Put a event into inactive state and update time fields.
2138 * Enabling the leader of a group effectively enables all
2139 * the group members that aren't explicitly disabled, so we
2140 * have to update their ->tstamp_enabled also.
2141 * Note: this works for group members as well as group leaders
2142 * since the non-leader members' sibling_lists will be empty.
2144 static void __perf_event_mark_enabled(struct perf_event
*event
)
2146 struct perf_event
*sub
;
2147 u64 tstamp
= perf_event_time(event
);
2149 event
->state
= PERF_EVENT_STATE_INACTIVE
;
2150 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
2151 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
2152 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
2153 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
2158 * Cross CPU call to enable a performance event
2160 static int __perf_event_enable(void *info
)
2162 struct perf_event
*event
= info
;
2163 struct perf_event_context
*ctx
= event
->ctx
;
2164 struct perf_event
*leader
= event
->group_leader
;
2165 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2169 * There's a time window between 'ctx->is_active' check
2170 * in perf_event_enable function and this place having:
2172 * - ctx->lock unlocked
2174 * where the task could be killed and 'ctx' deactivated
2175 * by perf_event_exit_task.
2177 if (!ctx
->is_active
)
2180 raw_spin_lock(&ctx
->lock
);
2181 update_context_time(ctx
);
2183 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
2187 * set current task's cgroup time reference point
2189 perf_cgroup_set_timestamp(current
, ctx
);
2191 __perf_event_mark_enabled(event
);
2193 if (!event_filter_match(event
)) {
2194 if (is_cgroup_event(event
))
2195 perf_cgroup_defer_enabled(event
);
2200 * If the event is in a group and isn't the group leader,
2201 * then don't put it on unless the group is on.
2203 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
2206 if (!group_can_go_on(event
, cpuctx
, 1)) {
2209 if (event
== leader
)
2210 err
= group_sched_in(event
, cpuctx
, ctx
);
2212 err
= event_sched_in(event
, cpuctx
, ctx
);
2217 * If this event can't go on and it's part of a
2218 * group, then the whole group has to come off.
2220 if (leader
!= event
) {
2221 group_sched_out(leader
, cpuctx
, ctx
);
2222 perf_cpu_hrtimer_restart(cpuctx
);
2224 if (leader
->attr
.pinned
) {
2225 update_group_times(leader
);
2226 leader
->state
= PERF_EVENT_STATE_ERROR
;
2231 raw_spin_unlock(&ctx
->lock
);
2239 * If event->ctx is a cloned context, callers must make sure that
2240 * every task struct that event->ctx->task could possibly point to
2241 * remains valid. This condition is satisfied when called through
2242 * perf_event_for_each_child or perf_event_for_each as described
2243 * for perf_event_disable.
2245 static void _perf_event_enable(struct perf_event
*event
)
2247 struct perf_event_context
*ctx
= event
->ctx
;
2248 struct task_struct
*task
= ctx
->task
;
2252 * Enable the event on the cpu that it's on
2254 cpu_function_call(event
->cpu
, __perf_event_enable
, event
);
2258 raw_spin_lock_irq(&ctx
->lock
);
2259 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
2263 * If the event is in error state, clear that first.
2264 * That way, if we see the event in error state below, we
2265 * know that it has gone back into error state, as distinct
2266 * from the task having been scheduled away before the
2267 * cross-call arrived.
2269 if (event
->state
== PERF_EVENT_STATE_ERROR
)
2270 event
->state
= PERF_EVENT_STATE_OFF
;
2273 if (!ctx
->is_active
) {
2274 __perf_event_mark_enabled(event
);
2278 raw_spin_unlock_irq(&ctx
->lock
);
2280 if (!task_function_call(task
, __perf_event_enable
, event
))
2283 raw_spin_lock_irq(&ctx
->lock
);
2286 * If the context is active and the event is still off,
2287 * we need to retry the cross-call.
2289 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
) {
2291 * task could have been flipped by a concurrent
2292 * perf_event_context_sched_out()
2299 raw_spin_unlock_irq(&ctx
->lock
);
2303 * See perf_event_disable();
2305 void perf_event_enable(struct perf_event
*event
)
2307 struct perf_event_context
*ctx
;
2309 ctx
= perf_event_ctx_lock(event
);
2310 _perf_event_enable(event
);
2311 perf_event_ctx_unlock(event
, ctx
);
2313 EXPORT_SYMBOL_GPL(perf_event_enable
);
2315 static int _perf_event_refresh(struct perf_event
*event
, int refresh
)
2318 * not supported on inherited events
2320 if (event
->attr
.inherit
|| !is_sampling_event(event
))
2323 atomic_add(refresh
, &event
->event_limit
);
2324 _perf_event_enable(event
);
2330 * See perf_event_disable()
2332 int perf_event_refresh(struct perf_event
*event
, int refresh
)
2334 struct perf_event_context
*ctx
;
2337 ctx
= perf_event_ctx_lock(event
);
2338 ret
= _perf_event_refresh(event
, refresh
);
2339 perf_event_ctx_unlock(event
, ctx
);
2343 EXPORT_SYMBOL_GPL(perf_event_refresh
);
2345 static void ctx_sched_out(struct perf_event_context
*ctx
,
2346 struct perf_cpu_context
*cpuctx
,
2347 enum event_type_t event_type
)
2349 struct perf_event
*event
;
2350 int is_active
= ctx
->is_active
;
2352 ctx
->is_active
&= ~event_type
;
2353 if (likely(!ctx
->nr_events
))
2356 update_context_time(ctx
);
2357 update_cgrp_time_from_cpuctx(cpuctx
);
2358 if (!ctx
->nr_active
)
2361 perf_pmu_disable(ctx
->pmu
);
2362 if ((is_active
& EVENT_PINNED
) && (event_type
& EVENT_PINNED
)) {
2363 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
2364 group_sched_out(event
, cpuctx
, ctx
);
2367 if ((is_active
& EVENT_FLEXIBLE
) && (event_type
& EVENT_FLEXIBLE
)) {
2368 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
2369 group_sched_out(event
, cpuctx
, ctx
);
2371 perf_pmu_enable(ctx
->pmu
);
2375 * Test whether two contexts are equivalent, i.e. whether they have both been
2376 * cloned from the same version of the same context.
2378 * Equivalence is measured using a generation number in the context that is
2379 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2380 * and list_del_event().
2382 static int context_equiv(struct perf_event_context
*ctx1
,
2383 struct perf_event_context
*ctx2
)
2385 lockdep_assert_held(&ctx1
->lock
);
2386 lockdep_assert_held(&ctx2
->lock
);
2388 /* Pinning disables the swap optimization */
2389 if (ctx1
->pin_count
|| ctx2
->pin_count
)
2392 /* If ctx1 is the parent of ctx2 */
2393 if (ctx1
== ctx2
->parent_ctx
&& ctx1
->generation
== ctx2
->parent_gen
)
2396 /* If ctx2 is the parent of ctx1 */
2397 if (ctx1
->parent_ctx
== ctx2
&& ctx1
->parent_gen
== ctx2
->generation
)
2401 * If ctx1 and ctx2 have the same parent; we flatten the parent
2402 * hierarchy, see perf_event_init_context().
2404 if (ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
&&
2405 ctx1
->parent_gen
== ctx2
->parent_gen
)
2412 static void __perf_event_sync_stat(struct perf_event
*event
,
2413 struct perf_event
*next_event
)
2417 if (!event
->attr
.inherit_stat
)
2421 * Update the event value, we cannot use perf_event_read()
2422 * because we're in the middle of a context switch and have IRQs
2423 * disabled, which upsets smp_call_function_single(), however
2424 * we know the event must be on the current CPU, therefore we
2425 * don't need to use it.
2427 switch (event
->state
) {
2428 case PERF_EVENT_STATE_ACTIVE
:
2429 event
->pmu
->read(event
);
2432 case PERF_EVENT_STATE_INACTIVE
:
2433 update_event_times(event
);
2441 * In order to keep per-task stats reliable we need to flip the event
2442 * values when we flip the contexts.
2444 value
= local64_read(&next_event
->count
);
2445 value
= local64_xchg(&event
->count
, value
);
2446 local64_set(&next_event
->count
, value
);
2448 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
2449 swap(event
->total_time_running
, next_event
->total_time_running
);
2452 * Since we swizzled the values, update the user visible data too.
2454 perf_event_update_userpage(event
);
2455 perf_event_update_userpage(next_event
);
2458 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
2459 struct perf_event_context
*next_ctx
)
2461 struct perf_event
*event
, *next_event
;
2466 update_context_time(ctx
);
2468 event
= list_first_entry(&ctx
->event_list
,
2469 struct perf_event
, event_entry
);
2471 next_event
= list_first_entry(&next_ctx
->event_list
,
2472 struct perf_event
, event_entry
);
2474 while (&event
->event_entry
!= &ctx
->event_list
&&
2475 &next_event
->event_entry
!= &next_ctx
->event_list
) {
2477 __perf_event_sync_stat(event
, next_event
);
2479 event
= list_next_entry(event
, event_entry
);
2480 next_event
= list_next_entry(next_event
, event_entry
);
2484 static void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
2485 struct task_struct
*next
)
2487 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
2488 struct perf_event_context
*next_ctx
;
2489 struct perf_event_context
*parent
, *next_parent
;
2490 struct perf_cpu_context
*cpuctx
;
2496 cpuctx
= __get_cpu_context(ctx
);
2497 if (!cpuctx
->task_ctx
)
2501 next_ctx
= next
->perf_event_ctxp
[ctxn
];
2505 parent
= rcu_dereference(ctx
->parent_ctx
);
2506 next_parent
= rcu_dereference(next_ctx
->parent_ctx
);
2508 /* If neither context have a parent context; they cannot be clones. */
2509 if (!parent
&& !next_parent
)
2512 if (next_parent
== ctx
|| next_ctx
== parent
|| next_parent
== parent
) {
2514 * Looks like the two contexts are clones, so we might be
2515 * able to optimize the context switch. We lock both
2516 * contexts and check that they are clones under the
2517 * lock (including re-checking that neither has been
2518 * uncloned in the meantime). It doesn't matter which
2519 * order we take the locks because no other cpu could
2520 * be trying to lock both of these tasks.
2522 raw_spin_lock(&ctx
->lock
);
2523 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
2524 if (context_equiv(ctx
, next_ctx
)) {
2526 * XXX do we need a memory barrier of sorts
2527 * wrt to rcu_dereference() of perf_event_ctxp
2529 task
->perf_event_ctxp
[ctxn
] = next_ctx
;
2530 next
->perf_event_ctxp
[ctxn
] = ctx
;
2532 next_ctx
->task
= task
;
2535 perf_event_sync_stat(ctx
, next_ctx
);
2537 raw_spin_unlock(&next_ctx
->lock
);
2538 raw_spin_unlock(&ctx
->lock
);
2544 raw_spin_lock(&ctx
->lock
);
2545 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
2546 cpuctx
->task_ctx
= NULL
;
2547 raw_spin_unlock(&ctx
->lock
);
2551 #define for_each_task_context_nr(ctxn) \
2552 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2555 * Called from scheduler to remove the events of the current task,
2556 * with interrupts disabled.
2558 * We stop each event and update the event value in event->count.
2560 * This does not protect us against NMI, but disable()
2561 * sets the disabled bit in the control field of event _before_
2562 * accessing the event control register. If a NMI hits, then it will
2563 * not restart the event.
2565 void __perf_event_task_sched_out(struct task_struct
*task
,
2566 struct task_struct
*next
)
2570 for_each_task_context_nr(ctxn
)
2571 perf_event_context_sched_out(task
, ctxn
, next
);
2574 * if cgroup events exist on this CPU, then we need
2575 * to check if we have to switch out PMU state.
2576 * cgroup event are system-wide mode only
2578 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
2579 perf_cgroup_sched_out(task
, next
);
2582 static void task_ctx_sched_out(struct perf_event_context
*ctx
)
2584 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2586 if (!cpuctx
->task_ctx
)
2589 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
2592 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
2593 cpuctx
->task_ctx
= NULL
;
2597 * Called with IRQs disabled
2599 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2600 enum event_type_t event_type
)
2602 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
2606 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
2607 struct perf_cpu_context
*cpuctx
)
2609 struct perf_event
*event
;
2611 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
2612 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2614 if (!event_filter_match(event
))
2617 /* may need to reset tstamp_enabled */
2618 if (is_cgroup_event(event
))
2619 perf_cgroup_mark_enabled(event
, ctx
);
2621 if (group_can_go_on(event
, cpuctx
, 1))
2622 group_sched_in(event
, cpuctx
, ctx
);
2625 * If this pinned group hasn't been scheduled,
2626 * put it in error state.
2628 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
2629 update_group_times(event
);
2630 event
->state
= PERF_EVENT_STATE_ERROR
;
2636 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
2637 struct perf_cpu_context
*cpuctx
)
2639 struct perf_event
*event
;
2642 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
2643 /* Ignore events in OFF or ERROR state */
2644 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2647 * Listen to the 'cpu' scheduling filter constraint
2650 if (!event_filter_match(event
))
2653 /* may need to reset tstamp_enabled */
2654 if (is_cgroup_event(event
))
2655 perf_cgroup_mark_enabled(event
, ctx
);
2657 if (group_can_go_on(event
, cpuctx
, can_add_hw
)) {
2658 if (group_sched_in(event
, cpuctx
, ctx
))
2665 ctx_sched_in(struct perf_event_context
*ctx
,
2666 struct perf_cpu_context
*cpuctx
,
2667 enum event_type_t event_type
,
2668 struct task_struct
*task
)
2671 int is_active
= ctx
->is_active
;
2673 ctx
->is_active
|= event_type
;
2674 if (likely(!ctx
->nr_events
))
2678 ctx
->timestamp
= now
;
2679 perf_cgroup_set_timestamp(task
, ctx
);
2681 * First go through the list and put on any pinned groups
2682 * in order to give them the best chance of going on.
2684 if (!(is_active
& EVENT_PINNED
) && (event_type
& EVENT_PINNED
))
2685 ctx_pinned_sched_in(ctx
, cpuctx
);
2687 /* Then walk through the lower prio flexible groups */
2688 if (!(is_active
& EVENT_FLEXIBLE
) && (event_type
& EVENT_FLEXIBLE
))
2689 ctx_flexible_sched_in(ctx
, cpuctx
);
2692 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
2693 enum event_type_t event_type
,
2694 struct task_struct
*task
)
2696 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
2698 ctx_sched_in(ctx
, cpuctx
, event_type
, task
);
2701 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
2702 struct task_struct
*task
)
2704 struct perf_cpu_context
*cpuctx
;
2706 cpuctx
= __get_cpu_context(ctx
);
2707 if (cpuctx
->task_ctx
== ctx
)
2710 perf_ctx_lock(cpuctx
, ctx
);
2711 perf_pmu_disable(ctx
->pmu
);
2713 * We want to keep the following priority order:
2714 * cpu pinned (that don't need to move), task pinned,
2715 * cpu flexible, task flexible.
2717 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2720 cpuctx
->task_ctx
= ctx
;
2722 perf_event_sched_in(cpuctx
, cpuctx
->task_ctx
, task
);
2724 perf_pmu_enable(ctx
->pmu
);
2725 perf_ctx_unlock(cpuctx
, ctx
);
2728 * Since these rotations are per-cpu, we need to ensure the
2729 * cpu-context we got scheduled on is actually rotating.
2731 perf_pmu_rotate_start(ctx
->pmu
);
2735 * When sampling the branck stack in system-wide, it may be necessary
2736 * to flush the stack on context switch. This happens when the branch
2737 * stack does not tag its entries with the pid of the current task.
2738 * Otherwise it becomes impossible to associate a branch entry with a
2739 * task. This ambiguity is more likely to appear when the branch stack
2740 * supports priv level filtering and the user sets it to monitor only
2741 * at the user level (which could be a useful measurement in system-wide
2742 * mode). In that case, the risk is high of having a branch stack with
2743 * branch from multiple tasks. Flushing may mean dropping the existing
2744 * entries or stashing them somewhere in the PMU specific code layer.
2746 * This function provides the context switch callback to the lower code
2747 * layer. It is invoked ONLY when there is at least one system-wide context
2748 * with at least one active event using taken branch sampling.
2750 static void perf_branch_stack_sched_in(struct task_struct
*prev
,
2751 struct task_struct
*task
)
2753 struct perf_cpu_context
*cpuctx
;
2755 unsigned long flags
;
2757 /* no need to flush branch stack if not changing task */
2761 local_irq_save(flags
);
2765 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
2766 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
2769 * check if the context has at least one
2770 * event using PERF_SAMPLE_BRANCH_STACK
2772 if (cpuctx
->ctx
.nr_branch_stack
> 0
2773 && pmu
->flush_branch_stack
) {
2775 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
2777 perf_pmu_disable(pmu
);
2779 pmu
->flush_branch_stack();
2781 perf_pmu_enable(pmu
);
2783 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
2789 local_irq_restore(flags
);
2793 * Called from scheduler to add the events of the current task
2794 * with interrupts disabled.
2796 * We restore the event value and then enable it.
2798 * This does not protect us against NMI, but enable()
2799 * sets the enabled bit in the control field of event _before_
2800 * accessing the event control register. If a NMI hits, then it will
2801 * keep the event running.
2803 void __perf_event_task_sched_in(struct task_struct
*prev
,
2804 struct task_struct
*task
)
2806 struct perf_event_context
*ctx
;
2809 for_each_task_context_nr(ctxn
) {
2810 ctx
= task
->perf_event_ctxp
[ctxn
];
2814 perf_event_context_sched_in(ctx
, task
);
2817 * if cgroup events exist on this CPU, then we need
2818 * to check if we have to switch in PMU state.
2819 * cgroup event are system-wide mode only
2821 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
2822 perf_cgroup_sched_in(prev
, task
);
2824 /* check for system-wide branch_stack events */
2825 if (atomic_read(this_cpu_ptr(&perf_branch_stack_events
)))
2826 perf_branch_stack_sched_in(prev
, task
);
2829 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
2831 u64 frequency
= event
->attr
.sample_freq
;
2832 u64 sec
= NSEC_PER_SEC
;
2833 u64 divisor
, dividend
;
2835 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
2837 count_fls
= fls64(count
);
2838 nsec_fls
= fls64(nsec
);
2839 frequency_fls
= fls64(frequency
);
2843 * We got @count in @nsec, with a target of sample_freq HZ
2844 * the target period becomes:
2847 * period = -------------------
2848 * @nsec * sample_freq
2853 * Reduce accuracy by one bit such that @a and @b converge
2854 * to a similar magnitude.
2856 #define REDUCE_FLS(a, b) \
2858 if (a##_fls > b##_fls) { \
2868 * Reduce accuracy until either term fits in a u64, then proceed with
2869 * the other, so that finally we can do a u64/u64 division.
2871 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
2872 REDUCE_FLS(nsec
, frequency
);
2873 REDUCE_FLS(sec
, count
);
2876 if (count_fls
+ sec_fls
> 64) {
2877 divisor
= nsec
* frequency
;
2879 while (count_fls
+ sec_fls
> 64) {
2880 REDUCE_FLS(count
, sec
);
2884 dividend
= count
* sec
;
2886 dividend
= count
* sec
;
2888 while (nsec_fls
+ frequency_fls
> 64) {
2889 REDUCE_FLS(nsec
, frequency
);
2893 divisor
= nsec
* frequency
;
2899 return div64_u64(dividend
, divisor
);
2902 static DEFINE_PER_CPU(int, perf_throttled_count
);
2903 static DEFINE_PER_CPU(u64
, perf_throttled_seq
);
2905 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
, bool disable
)
2907 struct hw_perf_event
*hwc
= &event
->hw
;
2908 s64 period
, sample_period
;
2911 period
= perf_calculate_period(event
, nsec
, count
);
2913 delta
= (s64
)(period
- hwc
->sample_period
);
2914 delta
= (delta
+ 7) / 8; /* low pass filter */
2916 sample_period
= hwc
->sample_period
+ delta
;
2921 hwc
->sample_period
= sample_period
;
2923 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
2925 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2927 local64_set(&hwc
->period_left
, 0);
2930 event
->pmu
->start(event
, PERF_EF_RELOAD
);
2935 * combine freq adjustment with unthrottling to avoid two passes over the
2936 * events. At the same time, make sure, having freq events does not change
2937 * the rate of unthrottling as that would introduce bias.
2939 static void perf_adjust_freq_unthr_context(struct perf_event_context
*ctx
,
2942 struct perf_event
*event
;
2943 struct hw_perf_event
*hwc
;
2944 u64 now
, period
= TICK_NSEC
;
2948 * only need to iterate over all events iff:
2949 * - context have events in frequency mode (needs freq adjust)
2950 * - there are events to unthrottle on this cpu
2952 if (!(ctx
->nr_freq
|| needs_unthr
))
2955 raw_spin_lock(&ctx
->lock
);
2956 perf_pmu_disable(ctx
->pmu
);
2958 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
2959 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2962 if (!event_filter_match(event
))
2965 perf_pmu_disable(event
->pmu
);
2969 if (hwc
->interrupts
== MAX_INTERRUPTS
) {
2970 hwc
->interrupts
= 0;
2971 perf_log_throttle(event
, 1);
2972 event
->pmu
->start(event
, 0);
2975 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
2979 * stop the event and update event->count
2981 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2983 now
= local64_read(&event
->count
);
2984 delta
= now
- hwc
->freq_count_stamp
;
2985 hwc
->freq_count_stamp
= now
;
2989 * reload only if value has changed
2990 * we have stopped the event so tell that
2991 * to perf_adjust_period() to avoid stopping it
2995 perf_adjust_period(event
, period
, delta
, false);
2997 event
->pmu
->start(event
, delta
> 0 ? PERF_EF_RELOAD
: 0);
2999 perf_pmu_enable(event
->pmu
);
3002 perf_pmu_enable(ctx
->pmu
);
3003 raw_spin_unlock(&ctx
->lock
);
3007 * Round-robin a context's events:
3009 static void rotate_ctx(struct perf_event_context
*ctx
)
3012 * Rotate the first entry last of non-pinned groups. Rotation might be
3013 * disabled by the inheritance code.
3015 if (!ctx
->rotate_disable
)
3016 list_rotate_left(&ctx
->flexible_groups
);
3020 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
3021 * because they're strictly cpu affine and rotate_start is called with IRQs
3022 * disabled, while rotate_context is called from IRQ context.
3024 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
)
3026 struct perf_event_context
*ctx
= NULL
;
3027 int rotate
= 0, remove
= 1;
3029 if (cpuctx
->ctx
.nr_events
) {
3031 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
3035 ctx
= cpuctx
->task_ctx
;
3036 if (ctx
&& ctx
->nr_events
) {
3038 if (ctx
->nr_events
!= ctx
->nr_active
)
3045 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
3046 perf_pmu_disable(cpuctx
->ctx
.pmu
);
3048 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
3050 ctx_sched_out(ctx
, cpuctx
, EVENT_FLEXIBLE
);
3052 rotate_ctx(&cpuctx
->ctx
);
3056 perf_event_sched_in(cpuctx
, ctx
, current
);
3058 perf_pmu_enable(cpuctx
->ctx
.pmu
);
3059 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
3062 list_del_init(&cpuctx
->rotation_list
);
3067 #ifdef CONFIG_NO_HZ_FULL
3068 bool perf_event_can_stop_tick(void)
3070 if (atomic_read(&nr_freq_events
) ||
3071 __this_cpu_read(perf_throttled_count
))
3078 void perf_event_task_tick(void)
3080 struct list_head
*head
= this_cpu_ptr(&rotation_list
);
3081 struct perf_cpu_context
*cpuctx
, *tmp
;
3082 struct perf_event_context
*ctx
;
3085 WARN_ON(!irqs_disabled());
3087 __this_cpu_inc(perf_throttled_seq
);
3088 throttled
= __this_cpu_xchg(perf_throttled_count
, 0);
3090 list_for_each_entry_safe(cpuctx
, tmp
, head
, rotation_list
) {
3092 perf_adjust_freq_unthr_context(ctx
, throttled
);
3094 ctx
= cpuctx
->task_ctx
;
3096 perf_adjust_freq_unthr_context(ctx
, throttled
);
3100 static int event_enable_on_exec(struct perf_event
*event
,
3101 struct perf_event_context
*ctx
)
3103 if (!event
->attr
.enable_on_exec
)
3106 event
->attr
.enable_on_exec
= 0;
3107 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
3110 __perf_event_mark_enabled(event
);
3116 * Enable all of a task's events that have been marked enable-on-exec.
3117 * This expects task == current.
3119 static void perf_event_enable_on_exec(struct perf_event_context
*ctx
)
3121 struct perf_event_context
*clone_ctx
= NULL
;
3122 struct perf_event
*event
;
3123 unsigned long flags
;
3127 local_irq_save(flags
);
3128 if (!ctx
|| !ctx
->nr_events
)
3132 * We must ctxsw out cgroup events to avoid conflict
3133 * when invoking perf_task_event_sched_in() later on
3134 * in this function. Otherwise we end up trying to
3135 * ctxswin cgroup events which are already scheduled
3138 perf_cgroup_sched_out(current
, NULL
);
3140 raw_spin_lock(&ctx
->lock
);
3141 task_ctx_sched_out(ctx
);
3143 list_for_each_entry(event
, &ctx
->event_list
, event_entry
) {
3144 ret
= event_enable_on_exec(event
, ctx
);
3150 * Unclone this context if we enabled any event.
3153 clone_ctx
= unclone_ctx(ctx
);
3155 raw_spin_unlock(&ctx
->lock
);
3158 * Also calls ctxswin for cgroup events, if any:
3160 perf_event_context_sched_in(ctx
, ctx
->task
);
3162 local_irq_restore(flags
);
3168 void perf_event_exec(void)
3170 struct perf_event_context
*ctx
;
3174 for_each_task_context_nr(ctxn
) {
3175 ctx
= current
->perf_event_ctxp
[ctxn
];
3179 perf_event_enable_on_exec(ctx
);
3185 * Cross CPU call to read the hardware event
3187 static void __perf_event_read(void *info
)
3189 struct perf_event
*event
= info
;
3190 struct perf_event_context
*ctx
= event
->ctx
;
3191 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
3194 * If this is a task context, we need to check whether it is
3195 * the current task context of this cpu. If not it has been
3196 * scheduled out before the smp call arrived. In that case
3197 * event->count would have been updated to a recent sample
3198 * when the event was scheduled out.
3200 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
3203 raw_spin_lock(&ctx
->lock
);
3204 if (ctx
->is_active
) {
3205 update_context_time(ctx
);
3206 update_cgrp_time_from_event(event
);
3208 update_event_times(event
);
3209 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
3210 event
->pmu
->read(event
);
3211 raw_spin_unlock(&ctx
->lock
);
3214 static inline u64
perf_event_count(struct perf_event
*event
)
3216 return local64_read(&event
->count
) + atomic64_read(&event
->child_count
);
3219 static u64
perf_event_read(struct perf_event
*event
)
3222 * If event is enabled and currently active on a CPU, update the
3223 * value in the event structure:
3225 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
3226 smp_call_function_single(event
->oncpu
,
3227 __perf_event_read
, event
, 1);
3228 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
3229 struct perf_event_context
*ctx
= event
->ctx
;
3230 unsigned long flags
;
3232 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
3234 * may read while context is not active
3235 * (e.g., thread is blocked), in that case
3236 * we cannot update context time
3238 if (ctx
->is_active
) {
3239 update_context_time(ctx
);
3240 update_cgrp_time_from_event(event
);
3242 update_event_times(event
);
3243 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3246 return perf_event_count(event
);
3250 * Initialize the perf_event context in a task_struct:
3252 static void __perf_event_init_context(struct perf_event_context
*ctx
)
3254 raw_spin_lock_init(&ctx
->lock
);
3255 mutex_init(&ctx
->mutex
);
3256 INIT_LIST_HEAD(&ctx
->pinned_groups
);
3257 INIT_LIST_HEAD(&ctx
->flexible_groups
);
3258 INIT_LIST_HEAD(&ctx
->event_list
);
3259 atomic_set(&ctx
->refcount
, 1);
3260 INIT_DELAYED_WORK(&ctx
->orphans_remove
, orphans_remove_work
);
3263 static struct perf_event_context
*
3264 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
3266 struct perf_event_context
*ctx
;
3268 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
3272 __perf_event_init_context(ctx
);
3275 get_task_struct(task
);
3282 static struct task_struct
*
3283 find_lively_task_by_vpid(pid_t vpid
)
3285 struct task_struct
*task
;
3292 task
= find_task_by_vpid(vpid
);
3294 get_task_struct(task
);
3298 return ERR_PTR(-ESRCH
);
3300 /* Reuse ptrace permission checks for now. */
3302 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
))
3307 put_task_struct(task
);
3308 return ERR_PTR(err
);
3313 * Returns a matching context with refcount and pincount.
3315 static struct perf_event_context
*
3316 find_get_context(struct pmu
*pmu
, struct task_struct
*task
, int cpu
)
3318 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
3319 struct perf_cpu_context
*cpuctx
;
3320 unsigned long flags
;
3324 /* Must be root to operate on a CPU event: */
3325 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
3326 return ERR_PTR(-EACCES
);
3329 * We could be clever and allow to attach a event to an
3330 * offline CPU and activate it when the CPU comes up, but
3333 if (!cpu_online(cpu
))
3334 return ERR_PTR(-ENODEV
);
3336 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
3345 ctxn
= pmu
->task_ctx_nr
;
3350 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
3352 clone_ctx
= unclone_ctx(ctx
);
3354 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3359 ctx
= alloc_perf_context(pmu
, task
);
3365 mutex_lock(&task
->perf_event_mutex
);
3367 * If it has already passed perf_event_exit_task().
3368 * we must see PF_EXITING, it takes this mutex too.
3370 if (task
->flags
& PF_EXITING
)
3372 else if (task
->perf_event_ctxp
[ctxn
])
3377 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
3379 mutex_unlock(&task
->perf_event_mutex
);
3381 if (unlikely(err
)) {
3393 return ERR_PTR(err
);
3396 static void perf_event_free_filter(struct perf_event
*event
);
3398 static void free_event_rcu(struct rcu_head
*head
)
3400 struct perf_event
*event
;
3402 event
= container_of(head
, struct perf_event
, rcu_head
);
3404 put_pid_ns(event
->ns
);
3405 perf_event_free_filter(event
);
3409 static void ring_buffer_put(struct ring_buffer
*rb
);
3410 static void ring_buffer_attach(struct perf_event
*event
,
3411 struct ring_buffer
*rb
);
3413 static void unaccount_event_cpu(struct perf_event
*event
, int cpu
)
3418 if (has_branch_stack(event
)) {
3419 if (!(event
->attach_state
& PERF_ATTACH_TASK
))
3420 atomic_dec(&per_cpu(perf_branch_stack_events
, cpu
));
3422 if (is_cgroup_event(event
))
3423 atomic_dec(&per_cpu(perf_cgroup_events
, cpu
));
3426 static void unaccount_event(struct perf_event
*event
)
3431 if (event
->attach_state
& PERF_ATTACH_TASK
)
3432 static_key_slow_dec_deferred(&perf_sched_events
);
3433 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
3434 atomic_dec(&nr_mmap_events
);
3435 if (event
->attr
.comm
)
3436 atomic_dec(&nr_comm_events
);
3437 if (event
->attr
.task
)
3438 atomic_dec(&nr_task_events
);
3439 if (event
->attr
.freq
)
3440 atomic_dec(&nr_freq_events
);
3441 if (is_cgroup_event(event
))
3442 static_key_slow_dec_deferred(&perf_sched_events
);
3443 if (has_branch_stack(event
))
3444 static_key_slow_dec_deferred(&perf_sched_events
);
3446 unaccount_event_cpu(event
, event
->cpu
);
3449 static void __free_event(struct perf_event
*event
)
3451 if (!event
->parent
) {
3452 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
3453 put_callchain_buffers();
3457 event
->destroy(event
);
3460 put_ctx(event
->ctx
);
3463 module_put(event
->pmu
->module
);
3465 call_rcu(&event
->rcu_head
, free_event_rcu
);
3468 static void _free_event(struct perf_event
*event
)
3470 irq_work_sync(&event
->pending
);
3472 unaccount_event(event
);
3476 * Can happen when we close an event with re-directed output.
3478 * Since we have a 0 refcount, perf_mmap_close() will skip
3479 * over us; possibly making our ring_buffer_put() the last.
3481 mutex_lock(&event
->mmap_mutex
);
3482 ring_buffer_attach(event
, NULL
);
3483 mutex_unlock(&event
->mmap_mutex
);
3486 if (is_cgroup_event(event
))
3487 perf_detach_cgroup(event
);
3489 __free_event(event
);
3493 * Used to free events which have a known refcount of 1, such as in error paths
3494 * where the event isn't exposed yet and inherited events.
3496 static void free_event(struct perf_event
*event
)
3498 if (WARN(atomic_long_cmpxchg(&event
->refcount
, 1, 0) != 1,
3499 "unexpected event refcount: %ld; ptr=%p\n",
3500 atomic_long_read(&event
->refcount
), event
)) {
3501 /* leak to avoid use-after-free */
3509 * Remove user event from the owner task.
3511 static void perf_remove_from_owner(struct perf_event
*event
)
3513 struct task_struct
*owner
;
3516 owner
= ACCESS_ONCE(event
->owner
);
3518 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3519 * !owner it means the list deletion is complete and we can indeed
3520 * free this event, otherwise we need to serialize on
3521 * owner->perf_event_mutex.
3523 smp_read_barrier_depends();
3526 * Since delayed_put_task_struct() also drops the last
3527 * task reference we can safely take a new reference
3528 * while holding the rcu_read_lock().
3530 get_task_struct(owner
);
3536 * If we're here through perf_event_exit_task() we're already
3537 * holding ctx->mutex which would be an inversion wrt. the
3538 * normal lock order.
3540 * However we can safely take this lock because its the child
3543 mutex_lock_nested(&owner
->perf_event_mutex
, SINGLE_DEPTH_NESTING
);
3546 * We have to re-check the event->owner field, if it is cleared
3547 * we raced with perf_event_exit_task(), acquiring the mutex
3548 * ensured they're done, and we can proceed with freeing the
3552 list_del_init(&event
->owner_entry
);
3553 mutex_unlock(&owner
->perf_event_mutex
);
3554 put_task_struct(owner
);
3559 * Called when the last reference to the file is gone.
3561 static void put_event(struct perf_event
*event
)
3563 struct perf_event_context
*ctx
= event
->ctx
;
3565 if (!atomic_long_dec_and_test(&event
->refcount
))
3568 if (!is_kernel_event(event
))
3569 perf_remove_from_owner(event
);
3571 WARN_ON_ONCE(ctx
->parent_ctx
);
3573 * There are two ways this annotation is useful:
3575 * 1) there is a lock recursion from perf_event_exit_task
3576 * see the comment there.
3578 * 2) there is a lock-inversion with mmap_sem through
3579 * perf_event_read_group(), which takes faults while
3580 * holding ctx->mutex, however this is called after
3581 * the last filedesc died, so there is no possibility
3582 * to trigger the AB-BA case.
3584 mutex_lock_nested(&ctx
->mutex
, SINGLE_DEPTH_NESTING
);
3585 perf_remove_from_context(event
, true);
3586 mutex_unlock(&ctx
->mutex
);
3591 int perf_event_release_kernel(struct perf_event
*event
)
3596 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
3598 static int perf_release(struct inode
*inode
, struct file
*file
)
3600 put_event(file
->private_data
);
3605 * Remove all orphanes events from the context.
3607 static void orphans_remove_work(struct work_struct
*work
)
3609 struct perf_event_context
*ctx
;
3610 struct perf_event
*event
, *tmp
;
3612 ctx
= container_of(work
, struct perf_event_context
,
3613 orphans_remove
.work
);
3615 mutex_lock(&ctx
->mutex
);
3616 list_for_each_entry_safe(event
, tmp
, &ctx
->event_list
, event_entry
) {
3617 struct perf_event
*parent_event
= event
->parent
;
3619 if (!is_orphaned_child(event
))
3622 perf_remove_from_context(event
, true);
3624 mutex_lock(&parent_event
->child_mutex
);
3625 list_del_init(&event
->child_list
);
3626 mutex_unlock(&parent_event
->child_mutex
);
3629 put_event(parent_event
);
3632 raw_spin_lock_irq(&ctx
->lock
);
3633 ctx
->orphans_remove_sched
= false;
3634 raw_spin_unlock_irq(&ctx
->lock
);
3635 mutex_unlock(&ctx
->mutex
);
3640 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
3642 struct perf_event
*child
;
3648 mutex_lock(&event
->child_mutex
);
3649 total
+= perf_event_read(event
);
3650 *enabled
+= event
->total_time_enabled
+
3651 atomic64_read(&event
->child_total_time_enabled
);
3652 *running
+= event
->total_time_running
+
3653 atomic64_read(&event
->child_total_time_running
);
3655 list_for_each_entry(child
, &event
->child_list
, child_list
) {
3656 total
+= perf_event_read(child
);
3657 *enabled
+= child
->total_time_enabled
;
3658 *running
+= child
->total_time_running
;
3660 mutex_unlock(&event
->child_mutex
);
3664 EXPORT_SYMBOL_GPL(perf_event_read_value
);
3666 static int perf_event_read_group(struct perf_event
*event
,
3667 u64 read_format
, char __user
*buf
)
3669 struct perf_event
*leader
= event
->group_leader
, *sub
;
3670 struct perf_event_context
*ctx
= leader
->ctx
;
3671 int n
= 0, size
= 0, ret
;
3672 u64 count
, enabled
, running
;
3675 lockdep_assert_held(&ctx
->mutex
);
3677 count
= perf_event_read_value(leader
, &enabled
, &running
);
3679 values
[n
++] = 1 + leader
->nr_siblings
;
3680 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3681 values
[n
++] = enabled
;
3682 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3683 values
[n
++] = running
;
3684 values
[n
++] = count
;
3685 if (read_format
& PERF_FORMAT_ID
)
3686 values
[n
++] = primary_event_id(leader
);
3688 size
= n
* sizeof(u64
);
3690 if (copy_to_user(buf
, values
, size
))
3695 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
3698 values
[n
++] = perf_event_read_value(sub
, &enabled
, &running
);
3699 if (read_format
& PERF_FORMAT_ID
)
3700 values
[n
++] = primary_event_id(sub
);
3702 size
= n
* sizeof(u64
);
3704 if (copy_to_user(buf
+ ret
, values
, size
)) {
3714 static int perf_event_read_one(struct perf_event
*event
,
3715 u64 read_format
, char __user
*buf
)
3717 u64 enabled
, running
;
3721 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
3722 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3723 values
[n
++] = enabled
;
3724 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3725 values
[n
++] = running
;
3726 if (read_format
& PERF_FORMAT_ID
)
3727 values
[n
++] = primary_event_id(event
);
3729 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
3732 return n
* sizeof(u64
);
3735 static bool is_event_hup(struct perf_event
*event
)
3739 if (event
->state
!= PERF_EVENT_STATE_EXIT
)
3742 mutex_lock(&event
->child_mutex
);
3743 no_children
= list_empty(&event
->child_list
);
3744 mutex_unlock(&event
->child_mutex
);
3749 * Read the performance event - simple non blocking version for now
3752 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
3754 u64 read_format
= event
->attr
.read_format
;
3758 * Return end-of-file for a read on a event that is in
3759 * error state (i.e. because it was pinned but it couldn't be
3760 * scheduled on to the CPU at some point).
3762 if (event
->state
== PERF_EVENT_STATE_ERROR
)
3765 if (count
< event
->read_size
)
3768 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3769 if (read_format
& PERF_FORMAT_GROUP
)
3770 ret
= perf_event_read_group(event
, read_format
, buf
);
3772 ret
= perf_event_read_one(event
, read_format
, buf
);
3778 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
3780 struct perf_event
*event
= file
->private_data
;
3781 struct perf_event_context
*ctx
;
3784 ctx
= perf_event_ctx_lock(event
);
3785 ret
= perf_read_hw(event
, buf
, count
);
3786 perf_event_ctx_unlock(event
, ctx
);
3791 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
3793 struct perf_event
*event
= file
->private_data
;
3794 struct ring_buffer
*rb
;
3795 unsigned int events
= POLLHUP
;
3797 poll_wait(file
, &event
->waitq
, wait
);
3799 if (is_event_hup(event
))
3803 * Pin the event->rb by taking event->mmap_mutex; otherwise
3804 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3806 mutex_lock(&event
->mmap_mutex
);
3809 events
= atomic_xchg(&rb
->poll
, 0);
3810 mutex_unlock(&event
->mmap_mutex
);
3814 static void _perf_event_reset(struct perf_event
*event
)
3816 (void)perf_event_read(event
);
3817 local64_set(&event
->count
, 0);
3818 perf_event_update_userpage(event
);
3822 * Holding the top-level event's child_mutex means that any
3823 * descendant process that has inherited this event will block
3824 * in sync_child_event if it goes to exit, thus satisfying the
3825 * task existence requirements of perf_event_enable/disable.
3827 static void perf_event_for_each_child(struct perf_event
*event
,
3828 void (*func
)(struct perf_event
*))
3830 struct perf_event
*child
;
3832 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3834 mutex_lock(&event
->child_mutex
);
3836 list_for_each_entry(child
, &event
->child_list
, child_list
)
3838 mutex_unlock(&event
->child_mutex
);
3841 static void perf_event_for_each(struct perf_event
*event
,
3842 void (*func
)(struct perf_event
*))
3844 struct perf_event_context
*ctx
= event
->ctx
;
3845 struct perf_event
*sibling
;
3847 lockdep_assert_held(&ctx
->mutex
);
3849 event
= event
->group_leader
;
3851 perf_event_for_each_child(event
, func
);
3852 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
3853 perf_event_for_each_child(sibling
, func
);
3856 struct period_event
{
3857 struct perf_event
*event
;
3861 static int __perf_event_period(void *info
)
3863 struct period_event
*pe
= info
;
3864 struct perf_event
*event
= pe
->event
;
3865 struct perf_event_context
*ctx
= event
->ctx
;
3866 u64 value
= pe
->value
;
3869 raw_spin_lock(&ctx
->lock
);
3870 if (event
->attr
.freq
) {
3871 event
->attr
.sample_freq
= value
;
3873 event
->attr
.sample_period
= value
;
3874 event
->hw
.sample_period
= value
;
3877 active
= (event
->state
== PERF_EVENT_STATE_ACTIVE
);
3879 perf_pmu_disable(ctx
->pmu
);
3880 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3883 local64_set(&event
->hw
.period_left
, 0);
3886 event
->pmu
->start(event
, PERF_EF_RELOAD
);
3887 perf_pmu_enable(ctx
->pmu
);
3889 raw_spin_unlock(&ctx
->lock
);
3894 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
3896 struct period_event pe
= { .event
= event
, };
3897 struct perf_event_context
*ctx
= event
->ctx
;
3898 struct task_struct
*task
;
3901 if (!is_sampling_event(event
))
3904 if (copy_from_user(&value
, arg
, sizeof(value
)))
3910 if (event
->attr
.freq
&& value
> sysctl_perf_event_sample_rate
)
3917 cpu_function_call(event
->cpu
, __perf_event_period
, &pe
);
3922 if (!task_function_call(task
, __perf_event_period
, &pe
))
3925 raw_spin_lock_irq(&ctx
->lock
);
3926 if (ctx
->is_active
) {
3927 raw_spin_unlock_irq(&ctx
->lock
);
3932 __perf_event_period(&pe
);
3933 raw_spin_unlock_irq(&ctx
->lock
);
3938 static const struct file_operations perf_fops
;
3940 static inline int perf_fget_light(int fd
, struct fd
*p
)
3942 struct fd f
= fdget(fd
);
3946 if (f
.file
->f_op
!= &perf_fops
) {
3954 static int perf_event_set_output(struct perf_event
*event
,
3955 struct perf_event
*output_event
);
3956 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
3958 static long _perf_ioctl(struct perf_event
*event
, unsigned int cmd
, unsigned long arg
)
3960 void (*func
)(struct perf_event
*);
3964 case PERF_EVENT_IOC_ENABLE
:
3965 func
= _perf_event_enable
;
3967 case PERF_EVENT_IOC_DISABLE
:
3968 func
= _perf_event_disable
;
3970 case PERF_EVENT_IOC_RESET
:
3971 func
= _perf_event_reset
;
3974 case PERF_EVENT_IOC_REFRESH
:
3975 return _perf_event_refresh(event
, arg
);
3977 case PERF_EVENT_IOC_PERIOD
:
3978 return perf_event_period(event
, (u64 __user
*)arg
);
3980 case PERF_EVENT_IOC_ID
:
3982 u64 id
= primary_event_id(event
);
3984 if (copy_to_user((void __user
*)arg
, &id
, sizeof(id
)))
3989 case PERF_EVENT_IOC_SET_OUTPUT
:
3993 struct perf_event
*output_event
;
3995 ret
= perf_fget_light(arg
, &output
);
3998 output_event
= output
.file
->private_data
;
3999 ret
= perf_event_set_output(event
, output_event
);
4002 ret
= perf_event_set_output(event
, NULL
);
4007 case PERF_EVENT_IOC_SET_FILTER
:
4008 return perf_event_set_filter(event
, (void __user
*)arg
);
4014 if (flags
& PERF_IOC_FLAG_GROUP
)
4015 perf_event_for_each(event
, func
);
4017 perf_event_for_each_child(event
, func
);
4022 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
4024 struct perf_event
*event
= file
->private_data
;
4025 struct perf_event_context
*ctx
;
4028 ctx
= perf_event_ctx_lock(event
);
4029 ret
= _perf_ioctl(event
, cmd
, arg
);
4030 perf_event_ctx_unlock(event
, ctx
);
4035 #ifdef CONFIG_COMPAT
4036 static long perf_compat_ioctl(struct file
*file
, unsigned int cmd
,
4039 switch (_IOC_NR(cmd
)) {
4040 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER
):
4041 case _IOC_NR(PERF_EVENT_IOC_ID
):
4042 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4043 if (_IOC_SIZE(cmd
) == sizeof(compat_uptr_t
)) {
4044 cmd
&= ~IOCSIZE_MASK
;
4045 cmd
|= sizeof(void *) << IOCSIZE_SHIFT
;
4049 return perf_ioctl(file
, cmd
, arg
);
4052 # define perf_compat_ioctl NULL
4055 int perf_event_task_enable(void)
4057 struct perf_event_context
*ctx
;
4058 struct perf_event
*event
;
4060 mutex_lock(¤t
->perf_event_mutex
);
4061 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
4062 ctx
= perf_event_ctx_lock(event
);
4063 perf_event_for_each_child(event
, _perf_event_enable
);
4064 perf_event_ctx_unlock(event
, ctx
);
4066 mutex_unlock(¤t
->perf_event_mutex
);
4071 int perf_event_task_disable(void)
4073 struct perf_event_context
*ctx
;
4074 struct perf_event
*event
;
4076 mutex_lock(¤t
->perf_event_mutex
);
4077 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
4078 ctx
= perf_event_ctx_lock(event
);
4079 perf_event_for_each_child(event
, _perf_event_disable
);
4080 perf_event_ctx_unlock(event
, ctx
);
4082 mutex_unlock(¤t
->perf_event_mutex
);
4087 static int perf_event_index(struct perf_event
*event
)
4089 if (event
->hw
.state
& PERF_HES_STOPPED
)
4092 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
4095 return event
->pmu
->event_idx(event
);
4098 static void calc_timer_values(struct perf_event
*event
,
4105 *now
= perf_clock();
4106 ctx_time
= event
->shadow_ctx_time
+ *now
;
4107 *enabled
= ctx_time
- event
->tstamp_enabled
;
4108 *running
= ctx_time
- event
->tstamp_running
;
4111 static void perf_event_init_userpage(struct perf_event
*event
)
4113 struct perf_event_mmap_page
*userpg
;
4114 struct ring_buffer
*rb
;
4117 rb
= rcu_dereference(event
->rb
);
4121 userpg
= rb
->user_page
;
4123 /* Allow new userspace to detect that bit 0 is deprecated */
4124 userpg
->cap_bit0_is_deprecated
= 1;
4125 userpg
->size
= offsetof(struct perf_event_mmap_page
, __reserved
);
4131 void __weak
arch_perf_update_userpage(struct perf_event_mmap_page
*userpg
, u64 now
)
4136 * Callers need to ensure there can be no nesting of this function, otherwise
4137 * the seqlock logic goes bad. We can not serialize this because the arch
4138 * code calls this from NMI context.
4140 void perf_event_update_userpage(struct perf_event
*event
)
4142 struct perf_event_mmap_page
*userpg
;
4143 struct ring_buffer
*rb
;
4144 u64 enabled
, running
, now
;
4147 rb
= rcu_dereference(event
->rb
);
4152 * compute total_time_enabled, total_time_running
4153 * based on snapshot values taken when the event
4154 * was last scheduled in.
4156 * we cannot simply called update_context_time()
4157 * because of locking issue as we can be called in
4160 calc_timer_values(event
, &now
, &enabled
, &running
);
4162 userpg
= rb
->user_page
;
4164 * Disable preemption so as to not let the corresponding user-space
4165 * spin too long if we get preempted.
4170 userpg
->index
= perf_event_index(event
);
4171 userpg
->offset
= perf_event_count(event
);
4173 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
4175 userpg
->time_enabled
= enabled
+
4176 atomic64_read(&event
->child_total_time_enabled
);
4178 userpg
->time_running
= running
+
4179 atomic64_read(&event
->child_total_time_running
);
4181 arch_perf_update_userpage(userpg
, now
);
4190 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
4192 struct perf_event
*event
= vma
->vm_file
->private_data
;
4193 struct ring_buffer
*rb
;
4194 int ret
= VM_FAULT_SIGBUS
;
4196 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
4197 if (vmf
->pgoff
== 0)
4203 rb
= rcu_dereference(event
->rb
);
4207 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
4210 vmf
->page
= perf_mmap_to_page(rb
, vmf
->pgoff
);
4214 get_page(vmf
->page
);
4215 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
4216 vmf
->page
->index
= vmf
->pgoff
;
4225 static void ring_buffer_attach(struct perf_event
*event
,
4226 struct ring_buffer
*rb
)
4228 struct ring_buffer
*old_rb
= NULL
;
4229 unsigned long flags
;
4233 * Should be impossible, we set this when removing
4234 * event->rb_entry and wait/clear when adding event->rb_entry.
4236 WARN_ON_ONCE(event
->rcu_pending
);
4239 spin_lock_irqsave(&old_rb
->event_lock
, flags
);
4240 list_del_rcu(&event
->rb_entry
);
4241 spin_unlock_irqrestore(&old_rb
->event_lock
, flags
);
4243 event
->rcu_batches
= get_state_synchronize_rcu();
4244 event
->rcu_pending
= 1;
4248 if (event
->rcu_pending
) {
4249 cond_synchronize_rcu(event
->rcu_batches
);
4250 event
->rcu_pending
= 0;
4253 spin_lock_irqsave(&rb
->event_lock
, flags
);
4254 list_add_rcu(&event
->rb_entry
, &rb
->event_list
);
4255 spin_unlock_irqrestore(&rb
->event_lock
, flags
);
4258 rcu_assign_pointer(event
->rb
, rb
);
4261 ring_buffer_put(old_rb
);
4263 * Since we detached before setting the new rb, so that we
4264 * could attach the new rb, we could have missed a wakeup.
4267 wake_up_all(&event
->waitq
);
4271 static void ring_buffer_wakeup(struct perf_event
*event
)
4273 struct ring_buffer
*rb
;
4276 rb
= rcu_dereference(event
->rb
);
4278 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
)
4279 wake_up_all(&event
->waitq
);
4284 static void rb_free_rcu(struct rcu_head
*rcu_head
)
4286 struct ring_buffer
*rb
;
4288 rb
= container_of(rcu_head
, struct ring_buffer
, rcu_head
);
4292 static struct ring_buffer
*ring_buffer_get(struct perf_event
*event
)
4294 struct ring_buffer
*rb
;
4297 rb
= rcu_dereference(event
->rb
);
4299 if (!atomic_inc_not_zero(&rb
->refcount
))
4307 static void ring_buffer_put(struct ring_buffer
*rb
)
4309 if (!atomic_dec_and_test(&rb
->refcount
))
4312 WARN_ON_ONCE(!list_empty(&rb
->event_list
));
4314 call_rcu(&rb
->rcu_head
, rb_free_rcu
);
4317 static void perf_mmap_open(struct vm_area_struct
*vma
)
4319 struct perf_event
*event
= vma
->vm_file
->private_data
;
4321 atomic_inc(&event
->mmap_count
);
4322 atomic_inc(&event
->rb
->mmap_count
);
4326 * A buffer can be mmap()ed multiple times; either directly through the same
4327 * event, or through other events by use of perf_event_set_output().
4329 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4330 * the buffer here, where we still have a VM context. This means we need
4331 * to detach all events redirecting to us.
4333 static void perf_mmap_close(struct vm_area_struct
*vma
)
4335 struct perf_event
*event
= vma
->vm_file
->private_data
;
4337 struct ring_buffer
*rb
= ring_buffer_get(event
);
4338 struct user_struct
*mmap_user
= rb
->mmap_user
;
4339 int mmap_locked
= rb
->mmap_locked
;
4340 unsigned long size
= perf_data_size(rb
);
4342 atomic_dec(&rb
->mmap_count
);
4344 if (!atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
))
4347 ring_buffer_attach(event
, NULL
);
4348 mutex_unlock(&event
->mmap_mutex
);
4350 /* If there's still other mmap()s of this buffer, we're done. */
4351 if (atomic_read(&rb
->mmap_count
))
4355 * No other mmap()s, detach from all other events that might redirect
4356 * into the now unreachable buffer. Somewhat complicated by the
4357 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4361 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
) {
4362 if (!atomic_long_inc_not_zero(&event
->refcount
)) {
4364 * This event is en-route to free_event() which will
4365 * detach it and remove it from the list.
4371 mutex_lock(&event
->mmap_mutex
);
4373 * Check we didn't race with perf_event_set_output() which can
4374 * swizzle the rb from under us while we were waiting to
4375 * acquire mmap_mutex.
4377 * If we find a different rb; ignore this event, a next
4378 * iteration will no longer find it on the list. We have to
4379 * still restart the iteration to make sure we're not now
4380 * iterating the wrong list.
4382 if (event
->rb
== rb
)
4383 ring_buffer_attach(event
, NULL
);
4385 mutex_unlock(&event
->mmap_mutex
);
4389 * Restart the iteration; either we're on the wrong list or
4390 * destroyed its integrity by doing a deletion.
4397 * It could be there's still a few 0-ref events on the list; they'll
4398 * get cleaned up by free_event() -- they'll also still have their
4399 * ref on the rb and will free it whenever they are done with it.
4401 * Aside from that, this buffer is 'fully' detached and unmapped,
4402 * undo the VM accounting.
4405 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &mmap_user
->locked_vm
);
4406 vma
->vm_mm
->pinned_vm
-= mmap_locked
;
4407 free_uid(mmap_user
);
4410 ring_buffer_put(rb
); /* could be last */
4413 static const struct vm_operations_struct perf_mmap_vmops
= {
4414 .open
= perf_mmap_open
,
4415 .close
= perf_mmap_close
,
4416 .fault
= perf_mmap_fault
,
4417 .page_mkwrite
= perf_mmap_fault
,
4420 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
4422 struct perf_event
*event
= file
->private_data
;
4423 unsigned long user_locked
, user_lock_limit
;
4424 struct user_struct
*user
= current_user();
4425 unsigned long locked
, lock_limit
;
4426 struct ring_buffer
*rb
;
4427 unsigned long vma_size
;
4428 unsigned long nr_pages
;
4429 long user_extra
, extra
;
4430 int ret
= 0, flags
= 0;
4433 * Don't allow mmap() of inherited per-task counters. This would
4434 * create a performance issue due to all children writing to the
4437 if (event
->cpu
== -1 && event
->attr
.inherit
)
4440 if (!(vma
->vm_flags
& VM_SHARED
))
4443 vma_size
= vma
->vm_end
- vma
->vm_start
;
4444 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
4447 * If we have rb pages ensure they're a power-of-two number, so we
4448 * can do bitmasks instead of modulo.
4450 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
4453 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
4456 if (vma
->vm_pgoff
!= 0)
4459 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4461 mutex_lock(&event
->mmap_mutex
);
4463 if (event
->rb
->nr_pages
!= nr_pages
) {
4468 if (!atomic_inc_not_zero(&event
->rb
->mmap_count
)) {
4470 * Raced against perf_mmap_close() through
4471 * perf_event_set_output(). Try again, hope for better
4474 mutex_unlock(&event
->mmap_mutex
);
4481 user_extra
= nr_pages
+ 1;
4482 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
4485 * Increase the limit linearly with more CPUs:
4487 user_lock_limit
*= num_online_cpus();
4489 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
4492 if (user_locked
> user_lock_limit
)
4493 extra
= user_locked
- user_lock_limit
;
4495 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
4496 lock_limit
>>= PAGE_SHIFT
;
4497 locked
= vma
->vm_mm
->pinned_vm
+ extra
;
4499 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
4500 !capable(CAP_IPC_LOCK
)) {
4507 if (vma
->vm_flags
& VM_WRITE
)
4508 flags
|= RING_BUFFER_WRITABLE
;
4510 rb
= rb_alloc(nr_pages
,
4511 event
->attr
.watermark
? event
->attr
.wakeup_watermark
: 0,
4519 atomic_set(&rb
->mmap_count
, 1);
4520 rb
->mmap_locked
= extra
;
4521 rb
->mmap_user
= get_current_user();
4523 atomic_long_add(user_extra
, &user
->locked_vm
);
4524 vma
->vm_mm
->pinned_vm
+= extra
;
4526 ring_buffer_attach(event
, rb
);
4528 perf_event_init_userpage(event
);
4529 perf_event_update_userpage(event
);
4533 atomic_inc(&event
->mmap_count
);
4534 mutex_unlock(&event
->mmap_mutex
);
4537 * Since pinned accounting is per vm we cannot allow fork() to copy our
4540 vma
->vm_flags
|= VM_DONTCOPY
| VM_DONTEXPAND
| VM_DONTDUMP
;
4541 vma
->vm_ops
= &perf_mmap_vmops
;
4546 static int perf_fasync(int fd
, struct file
*filp
, int on
)
4548 struct inode
*inode
= file_inode(filp
);
4549 struct perf_event
*event
= filp
->private_data
;
4552 mutex_lock(&inode
->i_mutex
);
4553 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
4554 mutex_unlock(&inode
->i_mutex
);
4562 static const struct file_operations perf_fops
= {
4563 .llseek
= no_llseek
,
4564 .release
= perf_release
,
4567 .unlocked_ioctl
= perf_ioctl
,
4568 .compat_ioctl
= perf_compat_ioctl
,
4570 .fasync
= perf_fasync
,
4576 * If there's data, ensure we set the poll() state and publish everything
4577 * to user-space before waking everybody up.
4580 static inline struct fasync_struct
**perf_event_fasync(struct perf_event
*event
)
4582 /* only the parent has fasync state */
4584 event
= event
->parent
;
4585 return &event
->fasync
;
4588 void perf_event_wakeup(struct perf_event
*event
)
4590 ring_buffer_wakeup(event
);
4592 if (event
->pending_kill
) {
4593 kill_fasync(perf_event_fasync(event
), SIGIO
, event
->pending_kill
);
4594 event
->pending_kill
= 0;
4598 static void perf_pending_event(struct irq_work
*entry
)
4600 struct perf_event
*event
= container_of(entry
,
4601 struct perf_event
, pending
);
4604 rctx
= perf_swevent_get_recursion_context();
4606 * If we 'fail' here, that's OK, it means recursion is already disabled
4607 * and we won't recurse 'further'.
4610 if (event
->pending_disable
) {
4611 event
->pending_disable
= 0;
4612 __perf_event_disable(event
);
4615 if (event
->pending_wakeup
) {
4616 event
->pending_wakeup
= 0;
4617 perf_event_wakeup(event
);
4621 perf_swevent_put_recursion_context(rctx
);
4625 * We assume there is only KVM supporting the callbacks.
4626 * Later on, we might change it to a list if there is
4627 * another virtualization implementation supporting the callbacks.
4629 struct perf_guest_info_callbacks
*perf_guest_cbs
;
4631 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
4633 perf_guest_cbs
= cbs
;
4636 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
4638 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
4640 perf_guest_cbs
= NULL
;
4643 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
4646 perf_output_sample_regs(struct perf_output_handle
*handle
,
4647 struct pt_regs
*regs
, u64 mask
)
4651 for_each_set_bit(bit
, (const unsigned long *) &mask
,
4652 sizeof(mask
) * BITS_PER_BYTE
) {
4655 val
= perf_reg_value(regs
, bit
);
4656 perf_output_put(handle
, val
);
4660 static void perf_sample_regs_user(struct perf_regs_user
*regs_user
,
4661 struct pt_regs
*regs
)
4663 if (!user_mode(regs
)) {
4665 regs
= task_pt_regs(current
);
4671 regs_user
->regs
= regs
;
4672 regs_user
->abi
= perf_reg_abi(current
);
4677 * Get remaining task size from user stack pointer.
4679 * It'd be better to take stack vma map and limit this more
4680 * precisly, but there's no way to get it safely under interrupt,
4681 * so using TASK_SIZE as limit.
4683 static u64
perf_ustack_task_size(struct pt_regs
*regs
)
4685 unsigned long addr
= perf_user_stack_pointer(regs
);
4687 if (!addr
|| addr
>= TASK_SIZE
)
4690 return TASK_SIZE
- addr
;
4694 perf_sample_ustack_size(u16 stack_size
, u16 header_size
,
4695 struct pt_regs
*regs
)
4699 /* No regs, no stack pointer, no dump. */
4704 * Check if we fit in with the requested stack size into the:
4706 * If we don't, we limit the size to the TASK_SIZE.
4708 * - remaining sample size
4709 * If we don't, we customize the stack size to
4710 * fit in to the remaining sample size.
4713 task_size
= min((u64
) USHRT_MAX
, perf_ustack_task_size(regs
));
4714 stack_size
= min(stack_size
, (u16
) task_size
);
4716 /* Current header size plus static size and dynamic size. */
4717 header_size
+= 2 * sizeof(u64
);
4719 /* Do we fit in with the current stack dump size? */
4720 if ((u16
) (header_size
+ stack_size
) < header_size
) {
4722 * If we overflow the maximum size for the sample,
4723 * we customize the stack dump size to fit in.
4725 stack_size
= USHRT_MAX
- header_size
- sizeof(u64
);
4726 stack_size
= round_up(stack_size
, sizeof(u64
));
4733 perf_output_sample_ustack(struct perf_output_handle
*handle
, u64 dump_size
,
4734 struct pt_regs
*regs
)
4736 /* Case of a kernel thread, nothing to dump */
4739 perf_output_put(handle
, size
);
4748 * - the size requested by user or the best one we can fit
4749 * in to the sample max size
4751 * - user stack dump data
4753 * - the actual dumped size
4757 perf_output_put(handle
, dump_size
);
4760 sp
= perf_user_stack_pointer(regs
);
4761 rem
= __output_copy_user(handle
, (void *) sp
, dump_size
);
4762 dyn_size
= dump_size
- rem
;
4764 perf_output_skip(handle
, rem
);
4767 perf_output_put(handle
, dyn_size
);
4771 static void __perf_event_header__init_id(struct perf_event_header
*header
,
4772 struct perf_sample_data
*data
,
4773 struct perf_event
*event
)
4775 u64 sample_type
= event
->attr
.sample_type
;
4777 data
->type
= sample_type
;
4778 header
->size
+= event
->id_header_size
;
4780 if (sample_type
& PERF_SAMPLE_TID
) {
4781 /* namespace issues */
4782 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
4783 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
4786 if (sample_type
& PERF_SAMPLE_TIME
)
4787 data
->time
= perf_clock();
4789 if (sample_type
& (PERF_SAMPLE_ID
| PERF_SAMPLE_IDENTIFIER
))
4790 data
->id
= primary_event_id(event
);
4792 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
4793 data
->stream_id
= event
->id
;
4795 if (sample_type
& PERF_SAMPLE_CPU
) {
4796 data
->cpu_entry
.cpu
= raw_smp_processor_id();
4797 data
->cpu_entry
.reserved
= 0;
4801 void perf_event_header__init_id(struct perf_event_header
*header
,
4802 struct perf_sample_data
*data
,
4803 struct perf_event
*event
)
4805 if (event
->attr
.sample_id_all
)
4806 __perf_event_header__init_id(header
, data
, event
);
4809 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
4810 struct perf_sample_data
*data
)
4812 u64 sample_type
= data
->type
;
4814 if (sample_type
& PERF_SAMPLE_TID
)
4815 perf_output_put(handle
, data
->tid_entry
);
4817 if (sample_type
& PERF_SAMPLE_TIME
)
4818 perf_output_put(handle
, data
->time
);
4820 if (sample_type
& PERF_SAMPLE_ID
)
4821 perf_output_put(handle
, data
->id
);
4823 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
4824 perf_output_put(handle
, data
->stream_id
);
4826 if (sample_type
& PERF_SAMPLE_CPU
)
4827 perf_output_put(handle
, data
->cpu_entry
);
4829 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
4830 perf_output_put(handle
, data
->id
);
4833 void perf_event__output_id_sample(struct perf_event
*event
,
4834 struct perf_output_handle
*handle
,
4835 struct perf_sample_data
*sample
)
4837 if (event
->attr
.sample_id_all
)
4838 __perf_event__output_id_sample(handle
, sample
);
4841 static void perf_output_read_one(struct perf_output_handle
*handle
,
4842 struct perf_event
*event
,
4843 u64 enabled
, u64 running
)
4845 u64 read_format
= event
->attr
.read_format
;
4849 values
[n
++] = perf_event_count(event
);
4850 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
4851 values
[n
++] = enabled
+
4852 atomic64_read(&event
->child_total_time_enabled
);
4854 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
4855 values
[n
++] = running
+
4856 atomic64_read(&event
->child_total_time_running
);
4858 if (read_format
& PERF_FORMAT_ID
)
4859 values
[n
++] = primary_event_id(event
);
4861 __output_copy(handle
, values
, n
* sizeof(u64
));
4865 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4867 static void perf_output_read_group(struct perf_output_handle
*handle
,
4868 struct perf_event
*event
,
4869 u64 enabled
, u64 running
)
4871 struct perf_event
*leader
= event
->group_leader
, *sub
;
4872 u64 read_format
= event
->attr
.read_format
;
4876 values
[n
++] = 1 + leader
->nr_siblings
;
4878 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
4879 values
[n
++] = enabled
;
4881 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
4882 values
[n
++] = running
;
4884 if (leader
!= event
)
4885 leader
->pmu
->read(leader
);
4887 values
[n
++] = perf_event_count(leader
);
4888 if (read_format
& PERF_FORMAT_ID
)
4889 values
[n
++] = primary_event_id(leader
);
4891 __output_copy(handle
, values
, n
* sizeof(u64
));
4893 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
4896 if ((sub
!= event
) &&
4897 (sub
->state
== PERF_EVENT_STATE_ACTIVE
))
4898 sub
->pmu
->read(sub
);
4900 values
[n
++] = perf_event_count(sub
);
4901 if (read_format
& PERF_FORMAT_ID
)
4902 values
[n
++] = primary_event_id(sub
);
4904 __output_copy(handle
, values
, n
* sizeof(u64
));
4908 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4909 PERF_FORMAT_TOTAL_TIME_RUNNING)
4911 static void perf_output_read(struct perf_output_handle
*handle
,
4912 struct perf_event
*event
)
4914 u64 enabled
= 0, running
= 0, now
;
4915 u64 read_format
= event
->attr
.read_format
;
4918 * compute total_time_enabled, total_time_running
4919 * based on snapshot values taken when the event
4920 * was last scheduled in.
4922 * we cannot simply called update_context_time()
4923 * because of locking issue as we are called in
4926 if (read_format
& PERF_FORMAT_TOTAL_TIMES
)
4927 calc_timer_values(event
, &now
, &enabled
, &running
);
4929 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
4930 perf_output_read_group(handle
, event
, enabled
, running
);
4932 perf_output_read_one(handle
, event
, enabled
, running
);
4935 void perf_output_sample(struct perf_output_handle
*handle
,
4936 struct perf_event_header
*header
,
4937 struct perf_sample_data
*data
,
4938 struct perf_event
*event
)
4940 u64 sample_type
= data
->type
;
4942 perf_output_put(handle
, *header
);
4944 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
4945 perf_output_put(handle
, data
->id
);
4947 if (sample_type
& PERF_SAMPLE_IP
)
4948 perf_output_put(handle
, data
->ip
);
4950 if (sample_type
& PERF_SAMPLE_TID
)
4951 perf_output_put(handle
, data
->tid_entry
);
4953 if (sample_type
& PERF_SAMPLE_TIME
)
4954 perf_output_put(handle
, data
->time
);
4956 if (sample_type
& PERF_SAMPLE_ADDR
)
4957 perf_output_put(handle
, data
->addr
);
4959 if (sample_type
& PERF_SAMPLE_ID
)
4960 perf_output_put(handle
, data
->id
);
4962 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
4963 perf_output_put(handle
, data
->stream_id
);
4965 if (sample_type
& PERF_SAMPLE_CPU
)
4966 perf_output_put(handle
, data
->cpu_entry
);
4968 if (sample_type
& PERF_SAMPLE_PERIOD
)
4969 perf_output_put(handle
, data
->period
);
4971 if (sample_type
& PERF_SAMPLE_READ
)
4972 perf_output_read(handle
, event
);
4974 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
4975 if (data
->callchain
) {
4978 if (data
->callchain
)
4979 size
+= data
->callchain
->nr
;
4981 size
*= sizeof(u64
);
4983 __output_copy(handle
, data
->callchain
, size
);
4986 perf_output_put(handle
, nr
);
4990 if (sample_type
& PERF_SAMPLE_RAW
) {
4992 perf_output_put(handle
, data
->raw
->size
);
4993 __output_copy(handle
, data
->raw
->data
,
5000 .size
= sizeof(u32
),
5003 perf_output_put(handle
, raw
);
5007 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
5008 if (data
->br_stack
) {
5011 size
= data
->br_stack
->nr
5012 * sizeof(struct perf_branch_entry
);
5014 perf_output_put(handle
, data
->br_stack
->nr
);
5015 perf_output_copy(handle
, data
->br_stack
->entries
, size
);
5018 * we always store at least the value of nr
5021 perf_output_put(handle
, nr
);
5025 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
5026 u64 abi
= data
->regs_user
.abi
;
5029 * If there are no regs to dump, notice it through
5030 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5032 perf_output_put(handle
, abi
);
5035 u64 mask
= event
->attr
.sample_regs_user
;
5036 perf_output_sample_regs(handle
,
5037 data
->regs_user
.regs
,
5042 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
5043 perf_output_sample_ustack(handle
,
5044 data
->stack_user_size
,
5045 data
->regs_user
.regs
);
5048 if (sample_type
& PERF_SAMPLE_WEIGHT
)
5049 perf_output_put(handle
, data
->weight
);
5051 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
5052 perf_output_put(handle
, data
->data_src
.val
);
5054 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
5055 perf_output_put(handle
, data
->txn
);
5057 if (!event
->attr
.watermark
) {
5058 int wakeup_events
= event
->attr
.wakeup_events
;
5060 if (wakeup_events
) {
5061 struct ring_buffer
*rb
= handle
->rb
;
5062 int events
= local_inc_return(&rb
->events
);
5064 if (events
>= wakeup_events
) {
5065 local_sub(wakeup_events
, &rb
->events
);
5066 local_inc(&rb
->wakeup
);
5072 void perf_prepare_sample(struct perf_event_header
*header
,
5073 struct perf_sample_data
*data
,
5074 struct perf_event
*event
,
5075 struct pt_regs
*regs
)
5077 u64 sample_type
= event
->attr
.sample_type
;
5079 header
->type
= PERF_RECORD_SAMPLE
;
5080 header
->size
= sizeof(*header
) + event
->header_size
;
5083 header
->misc
|= perf_misc_flags(regs
);
5085 __perf_event_header__init_id(header
, data
, event
);
5087 if (sample_type
& PERF_SAMPLE_IP
)
5088 data
->ip
= perf_instruction_pointer(regs
);
5090 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5093 data
->callchain
= perf_callchain(event
, regs
);
5095 if (data
->callchain
)
5096 size
+= data
->callchain
->nr
;
5098 header
->size
+= size
* sizeof(u64
);
5101 if (sample_type
& PERF_SAMPLE_RAW
) {
5102 int size
= sizeof(u32
);
5105 size
+= data
->raw
->size
;
5107 size
+= sizeof(u32
);
5109 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
5110 header
->size
+= size
;
5113 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
5114 int size
= sizeof(u64
); /* nr */
5115 if (data
->br_stack
) {
5116 size
+= data
->br_stack
->nr
5117 * sizeof(struct perf_branch_entry
);
5119 header
->size
+= size
;
5122 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
5123 /* regs dump ABI info */
5124 int size
= sizeof(u64
);
5126 perf_sample_regs_user(&data
->regs_user
, regs
);
5128 if (data
->regs_user
.regs
) {
5129 u64 mask
= event
->attr
.sample_regs_user
;
5130 size
+= hweight64(mask
) * sizeof(u64
);
5133 header
->size
+= size
;
5136 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
5138 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5139 * processed as the last one or have additional check added
5140 * in case new sample type is added, because we could eat
5141 * up the rest of the sample size.
5143 struct perf_regs_user
*uregs
= &data
->regs_user
;
5144 u16 stack_size
= event
->attr
.sample_stack_user
;
5145 u16 size
= sizeof(u64
);
5148 perf_sample_regs_user(uregs
, regs
);
5150 stack_size
= perf_sample_ustack_size(stack_size
, header
->size
,
5154 * If there is something to dump, add space for the dump
5155 * itself and for the field that tells the dynamic size,
5156 * which is how many have been actually dumped.
5159 size
+= sizeof(u64
) + stack_size
;
5161 data
->stack_user_size
= stack_size
;
5162 header
->size
+= size
;
5166 static void perf_event_output(struct perf_event
*event
,
5167 struct perf_sample_data
*data
,
5168 struct pt_regs
*regs
)
5170 struct perf_output_handle handle
;
5171 struct perf_event_header header
;
5173 /* protect the callchain buffers */
5176 perf_prepare_sample(&header
, data
, event
, regs
);
5178 if (perf_output_begin(&handle
, event
, header
.size
))
5181 perf_output_sample(&handle
, &header
, data
, event
);
5183 perf_output_end(&handle
);
5193 struct perf_read_event
{
5194 struct perf_event_header header
;
5201 perf_event_read_event(struct perf_event
*event
,
5202 struct task_struct
*task
)
5204 struct perf_output_handle handle
;
5205 struct perf_sample_data sample
;
5206 struct perf_read_event read_event
= {
5208 .type
= PERF_RECORD_READ
,
5210 .size
= sizeof(read_event
) + event
->read_size
,
5212 .pid
= perf_event_pid(event
, task
),
5213 .tid
= perf_event_tid(event
, task
),
5217 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
5218 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
);
5222 perf_output_put(&handle
, read_event
);
5223 perf_output_read(&handle
, event
);
5224 perf_event__output_id_sample(event
, &handle
, &sample
);
5226 perf_output_end(&handle
);
5229 typedef void (perf_event_aux_output_cb
)(struct perf_event
*event
, void *data
);
5232 perf_event_aux_ctx(struct perf_event_context
*ctx
,
5233 perf_event_aux_output_cb output
,
5236 struct perf_event
*event
;
5238 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
5239 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
5241 if (!event_filter_match(event
))
5243 output(event
, data
);
5248 perf_event_aux(perf_event_aux_output_cb output
, void *data
,
5249 struct perf_event_context
*task_ctx
)
5251 struct perf_cpu_context
*cpuctx
;
5252 struct perf_event_context
*ctx
;
5257 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
5258 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
5259 if (cpuctx
->unique_pmu
!= pmu
)
5261 perf_event_aux_ctx(&cpuctx
->ctx
, output
, data
);
5264 ctxn
= pmu
->task_ctx_nr
;
5267 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
5269 perf_event_aux_ctx(ctx
, output
, data
);
5271 put_cpu_ptr(pmu
->pmu_cpu_context
);
5276 perf_event_aux_ctx(task_ctx
, output
, data
);
5283 * task tracking -- fork/exit
5285 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5288 struct perf_task_event
{
5289 struct task_struct
*task
;
5290 struct perf_event_context
*task_ctx
;
5293 struct perf_event_header header
;
5303 static int perf_event_task_match(struct perf_event
*event
)
5305 return event
->attr
.comm
|| event
->attr
.mmap
||
5306 event
->attr
.mmap2
|| event
->attr
.mmap_data
||
5310 static void perf_event_task_output(struct perf_event
*event
,
5313 struct perf_task_event
*task_event
= data
;
5314 struct perf_output_handle handle
;
5315 struct perf_sample_data sample
;
5316 struct task_struct
*task
= task_event
->task
;
5317 int ret
, size
= task_event
->event_id
.header
.size
;
5319 if (!perf_event_task_match(event
))
5322 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
5324 ret
= perf_output_begin(&handle
, event
,
5325 task_event
->event_id
.header
.size
);
5329 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
5330 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
5332 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
5333 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
5335 perf_output_put(&handle
, task_event
->event_id
);
5337 perf_event__output_id_sample(event
, &handle
, &sample
);
5339 perf_output_end(&handle
);
5341 task_event
->event_id
.header
.size
= size
;
5344 static void perf_event_task(struct task_struct
*task
,
5345 struct perf_event_context
*task_ctx
,
5348 struct perf_task_event task_event
;
5350 if (!atomic_read(&nr_comm_events
) &&
5351 !atomic_read(&nr_mmap_events
) &&
5352 !atomic_read(&nr_task_events
))
5355 task_event
= (struct perf_task_event
){
5357 .task_ctx
= task_ctx
,
5360 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
5362 .size
= sizeof(task_event
.event_id
),
5368 .time
= perf_clock(),
5372 perf_event_aux(perf_event_task_output
,
5377 void perf_event_fork(struct task_struct
*task
)
5379 perf_event_task(task
, NULL
, 1);
5386 struct perf_comm_event
{
5387 struct task_struct
*task
;
5392 struct perf_event_header header
;
5399 static int perf_event_comm_match(struct perf_event
*event
)
5401 return event
->attr
.comm
;
5404 static void perf_event_comm_output(struct perf_event
*event
,
5407 struct perf_comm_event
*comm_event
= data
;
5408 struct perf_output_handle handle
;
5409 struct perf_sample_data sample
;
5410 int size
= comm_event
->event_id
.header
.size
;
5413 if (!perf_event_comm_match(event
))
5416 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
5417 ret
= perf_output_begin(&handle
, event
,
5418 comm_event
->event_id
.header
.size
);
5423 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
5424 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
5426 perf_output_put(&handle
, comm_event
->event_id
);
5427 __output_copy(&handle
, comm_event
->comm
,
5428 comm_event
->comm_size
);
5430 perf_event__output_id_sample(event
, &handle
, &sample
);
5432 perf_output_end(&handle
);
5434 comm_event
->event_id
.header
.size
= size
;
5437 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
5439 char comm
[TASK_COMM_LEN
];
5442 memset(comm
, 0, sizeof(comm
));
5443 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
5444 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
5446 comm_event
->comm
= comm
;
5447 comm_event
->comm_size
= size
;
5449 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
5451 perf_event_aux(perf_event_comm_output
,
5456 void perf_event_comm(struct task_struct
*task
, bool exec
)
5458 struct perf_comm_event comm_event
;
5460 if (!atomic_read(&nr_comm_events
))
5463 comm_event
= (struct perf_comm_event
){
5469 .type
= PERF_RECORD_COMM
,
5470 .misc
= exec
? PERF_RECORD_MISC_COMM_EXEC
: 0,
5478 perf_event_comm_event(&comm_event
);
5485 struct perf_mmap_event
{
5486 struct vm_area_struct
*vma
;
5488 const char *file_name
;
5496 struct perf_event_header header
;
5506 static int perf_event_mmap_match(struct perf_event
*event
,
5509 struct perf_mmap_event
*mmap_event
= data
;
5510 struct vm_area_struct
*vma
= mmap_event
->vma
;
5511 int executable
= vma
->vm_flags
& VM_EXEC
;
5513 return (!executable
&& event
->attr
.mmap_data
) ||
5514 (executable
&& (event
->attr
.mmap
|| event
->attr
.mmap2
));
5517 static void perf_event_mmap_output(struct perf_event
*event
,
5520 struct perf_mmap_event
*mmap_event
= data
;
5521 struct perf_output_handle handle
;
5522 struct perf_sample_data sample
;
5523 int size
= mmap_event
->event_id
.header
.size
;
5526 if (!perf_event_mmap_match(event
, data
))
5529 if (event
->attr
.mmap2
) {
5530 mmap_event
->event_id
.header
.type
= PERF_RECORD_MMAP2
;
5531 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->maj
);
5532 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->min
);
5533 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino
);
5534 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino_generation
);
5535 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->prot
);
5536 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->flags
);
5539 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
5540 ret
= perf_output_begin(&handle
, event
,
5541 mmap_event
->event_id
.header
.size
);
5545 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
5546 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
5548 perf_output_put(&handle
, mmap_event
->event_id
);
5550 if (event
->attr
.mmap2
) {
5551 perf_output_put(&handle
, mmap_event
->maj
);
5552 perf_output_put(&handle
, mmap_event
->min
);
5553 perf_output_put(&handle
, mmap_event
->ino
);
5554 perf_output_put(&handle
, mmap_event
->ino_generation
);
5555 perf_output_put(&handle
, mmap_event
->prot
);
5556 perf_output_put(&handle
, mmap_event
->flags
);
5559 __output_copy(&handle
, mmap_event
->file_name
,
5560 mmap_event
->file_size
);
5562 perf_event__output_id_sample(event
, &handle
, &sample
);
5564 perf_output_end(&handle
);
5566 mmap_event
->event_id
.header
.size
= size
;
5569 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
5571 struct vm_area_struct
*vma
= mmap_event
->vma
;
5572 struct file
*file
= vma
->vm_file
;
5573 int maj
= 0, min
= 0;
5574 u64 ino
= 0, gen
= 0;
5575 u32 prot
= 0, flags
= 0;
5582 struct inode
*inode
;
5585 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5591 * d_path() works from the end of the rb backwards, so we
5592 * need to add enough zero bytes after the string to handle
5593 * the 64bit alignment we do later.
5595 name
= d_path(&file
->f_path
, buf
, PATH_MAX
- sizeof(u64
));
5600 inode
= file_inode(vma
->vm_file
);
5601 dev
= inode
->i_sb
->s_dev
;
5603 gen
= inode
->i_generation
;
5607 if (vma
->vm_flags
& VM_READ
)
5609 if (vma
->vm_flags
& VM_WRITE
)
5611 if (vma
->vm_flags
& VM_EXEC
)
5614 if (vma
->vm_flags
& VM_MAYSHARE
)
5617 flags
= MAP_PRIVATE
;
5619 if (vma
->vm_flags
& VM_DENYWRITE
)
5620 flags
|= MAP_DENYWRITE
;
5621 if (vma
->vm_flags
& VM_MAYEXEC
)
5622 flags
|= MAP_EXECUTABLE
;
5623 if (vma
->vm_flags
& VM_LOCKED
)
5624 flags
|= MAP_LOCKED
;
5625 if (vma
->vm_flags
& VM_HUGETLB
)
5626 flags
|= MAP_HUGETLB
;
5630 if (vma
->vm_ops
&& vma
->vm_ops
->name
) {
5631 name
= (char *) vma
->vm_ops
->name(vma
);
5636 name
= (char *)arch_vma_name(vma
);
5640 if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
5641 vma
->vm_end
>= vma
->vm_mm
->brk
) {
5645 if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
5646 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
5656 strlcpy(tmp
, name
, sizeof(tmp
));
5660 * Since our buffer works in 8 byte units we need to align our string
5661 * size to a multiple of 8. However, we must guarantee the tail end is
5662 * zero'd out to avoid leaking random bits to userspace.
5664 size
= strlen(name
)+1;
5665 while (!IS_ALIGNED(size
, sizeof(u64
)))
5666 name
[size
++] = '\0';
5668 mmap_event
->file_name
= name
;
5669 mmap_event
->file_size
= size
;
5670 mmap_event
->maj
= maj
;
5671 mmap_event
->min
= min
;
5672 mmap_event
->ino
= ino
;
5673 mmap_event
->ino_generation
= gen
;
5674 mmap_event
->prot
= prot
;
5675 mmap_event
->flags
= flags
;
5677 if (!(vma
->vm_flags
& VM_EXEC
))
5678 mmap_event
->event_id
.header
.misc
|= PERF_RECORD_MISC_MMAP_DATA
;
5680 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
5682 perf_event_aux(perf_event_mmap_output
,
5689 void perf_event_mmap(struct vm_area_struct
*vma
)
5691 struct perf_mmap_event mmap_event
;
5693 if (!atomic_read(&nr_mmap_events
))
5696 mmap_event
= (struct perf_mmap_event
){
5702 .type
= PERF_RECORD_MMAP
,
5703 .misc
= PERF_RECORD_MISC_USER
,
5708 .start
= vma
->vm_start
,
5709 .len
= vma
->vm_end
- vma
->vm_start
,
5710 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
5712 /* .maj (attr_mmap2 only) */
5713 /* .min (attr_mmap2 only) */
5714 /* .ino (attr_mmap2 only) */
5715 /* .ino_generation (attr_mmap2 only) */
5716 /* .prot (attr_mmap2 only) */
5717 /* .flags (attr_mmap2 only) */
5720 perf_event_mmap_event(&mmap_event
);
5724 * IRQ throttle logging
5727 static void perf_log_throttle(struct perf_event
*event
, int enable
)
5729 struct perf_output_handle handle
;
5730 struct perf_sample_data sample
;
5734 struct perf_event_header header
;
5738 } throttle_event
= {
5740 .type
= PERF_RECORD_THROTTLE
,
5742 .size
= sizeof(throttle_event
),
5744 .time
= perf_clock(),
5745 .id
= primary_event_id(event
),
5746 .stream_id
= event
->id
,
5750 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
5752 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
5754 ret
= perf_output_begin(&handle
, event
,
5755 throttle_event
.header
.size
);
5759 perf_output_put(&handle
, throttle_event
);
5760 perf_event__output_id_sample(event
, &handle
, &sample
);
5761 perf_output_end(&handle
);
5765 * Generic event overflow handling, sampling.
5768 static int __perf_event_overflow(struct perf_event
*event
,
5769 int throttle
, struct perf_sample_data
*data
,
5770 struct pt_regs
*regs
)
5772 int events
= atomic_read(&event
->event_limit
);
5773 struct hw_perf_event
*hwc
= &event
->hw
;
5778 * Non-sampling counters might still use the PMI to fold short
5779 * hardware counters, ignore those.
5781 if (unlikely(!is_sampling_event(event
)))
5784 seq
= __this_cpu_read(perf_throttled_seq
);
5785 if (seq
!= hwc
->interrupts_seq
) {
5786 hwc
->interrupts_seq
= seq
;
5787 hwc
->interrupts
= 1;
5790 if (unlikely(throttle
5791 && hwc
->interrupts
>= max_samples_per_tick
)) {
5792 __this_cpu_inc(perf_throttled_count
);
5793 hwc
->interrupts
= MAX_INTERRUPTS
;
5794 perf_log_throttle(event
, 0);
5795 tick_nohz_full_kick();
5800 if (event
->attr
.freq
) {
5801 u64 now
= perf_clock();
5802 s64 delta
= now
- hwc
->freq_time_stamp
;
5804 hwc
->freq_time_stamp
= now
;
5806 if (delta
> 0 && delta
< 2*TICK_NSEC
)
5807 perf_adjust_period(event
, delta
, hwc
->last_period
, true);
5811 * XXX event_limit might not quite work as expected on inherited
5815 event
->pending_kill
= POLL_IN
;
5816 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
5818 event
->pending_kill
= POLL_HUP
;
5819 event
->pending_disable
= 1;
5820 irq_work_queue(&event
->pending
);
5823 if (event
->overflow_handler
)
5824 event
->overflow_handler(event
, data
, regs
);
5826 perf_event_output(event
, data
, regs
);
5828 if (*perf_event_fasync(event
) && event
->pending_kill
) {
5829 event
->pending_wakeup
= 1;
5830 irq_work_queue(&event
->pending
);
5836 int perf_event_overflow(struct perf_event
*event
,
5837 struct perf_sample_data
*data
,
5838 struct pt_regs
*regs
)
5840 return __perf_event_overflow(event
, 1, data
, regs
);
5844 * Generic software event infrastructure
5847 struct swevent_htable
{
5848 struct swevent_hlist
*swevent_hlist
;
5849 struct mutex hlist_mutex
;
5852 /* Recursion avoidance in each contexts */
5853 int recursion
[PERF_NR_CONTEXTS
];
5856 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
5859 * We directly increment event->count and keep a second value in
5860 * event->hw.period_left to count intervals. This period event
5861 * is kept in the range [-sample_period, 0] so that we can use the
5865 u64
perf_swevent_set_period(struct perf_event
*event
)
5867 struct hw_perf_event
*hwc
= &event
->hw
;
5868 u64 period
= hwc
->last_period
;
5872 hwc
->last_period
= hwc
->sample_period
;
5875 old
= val
= local64_read(&hwc
->period_left
);
5879 nr
= div64_u64(period
+ val
, period
);
5880 offset
= nr
* period
;
5882 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
5888 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
5889 struct perf_sample_data
*data
,
5890 struct pt_regs
*regs
)
5892 struct hw_perf_event
*hwc
= &event
->hw
;
5896 overflow
= perf_swevent_set_period(event
);
5898 if (hwc
->interrupts
== MAX_INTERRUPTS
)
5901 for (; overflow
; overflow
--) {
5902 if (__perf_event_overflow(event
, throttle
,
5905 * We inhibit the overflow from happening when
5906 * hwc->interrupts == MAX_INTERRUPTS.
5914 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
5915 struct perf_sample_data
*data
,
5916 struct pt_regs
*regs
)
5918 struct hw_perf_event
*hwc
= &event
->hw
;
5920 local64_add(nr
, &event
->count
);
5925 if (!is_sampling_event(event
))
5928 if ((event
->attr
.sample_type
& PERF_SAMPLE_PERIOD
) && !event
->attr
.freq
) {
5930 return perf_swevent_overflow(event
, 1, data
, regs
);
5932 data
->period
= event
->hw
.last_period
;
5934 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
5935 return perf_swevent_overflow(event
, 1, data
, regs
);
5937 if (local64_add_negative(nr
, &hwc
->period_left
))
5940 perf_swevent_overflow(event
, 0, data
, regs
);
5943 static int perf_exclude_event(struct perf_event
*event
,
5944 struct pt_regs
*regs
)
5946 if (event
->hw
.state
& PERF_HES_STOPPED
)
5950 if (event
->attr
.exclude_user
&& user_mode(regs
))
5953 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
5960 static int perf_swevent_match(struct perf_event
*event
,
5961 enum perf_type_id type
,
5963 struct perf_sample_data
*data
,
5964 struct pt_regs
*regs
)
5966 if (event
->attr
.type
!= type
)
5969 if (event
->attr
.config
!= event_id
)
5972 if (perf_exclude_event(event
, regs
))
5978 static inline u64
swevent_hash(u64 type
, u32 event_id
)
5980 u64 val
= event_id
| (type
<< 32);
5982 return hash_64(val
, SWEVENT_HLIST_BITS
);
5985 static inline struct hlist_head
*
5986 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
5988 u64 hash
= swevent_hash(type
, event_id
);
5990 return &hlist
->heads
[hash
];
5993 /* For the read side: events when they trigger */
5994 static inline struct hlist_head
*
5995 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
5997 struct swevent_hlist
*hlist
;
5999 hlist
= rcu_dereference(swhash
->swevent_hlist
);
6003 return __find_swevent_head(hlist
, type
, event_id
);
6006 /* For the event head insertion and removal in the hlist */
6007 static inline struct hlist_head
*
6008 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
6010 struct swevent_hlist
*hlist
;
6011 u32 event_id
= event
->attr
.config
;
6012 u64 type
= event
->attr
.type
;
6015 * Event scheduling is always serialized against hlist allocation
6016 * and release. Which makes the protected version suitable here.
6017 * The context lock guarantees that.
6019 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
6020 lockdep_is_held(&event
->ctx
->lock
));
6024 return __find_swevent_head(hlist
, type
, event_id
);
6027 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
6029 struct perf_sample_data
*data
,
6030 struct pt_regs
*regs
)
6032 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
6033 struct perf_event
*event
;
6034 struct hlist_head
*head
;
6037 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
6041 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
6042 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
6043 perf_swevent_event(event
, nr
, data
, regs
);
6049 DEFINE_PER_CPU(struct pt_regs
, __perf_regs
[4]);
6051 int perf_swevent_get_recursion_context(void)
6053 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
6055 return get_recursion_context(swhash
->recursion
);
6057 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
6059 inline void perf_swevent_put_recursion_context(int rctx
)
6061 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
6063 put_recursion_context(swhash
->recursion
, rctx
);
6066 void ___perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
6068 struct perf_sample_data data
;
6070 if (WARN_ON_ONCE(!regs
))
6073 perf_sample_data_init(&data
, addr
, 0);
6074 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, &data
, regs
);
6077 void __perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
6081 preempt_disable_notrace();
6082 rctx
= perf_swevent_get_recursion_context();
6083 if (unlikely(rctx
< 0))
6086 ___perf_sw_event(event_id
, nr
, regs
, addr
);
6088 perf_swevent_put_recursion_context(rctx
);
6090 preempt_enable_notrace();
6093 static void perf_swevent_read(struct perf_event
*event
)
6097 static int perf_swevent_add(struct perf_event
*event
, int flags
)
6099 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
6100 struct hw_perf_event
*hwc
= &event
->hw
;
6101 struct hlist_head
*head
;
6103 if (is_sampling_event(event
)) {
6104 hwc
->last_period
= hwc
->sample_period
;
6105 perf_swevent_set_period(event
);
6108 hwc
->state
= !(flags
& PERF_EF_START
);
6110 head
= find_swevent_head(swhash
, event
);
6111 if (WARN_ON_ONCE(!head
))
6114 hlist_add_head_rcu(&event
->hlist_entry
, head
);
6119 static void perf_swevent_del(struct perf_event
*event
, int flags
)
6121 hlist_del_rcu(&event
->hlist_entry
);
6124 static void perf_swevent_start(struct perf_event
*event
, int flags
)
6126 event
->hw
.state
= 0;
6129 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
6131 event
->hw
.state
= PERF_HES_STOPPED
;
6134 /* Deref the hlist from the update side */
6135 static inline struct swevent_hlist
*
6136 swevent_hlist_deref(struct swevent_htable
*swhash
)
6138 return rcu_dereference_protected(swhash
->swevent_hlist
,
6139 lockdep_is_held(&swhash
->hlist_mutex
));
6142 static void swevent_hlist_release(struct swevent_htable
*swhash
)
6144 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
6149 RCU_INIT_POINTER(swhash
->swevent_hlist
, NULL
);
6150 kfree_rcu(hlist
, rcu_head
);
6153 static void swevent_hlist_put_cpu(struct perf_event
*event
, int cpu
)
6155 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6157 mutex_lock(&swhash
->hlist_mutex
);
6159 if (!--swhash
->hlist_refcount
)
6160 swevent_hlist_release(swhash
);
6162 mutex_unlock(&swhash
->hlist_mutex
);
6165 static void swevent_hlist_put(struct perf_event
*event
)
6169 for_each_possible_cpu(cpu
)
6170 swevent_hlist_put_cpu(event
, cpu
);
6173 static int swevent_hlist_get_cpu(struct perf_event
*event
, int cpu
)
6175 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6178 mutex_lock(&swhash
->hlist_mutex
);
6179 if (!swevent_hlist_deref(swhash
) && cpu_online(cpu
)) {
6180 struct swevent_hlist
*hlist
;
6182 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
6187 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
6189 swhash
->hlist_refcount
++;
6191 mutex_unlock(&swhash
->hlist_mutex
);
6196 static int swevent_hlist_get(struct perf_event
*event
)
6199 int cpu
, failed_cpu
;
6202 for_each_possible_cpu(cpu
) {
6203 err
= swevent_hlist_get_cpu(event
, cpu
);
6213 for_each_possible_cpu(cpu
) {
6214 if (cpu
== failed_cpu
)
6216 swevent_hlist_put_cpu(event
, cpu
);
6223 struct static_key perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
6225 static void sw_perf_event_destroy(struct perf_event
*event
)
6227 u64 event_id
= event
->attr
.config
;
6229 WARN_ON(event
->parent
);
6231 static_key_slow_dec(&perf_swevent_enabled
[event_id
]);
6232 swevent_hlist_put(event
);
6235 static int perf_swevent_init(struct perf_event
*event
)
6237 u64 event_id
= event
->attr
.config
;
6239 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
6243 * no branch sampling for software events
6245 if (has_branch_stack(event
))
6249 case PERF_COUNT_SW_CPU_CLOCK
:
6250 case PERF_COUNT_SW_TASK_CLOCK
:
6257 if (event_id
>= PERF_COUNT_SW_MAX
)
6260 if (!event
->parent
) {
6263 err
= swevent_hlist_get(event
);
6267 static_key_slow_inc(&perf_swevent_enabled
[event_id
]);
6268 event
->destroy
= sw_perf_event_destroy
;
6274 static struct pmu perf_swevent
= {
6275 .task_ctx_nr
= perf_sw_context
,
6277 .event_init
= perf_swevent_init
,
6278 .add
= perf_swevent_add
,
6279 .del
= perf_swevent_del
,
6280 .start
= perf_swevent_start
,
6281 .stop
= perf_swevent_stop
,
6282 .read
= perf_swevent_read
,
6285 #ifdef CONFIG_EVENT_TRACING
6287 static int perf_tp_filter_match(struct perf_event
*event
,
6288 struct perf_sample_data
*data
)
6290 void *record
= data
->raw
->data
;
6292 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
6297 static int perf_tp_event_match(struct perf_event
*event
,
6298 struct perf_sample_data
*data
,
6299 struct pt_regs
*regs
)
6301 if (event
->hw
.state
& PERF_HES_STOPPED
)
6304 * All tracepoints are from kernel-space.
6306 if (event
->attr
.exclude_kernel
)
6309 if (!perf_tp_filter_match(event
, data
))
6315 void perf_tp_event(u64 addr
, u64 count
, void *record
, int entry_size
,
6316 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
,
6317 struct task_struct
*task
)
6319 struct perf_sample_data data
;
6320 struct perf_event
*event
;
6322 struct perf_raw_record raw
= {
6327 perf_sample_data_init(&data
, addr
, 0);
6330 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
6331 if (perf_tp_event_match(event
, &data
, regs
))
6332 perf_swevent_event(event
, count
, &data
, regs
);
6336 * If we got specified a target task, also iterate its context and
6337 * deliver this event there too.
6339 if (task
&& task
!= current
) {
6340 struct perf_event_context
*ctx
;
6341 struct trace_entry
*entry
= record
;
6344 ctx
= rcu_dereference(task
->perf_event_ctxp
[perf_sw_context
]);
6348 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
6349 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
6351 if (event
->attr
.config
!= entry
->type
)
6353 if (perf_tp_event_match(event
, &data
, regs
))
6354 perf_swevent_event(event
, count
, &data
, regs
);
6360 perf_swevent_put_recursion_context(rctx
);
6362 EXPORT_SYMBOL_GPL(perf_tp_event
);
6364 static void tp_perf_event_destroy(struct perf_event
*event
)
6366 perf_trace_destroy(event
);
6369 static int perf_tp_event_init(struct perf_event
*event
)
6373 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
6377 * no branch sampling for tracepoint events
6379 if (has_branch_stack(event
))
6382 err
= perf_trace_init(event
);
6386 event
->destroy
= tp_perf_event_destroy
;
6391 static struct pmu perf_tracepoint
= {
6392 .task_ctx_nr
= perf_sw_context
,
6394 .event_init
= perf_tp_event_init
,
6395 .add
= perf_trace_add
,
6396 .del
= perf_trace_del
,
6397 .start
= perf_swevent_start
,
6398 .stop
= perf_swevent_stop
,
6399 .read
= perf_swevent_read
,
6402 static inline void perf_tp_register(void)
6404 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
6407 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
6412 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
6415 filter_str
= strndup_user(arg
, PAGE_SIZE
);
6416 if (IS_ERR(filter_str
))
6417 return PTR_ERR(filter_str
);
6419 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
6425 static void perf_event_free_filter(struct perf_event
*event
)
6427 ftrace_profile_free_filter(event
);
6432 static inline void perf_tp_register(void)
6436 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
6441 static void perf_event_free_filter(struct perf_event
*event
)
6445 #endif /* CONFIG_EVENT_TRACING */
6447 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6448 void perf_bp_event(struct perf_event
*bp
, void *data
)
6450 struct perf_sample_data sample
;
6451 struct pt_regs
*regs
= data
;
6453 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
, 0);
6455 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
6456 perf_swevent_event(bp
, 1, &sample
, regs
);
6461 * hrtimer based swevent callback
6464 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
6466 enum hrtimer_restart ret
= HRTIMER_RESTART
;
6467 struct perf_sample_data data
;
6468 struct pt_regs
*regs
;
6469 struct perf_event
*event
;
6472 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
6474 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
6475 return HRTIMER_NORESTART
;
6477 event
->pmu
->read(event
);
6479 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
6480 regs
= get_irq_regs();
6482 if (regs
&& !perf_exclude_event(event
, regs
)) {
6483 if (!(event
->attr
.exclude_idle
&& is_idle_task(current
)))
6484 if (__perf_event_overflow(event
, 1, &data
, regs
))
6485 ret
= HRTIMER_NORESTART
;
6488 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
6489 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
6494 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
6496 struct hw_perf_event
*hwc
= &event
->hw
;
6499 if (!is_sampling_event(event
))
6502 period
= local64_read(&hwc
->period_left
);
6507 local64_set(&hwc
->period_left
, 0);
6509 period
= max_t(u64
, 10000, hwc
->sample_period
);
6511 __hrtimer_start_range_ns(&hwc
->hrtimer
,
6512 ns_to_ktime(period
), 0,
6513 HRTIMER_MODE_REL_PINNED
, 0);
6516 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
6518 struct hw_perf_event
*hwc
= &event
->hw
;
6520 if (is_sampling_event(event
)) {
6521 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
6522 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
6524 hrtimer_cancel(&hwc
->hrtimer
);
6528 static void perf_swevent_init_hrtimer(struct perf_event
*event
)
6530 struct hw_perf_event
*hwc
= &event
->hw
;
6532 if (!is_sampling_event(event
))
6535 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
6536 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
6539 * Since hrtimers have a fixed rate, we can do a static freq->period
6540 * mapping and avoid the whole period adjust feedback stuff.
6542 if (event
->attr
.freq
) {
6543 long freq
= event
->attr
.sample_freq
;
6545 event
->attr
.sample_period
= NSEC_PER_SEC
/ freq
;
6546 hwc
->sample_period
= event
->attr
.sample_period
;
6547 local64_set(&hwc
->period_left
, hwc
->sample_period
);
6548 hwc
->last_period
= hwc
->sample_period
;
6549 event
->attr
.freq
= 0;
6554 * Software event: cpu wall time clock
6557 static void cpu_clock_event_update(struct perf_event
*event
)
6562 now
= local_clock();
6563 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
6564 local64_add(now
- prev
, &event
->count
);
6567 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
6569 local64_set(&event
->hw
.prev_count
, local_clock());
6570 perf_swevent_start_hrtimer(event
);
6573 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
6575 perf_swevent_cancel_hrtimer(event
);
6576 cpu_clock_event_update(event
);
6579 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
6581 if (flags
& PERF_EF_START
)
6582 cpu_clock_event_start(event
, flags
);
6587 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
6589 cpu_clock_event_stop(event
, flags
);
6592 static void cpu_clock_event_read(struct perf_event
*event
)
6594 cpu_clock_event_update(event
);
6597 static int cpu_clock_event_init(struct perf_event
*event
)
6599 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
6602 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
6606 * no branch sampling for software events
6608 if (has_branch_stack(event
))
6611 perf_swevent_init_hrtimer(event
);
6616 static struct pmu perf_cpu_clock
= {
6617 .task_ctx_nr
= perf_sw_context
,
6619 .event_init
= cpu_clock_event_init
,
6620 .add
= cpu_clock_event_add
,
6621 .del
= cpu_clock_event_del
,
6622 .start
= cpu_clock_event_start
,
6623 .stop
= cpu_clock_event_stop
,
6624 .read
= cpu_clock_event_read
,
6628 * Software event: task time clock
6631 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
6636 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
6638 local64_add(delta
, &event
->count
);
6641 static void task_clock_event_start(struct perf_event
*event
, int flags
)
6643 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
6644 perf_swevent_start_hrtimer(event
);
6647 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
6649 perf_swevent_cancel_hrtimer(event
);
6650 task_clock_event_update(event
, event
->ctx
->time
);
6653 static int task_clock_event_add(struct perf_event
*event
, int flags
)
6655 if (flags
& PERF_EF_START
)
6656 task_clock_event_start(event
, flags
);
6661 static void task_clock_event_del(struct perf_event
*event
, int flags
)
6663 task_clock_event_stop(event
, PERF_EF_UPDATE
);
6666 static void task_clock_event_read(struct perf_event
*event
)
6668 u64 now
= perf_clock();
6669 u64 delta
= now
- event
->ctx
->timestamp
;
6670 u64 time
= event
->ctx
->time
+ delta
;
6672 task_clock_event_update(event
, time
);
6675 static int task_clock_event_init(struct perf_event
*event
)
6677 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
6680 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
6684 * no branch sampling for software events
6686 if (has_branch_stack(event
))
6689 perf_swevent_init_hrtimer(event
);
6694 static struct pmu perf_task_clock
= {
6695 .task_ctx_nr
= perf_sw_context
,
6697 .event_init
= task_clock_event_init
,
6698 .add
= task_clock_event_add
,
6699 .del
= task_clock_event_del
,
6700 .start
= task_clock_event_start
,
6701 .stop
= task_clock_event_stop
,
6702 .read
= task_clock_event_read
,
6705 static void perf_pmu_nop_void(struct pmu
*pmu
)
6709 static int perf_pmu_nop_int(struct pmu
*pmu
)
6714 static void perf_pmu_start_txn(struct pmu
*pmu
)
6716 perf_pmu_disable(pmu
);
6719 static int perf_pmu_commit_txn(struct pmu
*pmu
)
6721 perf_pmu_enable(pmu
);
6725 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
6727 perf_pmu_enable(pmu
);
6730 static int perf_event_idx_default(struct perf_event
*event
)
6736 * Ensures all contexts with the same task_ctx_nr have the same
6737 * pmu_cpu_context too.
6739 static struct perf_cpu_context __percpu
*find_pmu_context(int ctxn
)
6746 list_for_each_entry(pmu
, &pmus
, entry
) {
6747 if (pmu
->task_ctx_nr
== ctxn
)
6748 return pmu
->pmu_cpu_context
;
6754 static void update_pmu_context(struct pmu
*pmu
, struct pmu
*old_pmu
)
6758 for_each_possible_cpu(cpu
) {
6759 struct perf_cpu_context
*cpuctx
;
6761 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
6763 if (cpuctx
->unique_pmu
== old_pmu
)
6764 cpuctx
->unique_pmu
= pmu
;
6768 static void free_pmu_context(struct pmu
*pmu
)
6772 mutex_lock(&pmus_lock
);
6774 * Like a real lame refcount.
6776 list_for_each_entry(i
, &pmus
, entry
) {
6777 if (i
->pmu_cpu_context
== pmu
->pmu_cpu_context
) {
6778 update_pmu_context(i
, pmu
);
6783 free_percpu(pmu
->pmu_cpu_context
);
6785 mutex_unlock(&pmus_lock
);
6787 static struct idr pmu_idr
;
6790 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
6792 struct pmu
*pmu
= dev_get_drvdata(dev
);
6794 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
6796 static DEVICE_ATTR_RO(type
);
6799 perf_event_mux_interval_ms_show(struct device
*dev
,
6800 struct device_attribute
*attr
,
6803 struct pmu
*pmu
= dev_get_drvdata(dev
);
6805 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->hrtimer_interval_ms
);
6809 perf_event_mux_interval_ms_store(struct device
*dev
,
6810 struct device_attribute
*attr
,
6811 const char *buf
, size_t count
)
6813 struct pmu
*pmu
= dev_get_drvdata(dev
);
6814 int timer
, cpu
, ret
;
6816 ret
= kstrtoint(buf
, 0, &timer
);
6823 /* same value, noting to do */
6824 if (timer
== pmu
->hrtimer_interval_ms
)
6827 pmu
->hrtimer_interval_ms
= timer
;
6829 /* update all cpuctx for this PMU */
6830 for_each_possible_cpu(cpu
) {
6831 struct perf_cpu_context
*cpuctx
;
6832 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
6833 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* timer
);
6835 if (hrtimer_active(&cpuctx
->hrtimer
))
6836 hrtimer_forward_now(&cpuctx
->hrtimer
, cpuctx
->hrtimer_interval
);
6841 static DEVICE_ATTR_RW(perf_event_mux_interval_ms
);
6843 static struct attribute
*pmu_dev_attrs
[] = {
6844 &dev_attr_type
.attr
,
6845 &dev_attr_perf_event_mux_interval_ms
.attr
,
6848 ATTRIBUTE_GROUPS(pmu_dev
);
6850 static int pmu_bus_running
;
6851 static struct bus_type pmu_bus
= {
6852 .name
= "event_source",
6853 .dev_groups
= pmu_dev_groups
,
6856 static void pmu_dev_release(struct device
*dev
)
6861 static int pmu_dev_alloc(struct pmu
*pmu
)
6865 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
6869 pmu
->dev
->groups
= pmu
->attr_groups
;
6870 device_initialize(pmu
->dev
);
6871 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
6875 dev_set_drvdata(pmu
->dev
, pmu
);
6876 pmu
->dev
->bus
= &pmu_bus
;
6877 pmu
->dev
->release
= pmu_dev_release
;
6878 ret
= device_add(pmu
->dev
);
6886 put_device(pmu
->dev
);
6890 static struct lock_class_key cpuctx_mutex
;
6891 static struct lock_class_key cpuctx_lock
;
6893 int perf_pmu_register(struct pmu
*pmu
, const char *name
, int type
)
6897 mutex_lock(&pmus_lock
);
6899 pmu
->pmu_disable_count
= alloc_percpu(int);
6900 if (!pmu
->pmu_disable_count
)
6909 type
= idr_alloc(&pmu_idr
, pmu
, PERF_TYPE_MAX
, 0, GFP_KERNEL
);
6917 if (pmu_bus_running
) {
6918 ret
= pmu_dev_alloc(pmu
);
6924 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
6925 if (pmu
->pmu_cpu_context
)
6926 goto got_cpu_context
;
6929 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
6930 if (!pmu
->pmu_cpu_context
)
6933 for_each_possible_cpu(cpu
) {
6934 struct perf_cpu_context
*cpuctx
;
6936 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
6937 __perf_event_init_context(&cpuctx
->ctx
);
6938 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
6939 lockdep_set_class(&cpuctx
->ctx
.lock
, &cpuctx_lock
);
6940 cpuctx
->ctx
.pmu
= pmu
;
6942 __perf_cpu_hrtimer_init(cpuctx
, cpu
);
6944 INIT_LIST_HEAD(&cpuctx
->rotation_list
);
6945 cpuctx
->unique_pmu
= pmu
;
6949 if (!pmu
->start_txn
) {
6950 if (pmu
->pmu_enable
) {
6952 * If we have pmu_enable/pmu_disable calls, install
6953 * transaction stubs that use that to try and batch
6954 * hardware accesses.
6956 pmu
->start_txn
= perf_pmu_start_txn
;
6957 pmu
->commit_txn
= perf_pmu_commit_txn
;
6958 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
6960 pmu
->start_txn
= perf_pmu_nop_void
;
6961 pmu
->commit_txn
= perf_pmu_nop_int
;
6962 pmu
->cancel_txn
= perf_pmu_nop_void
;
6966 if (!pmu
->pmu_enable
) {
6967 pmu
->pmu_enable
= perf_pmu_nop_void
;
6968 pmu
->pmu_disable
= perf_pmu_nop_void
;
6971 if (!pmu
->event_idx
)
6972 pmu
->event_idx
= perf_event_idx_default
;
6974 list_add_rcu(&pmu
->entry
, &pmus
);
6977 mutex_unlock(&pmus_lock
);
6982 device_del(pmu
->dev
);
6983 put_device(pmu
->dev
);
6986 if (pmu
->type
>= PERF_TYPE_MAX
)
6987 idr_remove(&pmu_idr
, pmu
->type
);
6990 free_percpu(pmu
->pmu_disable_count
);
6993 EXPORT_SYMBOL_GPL(perf_pmu_register
);
6995 void perf_pmu_unregister(struct pmu
*pmu
)
6997 mutex_lock(&pmus_lock
);
6998 list_del_rcu(&pmu
->entry
);
6999 mutex_unlock(&pmus_lock
);
7002 * We dereference the pmu list under both SRCU and regular RCU, so
7003 * synchronize against both of those.
7005 synchronize_srcu(&pmus_srcu
);
7008 free_percpu(pmu
->pmu_disable_count
);
7009 if (pmu
->type
>= PERF_TYPE_MAX
)
7010 idr_remove(&pmu_idr
, pmu
->type
);
7011 device_del(pmu
->dev
);
7012 put_device(pmu
->dev
);
7013 free_pmu_context(pmu
);
7015 EXPORT_SYMBOL_GPL(perf_pmu_unregister
);
7017 struct pmu
*perf_init_event(struct perf_event
*event
)
7019 struct pmu
*pmu
= NULL
;
7023 idx
= srcu_read_lock(&pmus_srcu
);
7026 pmu
= idr_find(&pmu_idr
, event
->attr
.type
);
7029 if (!try_module_get(pmu
->module
)) {
7030 pmu
= ERR_PTR(-ENODEV
);
7034 ret
= pmu
->event_init(event
);
7040 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
7041 if (!try_module_get(pmu
->module
)) {
7042 pmu
= ERR_PTR(-ENODEV
);
7046 ret
= pmu
->event_init(event
);
7050 if (ret
!= -ENOENT
) {
7055 pmu
= ERR_PTR(-ENOENT
);
7057 srcu_read_unlock(&pmus_srcu
, idx
);
7062 static void account_event_cpu(struct perf_event
*event
, int cpu
)
7067 if (has_branch_stack(event
)) {
7068 if (!(event
->attach_state
& PERF_ATTACH_TASK
))
7069 atomic_inc(&per_cpu(perf_branch_stack_events
, cpu
));
7071 if (is_cgroup_event(event
))
7072 atomic_inc(&per_cpu(perf_cgroup_events
, cpu
));
7075 static void account_event(struct perf_event
*event
)
7080 if (event
->attach_state
& PERF_ATTACH_TASK
)
7081 static_key_slow_inc(&perf_sched_events
.key
);
7082 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
7083 atomic_inc(&nr_mmap_events
);
7084 if (event
->attr
.comm
)
7085 atomic_inc(&nr_comm_events
);
7086 if (event
->attr
.task
)
7087 atomic_inc(&nr_task_events
);
7088 if (event
->attr
.freq
) {
7089 if (atomic_inc_return(&nr_freq_events
) == 1)
7090 tick_nohz_full_kick_all();
7092 if (has_branch_stack(event
))
7093 static_key_slow_inc(&perf_sched_events
.key
);
7094 if (is_cgroup_event(event
))
7095 static_key_slow_inc(&perf_sched_events
.key
);
7097 account_event_cpu(event
, event
->cpu
);
7101 * Allocate and initialize a event structure
7103 static struct perf_event
*
7104 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
7105 struct task_struct
*task
,
7106 struct perf_event
*group_leader
,
7107 struct perf_event
*parent_event
,
7108 perf_overflow_handler_t overflow_handler
,
7112 struct perf_event
*event
;
7113 struct hw_perf_event
*hwc
;
7116 if ((unsigned)cpu
>= nr_cpu_ids
) {
7117 if (!task
|| cpu
!= -1)
7118 return ERR_PTR(-EINVAL
);
7121 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
7123 return ERR_PTR(-ENOMEM
);
7126 * Single events are their own group leaders, with an
7127 * empty sibling list:
7130 group_leader
= event
;
7132 mutex_init(&event
->child_mutex
);
7133 INIT_LIST_HEAD(&event
->child_list
);
7135 INIT_LIST_HEAD(&event
->group_entry
);
7136 INIT_LIST_HEAD(&event
->event_entry
);
7137 INIT_LIST_HEAD(&event
->sibling_list
);
7138 INIT_LIST_HEAD(&event
->rb_entry
);
7139 INIT_LIST_HEAD(&event
->active_entry
);
7140 INIT_HLIST_NODE(&event
->hlist_entry
);
7143 init_waitqueue_head(&event
->waitq
);
7144 init_irq_work(&event
->pending
, perf_pending_event
);
7146 mutex_init(&event
->mmap_mutex
);
7148 atomic_long_set(&event
->refcount
, 1);
7150 event
->attr
= *attr
;
7151 event
->group_leader
= group_leader
;
7155 event
->parent
= parent_event
;
7157 event
->ns
= get_pid_ns(task_active_pid_ns(current
));
7158 event
->id
= atomic64_inc_return(&perf_event_id
);
7160 event
->state
= PERF_EVENT_STATE_INACTIVE
;
7163 event
->attach_state
= PERF_ATTACH_TASK
;
7165 if (attr
->type
== PERF_TYPE_TRACEPOINT
)
7166 event
->hw
.tp_target
= task
;
7167 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7169 * hw_breakpoint is a bit difficult here..
7171 else if (attr
->type
== PERF_TYPE_BREAKPOINT
)
7172 event
->hw
.bp_target
= task
;
7176 if (!overflow_handler
&& parent_event
) {
7177 overflow_handler
= parent_event
->overflow_handler
;
7178 context
= parent_event
->overflow_handler_context
;
7181 event
->overflow_handler
= overflow_handler
;
7182 event
->overflow_handler_context
= context
;
7184 perf_event__state_init(event
);
7189 hwc
->sample_period
= attr
->sample_period
;
7190 if (attr
->freq
&& attr
->sample_freq
)
7191 hwc
->sample_period
= 1;
7192 hwc
->last_period
= hwc
->sample_period
;
7194 local64_set(&hwc
->period_left
, hwc
->sample_period
);
7197 * we currently do not support PERF_FORMAT_GROUP on inherited events
7199 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
7202 pmu
= perf_init_event(event
);
7205 else if (IS_ERR(pmu
)) {
7210 if (!event
->parent
) {
7211 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
7212 err
= get_callchain_buffers();
7222 event
->destroy(event
);
7223 module_put(pmu
->module
);
7226 put_pid_ns(event
->ns
);
7229 return ERR_PTR(err
);
7232 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
7233 struct perf_event_attr
*attr
)
7238 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
7242 * zero the full structure, so that a short copy will be nice.
7244 memset(attr
, 0, sizeof(*attr
));
7246 ret
= get_user(size
, &uattr
->size
);
7250 if (size
> PAGE_SIZE
) /* silly large */
7253 if (!size
) /* abi compat */
7254 size
= PERF_ATTR_SIZE_VER0
;
7256 if (size
< PERF_ATTR_SIZE_VER0
)
7260 * If we're handed a bigger struct than we know of,
7261 * ensure all the unknown bits are 0 - i.e. new
7262 * user-space does not rely on any kernel feature
7263 * extensions we dont know about yet.
7265 if (size
> sizeof(*attr
)) {
7266 unsigned char __user
*addr
;
7267 unsigned char __user
*end
;
7270 addr
= (void __user
*)uattr
+ sizeof(*attr
);
7271 end
= (void __user
*)uattr
+ size
;
7273 for (; addr
< end
; addr
++) {
7274 ret
= get_user(val
, addr
);
7280 size
= sizeof(*attr
);
7283 ret
= copy_from_user(attr
, uattr
, size
);
7287 if (attr
->__reserved_1
)
7290 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
7293 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
7296 if (attr
->sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
7297 u64 mask
= attr
->branch_sample_type
;
7299 /* only using defined bits */
7300 if (mask
& ~(PERF_SAMPLE_BRANCH_MAX
-1))
7303 /* at least one branch bit must be set */
7304 if (!(mask
& ~PERF_SAMPLE_BRANCH_PLM_ALL
))
7307 /* propagate priv level, when not set for branch */
7308 if (!(mask
& PERF_SAMPLE_BRANCH_PLM_ALL
)) {
7310 /* exclude_kernel checked on syscall entry */
7311 if (!attr
->exclude_kernel
)
7312 mask
|= PERF_SAMPLE_BRANCH_KERNEL
;
7314 if (!attr
->exclude_user
)
7315 mask
|= PERF_SAMPLE_BRANCH_USER
;
7317 if (!attr
->exclude_hv
)
7318 mask
|= PERF_SAMPLE_BRANCH_HV
;
7320 * adjust user setting (for HW filter setup)
7322 attr
->branch_sample_type
= mask
;
7324 /* privileged levels capture (kernel, hv): check permissions */
7325 if ((mask
& PERF_SAMPLE_BRANCH_PERM_PLM
)
7326 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
7330 if (attr
->sample_type
& PERF_SAMPLE_REGS_USER
) {
7331 ret
= perf_reg_validate(attr
->sample_regs_user
);
7336 if (attr
->sample_type
& PERF_SAMPLE_STACK_USER
) {
7337 if (!arch_perf_have_user_stack_dump())
7341 * We have __u32 type for the size, but so far
7342 * we can only use __u16 as maximum due to the
7343 * __u16 sample size limit.
7345 if (attr
->sample_stack_user
>= USHRT_MAX
)
7347 else if (!IS_ALIGNED(attr
->sample_stack_user
, sizeof(u64
)))
7355 put_user(sizeof(*attr
), &uattr
->size
);
7361 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
7363 struct ring_buffer
*rb
= NULL
;
7369 /* don't allow circular references */
7370 if (event
== output_event
)
7374 * Don't allow cross-cpu buffers
7376 if (output_event
->cpu
!= event
->cpu
)
7380 * If its not a per-cpu rb, it must be the same task.
7382 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
7386 mutex_lock(&event
->mmap_mutex
);
7387 /* Can't redirect output if we've got an active mmap() */
7388 if (atomic_read(&event
->mmap_count
))
7392 /* get the rb we want to redirect to */
7393 rb
= ring_buffer_get(output_event
);
7398 ring_buffer_attach(event
, rb
);
7402 mutex_unlock(&event
->mmap_mutex
);
7408 static void mutex_lock_double(struct mutex
*a
, struct mutex
*b
)
7414 mutex_lock_nested(b
, SINGLE_DEPTH_NESTING
);
7418 * sys_perf_event_open - open a performance event, associate it to a task/cpu
7420 * @attr_uptr: event_id type attributes for monitoring/sampling
7423 * @group_fd: group leader event fd
7425 SYSCALL_DEFINE5(perf_event_open
,
7426 struct perf_event_attr __user
*, attr_uptr
,
7427 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
7429 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
7430 struct perf_event
*event
, *sibling
;
7431 struct perf_event_attr attr
;
7432 struct perf_event_context
*ctx
, *uninitialized_var(gctx
);
7433 struct file
*event_file
= NULL
;
7434 struct fd group
= {NULL
, 0};
7435 struct task_struct
*task
= NULL
;
7440 int f_flags
= O_RDWR
;
7442 /* for future expandability... */
7443 if (flags
& ~PERF_FLAG_ALL
)
7446 err
= perf_copy_attr(attr_uptr
, &attr
);
7450 if (!attr
.exclude_kernel
) {
7451 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
7456 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
7459 if (attr
.sample_period
& (1ULL << 63))
7464 * In cgroup mode, the pid argument is used to pass the fd
7465 * opened to the cgroup directory in cgroupfs. The cpu argument
7466 * designates the cpu on which to monitor threads from that
7469 if ((flags
& PERF_FLAG_PID_CGROUP
) && (pid
== -1 || cpu
== -1))
7472 if (flags
& PERF_FLAG_FD_CLOEXEC
)
7473 f_flags
|= O_CLOEXEC
;
7475 event_fd
= get_unused_fd_flags(f_flags
);
7479 if (group_fd
!= -1) {
7480 err
= perf_fget_light(group_fd
, &group
);
7483 group_leader
= group
.file
->private_data
;
7484 if (flags
& PERF_FLAG_FD_OUTPUT
)
7485 output_event
= group_leader
;
7486 if (flags
& PERF_FLAG_FD_NO_GROUP
)
7487 group_leader
= NULL
;
7490 if (pid
!= -1 && !(flags
& PERF_FLAG_PID_CGROUP
)) {
7491 task
= find_lively_task_by_vpid(pid
);
7493 err
= PTR_ERR(task
);
7498 if (task
&& group_leader
&&
7499 group_leader
->attr
.inherit
!= attr
.inherit
) {
7506 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
,
7508 if (IS_ERR(event
)) {
7509 err
= PTR_ERR(event
);
7513 if (flags
& PERF_FLAG_PID_CGROUP
) {
7514 err
= perf_cgroup_connect(pid
, event
, &attr
, group_leader
);
7516 __free_event(event
);
7521 if (is_sampling_event(event
)) {
7522 if (event
->pmu
->capabilities
& PERF_PMU_CAP_NO_INTERRUPT
) {
7528 account_event(event
);
7531 * Special case software events and allow them to be part of
7532 * any hardware group.
7537 (is_software_event(event
) != is_software_event(group_leader
))) {
7538 if (is_software_event(event
)) {
7540 * If event and group_leader are not both a software
7541 * event, and event is, then group leader is not.
7543 * Allow the addition of software events to !software
7544 * groups, this is safe because software events never
7547 pmu
= group_leader
->pmu
;
7548 } else if (is_software_event(group_leader
) &&
7549 (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
)) {
7551 * In case the group is a pure software group, and we
7552 * try to add a hardware event, move the whole group to
7553 * the hardware context.
7560 * Get the target context (task or percpu):
7562 ctx
= find_get_context(pmu
, task
, event
->cpu
);
7569 put_task_struct(task
);
7574 * Look up the group leader (we will attach this event to it):
7580 * Do not allow a recursive hierarchy (this new sibling
7581 * becoming part of another group-sibling):
7583 if (group_leader
->group_leader
!= group_leader
)
7586 * Make sure we're both events for the same CPU;
7587 * grouping events for different CPUs is broken; since
7588 * you can never concurrently schedule them anyhow.
7590 if (group_leader
->cpu
!= event
->cpu
)
7594 * Make sure we're both on the same task, or both
7597 if (group_leader
->ctx
->task
!= ctx
->task
)
7601 * Do not allow to attach to a group in a different task
7602 * or CPU context. If we're moving SW events, we'll fix
7603 * this up later, so allow that.
7605 if (!move_group
&& group_leader
->ctx
!= ctx
)
7609 * Only a group leader can be exclusive or pinned
7611 if (attr
.exclusive
|| attr
.pinned
)
7616 err
= perf_event_set_output(event
, output_event
);
7621 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
,
7623 if (IS_ERR(event_file
)) {
7624 err
= PTR_ERR(event_file
);
7629 gctx
= group_leader
->ctx
;
7632 * See perf_event_ctx_lock() for comments on the details
7633 * of swizzling perf_event::ctx.
7635 mutex_lock_double(&gctx
->mutex
, &ctx
->mutex
);
7637 perf_remove_from_context(group_leader
, false);
7640 * Removing from the context ends up with disabled
7641 * event. What we want here is event in the initial
7642 * startup state, ready to be add into new context.
7644 perf_event__state_init(group_leader
);
7645 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
7647 perf_remove_from_context(sibling
, false);
7648 perf_event__state_init(sibling
);
7652 mutex_lock(&ctx
->mutex
);
7655 WARN_ON_ONCE(ctx
->parent_ctx
);
7659 * Wait for everybody to stop referencing the events through
7660 * the old lists, before installing it on new lists.
7664 perf_install_in_context(ctx
, group_leader
, group_leader
->cpu
);
7666 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
7668 perf_install_in_context(ctx
, sibling
, sibling
->cpu
);
7673 perf_install_in_context(ctx
, event
, event
->cpu
);
7674 perf_unpin_context(ctx
);
7677 mutex_unlock(&gctx
->mutex
);
7680 mutex_unlock(&ctx
->mutex
);
7684 event
->owner
= current
;
7686 mutex_lock(¤t
->perf_event_mutex
);
7687 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
7688 mutex_unlock(¤t
->perf_event_mutex
);
7691 * Precalculate sample_data sizes
7693 perf_event__header_size(event
);
7694 perf_event__id_header_size(event
);
7697 * Drop the reference on the group_event after placing the
7698 * new event on the sibling_list. This ensures destruction
7699 * of the group leader will find the pointer to itself in
7700 * perf_group_detach().
7703 fd_install(event_fd
, event_file
);
7707 perf_unpin_context(ctx
);
7715 put_task_struct(task
);
7719 put_unused_fd(event_fd
);
7724 * perf_event_create_kernel_counter
7726 * @attr: attributes of the counter to create
7727 * @cpu: cpu in which the counter is bound
7728 * @task: task to profile (NULL for percpu)
7731 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
7732 struct task_struct
*task
,
7733 perf_overflow_handler_t overflow_handler
,
7736 struct perf_event_context
*ctx
;
7737 struct perf_event
*event
;
7741 * Get the target context (task or percpu):
7744 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
,
7745 overflow_handler
, context
);
7746 if (IS_ERR(event
)) {
7747 err
= PTR_ERR(event
);
7751 /* Mark owner so we could distinguish it from user events. */
7752 event
->owner
= EVENT_OWNER_KERNEL
;
7754 account_event(event
);
7756 ctx
= find_get_context(event
->pmu
, task
, cpu
);
7762 WARN_ON_ONCE(ctx
->parent_ctx
);
7763 mutex_lock(&ctx
->mutex
);
7764 perf_install_in_context(ctx
, event
, cpu
);
7765 perf_unpin_context(ctx
);
7766 mutex_unlock(&ctx
->mutex
);
7773 return ERR_PTR(err
);
7775 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
7777 void perf_pmu_migrate_context(struct pmu
*pmu
, int src_cpu
, int dst_cpu
)
7779 struct perf_event_context
*src_ctx
;
7780 struct perf_event_context
*dst_ctx
;
7781 struct perf_event
*event
, *tmp
;
7784 src_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, src_cpu
)->ctx
;
7785 dst_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, dst_cpu
)->ctx
;
7788 * See perf_event_ctx_lock() for comments on the details
7789 * of swizzling perf_event::ctx.
7791 mutex_lock_double(&src_ctx
->mutex
, &dst_ctx
->mutex
);
7792 list_for_each_entry_safe(event
, tmp
, &src_ctx
->event_list
,
7794 perf_remove_from_context(event
, false);
7795 unaccount_event_cpu(event
, src_cpu
);
7797 list_add(&event
->migrate_entry
, &events
);
7802 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
7803 list_del(&event
->migrate_entry
);
7804 if (event
->state
>= PERF_EVENT_STATE_OFF
)
7805 event
->state
= PERF_EVENT_STATE_INACTIVE
;
7806 account_event_cpu(event
, dst_cpu
);
7807 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
7810 mutex_unlock(&dst_ctx
->mutex
);
7811 mutex_unlock(&src_ctx
->mutex
);
7813 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context
);
7815 static void sync_child_event(struct perf_event
*child_event
,
7816 struct task_struct
*child
)
7818 struct perf_event
*parent_event
= child_event
->parent
;
7821 if (child_event
->attr
.inherit_stat
)
7822 perf_event_read_event(child_event
, child
);
7824 child_val
= perf_event_count(child_event
);
7827 * Add back the child's count to the parent's count:
7829 atomic64_add(child_val
, &parent_event
->child_count
);
7830 atomic64_add(child_event
->total_time_enabled
,
7831 &parent_event
->child_total_time_enabled
);
7832 atomic64_add(child_event
->total_time_running
,
7833 &parent_event
->child_total_time_running
);
7836 * Remove this event from the parent's list
7838 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
7839 mutex_lock(&parent_event
->child_mutex
);
7840 list_del_init(&child_event
->child_list
);
7841 mutex_unlock(&parent_event
->child_mutex
);
7844 * Make sure user/parent get notified, that we just
7847 perf_event_wakeup(parent_event
);
7850 * Release the parent event, if this was the last
7853 put_event(parent_event
);
7857 __perf_event_exit_task(struct perf_event
*child_event
,
7858 struct perf_event_context
*child_ctx
,
7859 struct task_struct
*child
)
7862 * Do not destroy the 'original' grouping; because of the context
7863 * switch optimization the original events could've ended up in a
7864 * random child task.
7866 * If we were to destroy the original group, all group related
7867 * operations would cease to function properly after this random
7870 * Do destroy all inherited groups, we don't care about those
7871 * and being thorough is better.
7873 perf_remove_from_context(child_event
, !!child_event
->parent
);
7876 * It can happen that the parent exits first, and has events
7877 * that are still around due to the child reference. These
7878 * events need to be zapped.
7880 if (child_event
->parent
) {
7881 sync_child_event(child_event
, child
);
7882 free_event(child_event
);
7884 child_event
->state
= PERF_EVENT_STATE_EXIT
;
7885 perf_event_wakeup(child_event
);
7889 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
7891 struct perf_event
*child_event
, *next
;
7892 struct perf_event_context
*child_ctx
, *clone_ctx
= NULL
;
7893 unsigned long flags
;
7895 if (likely(!child
->perf_event_ctxp
[ctxn
])) {
7896 perf_event_task(child
, NULL
, 0);
7900 local_irq_save(flags
);
7902 * We can't reschedule here because interrupts are disabled,
7903 * and either child is current or it is a task that can't be
7904 * scheduled, so we are now safe from rescheduling changing
7907 child_ctx
= rcu_dereference_raw(child
->perf_event_ctxp
[ctxn
]);
7910 * Take the context lock here so that if find_get_context is
7911 * reading child->perf_event_ctxp, we wait until it has
7912 * incremented the context's refcount before we do put_ctx below.
7914 raw_spin_lock(&child_ctx
->lock
);
7915 task_ctx_sched_out(child_ctx
);
7916 child
->perf_event_ctxp
[ctxn
] = NULL
;
7919 * If this context is a clone; unclone it so it can't get
7920 * swapped to another process while we're removing all
7921 * the events from it.
7923 clone_ctx
= unclone_ctx(child_ctx
);
7924 update_context_time(child_ctx
);
7925 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
7931 * Report the task dead after unscheduling the events so that we
7932 * won't get any samples after PERF_RECORD_EXIT. We can however still
7933 * get a few PERF_RECORD_READ events.
7935 perf_event_task(child
, child_ctx
, 0);
7938 * We can recurse on the same lock type through:
7940 * __perf_event_exit_task()
7941 * sync_child_event()
7943 * mutex_lock(&ctx->mutex)
7945 * But since its the parent context it won't be the same instance.
7947 mutex_lock(&child_ctx
->mutex
);
7949 list_for_each_entry_safe(child_event
, next
, &child_ctx
->event_list
, event_entry
)
7950 __perf_event_exit_task(child_event
, child_ctx
, child
);
7952 mutex_unlock(&child_ctx
->mutex
);
7958 * When a child task exits, feed back event values to parent events.
7960 void perf_event_exit_task(struct task_struct
*child
)
7962 struct perf_event
*event
, *tmp
;
7965 mutex_lock(&child
->perf_event_mutex
);
7966 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
7968 list_del_init(&event
->owner_entry
);
7971 * Ensure the list deletion is visible before we clear
7972 * the owner, closes a race against perf_release() where
7973 * we need to serialize on the owner->perf_event_mutex.
7976 event
->owner
= NULL
;
7978 mutex_unlock(&child
->perf_event_mutex
);
7980 for_each_task_context_nr(ctxn
)
7981 perf_event_exit_task_context(child
, ctxn
);
7984 static void perf_free_event(struct perf_event
*event
,
7985 struct perf_event_context
*ctx
)
7987 struct perf_event
*parent
= event
->parent
;
7989 if (WARN_ON_ONCE(!parent
))
7992 mutex_lock(&parent
->child_mutex
);
7993 list_del_init(&event
->child_list
);
7994 mutex_unlock(&parent
->child_mutex
);
7998 perf_group_detach(event
);
7999 list_del_event(event
, ctx
);
8004 * free an unexposed, unused context as created by inheritance by
8005 * perf_event_init_task below, used by fork() in case of fail.
8007 void perf_event_free_task(struct task_struct
*task
)
8009 struct perf_event_context
*ctx
;
8010 struct perf_event
*event
, *tmp
;
8013 for_each_task_context_nr(ctxn
) {
8014 ctx
= task
->perf_event_ctxp
[ctxn
];
8018 mutex_lock(&ctx
->mutex
);
8020 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
,
8022 perf_free_event(event
, ctx
);
8024 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
,
8026 perf_free_event(event
, ctx
);
8028 if (!list_empty(&ctx
->pinned_groups
) ||
8029 !list_empty(&ctx
->flexible_groups
))
8032 mutex_unlock(&ctx
->mutex
);
8038 void perf_event_delayed_put(struct task_struct
*task
)
8042 for_each_task_context_nr(ctxn
)
8043 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
8047 * inherit a event from parent task to child task:
8049 static struct perf_event
*
8050 inherit_event(struct perf_event
*parent_event
,
8051 struct task_struct
*parent
,
8052 struct perf_event_context
*parent_ctx
,
8053 struct task_struct
*child
,
8054 struct perf_event
*group_leader
,
8055 struct perf_event_context
*child_ctx
)
8057 enum perf_event_active_state parent_state
= parent_event
->state
;
8058 struct perf_event
*child_event
;
8059 unsigned long flags
;
8062 * Instead of creating recursive hierarchies of events,
8063 * we link inherited events back to the original parent,
8064 * which has a filp for sure, which we use as the reference
8067 if (parent_event
->parent
)
8068 parent_event
= parent_event
->parent
;
8070 child_event
= perf_event_alloc(&parent_event
->attr
,
8073 group_leader
, parent_event
,
8075 if (IS_ERR(child_event
))
8078 if (is_orphaned_event(parent_event
) ||
8079 !atomic_long_inc_not_zero(&parent_event
->refcount
)) {
8080 free_event(child_event
);
8087 * Make the child state follow the state of the parent event,
8088 * not its attr.disabled bit. We hold the parent's mutex,
8089 * so we won't race with perf_event_{en, dis}able_family.
8091 if (parent_state
>= PERF_EVENT_STATE_INACTIVE
)
8092 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
8094 child_event
->state
= PERF_EVENT_STATE_OFF
;
8096 if (parent_event
->attr
.freq
) {
8097 u64 sample_period
= parent_event
->hw
.sample_period
;
8098 struct hw_perf_event
*hwc
= &child_event
->hw
;
8100 hwc
->sample_period
= sample_period
;
8101 hwc
->last_period
= sample_period
;
8103 local64_set(&hwc
->period_left
, sample_period
);
8106 child_event
->ctx
= child_ctx
;
8107 child_event
->overflow_handler
= parent_event
->overflow_handler
;
8108 child_event
->overflow_handler_context
8109 = parent_event
->overflow_handler_context
;
8112 * Precalculate sample_data sizes
8114 perf_event__header_size(child_event
);
8115 perf_event__id_header_size(child_event
);
8118 * Link it up in the child's context:
8120 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
8121 add_event_to_ctx(child_event
, child_ctx
);
8122 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
8125 * Link this into the parent event's child list
8127 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
8128 mutex_lock(&parent_event
->child_mutex
);
8129 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
8130 mutex_unlock(&parent_event
->child_mutex
);
8135 static int inherit_group(struct perf_event
*parent_event
,
8136 struct task_struct
*parent
,
8137 struct perf_event_context
*parent_ctx
,
8138 struct task_struct
*child
,
8139 struct perf_event_context
*child_ctx
)
8141 struct perf_event
*leader
;
8142 struct perf_event
*sub
;
8143 struct perf_event
*child_ctr
;
8145 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
8146 child
, NULL
, child_ctx
);
8148 return PTR_ERR(leader
);
8149 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
8150 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
8151 child
, leader
, child_ctx
);
8152 if (IS_ERR(child_ctr
))
8153 return PTR_ERR(child_ctr
);
8159 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
8160 struct perf_event_context
*parent_ctx
,
8161 struct task_struct
*child
, int ctxn
,
8165 struct perf_event_context
*child_ctx
;
8167 if (!event
->attr
.inherit
) {
8172 child_ctx
= child
->perf_event_ctxp
[ctxn
];
8175 * This is executed from the parent task context, so
8176 * inherit events that have been marked for cloning.
8177 * First allocate and initialize a context for the
8181 child_ctx
= alloc_perf_context(parent_ctx
->pmu
, child
);
8185 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
8188 ret
= inherit_group(event
, parent
, parent_ctx
,
8198 * Initialize the perf_event context in task_struct
8200 static int perf_event_init_context(struct task_struct
*child
, int ctxn
)
8202 struct perf_event_context
*child_ctx
, *parent_ctx
;
8203 struct perf_event_context
*cloned_ctx
;
8204 struct perf_event
*event
;
8205 struct task_struct
*parent
= current
;
8206 int inherited_all
= 1;
8207 unsigned long flags
;
8210 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
8214 * If the parent's context is a clone, pin it so it won't get
8217 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
8222 * No need to check if parent_ctx != NULL here; since we saw
8223 * it non-NULL earlier, the only reason for it to become NULL
8224 * is if we exit, and since we're currently in the middle of
8225 * a fork we can't be exiting at the same time.
8229 * Lock the parent list. No need to lock the child - not PID
8230 * hashed yet and not running, so nobody can access it.
8232 mutex_lock(&parent_ctx
->mutex
);
8235 * We dont have to disable NMIs - we are only looking at
8236 * the list, not manipulating it:
8238 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
8239 ret
= inherit_task_group(event
, parent
, parent_ctx
,
8240 child
, ctxn
, &inherited_all
);
8246 * We can't hold ctx->lock when iterating the ->flexible_group list due
8247 * to allocations, but we need to prevent rotation because
8248 * rotate_ctx() will change the list from interrupt context.
8250 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
8251 parent_ctx
->rotate_disable
= 1;
8252 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
8254 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
8255 ret
= inherit_task_group(event
, parent
, parent_ctx
,
8256 child
, ctxn
, &inherited_all
);
8261 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
8262 parent_ctx
->rotate_disable
= 0;
8264 child_ctx
= child
->perf_event_ctxp
[ctxn
];
8266 if (child_ctx
&& inherited_all
) {
8268 * Mark the child context as a clone of the parent
8269 * context, or of whatever the parent is a clone of.
8271 * Note that if the parent is a clone, the holding of
8272 * parent_ctx->lock avoids it from being uncloned.
8274 cloned_ctx
= parent_ctx
->parent_ctx
;
8276 child_ctx
->parent_ctx
= cloned_ctx
;
8277 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
8279 child_ctx
->parent_ctx
= parent_ctx
;
8280 child_ctx
->parent_gen
= parent_ctx
->generation
;
8282 get_ctx(child_ctx
->parent_ctx
);
8285 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
8287 mutex_unlock(&parent_ctx
->mutex
);
8289 perf_unpin_context(parent_ctx
);
8290 put_ctx(parent_ctx
);
8296 * Initialize the perf_event context in task_struct
8298 int perf_event_init_task(struct task_struct
*child
)
8302 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
8303 mutex_init(&child
->perf_event_mutex
);
8304 INIT_LIST_HEAD(&child
->perf_event_list
);
8306 for_each_task_context_nr(ctxn
) {
8307 ret
= perf_event_init_context(child
, ctxn
);
8309 perf_event_free_task(child
);
8317 static void __init
perf_event_init_all_cpus(void)
8319 struct swevent_htable
*swhash
;
8322 for_each_possible_cpu(cpu
) {
8323 swhash
= &per_cpu(swevent_htable
, cpu
);
8324 mutex_init(&swhash
->hlist_mutex
);
8325 INIT_LIST_HEAD(&per_cpu(rotation_list
, cpu
));
8329 static void perf_event_init_cpu(int cpu
)
8331 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
8333 mutex_lock(&swhash
->hlist_mutex
);
8334 if (swhash
->hlist_refcount
> 0) {
8335 struct swevent_hlist
*hlist
;
8337 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
8339 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
8341 mutex_unlock(&swhash
->hlist_mutex
);
8344 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8345 static void perf_pmu_rotate_stop(struct pmu
*pmu
)
8347 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
8349 WARN_ON(!irqs_disabled());
8351 list_del_init(&cpuctx
->rotation_list
);
8354 static void __perf_event_exit_context(void *__info
)
8356 struct remove_event re
= { .detach_group
= true };
8357 struct perf_event_context
*ctx
= __info
;
8359 perf_pmu_rotate_stop(ctx
->pmu
);
8362 list_for_each_entry_rcu(re
.event
, &ctx
->event_list
, event_entry
)
8363 __perf_remove_from_context(&re
);
8367 static void perf_event_exit_cpu_context(int cpu
)
8369 struct perf_event_context
*ctx
;
8373 idx
= srcu_read_lock(&pmus_srcu
);
8374 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
8375 ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
)->ctx
;
8377 mutex_lock(&ctx
->mutex
);
8378 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
8379 mutex_unlock(&ctx
->mutex
);
8381 srcu_read_unlock(&pmus_srcu
, idx
);
8384 static void perf_event_exit_cpu(int cpu
)
8386 perf_event_exit_cpu_context(cpu
);
8389 static inline void perf_event_exit_cpu(int cpu
) { }
8393 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
8397 for_each_online_cpu(cpu
)
8398 perf_event_exit_cpu(cpu
);
8404 * Run the perf reboot notifier at the very last possible moment so that
8405 * the generic watchdog code runs as long as possible.
8407 static struct notifier_block perf_reboot_notifier
= {
8408 .notifier_call
= perf_reboot
,
8409 .priority
= INT_MIN
,
8413 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
8415 unsigned int cpu
= (long)hcpu
;
8417 switch (action
& ~CPU_TASKS_FROZEN
) {
8419 case CPU_UP_PREPARE
:
8420 case CPU_DOWN_FAILED
:
8421 perf_event_init_cpu(cpu
);
8424 case CPU_UP_CANCELED
:
8425 case CPU_DOWN_PREPARE
:
8426 perf_event_exit_cpu(cpu
);
8435 void __init
perf_event_init(void)
8441 perf_event_init_all_cpus();
8442 init_srcu_struct(&pmus_srcu
);
8443 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
8444 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
8445 perf_pmu_register(&perf_task_clock
, NULL
, -1);
8447 perf_cpu_notifier(perf_cpu_notify
);
8448 register_reboot_notifier(&perf_reboot_notifier
);
8450 ret
= init_hw_breakpoint();
8451 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
8453 /* do not patch jump label more than once per second */
8454 jump_label_rate_limit(&perf_sched_events
, HZ
);
8457 * Build time assertion that we keep the data_head at the intended
8458 * location. IOW, validation we got the __reserved[] size right.
8460 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page
, data_head
))
8464 static int __init
perf_event_sysfs_init(void)
8469 mutex_lock(&pmus_lock
);
8471 ret
= bus_register(&pmu_bus
);
8475 list_for_each_entry(pmu
, &pmus
, entry
) {
8476 if (!pmu
->name
|| pmu
->type
< 0)
8479 ret
= pmu_dev_alloc(pmu
);
8480 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
8482 pmu_bus_running
= 1;
8486 mutex_unlock(&pmus_lock
);
8490 device_initcall(perf_event_sysfs_init
);
8492 #ifdef CONFIG_CGROUP_PERF
8493 static struct cgroup_subsys_state
*
8494 perf_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
8496 struct perf_cgroup
*jc
;
8498 jc
= kzalloc(sizeof(*jc
), GFP_KERNEL
);
8500 return ERR_PTR(-ENOMEM
);
8502 jc
->info
= alloc_percpu(struct perf_cgroup_info
);
8505 return ERR_PTR(-ENOMEM
);
8511 static void perf_cgroup_css_free(struct cgroup_subsys_state
*css
)
8513 struct perf_cgroup
*jc
= container_of(css
, struct perf_cgroup
, css
);
8515 free_percpu(jc
->info
);
8519 static int __perf_cgroup_move(void *info
)
8521 struct task_struct
*task
= info
;
8522 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
| PERF_CGROUP_SWIN
);
8526 static void perf_cgroup_attach(struct cgroup_subsys_state
*css
,
8527 struct cgroup_taskset
*tset
)
8529 struct task_struct
*task
;
8531 cgroup_taskset_for_each(task
, tset
)
8532 task_function_call(task
, __perf_cgroup_move
, task
);
8535 static void perf_cgroup_exit(struct cgroup_subsys_state
*css
,
8536 struct cgroup_subsys_state
*old_css
,
8537 struct task_struct
*task
)
8540 * cgroup_exit() is called in the copy_process() failure path.
8541 * Ignore this case since the task hasn't ran yet, this avoids
8542 * trying to poke a half freed task state from generic code.
8544 if (!(task
->flags
& PF_EXITING
))
8547 task_function_call(task
, __perf_cgroup_move
, task
);
8550 struct cgroup_subsys perf_event_cgrp_subsys
= {
8551 .css_alloc
= perf_cgroup_css_alloc
,
8552 .css_free
= perf_cgroup_css_free
,
8553 .exit
= perf_cgroup_exit
,
8554 .attach
= perf_cgroup_attach
,
8556 #endif /* CONFIG_CGROUP_PERF */