4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
74 #include <linux/init_task.h>
77 #include <asm/irq_regs.h>
78 #include <asm/mutex.h>
79 #ifdef CONFIG_PARAVIRT
80 #include <asm/paravirt.h>
83 #include "sched_cpupri.h"
84 #include "workqueue_sched.h"
85 #include "sched_autogroup.h"
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/sched.h>
91 * Convert user-nice values [ -20 ... 0 ... 19 ]
92 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
95 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
96 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
97 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
100 * 'User priority' is the nice value converted to something we
101 * can work with better when scaling various scheduler parameters,
102 * it's a [ 0 ... 39 ] range.
104 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
105 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
106 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
109 * Helpers for converting nanosecond timing to jiffy resolution
111 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
113 #define NICE_0_LOAD SCHED_LOAD_SCALE
114 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
117 * These are the 'tuning knobs' of the scheduler:
119 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
120 * Timeslices get refilled after they expire.
122 #define DEF_TIMESLICE (100 * HZ / 1000)
125 * single value that denotes runtime == period, ie unlimited time.
127 #define RUNTIME_INF ((u64)~0ULL)
129 static inline int rt_policy(int policy
)
131 if (policy
== SCHED_FIFO
|| policy
== SCHED_RR
)
136 static inline int task_has_rt_policy(struct task_struct
*p
)
138 return rt_policy(p
->policy
);
142 * This is the priority-queue data structure of the RT scheduling class:
144 struct rt_prio_array
{
145 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
146 struct list_head queue
[MAX_RT_PRIO
];
149 struct rt_bandwidth
{
150 /* nests inside the rq lock: */
151 raw_spinlock_t rt_runtime_lock
;
154 struct hrtimer rt_period_timer
;
157 static struct rt_bandwidth def_rt_bandwidth
;
159 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
161 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
163 struct rt_bandwidth
*rt_b
=
164 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
170 now
= hrtimer_cb_get_time(timer
);
171 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
176 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
179 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
183 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
185 rt_b
->rt_period
= ns_to_ktime(period
);
186 rt_b
->rt_runtime
= runtime
;
188 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
190 hrtimer_init(&rt_b
->rt_period_timer
,
191 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
192 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
195 static inline int rt_bandwidth_enabled(void)
197 return sysctl_sched_rt_runtime
>= 0;
200 static void start_bandwidth_timer(struct hrtimer
*period_timer
, ktime_t period
)
203 ktime_t soft
, hard
, now
;
206 if (hrtimer_active(period_timer
))
209 now
= hrtimer_cb_get_time(period_timer
);
210 hrtimer_forward(period_timer
, now
, period
);
212 soft
= hrtimer_get_softexpires(period_timer
);
213 hard
= hrtimer_get_expires(period_timer
);
214 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
215 __hrtimer_start_range_ns(period_timer
, soft
, delta
,
216 HRTIMER_MODE_ABS_PINNED
, 0);
220 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
222 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
225 if (hrtimer_active(&rt_b
->rt_period_timer
))
228 raw_spin_lock(&rt_b
->rt_runtime_lock
);
229 start_bandwidth_timer(&rt_b
->rt_period_timer
, rt_b
->rt_period
);
230 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
233 #ifdef CONFIG_RT_GROUP_SCHED
234 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
236 hrtimer_cancel(&rt_b
->rt_period_timer
);
241 * sched_domains_mutex serializes calls to init_sched_domains,
242 * detach_destroy_domains and partition_sched_domains.
244 static DEFINE_MUTEX(sched_domains_mutex
);
246 #ifdef CONFIG_CGROUP_SCHED
248 #include <linux/cgroup.h>
252 static LIST_HEAD(task_groups
);
254 struct cfs_bandwidth
{
255 #ifdef CONFIG_CFS_BANDWIDTH
259 s64 hierarchal_quota
;
262 int idle
, timer_active
;
263 struct hrtimer period_timer
, slack_timer
;
264 struct list_head throttled_cfs_rq
;
267 int nr_periods
, nr_throttled
;
272 /* task group related information */
274 struct cgroup_subsys_state css
;
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity
**se
;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq
**cfs_rq
;
281 unsigned long shares
;
283 atomic_t load_weight
;
286 #ifdef CONFIG_RT_GROUP_SCHED
287 struct sched_rt_entity
**rt_se
;
288 struct rt_rq
**rt_rq
;
290 struct rt_bandwidth rt_bandwidth
;
294 struct list_head list
;
296 struct task_group
*parent
;
297 struct list_head siblings
;
298 struct list_head children
;
300 #ifdef CONFIG_SCHED_AUTOGROUP
301 struct autogroup
*autogroup
;
304 struct cfs_bandwidth cfs_bandwidth
;
307 /* task_group_lock serializes the addition/removal of task groups */
308 static DEFINE_SPINLOCK(task_group_lock
);
310 #ifdef CONFIG_FAIR_GROUP_SCHED
312 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
315 * A weight of 0 or 1 can cause arithmetics problems.
316 * A weight of a cfs_rq is the sum of weights of which entities
317 * are queued on this cfs_rq, so a weight of a entity should not be
318 * too large, so as the shares value of a task group.
319 * (The default weight is 1024 - so there's no practical
320 * limitation from this.)
322 #define MIN_SHARES (1UL << 1)
323 #define MAX_SHARES (1UL << 18)
325 static int root_task_group_load
= ROOT_TASK_GROUP_LOAD
;
328 /* Default task group.
329 * Every task in system belong to this group at bootup.
331 struct task_group root_task_group
;
333 #endif /* CONFIG_CGROUP_SCHED */
335 /* CFS-related fields in a runqueue */
337 struct load_weight load
;
338 unsigned long nr_running
, h_nr_running
;
343 u64 min_vruntime_copy
;
346 struct rb_root tasks_timeline
;
347 struct rb_node
*rb_leftmost
;
349 struct list_head tasks
;
350 struct list_head
*balance_iterator
;
353 * 'curr' points to currently running entity on this cfs_rq.
354 * It is set to NULL otherwise (i.e when none are currently running).
356 struct sched_entity
*curr
, *next
, *last
, *skip
;
358 #ifdef CONFIG_SCHED_DEBUG
359 unsigned int nr_spread_over
;
362 #ifdef CONFIG_FAIR_GROUP_SCHED
363 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
366 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
367 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
368 * (like users, containers etc.)
370 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
371 * list is used during load balance.
374 struct list_head leaf_cfs_rq_list
;
375 struct task_group
*tg
; /* group that "owns" this runqueue */
379 * the part of load.weight contributed by tasks
381 unsigned long task_weight
;
384 * h_load = weight * f(tg)
386 * Where f(tg) is the recursive weight fraction assigned to
389 unsigned long h_load
;
392 * Maintaining per-cpu shares distribution for group scheduling
394 * load_stamp is the last time we updated the load average
395 * load_last is the last time we updated the load average and saw load
396 * load_unacc_exec_time is currently unaccounted execution time
400 u64 load_stamp
, load_last
, load_unacc_exec_time
;
402 unsigned long load_contribution
;
404 #ifdef CONFIG_CFS_BANDWIDTH
407 s64 runtime_remaining
;
409 u64 throttled_timestamp
;
410 int throttled
, throttle_count
;
411 struct list_head throttled_list
;
416 #ifdef CONFIG_FAIR_GROUP_SCHED
417 #ifdef CONFIG_CFS_BANDWIDTH
418 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
420 return &tg
->cfs_bandwidth
;
423 static inline u64
default_cfs_period(void);
424 static int do_sched_cfs_period_timer(struct cfs_bandwidth
*cfs_b
, int overrun
);
425 static void do_sched_cfs_slack_timer(struct cfs_bandwidth
*cfs_b
);
427 static enum hrtimer_restart
sched_cfs_slack_timer(struct hrtimer
*timer
)
429 struct cfs_bandwidth
*cfs_b
=
430 container_of(timer
, struct cfs_bandwidth
, slack_timer
);
431 do_sched_cfs_slack_timer(cfs_b
);
433 return HRTIMER_NORESTART
;
436 static enum hrtimer_restart
sched_cfs_period_timer(struct hrtimer
*timer
)
438 struct cfs_bandwidth
*cfs_b
=
439 container_of(timer
, struct cfs_bandwidth
, period_timer
);
445 now
= hrtimer_cb_get_time(timer
);
446 overrun
= hrtimer_forward(timer
, now
, cfs_b
->period
);
451 idle
= do_sched_cfs_period_timer(cfs_b
, overrun
);
454 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
457 static void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
459 raw_spin_lock_init(&cfs_b
->lock
);
461 cfs_b
->quota
= RUNTIME_INF
;
462 cfs_b
->period
= ns_to_ktime(default_cfs_period());
464 INIT_LIST_HEAD(&cfs_b
->throttled_cfs_rq
);
465 hrtimer_init(&cfs_b
->period_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
466 cfs_b
->period_timer
.function
= sched_cfs_period_timer
;
467 hrtimer_init(&cfs_b
->slack_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
468 cfs_b
->slack_timer
.function
= sched_cfs_slack_timer
;
471 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
473 cfs_rq
->runtime_enabled
= 0;
474 INIT_LIST_HEAD(&cfs_rq
->throttled_list
);
477 /* requires cfs_b->lock, may release to reprogram timer */
478 static void __start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
481 * The timer may be active because we're trying to set a new bandwidth
482 * period or because we're racing with the tear-down path
483 * (timer_active==0 becomes visible before the hrtimer call-back
484 * terminates). In either case we ensure that it's re-programmed
486 while (unlikely(hrtimer_active(&cfs_b
->period_timer
))) {
487 raw_spin_unlock(&cfs_b
->lock
);
488 /* ensure cfs_b->lock is available while we wait */
489 hrtimer_cancel(&cfs_b
->period_timer
);
491 raw_spin_lock(&cfs_b
->lock
);
492 /* if someone else restarted the timer then we're done */
493 if (cfs_b
->timer_active
)
497 cfs_b
->timer_active
= 1;
498 start_bandwidth_timer(&cfs_b
->period_timer
, cfs_b
->period
);
501 static void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
503 hrtimer_cancel(&cfs_b
->period_timer
);
504 hrtimer_cancel(&cfs_b
->slack_timer
);
507 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
508 static void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
509 static void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
511 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
515 #endif /* CONFIG_CFS_BANDWIDTH */
516 #endif /* CONFIG_FAIR_GROUP_SCHED */
518 /* Real-Time classes' related field in a runqueue: */
520 struct rt_prio_array active
;
521 unsigned long rt_nr_running
;
522 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
524 int curr
; /* highest queued rt task prio */
526 int next
; /* next highest */
531 unsigned long rt_nr_migratory
;
532 unsigned long rt_nr_total
;
534 struct plist_head pushable_tasks
;
539 /* Nests inside the rq lock: */
540 raw_spinlock_t rt_runtime_lock
;
542 #ifdef CONFIG_RT_GROUP_SCHED
543 unsigned long rt_nr_boosted
;
546 struct list_head leaf_rt_rq_list
;
547 struct task_group
*tg
;
554 * We add the notion of a root-domain which will be used to define per-domain
555 * variables. Each exclusive cpuset essentially defines an island domain by
556 * fully partitioning the member cpus from any other cpuset. Whenever a new
557 * exclusive cpuset is created, we also create and attach a new root-domain
566 cpumask_var_t online
;
569 * The "RT overload" flag: it gets set if a CPU has more than
570 * one runnable RT task.
572 cpumask_var_t rto_mask
;
573 struct cpupri cpupri
;
577 * By default the system creates a single root-domain with all cpus as
578 * members (mimicking the global state we have today).
580 static struct root_domain def_root_domain
;
582 #endif /* CONFIG_SMP */
585 * This is the main, per-CPU runqueue data structure.
587 * Locking rule: those places that want to lock multiple runqueues
588 * (such as the load balancing or the thread migration code), lock
589 * acquire operations must be ordered by ascending &runqueue.
596 * nr_running and cpu_load should be in the same cacheline because
597 * remote CPUs use both these fields when doing load calculation.
599 unsigned long nr_running
;
600 #define CPU_LOAD_IDX_MAX 5
601 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
602 unsigned long last_load_update_tick
;
605 unsigned char nohz_balance_kick
;
607 int skip_clock_update
;
609 /* capture load from *all* tasks on this cpu: */
610 struct load_weight load
;
611 unsigned long nr_load_updates
;
617 #ifdef CONFIG_FAIR_GROUP_SCHED
618 /* list of leaf cfs_rq on this cpu: */
619 struct list_head leaf_cfs_rq_list
;
621 #ifdef CONFIG_RT_GROUP_SCHED
622 struct list_head leaf_rt_rq_list
;
626 * This is part of a global counter where only the total sum
627 * over all CPUs matters. A task can increase this counter on
628 * one CPU and if it got migrated afterwards it may decrease
629 * it on another CPU. Always updated under the runqueue lock:
631 unsigned long nr_uninterruptible
;
633 struct task_struct
*curr
, *idle
, *stop
;
634 unsigned long next_balance
;
635 struct mm_struct
*prev_mm
;
643 struct root_domain
*rd
;
644 struct sched_domain
*sd
;
646 unsigned long cpu_power
;
648 unsigned char idle_balance
;
649 /* For active balancing */
653 struct cpu_stop_work active_balance_work
;
654 /* cpu of this runqueue: */
664 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
667 #ifdef CONFIG_PARAVIRT
670 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
671 u64 prev_steal_time_rq
;
674 /* calc_load related fields */
675 unsigned long calc_load_update
;
676 long calc_load_active
;
678 #ifdef CONFIG_SCHED_HRTICK
680 int hrtick_csd_pending
;
681 struct call_single_data hrtick_csd
;
683 struct hrtimer hrtick_timer
;
686 #ifdef CONFIG_SCHEDSTATS
688 struct sched_info rq_sched_info
;
689 unsigned long long rq_cpu_time
;
690 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
692 /* sys_sched_yield() stats */
693 unsigned int yld_count
;
695 /* schedule() stats */
696 unsigned int sched_switch
;
697 unsigned int sched_count
;
698 unsigned int sched_goidle
;
700 /* try_to_wake_up() stats */
701 unsigned int ttwu_count
;
702 unsigned int ttwu_local
;
706 struct llist_head wake_list
;
710 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
713 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
);
715 static inline int cpu_of(struct rq
*rq
)
724 #define rcu_dereference_check_sched_domain(p) \
725 rcu_dereference_check((p), \
726 lockdep_is_held(&sched_domains_mutex))
729 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
730 * See detach_destroy_domains: synchronize_sched for details.
732 * The domain tree of any CPU may only be accessed from within
733 * preempt-disabled sections.
735 #define for_each_domain(cpu, __sd) \
736 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
738 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
739 #define this_rq() (&__get_cpu_var(runqueues))
740 #define task_rq(p) cpu_rq(task_cpu(p))
741 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
742 #define raw_rq() (&__raw_get_cpu_var(runqueues))
744 #ifdef CONFIG_CGROUP_SCHED
747 * Return the group to which this tasks belongs.
749 * We cannot use task_subsys_state() and friends because the cgroup
750 * subsystem changes that value before the cgroup_subsys::attach() method
751 * is called, therefore we cannot pin it and might observe the wrong value.
753 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
754 * core changes this before calling sched_move_task().
756 * Instead we use a 'copy' which is updated from sched_move_task() while
757 * holding both task_struct::pi_lock and rq::lock.
759 static inline struct task_group
*task_group(struct task_struct
*p
)
761 return p
->sched_task_group
;
764 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
765 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
767 #ifdef CONFIG_FAIR_GROUP_SCHED
768 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
769 p
->se
.parent
= task_group(p
)->se
[cpu
];
772 #ifdef CONFIG_RT_GROUP_SCHED
773 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
774 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
778 #else /* CONFIG_CGROUP_SCHED */
780 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
781 static inline struct task_group
*task_group(struct task_struct
*p
)
786 #endif /* CONFIG_CGROUP_SCHED */
788 static void update_rq_clock_task(struct rq
*rq
, s64 delta
);
790 static void update_rq_clock(struct rq
*rq
)
794 if (rq
->skip_clock_update
> 0)
797 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
799 update_rq_clock_task(rq
, delta
);
803 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
805 #ifdef CONFIG_SCHED_DEBUG
806 # define const_debug __read_mostly
808 # define const_debug static const
812 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
813 * @cpu: the processor in question.
815 * This interface allows printk to be called with the runqueue lock
816 * held and know whether or not it is OK to wake up the klogd.
818 int runqueue_is_locked(int cpu
)
820 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
824 * Debugging: various feature bits
827 #define SCHED_FEAT(name, enabled) \
828 __SCHED_FEAT_##name ,
831 #include "sched_features.h"
836 #define SCHED_FEAT(name, enabled) \
837 (1UL << __SCHED_FEAT_##name) * enabled |
839 const_debug
unsigned int sysctl_sched_features
=
840 #include "sched_features.h"
845 #ifdef CONFIG_SCHED_DEBUG
846 #define SCHED_FEAT(name, enabled) \
849 static __read_mostly
char *sched_feat_names
[] = {
850 #include "sched_features.h"
856 static int sched_feat_show(struct seq_file
*m
, void *v
)
860 for (i
= 0; sched_feat_names
[i
]; i
++) {
861 if (!(sysctl_sched_features
& (1UL << i
)))
863 seq_printf(m
, "%s ", sched_feat_names
[i
]);
871 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
872 size_t cnt
, loff_t
*ppos
)
882 if (copy_from_user(&buf
, ubuf
, cnt
))
888 if (strncmp(cmp
, "NO_", 3) == 0) {
893 for (i
= 0; sched_feat_names
[i
]; i
++) {
894 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
896 sysctl_sched_features
&= ~(1UL << i
);
898 sysctl_sched_features
|= (1UL << i
);
903 if (!sched_feat_names
[i
])
911 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
913 return single_open(filp
, sched_feat_show
, NULL
);
916 static const struct file_operations sched_feat_fops
= {
917 .open
= sched_feat_open
,
918 .write
= sched_feat_write
,
921 .release
= single_release
,
924 static __init
int sched_init_debug(void)
926 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
931 late_initcall(sched_init_debug
);
935 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
938 * Number of tasks to iterate in a single balance run.
939 * Limited because this is done with IRQs disabled.
941 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
944 * period over which we average the RT time consumption, measured
949 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
952 * period over which we measure -rt task cpu usage in us.
955 unsigned int sysctl_sched_rt_period
= 1000000;
957 static __read_mostly
int scheduler_running
;
960 * part of the period that we allow rt tasks to run in us.
963 int sysctl_sched_rt_runtime
= 950000;
965 static inline u64
global_rt_period(void)
967 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
970 static inline u64
global_rt_runtime(void)
972 if (sysctl_sched_rt_runtime
< 0)
975 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
978 #ifndef prepare_arch_switch
979 # define prepare_arch_switch(next) do { } while (0)
981 #ifndef finish_arch_switch
982 # define finish_arch_switch(prev) do { } while (0)
985 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
987 return rq
->curr
== p
;
990 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
995 return task_current(rq
, p
);
999 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1000 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
1004 * We can optimise this out completely for !SMP, because the
1005 * SMP rebalancing from interrupt is the only thing that cares
1012 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
1016 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1017 * We must ensure this doesn't happen until the switch is completely
1023 #ifdef CONFIG_DEBUG_SPINLOCK
1024 /* this is a valid case when another task releases the spinlock */
1025 rq
->lock
.owner
= current
;
1028 * If we are tracking spinlock dependencies then we have to
1029 * fix up the runqueue lock - which gets 'carried over' from
1030 * prev into current:
1032 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
1034 raw_spin_unlock_irq(&rq
->lock
);
1037 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
1038 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
1042 * We can optimise this out completely for !SMP, because the
1043 * SMP rebalancing from interrupt is the only thing that cares
1048 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1049 raw_spin_unlock_irq(&rq
->lock
);
1051 raw_spin_unlock(&rq
->lock
);
1055 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
1059 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1060 * We must ensure this doesn't happen until the switch is completely
1066 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1070 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1073 * __task_rq_lock - lock the rq @p resides on.
1075 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
1076 __acquires(rq
->lock
)
1080 lockdep_assert_held(&p
->pi_lock
);
1084 raw_spin_lock(&rq
->lock
);
1085 if (likely(rq
== task_rq(p
)))
1087 raw_spin_unlock(&rq
->lock
);
1092 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1094 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
1095 __acquires(p
->pi_lock
)
1096 __acquires(rq
->lock
)
1101 raw_spin_lock_irqsave(&p
->pi_lock
, *flags
);
1103 raw_spin_lock(&rq
->lock
);
1104 if (likely(rq
== task_rq(p
)))
1106 raw_spin_unlock(&rq
->lock
);
1107 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
1111 static void __task_rq_unlock(struct rq
*rq
)
1112 __releases(rq
->lock
)
1114 raw_spin_unlock(&rq
->lock
);
1118 task_rq_unlock(struct rq
*rq
, struct task_struct
*p
, unsigned long *flags
)
1119 __releases(rq
->lock
)
1120 __releases(p
->pi_lock
)
1122 raw_spin_unlock(&rq
->lock
);
1123 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
1127 * this_rq_lock - lock this runqueue and disable interrupts.
1129 static struct rq
*this_rq_lock(void)
1130 __acquires(rq
->lock
)
1134 local_irq_disable();
1136 raw_spin_lock(&rq
->lock
);
1141 #ifdef CONFIG_SCHED_HRTICK
1143 * Use HR-timers to deliver accurate preemption points.
1145 * Its all a bit involved since we cannot program an hrt while holding the
1146 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1149 * When we get rescheduled we reprogram the hrtick_timer outside of the
1155 * - enabled by features
1156 * - hrtimer is actually high res
1158 static inline int hrtick_enabled(struct rq
*rq
)
1160 if (!sched_feat(HRTICK
))
1162 if (!cpu_active(cpu_of(rq
)))
1164 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1167 static void hrtick_clear(struct rq
*rq
)
1169 if (hrtimer_active(&rq
->hrtick_timer
))
1170 hrtimer_cancel(&rq
->hrtick_timer
);
1174 * High-resolution timer tick.
1175 * Runs from hardirq context with interrupts disabled.
1177 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1179 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1181 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1183 raw_spin_lock(&rq
->lock
);
1184 update_rq_clock(rq
);
1185 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1186 raw_spin_unlock(&rq
->lock
);
1188 return HRTIMER_NORESTART
;
1193 * called from hardirq (IPI) context
1195 static void __hrtick_start(void *arg
)
1197 struct rq
*rq
= arg
;
1199 raw_spin_lock(&rq
->lock
);
1200 hrtimer_restart(&rq
->hrtick_timer
);
1201 rq
->hrtick_csd_pending
= 0;
1202 raw_spin_unlock(&rq
->lock
);
1206 * Called to set the hrtick timer state.
1208 * called with rq->lock held and irqs disabled
1210 static void hrtick_start(struct rq
*rq
, u64 delay
)
1212 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1213 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1215 hrtimer_set_expires(timer
, time
);
1217 if (rq
== this_rq()) {
1218 hrtimer_restart(timer
);
1219 } else if (!rq
->hrtick_csd_pending
) {
1220 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1221 rq
->hrtick_csd_pending
= 1;
1226 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1228 int cpu
= (int)(long)hcpu
;
1231 case CPU_UP_CANCELED
:
1232 case CPU_UP_CANCELED_FROZEN
:
1233 case CPU_DOWN_PREPARE
:
1234 case CPU_DOWN_PREPARE_FROZEN
:
1236 case CPU_DEAD_FROZEN
:
1237 hrtick_clear(cpu_rq(cpu
));
1244 static __init
void init_hrtick(void)
1246 hotcpu_notifier(hotplug_hrtick
, 0);
1250 * Called to set the hrtick timer state.
1252 * called with rq->lock held and irqs disabled
1254 static void hrtick_start(struct rq
*rq
, u64 delay
)
1256 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1257 HRTIMER_MODE_REL_PINNED
, 0);
1260 static inline void init_hrtick(void)
1263 #endif /* CONFIG_SMP */
1265 static void init_rq_hrtick(struct rq
*rq
)
1268 rq
->hrtick_csd_pending
= 0;
1270 rq
->hrtick_csd
.flags
= 0;
1271 rq
->hrtick_csd
.func
= __hrtick_start
;
1272 rq
->hrtick_csd
.info
= rq
;
1275 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1276 rq
->hrtick_timer
.function
= hrtick
;
1278 #else /* CONFIG_SCHED_HRTICK */
1279 static inline void hrtick_clear(struct rq
*rq
)
1283 static inline void init_rq_hrtick(struct rq
*rq
)
1287 static inline void init_hrtick(void)
1290 #endif /* CONFIG_SCHED_HRTICK */
1293 * resched_task - mark a task 'to be rescheduled now'.
1295 * On UP this means the setting of the need_resched flag, on SMP it
1296 * might also involve a cross-CPU call to trigger the scheduler on
1301 #ifndef tsk_is_polling
1302 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1305 static void resched_task(struct task_struct
*p
)
1309 assert_raw_spin_locked(&task_rq(p
)->lock
);
1311 if (test_tsk_need_resched(p
))
1314 set_tsk_need_resched(p
);
1317 if (cpu
== smp_processor_id())
1320 /* NEED_RESCHED must be visible before we test polling */
1322 if (!tsk_is_polling(p
))
1323 smp_send_reschedule(cpu
);
1326 static void resched_cpu(int cpu
)
1328 struct rq
*rq
= cpu_rq(cpu
);
1329 unsigned long flags
;
1331 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1333 resched_task(cpu_curr(cpu
));
1334 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1339 * In the semi idle case, use the nearest busy cpu for migrating timers
1340 * from an idle cpu. This is good for power-savings.
1342 * We don't do similar optimization for completely idle system, as
1343 * selecting an idle cpu will add more delays to the timers than intended
1344 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1346 int get_nohz_timer_target(void)
1348 int cpu
= smp_processor_id();
1350 struct sched_domain
*sd
;
1353 for_each_domain(cpu
, sd
) {
1354 for_each_cpu(i
, sched_domain_span(sd
)) {
1366 * When add_timer_on() enqueues a timer into the timer wheel of an
1367 * idle CPU then this timer might expire before the next timer event
1368 * which is scheduled to wake up that CPU. In case of a completely
1369 * idle system the next event might even be infinite time into the
1370 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1371 * leaves the inner idle loop so the newly added timer is taken into
1372 * account when the CPU goes back to idle and evaluates the timer
1373 * wheel for the next timer event.
1375 void wake_up_idle_cpu(int cpu
)
1377 struct rq
*rq
= cpu_rq(cpu
);
1379 if (cpu
== smp_processor_id())
1383 * This is safe, as this function is called with the timer
1384 * wheel base lock of (cpu) held. When the CPU is on the way
1385 * to idle and has not yet set rq->curr to idle then it will
1386 * be serialized on the timer wheel base lock and take the new
1387 * timer into account automatically.
1389 if (rq
->curr
!= rq
->idle
)
1393 * We can set TIF_RESCHED on the idle task of the other CPU
1394 * lockless. The worst case is that the other CPU runs the
1395 * idle task through an additional NOOP schedule()
1397 set_tsk_need_resched(rq
->idle
);
1399 /* NEED_RESCHED must be visible before we test polling */
1401 if (!tsk_is_polling(rq
->idle
))
1402 smp_send_reschedule(cpu
);
1405 static inline bool got_nohz_idle_kick(void)
1407 return idle_cpu(smp_processor_id()) && this_rq()->nohz_balance_kick
;
1410 #else /* CONFIG_NO_HZ */
1412 static inline bool got_nohz_idle_kick(void)
1417 #endif /* CONFIG_NO_HZ */
1419 static u64
sched_avg_period(void)
1421 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1424 static void sched_avg_update(struct rq
*rq
)
1426 s64 period
= sched_avg_period();
1428 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1430 * Inline assembly required to prevent the compiler
1431 * optimising this loop into a divmod call.
1432 * See __iter_div_u64_rem() for another example of this.
1434 asm("" : "+rm" (rq
->age_stamp
));
1435 rq
->age_stamp
+= period
;
1440 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1442 rq
->rt_avg
+= rt_delta
;
1443 sched_avg_update(rq
);
1446 #else /* !CONFIG_SMP */
1447 static void resched_task(struct task_struct
*p
)
1449 assert_raw_spin_locked(&task_rq(p
)->lock
);
1450 set_tsk_need_resched(p
);
1453 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1457 static void sched_avg_update(struct rq
*rq
)
1460 #endif /* CONFIG_SMP */
1462 #if BITS_PER_LONG == 32
1463 # define WMULT_CONST (~0UL)
1465 # define WMULT_CONST (1UL << 32)
1468 #define WMULT_SHIFT 32
1471 * Shift right and round:
1473 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1476 * delta *= weight / lw
1478 static unsigned long
1479 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1480 struct load_weight
*lw
)
1485 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1486 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1487 * 2^SCHED_LOAD_RESOLUTION.
1489 if (likely(weight
> (1UL << SCHED_LOAD_RESOLUTION
)))
1490 tmp
= (u64
)delta_exec
* scale_load_down(weight
);
1492 tmp
= (u64
)delta_exec
;
1494 if (!lw
->inv_weight
) {
1495 unsigned long w
= scale_load_down(lw
->weight
);
1497 if (BITS_PER_LONG
> 32 && unlikely(w
>= WMULT_CONST
))
1499 else if (unlikely(!w
))
1500 lw
->inv_weight
= WMULT_CONST
;
1502 lw
->inv_weight
= WMULT_CONST
/ w
;
1506 * Check whether we'd overflow the 64-bit multiplication:
1508 if (unlikely(tmp
> WMULT_CONST
))
1509 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1512 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1514 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1517 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1523 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1529 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
1536 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1537 * of tasks with abnormal "nice" values across CPUs the contribution that
1538 * each task makes to its run queue's load is weighted according to its
1539 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1540 * scaled version of the new time slice allocation that they receive on time
1544 #define WEIGHT_IDLEPRIO 3
1545 #define WMULT_IDLEPRIO 1431655765
1548 * Nice levels are multiplicative, with a gentle 10% change for every
1549 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1550 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1551 * that remained on nice 0.
1553 * The "10% effect" is relative and cumulative: from _any_ nice level,
1554 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1555 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1556 * If a task goes up by ~10% and another task goes down by ~10% then
1557 * the relative distance between them is ~25%.)
1559 static const int prio_to_weight
[40] = {
1560 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1561 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1562 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1563 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1564 /* 0 */ 1024, 820, 655, 526, 423,
1565 /* 5 */ 335, 272, 215, 172, 137,
1566 /* 10 */ 110, 87, 70, 56, 45,
1567 /* 15 */ 36, 29, 23, 18, 15,
1571 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1573 * In cases where the weight does not change often, we can use the
1574 * precalculated inverse to speed up arithmetics by turning divisions
1575 * into multiplications:
1577 static const u32 prio_to_wmult
[40] = {
1578 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1579 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1580 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1581 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1582 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1583 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1584 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1585 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1588 /* Time spent by the tasks of the cpu accounting group executing in ... */
1589 enum cpuacct_stat_index
{
1590 CPUACCT_STAT_USER
, /* ... user mode */
1591 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1593 CPUACCT_STAT_NSTATS
,
1596 #ifdef CONFIG_CGROUP_CPUACCT
1597 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1598 static void cpuacct_update_stats(struct task_struct
*tsk
,
1599 enum cpuacct_stat_index idx
, cputime_t val
);
1601 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1602 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1603 enum cpuacct_stat_index idx
, cputime_t val
) {}
1606 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1608 update_load_add(&rq
->load
, load
);
1611 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1613 update_load_sub(&rq
->load
, load
);
1616 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1617 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1618 typedef int (*tg_visitor
)(struct task_group
*, void *);
1621 * Iterate task_group tree rooted at *from, calling @down when first entering a
1622 * node and @up when leaving it for the final time.
1624 * Caller must hold rcu_lock or sufficient equivalent.
1626 static int walk_tg_tree_from(struct task_group
*from
,
1627 tg_visitor down
, tg_visitor up
, void *data
)
1629 struct task_group
*parent
, *child
;
1635 ret
= (*down
)(parent
, data
);
1638 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1645 ret
= (*up
)(parent
, data
);
1646 if (ret
|| parent
== from
)
1650 parent
= parent
->parent
;
1658 * Iterate the full tree, calling @down when first entering a node and @up when
1659 * leaving it for the final time.
1661 * Caller must hold rcu_lock or sufficient equivalent.
1664 static inline int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1666 return walk_tg_tree_from(&root_task_group
, down
, up
, data
);
1669 static int tg_nop(struct task_group
*tg
, void *data
)
1676 /* Used instead of source_load when we know the type == 0 */
1677 static unsigned long weighted_cpuload(const int cpu
)
1679 return cpu_rq(cpu
)->load
.weight
;
1683 * Return a low guess at the load of a migration-source cpu weighted
1684 * according to the scheduling class and "nice" value.
1686 * We want to under-estimate the load of migration sources, to
1687 * balance conservatively.
1689 static unsigned long source_load(int cpu
, int type
)
1691 struct rq
*rq
= cpu_rq(cpu
);
1692 unsigned long total
= weighted_cpuload(cpu
);
1694 if (type
== 0 || !sched_feat(LB_BIAS
))
1697 return min(rq
->cpu_load
[type
-1], total
);
1701 * Return a high guess at the load of a migration-target cpu weighted
1702 * according to the scheduling class and "nice" value.
1704 static unsigned long target_load(int cpu
, int type
)
1706 struct rq
*rq
= cpu_rq(cpu
);
1707 unsigned long total
= weighted_cpuload(cpu
);
1709 if (type
== 0 || !sched_feat(LB_BIAS
))
1712 return max(rq
->cpu_load
[type
-1], total
);
1715 static unsigned long power_of(int cpu
)
1717 return cpu_rq(cpu
)->cpu_power
;
1720 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1722 static unsigned long cpu_avg_load_per_task(int cpu
)
1724 struct rq
*rq
= cpu_rq(cpu
);
1725 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1728 return rq
->load
.weight
/ nr_running
;
1733 #ifdef CONFIG_PREEMPT
1735 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1738 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1739 * way at the expense of forcing extra atomic operations in all
1740 * invocations. This assures that the double_lock is acquired using the
1741 * same underlying policy as the spinlock_t on this architecture, which
1742 * reduces latency compared to the unfair variant below. However, it
1743 * also adds more overhead and therefore may reduce throughput.
1745 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1746 __releases(this_rq
->lock
)
1747 __acquires(busiest
->lock
)
1748 __acquires(this_rq
->lock
)
1750 raw_spin_unlock(&this_rq
->lock
);
1751 double_rq_lock(this_rq
, busiest
);
1758 * Unfair double_lock_balance: Optimizes throughput at the expense of
1759 * latency by eliminating extra atomic operations when the locks are
1760 * already in proper order on entry. This favors lower cpu-ids and will
1761 * grant the double lock to lower cpus over higher ids under contention,
1762 * regardless of entry order into the function.
1764 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1765 __releases(this_rq
->lock
)
1766 __acquires(busiest
->lock
)
1767 __acquires(this_rq
->lock
)
1771 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1772 if (busiest
< this_rq
) {
1773 raw_spin_unlock(&this_rq
->lock
);
1774 raw_spin_lock(&busiest
->lock
);
1775 raw_spin_lock_nested(&this_rq
->lock
,
1776 SINGLE_DEPTH_NESTING
);
1779 raw_spin_lock_nested(&busiest
->lock
,
1780 SINGLE_DEPTH_NESTING
);
1785 #endif /* CONFIG_PREEMPT */
1788 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1790 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1792 if (unlikely(!irqs_disabled())) {
1793 /* printk() doesn't work good under rq->lock */
1794 raw_spin_unlock(&this_rq
->lock
);
1798 return _double_lock_balance(this_rq
, busiest
);
1801 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1802 __releases(busiest
->lock
)
1804 raw_spin_unlock(&busiest
->lock
);
1805 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1809 * double_rq_lock - safely lock two runqueues
1811 * Note this does not disable interrupts like task_rq_lock,
1812 * you need to do so manually before calling.
1814 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1815 __acquires(rq1
->lock
)
1816 __acquires(rq2
->lock
)
1818 BUG_ON(!irqs_disabled());
1820 raw_spin_lock(&rq1
->lock
);
1821 __acquire(rq2
->lock
); /* Fake it out ;) */
1824 raw_spin_lock(&rq1
->lock
);
1825 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1827 raw_spin_lock(&rq2
->lock
);
1828 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1834 * double_rq_unlock - safely unlock two runqueues
1836 * Note this does not restore interrupts like task_rq_unlock,
1837 * you need to do so manually after calling.
1839 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1840 __releases(rq1
->lock
)
1841 __releases(rq2
->lock
)
1843 raw_spin_unlock(&rq1
->lock
);
1845 raw_spin_unlock(&rq2
->lock
);
1847 __release(rq2
->lock
);
1850 #else /* CONFIG_SMP */
1853 * double_rq_lock - safely lock two runqueues
1855 * Note this does not disable interrupts like task_rq_lock,
1856 * you need to do so manually before calling.
1858 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1859 __acquires(rq1
->lock
)
1860 __acquires(rq2
->lock
)
1862 BUG_ON(!irqs_disabled());
1864 raw_spin_lock(&rq1
->lock
);
1865 __acquire(rq2
->lock
); /* Fake it out ;) */
1869 * double_rq_unlock - safely unlock two runqueues
1871 * Note this does not restore interrupts like task_rq_unlock,
1872 * you need to do so manually after calling.
1874 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1875 __releases(rq1
->lock
)
1876 __releases(rq2
->lock
)
1879 raw_spin_unlock(&rq1
->lock
);
1880 __release(rq2
->lock
);
1885 static void update_sysctl(void);
1886 static int get_update_sysctl_factor(void);
1887 static void update_idle_cpu_load(struct rq
*this_rq
);
1889 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1891 set_task_rq(p
, cpu
);
1894 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1895 * successfully executed on another CPU. We must ensure that updates of
1896 * per-task data have been completed by this moment.
1899 task_thread_info(p
)->cpu
= cpu
;
1903 static const struct sched_class rt_sched_class
;
1905 #define sched_class_highest (&stop_sched_class)
1906 #define for_each_class(class) \
1907 for (class = sched_class_highest; class; class = class->next)
1909 #include "sched_stats.h"
1911 static void inc_nr_running(struct rq
*rq
)
1916 static void dec_nr_running(struct rq
*rq
)
1921 static void set_load_weight(struct task_struct
*p
)
1923 int prio
= p
->static_prio
- MAX_RT_PRIO
;
1924 struct load_weight
*load
= &p
->se
.load
;
1927 * SCHED_IDLE tasks get minimal weight:
1929 if (p
->policy
== SCHED_IDLE
) {
1930 load
->weight
= scale_load(WEIGHT_IDLEPRIO
);
1931 load
->inv_weight
= WMULT_IDLEPRIO
;
1935 load
->weight
= scale_load(prio_to_weight
[prio
]);
1936 load
->inv_weight
= prio_to_wmult
[prio
];
1939 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1941 update_rq_clock(rq
);
1942 sched_info_queued(p
);
1943 p
->sched_class
->enqueue_task(rq
, p
, flags
);
1946 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1948 update_rq_clock(rq
);
1949 sched_info_dequeued(p
);
1950 p
->sched_class
->dequeue_task(rq
, p
, flags
);
1954 * activate_task - move a task to the runqueue.
1956 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1958 if (task_contributes_to_load(p
))
1959 rq
->nr_uninterruptible
--;
1961 enqueue_task(rq
, p
, flags
);
1965 * deactivate_task - remove a task from the runqueue.
1967 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1969 if (task_contributes_to_load(p
))
1970 rq
->nr_uninterruptible
++;
1972 dequeue_task(rq
, p
, flags
);
1975 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1978 * There are no locks covering percpu hardirq/softirq time.
1979 * They are only modified in account_system_vtime, on corresponding CPU
1980 * with interrupts disabled. So, writes are safe.
1981 * They are read and saved off onto struct rq in update_rq_clock().
1982 * This may result in other CPU reading this CPU's irq time and can
1983 * race with irq/account_system_vtime on this CPU. We would either get old
1984 * or new value with a side effect of accounting a slice of irq time to wrong
1985 * task when irq is in progress while we read rq->clock. That is a worthy
1986 * compromise in place of having locks on each irq in account_system_time.
1988 static DEFINE_PER_CPU(u64
, cpu_hardirq_time
);
1989 static DEFINE_PER_CPU(u64
, cpu_softirq_time
);
1991 static DEFINE_PER_CPU(u64
, irq_start_time
);
1992 static int sched_clock_irqtime
;
1994 void enable_sched_clock_irqtime(void)
1996 sched_clock_irqtime
= 1;
1999 void disable_sched_clock_irqtime(void)
2001 sched_clock_irqtime
= 0;
2004 #ifndef CONFIG_64BIT
2005 static DEFINE_PER_CPU(seqcount_t
, irq_time_seq
);
2007 static inline void irq_time_write_begin(void)
2009 __this_cpu_inc(irq_time_seq
.sequence
);
2013 static inline void irq_time_write_end(void)
2016 __this_cpu_inc(irq_time_seq
.sequence
);
2019 static inline u64
irq_time_read(int cpu
)
2025 seq
= read_seqcount_begin(&per_cpu(irq_time_seq
, cpu
));
2026 irq_time
= per_cpu(cpu_softirq_time
, cpu
) +
2027 per_cpu(cpu_hardirq_time
, cpu
);
2028 } while (read_seqcount_retry(&per_cpu(irq_time_seq
, cpu
), seq
));
2032 #else /* CONFIG_64BIT */
2033 static inline void irq_time_write_begin(void)
2037 static inline void irq_time_write_end(void)
2041 static inline u64
irq_time_read(int cpu
)
2043 return per_cpu(cpu_softirq_time
, cpu
) + per_cpu(cpu_hardirq_time
, cpu
);
2045 #endif /* CONFIG_64BIT */
2048 * Called before incrementing preempt_count on {soft,}irq_enter
2049 * and before decrementing preempt_count on {soft,}irq_exit.
2051 void account_system_vtime(struct task_struct
*curr
)
2053 unsigned long flags
;
2057 if (!sched_clock_irqtime
)
2060 local_irq_save(flags
);
2062 cpu
= smp_processor_id();
2063 delta
= sched_clock_cpu(cpu
) - __this_cpu_read(irq_start_time
);
2064 __this_cpu_add(irq_start_time
, delta
);
2066 irq_time_write_begin();
2068 * We do not account for softirq time from ksoftirqd here.
2069 * We want to continue accounting softirq time to ksoftirqd thread
2070 * in that case, so as not to confuse scheduler with a special task
2071 * that do not consume any time, but still wants to run.
2073 if (hardirq_count())
2074 __this_cpu_add(cpu_hardirq_time
, delta
);
2075 else if (in_serving_softirq() && curr
!= this_cpu_ksoftirqd())
2076 __this_cpu_add(cpu_softirq_time
, delta
);
2078 irq_time_write_end();
2079 local_irq_restore(flags
);
2081 EXPORT_SYMBOL_GPL(account_system_vtime
);
2083 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2085 #ifdef CONFIG_PARAVIRT
2086 static inline u64
steal_ticks(u64 steal
)
2088 if (unlikely(steal
> NSEC_PER_SEC
))
2089 return div_u64(steal
, TICK_NSEC
);
2091 return __iter_div_u64_rem(steal
, TICK_NSEC
, &steal
);
2095 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
2098 * In theory, the compile should just see 0 here, and optimize out the call
2099 * to sched_rt_avg_update. But I don't trust it...
2101 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2102 s64 steal
= 0, irq_delta
= 0;
2104 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2105 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
2108 * Since irq_time is only updated on {soft,}irq_exit, we might run into
2109 * this case when a previous update_rq_clock() happened inside a
2110 * {soft,}irq region.
2112 * When this happens, we stop ->clock_task and only update the
2113 * prev_irq_time stamp to account for the part that fit, so that a next
2114 * update will consume the rest. This ensures ->clock_task is
2117 * It does however cause some slight miss-attribution of {soft,}irq
2118 * time, a more accurate solution would be to update the irq_time using
2119 * the current rq->clock timestamp, except that would require using
2122 if (irq_delta
> delta
)
2125 rq
->prev_irq_time
+= irq_delta
;
2128 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
2129 if (static_branch((¶virt_steal_rq_enabled
))) {
2132 steal
= paravirt_steal_clock(cpu_of(rq
));
2133 steal
-= rq
->prev_steal_time_rq
;
2135 if (unlikely(steal
> delta
))
2138 st
= steal_ticks(steal
);
2139 steal
= st
* TICK_NSEC
;
2141 rq
->prev_steal_time_rq
+= steal
;
2147 rq
->clock_task
+= delta
;
2149 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2150 if ((irq_delta
+ steal
) && sched_feat(NONTASK_POWER
))
2151 sched_rt_avg_update(rq
, irq_delta
+ steal
);
2155 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2156 static int irqtime_account_hi_update(void)
2158 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2159 unsigned long flags
;
2163 local_irq_save(flags
);
2164 latest_ns
= this_cpu_read(cpu_hardirq_time
);
2165 if (cputime64_gt(nsecs_to_cputime64(latest_ns
), cpustat
->irq
))
2167 local_irq_restore(flags
);
2171 static int irqtime_account_si_update(void)
2173 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2174 unsigned long flags
;
2178 local_irq_save(flags
);
2179 latest_ns
= this_cpu_read(cpu_softirq_time
);
2180 if (cputime64_gt(nsecs_to_cputime64(latest_ns
), cpustat
->softirq
))
2182 local_irq_restore(flags
);
2186 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2188 #define sched_clock_irqtime (0)
2192 #include "sched_idletask.c"
2193 #include "sched_fair.c"
2194 #include "sched_rt.c"
2195 #include "sched_autogroup.c"
2196 #include "sched_stoptask.c"
2197 #ifdef CONFIG_SCHED_DEBUG
2198 # include "sched_debug.c"
2201 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
2203 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
2204 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
2208 * Make it appear like a SCHED_FIFO task, its something
2209 * userspace knows about and won't get confused about.
2211 * Also, it will make PI more or less work without too
2212 * much confusion -- but then, stop work should not
2213 * rely on PI working anyway.
2215 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
2217 stop
->sched_class
= &stop_sched_class
;
2220 cpu_rq(cpu
)->stop
= stop
;
2224 * Reset it back to a normal scheduling class so that
2225 * it can die in pieces.
2227 old_stop
->sched_class
= &rt_sched_class
;
2232 * __normal_prio - return the priority that is based on the static prio
2234 static inline int __normal_prio(struct task_struct
*p
)
2236 return p
->static_prio
;
2240 * Calculate the expected normal priority: i.e. priority
2241 * without taking RT-inheritance into account. Might be
2242 * boosted by interactivity modifiers. Changes upon fork,
2243 * setprio syscalls, and whenever the interactivity
2244 * estimator recalculates.
2246 static inline int normal_prio(struct task_struct
*p
)
2250 if (task_has_rt_policy(p
))
2251 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
2253 prio
= __normal_prio(p
);
2258 * Calculate the current priority, i.e. the priority
2259 * taken into account by the scheduler. This value might
2260 * be boosted by RT tasks, or might be boosted by
2261 * interactivity modifiers. Will be RT if the task got
2262 * RT-boosted. If not then it returns p->normal_prio.
2264 static int effective_prio(struct task_struct
*p
)
2266 p
->normal_prio
= normal_prio(p
);
2268 * If we are RT tasks or we were boosted to RT priority,
2269 * keep the priority unchanged. Otherwise, update priority
2270 * to the normal priority:
2272 if (!rt_prio(p
->prio
))
2273 return p
->normal_prio
;
2278 * task_curr - is this task currently executing on a CPU?
2279 * @p: the task in question.
2281 inline int task_curr(const struct task_struct
*p
)
2283 return cpu_curr(task_cpu(p
)) == p
;
2286 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
2287 const struct sched_class
*prev_class
,
2290 if (prev_class
!= p
->sched_class
) {
2291 if (prev_class
->switched_from
)
2292 prev_class
->switched_from(rq
, p
);
2293 p
->sched_class
->switched_to(rq
, p
);
2294 } else if (oldprio
!= p
->prio
)
2295 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
2298 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
2300 const struct sched_class
*class;
2302 if (p
->sched_class
== rq
->curr
->sched_class
) {
2303 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
2305 for_each_class(class) {
2306 if (class == rq
->curr
->sched_class
)
2308 if (class == p
->sched_class
) {
2309 resched_task(rq
->curr
);
2316 * A queue event has occurred, and we're going to schedule. In
2317 * this case, we can save a useless back to back clock update.
2319 if (rq
->curr
->on_rq
&& test_tsk_need_resched(rq
->curr
))
2320 rq
->skip_clock_update
= 1;
2325 * Is this task likely cache-hot:
2328 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2332 if (p
->sched_class
!= &fair_sched_class
)
2335 if (unlikely(p
->policy
== SCHED_IDLE
))
2339 * Buddy candidates are cache hot:
2341 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2342 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2343 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2346 if (sysctl_sched_migration_cost
== -1)
2348 if (sysctl_sched_migration_cost
== 0)
2351 delta
= now
- p
->se
.exec_start
;
2353 return delta
< (s64
)sysctl_sched_migration_cost
;
2356 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2358 #ifdef CONFIG_SCHED_DEBUG
2360 * We should never call set_task_cpu() on a blocked task,
2361 * ttwu() will sort out the placement.
2363 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2364 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2366 #ifdef CONFIG_LOCKDEP
2368 * The caller should hold either p->pi_lock or rq->lock, when changing
2369 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2371 * sched_move_task() holds both and thus holding either pins the cgroup,
2374 * Furthermore, all task_rq users should acquire both locks, see
2377 WARN_ON_ONCE(debug_locks
&& !(lockdep_is_held(&p
->pi_lock
) ||
2378 lockdep_is_held(&task_rq(p
)->lock
)));
2382 trace_sched_migrate_task(p
, new_cpu
);
2384 if (task_cpu(p
) != new_cpu
) {
2385 p
->se
.nr_migrations
++;
2386 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, NULL
, 0);
2389 __set_task_cpu(p
, new_cpu
);
2392 struct migration_arg
{
2393 struct task_struct
*task
;
2397 static int migration_cpu_stop(void *data
);
2400 * wait_task_inactive - wait for a thread to unschedule.
2402 * If @match_state is nonzero, it's the @p->state value just checked and
2403 * not expected to change. If it changes, i.e. @p might have woken up,
2404 * then return zero. When we succeed in waiting for @p to be off its CPU,
2405 * we return a positive number (its total switch count). If a second call
2406 * a short while later returns the same number, the caller can be sure that
2407 * @p has remained unscheduled the whole time.
2409 * The caller must ensure that the task *will* unschedule sometime soon,
2410 * else this function might spin for a *long* time. This function can't
2411 * be called with interrupts off, or it may introduce deadlock with
2412 * smp_call_function() if an IPI is sent by the same process we are
2413 * waiting to become inactive.
2415 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2417 unsigned long flags
;
2424 * We do the initial early heuristics without holding
2425 * any task-queue locks at all. We'll only try to get
2426 * the runqueue lock when things look like they will
2432 * If the task is actively running on another CPU
2433 * still, just relax and busy-wait without holding
2436 * NOTE! Since we don't hold any locks, it's not
2437 * even sure that "rq" stays as the right runqueue!
2438 * But we don't care, since "task_running()" will
2439 * return false if the runqueue has changed and p
2440 * is actually now running somewhere else!
2442 while (task_running(rq
, p
)) {
2443 if (match_state
&& unlikely(p
->state
!= match_state
))
2449 * Ok, time to look more closely! We need the rq
2450 * lock now, to be *sure*. If we're wrong, we'll
2451 * just go back and repeat.
2453 rq
= task_rq_lock(p
, &flags
);
2454 trace_sched_wait_task(p
);
2455 running
= task_running(rq
, p
);
2458 if (!match_state
|| p
->state
== match_state
)
2459 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2460 task_rq_unlock(rq
, p
, &flags
);
2463 * If it changed from the expected state, bail out now.
2465 if (unlikely(!ncsw
))
2469 * Was it really running after all now that we
2470 * checked with the proper locks actually held?
2472 * Oops. Go back and try again..
2474 if (unlikely(running
)) {
2480 * It's not enough that it's not actively running,
2481 * it must be off the runqueue _entirely_, and not
2484 * So if it was still runnable (but just not actively
2485 * running right now), it's preempted, and we should
2486 * yield - it could be a while.
2488 if (unlikely(on_rq
)) {
2489 ktime_t to
= ktime_set(0, NSEC_PER_SEC
/HZ
);
2491 set_current_state(TASK_UNINTERRUPTIBLE
);
2492 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
2497 * Ahh, all good. It wasn't running, and it wasn't
2498 * runnable, which means that it will never become
2499 * running in the future either. We're all done!
2508 * kick_process - kick a running thread to enter/exit the kernel
2509 * @p: the to-be-kicked thread
2511 * Cause a process which is running on another CPU to enter
2512 * kernel-mode, without any delay. (to get signals handled.)
2514 * NOTE: this function doesn't have to take the runqueue lock,
2515 * because all it wants to ensure is that the remote task enters
2516 * the kernel. If the IPI races and the task has been migrated
2517 * to another CPU then no harm is done and the purpose has been
2520 void kick_process(struct task_struct
*p
)
2526 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2527 smp_send_reschedule(cpu
);
2530 EXPORT_SYMBOL_GPL(kick_process
);
2531 #endif /* CONFIG_SMP */
2535 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2537 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2540 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2542 /* Look for allowed, online CPU in same node. */
2543 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
2544 if (cpumask_test_cpu(dest_cpu
, tsk_cpus_allowed(p
)))
2547 /* Any allowed, online CPU? */
2548 dest_cpu
= cpumask_any_and(tsk_cpus_allowed(p
), cpu_active_mask
);
2549 if (dest_cpu
< nr_cpu_ids
)
2552 /* No more Mr. Nice Guy. */
2553 dest_cpu
= cpuset_cpus_allowed_fallback(p
);
2555 * Don't tell them about moving exiting tasks or
2556 * kernel threads (both mm NULL), since they never
2559 if (p
->mm
&& printk_ratelimit()) {
2560 printk(KERN_INFO
"process %d (%s) no longer affine to cpu%d\n",
2561 task_pid_nr(p
), p
->comm
, cpu
);
2568 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2571 int select_task_rq(struct task_struct
*p
, int sd_flags
, int wake_flags
)
2573 int cpu
= p
->sched_class
->select_task_rq(p
, sd_flags
, wake_flags
);
2576 * In order not to call set_task_cpu() on a blocking task we need
2577 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2580 * Since this is common to all placement strategies, this lives here.
2582 * [ this allows ->select_task() to simply return task_cpu(p) and
2583 * not worry about this generic constraint ]
2585 if (unlikely(!cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)) ||
2587 cpu
= select_fallback_rq(task_cpu(p
), p
);
2592 static void update_avg(u64
*avg
, u64 sample
)
2594 s64 diff
= sample
- *avg
;
2600 ttwu_stat(struct task_struct
*p
, int cpu
, int wake_flags
)
2602 #ifdef CONFIG_SCHEDSTATS
2603 struct rq
*rq
= this_rq();
2606 int this_cpu
= smp_processor_id();
2608 if (cpu
== this_cpu
) {
2609 schedstat_inc(rq
, ttwu_local
);
2610 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
2612 struct sched_domain
*sd
;
2614 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
2616 for_each_domain(this_cpu
, sd
) {
2617 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2618 schedstat_inc(sd
, ttwu_wake_remote
);
2625 if (wake_flags
& WF_MIGRATED
)
2626 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
2628 #endif /* CONFIG_SMP */
2630 schedstat_inc(rq
, ttwu_count
);
2631 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
2633 if (wake_flags
& WF_SYNC
)
2634 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
2636 #endif /* CONFIG_SCHEDSTATS */
2639 static void ttwu_activate(struct rq
*rq
, struct task_struct
*p
, int en_flags
)
2641 activate_task(rq
, p
, en_flags
);
2644 /* if a worker is waking up, notify workqueue */
2645 if (p
->flags
& PF_WQ_WORKER
)
2646 wq_worker_waking_up(p
, cpu_of(rq
));
2650 * Mark the task runnable and perform wakeup-preemption.
2653 ttwu_do_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
2655 trace_sched_wakeup(p
, true);
2656 check_preempt_curr(rq
, p
, wake_flags
);
2658 p
->state
= TASK_RUNNING
;
2660 if (p
->sched_class
->task_woken
)
2661 p
->sched_class
->task_woken(rq
, p
);
2663 if (rq
->idle_stamp
) {
2664 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2665 u64 max
= 2*sysctl_sched_migration_cost
;
2670 update_avg(&rq
->avg_idle
, delta
);
2677 ttwu_do_activate(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
2680 if (p
->sched_contributes_to_load
)
2681 rq
->nr_uninterruptible
--;
2684 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
| ENQUEUE_WAKING
);
2685 ttwu_do_wakeup(rq
, p
, wake_flags
);
2689 * Called in case the task @p isn't fully descheduled from its runqueue,
2690 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2691 * since all we need to do is flip p->state to TASK_RUNNING, since
2692 * the task is still ->on_rq.
2694 static int ttwu_remote(struct task_struct
*p
, int wake_flags
)
2699 rq
= __task_rq_lock(p
);
2701 ttwu_do_wakeup(rq
, p
, wake_flags
);
2704 __task_rq_unlock(rq
);
2710 static void sched_ttwu_pending(void)
2712 struct rq
*rq
= this_rq();
2713 struct llist_node
*llist
= llist_del_all(&rq
->wake_list
);
2714 struct task_struct
*p
;
2716 raw_spin_lock(&rq
->lock
);
2719 p
= llist_entry(llist
, struct task_struct
, wake_entry
);
2720 llist
= llist_next(llist
);
2721 ttwu_do_activate(rq
, p
, 0);
2724 raw_spin_unlock(&rq
->lock
);
2727 void scheduler_ipi(void)
2729 if (llist_empty(&this_rq()->wake_list
) && !got_nohz_idle_kick())
2733 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2734 * traditionally all their work was done from the interrupt return
2735 * path. Now that we actually do some work, we need to make sure
2738 * Some archs already do call them, luckily irq_enter/exit nest
2741 * Arguably we should visit all archs and update all handlers,
2742 * however a fair share of IPIs are still resched only so this would
2743 * somewhat pessimize the simple resched case.
2746 sched_ttwu_pending();
2749 * Check if someone kicked us for doing the nohz idle load balance.
2751 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
2752 this_rq()->idle_balance
= 1;
2753 raise_softirq_irqoff(SCHED_SOFTIRQ
);
2758 static void ttwu_queue_remote(struct task_struct
*p
, int cpu
)
2760 if (llist_add(&p
->wake_entry
, &cpu_rq(cpu
)->wake_list
))
2761 smp_send_reschedule(cpu
);
2764 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2765 static int ttwu_activate_remote(struct task_struct
*p
, int wake_flags
)
2770 rq
= __task_rq_lock(p
);
2772 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
2773 ttwu_do_wakeup(rq
, p
, wake_flags
);
2776 __task_rq_unlock(rq
);
2781 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2782 #endif /* CONFIG_SMP */
2784 static void ttwu_queue(struct task_struct
*p
, int cpu
)
2786 struct rq
*rq
= cpu_rq(cpu
);
2788 #if defined(CONFIG_SMP)
2789 if (sched_feat(TTWU_QUEUE
) && cpu
!= smp_processor_id()) {
2790 sched_clock_cpu(cpu
); /* sync clocks x-cpu */
2791 ttwu_queue_remote(p
, cpu
);
2796 raw_spin_lock(&rq
->lock
);
2797 ttwu_do_activate(rq
, p
, 0);
2798 raw_spin_unlock(&rq
->lock
);
2802 * try_to_wake_up - wake up a thread
2803 * @p: the thread to be awakened
2804 * @state: the mask of task states that can be woken
2805 * @wake_flags: wake modifier flags (WF_*)
2807 * Put it on the run-queue if it's not already there. The "current"
2808 * thread is always on the run-queue (except when the actual
2809 * re-schedule is in progress), and as such you're allowed to do
2810 * the simpler "current->state = TASK_RUNNING" to mark yourself
2811 * runnable without the overhead of this.
2813 * Returns %true if @p was woken up, %false if it was already running
2814 * or @state didn't match @p's state.
2817 try_to_wake_up(struct task_struct
*p
, unsigned int state
, int wake_flags
)
2819 unsigned long flags
;
2820 int cpu
, success
= 0;
2823 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2824 if (!(p
->state
& state
))
2827 success
= 1; /* we're going to change ->state */
2830 if (p
->on_rq
&& ttwu_remote(p
, wake_flags
))
2835 * If the owning (remote) cpu is still in the middle of schedule() with
2836 * this task as prev, wait until its done referencing the task.
2839 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2841 * In case the architecture enables interrupts in
2842 * context_switch(), we cannot busy wait, since that
2843 * would lead to deadlocks when an interrupt hits and
2844 * tries to wake up @prev. So bail and do a complete
2847 if (ttwu_activate_remote(p
, wake_flags
))
2854 * Pairs with the smp_wmb() in finish_lock_switch().
2858 p
->sched_contributes_to_load
= !!task_contributes_to_load(p
);
2859 p
->state
= TASK_WAKING
;
2861 if (p
->sched_class
->task_waking
)
2862 p
->sched_class
->task_waking(p
);
2864 cpu
= select_task_rq(p
, SD_BALANCE_WAKE
, wake_flags
);
2865 if (task_cpu(p
) != cpu
) {
2866 wake_flags
|= WF_MIGRATED
;
2867 set_task_cpu(p
, cpu
);
2869 #endif /* CONFIG_SMP */
2873 ttwu_stat(p
, cpu
, wake_flags
);
2875 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2881 * try_to_wake_up_local - try to wake up a local task with rq lock held
2882 * @p: the thread to be awakened
2884 * Put @p on the run-queue if it's not already there. The caller must
2885 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2888 static void try_to_wake_up_local(struct task_struct
*p
)
2890 struct rq
*rq
= task_rq(p
);
2892 BUG_ON(rq
!= this_rq());
2893 BUG_ON(p
== current
);
2894 lockdep_assert_held(&rq
->lock
);
2896 if (!raw_spin_trylock(&p
->pi_lock
)) {
2897 raw_spin_unlock(&rq
->lock
);
2898 raw_spin_lock(&p
->pi_lock
);
2899 raw_spin_lock(&rq
->lock
);
2902 if (!(p
->state
& TASK_NORMAL
))
2906 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
2908 ttwu_do_wakeup(rq
, p
, 0);
2909 ttwu_stat(p
, smp_processor_id(), 0);
2911 raw_spin_unlock(&p
->pi_lock
);
2915 * wake_up_process - Wake up a specific process
2916 * @p: The process to be woken up.
2918 * Attempt to wake up the nominated process and move it to the set of runnable
2919 * processes. Returns 1 if the process was woken up, 0 if it was already
2922 * It may be assumed that this function implies a write memory barrier before
2923 * changing the task state if and only if any tasks are woken up.
2925 int wake_up_process(struct task_struct
*p
)
2927 return try_to_wake_up(p
, TASK_ALL
, 0);
2929 EXPORT_SYMBOL(wake_up_process
);
2931 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2933 return try_to_wake_up(p
, state
, 0);
2937 * Perform scheduler related setup for a newly forked process p.
2938 * p is forked by current.
2940 * __sched_fork() is basic setup used by init_idle() too:
2942 static void __sched_fork(struct task_struct
*p
)
2947 p
->se
.exec_start
= 0;
2948 p
->se
.sum_exec_runtime
= 0;
2949 p
->se
.prev_sum_exec_runtime
= 0;
2950 p
->se
.nr_migrations
= 0;
2952 INIT_LIST_HEAD(&p
->se
.group_node
);
2954 #ifdef CONFIG_SCHEDSTATS
2955 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2958 INIT_LIST_HEAD(&p
->rt
.run_list
);
2960 #ifdef CONFIG_PREEMPT_NOTIFIERS
2961 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2966 * fork()/clone()-time setup:
2968 void sched_fork(struct task_struct
*p
)
2970 unsigned long flags
;
2971 int cpu
= get_cpu();
2975 * We mark the process as running here. This guarantees that
2976 * nobody will actually run it, and a signal or other external
2977 * event cannot wake it up and insert it on the runqueue either.
2979 p
->state
= TASK_RUNNING
;
2982 * Make sure we do not leak PI boosting priority to the child.
2984 p
->prio
= current
->normal_prio
;
2987 * Revert to default priority/policy on fork if requested.
2989 if (unlikely(p
->sched_reset_on_fork
)) {
2990 if (task_has_rt_policy(p
)) {
2991 p
->policy
= SCHED_NORMAL
;
2992 p
->static_prio
= NICE_TO_PRIO(0);
2994 } else if (PRIO_TO_NICE(p
->static_prio
) < 0)
2995 p
->static_prio
= NICE_TO_PRIO(0);
2997 p
->prio
= p
->normal_prio
= __normal_prio(p
);
3001 * We don't need the reset flag anymore after the fork. It has
3002 * fulfilled its duty:
3004 p
->sched_reset_on_fork
= 0;
3007 if (!rt_prio(p
->prio
))
3008 p
->sched_class
= &fair_sched_class
;
3010 if (p
->sched_class
->task_fork
)
3011 p
->sched_class
->task_fork(p
);
3014 * The child is not yet in the pid-hash so no cgroup attach races,
3015 * and the cgroup is pinned to this child due to cgroup_fork()
3016 * is ran before sched_fork().
3018 * Silence PROVE_RCU.
3020 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
3021 set_task_cpu(p
, cpu
);
3022 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3024 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
3025 if (likely(sched_info_on()))
3026 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
3028 #if defined(CONFIG_SMP)
3031 #ifdef CONFIG_PREEMPT_COUNT
3032 /* Want to start with kernel preemption disabled. */
3033 task_thread_info(p
)->preempt_count
= 1;
3036 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
3043 * wake_up_new_task - wake up a newly created task for the first time.
3045 * This function will do some initial scheduler statistics housekeeping
3046 * that must be done for every newly created context, then puts the task
3047 * on the runqueue and wakes it.
3049 void wake_up_new_task(struct task_struct
*p
)
3051 unsigned long flags
;
3054 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
3057 * Fork balancing, do it here and not earlier because:
3058 * - cpus_allowed can change in the fork path
3059 * - any previously selected cpu might disappear through hotplug
3061 set_task_cpu(p
, select_task_rq(p
, SD_BALANCE_FORK
, 0));
3064 rq
= __task_rq_lock(p
);
3065 activate_task(rq
, p
, 0);
3067 trace_sched_wakeup_new(p
, true);
3068 check_preempt_curr(rq
, p
, WF_FORK
);
3070 if (p
->sched_class
->task_woken
)
3071 p
->sched_class
->task_woken(rq
, p
);
3073 task_rq_unlock(rq
, p
, &flags
);
3076 #ifdef CONFIG_PREEMPT_NOTIFIERS
3079 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3080 * @notifier: notifier struct to register
3082 void preempt_notifier_register(struct preempt_notifier
*notifier
)
3084 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
3086 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
3089 * preempt_notifier_unregister - no longer interested in preemption notifications
3090 * @notifier: notifier struct to unregister
3092 * This is safe to call from within a preemption notifier.
3094 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
3096 hlist_del(¬ifier
->link
);
3098 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
3100 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
3102 struct preempt_notifier
*notifier
;
3103 struct hlist_node
*node
;
3105 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
3106 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
3110 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
3111 struct task_struct
*next
)
3113 struct preempt_notifier
*notifier
;
3114 struct hlist_node
*node
;
3116 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
3117 notifier
->ops
->sched_out(notifier
, next
);
3120 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3122 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
3127 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
3128 struct task_struct
*next
)
3132 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3135 * prepare_task_switch - prepare to switch tasks
3136 * @rq: the runqueue preparing to switch
3137 * @prev: the current task that is being switched out
3138 * @next: the task we are going to switch to.
3140 * This is called with the rq lock held and interrupts off. It must
3141 * be paired with a subsequent finish_task_switch after the context
3144 * prepare_task_switch sets up locking and calls architecture specific
3148 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
3149 struct task_struct
*next
)
3151 sched_info_switch(prev
, next
);
3152 perf_event_task_sched_out(prev
, next
);
3153 fire_sched_out_preempt_notifiers(prev
, next
);
3154 prepare_lock_switch(rq
, next
);
3155 prepare_arch_switch(next
);
3156 trace_sched_switch(prev
, next
);
3160 * finish_task_switch - clean up after a task-switch
3161 * @rq: runqueue associated with task-switch
3162 * @prev: the thread we just switched away from.
3164 * finish_task_switch must be called after the context switch, paired
3165 * with a prepare_task_switch call before the context switch.
3166 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3167 * and do any other architecture-specific cleanup actions.
3169 * Note that we may have delayed dropping an mm in context_switch(). If
3170 * so, we finish that here outside of the runqueue lock. (Doing it
3171 * with the lock held can cause deadlocks; see schedule() for
3174 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
3175 __releases(rq
->lock
)
3177 struct mm_struct
*mm
= rq
->prev_mm
;
3183 * A task struct has one reference for the use as "current".
3184 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3185 * schedule one last time. The schedule call will never return, and
3186 * the scheduled task must drop that reference.
3187 * The test for TASK_DEAD must occur while the runqueue locks are
3188 * still held, otherwise prev could be scheduled on another cpu, die
3189 * there before we look at prev->state, and then the reference would
3191 * Manfred Spraul <manfred@colorfullife.com>
3193 prev_state
= prev
->state
;
3194 finish_arch_switch(prev
);
3195 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3196 local_irq_disable();
3197 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3198 perf_event_task_sched_in(prev
, current
);
3199 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3201 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3202 finish_lock_switch(rq
, prev
);
3204 fire_sched_in_preempt_notifiers(current
);
3207 if (unlikely(prev_state
== TASK_DEAD
)) {
3209 * Remove function-return probe instances associated with this
3210 * task and put them back on the free list.
3212 kprobe_flush_task(prev
);
3213 put_task_struct(prev
);
3219 /* assumes rq->lock is held */
3220 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
3222 if (prev
->sched_class
->pre_schedule
)
3223 prev
->sched_class
->pre_schedule(rq
, prev
);
3226 /* rq->lock is NOT held, but preemption is disabled */
3227 static inline void post_schedule(struct rq
*rq
)
3229 if (rq
->post_schedule
) {
3230 unsigned long flags
;
3232 raw_spin_lock_irqsave(&rq
->lock
, flags
);
3233 if (rq
->curr
->sched_class
->post_schedule
)
3234 rq
->curr
->sched_class
->post_schedule(rq
);
3235 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
3237 rq
->post_schedule
= 0;
3243 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
3247 static inline void post_schedule(struct rq
*rq
)
3254 * schedule_tail - first thing a freshly forked thread must call.
3255 * @prev: the thread we just switched away from.
3257 asmlinkage
void schedule_tail(struct task_struct
*prev
)
3258 __releases(rq
->lock
)
3260 struct rq
*rq
= this_rq();
3262 finish_task_switch(rq
, prev
);
3265 * FIXME: do we need to worry about rq being invalidated by the
3270 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3271 /* In this case, finish_task_switch does not reenable preemption */
3274 if (current
->set_child_tid
)
3275 put_user(task_pid_vnr(current
), current
->set_child_tid
);
3279 * context_switch - switch to the new MM and the new
3280 * thread's register state.
3283 context_switch(struct rq
*rq
, struct task_struct
*prev
,
3284 struct task_struct
*next
)
3286 struct mm_struct
*mm
, *oldmm
;
3288 prepare_task_switch(rq
, prev
, next
);
3291 oldmm
= prev
->active_mm
;
3293 * For paravirt, this is coupled with an exit in switch_to to
3294 * combine the page table reload and the switch backend into
3297 arch_start_context_switch(prev
);
3300 next
->active_mm
= oldmm
;
3301 atomic_inc(&oldmm
->mm_count
);
3302 enter_lazy_tlb(oldmm
, next
);
3304 switch_mm(oldmm
, mm
, next
);
3307 prev
->active_mm
= NULL
;
3308 rq
->prev_mm
= oldmm
;
3311 * Since the runqueue lock will be released by the next
3312 * task (which is an invalid locking op but in the case
3313 * of the scheduler it's an obvious special-case), so we
3314 * do an early lockdep release here:
3316 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3317 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
3320 /* Here we just switch the register state and the stack. */
3321 switch_to(prev
, next
, prev
);
3325 * this_rq must be evaluated again because prev may have moved
3326 * CPUs since it called schedule(), thus the 'rq' on its stack
3327 * frame will be invalid.
3329 finish_task_switch(this_rq(), prev
);
3333 * nr_running, nr_uninterruptible and nr_context_switches:
3335 * externally visible scheduler statistics: current number of runnable
3336 * threads, current number of uninterruptible-sleeping threads, total
3337 * number of context switches performed since bootup.
3339 unsigned long nr_running(void)
3341 unsigned long i
, sum
= 0;
3343 for_each_online_cpu(i
)
3344 sum
+= cpu_rq(i
)->nr_running
;
3349 unsigned long nr_uninterruptible(void)
3351 unsigned long i
, sum
= 0;
3353 for_each_possible_cpu(i
)
3354 sum
+= cpu_rq(i
)->nr_uninterruptible
;
3357 * Since we read the counters lockless, it might be slightly
3358 * inaccurate. Do not allow it to go below zero though:
3360 if (unlikely((long)sum
< 0))
3366 unsigned long long nr_context_switches(void)
3369 unsigned long long sum
= 0;
3371 for_each_possible_cpu(i
)
3372 sum
+= cpu_rq(i
)->nr_switches
;
3377 unsigned long nr_iowait(void)
3379 unsigned long i
, sum
= 0;
3381 for_each_possible_cpu(i
)
3382 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
3387 unsigned long nr_iowait_cpu(int cpu
)
3389 struct rq
*this = cpu_rq(cpu
);
3390 return atomic_read(&this->nr_iowait
);
3393 unsigned long this_cpu_load(void)
3395 struct rq
*this = this_rq();
3396 return this->cpu_load
[0];
3401 * Global load-average calculations
3403 * We take a distributed and async approach to calculating the global load-avg
3404 * in order to minimize overhead.
3406 * The global load average is an exponentially decaying average of nr_running +
3407 * nr_uninterruptible.
3409 * Once every LOAD_FREQ:
3412 * for_each_possible_cpu(cpu)
3413 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
3415 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
3417 * Due to a number of reasons the above turns in the mess below:
3419 * - for_each_possible_cpu() is prohibitively expensive on machines with
3420 * serious number of cpus, therefore we need to take a distributed approach
3421 * to calculating nr_active.
3423 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
3424 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
3426 * So assuming nr_active := 0 when we start out -- true per definition, we
3427 * can simply take per-cpu deltas and fold those into a global accumulate
3428 * to obtain the same result. See calc_load_fold_active().
3430 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
3431 * across the machine, we assume 10 ticks is sufficient time for every
3432 * cpu to have completed this task.
3434 * This places an upper-bound on the IRQ-off latency of the machine. Then
3435 * again, being late doesn't loose the delta, just wrecks the sample.
3437 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
3438 * this would add another cross-cpu cacheline miss and atomic operation
3439 * to the wakeup path. Instead we increment on whatever cpu the task ran
3440 * when it went into uninterruptible state and decrement on whatever cpu
3441 * did the wakeup. This means that only the sum of nr_uninterruptible over
3442 * all cpus yields the correct result.
3444 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
3447 /* Variables and functions for calc_load */
3448 static atomic_long_t calc_load_tasks
;
3449 static unsigned long calc_load_update
;
3450 unsigned long avenrun
[3];
3451 EXPORT_SYMBOL(avenrun
); /* should be removed */
3454 * get_avenrun - get the load average array
3455 * @loads: pointer to dest load array
3456 * @offset: offset to add
3457 * @shift: shift count to shift the result left
3459 * These values are estimates at best, so no need for locking.
3461 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
3463 loads
[0] = (avenrun
[0] + offset
) << shift
;
3464 loads
[1] = (avenrun
[1] + offset
) << shift
;
3465 loads
[2] = (avenrun
[2] + offset
) << shift
;
3468 static long calc_load_fold_active(struct rq
*this_rq
)
3470 long nr_active
, delta
= 0;
3472 nr_active
= this_rq
->nr_running
;
3473 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3475 if (nr_active
!= this_rq
->calc_load_active
) {
3476 delta
= nr_active
- this_rq
->calc_load_active
;
3477 this_rq
->calc_load_active
= nr_active
;
3484 * a1 = a0 * e + a * (1 - e)
3486 static unsigned long
3487 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
3490 load
+= active
* (FIXED_1
- exp
);
3491 load
+= 1UL << (FSHIFT
- 1);
3492 return load
>> FSHIFT
;
3497 * Handle NO_HZ for the global load-average.
3499 * Since the above described distributed algorithm to compute the global
3500 * load-average relies on per-cpu sampling from the tick, it is affected by
3503 * The basic idea is to fold the nr_active delta into a global idle-delta upon
3504 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
3505 * when we read the global state.
3507 * Obviously reality has to ruin such a delightfully simple scheme:
3509 * - When we go NO_HZ idle during the window, we can negate our sample
3510 * contribution, causing under-accounting.
3512 * We avoid this by keeping two idle-delta counters and flipping them
3513 * when the window starts, thus separating old and new NO_HZ load.
3515 * The only trick is the slight shift in index flip for read vs write.
3519 * |-|-----------|-|-----------|-|-----------|-|
3520 * r:0 0 1 1 0 0 1 1 0
3521 * w:0 1 1 0 0 1 1 0 0
3523 * This ensures we'll fold the old idle contribution in this window while
3524 * accumlating the new one.
3526 * - When we wake up from NO_HZ idle during the window, we push up our
3527 * contribution, since we effectively move our sample point to a known
3530 * This is solved by pushing the window forward, and thus skipping the
3531 * sample, for this cpu (effectively using the idle-delta for this cpu which
3532 * was in effect at the time the window opened). This also solves the issue
3533 * of having to deal with a cpu having been in NOHZ idle for multiple
3534 * LOAD_FREQ intervals.
3536 * When making the ILB scale, we should try to pull this in as well.
3538 static atomic_long_t calc_load_idle
[2];
3539 static int calc_load_idx
;
3541 static inline int calc_load_write_idx(void)
3543 int idx
= calc_load_idx
;
3546 * See calc_global_nohz(), if we observe the new index, we also
3547 * need to observe the new update time.
3552 * If the folding window started, make sure we start writing in the
3555 if (!time_before(jiffies
, calc_load_update
))
3561 static inline int calc_load_read_idx(void)
3563 return calc_load_idx
& 1;
3566 void calc_load_enter_idle(void)
3568 struct rq
*this_rq
= this_rq();
3572 * We're going into NOHZ mode, if there's any pending delta, fold it
3573 * into the pending idle delta.
3575 delta
= calc_load_fold_active(this_rq
);
3577 int idx
= calc_load_write_idx();
3578 atomic_long_add(delta
, &calc_load_idle
[idx
]);
3582 void calc_load_exit_idle(void)
3584 struct rq
*this_rq
= this_rq();
3587 * If we're still before the sample window, we're done.
3589 if (time_before(jiffies
, this_rq
->calc_load_update
))
3593 * We woke inside or after the sample window, this means we're already
3594 * accounted through the nohz accounting, so skip the entire deal and
3595 * sync up for the next window.
3597 this_rq
->calc_load_update
= calc_load_update
;
3598 if (time_before(jiffies
, this_rq
->calc_load_update
+ 10))
3599 this_rq
->calc_load_update
+= LOAD_FREQ
;
3602 static long calc_load_fold_idle(void)
3604 int idx
= calc_load_read_idx();
3607 if (atomic_long_read(&calc_load_idle
[idx
]))
3608 delta
= atomic_long_xchg(&calc_load_idle
[idx
], 0);
3614 * fixed_power_int - compute: x^n, in O(log n) time
3616 * @x: base of the power
3617 * @frac_bits: fractional bits of @x
3618 * @n: power to raise @x to.
3620 * By exploiting the relation between the definition of the natural power
3621 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3622 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3623 * (where: n_i \elem {0, 1}, the binary vector representing n),
3624 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3625 * of course trivially computable in O(log_2 n), the length of our binary
3628 static unsigned long
3629 fixed_power_int(unsigned long x
, unsigned int frac_bits
, unsigned int n
)
3631 unsigned long result
= 1UL << frac_bits
;
3636 result
+= 1UL << (frac_bits
- 1);
3637 result
>>= frac_bits
;
3643 x
+= 1UL << (frac_bits
- 1);
3651 * a1 = a0 * e + a * (1 - e)
3653 * a2 = a1 * e + a * (1 - e)
3654 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3655 * = a0 * e^2 + a * (1 - e) * (1 + e)
3657 * a3 = a2 * e + a * (1 - e)
3658 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3659 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3663 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3664 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3665 * = a0 * e^n + a * (1 - e^n)
3667 * [1] application of the geometric series:
3670 * S_n := \Sum x^i = -------------
3673 static unsigned long
3674 calc_load_n(unsigned long load
, unsigned long exp
,
3675 unsigned long active
, unsigned int n
)
3678 return calc_load(load
, fixed_power_int(exp
, FSHIFT
, n
), active
);
3682 * NO_HZ can leave us missing all per-cpu ticks calling
3683 * calc_load_account_active(), but since an idle CPU folds its delta into
3684 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3685 * in the pending idle delta if our idle period crossed a load cycle boundary.
3687 * Once we've updated the global active value, we need to apply the exponential
3688 * weights adjusted to the number of cycles missed.
3690 static void calc_global_nohz(void)
3692 long delta
, active
, n
;
3694 if (!time_before(jiffies
, calc_load_update
+ 10)) {
3696 * Catch-up, fold however many we are behind still
3698 delta
= jiffies
- calc_load_update
- 10;
3699 n
= 1 + (delta
/ LOAD_FREQ
);
3701 active
= atomic_long_read(&calc_load_tasks
);
3702 active
= active
> 0 ? active
* FIXED_1
: 0;
3704 avenrun
[0] = calc_load_n(avenrun
[0], EXP_1
, active
, n
);
3705 avenrun
[1] = calc_load_n(avenrun
[1], EXP_5
, active
, n
);
3706 avenrun
[2] = calc_load_n(avenrun
[2], EXP_15
, active
, n
);
3708 calc_load_update
+= n
* LOAD_FREQ
;
3712 * Flip the idle index...
3714 * Make sure we first write the new time then flip the index, so that
3715 * calc_load_write_idx() will see the new time when it reads the new
3716 * index, this avoids a double flip messing things up.
3721 #else /* !CONFIG_NO_HZ */
3723 static inline long calc_load_fold_idle(void) { return 0; }
3724 static inline void calc_global_nohz(void) { }
3726 #endif /* CONFIG_NO_HZ */
3729 * calc_load - update the avenrun load estimates 10 ticks after the
3730 * CPUs have updated calc_load_tasks.
3732 void calc_global_load(unsigned long ticks
)
3736 if (time_before(jiffies
, calc_load_update
+ 10))
3740 * Fold the 'old' idle-delta to include all NO_HZ cpus.
3742 delta
= calc_load_fold_idle();
3744 atomic_long_add(delta
, &calc_load_tasks
);
3746 active
= atomic_long_read(&calc_load_tasks
);
3747 active
= active
> 0 ? active
* FIXED_1
: 0;
3749 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
3750 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
3751 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
3753 calc_load_update
+= LOAD_FREQ
;
3756 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
3762 * Called from update_cpu_load() to periodically update this CPU's
3765 static void calc_load_account_active(struct rq
*this_rq
)
3769 if (time_before(jiffies
, this_rq
->calc_load_update
))
3772 delta
= calc_load_fold_active(this_rq
);
3774 atomic_long_add(delta
, &calc_load_tasks
);
3776 this_rq
->calc_load_update
+= LOAD_FREQ
;
3780 * End of global load-average stuff
3784 * The exact cpuload at various idx values, calculated at every tick would be
3785 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3787 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3788 * on nth tick when cpu may be busy, then we have:
3789 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3790 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3792 * decay_load_missed() below does efficient calculation of
3793 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3794 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3796 * The calculation is approximated on a 128 point scale.
3797 * degrade_zero_ticks is the number of ticks after which load at any
3798 * particular idx is approximated to be zero.
3799 * degrade_factor is a precomputed table, a row for each load idx.
3800 * Each column corresponds to degradation factor for a power of two ticks,
3801 * based on 128 point scale.
3803 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3804 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3806 * With this power of 2 load factors, we can degrade the load n times
3807 * by looking at 1 bits in n and doing as many mult/shift instead of
3808 * n mult/shifts needed by the exact degradation.
3810 #define DEGRADE_SHIFT 7
3811 static const unsigned char
3812 degrade_zero_ticks
[CPU_LOAD_IDX_MAX
] = {0, 8, 32, 64, 128};
3813 static const unsigned char
3814 degrade_factor
[CPU_LOAD_IDX_MAX
][DEGRADE_SHIFT
+ 1] = {
3815 {0, 0, 0, 0, 0, 0, 0, 0},
3816 {64, 32, 8, 0, 0, 0, 0, 0},
3817 {96, 72, 40, 12, 1, 0, 0},
3818 {112, 98, 75, 43, 15, 1, 0},
3819 {120, 112, 98, 76, 45, 16, 2} };
3822 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3823 * would be when CPU is idle and so we just decay the old load without
3824 * adding any new load.
3826 static unsigned long
3827 decay_load_missed(unsigned long load
, unsigned long missed_updates
, int idx
)
3831 if (!missed_updates
)
3834 if (missed_updates
>= degrade_zero_ticks
[idx
])
3838 return load
>> missed_updates
;
3840 while (missed_updates
) {
3841 if (missed_updates
% 2)
3842 load
= (load
* degrade_factor
[idx
][j
]) >> DEGRADE_SHIFT
;
3844 missed_updates
>>= 1;
3851 * Update rq->cpu_load[] statistics. This function is usually called every
3852 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3853 * every tick. We fix it up based on jiffies.
3855 static void __update_cpu_load(struct rq
*this_rq
, unsigned long this_load
,
3856 unsigned long pending_updates
)
3860 this_rq
->nr_load_updates
++;
3862 /* Update our load: */
3863 this_rq
->cpu_load
[0] = this_load
; /* Fasttrack for idx 0 */
3864 for (i
= 1, scale
= 2; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3865 unsigned long old_load
, new_load
;
3867 /* scale is effectively 1 << i now, and >> i divides by scale */
3869 old_load
= this_rq
->cpu_load
[i
];
3870 old_load
= decay_load_missed(old_load
, pending_updates
- 1, i
);
3871 new_load
= this_load
;
3873 * Round up the averaging division if load is increasing. This
3874 * prevents us from getting stuck on 9 if the load is 10, for
3877 if (new_load
> old_load
)
3878 new_load
+= scale
- 1;
3880 this_rq
->cpu_load
[i
] = (old_load
* (scale
- 1) + new_load
) >> i
;
3883 sched_avg_update(this_rq
);
3888 * There is no sane way to deal with nohz on smp when using jiffies because the
3889 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
3890 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
3892 * Therefore we cannot use the delta approach from the regular tick since that
3893 * would seriously skew the load calculation. However we'll make do for those
3894 * updates happening while idle (nohz_idle_balance) or coming out of idle
3895 * (tick_nohz_idle_exit).
3897 * This means we might still be one tick off for nohz periods.
3901 * Called from nohz_idle_balance() to update the load ratings before doing the
3904 static void update_idle_cpu_load(struct rq
*this_rq
)
3906 unsigned long curr_jiffies
= ACCESS_ONCE(jiffies
);
3907 unsigned long load
= this_rq
->load
.weight
;
3908 unsigned long pending_updates
;
3911 * bail if there's load or we're actually up-to-date.
3913 if (load
|| curr_jiffies
== this_rq
->last_load_update_tick
)
3916 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
3917 this_rq
->last_load_update_tick
= curr_jiffies
;
3919 __update_cpu_load(this_rq
, load
, pending_updates
);
3923 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
3925 void update_cpu_load_nohz(void)
3927 struct rq
*this_rq
= this_rq();
3928 unsigned long curr_jiffies
= ACCESS_ONCE(jiffies
);
3929 unsigned long pending_updates
;
3931 if (curr_jiffies
== this_rq
->last_load_update_tick
)
3934 raw_spin_lock(&this_rq
->lock
);
3935 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
3936 if (pending_updates
) {
3937 this_rq
->last_load_update_tick
= curr_jiffies
;
3939 * We were idle, this means load 0, the current load might be
3940 * !0 due to remote wakeups and the sort.
3942 __update_cpu_load(this_rq
, 0, pending_updates
);
3944 raw_spin_unlock(&this_rq
->lock
);
3946 #endif /* CONFIG_NO_HZ */
3949 * Called from scheduler_tick()
3951 static void update_cpu_load_active(struct rq
*this_rq
)
3954 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
3956 this_rq
->last_load_update_tick
= jiffies
;
3957 __update_cpu_load(this_rq
, this_rq
->load
.weight
, 1);
3959 calc_load_account_active(this_rq
);
3965 * sched_exec - execve() is a valuable balancing opportunity, because at
3966 * this point the task has the smallest effective memory and cache footprint.
3968 void sched_exec(void)
3970 struct task_struct
*p
= current
;
3971 unsigned long flags
;
3974 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
3975 dest_cpu
= p
->sched_class
->select_task_rq(p
, SD_BALANCE_EXEC
, 0);
3976 if (dest_cpu
== smp_processor_id())
3979 if (likely(cpu_active(dest_cpu
))) {
3980 struct migration_arg arg
= { p
, dest_cpu
};
3982 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3983 stop_one_cpu(task_cpu(p
), migration_cpu_stop
, &arg
);
3987 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3992 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3994 EXPORT_PER_CPU_SYMBOL(kstat
);
3997 * Return any ns on the sched_clock that have not yet been accounted in
3998 * @p in case that task is currently running.
4000 * Called with task_rq_lock() held on @rq.
4002 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
4006 if (task_current(rq
, p
)) {
4007 update_rq_clock(rq
);
4008 ns
= rq
->clock_task
- p
->se
.exec_start
;
4016 unsigned long long task_delta_exec(struct task_struct
*p
)
4018 unsigned long flags
;
4022 rq
= task_rq_lock(p
, &flags
);
4023 ns
= do_task_delta_exec(p
, rq
);
4024 task_rq_unlock(rq
, p
, &flags
);
4030 * Return accounted runtime for the task.
4031 * In case the task is currently running, return the runtime plus current's
4032 * pending runtime that have not been accounted yet.
4034 unsigned long long task_sched_runtime(struct task_struct
*p
)
4036 unsigned long flags
;
4040 rq
= task_rq_lock(p
, &flags
);
4041 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
4042 task_rq_unlock(rq
, p
, &flags
);
4048 * Account user cpu time to a process.
4049 * @p: the process that the cpu time gets accounted to
4050 * @cputime: the cpu time spent in user space since the last update
4051 * @cputime_scaled: cputime scaled by cpu frequency
4053 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
4054 cputime_t cputime_scaled
)
4056 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4059 /* Add user time to process. */
4060 p
->utime
= cputime_add(p
->utime
, cputime
);
4061 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
4062 account_group_user_time(p
, cputime
);
4064 /* Add user time to cpustat. */
4065 tmp
= cputime_to_cputime64(cputime
);
4066 if (TASK_NICE(p
) > 0)
4067 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
4069 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4071 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
4072 /* Account for user time used */
4073 acct_update_integrals(p
);
4077 * Account guest cpu time to a process.
4078 * @p: the process that the cpu time gets accounted to
4079 * @cputime: the cpu time spent in virtual machine since the last update
4080 * @cputime_scaled: cputime scaled by cpu frequency
4082 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
4083 cputime_t cputime_scaled
)
4086 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4088 tmp
= cputime_to_cputime64(cputime
);
4090 /* Add guest time to process. */
4091 p
->utime
= cputime_add(p
->utime
, cputime
);
4092 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
4093 account_group_user_time(p
, cputime
);
4094 p
->gtime
= cputime_add(p
->gtime
, cputime
);
4096 /* Add guest time to cpustat. */
4097 if (TASK_NICE(p
) > 0) {
4098 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
4099 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
4101 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4102 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
4107 * Account system cpu time to a process and desired cpustat field
4108 * @p: the process that the cpu time gets accounted to
4109 * @cputime: the cpu time spent in kernel space since the last update
4110 * @cputime_scaled: cputime scaled by cpu frequency
4111 * @target_cputime64: pointer to cpustat field that has to be updated
4114 void __account_system_time(struct task_struct
*p
, cputime_t cputime
,
4115 cputime_t cputime_scaled
, cputime64_t
*target_cputime64
)
4117 cputime64_t tmp
= cputime_to_cputime64(cputime
);
4119 /* Add system time to process. */
4120 p
->stime
= cputime_add(p
->stime
, cputime
);
4121 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
4122 account_group_system_time(p
, cputime
);
4124 /* Add system time to cpustat. */
4125 *target_cputime64
= cputime64_add(*target_cputime64
, tmp
);
4126 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
4128 /* Account for system time used */
4129 acct_update_integrals(p
);
4133 * Account system cpu time to a process.
4134 * @p: the process that the cpu time gets accounted to
4135 * @hardirq_offset: the offset to subtract from hardirq_count()
4136 * @cputime: the cpu time spent in kernel space since the last update
4137 * @cputime_scaled: cputime scaled by cpu frequency
4139 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
4140 cputime_t cputime
, cputime_t cputime_scaled
)
4142 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4143 cputime64_t
*target_cputime64
;
4145 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
4146 account_guest_time(p
, cputime
, cputime_scaled
);
4150 if (hardirq_count() - hardirq_offset
)
4151 target_cputime64
= &cpustat
->irq
;
4152 else if (in_serving_softirq())
4153 target_cputime64
= &cpustat
->softirq
;
4155 target_cputime64
= &cpustat
->system
;
4157 __account_system_time(p
, cputime
, cputime_scaled
, target_cputime64
);
4161 * Account for involuntary wait time.
4162 * @cputime: the cpu time spent in involuntary wait
4164 void account_steal_time(cputime_t cputime
)
4166 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4167 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
4169 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
4173 * Account for idle time.
4174 * @cputime: the cpu time spent in idle wait
4176 void account_idle_time(cputime_t cputime
)
4178 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4179 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
4180 struct rq
*rq
= this_rq();
4182 if (atomic_read(&rq
->nr_iowait
) > 0)
4183 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
4185 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
4188 static __always_inline
bool steal_account_process_tick(void)
4190 #ifdef CONFIG_PARAVIRT
4191 if (static_branch(¶virt_steal_enabled
)) {
4194 steal
= paravirt_steal_clock(smp_processor_id());
4195 steal
-= this_rq()->prev_steal_time
;
4197 st
= steal_ticks(steal
);
4198 this_rq()->prev_steal_time
+= st
* TICK_NSEC
;
4200 account_steal_time(st
);
4207 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4209 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
4211 * Account a tick to a process and cpustat
4212 * @p: the process that the cpu time gets accounted to
4213 * @user_tick: is the tick from userspace
4214 * @rq: the pointer to rq
4216 * Tick demultiplexing follows the order
4217 * - pending hardirq update
4218 * - pending softirq update
4222 * - check for guest_time
4223 * - else account as system_time
4225 * Check for hardirq is done both for system and user time as there is
4226 * no timer going off while we are on hardirq and hence we may never get an
4227 * opportunity to update it solely in system time.
4228 * p->stime and friends are only updated on system time and not on irq
4229 * softirq as those do not count in task exec_runtime any more.
4231 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
4234 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
4235 cputime64_t tmp
= cputime_to_cputime64(cputime_one_jiffy
);
4236 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4238 if (steal_account_process_tick())
4241 if (irqtime_account_hi_update()) {
4242 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
4243 } else if (irqtime_account_si_update()) {
4244 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
4245 } else if (this_cpu_ksoftirqd() == p
) {
4247 * ksoftirqd time do not get accounted in cpu_softirq_time.
4248 * So, we have to handle it separately here.
4249 * Also, p->stime needs to be updated for ksoftirqd.
4251 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
4253 } else if (user_tick
) {
4254 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
4255 } else if (p
== rq
->idle
) {
4256 account_idle_time(cputime_one_jiffy
);
4257 } else if (p
->flags
& PF_VCPU
) { /* System time or guest time */
4258 account_guest_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
4260 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
4265 static void irqtime_account_idle_ticks(int ticks
)
4268 struct rq
*rq
= this_rq();
4270 for (i
= 0; i
< ticks
; i
++)
4271 irqtime_account_process_tick(current
, 0, rq
);
4273 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
4274 static void irqtime_account_idle_ticks(int ticks
) {}
4275 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
4277 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
4280 * Account a single tick of cpu time.
4281 * @p: the process that the cpu time gets accounted to
4282 * @user_tick: indicates if the tick is a user or a system tick
4284 void account_process_tick(struct task_struct
*p
, int user_tick
)
4286 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
4287 struct rq
*rq
= this_rq();
4289 if (sched_clock_irqtime
) {
4290 irqtime_account_process_tick(p
, user_tick
, rq
);
4294 if (steal_account_process_tick())
4298 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
4299 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
4300 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
4303 account_idle_time(cputime_one_jiffy
);
4307 * Account multiple ticks of steal time.
4308 * @p: the process from which the cpu time has been stolen
4309 * @ticks: number of stolen ticks
4311 void account_steal_ticks(unsigned long ticks
)
4313 account_steal_time(jiffies_to_cputime(ticks
));
4317 * Account multiple ticks of idle time.
4318 * @ticks: number of stolen ticks
4320 void account_idle_ticks(unsigned long ticks
)
4323 if (sched_clock_irqtime
) {
4324 irqtime_account_idle_ticks(ticks
);
4328 account_idle_time(jiffies_to_cputime(ticks
));
4334 * Use precise platform statistics if available:
4336 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4337 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
4343 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
4345 struct task_cputime cputime
;
4347 thread_group_cputime(p
, &cputime
);
4349 *ut
= cputime
.utime
;
4350 *st
= cputime
.stime
;
4354 #ifndef nsecs_to_cputime
4355 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
4358 static cputime_t
scale_utime(cputime_t utime
, cputime_t rtime
, cputime_t total
)
4360 u64 temp
= (__force u64
) rtime
;
4362 temp
*= (__force u64
) utime
;
4364 if (sizeof(cputime_t
) == 4)
4365 temp
= div_u64(temp
, (__force u32
) total
);
4367 temp
= div64_u64(temp
, (__force u64
) total
);
4369 return (__force cputime_t
) temp
;
4372 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
4374 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
4377 * Use CFS's precise accounting:
4379 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
4382 utime
= scale_utime(utime
, rtime
, total
);
4387 * Compare with previous values, to keep monotonicity:
4389 p
->prev_utime
= max(p
->prev_utime
, utime
);
4390 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
4392 *ut
= p
->prev_utime
;
4393 *st
= p
->prev_stime
;
4397 * Must be called with siglock held.
4399 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
4401 struct signal_struct
*sig
= p
->signal
;
4402 struct task_cputime cputime
;
4403 cputime_t rtime
, utime
, total
;
4405 thread_group_cputime(p
, &cputime
);
4407 total
= cputime_add(cputime
.utime
, cputime
.stime
);
4408 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
4411 utime
= scale_utime(cputime
.utime
, rtime
, total
);
4415 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
4416 sig
->prev_stime
= max(sig
->prev_stime
,
4417 cputime_sub(rtime
, sig
->prev_utime
));
4419 *ut
= sig
->prev_utime
;
4420 *st
= sig
->prev_stime
;
4425 * This function gets called by the timer code, with HZ frequency.
4426 * We call it with interrupts disabled.
4428 void scheduler_tick(void)
4430 int cpu
= smp_processor_id();
4431 struct rq
*rq
= cpu_rq(cpu
);
4432 struct task_struct
*curr
= rq
->curr
;
4436 raw_spin_lock(&rq
->lock
);
4437 update_rq_clock(rq
);
4438 update_cpu_load_active(rq
);
4439 curr
->sched_class
->task_tick(rq
, curr
, 0);
4440 raw_spin_unlock(&rq
->lock
);
4442 perf_event_task_tick();
4445 rq
->idle_balance
= idle_cpu(cpu
);
4446 trigger_load_balance(rq
, cpu
);
4450 notrace
unsigned long get_parent_ip(unsigned long addr
)
4452 if (in_lock_functions(addr
)) {
4453 addr
= CALLER_ADDR2
;
4454 if (in_lock_functions(addr
))
4455 addr
= CALLER_ADDR3
;
4460 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4461 defined(CONFIG_PREEMPT_TRACER))
4463 void __kprobes
add_preempt_count(int val
)
4465 #ifdef CONFIG_DEBUG_PREEMPT
4469 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4472 preempt_count() += val
;
4473 #ifdef CONFIG_DEBUG_PREEMPT
4475 * Spinlock count overflowing soon?
4477 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4480 if (preempt_count() == val
)
4481 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4483 EXPORT_SYMBOL(add_preempt_count
);
4485 void __kprobes
sub_preempt_count(int val
)
4487 #ifdef CONFIG_DEBUG_PREEMPT
4491 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
4494 * Is the spinlock portion underflowing?
4496 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4497 !(preempt_count() & PREEMPT_MASK
)))
4501 if (preempt_count() == val
)
4502 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4503 preempt_count() -= val
;
4505 EXPORT_SYMBOL(sub_preempt_count
);
4510 * Print scheduling while atomic bug:
4512 static noinline
void __schedule_bug(struct task_struct
*prev
)
4514 struct pt_regs
*regs
= get_irq_regs();
4516 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4517 prev
->comm
, prev
->pid
, preempt_count());
4519 debug_show_held_locks(prev
);
4521 if (irqs_disabled())
4522 print_irqtrace_events(prev
);
4531 * Various schedule()-time debugging checks and statistics:
4533 static inline void schedule_debug(struct task_struct
*prev
)
4536 * Test if we are atomic. Since do_exit() needs to call into
4537 * schedule() atomically, we ignore that path for now.
4538 * Otherwise, whine if we are scheduling when we should not be.
4540 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
4541 __schedule_bug(prev
);
4544 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4546 schedstat_inc(this_rq(), sched_count
);
4549 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
4551 if (prev
->on_rq
|| rq
->skip_clock_update
< 0)
4552 update_rq_clock(rq
);
4553 prev
->sched_class
->put_prev_task(rq
, prev
);
4557 * Pick up the highest-prio task:
4559 static inline struct task_struct
*
4560 pick_next_task(struct rq
*rq
)
4562 const struct sched_class
*class;
4563 struct task_struct
*p
;
4566 * Optimization: we know that if all tasks are in
4567 * the fair class we can call that function directly:
4569 if (likely(rq
->nr_running
== rq
->cfs
.h_nr_running
)) {
4570 p
= fair_sched_class
.pick_next_task(rq
);
4575 for_each_class(class) {
4576 p
= class->pick_next_task(rq
);
4581 BUG(); /* the idle class will always have a runnable task */
4585 * __schedule() is the main scheduler function.
4587 static void __sched
__schedule(void)
4589 struct task_struct
*prev
, *next
;
4590 unsigned long *switch_count
;
4596 cpu
= smp_processor_id();
4598 rcu_note_context_switch(cpu
);
4601 schedule_debug(prev
);
4603 if (sched_feat(HRTICK
))
4606 raw_spin_lock_irq(&rq
->lock
);
4608 switch_count
= &prev
->nivcsw
;
4609 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4610 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
4611 prev
->state
= TASK_RUNNING
;
4613 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
4617 * If a worker went to sleep, notify and ask workqueue
4618 * whether it wants to wake up a task to maintain
4621 if (prev
->flags
& PF_WQ_WORKER
) {
4622 struct task_struct
*to_wakeup
;
4624 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
4626 try_to_wake_up_local(to_wakeup
);
4629 switch_count
= &prev
->nvcsw
;
4632 pre_schedule(rq
, prev
);
4634 if (unlikely(!rq
->nr_running
))
4635 idle_balance(cpu
, rq
);
4637 put_prev_task(rq
, prev
);
4638 next
= pick_next_task(rq
);
4639 clear_tsk_need_resched(prev
);
4640 rq
->skip_clock_update
= 0;
4642 if (likely(prev
!= next
)) {
4647 context_switch(rq
, prev
, next
); /* unlocks the rq */
4649 * The context switch have flipped the stack from under us
4650 * and restored the local variables which were saved when
4651 * this task called schedule() in the past. prev == current
4652 * is still correct, but it can be moved to another cpu/rq.
4654 cpu
= smp_processor_id();
4657 raw_spin_unlock_irq(&rq
->lock
);
4661 preempt_enable_no_resched();
4666 static inline void sched_submit_work(struct task_struct
*tsk
)
4671 * If we are going to sleep and we have plugged IO queued,
4672 * make sure to submit it to avoid deadlocks.
4674 if (blk_needs_flush_plug(tsk
))
4675 blk_schedule_flush_plug(tsk
);
4678 asmlinkage
void __sched
schedule(void)
4680 struct task_struct
*tsk
= current
;
4682 sched_submit_work(tsk
);
4685 EXPORT_SYMBOL(schedule
);
4687 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4689 static inline bool owner_running(struct mutex
*lock
, struct task_struct
*owner
)
4691 if (lock
->owner
!= owner
)
4695 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4696 * lock->owner still matches owner, if that fails, owner might
4697 * point to free()d memory, if it still matches, the rcu_read_lock()
4698 * ensures the memory stays valid.
4702 return owner
->on_cpu
;
4706 * Look out! "owner" is an entirely speculative pointer
4707 * access and not reliable.
4709 int mutex_spin_on_owner(struct mutex
*lock
, struct task_struct
*owner
)
4711 if (!sched_feat(OWNER_SPIN
))
4715 while (owner_running(lock
, owner
)) {
4719 arch_mutex_cpu_relax();
4724 * We break out the loop above on need_resched() and when the
4725 * owner changed, which is a sign for heavy contention. Return
4726 * success only when lock->owner is NULL.
4728 return lock
->owner
== NULL
;
4732 #ifdef CONFIG_PREEMPT
4734 * this is the entry point to schedule() from in-kernel preemption
4735 * off of preempt_enable. Kernel preemptions off return from interrupt
4736 * occur there and call schedule directly.
4738 asmlinkage
void __sched notrace
preempt_schedule(void)
4740 struct thread_info
*ti
= current_thread_info();
4743 * If there is a non-zero preempt_count or interrupts are disabled,
4744 * we do not want to preempt the current task. Just return..
4746 if (likely(ti
->preempt_count
|| irqs_disabled()))
4750 add_preempt_count_notrace(PREEMPT_ACTIVE
);
4752 sub_preempt_count_notrace(PREEMPT_ACTIVE
);
4755 * Check again in case we missed a preemption opportunity
4756 * between schedule and now.
4759 } while (need_resched());
4761 EXPORT_SYMBOL(preempt_schedule
);
4764 * this is the entry point to schedule() from kernel preemption
4765 * off of irq context.
4766 * Note, that this is called and return with irqs disabled. This will
4767 * protect us against recursive calling from irq.
4769 asmlinkage
void __sched
preempt_schedule_irq(void)
4771 struct thread_info
*ti
= current_thread_info();
4773 /* Catch callers which need to be fixed */
4774 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4777 add_preempt_count(PREEMPT_ACTIVE
);
4780 local_irq_disable();
4781 sub_preempt_count(PREEMPT_ACTIVE
);
4784 * Check again in case we missed a preemption opportunity
4785 * between schedule and now.
4788 } while (need_resched());
4791 #endif /* CONFIG_PREEMPT */
4793 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
4796 return try_to_wake_up(curr
->private, mode
, wake_flags
);
4798 EXPORT_SYMBOL(default_wake_function
);
4801 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4802 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4803 * number) then we wake all the non-exclusive tasks and one exclusive task.
4805 * There are circumstances in which we can try to wake a task which has already
4806 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4807 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4809 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4810 int nr_exclusive
, int wake_flags
, void *key
)
4812 wait_queue_t
*curr
, *next
;
4814 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4815 unsigned flags
= curr
->flags
;
4817 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
4818 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4824 * __wake_up - wake up threads blocked on a waitqueue.
4826 * @mode: which threads
4827 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4828 * @key: is directly passed to the wakeup function
4830 * It may be assumed that this function implies a write memory barrier before
4831 * changing the task state if and only if any tasks are woken up.
4833 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4834 int nr_exclusive
, void *key
)
4836 unsigned long flags
;
4838 spin_lock_irqsave(&q
->lock
, flags
);
4839 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4840 spin_unlock_irqrestore(&q
->lock
, flags
);
4842 EXPORT_SYMBOL(__wake_up
);
4845 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4847 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4849 __wake_up_common(q
, mode
, 1, 0, NULL
);
4851 EXPORT_SYMBOL_GPL(__wake_up_locked
);
4853 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
4855 __wake_up_common(q
, mode
, 1, 0, key
);
4857 EXPORT_SYMBOL_GPL(__wake_up_locked_key
);
4860 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4862 * @mode: which threads
4863 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4864 * @key: opaque value to be passed to wakeup targets
4866 * The sync wakeup differs that the waker knows that it will schedule
4867 * away soon, so while the target thread will be woken up, it will not
4868 * be migrated to another CPU - ie. the two threads are 'synchronized'
4869 * with each other. This can prevent needless bouncing between CPUs.
4871 * On UP it can prevent extra preemption.
4873 * It may be assumed that this function implies a write memory barrier before
4874 * changing the task state if and only if any tasks are woken up.
4876 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
4877 int nr_exclusive
, void *key
)
4879 unsigned long flags
;
4880 int wake_flags
= WF_SYNC
;
4885 if (unlikely(!nr_exclusive
))
4888 spin_lock_irqsave(&q
->lock
, flags
);
4889 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
4890 spin_unlock_irqrestore(&q
->lock
, flags
);
4892 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
4895 * __wake_up_sync - see __wake_up_sync_key()
4897 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4899 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
4901 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4904 * complete: - signals a single thread waiting on this completion
4905 * @x: holds the state of this particular completion
4907 * This will wake up a single thread waiting on this completion. Threads will be
4908 * awakened in the same order in which they were queued.
4910 * See also complete_all(), wait_for_completion() and related routines.
4912 * It may be assumed that this function implies a write memory barrier before
4913 * changing the task state if and only if any tasks are woken up.
4915 void complete(struct completion
*x
)
4917 unsigned long flags
;
4919 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4921 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4922 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4924 EXPORT_SYMBOL(complete
);
4927 * complete_all: - signals all threads waiting on this completion
4928 * @x: holds the state of this particular completion
4930 * This will wake up all threads waiting on this particular completion event.
4932 * It may be assumed that this function implies a write memory barrier before
4933 * changing the task state if and only if any tasks are woken up.
4935 void complete_all(struct completion
*x
)
4937 unsigned long flags
;
4939 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4940 x
->done
+= UINT_MAX
/2;
4941 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4942 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4944 EXPORT_SYMBOL(complete_all
);
4946 static inline long __sched
4947 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4950 DECLARE_WAITQUEUE(wait
, current
);
4952 __add_wait_queue_tail_exclusive(&x
->wait
, &wait
);
4954 if (signal_pending_state(state
, current
)) {
4955 timeout
= -ERESTARTSYS
;
4958 __set_current_state(state
);
4959 spin_unlock_irq(&x
->wait
.lock
);
4960 timeout
= schedule_timeout(timeout
);
4961 spin_lock_irq(&x
->wait
.lock
);
4962 } while (!x
->done
&& timeout
);
4963 __remove_wait_queue(&x
->wait
, &wait
);
4968 return timeout
?: 1;
4972 wait_for_common(struct completion
*x
, long timeout
, int state
)
4976 spin_lock_irq(&x
->wait
.lock
);
4977 timeout
= do_wait_for_common(x
, timeout
, state
);
4978 spin_unlock_irq(&x
->wait
.lock
);
4983 * wait_for_completion: - waits for completion of a task
4984 * @x: holds the state of this particular completion
4986 * This waits to be signaled for completion of a specific task. It is NOT
4987 * interruptible and there is no timeout.
4989 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4990 * and interrupt capability. Also see complete().
4992 void __sched
wait_for_completion(struct completion
*x
)
4994 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4996 EXPORT_SYMBOL(wait_for_completion
);
4999 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5000 * @x: holds the state of this particular completion
5001 * @timeout: timeout value in jiffies
5003 * This waits for either a completion of a specific task to be signaled or for a
5004 * specified timeout to expire. The timeout is in jiffies. It is not
5007 * The return value is 0 if timed out, and positive (at least 1, or number of
5008 * jiffies left till timeout) if completed.
5010 unsigned long __sched
5011 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
5013 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
5015 EXPORT_SYMBOL(wait_for_completion_timeout
);
5018 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5019 * @x: holds the state of this particular completion
5021 * This waits for completion of a specific task to be signaled. It is
5024 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
5026 int __sched
wait_for_completion_interruptible(struct completion
*x
)
5028 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
5029 if (t
== -ERESTARTSYS
)
5033 EXPORT_SYMBOL(wait_for_completion_interruptible
);
5036 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5037 * @x: holds the state of this particular completion
5038 * @timeout: timeout value in jiffies
5040 * This waits for either a completion of a specific task to be signaled or for a
5041 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5043 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
5044 * positive (at least 1, or number of jiffies left till timeout) if completed.
5047 wait_for_completion_interruptible_timeout(struct completion
*x
,
5048 unsigned long timeout
)
5050 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
5052 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
5055 * wait_for_completion_killable: - waits for completion of a task (killable)
5056 * @x: holds the state of this particular completion
5058 * This waits to be signaled for completion of a specific task. It can be
5059 * interrupted by a kill signal.
5061 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
5063 int __sched
wait_for_completion_killable(struct completion
*x
)
5065 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
5066 if (t
== -ERESTARTSYS
)
5070 EXPORT_SYMBOL(wait_for_completion_killable
);
5073 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
5074 * @x: holds the state of this particular completion
5075 * @timeout: timeout value in jiffies
5077 * This waits for either a completion of a specific task to be
5078 * signaled or for a specified timeout to expire. It can be
5079 * interrupted by a kill signal. The timeout is in jiffies.
5081 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
5082 * positive (at least 1, or number of jiffies left till timeout) if completed.
5085 wait_for_completion_killable_timeout(struct completion
*x
,
5086 unsigned long timeout
)
5088 return wait_for_common(x
, timeout
, TASK_KILLABLE
);
5090 EXPORT_SYMBOL(wait_for_completion_killable_timeout
);
5093 * try_wait_for_completion - try to decrement a completion without blocking
5094 * @x: completion structure
5096 * Returns: 0 if a decrement cannot be done without blocking
5097 * 1 if a decrement succeeded.
5099 * If a completion is being used as a counting completion,
5100 * attempt to decrement the counter without blocking. This
5101 * enables us to avoid waiting if the resource the completion
5102 * is protecting is not available.
5104 bool try_wait_for_completion(struct completion
*x
)
5106 unsigned long flags
;
5109 spin_lock_irqsave(&x
->wait
.lock
, flags
);
5114 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
5117 EXPORT_SYMBOL(try_wait_for_completion
);
5120 * completion_done - Test to see if a completion has any waiters
5121 * @x: completion structure
5123 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5124 * 1 if there are no waiters.
5127 bool completion_done(struct completion
*x
)
5129 unsigned long flags
;
5132 spin_lock_irqsave(&x
->wait
.lock
, flags
);
5135 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
5138 EXPORT_SYMBOL(completion_done
);
5141 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
5143 unsigned long flags
;
5146 init_waitqueue_entry(&wait
, current
);
5148 __set_current_state(state
);
5150 spin_lock_irqsave(&q
->lock
, flags
);
5151 __add_wait_queue(q
, &wait
);
5152 spin_unlock(&q
->lock
);
5153 timeout
= schedule_timeout(timeout
);
5154 spin_lock_irq(&q
->lock
);
5155 __remove_wait_queue(q
, &wait
);
5156 spin_unlock_irqrestore(&q
->lock
, flags
);
5161 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
5163 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
5165 EXPORT_SYMBOL(interruptible_sleep_on
);
5168 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
5170 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
5172 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
5174 void __sched
sleep_on(wait_queue_head_t
*q
)
5176 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
5178 EXPORT_SYMBOL(sleep_on
);
5180 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
5182 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
5184 EXPORT_SYMBOL(sleep_on_timeout
);
5186 #ifdef CONFIG_RT_MUTEXES
5189 * rt_mutex_setprio - set the current priority of a task
5191 * @prio: prio value (kernel-internal form)
5193 * This function changes the 'effective' priority of a task. It does
5194 * not touch ->normal_prio like __setscheduler().
5196 * Used by the rt_mutex code to implement priority inheritance logic.
5198 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
5200 int oldprio
, on_rq
, running
;
5202 const struct sched_class
*prev_class
;
5204 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
5206 rq
= __task_rq_lock(p
);
5208 trace_sched_pi_setprio(p
, prio
);
5210 prev_class
= p
->sched_class
;
5212 running
= task_current(rq
, p
);
5214 dequeue_task(rq
, p
, 0);
5216 p
->sched_class
->put_prev_task(rq
, p
);
5219 p
->sched_class
= &rt_sched_class
;
5221 p
->sched_class
= &fair_sched_class
;
5226 p
->sched_class
->set_curr_task(rq
);
5228 enqueue_task(rq
, p
, oldprio
< prio
? ENQUEUE_HEAD
: 0);
5230 check_class_changed(rq
, p
, prev_class
, oldprio
);
5231 __task_rq_unlock(rq
);
5236 void set_user_nice(struct task_struct
*p
, long nice
)
5238 int old_prio
, delta
, on_rq
;
5239 unsigned long flags
;
5242 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
5245 * We have to be careful, if called from sys_setpriority(),
5246 * the task might be in the middle of scheduling on another CPU.
5248 rq
= task_rq_lock(p
, &flags
);
5250 * The RT priorities are set via sched_setscheduler(), but we still
5251 * allow the 'normal' nice value to be set - but as expected
5252 * it wont have any effect on scheduling until the task is
5253 * SCHED_FIFO/SCHED_RR:
5255 if (task_has_rt_policy(p
)) {
5256 p
->static_prio
= NICE_TO_PRIO(nice
);
5261 dequeue_task(rq
, p
, 0);
5263 p
->static_prio
= NICE_TO_PRIO(nice
);
5266 p
->prio
= effective_prio(p
);
5267 delta
= p
->prio
- old_prio
;
5270 enqueue_task(rq
, p
, 0);
5272 * If the task increased its priority or is running and
5273 * lowered its priority, then reschedule its CPU:
5275 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
5276 resched_task(rq
->curr
);
5279 task_rq_unlock(rq
, p
, &flags
);
5281 EXPORT_SYMBOL(set_user_nice
);
5284 * can_nice - check if a task can reduce its nice value
5288 int can_nice(const struct task_struct
*p
, const int nice
)
5290 /* convert nice value [19,-20] to rlimit style value [1,40] */
5291 int nice_rlim
= 20 - nice
;
5293 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
5294 capable(CAP_SYS_NICE
));
5297 #ifdef __ARCH_WANT_SYS_NICE
5300 * sys_nice - change the priority of the current process.
5301 * @increment: priority increment
5303 * sys_setpriority is a more generic, but much slower function that
5304 * does similar things.
5306 SYSCALL_DEFINE1(nice
, int, increment
)
5311 * Setpriority might change our priority at the same moment.
5312 * We don't have to worry. Conceptually one call occurs first
5313 * and we have a single winner.
5315 if (increment
< -40)
5320 nice
= TASK_NICE(current
) + increment
;
5326 if (increment
< 0 && !can_nice(current
, nice
))
5329 retval
= security_task_setnice(current
, nice
);
5333 set_user_nice(current
, nice
);
5340 * task_prio - return the priority value of a given task.
5341 * @p: the task in question.
5343 * This is the priority value as seen by users in /proc.
5344 * RT tasks are offset by -200. Normal tasks are centered
5345 * around 0, value goes from -16 to +15.
5347 int task_prio(const struct task_struct
*p
)
5349 return p
->prio
- MAX_RT_PRIO
;
5353 * task_nice - return the nice value of a given task.
5354 * @p: the task in question.
5356 int task_nice(const struct task_struct
*p
)
5358 return TASK_NICE(p
);
5360 EXPORT_SYMBOL(task_nice
);
5363 * idle_cpu - is a given cpu idle currently?
5364 * @cpu: the processor in question.
5366 int idle_cpu(int cpu
)
5368 struct rq
*rq
= cpu_rq(cpu
);
5370 if (rq
->curr
!= rq
->idle
)
5377 if (!llist_empty(&rq
->wake_list
))
5385 * idle_task - return the idle task for a given cpu.
5386 * @cpu: the processor in question.
5388 struct task_struct
*idle_task(int cpu
)
5390 return cpu_rq(cpu
)->idle
;
5394 * find_process_by_pid - find a process with a matching PID value.
5395 * @pid: the pid in question.
5397 static struct task_struct
*find_process_by_pid(pid_t pid
)
5399 return pid
? find_task_by_vpid(pid
) : current
;
5402 /* Actually do priority change: must hold rq lock. */
5404 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
5407 p
->rt_priority
= prio
;
5408 p
->normal_prio
= normal_prio(p
);
5409 /* we are holding p->pi_lock already */
5410 p
->prio
= rt_mutex_getprio(p
);
5411 if (rt_prio(p
->prio
))
5412 p
->sched_class
= &rt_sched_class
;
5414 p
->sched_class
= &fair_sched_class
;
5419 * check the target process has a UID that matches the current process's
5421 static bool check_same_owner(struct task_struct
*p
)
5423 const struct cred
*cred
= current_cred(), *pcred
;
5427 pcred
= __task_cred(p
);
5428 if (cred
->user
->user_ns
== pcred
->user
->user_ns
)
5429 match
= (cred
->euid
== pcred
->euid
||
5430 cred
->euid
== pcred
->uid
);
5437 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
5438 const struct sched_param
*param
, bool user
)
5440 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
5441 unsigned long flags
;
5442 const struct sched_class
*prev_class
;
5446 /* may grab non-irq protected spin_locks */
5447 BUG_ON(in_interrupt());
5449 /* double check policy once rq lock held */
5451 reset_on_fork
= p
->sched_reset_on_fork
;
5452 policy
= oldpolicy
= p
->policy
;
5454 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
5455 policy
&= ~SCHED_RESET_ON_FORK
;
5457 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
5458 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
5459 policy
!= SCHED_IDLE
)
5464 * Valid priorities for SCHED_FIFO and SCHED_RR are
5465 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5466 * SCHED_BATCH and SCHED_IDLE is 0.
5468 if (param
->sched_priority
< 0 ||
5469 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
5470 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
5472 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
5476 * Allow unprivileged RT tasks to decrease priority:
5478 if (user
&& !capable(CAP_SYS_NICE
)) {
5479 if (rt_policy(policy
)) {
5480 unsigned long rlim_rtprio
=
5481 task_rlimit(p
, RLIMIT_RTPRIO
);
5483 /* can't set/change the rt policy */
5484 if (policy
!= p
->policy
&& !rlim_rtprio
)
5487 /* can't increase priority */
5488 if (param
->sched_priority
> p
->rt_priority
&&
5489 param
->sched_priority
> rlim_rtprio
)
5494 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5495 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5497 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
) {
5498 if (!can_nice(p
, TASK_NICE(p
)))
5502 /* can't change other user's priorities */
5503 if (!check_same_owner(p
))
5506 /* Normal users shall not reset the sched_reset_on_fork flag */
5507 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
5512 retval
= security_task_setscheduler(p
);
5518 * make sure no PI-waiters arrive (or leave) while we are
5519 * changing the priority of the task:
5521 * To be able to change p->policy safely, the appropriate
5522 * runqueue lock must be held.
5524 rq
= task_rq_lock(p
, &flags
);
5527 * Changing the policy of the stop threads its a very bad idea
5529 if (p
== rq
->stop
) {
5530 task_rq_unlock(rq
, p
, &flags
);
5535 * If not changing anything there's no need to proceed further:
5537 if (unlikely(policy
== p
->policy
&& (!rt_policy(policy
) ||
5538 param
->sched_priority
== p
->rt_priority
))) {
5540 __task_rq_unlock(rq
);
5541 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5545 #ifdef CONFIG_RT_GROUP_SCHED
5548 * Do not allow realtime tasks into groups that have no runtime
5551 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
5552 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
5553 !task_group_is_autogroup(task_group(p
))) {
5554 task_rq_unlock(rq
, p
, &flags
);
5560 /* recheck policy now with rq lock held */
5561 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5562 policy
= oldpolicy
= -1;
5563 task_rq_unlock(rq
, p
, &flags
);
5567 running
= task_current(rq
, p
);
5569 deactivate_task(rq
, p
, 0);
5571 p
->sched_class
->put_prev_task(rq
, p
);
5573 p
->sched_reset_on_fork
= reset_on_fork
;
5576 prev_class
= p
->sched_class
;
5577 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5580 p
->sched_class
->set_curr_task(rq
);
5582 activate_task(rq
, p
, 0);
5584 check_class_changed(rq
, p
, prev_class
, oldprio
);
5585 task_rq_unlock(rq
, p
, &flags
);
5587 rt_mutex_adjust_pi(p
);
5593 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5594 * @p: the task in question.
5595 * @policy: new policy.
5596 * @param: structure containing the new RT priority.
5598 * NOTE that the task may be already dead.
5600 int sched_setscheduler(struct task_struct
*p
, int policy
,
5601 const struct sched_param
*param
)
5603 return __sched_setscheduler(p
, policy
, param
, true);
5605 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5608 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5609 * @p: the task in question.
5610 * @policy: new policy.
5611 * @param: structure containing the new RT priority.
5613 * Just like sched_setscheduler, only don't bother checking if the
5614 * current context has permission. For example, this is needed in
5615 * stop_machine(): we create temporary high priority worker threads,
5616 * but our caller might not have that capability.
5618 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
5619 const struct sched_param
*param
)
5621 return __sched_setscheduler(p
, policy
, param
, false);
5625 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5627 struct sched_param lparam
;
5628 struct task_struct
*p
;
5631 if (!param
|| pid
< 0)
5633 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5638 p
= find_process_by_pid(pid
);
5640 retval
= sched_setscheduler(p
, policy
, &lparam
);
5647 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5648 * @pid: the pid in question.
5649 * @policy: new policy.
5650 * @param: structure containing the new RT priority.
5652 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
5653 struct sched_param __user
*, param
)
5655 /* negative values for policy are not valid */
5659 return do_sched_setscheduler(pid
, policy
, param
);
5663 * sys_sched_setparam - set/change the RT priority of a thread
5664 * @pid: the pid in question.
5665 * @param: structure containing the new RT priority.
5667 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5669 return do_sched_setscheduler(pid
, -1, param
);
5673 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5674 * @pid: the pid in question.
5676 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
5678 struct task_struct
*p
;
5686 p
= find_process_by_pid(pid
);
5688 retval
= security_task_getscheduler(p
);
5691 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
5698 * sys_sched_getparam - get the RT priority of a thread
5699 * @pid: the pid in question.
5700 * @param: structure containing the RT priority.
5702 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5704 struct sched_param lp
;
5705 struct task_struct
*p
;
5708 if (!param
|| pid
< 0)
5712 p
= find_process_by_pid(pid
);
5717 retval
= security_task_getscheduler(p
);
5721 lp
.sched_priority
= p
->rt_priority
;
5725 * This one might sleep, we cannot do it with a spinlock held ...
5727 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5736 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
5738 cpumask_var_t cpus_allowed
, new_mask
;
5739 struct task_struct
*p
;
5745 p
= find_process_by_pid(pid
);
5752 /* Prevent p going away */
5756 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
5760 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
5762 goto out_free_cpus_allowed
;
5765 if (!check_same_owner(p
) && !task_ns_capable(p
, CAP_SYS_NICE
))
5768 retval
= security_task_setscheduler(p
);
5772 cpuset_cpus_allowed(p
, cpus_allowed
);
5773 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
5775 retval
= set_cpus_allowed_ptr(p
, new_mask
);
5778 cpuset_cpus_allowed(p
, cpus_allowed
);
5779 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
5781 * We must have raced with a concurrent cpuset
5782 * update. Just reset the cpus_allowed to the
5783 * cpuset's cpus_allowed
5785 cpumask_copy(new_mask
, cpus_allowed
);
5790 free_cpumask_var(new_mask
);
5791 out_free_cpus_allowed
:
5792 free_cpumask_var(cpus_allowed
);
5799 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5800 struct cpumask
*new_mask
)
5802 if (len
< cpumask_size())
5803 cpumask_clear(new_mask
);
5804 else if (len
> cpumask_size())
5805 len
= cpumask_size();
5807 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5811 * sys_sched_setaffinity - set the cpu affinity of a process
5812 * @pid: pid of the process
5813 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5814 * @user_mask_ptr: user-space pointer to the new cpu mask
5816 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
5817 unsigned long __user
*, user_mask_ptr
)
5819 cpumask_var_t new_mask
;
5822 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
5825 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
5827 retval
= sched_setaffinity(pid
, new_mask
);
5828 free_cpumask_var(new_mask
);
5832 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
5834 struct task_struct
*p
;
5835 unsigned long flags
;
5842 p
= find_process_by_pid(pid
);
5846 retval
= security_task_getscheduler(p
);
5850 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
5851 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
5852 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5862 * sys_sched_getaffinity - get the cpu affinity of a process
5863 * @pid: pid of the process
5864 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5865 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5867 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
5868 unsigned long __user
*, user_mask_ptr
)
5873 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
5875 if (len
& (sizeof(unsigned long)-1))
5878 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
5881 ret
= sched_getaffinity(pid
, mask
);
5883 size_t retlen
= min_t(size_t, len
, cpumask_size());
5885 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
5890 free_cpumask_var(mask
);
5896 * sys_sched_yield - yield the current processor to other threads.
5898 * This function yields the current CPU to other tasks. If there are no
5899 * other threads running on this CPU then this function will return.
5901 SYSCALL_DEFINE0(sched_yield
)
5903 struct rq
*rq
= this_rq_lock();
5905 schedstat_inc(rq
, yld_count
);
5906 current
->sched_class
->yield_task(rq
);
5909 * Since we are going to call schedule() anyway, there's
5910 * no need to preempt or enable interrupts:
5912 __release(rq
->lock
);
5913 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5914 do_raw_spin_unlock(&rq
->lock
);
5915 preempt_enable_no_resched();
5922 static inline int should_resched(void)
5924 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
5927 static void __cond_resched(void)
5929 add_preempt_count(PREEMPT_ACTIVE
);
5931 sub_preempt_count(PREEMPT_ACTIVE
);
5934 int __sched
_cond_resched(void)
5936 if (should_resched()) {
5942 EXPORT_SYMBOL(_cond_resched
);
5945 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5946 * call schedule, and on return reacquire the lock.
5948 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5949 * operations here to prevent schedule() from being called twice (once via
5950 * spin_unlock(), once by hand).
5952 int __cond_resched_lock(spinlock_t
*lock
)
5954 int resched
= should_resched();
5957 lockdep_assert_held(lock
);
5959 if (spin_needbreak(lock
) || resched
) {
5970 EXPORT_SYMBOL(__cond_resched_lock
);
5972 int __sched
__cond_resched_softirq(void)
5974 BUG_ON(!in_softirq());
5976 if (should_resched()) {
5984 EXPORT_SYMBOL(__cond_resched_softirq
);
5987 * yield - yield the current processor to other threads.
5989 * This is a shortcut for kernel-space yielding - it marks the
5990 * thread runnable and calls sys_sched_yield().
5992 void __sched
yield(void)
5994 set_current_state(TASK_RUNNING
);
5997 EXPORT_SYMBOL(yield
);
6000 * yield_to - yield the current processor to another thread in
6001 * your thread group, or accelerate that thread toward the
6002 * processor it's on.
6004 * @preempt: whether task preemption is allowed or not
6006 * It's the caller's job to ensure that the target task struct
6007 * can't go away on us before we can do any checks.
6009 * Returns true if we indeed boosted the target task.
6011 bool __sched
yield_to(struct task_struct
*p
, bool preempt
)
6013 struct task_struct
*curr
= current
;
6014 struct rq
*rq
, *p_rq
;
6015 unsigned long flags
;
6018 local_irq_save(flags
);
6023 double_rq_lock(rq
, p_rq
);
6024 while (task_rq(p
) != p_rq
) {
6025 double_rq_unlock(rq
, p_rq
);
6029 if (!curr
->sched_class
->yield_to_task
)
6032 if (curr
->sched_class
!= p
->sched_class
)
6035 if (task_running(p_rq
, p
) || p
->state
)
6038 yielded
= curr
->sched_class
->yield_to_task(rq
, p
, preempt
);
6040 schedstat_inc(rq
, yld_count
);
6042 * Make p's CPU reschedule; pick_next_entity takes care of
6045 if (preempt
&& rq
!= p_rq
)
6046 resched_task(p_rq
->curr
);
6050 double_rq_unlock(rq
, p_rq
);
6051 local_irq_restore(flags
);
6058 EXPORT_SYMBOL_GPL(yield_to
);
6061 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6062 * that process accounting knows that this is a task in IO wait state.
6064 void __sched
io_schedule(void)
6066 struct rq
*rq
= raw_rq();
6068 delayacct_blkio_start();
6069 atomic_inc(&rq
->nr_iowait
);
6070 blk_flush_plug(current
);
6071 current
->in_iowait
= 1;
6073 current
->in_iowait
= 0;
6074 atomic_dec(&rq
->nr_iowait
);
6075 delayacct_blkio_end();
6077 EXPORT_SYMBOL(io_schedule
);
6079 long __sched
io_schedule_timeout(long timeout
)
6081 struct rq
*rq
= raw_rq();
6084 delayacct_blkio_start();
6085 atomic_inc(&rq
->nr_iowait
);
6086 blk_flush_plug(current
);
6087 current
->in_iowait
= 1;
6088 ret
= schedule_timeout(timeout
);
6089 current
->in_iowait
= 0;
6090 atomic_dec(&rq
->nr_iowait
);
6091 delayacct_blkio_end();
6096 * sys_sched_get_priority_max - return maximum RT priority.
6097 * @policy: scheduling class.
6099 * this syscall returns the maximum rt_priority that can be used
6100 * by a given scheduling class.
6102 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
6109 ret
= MAX_USER_RT_PRIO
-1;
6121 * sys_sched_get_priority_min - return minimum RT priority.
6122 * @policy: scheduling class.
6124 * this syscall returns the minimum rt_priority that can be used
6125 * by a given scheduling class.
6127 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
6145 * sys_sched_rr_get_interval - return the default timeslice of a process.
6146 * @pid: pid of the process.
6147 * @interval: userspace pointer to the timeslice value.
6149 * this syscall writes the default timeslice value of a given process
6150 * into the user-space timespec buffer. A value of '0' means infinity.
6152 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
6153 struct timespec __user
*, interval
)
6155 struct task_struct
*p
;
6156 unsigned int time_slice
;
6157 unsigned long flags
;
6167 p
= find_process_by_pid(pid
);
6171 retval
= security_task_getscheduler(p
);
6175 rq
= task_rq_lock(p
, &flags
);
6176 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
6177 task_rq_unlock(rq
, p
, &flags
);
6180 jiffies_to_timespec(time_slice
, &t
);
6181 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
6189 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
6191 void sched_show_task(struct task_struct
*p
)
6193 unsigned long free
= 0;
6196 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
6197 printk(KERN_INFO
"%-15.15s %c", p
->comm
,
6198 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
6199 #if BITS_PER_LONG == 32
6200 if (state
== TASK_RUNNING
)
6201 printk(KERN_CONT
" running ");
6203 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
6205 if (state
== TASK_RUNNING
)
6206 printk(KERN_CONT
" running task ");
6208 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
6210 #ifdef CONFIG_DEBUG_STACK_USAGE
6211 free
= stack_not_used(p
);
6213 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
6214 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
6215 (unsigned long)task_thread_info(p
)->flags
);
6217 show_stack(p
, NULL
);
6220 void show_state_filter(unsigned long state_filter
)
6222 struct task_struct
*g
, *p
;
6224 #if BITS_PER_LONG == 32
6226 " task PC stack pid father\n");
6229 " task PC stack pid father\n");
6232 do_each_thread(g
, p
) {
6234 * reset the NMI-timeout, listing all files on a slow
6235 * console might take a lot of time:
6237 touch_nmi_watchdog();
6238 if (!state_filter
|| (p
->state
& state_filter
))
6240 } while_each_thread(g
, p
);
6242 touch_all_softlockup_watchdogs();
6244 #ifdef CONFIG_SCHED_DEBUG
6245 sysrq_sched_debug_show();
6249 * Only show locks if all tasks are dumped:
6252 debug_show_all_locks();
6255 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
6257 idle
->sched_class
= &idle_sched_class
;
6261 * init_idle - set up an idle thread for a given CPU
6262 * @idle: task in question
6263 * @cpu: cpu the idle task belongs to
6265 * NOTE: this function does not set the idle thread's NEED_RESCHED
6266 * flag, to make booting more robust.
6268 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
6270 struct rq
*rq
= cpu_rq(cpu
);
6271 unsigned long flags
;
6273 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6276 idle
->state
= TASK_RUNNING
;
6277 idle
->se
.exec_start
= sched_clock();
6279 do_set_cpus_allowed(idle
, cpumask_of(cpu
));
6281 * We're having a chicken and egg problem, even though we are
6282 * holding rq->lock, the cpu isn't yet set to this cpu so the
6283 * lockdep check in task_group() will fail.
6285 * Similar case to sched_fork(). / Alternatively we could
6286 * use task_rq_lock() here and obtain the other rq->lock.
6291 __set_task_cpu(idle
, cpu
);
6294 rq
->curr
= rq
->idle
= idle
;
6295 #if defined(CONFIG_SMP)
6298 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6300 /* Set the preempt count _outside_ the spinlocks! */
6301 task_thread_info(idle
)->preempt_count
= 0;
6304 * The idle tasks have their own, simple scheduling class:
6306 idle
->sched_class
= &idle_sched_class
;
6307 ftrace_graph_init_idle_task(idle
, cpu
);
6308 #if defined(CONFIG_SMP)
6309 sprintf(idle
->comm
, "%s/%d", INIT_TASK_COMM
, cpu
);
6314 * Increase the granularity value when there are more CPUs,
6315 * because with more CPUs the 'effective latency' as visible
6316 * to users decreases. But the relationship is not linear,
6317 * so pick a second-best guess by going with the log2 of the
6320 * This idea comes from the SD scheduler of Con Kolivas:
6322 static int get_update_sysctl_factor(void)
6324 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
6325 unsigned int factor
;
6327 switch (sysctl_sched_tunable_scaling
) {
6328 case SCHED_TUNABLESCALING_NONE
:
6331 case SCHED_TUNABLESCALING_LINEAR
:
6334 case SCHED_TUNABLESCALING_LOG
:
6336 factor
= 1 + ilog2(cpus
);
6343 static void update_sysctl(void)
6345 unsigned int factor
= get_update_sysctl_factor();
6347 #define SET_SYSCTL(name) \
6348 (sysctl_##name = (factor) * normalized_sysctl_##name)
6349 SET_SYSCTL(sched_min_granularity
);
6350 SET_SYSCTL(sched_latency
);
6351 SET_SYSCTL(sched_wakeup_granularity
);
6355 static inline void sched_init_granularity(void)
6361 void do_set_cpus_allowed(struct task_struct
*p
, const struct cpumask
*new_mask
)
6363 if (p
->sched_class
&& p
->sched_class
->set_cpus_allowed
)
6364 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
6366 cpumask_copy(&p
->cpus_allowed
, new_mask
);
6367 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
6371 * This is how migration works:
6373 * 1) we invoke migration_cpu_stop() on the target CPU using
6375 * 2) stopper starts to run (implicitly forcing the migrated thread
6377 * 3) it checks whether the migrated task is still in the wrong runqueue.
6378 * 4) if it's in the wrong runqueue then the migration thread removes
6379 * it and puts it into the right queue.
6380 * 5) stopper completes and stop_one_cpu() returns and the migration
6385 * Change a given task's CPU affinity. Migrate the thread to a
6386 * proper CPU and schedule it away if the CPU it's executing on
6387 * is removed from the allowed bitmask.
6389 * NOTE: the caller must have a valid reference to the task, the
6390 * task must not exit() & deallocate itself prematurely. The
6391 * call is not atomic; no spinlocks may be held.
6393 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
6395 unsigned long flags
;
6397 unsigned int dest_cpu
;
6400 rq
= task_rq_lock(p
, &flags
);
6402 if (cpumask_equal(&p
->cpus_allowed
, new_mask
))
6405 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
6410 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
)) {
6415 do_set_cpus_allowed(p
, new_mask
);
6417 /* Can the task run on the task's current CPU? If so, we're done */
6418 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
6421 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
6423 struct migration_arg arg
= { p
, dest_cpu
};
6424 /* Need help from migration thread: drop lock and wait. */
6425 task_rq_unlock(rq
, p
, &flags
);
6426 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
6427 tlb_migrate_finish(p
->mm
);
6431 task_rq_unlock(rq
, p
, &flags
);
6435 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
6438 * Move (not current) task off this cpu, onto dest cpu. We're doing
6439 * this because either it can't run here any more (set_cpus_allowed()
6440 * away from this CPU, or CPU going down), or because we're
6441 * attempting to rebalance this task on exec (sched_exec).
6443 * So we race with normal scheduler movements, but that's OK, as long
6444 * as the task is no longer on this CPU.
6446 * Returns non-zero if task was successfully migrated.
6448 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6450 struct rq
*rq_dest
, *rq_src
;
6453 if (unlikely(!cpu_active(dest_cpu
)))
6456 rq_src
= cpu_rq(src_cpu
);
6457 rq_dest
= cpu_rq(dest_cpu
);
6459 raw_spin_lock(&p
->pi_lock
);
6460 double_rq_lock(rq_src
, rq_dest
);
6461 /* Already moved. */
6462 if (task_cpu(p
) != src_cpu
)
6464 /* Affinity changed (again). */
6465 if (!cpumask_test_cpu(dest_cpu
, tsk_cpus_allowed(p
)))
6469 * If we're not on a rq, the next wake-up will ensure we're
6473 deactivate_task(rq_src
, p
, 0);
6474 set_task_cpu(p
, dest_cpu
);
6475 activate_task(rq_dest
, p
, 0);
6476 check_preempt_curr(rq_dest
, p
, 0);
6481 double_rq_unlock(rq_src
, rq_dest
);
6482 raw_spin_unlock(&p
->pi_lock
);
6487 * migration_cpu_stop - this will be executed by a highprio stopper thread
6488 * and performs thread migration by bumping thread off CPU then
6489 * 'pushing' onto another runqueue.
6491 static int migration_cpu_stop(void *data
)
6493 struct migration_arg
*arg
= data
;
6496 * The original target cpu might have gone down and we might
6497 * be on another cpu but it doesn't matter.
6499 local_irq_disable();
6500 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
6505 #ifdef CONFIG_HOTPLUG_CPU
6508 * Ensures that the idle task is using init_mm right before its cpu goes
6511 void idle_task_exit(void)
6513 struct mm_struct
*mm
= current
->active_mm
;
6515 BUG_ON(cpu_online(smp_processor_id()));
6518 switch_mm(mm
, &init_mm
, current
);
6523 * While a dead CPU has no uninterruptible tasks queued at this point,
6524 * it might still have a nonzero ->nr_uninterruptible counter, because
6525 * for performance reasons the counter is not stricly tracking tasks to
6526 * their home CPUs. So we just add the counter to another CPU's counter,
6527 * to keep the global sum constant after CPU-down:
6529 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
6531 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
6533 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6534 rq_src
->nr_uninterruptible
= 0;
6538 * remove the tasks which were accounted by rq from calc_load_tasks.
6540 static void calc_global_load_remove(struct rq
*rq
)
6542 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
6543 rq
->calc_load_active
= 0;
6546 #ifdef CONFIG_CFS_BANDWIDTH
6547 static void unthrottle_offline_cfs_rqs(struct rq
*rq
)
6549 struct cfs_rq
*cfs_rq
;
6551 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
6552 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
6554 if (!cfs_rq
->runtime_enabled
)
6558 * clock_task is not advancing so we just need to make sure
6559 * there's some valid quota amount
6561 cfs_rq
->runtime_remaining
= cfs_b
->quota
;
6562 if (cfs_rq_throttled(cfs_rq
))
6563 unthrottle_cfs_rq(cfs_rq
);
6567 static void unthrottle_offline_cfs_rqs(struct rq
*rq
) {}
6571 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6572 * try_to_wake_up()->select_task_rq().
6574 * Called with rq->lock held even though we'er in stop_machine() and
6575 * there's no concurrency possible, we hold the required locks anyway
6576 * because of lock validation efforts.
6578 static void migrate_tasks(unsigned int dead_cpu
)
6580 struct rq
*rq
= cpu_rq(dead_cpu
);
6581 struct task_struct
*next
, *stop
= rq
->stop
;
6585 * Fudge the rq selection such that the below task selection loop
6586 * doesn't get stuck on the currently eligible stop task.
6588 * We're currently inside stop_machine() and the rq is either stuck
6589 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6590 * either way we should never end up calling schedule() until we're
6595 /* Ensure any throttled groups are reachable by pick_next_task */
6596 unthrottle_offline_cfs_rqs(rq
);
6600 * There's this thread running, bail when that's the only
6603 if (rq
->nr_running
== 1)
6606 next
= pick_next_task(rq
);
6608 next
->sched_class
->put_prev_task(rq
, next
);
6610 /* Find suitable destination for @next, with force if needed. */
6611 dest_cpu
= select_fallback_rq(dead_cpu
, next
);
6612 raw_spin_unlock(&rq
->lock
);
6614 __migrate_task(next
, dead_cpu
, dest_cpu
);
6616 raw_spin_lock(&rq
->lock
);
6622 #endif /* CONFIG_HOTPLUG_CPU */
6624 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6626 static struct ctl_table sd_ctl_dir
[] = {
6628 .procname
= "sched_domain",
6634 static struct ctl_table sd_ctl_root
[] = {
6636 .procname
= "kernel",
6638 .child
= sd_ctl_dir
,
6643 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6645 struct ctl_table
*entry
=
6646 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6651 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6653 struct ctl_table
*entry
;
6656 * In the intermediate directories, both the child directory and
6657 * procname are dynamically allocated and could fail but the mode
6658 * will always be set. In the lowest directory the names are
6659 * static strings and all have proc handlers.
6661 for (entry
= *tablep
; entry
->mode
; entry
++) {
6663 sd_free_ctl_entry(&entry
->child
);
6664 if (entry
->proc_handler
== NULL
)
6665 kfree(entry
->procname
);
6673 set_table_entry(struct ctl_table
*entry
,
6674 const char *procname
, void *data
, int maxlen
,
6675 mode_t mode
, proc_handler
*proc_handler
)
6677 entry
->procname
= procname
;
6679 entry
->maxlen
= maxlen
;
6681 entry
->proc_handler
= proc_handler
;
6684 static struct ctl_table
*
6685 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6687 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
6692 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6693 sizeof(long), 0644, proc_doulongvec_minmax
);
6694 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6695 sizeof(long), 0644, proc_doulongvec_minmax
);
6696 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6697 sizeof(int), 0644, proc_dointvec_minmax
);
6698 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6699 sizeof(int), 0644, proc_dointvec_minmax
);
6700 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6701 sizeof(int), 0644, proc_dointvec_minmax
);
6702 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6703 sizeof(int), 0644, proc_dointvec_minmax
);
6704 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6705 sizeof(int), 0644, proc_dointvec_minmax
);
6706 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6707 sizeof(int), 0644, proc_dointvec_minmax
);
6708 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6709 sizeof(int), 0644, proc_dointvec_minmax
);
6710 set_table_entry(&table
[9], "cache_nice_tries",
6711 &sd
->cache_nice_tries
,
6712 sizeof(int), 0644, proc_dointvec_minmax
);
6713 set_table_entry(&table
[10], "flags", &sd
->flags
,
6714 sizeof(int), 0644, proc_dointvec_minmax
);
6715 set_table_entry(&table
[11], "name", sd
->name
,
6716 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
6717 /* &table[12] is terminator */
6722 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6724 struct ctl_table
*entry
, *table
;
6725 struct sched_domain
*sd
;
6726 int domain_num
= 0, i
;
6729 for_each_domain(cpu
, sd
)
6731 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6736 for_each_domain(cpu
, sd
) {
6737 snprintf(buf
, 32, "domain%d", i
);
6738 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6740 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6747 static struct ctl_table_header
*sd_sysctl_header
;
6748 static void register_sched_domain_sysctl(void)
6750 int i
, cpu_num
= num_possible_cpus();
6751 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6754 WARN_ON(sd_ctl_dir
[0].child
);
6755 sd_ctl_dir
[0].child
= entry
;
6760 for_each_possible_cpu(i
) {
6761 snprintf(buf
, 32, "cpu%d", i
);
6762 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6764 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6768 WARN_ON(sd_sysctl_header
);
6769 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6772 /* may be called multiple times per register */
6773 static void unregister_sched_domain_sysctl(void)
6775 if (sd_sysctl_header
)
6776 unregister_sysctl_table(sd_sysctl_header
);
6777 sd_sysctl_header
= NULL
;
6778 if (sd_ctl_dir
[0].child
)
6779 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6782 static void register_sched_domain_sysctl(void)
6785 static void unregister_sched_domain_sysctl(void)
6790 static void set_rq_online(struct rq
*rq
)
6793 const struct sched_class
*class;
6795 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
6798 for_each_class(class) {
6799 if (class->rq_online
)
6800 class->rq_online(rq
);
6805 static void set_rq_offline(struct rq
*rq
)
6808 const struct sched_class
*class;
6810 for_each_class(class) {
6811 if (class->rq_offline
)
6812 class->rq_offline(rq
);
6815 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
6821 * migration_call - callback that gets triggered when a CPU is added.
6822 * Here we can start up the necessary migration thread for the new CPU.
6824 static int __cpuinit
6825 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6827 int cpu
= (long)hcpu
;
6828 unsigned long flags
;
6829 struct rq
*rq
= cpu_rq(cpu
);
6831 switch (action
& ~CPU_TASKS_FROZEN
) {
6833 case CPU_UP_PREPARE
:
6834 rq
->calc_load_update
= calc_load_update
;
6838 /* Update our root-domain */
6839 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6841 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6845 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6848 #ifdef CONFIG_HOTPLUG_CPU
6850 sched_ttwu_pending();
6851 /* Update our root-domain */
6852 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6854 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6858 BUG_ON(rq
->nr_running
!= 1); /* the migration thread */
6859 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6861 migrate_nr_uninterruptible(rq
);
6862 calc_global_load_remove(rq
);
6867 update_max_interval();
6873 * Register at high priority so that task migration (migrate_all_tasks)
6874 * happens before everything else. This has to be lower priority than
6875 * the notifier in the perf_event subsystem, though.
6877 static struct notifier_block __cpuinitdata migration_notifier
= {
6878 .notifier_call
= migration_call
,
6879 .priority
= CPU_PRI_MIGRATION
,
6882 static int __cpuinit
sched_cpu_active(struct notifier_block
*nfb
,
6883 unsigned long action
, void *hcpu
)
6885 switch (action
& ~CPU_TASKS_FROZEN
) {
6887 case CPU_DOWN_FAILED
:
6888 set_cpu_active((long)hcpu
, true);
6895 static int __cpuinit
sched_cpu_inactive(struct notifier_block
*nfb
,
6896 unsigned long action
, void *hcpu
)
6898 switch (action
& ~CPU_TASKS_FROZEN
) {
6899 case CPU_DOWN_PREPARE
:
6900 set_cpu_active((long)hcpu
, false);
6907 static int __init
migration_init(void)
6909 void *cpu
= (void *)(long)smp_processor_id();
6912 /* Initialize migration for the boot CPU */
6913 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6914 BUG_ON(err
== NOTIFY_BAD
);
6915 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6916 register_cpu_notifier(&migration_notifier
);
6918 /* Register cpu active notifiers */
6919 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
6920 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
6924 early_initcall(migration_init
);
6929 static cpumask_var_t sched_domains_tmpmask
; /* sched_domains_mutex */
6931 #ifdef CONFIG_SCHED_DEBUG
6933 static __read_mostly
int sched_domain_debug_enabled
;
6935 static int __init
sched_domain_debug_setup(char *str
)
6937 sched_domain_debug_enabled
= 1;
6941 early_param("sched_debug", sched_domain_debug_setup
);
6943 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6944 struct cpumask
*groupmask
)
6946 struct sched_group
*group
= sd
->groups
;
6949 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
6950 cpumask_clear(groupmask
);
6952 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6954 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6955 printk("does not load-balance\n");
6957 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6962 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6964 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
6965 printk(KERN_ERR
"ERROR: domain->span does not contain "
6968 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
6969 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6973 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6977 printk(KERN_ERR
"ERROR: group is NULL\n");
6981 if (!group
->sgp
->power
) {
6982 printk(KERN_CONT
"\n");
6983 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6988 if (!cpumask_weight(sched_group_cpus(group
))) {
6989 printk(KERN_CONT
"\n");
6990 printk(KERN_ERR
"ERROR: empty group\n");
6994 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
6995 printk(KERN_CONT
"\n");
6996 printk(KERN_ERR
"ERROR: repeated CPUs\n");
7000 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
7002 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
7004 printk(KERN_CONT
" %s", str
);
7005 if (group
->sgp
->power
!= SCHED_POWER_SCALE
) {
7006 printk(KERN_CONT
" (cpu_power = %d)",
7010 group
= group
->next
;
7011 } while (group
!= sd
->groups
);
7012 printk(KERN_CONT
"\n");
7014 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
7015 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
7018 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
7019 printk(KERN_ERR
"ERROR: parent span is not a superset "
7020 "of domain->span\n");
7024 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
7028 if (!sched_domain_debug_enabled
)
7032 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
7036 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
7039 if (sched_domain_debug_one(sd
, cpu
, level
, sched_domains_tmpmask
))
7047 #else /* !CONFIG_SCHED_DEBUG */
7048 # define sched_domain_debug(sd, cpu) do { } while (0)
7049 #endif /* CONFIG_SCHED_DEBUG */
7051 static int sd_degenerate(struct sched_domain
*sd
)
7053 if (cpumask_weight(sched_domain_span(sd
)) == 1)
7056 /* Following flags need at least 2 groups */
7057 if (sd
->flags
& (SD_LOAD_BALANCE
|
7058 SD_BALANCE_NEWIDLE
|
7062 SD_SHARE_PKG_RESOURCES
)) {
7063 if (sd
->groups
!= sd
->groups
->next
)
7067 /* Following flags don't use groups */
7068 if (sd
->flags
& (SD_WAKE_AFFINE
))
7075 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
7077 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
7079 if (sd_degenerate(parent
))
7082 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
7085 /* Flags needing groups don't count if only 1 group in parent */
7086 if (parent
->groups
== parent
->groups
->next
) {
7087 pflags
&= ~(SD_LOAD_BALANCE
|
7088 SD_BALANCE_NEWIDLE
|
7092 SD_SHARE_PKG_RESOURCES
);
7093 if (nr_node_ids
== 1)
7094 pflags
&= ~SD_SERIALIZE
;
7096 if (~cflags
& pflags
)
7102 static void free_rootdomain(struct rcu_head
*rcu
)
7104 struct root_domain
*rd
= container_of(rcu
, struct root_domain
, rcu
);
7106 cpupri_cleanup(&rd
->cpupri
);
7107 free_cpumask_var(rd
->rto_mask
);
7108 free_cpumask_var(rd
->online
);
7109 free_cpumask_var(rd
->span
);
7113 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
7115 struct root_domain
*old_rd
= NULL
;
7116 unsigned long flags
;
7118 raw_spin_lock_irqsave(&rq
->lock
, flags
);
7123 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
7126 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
7129 * If we dont want to free the old_rt yet then
7130 * set old_rd to NULL to skip the freeing later
7133 if (!atomic_dec_and_test(&old_rd
->refcount
))
7137 atomic_inc(&rd
->refcount
);
7140 cpumask_set_cpu(rq
->cpu
, rd
->span
);
7141 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
7144 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
7147 call_rcu_sched(&old_rd
->rcu
, free_rootdomain
);
7150 static int init_rootdomain(struct root_domain
*rd
)
7152 memset(rd
, 0, sizeof(*rd
));
7154 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
7156 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
7158 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
7161 if (cpupri_init(&rd
->cpupri
) != 0)
7166 free_cpumask_var(rd
->rto_mask
);
7168 free_cpumask_var(rd
->online
);
7170 free_cpumask_var(rd
->span
);
7175 static void init_defrootdomain(void)
7177 init_rootdomain(&def_root_domain
);
7179 atomic_set(&def_root_domain
.refcount
, 1);
7182 static struct root_domain
*alloc_rootdomain(void)
7184 struct root_domain
*rd
;
7186 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
7190 if (init_rootdomain(rd
) != 0) {
7198 static void free_sched_groups(struct sched_group
*sg
, int free_sgp
)
7200 struct sched_group
*tmp
, *first
;
7209 if (free_sgp
&& atomic_dec_and_test(&sg
->sgp
->ref
))
7214 } while (sg
!= first
);
7217 static void free_sched_domain(struct rcu_head
*rcu
)
7219 struct sched_domain
*sd
= container_of(rcu
, struct sched_domain
, rcu
);
7222 * If its an overlapping domain it has private groups, iterate and
7225 if (sd
->flags
& SD_OVERLAP
) {
7226 free_sched_groups(sd
->groups
, 1);
7227 } else if (atomic_dec_and_test(&sd
->groups
->ref
)) {
7228 kfree(sd
->groups
->sgp
);
7234 static void destroy_sched_domain(struct sched_domain
*sd
, int cpu
)
7236 call_rcu(&sd
->rcu
, free_sched_domain
);
7239 static void destroy_sched_domains(struct sched_domain
*sd
, int cpu
)
7241 for (; sd
; sd
= sd
->parent
)
7242 destroy_sched_domain(sd
, cpu
);
7246 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7247 * hold the hotplug lock.
7250 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
7252 struct rq
*rq
= cpu_rq(cpu
);
7253 struct sched_domain
*tmp
;
7255 /* Remove the sched domains which do not contribute to scheduling. */
7256 for (tmp
= sd
; tmp
; ) {
7257 struct sched_domain
*parent
= tmp
->parent
;
7261 if (sd_parent_degenerate(tmp
, parent
)) {
7262 tmp
->parent
= parent
->parent
;
7264 parent
->parent
->child
= tmp
;
7265 destroy_sched_domain(parent
, cpu
);
7270 if (sd
&& sd_degenerate(sd
)) {
7273 destroy_sched_domain(tmp
, cpu
);
7278 sched_domain_debug(sd
, cpu
);
7280 rq_attach_root(rq
, rd
);
7282 rcu_assign_pointer(rq
->sd
, sd
);
7283 destroy_sched_domains(tmp
, cpu
);
7286 /* cpus with isolated domains */
7287 static cpumask_var_t cpu_isolated_map
;
7289 /* Setup the mask of cpus configured for isolated domains */
7290 static int __init
isolated_cpu_setup(char *str
)
7292 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
7293 cpulist_parse(str
, cpu_isolated_map
);
7297 __setup("isolcpus=", isolated_cpu_setup
);
7302 * find_next_best_node - find the next node to include in a sched_domain
7303 * @node: node whose sched_domain we're building
7304 * @used_nodes: nodes already in the sched_domain
7306 * Find the next node to include in a given scheduling domain. Simply
7307 * finds the closest node not already in the @used_nodes map.
7309 * Should use nodemask_t.
7311 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
7313 int i
, n
, val
, min_val
, best_node
= -1;
7317 for (i
= 0; i
< nr_node_ids
; i
++) {
7318 /* Start at @node */
7319 n
= (node
+ i
) % nr_node_ids
;
7321 if (!nr_cpus_node(n
))
7324 /* Skip already used nodes */
7325 if (node_isset(n
, *used_nodes
))
7328 /* Simple min distance search */
7329 val
= node_distance(node
, n
);
7331 if (val
< min_val
) {
7337 if (best_node
!= -1)
7338 node_set(best_node
, *used_nodes
);
7343 * sched_domain_node_span - get a cpumask for a node's sched_domain
7344 * @node: node whose cpumask we're constructing
7345 * @span: resulting cpumask
7347 * Given a node, construct a good cpumask for its sched_domain to span. It
7348 * should be one that prevents unnecessary balancing, but also spreads tasks
7351 static void sched_domain_node_span(int node
, struct cpumask
*span
)
7353 nodemask_t used_nodes
;
7356 cpumask_clear(span
);
7357 nodes_clear(used_nodes
);
7359 cpumask_or(span
, span
, cpumask_of_node(node
));
7360 node_set(node
, used_nodes
);
7362 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
7363 int next_node
= find_next_best_node(node
, &used_nodes
);
7366 cpumask_or(span
, span
, cpumask_of_node(next_node
));
7370 static const struct cpumask
*cpu_node_mask(int cpu
)
7372 lockdep_assert_held(&sched_domains_mutex
);
7374 sched_domain_node_span(cpu_to_node(cpu
), sched_domains_tmpmask
);
7376 return sched_domains_tmpmask
;
7379 static const struct cpumask
*cpu_allnodes_mask(int cpu
)
7381 return cpu_possible_mask
;
7383 #endif /* CONFIG_NUMA */
7385 static const struct cpumask
*cpu_cpu_mask(int cpu
)
7387 return cpumask_of_node(cpu_to_node(cpu
));
7390 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
7393 struct sched_domain
**__percpu sd
;
7394 struct sched_group
**__percpu sg
;
7395 struct sched_group_power
**__percpu sgp
;
7399 struct sched_domain
** __percpu sd
;
7400 struct root_domain
*rd
;
7410 struct sched_domain_topology_level
;
7412 typedef struct sched_domain
*(*sched_domain_init_f
)(struct sched_domain_topology_level
*tl
, int cpu
);
7413 typedef const struct cpumask
*(*sched_domain_mask_f
)(int cpu
);
7415 #define SDTL_OVERLAP 0x01
7417 struct sched_domain_topology_level
{
7418 sched_domain_init_f init
;
7419 sched_domain_mask_f mask
;
7421 struct sd_data data
;
7425 build_overlap_sched_groups(struct sched_domain
*sd
, int cpu
)
7427 struct sched_group
*first
= NULL
, *last
= NULL
, *groups
= NULL
, *sg
;
7428 const struct cpumask
*span
= sched_domain_span(sd
);
7429 struct cpumask
*covered
= sched_domains_tmpmask
;
7430 struct sd_data
*sdd
= sd
->private;
7431 struct sched_domain
*child
;
7434 cpumask_clear(covered
);
7436 for_each_cpu(i
, span
) {
7437 struct cpumask
*sg_span
;
7439 if (cpumask_test_cpu(i
, covered
))
7442 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7443 GFP_KERNEL
, cpu_to_node(i
));
7448 sg_span
= sched_group_cpus(sg
);
7450 child
= *per_cpu_ptr(sdd
->sd
, i
);
7452 child
= child
->child
;
7453 cpumask_copy(sg_span
, sched_domain_span(child
));
7455 cpumask_set_cpu(i
, sg_span
);
7457 cpumask_or(covered
, covered
, sg_span
);
7459 sg
->sgp
= *per_cpu_ptr(sdd
->sgp
, cpumask_first(sg_span
));
7460 atomic_inc(&sg
->sgp
->ref
);
7462 if (cpumask_test_cpu(cpu
, sg_span
))
7472 sd
->groups
= groups
;
7477 free_sched_groups(first
, 0);
7482 static int get_group(int cpu
, struct sd_data
*sdd
, struct sched_group
**sg
)
7484 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
7485 struct sched_domain
*child
= sd
->child
;
7488 cpu
= cpumask_first(sched_domain_span(child
));
7491 *sg
= *per_cpu_ptr(sdd
->sg
, cpu
);
7492 (*sg
)->sgp
= *per_cpu_ptr(sdd
->sgp
, cpu
);
7493 atomic_set(&(*sg
)->sgp
->ref
, 1); /* for claim_allocations */
7500 * build_sched_groups will build a circular linked list of the groups
7501 * covered by the given span, and will set each group's ->cpumask correctly,
7502 * and ->cpu_power to 0.
7504 * Assumes the sched_domain tree is fully constructed
7507 build_sched_groups(struct sched_domain
*sd
, int cpu
)
7509 struct sched_group
*first
= NULL
, *last
= NULL
;
7510 struct sd_data
*sdd
= sd
->private;
7511 const struct cpumask
*span
= sched_domain_span(sd
);
7512 struct cpumask
*covered
;
7515 get_group(cpu
, sdd
, &sd
->groups
);
7516 atomic_inc(&sd
->groups
->ref
);
7518 if (cpu
!= cpumask_first(sched_domain_span(sd
)))
7521 lockdep_assert_held(&sched_domains_mutex
);
7522 covered
= sched_domains_tmpmask
;
7524 cpumask_clear(covered
);
7526 for_each_cpu(i
, span
) {
7527 struct sched_group
*sg
;
7528 int group
= get_group(i
, sdd
, &sg
);
7531 if (cpumask_test_cpu(i
, covered
))
7534 cpumask_clear(sched_group_cpus(sg
));
7537 for_each_cpu(j
, span
) {
7538 if (get_group(j
, sdd
, NULL
) != group
)
7541 cpumask_set_cpu(j
, covered
);
7542 cpumask_set_cpu(j
, sched_group_cpus(sg
));
7557 * Initialize sched groups cpu_power.
7559 * cpu_power indicates the capacity of sched group, which is used while
7560 * distributing the load between different sched groups in a sched domain.
7561 * Typically cpu_power for all the groups in a sched domain will be same unless
7562 * there are asymmetries in the topology. If there are asymmetries, group
7563 * having more cpu_power will pickup more load compared to the group having
7566 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7568 struct sched_group
*sg
= sd
->groups
;
7570 WARN_ON(!sd
|| !sg
);
7573 sg
->group_weight
= cpumask_weight(sched_group_cpus(sg
));
7575 } while (sg
!= sd
->groups
);
7577 if (cpu
!= group_first_cpu(sg
))
7580 update_group_power(sd
, cpu
);
7584 * Initializers for schedule domains
7585 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7588 #ifdef CONFIG_SCHED_DEBUG
7589 # define SD_INIT_NAME(sd, type) sd->name = #type
7591 # define SD_INIT_NAME(sd, type) do { } while (0)
7594 #define SD_INIT_FUNC(type) \
7595 static noinline struct sched_domain * \
7596 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7598 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7599 *sd = SD_##type##_INIT; \
7600 SD_INIT_NAME(sd, type); \
7601 sd->private = &tl->data; \
7607 SD_INIT_FUNC(ALLNODES
)
7610 #ifdef CONFIG_SCHED_SMT
7611 SD_INIT_FUNC(SIBLING
)
7613 #ifdef CONFIG_SCHED_MC
7616 #ifdef CONFIG_SCHED_BOOK
7620 static int default_relax_domain_level
= -1;
7621 int sched_domain_level_max
;
7623 static int __init
setup_relax_domain_level(char *str
)
7625 if (kstrtoint(str
, 0, &default_relax_domain_level
))
7626 pr_warn("Unable to set relax_domain_level\n");
7630 __setup("relax_domain_level=", setup_relax_domain_level
);
7632 static void set_domain_attribute(struct sched_domain
*sd
,
7633 struct sched_domain_attr
*attr
)
7637 if (!attr
|| attr
->relax_domain_level
< 0) {
7638 if (default_relax_domain_level
< 0)
7641 request
= default_relax_domain_level
;
7643 request
= attr
->relax_domain_level
;
7644 if (request
< sd
->level
) {
7645 /* turn off idle balance on this domain */
7646 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7648 /* turn on idle balance on this domain */
7649 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7653 static void __sdt_free(const struct cpumask
*cpu_map
);
7654 static int __sdt_alloc(const struct cpumask
*cpu_map
);
7656 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
7657 const struct cpumask
*cpu_map
)
7661 if (!atomic_read(&d
->rd
->refcount
))
7662 free_rootdomain(&d
->rd
->rcu
); /* fall through */
7664 free_percpu(d
->sd
); /* fall through */
7666 __sdt_free(cpu_map
); /* fall through */
7672 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
7673 const struct cpumask
*cpu_map
)
7675 memset(d
, 0, sizeof(*d
));
7677 if (__sdt_alloc(cpu_map
))
7678 return sa_sd_storage
;
7679 d
->sd
= alloc_percpu(struct sched_domain
*);
7681 return sa_sd_storage
;
7682 d
->rd
= alloc_rootdomain();
7685 return sa_rootdomain
;
7689 * NULL the sd_data elements we've used to build the sched_domain and
7690 * sched_group structure so that the subsequent __free_domain_allocs()
7691 * will not free the data we're using.
7693 static void claim_allocations(int cpu
, struct sched_domain
*sd
)
7695 struct sd_data
*sdd
= sd
->private;
7697 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sd
, cpu
) != sd
);
7698 *per_cpu_ptr(sdd
->sd
, cpu
) = NULL
;
7700 if (atomic_read(&(*per_cpu_ptr(sdd
->sg
, cpu
))->ref
))
7701 *per_cpu_ptr(sdd
->sg
, cpu
) = NULL
;
7703 if (atomic_read(&(*per_cpu_ptr(sdd
->sgp
, cpu
))->ref
))
7704 *per_cpu_ptr(sdd
->sgp
, cpu
) = NULL
;
7707 #ifdef CONFIG_SCHED_SMT
7708 static const struct cpumask
*cpu_smt_mask(int cpu
)
7710 return topology_thread_cpumask(cpu
);
7715 * Topology list, bottom-up.
7717 static struct sched_domain_topology_level default_topology
[] = {
7718 #ifdef CONFIG_SCHED_SMT
7719 { sd_init_SIBLING
, cpu_smt_mask
, },
7721 #ifdef CONFIG_SCHED_MC
7722 { sd_init_MC
, cpu_coregroup_mask
, },
7724 #ifdef CONFIG_SCHED_BOOK
7725 { sd_init_BOOK
, cpu_book_mask
, },
7727 { sd_init_CPU
, cpu_cpu_mask
, },
7729 { sd_init_NODE
, cpu_node_mask
, SDTL_OVERLAP
, },
7730 { sd_init_ALLNODES
, cpu_allnodes_mask
, },
7735 static struct sched_domain_topology_level
*sched_domain_topology
= default_topology
;
7737 static int __sdt_alloc(const struct cpumask
*cpu_map
)
7739 struct sched_domain_topology_level
*tl
;
7742 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
7743 struct sd_data
*sdd
= &tl
->data
;
7745 sdd
->sd
= alloc_percpu(struct sched_domain
*);
7749 sdd
->sg
= alloc_percpu(struct sched_group
*);
7753 sdd
->sgp
= alloc_percpu(struct sched_group_power
*);
7757 for_each_cpu(j
, cpu_map
) {
7758 struct sched_domain
*sd
;
7759 struct sched_group
*sg
;
7760 struct sched_group_power
*sgp
;
7762 sd
= kzalloc_node(sizeof(struct sched_domain
) + cpumask_size(),
7763 GFP_KERNEL
, cpu_to_node(j
));
7767 *per_cpu_ptr(sdd
->sd
, j
) = sd
;
7769 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7770 GFP_KERNEL
, cpu_to_node(j
));
7774 *per_cpu_ptr(sdd
->sg
, j
) = sg
;
7776 sgp
= kzalloc_node(sizeof(struct sched_group_power
),
7777 GFP_KERNEL
, cpu_to_node(j
));
7781 *per_cpu_ptr(sdd
->sgp
, j
) = sgp
;
7788 static void __sdt_free(const struct cpumask
*cpu_map
)
7790 struct sched_domain_topology_level
*tl
;
7793 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
7794 struct sd_data
*sdd
= &tl
->data
;
7796 for_each_cpu(j
, cpu_map
) {
7797 struct sched_domain
*sd
;
7800 sd
= *per_cpu_ptr(sdd
->sd
, j
);
7801 if (sd
&& (sd
->flags
& SD_OVERLAP
))
7802 free_sched_groups(sd
->groups
, 0);
7803 kfree(*per_cpu_ptr(sdd
->sd
, j
));
7807 kfree(*per_cpu_ptr(sdd
->sg
, j
));
7809 kfree(*per_cpu_ptr(sdd
->sgp
, j
));
7811 free_percpu(sdd
->sd
);
7813 free_percpu(sdd
->sg
);
7815 free_percpu(sdd
->sgp
);
7820 struct sched_domain
*build_sched_domain(struct sched_domain_topology_level
*tl
,
7821 struct s_data
*d
, const struct cpumask
*cpu_map
,
7822 struct sched_domain_attr
*attr
, struct sched_domain
*child
,
7825 struct sched_domain
*sd
= tl
->init(tl
, cpu
);
7829 cpumask_and(sched_domain_span(sd
), cpu_map
, tl
->mask(cpu
));
7831 sd
->level
= child
->level
+ 1;
7832 sched_domain_level_max
= max(sched_domain_level_max
, sd
->level
);
7836 set_domain_attribute(sd
, attr
);
7842 * Build sched domains for a given set of cpus and attach the sched domains
7843 * to the individual cpus
7845 static int build_sched_domains(const struct cpumask
*cpu_map
,
7846 struct sched_domain_attr
*attr
)
7848 enum s_alloc alloc_state
= sa_none
;
7849 struct sched_domain
*sd
;
7851 int i
, ret
= -ENOMEM
;
7853 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
7854 if (alloc_state
!= sa_rootdomain
)
7857 /* Set up domains for cpus specified by the cpu_map. */
7858 for_each_cpu(i
, cpu_map
) {
7859 struct sched_domain_topology_level
*tl
;
7862 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
7863 sd
= build_sched_domain(tl
, &d
, cpu_map
, attr
, sd
, i
);
7864 if (tl
->flags
& SDTL_OVERLAP
|| sched_feat(FORCE_SD_OVERLAP
))
7865 sd
->flags
|= SD_OVERLAP
;
7866 if (cpumask_equal(cpu_map
, sched_domain_span(sd
)))
7873 *per_cpu_ptr(d
.sd
, i
) = sd
;
7876 /* Build the groups for the domains */
7877 for_each_cpu(i
, cpu_map
) {
7878 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
7879 sd
->span_weight
= cpumask_weight(sched_domain_span(sd
));
7880 if (sd
->flags
& SD_OVERLAP
) {
7881 if (build_overlap_sched_groups(sd
, i
))
7884 if (build_sched_groups(sd
, i
))
7890 /* Calculate CPU power for physical packages and nodes */
7891 for (i
= nr_cpumask_bits
-1; i
>= 0; i
--) {
7892 if (!cpumask_test_cpu(i
, cpu_map
))
7895 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
7896 claim_allocations(i
, sd
);
7897 init_sched_groups_power(i
, sd
);
7901 /* Attach the domains */
7903 for_each_cpu(i
, cpu_map
) {
7904 sd
= *per_cpu_ptr(d
.sd
, i
);
7905 cpu_attach_domain(sd
, d
.rd
, i
);
7911 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
7915 static cpumask_var_t
*doms_cur
; /* current sched domains */
7916 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7917 static struct sched_domain_attr
*dattr_cur
;
7918 /* attribues of custom domains in 'doms_cur' */
7921 * Special case: If a kmalloc of a doms_cur partition (array of
7922 * cpumask) fails, then fallback to a single sched domain,
7923 * as determined by the single cpumask fallback_doms.
7925 static cpumask_var_t fallback_doms
;
7928 * arch_update_cpu_topology lets virtualized architectures update the
7929 * cpu core maps. It is supposed to return 1 if the topology changed
7930 * or 0 if it stayed the same.
7932 int __attribute__((weak
)) arch_update_cpu_topology(void)
7937 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
7940 cpumask_var_t
*doms
;
7942 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
7945 for (i
= 0; i
< ndoms
; i
++) {
7946 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
7947 free_sched_domains(doms
, i
);
7954 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
7957 for (i
= 0; i
< ndoms
; i
++)
7958 free_cpumask_var(doms
[i
]);
7963 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7964 * For now this just excludes isolated cpus, but could be used to
7965 * exclude other special cases in the future.
7967 static int init_sched_domains(const struct cpumask
*cpu_map
)
7971 arch_update_cpu_topology();
7973 doms_cur
= alloc_sched_domains(ndoms_cur
);
7975 doms_cur
= &fallback_doms
;
7976 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
7978 err
= build_sched_domains(doms_cur
[0], NULL
);
7979 register_sched_domain_sysctl();
7985 * Detach sched domains from a group of cpus specified in cpu_map
7986 * These cpus will now be attached to the NULL domain
7988 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7993 for_each_cpu(i
, cpu_map
)
7994 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7998 /* handle null as "default" */
7999 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
8000 struct sched_domain_attr
*new, int idx_new
)
8002 struct sched_domain_attr tmp
;
8009 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
8010 new ? (new + idx_new
) : &tmp
,
8011 sizeof(struct sched_domain_attr
));
8015 * Partition sched domains as specified by the 'ndoms_new'
8016 * cpumasks in the array doms_new[] of cpumasks. This compares
8017 * doms_new[] to the current sched domain partitioning, doms_cur[].
8018 * It destroys each deleted domain and builds each new domain.
8020 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
8021 * The masks don't intersect (don't overlap.) We should setup one
8022 * sched domain for each mask. CPUs not in any of the cpumasks will
8023 * not be load balanced. If the same cpumask appears both in the
8024 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8027 * The passed in 'doms_new' should be allocated using
8028 * alloc_sched_domains. This routine takes ownership of it and will
8029 * free_sched_domains it when done with it. If the caller failed the
8030 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
8031 * and partition_sched_domains() will fallback to the single partition
8032 * 'fallback_doms', it also forces the domains to be rebuilt.
8034 * If doms_new == NULL it will be replaced with cpu_online_mask.
8035 * ndoms_new == 0 is a special case for destroying existing domains,
8036 * and it will not create the default domain.
8038 * Call with hotplug lock held
8040 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
8041 struct sched_domain_attr
*dattr_new
)
8046 mutex_lock(&sched_domains_mutex
);
8048 /* always unregister in case we don't destroy any domains */
8049 unregister_sched_domain_sysctl();
8051 /* Let architecture update cpu core mappings. */
8052 new_topology
= arch_update_cpu_topology();
8054 n
= doms_new
? ndoms_new
: 0;
8056 /* Destroy deleted domains */
8057 for (i
= 0; i
< ndoms_cur
; i
++) {
8058 for (j
= 0; j
< n
&& !new_topology
; j
++) {
8059 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
8060 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
8063 /* no match - a current sched domain not in new doms_new[] */
8064 detach_destroy_domains(doms_cur
[i
]);
8069 if (doms_new
== NULL
) {
8071 doms_new
= &fallback_doms
;
8072 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
8073 WARN_ON_ONCE(dattr_new
);
8076 /* Build new domains */
8077 for (i
= 0; i
< ndoms_new
; i
++) {
8078 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
8079 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
8080 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
8083 /* no match - add a new doms_new */
8084 build_sched_domains(doms_new
[i
], dattr_new
? dattr_new
+ i
: NULL
);
8089 /* Remember the new sched domains */
8090 if (doms_cur
!= &fallback_doms
)
8091 free_sched_domains(doms_cur
, ndoms_cur
);
8092 kfree(dattr_cur
); /* kfree(NULL) is safe */
8093 doms_cur
= doms_new
;
8094 dattr_cur
= dattr_new
;
8095 ndoms_cur
= ndoms_new
;
8097 register_sched_domain_sysctl();
8099 mutex_unlock(&sched_domains_mutex
);
8102 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8103 static void reinit_sched_domains(void)
8107 /* Destroy domains first to force the rebuild */
8108 partition_sched_domains(0, NULL
, NULL
);
8110 rebuild_sched_domains();
8114 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
8116 unsigned int level
= 0;
8118 if (sscanf(buf
, "%u", &level
) != 1)
8122 * level is always be positive so don't check for
8123 * level < POWERSAVINGS_BALANCE_NONE which is 0
8124 * What happens on 0 or 1 byte write,
8125 * need to check for count as well?
8128 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
8132 sched_smt_power_savings
= level
;
8134 sched_mc_power_savings
= level
;
8136 reinit_sched_domains();
8141 #ifdef CONFIG_SCHED_MC
8142 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
8143 struct sysdev_class_attribute
*attr
,
8146 return sprintf(page
, "%u\n", sched_mc_power_savings
);
8148 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
8149 struct sysdev_class_attribute
*attr
,
8150 const char *buf
, size_t count
)
8152 return sched_power_savings_store(buf
, count
, 0);
8154 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
8155 sched_mc_power_savings_show
,
8156 sched_mc_power_savings_store
);
8159 #ifdef CONFIG_SCHED_SMT
8160 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
8161 struct sysdev_class_attribute
*attr
,
8164 return sprintf(page
, "%u\n", sched_smt_power_savings
);
8166 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
8167 struct sysdev_class_attribute
*attr
,
8168 const char *buf
, size_t count
)
8170 return sched_power_savings_store(buf
, count
, 1);
8172 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
8173 sched_smt_power_savings_show
,
8174 sched_smt_power_savings_store
);
8177 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
8181 #ifdef CONFIG_SCHED_SMT
8183 err
= sysfs_create_file(&cls
->kset
.kobj
,
8184 &attr_sched_smt_power_savings
.attr
);
8186 #ifdef CONFIG_SCHED_MC
8187 if (!err
&& mc_capable())
8188 err
= sysfs_create_file(&cls
->kset
.kobj
,
8189 &attr_sched_mc_power_savings
.attr
);
8193 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8195 static int num_cpus_frozen
; /* used to mark begin/end of suspend/resume */
8198 * Update cpusets according to cpu_active mask. If cpusets are
8199 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8200 * around partition_sched_domains().
8202 * If we come here as part of a suspend/resume, don't touch cpusets because we
8203 * want to restore it back to its original state upon resume anyway.
8205 static int cpuset_cpu_active(struct notifier_block
*nfb
, unsigned long action
,
8209 case CPU_ONLINE_FROZEN
:
8210 case CPU_DOWN_FAILED_FROZEN
:
8213 * num_cpus_frozen tracks how many CPUs are involved in suspend
8214 * resume sequence. As long as this is not the last online
8215 * operation in the resume sequence, just build a single sched
8216 * domain, ignoring cpusets.
8219 if (likely(num_cpus_frozen
)) {
8220 partition_sched_domains(1, NULL
, NULL
);
8225 * This is the last CPU online operation. So fall through and
8226 * restore the original sched domains by considering the
8227 * cpuset configurations.
8231 case CPU_DOWN_FAILED
:
8232 cpuset_update_active_cpus();
8240 static int cpuset_cpu_inactive(struct notifier_block
*nfb
, unsigned long action
,
8244 case CPU_DOWN_PREPARE
:
8245 cpuset_update_active_cpus();
8247 case CPU_DOWN_PREPARE_FROZEN
:
8249 partition_sched_domains(1, NULL
, NULL
);
8257 static int update_runtime(struct notifier_block
*nfb
,
8258 unsigned long action
, void *hcpu
)
8260 int cpu
= (int)(long)hcpu
;
8263 case CPU_DOWN_PREPARE
:
8264 case CPU_DOWN_PREPARE_FROZEN
:
8265 disable_runtime(cpu_rq(cpu
));
8268 case CPU_DOWN_FAILED
:
8269 case CPU_DOWN_FAILED_FROZEN
:
8271 case CPU_ONLINE_FROZEN
:
8272 enable_runtime(cpu_rq(cpu
));
8280 void __init
sched_init_smp(void)
8282 cpumask_var_t non_isolated_cpus
;
8284 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
8285 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
8288 mutex_lock(&sched_domains_mutex
);
8289 init_sched_domains(cpu_active_mask
);
8290 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
8291 if (cpumask_empty(non_isolated_cpus
))
8292 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
8293 mutex_unlock(&sched_domains_mutex
);
8296 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
8297 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
8299 /* RT runtime code needs to handle some hotplug events */
8300 hotcpu_notifier(update_runtime
, 0);
8304 /* Move init over to a non-isolated CPU */
8305 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
8307 sched_init_granularity();
8308 free_cpumask_var(non_isolated_cpus
);
8310 init_sched_rt_class();
8313 void __init
sched_init_smp(void)
8315 sched_init_granularity();
8317 #endif /* CONFIG_SMP */
8319 const_debug
unsigned int sysctl_timer_migration
= 1;
8321 int in_sched_functions(unsigned long addr
)
8323 return in_lock_functions(addr
) ||
8324 (addr
>= (unsigned long)__sched_text_start
8325 && addr
< (unsigned long)__sched_text_end
);
8328 static void init_cfs_rq(struct cfs_rq
*cfs_rq
)
8330 cfs_rq
->tasks_timeline
= RB_ROOT
;
8331 INIT_LIST_HEAD(&cfs_rq
->tasks
);
8332 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
8333 #ifndef CONFIG_64BIT
8334 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
8338 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
8340 struct rt_prio_array
*array
;
8343 array
= &rt_rq
->active
;
8344 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
8345 INIT_LIST_HEAD(array
->queue
+ i
);
8346 __clear_bit(i
, array
->bitmap
);
8348 /* delimiter for bitsearch: */
8349 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
8351 #if defined CONFIG_SMP
8352 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
8353 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
8354 rt_rq
->rt_nr_migratory
= 0;
8355 rt_rq
->overloaded
= 0;
8356 plist_head_init(&rt_rq
->pushable_tasks
);
8360 rt_rq
->rt_throttled
= 0;
8361 rt_rq
->rt_runtime
= 0;
8362 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
8365 #ifdef CONFIG_FAIR_GROUP_SCHED
8366 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
8367 struct sched_entity
*se
, int cpu
,
8368 struct sched_entity
*parent
)
8370 struct rq
*rq
= cpu_rq(cpu
);
8375 /* allow initial update_cfs_load() to truncate */
8376 cfs_rq
->load_stamp
= 1;
8378 init_cfs_rq_runtime(cfs_rq
);
8380 tg
->cfs_rq
[cpu
] = cfs_rq
;
8383 /* se could be NULL for root_task_group */
8388 se
->cfs_rq
= &rq
->cfs
;
8390 se
->cfs_rq
= parent
->my_q
;
8393 update_load_set(&se
->load
, 0);
8394 se
->parent
= parent
;
8398 #ifdef CONFIG_RT_GROUP_SCHED
8399 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
8400 struct sched_rt_entity
*rt_se
, int cpu
,
8401 struct sched_rt_entity
*parent
)
8403 struct rq
*rq
= cpu_rq(cpu
);
8405 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
8406 rt_rq
->rt_nr_boosted
= 0;
8410 tg
->rt_rq
[cpu
] = rt_rq
;
8411 tg
->rt_se
[cpu
] = rt_se
;
8417 rt_se
->rt_rq
= &rq
->rt
;
8419 rt_se
->rt_rq
= parent
->my_q
;
8421 rt_se
->my_q
= rt_rq
;
8422 rt_se
->parent
= parent
;
8423 INIT_LIST_HEAD(&rt_se
->run_list
);
8427 void __init
sched_init(void)
8430 unsigned long alloc_size
= 0, ptr
;
8432 #ifdef CONFIG_FAIR_GROUP_SCHED
8433 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8435 #ifdef CONFIG_RT_GROUP_SCHED
8436 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8438 #ifdef CONFIG_CPUMASK_OFFSTACK
8439 alloc_size
+= num_possible_cpus() * cpumask_size();
8442 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
8444 #ifdef CONFIG_FAIR_GROUP_SCHED
8445 root_task_group
.se
= (struct sched_entity
**)ptr
;
8446 ptr
+= nr_cpu_ids
* sizeof(void **);
8448 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8449 ptr
+= nr_cpu_ids
* sizeof(void **);
8451 #endif /* CONFIG_FAIR_GROUP_SCHED */
8452 #ifdef CONFIG_RT_GROUP_SCHED
8453 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8454 ptr
+= nr_cpu_ids
* sizeof(void **);
8456 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8457 ptr
+= nr_cpu_ids
* sizeof(void **);
8459 #endif /* CONFIG_RT_GROUP_SCHED */
8460 #ifdef CONFIG_CPUMASK_OFFSTACK
8461 for_each_possible_cpu(i
) {
8462 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
8463 ptr
+= cpumask_size();
8465 #endif /* CONFIG_CPUMASK_OFFSTACK */
8469 init_defrootdomain();
8472 init_rt_bandwidth(&def_rt_bandwidth
,
8473 global_rt_period(), global_rt_runtime());
8475 #ifdef CONFIG_RT_GROUP_SCHED
8476 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
8477 global_rt_period(), global_rt_runtime());
8478 #endif /* CONFIG_RT_GROUP_SCHED */
8480 #ifdef CONFIG_CGROUP_SCHED
8481 list_add(&root_task_group
.list
, &task_groups
);
8482 INIT_LIST_HEAD(&root_task_group
.children
);
8483 autogroup_init(&init_task
);
8484 #endif /* CONFIG_CGROUP_SCHED */
8486 for_each_possible_cpu(i
) {
8490 raw_spin_lock_init(&rq
->lock
);
8492 rq
->calc_load_active
= 0;
8493 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
8494 init_cfs_rq(&rq
->cfs
);
8495 init_rt_rq(&rq
->rt
, rq
);
8496 #ifdef CONFIG_FAIR_GROUP_SCHED
8497 root_task_group
.shares
= root_task_group_load
;
8498 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
8500 * How much cpu bandwidth does root_task_group get?
8502 * In case of task-groups formed thr' the cgroup filesystem, it
8503 * gets 100% of the cpu resources in the system. This overall
8504 * system cpu resource is divided among the tasks of
8505 * root_task_group and its child task-groups in a fair manner,
8506 * based on each entity's (task or task-group's) weight
8507 * (se->load.weight).
8509 * In other words, if root_task_group has 10 tasks of weight
8510 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8511 * then A0's share of the cpu resource is:
8513 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8515 * We achieve this by letting root_task_group's tasks sit
8516 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8518 init_cfs_bandwidth(&root_task_group
.cfs_bandwidth
);
8519 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
8520 #endif /* CONFIG_FAIR_GROUP_SCHED */
8522 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8523 #ifdef CONFIG_RT_GROUP_SCHED
8524 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8525 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
8528 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8529 rq
->cpu_load
[j
] = 0;
8531 rq
->last_load_update_tick
= jiffies
;
8536 rq
->cpu_power
= SCHED_POWER_SCALE
;
8537 rq
->post_schedule
= 0;
8538 rq
->active_balance
= 0;
8539 rq
->next_balance
= jiffies
;
8544 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
8545 rq_attach_root(rq
, &def_root_domain
);
8547 rq
->nohz_balance_kick
= 0;
8551 atomic_set(&rq
->nr_iowait
, 0);
8554 set_load_weight(&init_task
);
8556 #ifdef CONFIG_PREEMPT_NOTIFIERS
8557 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8561 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
8564 #ifdef CONFIG_RT_MUTEXES
8565 plist_head_init(&init_task
.pi_waiters
);
8569 * The boot idle thread does lazy MMU switching as well:
8571 atomic_inc(&init_mm
.mm_count
);
8572 enter_lazy_tlb(&init_mm
, current
);
8575 * Make us the idle thread. Technically, schedule() should not be
8576 * called from this thread, however somewhere below it might be,
8577 * but because we are the idle thread, we just pick up running again
8578 * when this runqueue becomes "idle".
8580 init_idle(current
, smp_processor_id());
8582 calc_load_update
= jiffies
+ LOAD_FREQ
;
8585 * During early bootup we pretend to be a normal task:
8587 current
->sched_class
= &fair_sched_class
;
8590 zalloc_cpumask_var(&sched_domains_tmpmask
, GFP_NOWAIT
);
8592 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);
8593 alloc_cpumask_var(&nohz
.grp_idle_mask
, GFP_NOWAIT
);
8594 atomic_set(&nohz
.load_balancer
, nr_cpu_ids
);
8595 atomic_set(&nohz
.first_pick_cpu
, nr_cpu_ids
);
8596 atomic_set(&nohz
.second_pick_cpu
, nr_cpu_ids
);
8598 /* May be allocated at isolcpus cmdline parse time */
8599 if (cpu_isolated_map
== NULL
)
8600 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
8603 scheduler_running
= 1;
8606 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8607 static inline int preempt_count_equals(int preempt_offset
)
8609 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
8611 return (nested
== preempt_offset
);
8614 void __might_sleep(const char *file
, int line
, int preempt_offset
)
8616 static unsigned long prev_jiffy
; /* ratelimiting */
8618 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
8619 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
8620 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
8622 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8624 prev_jiffy
= jiffies
;
8627 "BUG: sleeping function called from invalid context at %s:%d\n",
8630 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8631 in_atomic(), irqs_disabled(),
8632 current
->pid
, current
->comm
);
8634 debug_show_held_locks(current
);
8635 if (irqs_disabled())
8636 print_irqtrace_events(current
);
8639 EXPORT_SYMBOL(__might_sleep
);
8642 #ifdef CONFIG_MAGIC_SYSRQ
8643 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8645 const struct sched_class
*prev_class
= p
->sched_class
;
8646 int old_prio
= p
->prio
;
8651 deactivate_task(rq
, p
, 0);
8652 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8654 activate_task(rq
, p
, 0);
8655 resched_task(rq
->curr
);
8658 check_class_changed(rq
, p
, prev_class
, old_prio
);
8661 void normalize_rt_tasks(void)
8663 struct task_struct
*g
, *p
;
8664 unsigned long flags
;
8667 read_lock_irqsave(&tasklist_lock
, flags
);
8668 do_each_thread(g
, p
) {
8670 * Only normalize user tasks:
8675 p
->se
.exec_start
= 0;
8676 #ifdef CONFIG_SCHEDSTATS
8677 p
->se
.statistics
.wait_start
= 0;
8678 p
->se
.statistics
.sleep_start
= 0;
8679 p
->se
.statistics
.block_start
= 0;
8684 * Renice negative nice level userspace
8687 if (TASK_NICE(p
) < 0 && p
->mm
)
8688 set_user_nice(p
, 0);
8692 raw_spin_lock(&p
->pi_lock
);
8693 rq
= __task_rq_lock(p
);
8695 normalize_task(rq
, p
);
8697 __task_rq_unlock(rq
);
8698 raw_spin_unlock(&p
->pi_lock
);
8699 } while_each_thread(g
, p
);
8701 read_unlock_irqrestore(&tasklist_lock
, flags
);
8704 #endif /* CONFIG_MAGIC_SYSRQ */
8706 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8708 * These functions are only useful for the IA64 MCA handling, or kdb.
8710 * They can only be called when the whole system has been
8711 * stopped - every CPU needs to be quiescent, and no scheduling
8712 * activity can take place. Using them for anything else would
8713 * be a serious bug, and as a result, they aren't even visible
8714 * under any other configuration.
8718 * curr_task - return the current task for a given cpu.
8719 * @cpu: the processor in question.
8721 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8723 struct task_struct
*curr_task(int cpu
)
8725 return cpu_curr(cpu
);
8728 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8732 * set_curr_task - set the current task for a given cpu.
8733 * @cpu: the processor in question.
8734 * @p: the task pointer to set.
8736 * Description: This function must only be used when non-maskable interrupts
8737 * are serviced on a separate stack. It allows the architecture to switch the
8738 * notion of the current task on a cpu in a non-blocking manner. This function
8739 * must be called with all CPU's synchronized, and interrupts disabled, the
8740 * and caller must save the original value of the current task (see
8741 * curr_task() above) and restore that value before reenabling interrupts and
8742 * re-starting the system.
8744 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8746 void set_curr_task(int cpu
, struct task_struct
*p
)
8753 #ifdef CONFIG_FAIR_GROUP_SCHED
8754 static void free_fair_sched_group(struct task_group
*tg
)
8758 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg
));
8760 for_each_possible_cpu(i
) {
8762 kfree(tg
->cfs_rq
[i
]);
8772 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8774 struct cfs_rq
*cfs_rq
;
8775 struct sched_entity
*se
;
8778 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8781 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8785 tg
->shares
= NICE_0_LOAD
;
8787 init_cfs_bandwidth(tg_cfs_bandwidth(tg
));
8789 for_each_possible_cpu(i
) {
8790 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8791 GFP_KERNEL
, cpu_to_node(i
));
8795 se
= kzalloc_node(sizeof(struct sched_entity
),
8796 GFP_KERNEL
, cpu_to_node(i
));
8800 init_cfs_rq(cfs_rq
);
8801 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
8812 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8814 struct rq
*rq
= cpu_rq(cpu
);
8815 unsigned long flags
;
8818 * Only empty task groups can be destroyed; so we can speculatively
8819 * check on_list without danger of it being re-added.
8821 if (!tg
->cfs_rq
[cpu
]->on_list
)
8824 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8825 list_del_leaf_cfs_rq(tg
->cfs_rq
[cpu
]);
8826 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8828 #else /* !CONFIG_FAIR_GROUP_SCHED */
8829 static inline void free_fair_sched_group(struct task_group
*tg
)
8834 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8839 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8842 #endif /* CONFIG_FAIR_GROUP_SCHED */
8844 #ifdef CONFIG_RT_GROUP_SCHED
8845 static void free_rt_sched_group(struct task_group
*tg
)
8850 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8852 for_each_possible_cpu(i
) {
8854 kfree(tg
->rt_rq
[i
]);
8856 kfree(tg
->rt_se
[i
]);
8864 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8866 struct rt_rq
*rt_rq
;
8867 struct sched_rt_entity
*rt_se
;
8870 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8873 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8877 init_rt_bandwidth(&tg
->rt_bandwidth
,
8878 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8880 for_each_possible_cpu(i
) {
8881 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8882 GFP_KERNEL
, cpu_to_node(i
));
8886 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8887 GFP_KERNEL
, cpu_to_node(i
));
8891 init_rt_rq(rt_rq
, cpu_rq(i
));
8892 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8893 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, parent
->rt_se
[i
]);
8903 #else /* !CONFIG_RT_GROUP_SCHED */
8904 static inline void free_rt_sched_group(struct task_group
*tg
)
8909 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8913 #endif /* CONFIG_RT_GROUP_SCHED */
8915 #ifdef CONFIG_CGROUP_SCHED
8916 static void free_sched_group(struct task_group
*tg
)
8918 free_fair_sched_group(tg
);
8919 free_rt_sched_group(tg
);
8924 /* allocate runqueue etc for a new task group */
8925 struct task_group
*sched_create_group(struct task_group
*parent
)
8927 struct task_group
*tg
;
8928 unsigned long flags
;
8930 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8932 return ERR_PTR(-ENOMEM
);
8934 if (!alloc_fair_sched_group(tg
, parent
))
8937 if (!alloc_rt_sched_group(tg
, parent
))
8940 spin_lock_irqsave(&task_group_lock
, flags
);
8941 list_add_rcu(&tg
->list
, &task_groups
);
8943 WARN_ON(!parent
); /* root should already exist */
8945 tg
->parent
= parent
;
8946 INIT_LIST_HEAD(&tg
->children
);
8947 list_add_rcu(&tg
->siblings
, &parent
->children
);
8948 spin_unlock_irqrestore(&task_group_lock
, flags
);
8953 free_sched_group(tg
);
8954 return ERR_PTR(-ENOMEM
);
8957 /* rcu callback to free various structures associated with a task group */
8958 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8960 /* now it should be safe to free those cfs_rqs */
8961 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8964 /* Destroy runqueue etc associated with a task group */
8965 void sched_destroy_group(struct task_group
*tg
)
8967 unsigned long flags
;
8970 /* end participation in shares distribution */
8971 for_each_possible_cpu(i
)
8972 unregister_fair_sched_group(tg
, i
);
8974 spin_lock_irqsave(&task_group_lock
, flags
);
8975 list_del_rcu(&tg
->list
);
8976 list_del_rcu(&tg
->siblings
);
8977 spin_unlock_irqrestore(&task_group_lock
, flags
);
8979 /* wait for possible concurrent references to cfs_rqs complete */
8980 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8983 /* change task's runqueue when it moves between groups.
8984 * The caller of this function should have put the task in its new group
8985 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8986 * reflect its new group.
8988 void sched_move_task(struct task_struct
*tsk
)
8990 struct task_group
*tg
;
8992 unsigned long flags
;
8995 rq
= task_rq_lock(tsk
, &flags
);
8997 running
= task_current(rq
, tsk
);
9001 dequeue_task(rq
, tsk
, 0);
9002 if (unlikely(running
))
9003 tsk
->sched_class
->put_prev_task(rq
, tsk
);
9005 tg
= container_of(task_subsys_state_check(tsk
, cpu_cgroup_subsys_id
,
9006 lockdep_is_held(&tsk
->sighand
->siglock
)),
9007 struct task_group
, css
);
9008 tg
= autogroup_task_group(tsk
, tg
);
9009 tsk
->sched_task_group
= tg
;
9011 #ifdef CONFIG_FAIR_GROUP_SCHED
9012 if (tsk
->sched_class
->task_move_group
)
9013 tsk
->sched_class
->task_move_group(tsk
, on_rq
);
9016 set_task_rq(tsk
, task_cpu(tsk
));
9018 if (unlikely(running
))
9019 tsk
->sched_class
->set_curr_task(rq
);
9021 enqueue_task(rq
, tsk
, 0);
9023 task_rq_unlock(rq
, tsk
, &flags
);
9025 #endif /* CONFIG_CGROUP_SCHED */
9027 #ifdef CONFIG_FAIR_GROUP_SCHED
9028 static DEFINE_MUTEX(shares_mutex
);
9030 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
9033 unsigned long flags
;
9036 * We can't change the weight of the root cgroup.
9041 shares
= clamp(shares
, scale_load(MIN_SHARES
), scale_load(MAX_SHARES
));
9043 mutex_lock(&shares_mutex
);
9044 if (tg
->shares
== shares
)
9047 tg
->shares
= shares
;
9048 for_each_possible_cpu(i
) {
9049 struct rq
*rq
= cpu_rq(i
);
9050 struct sched_entity
*se
;
9053 /* Propagate contribution to hierarchy */
9054 raw_spin_lock_irqsave(&rq
->lock
, flags
);
9055 for_each_sched_entity(se
)
9056 update_cfs_shares(group_cfs_rq(se
));
9057 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
9061 mutex_unlock(&shares_mutex
);
9065 unsigned long sched_group_shares(struct task_group
*tg
)
9071 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9072 static unsigned long to_ratio(u64 period
, u64 runtime
)
9074 if (runtime
== RUNTIME_INF
)
9077 return div64_u64(runtime
<< 20, period
);
9081 #ifdef CONFIG_RT_GROUP_SCHED
9083 * Ensure that the real time constraints are schedulable.
9085 static DEFINE_MUTEX(rt_constraints_mutex
);
9087 /* Must be called with tasklist_lock held */
9088 static inline int tg_has_rt_tasks(struct task_group
*tg
)
9090 struct task_struct
*g
, *p
;
9092 do_each_thread(g
, p
) {
9093 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
9095 } while_each_thread(g
, p
);
9100 struct rt_schedulable_data
{
9101 struct task_group
*tg
;
9106 static int tg_rt_schedulable(struct task_group
*tg
, void *data
)
9108 struct rt_schedulable_data
*d
= data
;
9109 struct task_group
*child
;
9110 unsigned long total
, sum
= 0;
9111 u64 period
, runtime
;
9113 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9114 runtime
= tg
->rt_bandwidth
.rt_runtime
;
9117 period
= d
->rt_period
;
9118 runtime
= d
->rt_runtime
;
9122 * Cannot have more runtime than the period.
9124 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
9128 * Ensure we don't starve existing RT tasks.
9130 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
9133 total
= to_ratio(period
, runtime
);
9136 * Nobody can have more than the global setting allows.
9138 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
9142 * The sum of our children's runtime should not exceed our own.
9144 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
9145 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
9146 runtime
= child
->rt_bandwidth
.rt_runtime
;
9148 if (child
== d
->tg
) {
9149 period
= d
->rt_period
;
9150 runtime
= d
->rt_runtime
;
9153 sum
+= to_ratio(period
, runtime
);
9162 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
9166 struct rt_schedulable_data data
= {
9168 .rt_period
= period
,
9169 .rt_runtime
= runtime
,
9173 ret
= walk_tg_tree(tg_rt_schedulable
, tg_nop
, &data
);
9179 static int tg_set_rt_bandwidth(struct task_group
*tg
,
9180 u64 rt_period
, u64 rt_runtime
)
9184 mutex_lock(&rt_constraints_mutex
);
9185 read_lock(&tasklist_lock
);
9186 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
9190 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
9191 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
9192 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
9194 for_each_possible_cpu(i
) {
9195 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
9197 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
9198 rt_rq
->rt_runtime
= rt_runtime
;
9199 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
9201 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
9203 read_unlock(&tasklist_lock
);
9204 mutex_unlock(&rt_constraints_mutex
);
9209 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
9211 u64 rt_runtime
, rt_period
;
9213 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9214 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
9215 if (rt_runtime_us
< 0)
9216 rt_runtime
= RUNTIME_INF
;
9218 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
9221 long sched_group_rt_runtime(struct task_group
*tg
)
9225 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
9228 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
9229 do_div(rt_runtime_us
, NSEC_PER_USEC
);
9230 return rt_runtime_us
;
9233 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
9235 u64 rt_runtime
, rt_period
;
9237 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
9238 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
9243 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
9246 long sched_group_rt_period(struct task_group
*tg
)
9250 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9251 do_div(rt_period_us
, NSEC_PER_USEC
);
9252 return rt_period_us
;
9255 static int sched_rt_global_constraints(void)
9257 u64 runtime
, period
;
9260 if (sysctl_sched_rt_period
<= 0)
9263 runtime
= global_rt_runtime();
9264 period
= global_rt_period();
9267 * Sanity check on the sysctl variables.
9269 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
9272 mutex_lock(&rt_constraints_mutex
);
9273 read_lock(&tasklist_lock
);
9274 ret
= __rt_schedulable(NULL
, 0, 0);
9275 read_unlock(&tasklist_lock
);
9276 mutex_unlock(&rt_constraints_mutex
);
9281 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
9283 /* Don't accept realtime tasks when there is no way for them to run */
9284 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
9290 #else /* !CONFIG_RT_GROUP_SCHED */
9291 static int sched_rt_global_constraints(void)
9293 unsigned long flags
;
9296 if (sysctl_sched_rt_period
<= 0)
9300 * There's always some RT tasks in the root group
9301 * -- migration, kstopmachine etc..
9303 if (sysctl_sched_rt_runtime
== 0)
9306 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9307 for_each_possible_cpu(i
) {
9308 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
9310 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
9311 rt_rq
->rt_runtime
= global_rt_runtime();
9312 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
9314 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9318 #endif /* CONFIG_RT_GROUP_SCHED */
9320 int sched_rt_handler(struct ctl_table
*table
, int write
,
9321 void __user
*buffer
, size_t *lenp
,
9325 int old_period
, old_runtime
;
9326 static DEFINE_MUTEX(mutex
);
9329 old_period
= sysctl_sched_rt_period
;
9330 old_runtime
= sysctl_sched_rt_runtime
;
9332 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
9334 if (!ret
&& write
) {
9335 ret
= sched_rt_global_constraints();
9337 sysctl_sched_rt_period
= old_period
;
9338 sysctl_sched_rt_runtime
= old_runtime
;
9340 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
9341 def_rt_bandwidth
.rt_period
=
9342 ns_to_ktime(global_rt_period());
9345 mutex_unlock(&mutex
);
9350 #ifdef CONFIG_CGROUP_SCHED
9352 /* return corresponding task_group object of a cgroup */
9353 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
9355 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
9356 struct task_group
, css
);
9359 static struct cgroup_subsys_state
*
9360 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9362 struct task_group
*tg
, *parent
;
9364 if (!cgrp
->parent
) {
9365 /* This is early initialization for the top cgroup */
9366 return &root_task_group
.css
;
9369 parent
= cgroup_tg(cgrp
->parent
);
9370 tg
= sched_create_group(parent
);
9372 return ERR_PTR(-ENOMEM
);
9378 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9380 struct task_group
*tg
= cgroup_tg(cgrp
);
9382 sched_destroy_group(tg
);
9386 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
9388 #ifdef CONFIG_RT_GROUP_SCHED
9389 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
9392 /* We don't support RT-tasks being in separate groups */
9393 if (tsk
->sched_class
!= &fair_sched_class
)
9400 cpu_cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
9402 sched_move_task(tsk
);
9406 cpu_cgroup_exit(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9407 struct cgroup
*old_cgrp
, struct task_struct
*task
)
9410 * cgroup_exit() is called in the copy_process() failure path.
9411 * Ignore this case since the task hasn't ran yet, this avoids
9412 * trying to poke a half freed task state from generic code.
9414 if (!(task
->flags
& PF_EXITING
))
9417 sched_move_task(task
);
9420 #ifdef CONFIG_FAIR_GROUP_SCHED
9421 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
9424 return sched_group_set_shares(cgroup_tg(cgrp
), scale_load(shareval
));
9427 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
9429 struct task_group
*tg
= cgroup_tg(cgrp
);
9431 return (u64
) scale_load_down(tg
->shares
);
9434 #ifdef CONFIG_CFS_BANDWIDTH
9435 static DEFINE_MUTEX(cfs_constraints_mutex
);
9437 const u64 max_cfs_quota_period
= 1 * NSEC_PER_SEC
; /* 1s */
9438 const u64 min_cfs_quota_period
= 1 * NSEC_PER_MSEC
; /* 1ms */
9440 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
);
9442 static int tg_set_cfs_bandwidth(struct task_group
*tg
, u64 period
, u64 quota
)
9444 int i
, ret
= 0, runtime_enabled
;
9445 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(tg
);
9447 if (tg
== &root_task_group
)
9451 * Ensure we have at some amount of bandwidth every period. This is
9452 * to prevent reaching a state of large arrears when throttled via
9453 * entity_tick() resulting in prolonged exit starvation.
9455 if (quota
< min_cfs_quota_period
|| period
< min_cfs_quota_period
)
9459 * Likewise, bound things on the otherside by preventing insane quota
9460 * periods. This also allows us to normalize in computing quota
9463 if (period
> max_cfs_quota_period
)
9466 mutex_lock(&cfs_constraints_mutex
);
9467 ret
= __cfs_schedulable(tg
, period
, quota
);
9471 runtime_enabled
= quota
!= RUNTIME_INF
;
9472 raw_spin_lock_irq(&cfs_b
->lock
);
9473 cfs_b
->period
= ns_to_ktime(period
);
9474 cfs_b
->quota
= quota
;
9476 __refill_cfs_bandwidth_runtime(cfs_b
);
9477 /* restart the period timer (if active) to handle new period expiry */
9478 if (runtime_enabled
&& cfs_b
->timer_active
) {
9479 /* force a reprogram */
9480 cfs_b
->timer_active
= 0;
9481 __start_cfs_bandwidth(cfs_b
);
9483 raw_spin_unlock_irq(&cfs_b
->lock
);
9485 for_each_possible_cpu(i
) {
9486 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[i
];
9487 struct rq
*rq
= rq_of(cfs_rq
);
9489 raw_spin_lock_irq(&rq
->lock
);
9490 cfs_rq
->runtime_enabled
= runtime_enabled
;
9491 cfs_rq
->runtime_remaining
= 0;
9493 if (cfs_rq_throttled(cfs_rq
))
9494 unthrottle_cfs_rq(cfs_rq
);
9495 raw_spin_unlock_irq(&rq
->lock
);
9498 mutex_unlock(&cfs_constraints_mutex
);
9503 int tg_set_cfs_quota(struct task_group
*tg
, long cfs_quota_us
)
9507 period
= ktime_to_ns(tg_cfs_bandwidth(tg
)->period
);
9508 if (cfs_quota_us
< 0)
9509 quota
= RUNTIME_INF
;
9511 quota
= (u64
)cfs_quota_us
* NSEC_PER_USEC
;
9513 return tg_set_cfs_bandwidth(tg
, period
, quota
);
9516 long tg_get_cfs_quota(struct task_group
*tg
)
9520 if (tg_cfs_bandwidth(tg
)->quota
== RUNTIME_INF
)
9523 quota_us
= tg_cfs_bandwidth(tg
)->quota
;
9524 do_div(quota_us
, NSEC_PER_USEC
);
9529 int tg_set_cfs_period(struct task_group
*tg
, long cfs_period_us
)
9533 period
= (u64
)cfs_period_us
* NSEC_PER_USEC
;
9534 quota
= tg_cfs_bandwidth(tg
)->quota
;
9539 return tg_set_cfs_bandwidth(tg
, period
, quota
);
9542 long tg_get_cfs_period(struct task_group
*tg
)
9546 cfs_period_us
= ktime_to_ns(tg_cfs_bandwidth(tg
)->period
);
9547 do_div(cfs_period_us
, NSEC_PER_USEC
);
9549 return cfs_period_us
;
9552 static s64
cpu_cfs_quota_read_s64(struct cgroup
*cgrp
, struct cftype
*cft
)
9554 return tg_get_cfs_quota(cgroup_tg(cgrp
));
9557 static int cpu_cfs_quota_write_s64(struct cgroup
*cgrp
, struct cftype
*cftype
,
9560 return tg_set_cfs_quota(cgroup_tg(cgrp
), cfs_quota_us
);
9563 static u64
cpu_cfs_period_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
9565 return tg_get_cfs_period(cgroup_tg(cgrp
));
9568 static int cpu_cfs_period_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
9571 return tg_set_cfs_period(cgroup_tg(cgrp
), cfs_period_us
);
9574 struct cfs_schedulable_data
{
9575 struct task_group
*tg
;
9580 * normalize group quota/period to be quota/max_period
9581 * note: units are usecs
9583 static u64
normalize_cfs_quota(struct task_group
*tg
,
9584 struct cfs_schedulable_data
*d
)
9592 period
= tg_get_cfs_period(tg
);
9593 quota
= tg_get_cfs_quota(tg
);
9596 /* note: these should typically be equivalent */
9597 if (quota
== RUNTIME_INF
|| quota
== -1)
9600 return to_ratio(period
, quota
);
9603 static int tg_cfs_schedulable_down(struct task_group
*tg
, void *data
)
9605 struct cfs_schedulable_data
*d
= data
;
9606 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(tg
);
9607 s64 quota
= 0, parent_quota
= -1;
9610 quota
= RUNTIME_INF
;
9612 struct cfs_bandwidth
*parent_b
= tg_cfs_bandwidth(tg
->parent
);
9614 quota
= normalize_cfs_quota(tg
, d
);
9615 parent_quota
= parent_b
->hierarchal_quota
;
9618 * ensure max(child_quota) <= parent_quota, inherit when no
9621 if (quota
== RUNTIME_INF
)
9622 quota
= parent_quota
;
9623 else if (parent_quota
!= RUNTIME_INF
&& quota
> parent_quota
)
9626 cfs_b
->hierarchal_quota
= quota
;
9631 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 quota
)
9634 struct cfs_schedulable_data data
= {
9640 if (quota
!= RUNTIME_INF
) {
9641 do_div(data
.period
, NSEC_PER_USEC
);
9642 do_div(data
.quota
, NSEC_PER_USEC
);
9646 ret
= walk_tg_tree(tg_cfs_schedulable_down
, tg_nop
, &data
);
9652 static int cpu_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
9653 struct cgroup_map_cb
*cb
)
9655 struct task_group
*tg
= cgroup_tg(cgrp
);
9656 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(tg
);
9658 cb
->fill(cb
, "nr_periods", cfs_b
->nr_periods
);
9659 cb
->fill(cb
, "nr_throttled", cfs_b
->nr_throttled
);
9660 cb
->fill(cb
, "throttled_time", cfs_b
->throttled_time
);
9664 #endif /* CONFIG_CFS_BANDWIDTH */
9665 #endif /* CONFIG_FAIR_GROUP_SCHED */
9667 #ifdef CONFIG_RT_GROUP_SCHED
9668 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
9671 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
9674 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9676 return sched_group_rt_runtime(cgroup_tg(cgrp
));
9679 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9682 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
9685 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9687 return sched_group_rt_period(cgroup_tg(cgrp
));
9689 #endif /* CONFIG_RT_GROUP_SCHED */
9691 static struct cftype cpu_files
[] = {
9692 #ifdef CONFIG_FAIR_GROUP_SCHED
9695 .read_u64
= cpu_shares_read_u64
,
9696 .write_u64
= cpu_shares_write_u64
,
9699 #ifdef CONFIG_CFS_BANDWIDTH
9701 .name
= "cfs_quota_us",
9702 .read_s64
= cpu_cfs_quota_read_s64
,
9703 .write_s64
= cpu_cfs_quota_write_s64
,
9706 .name
= "cfs_period_us",
9707 .read_u64
= cpu_cfs_period_read_u64
,
9708 .write_u64
= cpu_cfs_period_write_u64
,
9712 .read_map
= cpu_stats_show
,
9715 #ifdef CONFIG_RT_GROUP_SCHED
9717 .name
= "rt_runtime_us",
9718 .read_s64
= cpu_rt_runtime_read
,
9719 .write_s64
= cpu_rt_runtime_write
,
9722 .name
= "rt_period_us",
9723 .read_u64
= cpu_rt_period_read_uint
,
9724 .write_u64
= cpu_rt_period_write_uint
,
9729 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
9731 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
9734 struct cgroup_subsys cpu_cgroup_subsys
= {
9736 .create
= cpu_cgroup_create
,
9737 .destroy
= cpu_cgroup_destroy
,
9738 .can_attach_task
= cpu_cgroup_can_attach_task
,
9739 .attach_task
= cpu_cgroup_attach_task
,
9740 .exit
= cpu_cgroup_exit
,
9741 .populate
= cpu_cgroup_populate
,
9742 .subsys_id
= cpu_cgroup_subsys_id
,
9746 #endif /* CONFIG_CGROUP_SCHED */
9748 #ifdef CONFIG_CGROUP_CPUACCT
9751 * CPU accounting code for task groups.
9753 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9754 * (balbir@in.ibm.com).
9757 /* track cpu usage of a group of tasks and its child groups */
9759 struct cgroup_subsys_state css
;
9760 /* cpuusage holds pointer to a u64-type object on every cpu */
9761 u64 __percpu
*cpuusage
;
9762 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
9763 struct cpuacct
*parent
;
9766 struct cgroup_subsys cpuacct_subsys
;
9768 /* return cpu accounting group corresponding to this container */
9769 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9771 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9772 struct cpuacct
, css
);
9775 /* return cpu accounting group to which this task belongs */
9776 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9778 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9779 struct cpuacct
, css
);
9782 /* create a new cpu accounting group */
9783 static struct cgroup_subsys_state
*cpuacct_create(
9784 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9786 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9792 ca
->cpuusage
= alloc_percpu(u64
);
9796 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
9797 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
9798 goto out_free_counters
;
9801 ca
->parent
= cgroup_ca(cgrp
->parent
);
9807 percpu_counter_destroy(&ca
->cpustat
[i
]);
9808 free_percpu(ca
->cpuusage
);
9812 return ERR_PTR(-ENOMEM
);
9815 /* destroy an existing cpu accounting group */
9817 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9819 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9822 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
9823 percpu_counter_destroy(&ca
->cpustat
[i
]);
9824 free_percpu(ca
->cpuusage
);
9828 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
9830 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9833 #ifndef CONFIG_64BIT
9835 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9837 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
9839 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9847 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
9849 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9851 #ifndef CONFIG_64BIT
9853 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9855 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
9857 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9863 /* return total cpu usage (in nanoseconds) of a group */
9864 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9866 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9867 u64 totalcpuusage
= 0;
9870 for_each_present_cpu(i
)
9871 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
9873 return totalcpuusage
;
9876 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9879 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9888 for_each_present_cpu(i
)
9889 cpuacct_cpuusage_write(ca
, i
, 0);
9895 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
9898 struct cpuacct
*ca
= cgroup_ca(cgroup
);
9902 for_each_present_cpu(i
) {
9903 percpu
= cpuacct_cpuusage_read(ca
, i
);
9904 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
9906 seq_printf(m
, "\n");
9910 static const char *cpuacct_stat_desc
[] = {
9911 [CPUACCT_STAT_USER
] = "user",
9912 [CPUACCT_STAT_SYSTEM
] = "system",
9915 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
9916 struct cgroup_map_cb
*cb
)
9918 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9921 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
9922 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
9923 val
= cputime64_to_clock_t(val
);
9924 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
9929 static struct cftype files
[] = {
9932 .read_u64
= cpuusage_read
,
9933 .write_u64
= cpuusage_write
,
9936 .name
= "usage_percpu",
9937 .read_seq_string
= cpuacct_percpu_seq_read
,
9941 .read_map
= cpuacct_stats_show
,
9945 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9947 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9951 * charge this task's execution time to its accounting group.
9953 * called with rq->lock held.
9955 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9960 if (unlikely(!cpuacct_subsys
.active
))
9963 cpu
= task_cpu(tsk
);
9969 for (; ca
; ca
= ca
->parent
) {
9970 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9971 *cpuusage
+= cputime
;
9978 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9979 * in cputime_t units. As a result, cpuacct_update_stats calls
9980 * percpu_counter_add with values large enough to always overflow the
9981 * per cpu batch limit causing bad SMP scalability.
9983 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9984 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9985 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9988 #define CPUACCT_BATCH \
9989 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9991 #define CPUACCT_BATCH 0
9995 * Charge the system/user time to the task's accounting group.
9997 static void cpuacct_update_stats(struct task_struct
*tsk
,
9998 enum cpuacct_stat_index idx
, cputime_t val
)
10000 struct cpuacct
*ca
;
10001 int batch
= CPUACCT_BATCH
;
10003 if (unlikely(!cpuacct_subsys
.active
))
10010 __percpu_counter_add(&ca
->cpustat
[idx
], val
, batch
);
10016 struct cgroup_subsys cpuacct_subsys
= {
10018 .create
= cpuacct_create
,
10019 .destroy
= cpuacct_destroy
,
10020 .populate
= cpuacct_populate
,
10021 .subsys_id
= cpuacct_subsys_id
,
10023 #endif /* CONFIG_CGROUP_CPUACCT */