1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
12 #include "transaction.h"
13 #include "print-tree.h"
18 static int split_node(struct btrfs_trans_handle
*trans
, struct btrfs_root
19 *root
, struct btrfs_path
*path
, int level
);
20 static int split_leaf(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
21 const struct btrfs_key
*ins_key
, struct btrfs_path
*path
,
22 int data_size
, int extend
);
23 static int push_node_left(struct btrfs_trans_handle
*trans
,
24 struct extent_buffer
*dst
,
25 struct extent_buffer
*src
, int empty
);
26 static int balance_node_right(struct btrfs_trans_handle
*trans
,
27 struct extent_buffer
*dst_buf
,
28 struct extent_buffer
*src_buf
);
29 static void del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
,
32 static const struct btrfs_csums
{
35 const char driver
[12];
37 [BTRFS_CSUM_TYPE_CRC32
] = { .size
= 4, .name
= "crc32c" },
38 [BTRFS_CSUM_TYPE_XXHASH
] = { .size
= 8, .name
= "xxhash64" },
39 [BTRFS_CSUM_TYPE_SHA256
] = { .size
= 32, .name
= "sha256" },
40 [BTRFS_CSUM_TYPE_BLAKE2
] = { .size
= 32, .name
= "blake2b",
41 .driver
= "blake2b-256" },
44 int btrfs_super_csum_size(const struct btrfs_super_block
*s
)
46 u16 t
= btrfs_super_csum_type(s
);
48 * csum type is validated at mount time
50 return btrfs_csums
[t
].size
;
53 const char *btrfs_super_csum_name(u16 csum_type
)
55 /* csum type is validated at mount time */
56 return btrfs_csums
[csum_type
].name
;
60 * Return driver name if defined, otherwise the name that's also a valid driver
63 const char *btrfs_super_csum_driver(u16 csum_type
)
65 /* csum type is validated at mount time */
66 return btrfs_csums
[csum_type
].driver
[0] ?
67 btrfs_csums
[csum_type
].driver
:
68 btrfs_csums
[csum_type
].name
;
71 size_t __const
btrfs_get_num_csums(void)
73 return ARRAY_SIZE(btrfs_csums
);
76 struct btrfs_path
*btrfs_alloc_path(void)
78 return kmem_cache_zalloc(btrfs_path_cachep
, GFP_NOFS
);
81 /* this also releases the path */
82 void btrfs_free_path(struct btrfs_path
*p
)
86 btrfs_release_path(p
);
87 kmem_cache_free(btrfs_path_cachep
, p
);
91 * path release drops references on the extent buffers in the path
92 * and it drops any locks held by this path
94 * It is safe to call this on paths that no locks or extent buffers held.
96 noinline
void btrfs_release_path(struct btrfs_path
*p
)
100 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
105 btrfs_tree_unlock_rw(p
->nodes
[i
], p
->locks
[i
]);
108 free_extent_buffer(p
->nodes
[i
]);
114 * safely gets a reference on the root node of a tree. A lock
115 * is not taken, so a concurrent writer may put a different node
116 * at the root of the tree. See btrfs_lock_root_node for the
119 * The extent buffer returned by this has a reference taken, so
120 * it won't disappear. It may stop being the root of the tree
121 * at any time because there are no locks held.
123 struct extent_buffer
*btrfs_root_node(struct btrfs_root
*root
)
125 struct extent_buffer
*eb
;
129 eb
= rcu_dereference(root
->node
);
132 * RCU really hurts here, we could free up the root node because
133 * it was COWed but we may not get the new root node yet so do
134 * the inc_not_zero dance and if it doesn't work then
135 * synchronize_rcu and try again.
137 if (atomic_inc_not_zero(&eb
->refs
)) {
148 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
149 * just get put onto a simple dirty list. Transaction walks this list to make
150 * sure they get properly updated on disk.
152 static void add_root_to_dirty_list(struct btrfs_root
*root
)
154 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
156 if (test_bit(BTRFS_ROOT_DIRTY
, &root
->state
) ||
157 !test_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
))
160 spin_lock(&fs_info
->trans_lock
);
161 if (!test_and_set_bit(BTRFS_ROOT_DIRTY
, &root
->state
)) {
162 /* Want the extent tree to be the last on the list */
163 if (root
->root_key
.objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
164 list_move_tail(&root
->dirty_list
,
165 &fs_info
->dirty_cowonly_roots
);
167 list_move(&root
->dirty_list
,
168 &fs_info
->dirty_cowonly_roots
);
170 spin_unlock(&fs_info
->trans_lock
);
174 * used by snapshot creation to make a copy of a root for a tree with
175 * a given objectid. The buffer with the new root node is returned in
176 * cow_ret, and this func returns zero on success or a negative error code.
178 int btrfs_copy_root(struct btrfs_trans_handle
*trans
,
179 struct btrfs_root
*root
,
180 struct extent_buffer
*buf
,
181 struct extent_buffer
**cow_ret
, u64 new_root_objectid
)
183 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
184 struct extent_buffer
*cow
;
187 struct btrfs_disk_key disk_key
;
189 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
) &&
190 trans
->transid
!= fs_info
->running_transaction
->transid
);
191 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
) &&
192 trans
->transid
!= root
->last_trans
);
194 level
= btrfs_header_level(buf
);
196 btrfs_item_key(buf
, &disk_key
, 0);
198 btrfs_node_key(buf
, &disk_key
, 0);
200 cow
= btrfs_alloc_tree_block(trans
, root
, 0, new_root_objectid
,
201 &disk_key
, level
, buf
->start
, 0);
205 copy_extent_buffer_full(cow
, buf
);
206 btrfs_set_header_bytenr(cow
, cow
->start
);
207 btrfs_set_header_generation(cow
, trans
->transid
);
208 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
209 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
210 BTRFS_HEADER_FLAG_RELOC
);
211 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
212 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
214 btrfs_set_header_owner(cow
, new_root_objectid
);
216 write_extent_buffer_fsid(cow
, fs_info
->fs_devices
->metadata_uuid
);
218 WARN_ON(btrfs_header_generation(buf
) > trans
->transid
);
219 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
220 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
222 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
227 btrfs_mark_buffer_dirty(cow
);
236 MOD_LOG_KEY_REMOVE_WHILE_FREEING
,
237 MOD_LOG_KEY_REMOVE_WHILE_MOVING
,
239 MOD_LOG_ROOT_REPLACE
,
242 struct tree_mod_root
{
247 struct tree_mod_elem
{
253 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
256 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
259 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
260 struct btrfs_disk_key key
;
263 /* this is used for op == MOD_LOG_MOVE_KEYS */
269 /* this is used for op == MOD_LOG_ROOT_REPLACE */
270 struct tree_mod_root old_root
;
274 * Pull a new tree mod seq number for our operation.
276 static inline u64
btrfs_inc_tree_mod_seq(struct btrfs_fs_info
*fs_info
)
278 return atomic64_inc_return(&fs_info
->tree_mod_seq
);
282 * This adds a new blocker to the tree mod log's blocker list if the @elem
283 * passed does not already have a sequence number set. So when a caller expects
284 * to record tree modifications, it should ensure to set elem->seq to zero
285 * before calling btrfs_get_tree_mod_seq.
286 * Returns a fresh, unused tree log modification sequence number, even if no new
289 u64
btrfs_get_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
290 struct seq_list
*elem
)
292 write_lock(&fs_info
->tree_mod_log_lock
);
294 elem
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
295 list_add_tail(&elem
->list
, &fs_info
->tree_mod_seq_list
);
297 write_unlock(&fs_info
->tree_mod_log_lock
);
302 void btrfs_put_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
303 struct seq_list
*elem
)
305 struct rb_root
*tm_root
;
306 struct rb_node
*node
;
307 struct rb_node
*next
;
308 struct tree_mod_elem
*tm
;
309 u64 min_seq
= (u64
)-1;
310 u64 seq_putting
= elem
->seq
;
315 write_lock(&fs_info
->tree_mod_log_lock
);
316 list_del(&elem
->list
);
319 if (!list_empty(&fs_info
->tree_mod_seq_list
)) {
320 struct seq_list
*first
;
322 first
= list_first_entry(&fs_info
->tree_mod_seq_list
,
323 struct seq_list
, list
);
324 if (seq_putting
> first
->seq
) {
326 * Blocker with lower sequence number exists, we
327 * cannot remove anything from the log.
329 write_unlock(&fs_info
->tree_mod_log_lock
);
332 min_seq
= first
->seq
;
336 * anything that's lower than the lowest existing (read: blocked)
337 * sequence number can be removed from the tree.
339 tm_root
= &fs_info
->tree_mod_log
;
340 for (node
= rb_first(tm_root
); node
; node
= next
) {
341 next
= rb_next(node
);
342 tm
= rb_entry(node
, struct tree_mod_elem
, node
);
343 if (tm
->seq
>= min_seq
)
345 rb_erase(node
, tm_root
);
348 write_unlock(&fs_info
->tree_mod_log_lock
);
352 * key order of the log:
353 * node/leaf start address -> sequence
355 * The 'start address' is the logical address of the *new* root node
356 * for root replace operations, or the logical address of the affected
357 * block for all other operations.
360 __tree_mod_log_insert(struct btrfs_fs_info
*fs_info
, struct tree_mod_elem
*tm
)
362 struct rb_root
*tm_root
;
363 struct rb_node
**new;
364 struct rb_node
*parent
= NULL
;
365 struct tree_mod_elem
*cur
;
367 lockdep_assert_held_write(&fs_info
->tree_mod_log_lock
);
369 tm
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
371 tm_root
= &fs_info
->tree_mod_log
;
372 new = &tm_root
->rb_node
;
374 cur
= rb_entry(*new, struct tree_mod_elem
, node
);
376 if (cur
->logical
< tm
->logical
)
377 new = &((*new)->rb_left
);
378 else if (cur
->logical
> tm
->logical
)
379 new = &((*new)->rb_right
);
380 else if (cur
->seq
< tm
->seq
)
381 new = &((*new)->rb_left
);
382 else if (cur
->seq
> tm
->seq
)
383 new = &((*new)->rb_right
);
388 rb_link_node(&tm
->node
, parent
, new);
389 rb_insert_color(&tm
->node
, tm_root
);
394 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
395 * returns zero with the tree_mod_log_lock acquired. The caller must hold
396 * this until all tree mod log insertions are recorded in the rb tree and then
397 * write unlock fs_info::tree_mod_log_lock.
399 static inline int tree_mod_dont_log(struct btrfs_fs_info
*fs_info
,
400 struct extent_buffer
*eb
) {
402 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
404 if (eb
&& btrfs_header_level(eb
) == 0)
407 write_lock(&fs_info
->tree_mod_log_lock
);
408 if (list_empty(&(fs_info
)->tree_mod_seq_list
)) {
409 write_unlock(&fs_info
->tree_mod_log_lock
);
416 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
417 static inline int tree_mod_need_log(const struct btrfs_fs_info
*fs_info
,
418 struct extent_buffer
*eb
)
421 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
423 if (eb
&& btrfs_header_level(eb
) == 0)
429 static struct tree_mod_elem
*
430 alloc_tree_mod_elem(struct extent_buffer
*eb
, int slot
,
431 enum mod_log_op op
, gfp_t flags
)
433 struct tree_mod_elem
*tm
;
435 tm
= kzalloc(sizeof(*tm
), flags
);
439 tm
->logical
= eb
->start
;
440 if (op
!= MOD_LOG_KEY_ADD
) {
441 btrfs_node_key(eb
, &tm
->key
, slot
);
442 tm
->blockptr
= btrfs_node_blockptr(eb
, slot
);
446 tm
->generation
= btrfs_node_ptr_generation(eb
, slot
);
447 RB_CLEAR_NODE(&tm
->node
);
452 static noinline
int tree_mod_log_insert_key(struct extent_buffer
*eb
, int slot
,
453 enum mod_log_op op
, gfp_t flags
)
455 struct tree_mod_elem
*tm
;
458 if (!tree_mod_need_log(eb
->fs_info
, eb
))
461 tm
= alloc_tree_mod_elem(eb
, slot
, op
, flags
);
465 if (tree_mod_dont_log(eb
->fs_info
, eb
)) {
470 ret
= __tree_mod_log_insert(eb
->fs_info
, tm
);
471 write_unlock(&eb
->fs_info
->tree_mod_log_lock
);
478 static noinline
int tree_mod_log_insert_move(struct extent_buffer
*eb
,
479 int dst_slot
, int src_slot
, int nr_items
)
481 struct tree_mod_elem
*tm
= NULL
;
482 struct tree_mod_elem
**tm_list
= NULL
;
487 if (!tree_mod_need_log(eb
->fs_info
, eb
))
490 tm_list
= kcalloc(nr_items
, sizeof(struct tree_mod_elem
*), GFP_NOFS
);
494 tm
= kzalloc(sizeof(*tm
), GFP_NOFS
);
500 tm
->logical
= eb
->start
;
502 tm
->move
.dst_slot
= dst_slot
;
503 tm
->move
.nr_items
= nr_items
;
504 tm
->op
= MOD_LOG_MOVE_KEYS
;
506 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
507 tm_list
[i
] = alloc_tree_mod_elem(eb
, i
+ dst_slot
,
508 MOD_LOG_KEY_REMOVE_WHILE_MOVING
, GFP_NOFS
);
515 if (tree_mod_dont_log(eb
->fs_info
, eb
))
520 * When we override something during the move, we log these removals.
521 * This can only happen when we move towards the beginning of the
522 * buffer, i.e. dst_slot < src_slot.
524 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
525 ret
= __tree_mod_log_insert(eb
->fs_info
, tm_list
[i
]);
530 ret
= __tree_mod_log_insert(eb
->fs_info
, tm
);
533 write_unlock(&eb
->fs_info
->tree_mod_log_lock
);
538 for (i
= 0; i
< nr_items
; i
++) {
539 if (tm_list
[i
] && !RB_EMPTY_NODE(&tm_list
[i
]->node
))
540 rb_erase(&tm_list
[i
]->node
, &eb
->fs_info
->tree_mod_log
);
544 write_unlock(&eb
->fs_info
->tree_mod_log_lock
);
552 __tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
,
553 struct tree_mod_elem
**tm_list
,
559 for (i
= nritems
- 1; i
>= 0; i
--) {
560 ret
= __tree_mod_log_insert(fs_info
, tm_list
[i
]);
562 for (j
= nritems
- 1; j
> i
; j
--)
563 rb_erase(&tm_list
[j
]->node
,
564 &fs_info
->tree_mod_log
);
572 static noinline
int tree_mod_log_insert_root(struct extent_buffer
*old_root
,
573 struct extent_buffer
*new_root
, int log_removal
)
575 struct btrfs_fs_info
*fs_info
= old_root
->fs_info
;
576 struct tree_mod_elem
*tm
= NULL
;
577 struct tree_mod_elem
**tm_list
= NULL
;
582 if (!tree_mod_need_log(fs_info
, NULL
))
585 if (log_removal
&& btrfs_header_level(old_root
) > 0) {
586 nritems
= btrfs_header_nritems(old_root
);
587 tm_list
= kcalloc(nritems
, sizeof(struct tree_mod_elem
*),
593 for (i
= 0; i
< nritems
; i
++) {
594 tm_list
[i
] = alloc_tree_mod_elem(old_root
, i
,
595 MOD_LOG_KEY_REMOVE_WHILE_FREEING
, GFP_NOFS
);
603 tm
= kzalloc(sizeof(*tm
), GFP_NOFS
);
609 tm
->logical
= new_root
->start
;
610 tm
->old_root
.logical
= old_root
->start
;
611 tm
->old_root
.level
= btrfs_header_level(old_root
);
612 tm
->generation
= btrfs_header_generation(old_root
);
613 tm
->op
= MOD_LOG_ROOT_REPLACE
;
615 if (tree_mod_dont_log(fs_info
, NULL
))
619 ret
= __tree_mod_log_free_eb(fs_info
, tm_list
, nritems
);
621 ret
= __tree_mod_log_insert(fs_info
, tm
);
623 write_unlock(&fs_info
->tree_mod_log_lock
);
632 for (i
= 0; i
< nritems
; i
++)
641 static struct tree_mod_elem
*
642 __tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
,
645 struct rb_root
*tm_root
;
646 struct rb_node
*node
;
647 struct tree_mod_elem
*cur
= NULL
;
648 struct tree_mod_elem
*found
= NULL
;
650 read_lock(&fs_info
->tree_mod_log_lock
);
651 tm_root
= &fs_info
->tree_mod_log
;
652 node
= tm_root
->rb_node
;
654 cur
= rb_entry(node
, struct tree_mod_elem
, node
);
655 if (cur
->logical
< start
) {
656 node
= node
->rb_left
;
657 } else if (cur
->logical
> start
) {
658 node
= node
->rb_right
;
659 } else if (cur
->seq
< min_seq
) {
660 node
= node
->rb_left
;
661 } else if (!smallest
) {
662 /* we want the node with the highest seq */
664 BUG_ON(found
->seq
> cur
->seq
);
666 node
= node
->rb_left
;
667 } else if (cur
->seq
> min_seq
) {
668 /* we want the node with the smallest seq */
670 BUG_ON(found
->seq
< cur
->seq
);
672 node
= node
->rb_right
;
678 read_unlock(&fs_info
->tree_mod_log_lock
);
684 * this returns the element from the log with the smallest time sequence
685 * value that's in the log (the oldest log item). any element with a time
686 * sequence lower than min_seq will be ignored.
688 static struct tree_mod_elem
*
689 tree_mod_log_search_oldest(struct btrfs_fs_info
*fs_info
, u64 start
,
692 return __tree_mod_log_search(fs_info
, start
, min_seq
, 1);
696 * this returns the element from the log with the largest time sequence
697 * value that's in the log (the most recent log item). any element with
698 * a time sequence lower than min_seq will be ignored.
700 static struct tree_mod_elem
*
701 tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
)
703 return __tree_mod_log_search(fs_info
, start
, min_seq
, 0);
706 static noinline
int tree_mod_log_eb_copy(struct extent_buffer
*dst
,
707 struct extent_buffer
*src
, unsigned long dst_offset
,
708 unsigned long src_offset
, int nr_items
)
710 struct btrfs_fs_info
*fs_info
= dst
->fs_info
;
712 struct tree_mod_elem
**tm_list
= NULL
;
713 struct tree_mod_elem
**tm_list_add
, **tm_list_rem
;
717 if (!tree_mod_need_log(fs_info
, NULL
))
720 if (btrfs_header_level(dst
) == 0 && btrfs_header_level(src
) == 0)
723 tm_list
= kcalloc(nr_items
* 2, sizeof(struct tree_mod_elem
*),
728 tm_list_add
= tm_list
;
729 tm_list_rem
= tm_list
+ nr_items
;
730 for (i
= 0; i
< nr_items
; i
++) {
731 tm_list_rem
[i
] = alloc_tree_mod_elem(src
, i
+ src_offset
,
732 MOD_LOG_KEY_REMOVE
, GFP_NOFS
);
733 if (!tm_list_rem
[i
]) {
738 tm_list_add
[i
] = alloc_tree_mod_elem(dst
, i
+ dst_offset
,
739 MOD_LOG_KEY_ADD
, GFP_NOFS
);
740 if (!tm_list_add
[i
]) {
746 if (tree_mod_dont_log(fs_info
, NULL
))
750 for (i
= 0; i
< nr_items
; i
++) {
751 ret
= __tree_mod_log_insert(fs_info
, tm_list_rem
[i
]);
754 ret
= __tree_mod_log_insert(fs_info
, tm_list_add
[i
]);
759 write_unlock(&fs_info
->tree_mod_log_lock
);
765 for (i
= 0; i
< nr_items
* 2; i
++) {
766 if (tm_list
[i
] && !RB_EMPTY_NODE(&tm_list
[i
]->node
))
767 rb_erase(&tm_list
[i
]->node
, &fs_info
->tree_mod_log
);
771 write_unlock(&fs_info
->tree_mod_log_lock
);
777 static noinline
int tree_mod_log_free_eb(struct extent_buffer
*eb
)
779 struct tree_mod_elem
**tm_list
= NULL
;
784 if (btrfs_header_level(eb
) == 0)
787 if (!tree_mod_need_log(eb
->fs_info
, NULL
))
790 nritems
= btrfs_header_nritems(eb
);
791 tm_list
= kcalloc(nritems
, sizeof(struct tree_mod_elem
*), GFP_NOFS
);
795 for (i
= 0; i
< nritems
; i
++) {
796 tm_list
[i
] = alloc_tree_mod_elem(eb
, i
,
797 MOD_LOG_KEY_REMOVE_WHILE_FREEING
, GFP_NOFS
);
804 if (tree_mod_dont_log(eb
->fs_info
, eb
))
807 ret
= __tree_mod_log_free_eb(eb
->fs_info
, tm_list
, nritems
);
808 write_unlock(&eb
->fs_info
->tree_mod_log_lock
);
816 for (i
= 0; i
< nritems
; i
++)
824 * check if the tree block can be shared by multiple trees
826 int btrfs_block_can_be_shared(struct btrfs_root
*root
,
827 struct extent_buffer
*buf
)
830 * Tree blocks not in shareable trees and tree roots are never shared.
831 * If a block was allocated after the last snapshot and the block was
832 * not allocated by tree relocation, we know the block is not shared.
834 if (test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
) &&
835 buf
!= root
->node
&& buf
!= root
->commit_root
&&
836 (btrfs_header_generation(buf
) <=
837 btrfs_root_last_snapshot(&root
->root_item
) ||
838 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
844 static noinline
int update_ref_for_cow(struct btrfs_trans_handle
*trans
,
845 struct btrfs_root
*root
,
846 struct extent_buffer
*buf
,
847 struct extent_buffer
*cow
,
850 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
858 * Backrefs update rules:
860 * Always use full backrefs for extent pointers in tree block
861 * allocated by tree relocation.
863 * If a shared tree block is no longer referenced by its owner
864 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
865 * use full backrefs for extent pointers in tree block.
867 * If a tree block is been relocating
868 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
869 * use full backrefs for extent pointers in tree block.
870 * The reason for this is some operations (such as drop tree)
871 * are only allowed for blocks use full backrefs.
874 if (btrfs_block_can_be_shared(root
, buf
)) {
875 ret
= btrfs_lookup_extent_info(trans
, fs_info
, buf
->start
,
876 btrfs_header_level(buf
), 1,
882 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
887 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
888 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
889 flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
894 owner
= btrfs_header_owner(buf
);
895 BUG_ON(owner
== BTRFS_TREE_RELOC_OBJECTID
&&
896 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
899 if ((owner
== root
->root_key
.objectid
||
900 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) &&
901 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
)) {
902 ret
= btrfs_inc_ref(trans
, root
, buf
, 1);
906 if (root
->root_key
.objectid
==
907 BTRFS_TREE_RELOC_OBJECTID
) {
908 ret
= btrfs_dec_ref(trans
, root
, buf
, 0);
911 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
915 new_flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
918 if (root
->root_key
.objectid
==
919 BTRFS_TREE_RELOC_OBJECTID
)
920 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
922 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
926 if (new_flags
!= 0) {
927 int level
= btrfs_header_level(buf
);
929 ret
= btrfs_set_disk_extent_flags(trans
, buf
,
930 new_flags
, level
, 0);
935 if (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
936 if (root
->root_key
.objectid
==
937 BTRFS_TREE_RELOC_OBJECTID
)
938 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
940 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
943 ret
= btrfs_dec_ref(trans
, root
, buf
, 1);
947 btrfs_clean_tree_block(buf
);
953 static struct extent_buffer
*alloc_tree_block_no_bg_flush(
954 struct btrfs_trans_handle
*trans
,
955 struct btrfs_root
*root
,
957 const struct btrfs_disk_key
*disk_key
,
962 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
963 struct extent_buffer
*ret
;
966 * If we are COWing a node/leaf from the extent, chunk, device or free
967 * space trees, make sure that we do not finish block group creation of
968 * pending block groups. We do this to avoid a deadlock.
969 * COWing can result in allocation of a new chunk, and flushing pending
970 * block groups (btrfs_create_pending_block_groups()) can be triggered
971 * when finishing allocation of a new chunk. Creation of a pending block
972 * group modifies the extent, chunk, device and free space trees,
973 * therefore we could deadlock with ourselves since we are holding a
974 * lock on an extent buffer that btrfs_create_pending_block_groups() may
976 * For similar reasons, we also need to delay flushing pending block
977 * groups when splitting a leaf or node, from one of those trees, since
978 * we are holding a write lock on it and its parent or when inserting a
979 * new root node for one of those trees.
981 if (root
== fs_info
->extent_root
||
982 root
== fs_info
->chunk_root
||
983 root
== fs_info
->dev_root
||
984 root
== fs_info
->free_space_root
)
985 trans
->can_flush_pending_bgs
= false;
987 ret
= btrfs_alloc_tree_block(trans
, root
, parent_start
,
988 root
->root_key
.objectid
, disk_key
, level
,
990 trans
->can_flush_pending_bgs
= true;
996 * does the dirty work in cow of a single block. The parent block (if
997 * supplied) is updated to point to the new cow copy. The new buffer is marked
998 * dirty and returned locked. If you modify the block it needs to be marked
1001 * search_start -- an allocation hint for the new block
1003 * empty_size -- a hint that you plan on doing more cow. This is the size in
1004 * bytes the allocator should try to find free next to the block it returns.
1005 * This is just a hint and may be ignored by the allocator.
1007 static noinline
int __btrfs_cow_block(struct btrfs_trans_handle
*trans
,
1008 struct btrfs_root
*root
,
1009 struct extent_buffer
*buf
,
1010 struct extent_buffer
*parent
, int parent_slot
,
1011 struct extent_buffer
**cow_ret
,
1012 u64 search_start
, u64 empty_size
)
1014 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1015 struct btrfs_disk_key disk_key
;
1016 struct extent_buffer
*cow
;
1019 int unlock_orig
= 0;
1020 u64 parent_start
= 0;
1022 if (*cow_ret
== buf
)
1025 btrfs_assert_tree_locked(buf
);
1027 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
) &&
1028 trans
->transid
!= fs_info
->running_transaction
->transid
);
1029 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
) &&
1030 trans
->transid
!= root
->last_trans
);
1032 level
= btrfs_header_level(buf
);
1035 btrfs_item_key(buf
, &disk_key
, 0);
1037 btrfs_node_key(buf
, &disk_key
, 0);
1039 if ((root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) && parent
)
1040 parent_start
= parent
->start
;
1042 cow
= alloc_tree_block_no_bg_flush(trans
, root
, parent_start
, &disk_key
,
1043 level
, search_start
, empty_size
);
1045 return PTR_ERR(cow
);
1047 /* cow is set to blocking by btrfs_init_new_buffer */
1049 copy_extent_buffer_full(cow
, buf
);
1050 btrfs_set_header_bytenr(cow
, cow
->start
);
1051 btrfs_set_header_generation(cow
, trans
->transid
);
1052 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
1053 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
1054 BTRFS_HEADER_FLAG_RELOC
);
1055 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1056 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
1058 btrfs_set_header_owner(cow
, root
->root_key
.objectid
);
1060 write_extent_buffer_fsid(cow
, fs_info
->fs_devices
->metadata_uuid
);
1062 ret
= update_ref_for_cow(trans
, root
, buf
, cow
, &last_ref
);
1064 btrfs_abort_transaction(trans
, ret
);
1068 if (test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
)) {
1069 ret
= btrfs_reloc_cow_block(trans
, root
, buf
, cow
);
1071 btrfs_abort_transaction(trans
, ret
);
1076 if (buf
== root
->node
) {
1077 WARN_ON(parent
&& parent
!= buf
);
1078 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
1079 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
1080 parent_start
= buf
->start
;
1082 atomic_inc(&cow
->refs
);
1083 ret
= tree_mod_log_insert_root(root
->node
, cow
, 1);
1085 rcu_assign_pointer(root
->node
, cow
);
1087 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1089 free_extent_buffer(buf
);
1090 add_root_to_dirty_list(root
);
1092 WARN_ON(trans
->transid
!= btrfs_header_generation(parent
));
1093 tree_mod_log_insert_key(parent
, parent_slot
,
1094 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
1095 btrfs_set_node_blockptr(parent
, parent_slot
,
1097 btrfs_set_node_ptr_generation(parent
, parent_slot
,
1099 btrfs_mark_buffer_dirty(parent
);
1101 ret
= tree_mod_log_free_eb(buf
);
1103 btrfs_abort_transaction(trans
, ret
);
1107 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1111 btrfs_tree_unlock(buf
);
1112 free_extent_buffer_stale(buf
);
1113 btrfs_mark_buffer_dirty(cow
);
1119 * returns the logical address of the oldest predecessor of the given root.
1120 * entries older than time_seq are ignored.
1122 static struct tree_mod_elem
*__tree_mod_log_oldest_root(
1123 struct extent_buffer
*eb_root
, u64 time_seq
)
1125 struct tree_mod_elem
*tm
;
1126 struct tree_mod_elem
*found
= NULL
;
1127 u64 root_logical
= eb_root
->start
;
1134 * the very last operation that's logged for a root is the
1135 * replacement operation (if it is replaced at all). this has
1136 * the logical address of the *new* root, making it the very
1137 * first operation that's logged for this root.
1140 tm
= tree_mod_log_search_oldest(eb_root
->fs_info
, root_logical
,
1145 * if there are no tree operation for the oldest root, we simply
1146 * return it. this should only happen if that (old) root is at
1153 * if there's an operation that's not a root replacement, we
1154 * found the oldest version of our root. normally, we'll find a
1155 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1157 if (tm
->op
!= MOD_LOG_ROOT_REPLACE
)
1161 root_logical
= tm
->old_root
.logical
;
1165 /* if there's no old root to return, return what we found instead */
1173 * tm is a pointer to the first operation to rewind within eb. then, all
1174 * previous operations will be rewound (until we reach something older than
1178 __tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
,
1179 u64 time_seq
, struct tree_mod_elem
*first_tm
)
1182 struct rb_node
*next
;
1183 struct tree_mod_elem
*tm
= first_tm
;
1184 unsigned long o_dst
;
1185 unsigned long o_src
;
1186 unsigned long p_size
= sizeof(struct btrfs_key_ptr
);
1188 n
= btrfs_header_nritems(eb
);
1189 read_lock(&fs_info
->tree_mod_log_lock
);
1190 while (tm
&& tm
->seq
>= time_seq
) {
1192 * all the operations are recorded with the operator used for
1193 * the modification. as we're going backwards, we do the
1194 * opposite of each operation here.
1197 case MOD_LOG_KEY_REMOVE_WHILE_FREEING
:
1198 BUG_ON(tm
->slot
< n
);
1200 case MOD_LOG_KEY_REMOVE_WHILE_MOVING
:
1201 case MOD_LOG_KEY_REMOVE
:
1202 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1203 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1204 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1208 case MOD_LOG_KEY_REPLACE
:
1209 BUG_ON(tm
->slot
>= n
);
1210 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1211 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1212 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1215 case MOD_LOG_KEY_ADD
:
1216 /* if a move operation is needed it's in the log */
1219 case MOD_LOG_MOVE_KEYS
:
1220 o_dst
= btrfs_node_key_ptr_offset(tm
->slot
);
1221 o_src
= btrfs_node_key_ptr_offset(tm
->move
.dst_slot
);
1222 memmove_extent_buffer(eb
, o_dst
, o_src
,
1223 tm
->move
.nr_items
* p_size
);
1225 case MOD_LOG_ROOT_REPLACE
:
1227 * this operation is special. for roots, this must be
1228 * handled explicitly before rewinding.
1229 * for non-roots, this operation may exist if the node
1230 * was a root: root A -> child B; then A gets empty and
1231 * B is promoted to the new root. in the mod log, we'll
1232 * have a root-replace operation for B, a tree block
1233 * that is no root. we simply ignore that operation.
1237 next
= rb_next(&tm
->node
);
1240 tm
= rb_entry(next
, struct tree_mod_elem
, node
);
1241 if (tm
->logical
!= first_tm
->logical
)
1244 read_unlock(&fs_info
->tree_mod_log_lock
);
1245 btrfs_set_header_nritems(eb
, n
);
1249 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1250 * is returned. If rewind operations happen, a fresh buffer is returned. The
1251 * returned buffer is always read-locked. If the returned buffer is not the
1252 * input buffer, the lock on the input buffer is released and the input buffer
1253 * is freed (its refcount is decremented).
1255 static struct extent_buffer
*
1256 tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct btrfs_path
*path
,
1257 struct extent_buffer
*eb
, u64 time_seq
)
1259 struct extent_buffer
*eb_rewin
;
1260 struct tree_mod_elem
*tm
;
1265 if (btrfs_header_level(eb
) == 0)
1268 tm
= tree_mod_log_search(fs_info
, eb
->start
, time_seq
);
1272 btrfs_set_path_blocking(path
);
1273 btrfs_set_lock_blocking_read(eb
);
1275 if (tm
->op
== MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1276 BUG_ON(tm
->slot
!= 0);
1277 eb_rewin
= alloc_dummy_extent_buffer(fs_info
, eb
->start
);
1279 btrfs_tree_read_unlock_blocking(eb
);
1280 free_extent_buffer(eb
);
1283 btrfs_set_header_bytenr(eb_rewin
, eb
->start
);
1284 btrfs_set_header_backref_rev(eb_rewin
,
1285 btrfs_header_backref_rev(eb
));
1286 btrfs_set_header_owner(eb_rewin
, btrfs_header_owner(eb
));
1287 btrfs_set_header_level(eb_rewin
, btrfs_header_level(eb
));
1289 eb_rewin
= btrfs_clone_extent_buffer(eb
);
1291 btrfs_tree_read_unlock_blocking(eb
);
1292 free_extent_buffer(eb
);
1297 btrfs_tree_read_unlock_blocking(eb
);
1298 free_extent_buffer(eb
);
1300 btrfs_tree_read_lock(eb_rewin
);
1301 __tree_mod_log_rewind(fs_info
, eb_rewin
, time_seq
, tm
);
1302 WARN_ON(btrfs_header_nritems(eb_rewin
) >
1303 BTRFS_NODEPTRS_PER_BLOCK(fs_info
));
1309 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1310 * value. If there are no changes, the current root->root_node is returned. If
1311 * anything changed in between, there's a fresh buffer allocated on which the
1312 * rewind operations are done. In any case, the returned buffer is read locked.
1313 * Returns NULL on error (with no locks held).
1315 static inline struct extent_buffer
*
1316 get_old_root(struct btrfs_root
*root
, u64 time_seq
)
1318 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1319 struct tree_mod_elem
*tm
;
1320 struct extent_buffer
*eb
= NULL
;
1321 struct extent_buffer
*eb_root
;
1322 u64 eb_root_owner
= 0;
1323 struct extent_buffer
*old
;
1324 struct tree_mod_root
*old_root
= NULL
;
1325 u64 old_generation
= 0;
1329 eb_root
= btrfs_read_lock_root_node(root
);
1330 tm
= __tree_mod_log_oldest_root(eb_root
, time_seq
);
1334 if (tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1335 old_root
= &tm
->old_root
;
1336 old_generation
= tm
->generation
;
1337 logical
= old_root
->logical
;
1338 level
= old_root
->level
;
1340 logical
= eb_root
->start
;
1341 level
= btrfs_header_level(eb_root
);
1344 tm
= tree_mod_log_search(fs_info
, logical
, time_seq
);
1345 if (old_root
&& tm
&& tm
->op
!= MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1346 btrfs_tree_read_unlock(eb_root
);
1347 free_extent_buffer(eb_root
);
1348 old
= read_tree_block(fs_info
, logical
, 0, level
, NULL
);
1349 if (WARN_ON(IS_ERR(old
) || !extent_buffer_uptodate(old
))) {
1351 free_extent_buffer(old
);
1353 "failed to read tree block %llu from get_old_root",
1356 eb
= btrfs_clone_extent_buffer(old
);
1357 free_extent_buffer(old
);
1359 } else if (old_root
) {
1360 eb_root_owner
= btrfs_header_owner(eb_root
);
1361 btrfs_tree_read_unlock(eb_root
);
1362 free_extent_buffer(eb_root
);
1363 eb
= alloc_dummy_extent_buffer(fs_info
, logical
);
1365 btrfs_set_lock_blocking_read(eb_root
);
1366 eb
= btrfs_clone_extent_buffer(eb_root
);
1367 btrfs_tree_read_unlock_blocking(eb_root
);
1368 free_extent_buffer(eb_root
);
1373 btrfs_tree_read_lock(eb
);
1375 btrfs_set_header_bytenr(eb
, eb
->start
);
1376 btrfs_set_header_backref_rev(eb
, BTRFS_MIXED_BACKREF_REV
);
1377 btrfs_set_header_owner(eb
, eb_root_owner
);
1378 btrfs_set_header_level(eb
, old_root
->level
);
1379 btrfs_set_header_generation(eb
, old_generation
);
1382 __tree_mod_log_rewind(fs_info
, eb
, time_seq
, tm
);
1384 WARN_ON(btrfs_header_level(eb
) != 0);
1385 WARN_ON(btrfs_header_nritems(eb
) > BTRFS_NODEPTRS_PER_BLOCK(fs_info
));
1390 int btrfs_old_root_level(struct btrfs_root
*root
, u64 time_seq
)
1392 struct tree_mod_elem
*tm
;
1394 struct extent_buffer
*eb_root
= btrfs_root_node(root
);
1396 tm
= __tree_mod_log_oldest_root(eb_root
, time_seq
);
1397 if (tm
&& tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1398 level
= tm
->old_root
.level
;
1400 level
= btrfs_header_level(eb_root
);
1402 free_extent_buffer(eb_root
);
1407 static inline int should_cow_block(struct btrfs_trans_handle
*trans
,
1408 struct btrfs_root
*root
,
1409 struct extent_buffer
*buf
)
1411 if (btrfs_is_testing(root
->fs_info
))
1414 /* Ensure we can see the FORCE_COW bit */
1415 smp_mb__before_atomic();
1418 * We do not need to cow a block if
1419 * 1) this block is not created or changed in this transaction;
1420 * 2) this block does not belong to TREE_RELOC tree;
1421 * 3) the root is not forced COW.
1423 * What is forced COW:
1424 * when we create snapshot during committing the transaction,
1425 * after we've finished copying src root, we must COW the shared
1426 * block to ensure the metadata consistency.
1428 if (btrfs_header_generation(buf
) == trans
->transid
&&
1429 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
) &&
1430 !(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
&&
1431 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)) &&
1432 !test_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
))
1438 * cows a single block, see __btrfs_cow_block for the real work.
1439 * This version of it has extra checks so that a block isn't COWed more than
1440 * once per transaction, as long as it hasn't been written yet
1442 noinline
int btrfs_cow_block(struct btrfs_trans_handle
*trans
,
1443 struct btrfs_root
*root
, struct extent_buffer
*buf
,
1444 struct extent_buffer
*parent
, int parent_slot
,
1445 struct extent_buffer
**cow_ret
)
1447 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1451 if (test_bit(BTRFS_ROOT_DELETING
, &root
->state
))
1453 "COW'ing blocks on a fs root that's being dropped");
1455 if (trans
->transaction
!= fs_info
->running_transaction
)
1456 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1458 fs_info
->running_transaction
->transid
);
1460 if (trans
->transid
!= fs_info
->generation
)
1461 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1462 trans
->transid
, fs_info
->generation
);
1464 if (!should_cow_block(trans
, root
, buf
)) {
1465 trans
->dirty
= true;
1470 search_start
= buf
->start
& ~((u64
)SZ_1G
- 1);
1473 btrfs_set_lock_blocking_write(parent
);
1474 btrfs_set_lock_blocking_write(buf
);
1477 * Before CoWing this block for later modification, check if it's
1478 * the subtree root and do the delayed subtree trace if needed.
1480 * Also We don't care about the error, as it's handled internally.
1482 btrfs_qgroup_trace_subtree_after_cow(trans
, root
, buf
);
1483 ret
= __btrfs_cow_block(trans
, root
, buf
, parent
,
1484 parent_slot
, cow_ret
, search_start
, 0);
1486 trace_btrfs_cow_block(root
, buf
, *cow_ret
);
1492 * helper function for defrag to decide if two blocks pointed to by a
1493 * node are actually close by
1495 static int close_blocks(u64 blocknr
, u64 other
, u32 blocksize
)
1497 if (blocknr
< other
&& other
- (blocknr
+ blocksize
) < 32768)
1499 if (blocknr
> other
&& blocknr
- (other
+ blocksize
) < 32768)
1505 * compare two keys in a memcmp fashion
1507 static int comp_keys(const struct btrfs_disk_key
*disk
,
1508 const struct btrfs_key
*k2
)
1510 struct btrfs_key k1
;
1512 btrfs_disk_key_to_cpu(&k1
, disk
);
1514 return btrfs_comp_cpu_keys(&k1
, k2
);
1518 * same as comp_keys only with two btrfs_key's
1520 int __pure
btrfs_comp_cpu_keys(const struct btrfs_key
*k1
, const struct btrfs_key
*k2
)
1522 if (k1
->objectid
> k2
->objectid
)
1524 if (k1
->objectid
< k2
->objectid
)
1526 if (k1
->type
> k2
->type
)
1528 if (k1
->type
< k2
->type
)
1530 if (k1
->offset
> k2
->offset
)
1532 if (k1
->offset
< k2
->offset
)
1538 * this is used by the defrag code to go through all the
1539 * leaves pointed to by a node and reallocate them so that
1540 * disk order is close to key order
1542 int btrfs_realloc_node(struct btrfs_trans_handle
*trans
,
1543 struct btrfs_root
*root
, struct extent_buffer
*parent
,
1544 int start_slot
, u64
*last_ret
,
1545 struct btrfs_key
*progress
)
1547 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1548 struct extent_buffer
*cur
;
1551 u64 search_start
= *last_ret
;
1561 int progress_passed
= 0;
1562 struct btrfs_disk_key disk_key
;
1564 parent_level
= btrfs_header_level(parent
);
1566 WARN_ON(trans
->transaction
!= fs_info
->running_transaction
);
1567 WARN_ON(trans
->transid
!= fs_info
->generation
);
1569 parent_nritems
= btrfs_header_nritems(parent
);
1570 blocksize
= fs_info
->nodesize
;
1571 end_slot
= parent_nritems
- 1;
1573 if (parent_nritems
<= 1)
1576 btrfs_set_lock_blocking_write(parent
);
1578 for (i
= start_slot
; i
<= end_slot
; i
++) {
1579 struct btrfs_key first_key
;
1582 btrfs_node_key(parent
, &disk_key
, i
);
1583 if (!progress_passed
&& comp_keys(&disk_key
, progress
) < 0)
1586 progress_passed
= 1;
1587 blocknr
= btrfs_node_blockptr(parent
, i
);
1588 gen
= btrfs_node_ptr_generation(parent
, i
);
1589 btrfs_node_key_to_cpu(parent
, &first_key
, i
);
1590 if (last_block
== 0)
1591 last_block
= blocknr
;
1594 other
= btrfs_node_blockptr(parent
, i
- 1);
1595 close
= close_blocks(blocknr
, other
, blocksize
);
1597 if (!close
&& i
< end_slot
) {
1598 other
= btrfs_node_blockptr(parent
, i
+ 1);
1599 close
= close_blocks(blocknr
, other
, blocksize
);
1602 last_block
= blocknr
;
1606 cur
= find_extent_buffer(fs_info
, blocknr
);
1608 uptodate
= btrfs_buffer_uptodate(cur
, gen
, 0);
1611 if (!cur
|| !uptodate
) {
1613 cur
= read_tree_block(fs_info
, blocknr
, gen
,
1617 return PTR_ERR(cur
);
1618 } else if (!extent_buffer_uptodate(cur
)) {
1619 free_extent_buffer(cur
);
1622 } else if (!uptodate
) {
1623 err
= btrfs_read_buffer(cur
, gen
,
1624 parent_level
- 1,&first_key
);
1626 free_extent_buffer(cur
);
1631 if (search_start
== 0)
1632 search_start
= last_block
;
1634 btrfs_tree_lock(cur
);
1635 btrfs_set_lock_blocking_write(cur
);
1636 err
= __btrfs_cow_block(trans
, root
, cur
, parent
, i
,
1639 (end_slot
- i
) * blocksize
));
1641 btrfs_tree_unlock(cur
);
1642 free_extent_buffer(cur
);
1645 search_start
= cur
->start
;
1646 last_block
= cur
->start
;
1647 *last_ret
= search_start
;
1648 btrfs_tree_unlock(cur
);
1649 free_extent_buffer(cur
);
1655 * search for key in the extent_buffer. The items start at offset p,
1656 * and they are item_size apart. There are 'max' items in p.
1658 * the slot in the array is returned via slot, and it points to
1659 * the place where you would insert key if it is not found in
1662 * slot may point to max if the key is bigger than all of the keys
1664 static noinline
int generic_bin_search(struct extent_buffer
*eb
,
1665 unsigned long p
, int item_size
,
1666 const struct btrfs_key
*key
,
1672 const int key_size
= sizeof(struct btrfs_disk_key
);
1675 btrfs_err(eb
->fs_info
,
1676 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1677 __func__
, low
, high
, eb
->start
,
1678 btrfs_header_owner(eb
), btrfs_header_level(eb
));
1682 while (low
< high
) {
1684 unsigned long offset
;
1685 struct btrfs_disk_key
*tmp
;
1686 struct btrfs_disk_key unaligned
;
1689 mid
= (low
+ high
) / 2;
1690 offset
= p
+ mid
* item_size
;
1691 oip
= offset_in_page(offset
);
1693 if (oip
+ key_size
<= PAGE_SIZE
) {
1694 const unsigned long idx
= offset
>> PAGE_SHIFT
;
1695 char *kaddr
= page_address(eb
->pages
[idx
]);
1697 tmp
= (struct btrfs_disk_key
*)(kaddr
+ oip
);
1699 read_extent_buffer(eb
, &unaligned
, offset
, key_size
);
1703 ret
= comp_keys(tmp
, key
);
1719 * simple bin_search frontend that does the right thing for
1722 int btrfs_bin_search(struct extent_buffer
*eb
, const struct btrfs_key
*key
,
1725 if (btrfs_header_level(eb
) == 0)
1726 return generic_bin_search(eb
,
1727 offsetof(struct btrfs_leaf
, items
),
1728 sizeof(struct btrfs_item
),
1729 key
, btrfs_header_nritems(eb
),
1732 return generic_bin_search(eb
,
1733 offsetof(struct btrfs_node
, ptrs
),
1734 sizeof(struct btrfs_key_ptr
),
1735 key
, btrfs_header_nritems(eb
),
1739 static void root_add_used(struct btrfs_root
*root
, u32 size
)
1741 spin_lock(&root
->accounting_lock
);
1742 btrfs_set_root_used(&root
->root_item
,
1743 btrfs_root_used(&root
->root_item
) + size
);
1744 spin_unlock(&root
->accounting_lock
);
1747 static void root_sub_used(struct btrfs_root
*root
, u32 size
)
1749 spin_lock(&root
->accounting_lock
);
1750 btrfs_set_root_used(&root
->root_item
,
1751 btrfs_root_used(&root
->root_item
) - size
);
1752 spin_unlock(&root
->accounting_lock
);
1755 /* given a node and slot number, this reads the blocks it points to. The
1756 * extent buffer is returned with a reference taken (but unlocked).
1758 struct extent_buffer
*btrfs_read_node_slot(struct extent_buffer
*parent
,
1761 int level
= btrfs_header_level(parent
);
1762 struct extent_buffer
*eb
;
1763 struct btrfs_key first_key
;
1765 if (slot
< 0 || slot
>= btrfs_header_nritems(parent
))
1766 return ERR_PTR(-ENOENT
);
1770 btrfs_node_key_to_cpu(parent
, &first_key
, slot
);
1771 eb
= read_tree_block(parent
->fs_info
, btrfs_node_blockptr(parent
, slot
),
1772 btrfs_node_ptr_generation(parent
, slot
),
1773 level
- 1, &first_key
);
1774 if (!IS_ERR(eb
) && !extent_buffer_uptodate(eb
)) {
1775 free_extent_buffer(eb
);
1783 * node level balancing, used to make sure nodes are in proper order for
1784 * item deletion. We balance from the top down, so we have to make sure
1785 * that a deletion won't leave an node completely empty later on.
1787 static noinline
int balance_level(struct btrfs_trans_handle
*trans
,
1788 struct btrfs_root
*root
,
1789 struct btrfs_path
*path
, int level
)
1791 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1792 struct extent_buffer
*right
= NULL
;
1793 struct extent_buffer
*mid
;
1794 struct extent_buffer
*left
= NULL
;
1795 struct extent_buffer
*parent
= NULL
;
1799 int orig_slot
= path
->slots
[level
];
1804 mid
= path
->nodes
[level
];
1806 WARN_ON(path
->locks
[level
] != BTRFS_WRITE_LOCK
&&
1807 path
->locks
[level
] != BTRFS_WRITE_LOCK_BLOCKING
);
1808 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1810 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
1812 if (level
< BTRFS_MAX_LEVEL
- 1) {
1813 parent
= path
->nodes
[level
+ 1];
1814 pslot
= path
->slots
[level
+ 1];
1818 * deal with the case where there is only one pointer in the root
1819 * by promoting the node below to a root
1822 struct extent_buffer
*child
;
1824 if (btrfs_header_nritems(mid
) != 1)
1827 /* promote the child to a root */
1828 child
= btrfs_read_node_slot(mid
, 0);
1829 if (IS_ERR(child
)) {
1830 ret
= PTR_ERR(child
);
1831 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
1835 btrfs_tree_lock(child
);
1836 btrfs_set_lock_blocking_write(child
);
1837 ret
= btrfs_cow_block(trans
, root
, child
, mid
, 0, &child
);
1839 btrfs_tree_unlock(child
);
1840 free_extent_buffer(child
);
1844 ret
= tree_mod_log_insert_root(root
->node
, child
, 1);
1846 rcu_assign_pointer(root
->node
, child
);
1848 add_root_to_dirty_list(root
);
1849 btrfs_tree_unlock(child
);
1851 path
->locks
[level
] = 0;
1852 path
->nodes
[level
] = NULL
;
1853 btrfs_clean_tree_block(mid
);
1854 btrfs_tree_unlock(mid
);
1855 /* once for the path */
1856 free_extent_buffer(mid
);
1858 root_sub_used(root
, mid
->len
);
1859 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1860 /* once for the root ptr */
1861 free_extent_buffer_stale(mid
);
1864 if (btrfs_header_nritems(mid
) >
1865 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) / 4)
1868 left
= btrfs_read_node_slot(parent
, pslot
- 1);
1873 btrfs_tree_lock(left
);
1874 btrfs_set_lock_blocking_write(left
);
1875 wret
= btrfs_cow_block(trans
, root
, left
,
1876 parent
, pslot
- 1, &left
);
1883 right
= btrfs_read_node_slot(parent
, pslot
+ 1);
1888 btrfs_tree_lock(right
);
1889 btrfs_set_lock_blocking_write(right
);
1890 wret
= btrfs_cow_block(trans
, root
, right
,
1891 parent
, pslot
+ 1, &right
);
1898 /* first, try to make some room in the middle buffer */
1900 orig_slot
+= btrfs_header_nritems(left
);
1901 wret
= push_node_left(trans
, left
, mid
, 1);
1907 * then try to empty the right most buffer into the middle
1910 wret
= push_node_left(trans
, mid
, right
, 1);
1911 if (wret
< 0 && wret
!= -ENOSPC
)
1913 if (btrfs_header_nritems(right
) == 0) {
1914 btrfs_clean_tree_block(right
);
1915 btrfs_tree_unlock(right
);
1916 del_ptr(root
, path
, level
+ 1, pslot
+ 1);
1917 root_sub_used(root
, right
->len
);
1918 btrfs_free_tree_block(trans
, root
, right
, 0, 1);
1919 free_extent_buffer_stale(right
);
1922 struct btrfs_disk_key right_key
;
1923 btrfs_node_key(right
, &right_key
, 0);
1924 ret
= tree_mod_log_insert_key(parent
, pslot
+ 1,
1925 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
1927 btrfs_set_node_key(parent
, &right_key
, pslot
+ 1);
1928 btrfs_mark_buffer_dirty(parent
);
1931 if (btrfs_header_nritems(mid
) == 1) {
1933 * we're not allowed to leave a node with one item in the
1934 * tree during a delete. A deletion from lower in the tree
1935 * could try to delete the only pointer in this node.
1936 * So, pull some keys from the left.
1937 * There has to be a left pointer at this point because
1938 * otherwise we would have pulled some pointers from the
1943 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
1946 wret
= balance_node_right(trans
, mid
, left
);
1952 wret
= push_node_left(trans
, left
, mid
, 1);
1958 if (btrfs_header_nritems(mid
) == 0) {
1959 btrfs_clean_tree_block(mid
);
1960 btrfs_tree_unlock(mid
);
1961 del_ptr(root
, path
, level
+ 1, pslot
);
1962 root_sub_used(root
, mid
->len
);
1963 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1964 free_extent_buffer_stale(mid
);
1967 /* update the parent key to reflect our changes */
1968 struct btrfs_disk_key mid_key
;
1969 btrfs_node_key(mid
, &mid_key
, 0);
1970 ret
= tree_mod_log_insert_key(parent
, pslot
,
1971 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
1973 btrfs_set_node_key(parent
, &mid_key
, pslot
);
1974 btrfs_mark_buffer_dirty(parent
);
1977 /* update the path */
1979 if (btrfs_header_nritems(left
) > orig_slot
) {
1980 atomic_inc(&left
->refs
);
1981 /* left was locked after cow */
1982 path
->nodes
[level
] = left
;
1983 path
->slots
[level
+ 1] -= 1;
1984 path
->slots
[level
] = orig_slot
;
1986 btrfs_tree_unlock(mid
);
1987 free_extent_buffer(mid
);
1990 orig_slot
-= btrfs_header_nritems(left
);
1991 path
->slots
[level
] = orig_slot
;
1994 /* double check we haven't messed things up */
1996 btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]))
2000 btrfs_tree_unlock(right
);
2001 free_extent_buffer(right
);
2004 if (path
->nodes
[level
] != left
)
2005 btrfs_tree_unlock(left
);
2006 free_extent_buffer(left
);
2011 /* Node balancing for insertion. Here we only split or push nodes around
2012 * when they are completely full. This is also done top down, so we
2013 * have to be pessimistic.
2015 static noinline
int push_nodes_for_insert(struct btrfs_trans_handle
*trans
,
2016 struct btrfs_root
*root
,
2017 struct btrfs_path
*path
, int level
)
2019 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2020 struct extent_buffer
*right
= NULL
;
2021 struct extent_buffer
*mid
;
2022 struct extent_buffer
*left
= NULL
;
2023 struct extent_buffer
*parent
= NULL
;
2027 int orig_slot
= path
->slots
[level
];
2032 mid
= path
->nodes
[level
];
2033 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
2035 if (level
< BTRFS_MAX_LEVEL
- 1) {
2036 parent
= path
->nodes
[level
+ 1];
2037 pslot
= path
->slots
[level
+ 1];
2043 left
= btrfs_read_node_slot(parent
, pslot
- 1);
2047 /* first, try to make some room in the middle buffer */
2051 btrfs_tree_lock(left
);
2052 btrfs_set_lock_blocking_write(left
);
2054 left_nr
= btrfs_header_nritems(left
);
2055 if (left_nr
>= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 1) {
2058 ret
= btrfs_cow_block(trans
, root
, left
, parent
,
2063 wret
= push_node_left(trans
, left
, mid
, 0);
2069 struct btrfs_disk_key disk_key
;
2070 orig_slot
+= left_nr
;
2071 btrfs_node_key(mid
, &disk_key
, 0);
2072 ret
= tree_mod_log_insert_key(parent
, pslot
,
2073 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
2075 btrfs_set_node_key(parent
, &disk_key
, pslot
);
2076 btrfs_mark_buffer_dirty(parent
);
2077 if (btrfs_header_nritems(left
) > orig_slot
) {
2078 path
->nodes
[level
] = left
;
2079 path
->slots
[level
+ 1] -= 1;
2080 path
->slots
[level
] = orig_slot
;
2081 btrfs_tree_unlock(mid
);
2082 free_extent_buffer(mid
);
2085 btrfs_header_nritems(left
);
2086 path
->slots
[level
] = orig_slot
;
2087 btrfs_tree_unlock(left
);
2088 free_extent_buffer(left
);
2092 btrfs_tree_unlock(left
);
2093 free_extent_buffer(left
);
2095 right
= btrfs_read_node_slot(parent
, pslot
+ 1);
2100 * then try to empty the right most buffer into the middle
2105 btrfs_tree_lock(right
);
2106 btrfs_set_lock_blocking_write(right
);
2108 right_nr
= btrfs_header_nritems(right
);
2109 if (right_nr
>= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 1) {
2112 ret
= btrfs_cow_block(trans
, root
, right
,
2118 wret
= balance_node_right(trans
, right
, mid
);
2124 struct btrfs_disk_key disk_key
;
2126 btrfs_node_key(right
, &disk_key
, 0);
2127 ret
= tree_mod_log_insert_key(parent
, pslot
+ 1,
2128 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
2130 btrfs_set_node_key(parent
, &disk_key
, pslot
+ 1);
2131 btrfs_mark_buffer_dirty(parent
);
2133 if (btrfs_header_nritems(mid
) <= orig_slot
) {
2134 path
->nodes
[level
] = right
;
2135 path
->slots
[level
+ 1] += 1;
2136 path
->slots
[level
] = orig_slot
-
2137 btrfs_header_nritems(mid
);
2138 btrfs_tree_unlock(mid
);
2139 free_extent_buffer(mid
);
2141 btrfs_tree_unlock(right
);
2142 free_extent_buffer(right
);
2146 btrfs_tree_unlock(right
);
2147 free_extent_buffer(right
);
2153 * readahead one full node of leaves, finding things that are close
2154 * to the block in 'slot', and triggering ra on them.
2156 static void reada_for_search(struct btrfs_fs_info
*fs_info
,
2157 struct btrfs_path
*path
,
2158 int level
, int slot
, u64 objectid
)
2160 struct extent_buffer
*node
;
2161 struct btrfs_disk_key disk_key
;
2166 struct extent_buffer
*eb
;
2174 if (!path
->nodes
[level
])
2177 node
= path
->nodes
[level
];
2179 search
= btrfs_node_blockptr(node
, slot
);
2180 blocksize
= fs_info
->nodesize
;
2181 eb
= find_extent_buffer(fs_info
, search
);
2183 free_extent_buffer(eb
);
2189 nritems
= btrfs_header_nritems(node
);
2193 if (path
->reada
== READA_BACK
) {
2197 } else if (path
->reada
== READA_FORWARD
) {
2202 if (path
->reada
== READA_BACK
&& objectid
) {
2203 btrfs_node_key(node
, &disk_key
, nr
);
2204 if (btrfs_disk_key_objectid(&disk_key
) != objectid
)
2207 search
= btrfs_node_blockptr(node
, nr
);
2208 if ((search
<= target
&& target
- search
<= 65536) ||
2209 (search
> target
&& search
- target
<= 65536)) {
2210 readahead_tree_block(fs_info
, search
);
2214 if ((nread
> 65536 || nscan
> 32))
2219 static noinline
void reada_for_balance(struct btrfs_fs_info
*fs_info
,
2220 struct btrfs_path
*path
, int level
)
2224 struct extent_buffer
*parent
;
2225 struct extent_buffer
*eb
;
2230 parent
= path
->nodes
[level
+ 1];
2234 nritems
= btrfs_header_nritems(parent
);
2235 slot
= path
->slots
[level
+ 1];
2238 block1
= btrfs_node_blockptr(parent
, slot
- 1);
2239 gen
= btrfs_node_ptr_generation(parent
, slot
- 1);
2240 eb
= find_extent_buffer(fs_info
, block1
);
2242 * if we get -eagain from btrfs_buffer_uptodate, we
2243 * don't want to return eagain here. That will loop
2246 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2248 free_extent_buffer(eb
);
2250 if (slot
+ 1 < nritems
) {
2251 block2
= btrfs_node_blockptr(parent
, slot
+ 1);
2252 gen
= btrfs_node_ptr_generation(parent
, slot
+ 1);
2253 eb
= find_extent_buffer(fs_info
, block2
);
2254 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2256 free_extent_buffer(eb
);
2260 readahead_tree_block(fs_info
, block1
);
2262 readahead_tree_block(fs_info
, block2
);
2267 * when we walk down the tree, it is usually safe to unlock the higher layers
2268 * in the tree. The exceptions are when our path goes through slot 0, because
2269 * operations on the tree might require changing key pointers higher up in the
2272 * callers might also have set path->keep_locks, which tells this code to keep
2273 * the lock if the path points to the last slot in the block. This is part of
2274 * walking through the tree, and selecting the next slot in the higher block.
2276 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2277 * if lowest_unlock is 1, level 0 won't be unlocked
2279 static noinline
void unlock_up(struct btrfs_path
*path
, int level
,
2280 int lowest_unlock
, int min_write_lock_level
,
2281 int *write_lock_level
)
2284 int skip_level
= level
;
2286 struct extent_buffer
*t
;
2288 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2289 if (!path
->nodes
[i
])
2291 if (!path
->locks
[i
])
2293 if (!no_skips
&& path
->slots
[i
] == 0) {
2297 if (!no_skips
&& path
->keep_locks
) {
2300 nritems
= btrfs_header_nritems(t
);
2301 if (nritems
< 1 || path
->slots
[i
] >= nritems
- 1) {
2306 if (skip_level
< i
&& i
>= lowest_unlock
)
2310 if (i
>= lowest_unlock
&& i
> skip_level
) {
2311 btrfs_tree_unlock_rw(t
, path
->locks
[i
]);
2313 if (write_lock_level
&&
2314 i
> min_write_lock_level
&&
2315 i
<= *write_lock_level
) {
2316 *write_lock_level
= i
- 1;
2323 * helper function for btrfs_search_slot. The goal is to find a block
2324 * in cache without setting the path to blocking. If we find the block
2325 * we return zero and the path is unchanged.
2327 * If we can't find the block, we set the path blocking and do some
2328 * reada. -EAGAIN is returned and the search must be repeated.
2331 read_block_for_search(struct btrfs_root
*root
, struct btrfs_path
*p
,
2332 struct extent_buffer
**eb_ret
, int level
, int slot
,
2333 const struct btrfs_key
*key
)
2335 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2338 struct extent_buffer
*tmp
;
2339 struct btrfs_key first_key
;
2343 blocknr
= btrfs_node_blockptr(*eb_ret
, slot
);
2344 gen
= btrfs_node_ptr_generation(*eb_ret
, slot
);
2345 parent_level
= btrfs_header_level(*eb_ret
);
2346 btrfs_node_key_to_cpu(*eb_ret
, &first_key
, slot
);
2348 tmp
= find_extent_buffer(fs_info
, blocknr
);
2350 /* first we do an atomic uptodate check */
2351 if (btrfs_buffer_uptodate(tmp
, gen
, 1) > 0) {
2353 * Do extra check for first_key, eb can be stale due to
2354 * being cached, read from scrub, or have multiple
2355 * parents (shared tree blocks).
2357 if (btrfs_verify_level_key(tmp
,
2358 parent_level
- 1, &first_key
, gen
)) {
2359 free_extent_buffer(tmp
);
2366 /* the pages were up to date, but we failed
2367 * the generation number check. Do a full
2368 * read for the generation number that is correct.
2369 * We must do this without dropping locks so
2370 * we can trust our generation number
2372 btrfs_set_path_blocking(p
);
2374 /* now we're allowed to do a blocking uptodate check */
2375 ret
= btrfs_read_buffer(tmp
, gen
, parent_level
- 1, &first_key
);
2380 free_extent_buffer(tmp
);
2381 btrfs_release_path(p
);
2386 * reduce lock contention at high levels
2387 * of the btree by dropping locks before
2388 * we read. Don't release the lock on the current
2389 * level because we need to walk this node to figure
2390 * out which blocks to read.
2392 btrfs_unlock_up_safe(p
, level
+ 1);
2393 btrfs_set_path_blocking(p
);
2395 if (p
->reada
!= READA_NONE
)
2396 reada_for_search(fs_info
, p
, level
, slot
, key
->objectid
);
2399 tmp
= read_tree_block(fs_info
, blocknr
, gen
, parent_level
- 1,
2403 * If the read above didn't mark this buffer up to date,
2404 * it will never end up being up to date. Set ret to EIO now
2405 * and give up so that our caller doesn't loop forever
2408 if (!extent_buffer_uptodate(tmp
))
2410 free_extent_buffer(tmp
);
2415 btrfs_release_path(p
);
2420 * helper function for btrfs_search_slot. This does all of the checks
2421 * for node-level blocks and does any balancing required based on
2424 * If no extra work was required, zero is returned. If we had to
2425 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2429 setup_nodes_for_search(struct btrfs_trans_handle
*trans
,
2430 struct btrfs_root
*root
, struct btrfs_path
*p
,
2431 struct extent_buffer
*b
, int level
, int ins_len
,
2432 int *write_lock_level
)
2434 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2437 if ((p
->search_for_split
|| ins_len
> 0) && btrfs_header_nritems(b
) >=
2438 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 3) {
2441 if (*write_lock_level
< level
+ 1) {
2442 *write_lock_level
= level
+ 1;
2443 btrfs_release_path(p
);
2447 btrfs_set_path_blocking(p
);
2448 reada_for_balance(fs_info
, p
, level
);
2449 sret
= split_node(trans
, root
, p
, level
);
2456 b
= p
->nodes
[level
];
2457 } else if (ins_len
< 0 && btrfs_header_nritems(b
) <
2458 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) / 2) {
2461 if (*write_lock_level
< level
+ 1) {
2462 *write_lock_level
= level
+ 1;
2463 btrfs_release_path(p
);
2467 btrfs_set_path_blocking(p
);
2468 reada_for_balance(fs_info
, p
, level
);
2469 sret
= balance_level(trans
, root
, p
, level
);
2475 b
= p
->nodes
[level
];
2477 btrfs_release_path(p
);
2480 BUG_ON(btrfs_header_nritems(b
) == 1);
2490 int btrfs_find_item(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
2491 u64 iobjectid
, u64 ioff
, u8 key_type
,
2492 struct btrfs_key
*found_key
)
2495 struct btrfs_key key
;
2496 struct extent_buffer
*eb
;
2501 key
.type
= key_type
;
2502 key
.objectid
= iobjectid
;
2505 ret
= btrfs_search_slot(NULL
, fs_root
, &key
, path
, 0, 0);
2509 eb
= path
->nodes
[0];
2510 if (ret
&& path
->slots
[0] >= btrfs_header_nritems(eb
)) {
2511 ret
= btrfs_next_leaf(fs_root
, path
);
2514 eb
= path
->nodes
[0];
2517 btrfs_item_key_to_cpu(eb
, found_key
, path
->slots
[0]);
2518 if (found_key
->type
!= key
.type
||
2519 found_key
->objectid
!= key
.objectid
)
2525 static struct extent_buffer
*btrfs_search_slot_get_root(struct btrfs_root
*root
,
2526 struct btrfs_path
*p
,
2527 int write_lock_level
)
2529 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2530 struct extent_buffer
*b
;
2534 /* We try very hard to do read locks on the root */
2535 root_lock
= BTRFS_READ_LOCK
;
2537 if (p
->search_commit_root
) {
2539 * The commit roots are read only so we always do read locks,
2540 * and we always must hold the commit_root_sem when doing
2541 * searches on them, the only exception is send where we don't
2542 * want to block transaction commits for a long time, so
2543 * we need to clone the commit root in order to avoid races
2544 * with transaction commits that create a snapshot of one of
2545 * the roots used by a send operation.
2547 if (p
->need_commit_sem
) {
2548 down_read(&fs_info
->commit_root_sem
);
2549 b
= btrfs_clone_extent_buffer(root
->commit_root
);
2550 up_read(&fs_info
->commit_root_sem
);
2552 return ERR_PTR(-ENOMEM
);
2555 b
= root
->commit_root
;
2556 atomic_inc(&b
->refs
);
2558 level
= btrfs_header_level(b
);
2560 * Ensure that all callers have set skip_locking when
2561 * p->search_commit_root = 1.
2563 ASSERT(p
->skip_locking
== 1);
2568 if (p
->skip_locking
) {
2569 b
= btrfs_root_node(root
);
2570 level
= btrfs_header_level(b
);
2575 * If the level is set to maximum, we can skip trying to get the read
2578 if (write_lock_level
< BTRFS_MAX_LEVEL
) {
2580 * We don't know the level of the root node until we actually
2581 * have it read locked
2583 b
= btrfs_read_lock_root_node(root
);
2584 level
= btrfs_header_level(b
);
2585 if (level
> write_lock_level
)
2588 /* Whoops, must trade for write lock */
2589 btrfs_tree_read_unlock(b
);
2590 free_extent_buffer(b
);
2593 b
= btrfs_lock_root_node(root
);
2594 root_lock
= BTRFS_WRITE_LOCK
;
2596 /* The level might have changed, check again */
2597 level
= btrfs_header_level(b
);
2600 p
->nodes
[level
] = b
;
2601 if (!p
->skip_locking
)
2602 p
->locks
[level
] = root_lock
;
2604 * Callers are responsible for dropping b's references.
2611 * btrfs_search_slot - look for a key in a tree and perform necessary
2612 * modifications to preserve tree invariants.
2614 * @trans: Handle of transaction, used when modifying the tree
2615 * @p: Holds all btree nodes along the search path
2616 * @root: The root node of the tree
2617 * @key: The key we are looking for
2618 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2619 * deletions it's -1. 0 for plain searches
2620 * @cow: boolean should CoW operations be performed. Must always be 1
2621 * when modifying the tree.
2623 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2624 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2626 * If @key is found, 0 is returned and you can find the item in the leaf level
2627 * of the path (level 0)
2629 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2630 * points to the slot where it should be inserted
2632 * If an error is encountered while searching the tree a negative error number
2635 int btrfs_search_slot(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2636 const struct btrfs_key
*key
, struct btrfs_path
*p
,
2637 int ins_len
, int cow
)
2639 struct extent_buffer
*b
;
2644 int lowest_unlock
= 1;
2645 /* everything at write_lock_level or lower must be write locked */
2646 int write_lock_level
= 0;
2647 u8 lowest_level
= 0;
2648 int min_write_lock_level
;
2651 lowest_level
= p
->lowest_level
;
2652 WARN_ON(lowest_level
&& ins_len
> 0);
2653 WARN_ON(p
->nodes
[0] != NULL
);
2654 BUG_ON(!cow
&& ins_len
);
2659 /* when we are removing items, we might have to go up to level
2660 * two as we update tree pointers Make sure we keep write
2661 * for those levels as well
2663 write_lock_level
= 2;
2664 } else if (ins_len
> 0) {
2666 * for inserting items, make sure we have a write lock on
2667 * level 1 so we can update keys
2669 write_lock_level
= 1;
2673 write_lock_level
= -1;
2675 if (cow
&& (p
->keep_locks
|| p
->lowest_level
))
2676 write_lock_level
= BTRFS_MAX_LEVEL
;
2678 min_write_lock_level
= write_lock_level
;
2682 b
= btrfs_search_slot_get_root(root
, p
, write_lock_level
);
2691 level
= btrfs_header_level(b
);
2694 bool last_level
= (level
== (BTRFS_MAX_LEVEL
- 1));
2697 * if we don't really need to cow this block
2698 * then we don't want to set the path blocking,
2699 * so we test it here
2701 if (!should_cow_block(trans
, root
, b
)) {
2702 trans
->dirty
= true;
2707 * must have write locks on this node and the
2710 if (level
> write_lock_level
||
2711 (level
+ 1 > write_lock_level
&&
2712 level
+ 1 < BTRFS_MAX_LEVEL
&&
2713 p
->nodes
[level
+ 1])) {
2714 write_lock_level
= level
+ 1;
2715 btrfs_release_path(p
);
2719 btrfs_set_path_blocking(p
);
2721 err
= btrfs_cow_block(trans
, root
, b
, NULL
, 0,
2724 err
= btrfs_cow_block(trans
, root
, b
,
2725 p
->nodes
[level
+ 1],
2726 p
->slots
[level
+ 1], &b
);
2733 p
->nodes
[level
] = b
;
2735 * Leave path with blocking locks to avoid massive
2736 * lock context switch, this is made on purpose.
2740 * we have a lock on b and as long as we aren't changing
2741 * the tree, there is no way to for the items in b to change.
2742 * It is safe to drop the lock on our parent before we
2743 * go through the expensive btree search on b.
2745 * If we're inserting or deleting (ins_len != 0), then we might
2746 * be changing slot zero, which may require changing the parent.
2747 * So, we can't drop the lock until after we know which slot
2748 * we're operating on.
2750 if (!ins_len
&& !p
->keep_locks
) {
2753 if (u
< BTRFS_MAX_LEVEL
&& p
->locks
[u
]) {
2754 btrfs_tree_unlock_rw(p
->nodes
[u
], p
->locks
[u
]);
2760 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
2761 * we can safely assume the target key will always be in slot 0
2762 * on lower levels due to the invariants BTRFS' btree provides,
2763 * namely that a btrfs_key_ptr entry always points to the
2764 * lowest key in the child node, thus we can skip searching
2767 if (prev_cmp
== 0) {
2771 ret
= btrfs_bin_search(b
, key
, &slot
);
2778 p
->slots
[level
] = slot
;
2780 btrfs_leaf_free_space(b
) < ins_len
) {
2781 if (write_lock_level
< 1) {
2782 write_lock_level
= 1;
2783 btrfs_release_path(p
);
2787 btrfs_set_path_blocking(p
);
2788 err
= split_leaf(trans
, root
, key
,
2789 p
, ins_len
, ret
== 0);
2797 if (!p
->search_for_split
)
2798 unlock_up(p
, level
, lowest_unlock
,
2799 min_write_lock_level
, NULL
);
2802 if (ret
&& slot
> 0) {
2806 p
->slots
[level
] = slot
;
2807 err
= setup_nodes_for_search(trans
, root
, p
, b
, level
, ins_len
,
2815 b
= p
->nodes
[level
];
2816 slot
= p
->slots
[level
];
2819 * Slot 0 is special, if we change the key we have to update
2820 * the parent pointer which means we must have a write lock on
2823 if (slot
== 0 && ins_len
&& write_lock_level
< level
+ 1) {
2824 write_lock_level
= level
+ 1;
2825 btrfs_release_path(p
);
2829 unlock_up(p
, level
, lowest_unlock
, min_write_lock_level
,
2832 if (level
== lowest_level
) {
2838 err
= read_block_for_search(root
, p
, &b
, level
, slot
, key
);
2846 if (!p
->skip_locking
) {
2847 level
= btrfs_header_level(b
);
2848 if (level
<= write_lock_level
) {
2849 if (!btrfs_try_tree_write_lock(b
)) {
2850 btrfs_set_path_blocking(p
);
2853 p
->locks
[level
] = BTRFS_WRITE_LOCK
;
2855 if (!btrfs_tree_read_lock_atomic(b
)) {
2856 btrfs_set_path_blocking(p
);
2857 btrfs_tree_read_lock(b
);
2859 p
->locks
[level
] = BTRFS_READ_LOCK
;
2861 p
->nodes
[level
] = b
;
2867 * we don't really know what they plan on doing with the path
2868 * from here on, so for now just mark it as blocking
2870 if (!p
->leave_spinning
)
2871 btrfs_set_path_blocking(p
);
2872 if (ret
< 0 && !p
->skip_release_on_error
)
2873 btrfs_release_path(p
);
2878 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2879 * current state of the tree together with the operations recorded in the tree
2880 * modification log to search for the key in a previous version of this tree, as
2881 * denoted by the time_seq parameter.
2883 * Naturally, there is no support for insert, delete or cow operations.
2885 * The resulting path and return value will be set up as if we called
2886 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2888 int btrfs_search_old_slot(struct btrfs_root
*root
, const struct btrfs_key
*key
,
2889 struct btrfs_path
*p
, u64 time_seq
)
2891 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2892 struct extent_buffer
*b
;
2897 int lowest_unlock
= 1;
2898 u8 lowest_level
= 0;
2900 lowest_level
= p
->lowest_level
;
2901 WARN_ON(p
->nodes
[0] != NULL
);
2903 if (p
->search_commit_root
) {
2905 return btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
2909 b
= get_old_root(root
, time_seq
);
2914 level
= btrfs_header_level(b
);
2915 p
->locks
[level
] = BTRFS_READ_LOCK
;
2920 level
= btrfs_header_level(b
);
2921 p
->nodes
[level
] = b
;
2924 * we have a lock on b and as long as we aren't changing
2925 * the tree, there is no way to for the items in b to change.
2926 * It is safe to drop the lock on our parent before we
2927 * go through the expensive btree search on b.
2929 btrfs_unlock_up_safe(p
, level
+ 1);
2931 ret
= btrfs_bin_search(b
, key
, &slot
);
2936 p
->slots
[level
] = slot
;
2937 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
2941 if (ret
&& slot
> 0) {
2945 p
->slots
[level
] = slot
;
2946 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
2948 if (level
== lowest_level
) {
2954 err
= read_block_for_search(root
, p
, &b
, level
, slot
, key
);
2962 level
= btrfs_header_level(b
);
2963 if (!btrfs_tree_read_lock_atomic(b
)) {
2964 btrfs_set_path_blocking(p
);
2965 btrfs_tree_read_lock(b
);
2967 b
= tree_mod_log_rewind(fs_info
, p
, b
, time_seq
);
2972 p
->locks
[level
] = BTRFS_READ_LOCK
;
2973 p
->nodes
[level
] = b
;
2977 if (!p
->leave_spinning
)
2978 btrfs_set_path_blocking(p
);
2980 btrfs_release_path(p
);
2986 * helper to use instead of search slot if no exact match is needed but
2987 * instead the next or previous item should be returned.
2988 * When find_higher is true, the next higher item is returned, the next lower
2990 * When return_any and find_higher are both true, and no higher item is found,
2991 * return the next lower instead.
2992 * When return_any is true and find_higher is false, and no lower item is found,
2993 * return the next higher instead.
2994 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2997 int btrfs_search_slot_for_read(struct btrfs_root
*root
,
2998 const struct btrfs_key
*key
,
2999 struct btrfs_path
*p
, int find_higher
,
3003 struct extent_buffer
*leaf
;
3006 ret
= btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
3010 * a return value of 1 means the path is at the position where the
3011 * item should be inserted. Normally this is the next bigger item,
3012 * but in case the previous item is the last in a leaf, path points
3013 * to the first free slot in the previous leaf, i.e. at an invalid
3019 if (p
->slots
[0] >= btrfs_header_nritems(leaf
)) {
3020 ret
= btrfs_next_leaf(root
, p
);
3026 * no higher item found, return the next
3031 btrfs_release_path(p
);
3035 if (p
->slots
[0] == 0) {
3036 ret
= btrfs_prev_leaf(root
, p
);
3041 if (p
->slots
[0] == btrfs_header_nritems(leaf
))
3048 * no lower item found, return the next
3053 btrfs_release_path(p
);
3063 * adjust the pointers going up the tree, starting at level
3064 * making sure the right key of each node is points to 'key'.
3065 * This is used after shifting pointers to the left, so it stops
3066 * fixing up pointers when a given leaf/node is not in slot 0 of the
3070 static void fixup_low_keys(struct btrfs_path
*path
,
3071 struct btrfs_disk_key
*key
, int level
)
3074 struct extent_buffer
*t
;
3077 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
3078 int tslot
= path
->slots
[i
];
3080 if (!path
->nodes
[i
])
3083 ret
= tree_mod_log_insert_key(t
, tslot
, MOD_LOG_KEY_REPLACE
,
3086 btrfs_set_node_key(t
, key
, tslot
);
3087 btrfs_mark_buffer_dirty(path
->nodes
[i
]);
3096 * This function isn't completely safe. It's the caller's responsibility
3097 * that the new key won't break the order
3099 void btrfs_set_item_key_safe(struct btrfs_fs_info
*fs_info
,
3100 struct btrfs_path
*path
,
3101 const struct btrfs_key
*new_key
)
3103 struct btrfs_disk_key disk_key
;
3104 struct extent_buffer
*eb
;
3107 eb
= path
->nodes
[0];
3108 slot
= path
->slots
[0];
3110 btrfs_item_key(eb
, &disk_key
, slot
- 1);
3111 if (unlikely(comp_keys(&disk_key
, new_key
) >= 0)) {
3113 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3114 slot
, btrfs_disk_key_objectid(&disk_key
),
3115 btrfs_disk_key_type(&disk_key
),
3116 btrfs_disk_key_offset(&disk_key
),
3117 new_key
->objectid
, new_key
->type
,
3119 btrfs_print_leaf(eb
);
3123 if (slot
< btrfs_header_nritems(eb
) - 1) {
3124 btrfs_item_key(eb
, &disk_key
, slot
+ 1);
3125 if (unlikely(comp_keys(&disk_key
, new_key
) <= 0)) {
3127 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3128 slot
, btrfs_disk_key_objectid(&disk_key
),
3129 btrfs_disk_key_type(&disk_key
),
3130 btrfs_disk_key_offset(&disk_key
),
3131 new_key
->objectid
, new_key
->type
,
3133 btrfs_print_leaf(eb
);
3138 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
3139 btrfs_set_item_key(eb
, &disk_key
, slot
);
3140 btrfs_mark_buffer_dirty(eb
);
3142 fixup_low_keys(path
, &disk_key
, 1);
3146 * try to push data from one node into the next node left in the
3149 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3150 * error, and > 0 if there was no room in the left hand block.
3152 static int push_node_left(struct btrfs_trans_handle
*trans
,
3153 struct extent_buffer
*dst
,
3154 struct extent_buffer
*src
, int empty
)
3156 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
3162 src_nritems
= btrfs_header_nritems(src
);
3163 dst_nritems
= btrfs_header_nritems(dst
);
3164 push_items
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - dst_nritems
;
3165 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3166 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3168 if (!empty
&& src_nritems
<= 8)
3171 if (push_items
<= 0)
3175 push_items
= min(src_nritems
, push_items
);
3176 if (push_items
< src_nritems
) {
3177 /* leave at least 8 pointers in the node if
3178 * we aren't going to empty it
3180 if (src_nritems
- push_items
< 8) {
3181 if (push_items
<= 8)
3187 push_items
= min(src_nritems
- 8, push_items
);
3189 ret
= tree_mod_log_eb_copy(dst
, src
, dst_nritems
, 0, push_items
);
3191 btrfs_abort_transaction(trans
, ret
);
3194 copy_extent_buffer(dst
, src
,
3195 btrfs_node_key_ptr_offset(dst_nritems
),
3196 btrfs_node_key_ptr_offset(0),
3197 push_items
* sizeof(struct btrfs_key_ptr
));
3199 if (push_items
< src_nritems
) {
3201 * Don't call tree_mod_log_insert_move here, key removal was
3202 * already fully logged by tree_mod_log_eb_copy above.
3204 memmove_extent_buffer(src
, btrfs_node_key_ptr_offset(0),
3205 btrfs_node_key_ptr_offset(push_items
),
3206 (src_nritems
- push_items
) *
3207 sizeof(struct btrfs_key_ptr
));
3209 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3210 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3211 btrfs_mark_buffer_dirty(src
);
3212 btrfs_mark_buffer_dirty(dst
);
3218 * try to push data from one node into the next node right in the
3221 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3222 * error, and > 0 if there was no room in the right hand block.
3224 * this will only push up to 1/2 the contents of the left node over
3226 static int balance_node_right(struct btrfs_trans_handle
*trans
,
3227 struct extent_buffer
*dst
,
3228 struct extent_buffer
*src
)
3230 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
3237 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3238 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3240 src_nritems
= btrfs_header_nritems(src
);
3241 dst_nritems
= btrfs_header_nritems(dst
);
3242 push_items
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - dst_nritems
;
3243 if (push_items
<= 0)
3246 if (src_nritems
< 4)
3249 max_push
= src_nritems
/ 2 + 1;
3250 /* don't try to empty the node */
3251 if (max_push
>= src_nritems
)
3254 if (max_push
< push_items
)
3255 push_items
= max_push
;
3257 ret
= tree_mod_log_insert_move(dst
, push_items
, 0, dst_nritems
);
3259 memmove_extent_buffer(dst
, btrfs_node_key_ptr_offset(push_items
),
3260 btrfs_node_key_ptr_offset(0),
3262 sizeof(struct btrfs_key_ptr
));
3264 ret
= tree_mod_log_eb_copy(dst
, src
, 0, src_nritems
- push_items
,
3267 btrfs_abort_transaction(trans
, ret
);
3270 copy_extent_buffer(dst
, src
,
3271 btrfs_node_key_ptr_offset(0),
3272 btrfs_node_key_ptr_offset(src_nritems
- push_items
),
3273 push_items
* sizeof(struct btrfs_key_ptr
));
3275 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3276 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3278 btrfs_mark_buffer_dirty(src
);
3279 btrfs_mark_buffer_dirty(dst
);
3285 * helper function to insert a new root level in the tree.
3286 * A new node is allocated, and a single item is inserted to
3287 * point to the existing root
3289 * returns zero on success or < 0 on failure.
3291 static noinline
int insert_new_root(struct btrfs_trans_handle
*trans
,
3292 struct btrfs_root
*root
,
3293 struct btrfs_path
*path
, int level
)
3295 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3297 struct extent_buffer
*lower
;
3298 struct extent_buffer
*c
;
3299 struct extent_buffer
*old
;
3300 struct btrfs_disk_key lower_key
;
3303 BUG_ON(path
->nodes
[level
]);
3304 BUG_ON(path
->nodes
[level
-1] != root
->node
);
3306 lower
= path
->nodes
[level
-1];
3308 btrfs_item_key(lower
, &lower_key
, 0);
3310 btrfs_node_key(lower
, &lower_key
, 0);
3312 c
= alloc_tree_block_no_bg_flush(trans
, root
, 0, &lower_key
, level
,
3313 root
->node
->start
, 0);
3317 root_add_used(root
, fs_info
->nodesize
);
3319 btrfs_set_header_nritems(c
, 1);
3320 btrfs_set_node_key(c
, &lower_key
, 0);
3321 btrfs_set_node_blockptr(c
, 0, lower
->start
);
3322 lower_gen
= btrfs_header_generation(lower
);
3323 WARN_ON(lower_gen
!= trans
->transid
);
3325 btrfs_set_node_ptr_generation(c
, 0, lower_gen
);
3327 btrfs_mark_buffer_dirty(c
);
3330 ret
= tree_mod_log_insert_root(root
->node
, c
, 0);
3332 rcu_assign_pointer(root
->node
, c
);
3334 /* the super has an extra ref to root->node */
3335 free_extent_buffer(old
);
3337 add_root_to_dirty_list(root
);
3338 atomic_inc(&c
->refs
);
3339 path
->nodes
[level
] = c
;
3340 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
3341 path
->slots
[level
] = 0;
3346 * worker function to insert a single pointer in a node.
3347 * the node should have enough room for the pointer already
3349 * slot and level indicate where you want the key to go, and
3350 * blocknr is the block the key points to.
3352 static void insert_ptr(struct btrfs_trans_handle
*trans
,
3353 struct btrfs_path
*path
,
3354 struct btrfs_disk_key
*key
, u64 bytenr
,
3355 int slot
, int level
)
3357 struct extent_buffer
*lower
;
3361 BUG_ON(!path
->nodes
[level
]);
3362 btrfs_assert_tree_locked(path
->nodes
[level
]);
3363 lower
= path
->nodes
[level
];
3364 nritems
= btrfs_header_nritems(lower
);
3365 BUG_ON(slot
> nritems
);
3366 BUG_ON(nritems
== BTRFS_NODEPTRS_PER_BLOCK(trans
->fs_info
));
3367 if (slot
!= nritems
) {
3369 ret
= tree_mod_log_insert_move(lower
, slot
+ 1, slot
,
3373 memmove_extent_buffer(lower
,
3374 btrfs_node_key_ptr_offset(slot
+ 1),
3375 btrfs_node_key_ptr_offset(slot
),
3376 (nritems
- slot
) * sizeof(struct btrfs_key_ptr
));
3379 ret
= tree_mod_log_insert_key(lower
, slot
, MOD_LOG_KEY_ADD
,
3383 btrfs_set_node_key(lower
, key
, slot
);
3384 btrfs_set_node_blockptr(lower
, slot
, bytenr
);
3385 WARN_ON(trans
->transid
== 0);
3386 btrfs_set_node_ptr_generation(lower
, slot
, trans
->transid
);
3387 btrfs_set_header_nritems(lower
, nritems
+ 1);
3388 btrfs_mark_buffer_dirty(lower
);
3392 * split the node at the specified level in path in two.
3393 * The path is corrected to point to the appropriate node after the split
3395 * Before splitting this tries to make some room in the node by pushing
3396 * left and right, if either one works, it returns right away.
3398 * returns 0 on success and < 0 on failure
3400 static noinline
int split_node(struct btrfs_trans_handle
*trans
,
3401 struct btrfs_root
*root
,
3402 struct btrfs_path
*path
, int level
)
3404 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3405 struct extent_buffer
*c
;
3406 struct extent_buffer
*split
;
3407 struct btrfs_disk_key disk_key
;
3412 c
= path
->nodes
[level
];
3413 WARN_ON(btrfs_header_generation(c
) != trans
->transid
);
3414 if (c
== root
->node
) {
3416 * trying to split the root, lets make a new one
3418 * tree mod log: We don't log_removal old root in
3419 * insert_new_root, because that root buffer will be kept as a
3420 * normal node. We are going to log removal of half of the
3421 * elements below with tree_mod_log_eb_copy. We're holding a
3422 * tree lock on the buffer, which is why we cannot race with
3423 * other tree_mod_log users.
3425 ret
= insert_new_root(trans
, root
, path
, level
+ 1);
3429 ret
= push_nodes_for_insert(trans
, root
, path
, level
);
3430 c
= path
->nodes
[level
];
3431 if (!ret
&& btrfs_header_nritems(c
) <
3432 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 3)
3438 c_nritems
= btrfs_header_nritems(c
);
3439 mid
= (c_nritems
+ 1) / 2;
3440 btrfs_node_key(c
, &disk_key
, mid
);
3442 split
= alloc_tree_block_no_bg_flush(trans
, root
, 0, &disk_key
, level
,
3445 return PTR_ERR(split
);
3447 root_add_used(root
, fs_info
->nodesize
);
3448 ASSERT(btrfs_header_level(c
) == level
);
3450 ret
= tree_mod_log_eb_copy(split
, c
, 0, mid
, c_nritems
- mid
);
3452 btrfs_abort_transaction(trans
, ret
);
3455 copy_extent_buffer(split
, c
,
3456 btrfs_node_key_ptr_offset(0),
3457 btrfs_node_key_ptr_offset(mid
),
3458 (c_nritems
- mid
) * sizeof(struct btrfs_key_ptr
));
3459 btrfs_set_header_nritems(split
, c_nritems
- mid
);
3460 btrfs_set_header_nritems(c
, mid
);
3463 btrfs_mark_buffer_dirty(c
);
3464 btrfs_mark_buffer_dirty(split
);
3466 insert_ptr(trans
, path
, &disk_key
, split
->start
,
3467 path
->slots
[level
+ 1] + 1, level
+ 1);
3469 if (path
->slots
[level
] >= mid
) {
3470 path
->slots
[level
] -= mid
;
3471 btrfs_tree_unlock(c
);
3472 free_extent_buffer(c
);
3473 path
->nodes
[level
] = split
;
3474 path
->slots
[level
+ 1] += 1;
3476 btrfs_tree_unlock(split
);
3477 free_extent_buffer(split
);
3483 * how many bytes are required to store the items in a leaf. start
3484 * and nr indicate which items in the leaf to check. This totals up the
3485 * space used both by the item structs and the item data
3487 static int leaf_space_used(struct extent_buffer
*l
, int start
, int nr
)
3489 struct btrfs_item
*start_item
;
3490 struct btrfs_item
*end_item
;
3492 int nritems
= btrfs_header_nritems(l
);
3493 int end
= min(nritems
, start
+ nr
) - 1;
3497 start_item
= btrfs_item_nr(start
);
3498 end_item
= btrfs_item_nr(end
);
3499 data_len
= btrfs_item_offset(l
, start_item
) +
3500 btrfs_item_size(l
, start_item
);
3501 data_len
= data_len
- btrfs_item_offset(l
, end_item
);
3502 data_len
+= sizeof(struct btrfs_item
) * nr
;
3503 WARN_ON(data_len
< 0);
3508 * The space between the end of the leaf items and
3509 * the start of the leaf data. IOW, how much room
3510 * the leaf has left for both items and data
3512 noinline
int btrfs_leaf_free_space(struct extent_buffer
*leaf
)
3514 struct btrfs_fs_info
*fs_info
= leaf
->fs_info
;
3515 int nritems
= btrfs_header_nritems(leaf
);
3518 ret
= BTRFS_LEAF_DATA_SIZE(fs_info
) - leaf_space_used(leaf
, 0, nritems
);
3521 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3523 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info
),
3524 leaf_space_used(leaf
, 0, nritems
), nritems
);
3530 * min slot controls the lowest index we're willing to push to the
3531 * right. We'll push up to and including min_slot, but no lower
3533 static noinline
int __push_leaf_right(struct btrfs_path
*path
,
3534 int data_size
, int empty
,
3535 struct extent_buffer
*right
,
3536 int free_space
, u32 left_nritems
,
3539 struct btrfs_fs_info
*fs_info
= right
->fs_info
;
3540 struct extent_buffer
*left
= path
->nodes
[0];
3541 struct extent_buffer
*upper
= path
->nodes
[1];
3542 struct btrfs_map_token token
;
3543 struct btrfs_disk_key disk_key
;
3548 struct btrfs_item
*item
;
3557 nr
= max_t(u32
, 1, min_slot
);
3559 if (path
->slots
[0] >= left_nritems
)
3560 push_space
+= data_size
;
3562 slot
= path
->slots
[1];
3563 i
= left_nritems
- 1;
3565 item
= btrfs_item_nr(i
);
3567 if (!empty
&& push_items
> 0) {
3568 if (path
->slots
[0] > i
)
3570 if (path
->slots
[0] == i
) {
3571 int space
= btrfs_leaf_free_space(left
);
3573 if (space
+ push_space
* 2 > free_space
)
3578 if (path
->slots
[0] == i
)
3579 push_space
+= data_size
;
3581 this_item_size
= btrfs_item_size(left
, item
);
3582 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3586 push_space
+= this_item_size
+ sizeof(*item
);
3592 if (push_items
== 0)
3595 WARN_ON(!empty
&& push_items
== left_nritems
);
3597 /* push left to right */
3598 right_nritems
= btrfs_header_nritems(right
);
3600 push_space
= btrfs_item_end_nr(left
, left_nritems
- push_items
);
3601 push_space
-= leaf_data_end(left
);
3603 /* make room in the right data area */
3604 data_end
= leaf_data_end(right
);
3605 memmove_extent_buffer(right
,
3606 BTRFS_LEAF_DATA_OFFSET
+ data_end
- push_space
,
3607 BTRFS_LEAF_DATA_OFFSET
+ data_end
,
3608 BTRFS_LEAF_DATA_SIZE(fs_info
) - data_end
);
3610 /* copy from the left data area */
3611 copy_extent_buffer(right
, left
, BTRFS_LEAF_DATA_OFFSET
+
3612 BTRFS_LEAF_DATA_SIZE(fs_info
) - push_space
,
3613 BTRFS_LEAF_DATA_OFFSET
+ leaf_data_end(left
),
3616 memmove_extent_buffer(right
, btrfs_item_nr_offset(push_items
),
3617 btrfs_item_nr_offset(0),
3618 right_nritems
* sizeof(struct btrfs_item
));
3620 /* copy the items from left to right */
3621 copy_extent_buffer(right
, left
, btrfs_item_nr_offset(0),
3622 btrfs_item_nr_offset(left_nritems
- push_items
),
3623 push_items
* sizeof(struct btrfs_item
));
3625 /* update the item pointers */
3626 btrfs_init_map_token(&token
, right
);
3627 right_nritems
+= push_items
;
3628 btrfs_set_header_nritems(right
, right_nritems
);
3629 push_space
= BTRFS_LEAF_DATA_SIZE(fs_info
);
3630 for (i
= 0; i
< right_nritems
; i
++) {
3631 item
= btrfs_item_nr(i
);
3632 push_space
-= btrfs_token_item_size(&token
, item
);
3633 btrfs_set_token_item_offset(&token
, item
, push_space
);
3636 left_nritems
-= push_items
;
3637 btrfs_set_header_nritems(left
, left_nritems
);
3640 btrfs_mark_buffer_dirty(left
);
3642 btrfs_clean_tree_block(left
);
3644 btrfs_mark_buffer_dirty(right
);
3646 btrfs_item_key(right
, &disk_key
, 0);
3647 btrfs_set_node_key(upper
, &disk_key
, slot
+ 1);
3648 btrfs_mark_buffer_dirty(upper
);
3650 /* then fixup the leaf pointer in the path */
3651 if (path
->slots
[0] >= left_nritems
) {
3652 path
->slots
[0] -= left_nritems
;
3653 if (btrfs_header_nritems(path
->nodes
[0]) == 0)
3654 btrfs_clean_tree_block(path
->nodes
[0]);
3655 btrfs_tree_unlock(path
->nodes
[0]);
3656 free_extent_buffer(path
->nodes
[0]);
3657 path
->nodes
[0] = right
;
3658 path
->slots
[1] += 1;
3660 btrfs_tree_unlock(right
);
3661 free_extent_buffer(right
);
3666 btrfs_tree_unlock(right
);
3667 free_extent_buffer(right
);
3672 * push some data in the path leaf to the right, trying to free up at
3673 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3675 * returns 1 if the push failed because the other node didn't have enough
3676 * room, 0 if everything worked out and < 0 if there were major errors.
3678 * this will push starting from min_slot to the end of the leaf. It won't
3679 * push any slot lower than min_slot
3681 static int push_leaf_right(struct btrfs_trans_handle
*trans
, struct btrfs_root
3682 *root
, struct btrfs_path
*path
,
3683 int min_data_size
, int data_size
,
3684 int empty
, u32 min_slot
)
3686 struct extent_buffer
*left
= path
->nodes
[0];
3687 struct extent_buffer
*right
;
3688 struct extent_buffer
*upper
;
3694 if (!path
->nodes
[1])
3697 slot
= path
->slots
[1];
3698 upper
= path
->nodes
[1];
3699 if (slot
>= btrfs_header_nritems(upper
) - 1)
3702 btrfs_assert_tree_locked(path
->nodes
[1]);
3704 right
= btrfs_read_node_slot(upper
, slot
+ 1);
3706 * slot + 1 is not valid or we fail to read the right node,
3707 * no big deal, just return.
3712 btrfs_tree_lock(right
);
3713 btrfs_set_lock_blocking_write(right
);
3715 free_space
= btrfs_leaf_free_space(right
);
3716 if (free_space
< data_size
)
3719 /* cow and double check */
3720 ret
= btrfs_cow_block(trans
, root
, right
, upper
,
3725 free_space
= btrfs_leaf_free_space(right
);
3726 if (free_space
< data_size
)
3729 left_nritems
= btrfs_header_nritems(left
);
3730 if (left_nritems
== 0)
3733 if (path
->slots
[0] == left_nritems
&& !empty
) {
3734 /* Key greater than all keys in the leaf, right neighbor has
3735 * enough room for it and we're not emptying our leaf to delete
3736 * it, therefore use right neighbor to insert the new item and
3737 * no need to touch/dirty our left leaf. */
3738 btrfs_tree_unlock(left
);
3739 free_extent_buffer(left
);
3740 path
->nodes
[0] = right
;
3746 return __push_leaf_right(path
, min_data_size
, empty
,
3747 right
, free_space
, left_nritems
, min_slot
);
3749 btrfs_tree_unlock(right
);
3750 free_extent_buffer(right
);
3755 * push some data in the path leaf to the left, trying to free up at
3756 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3758 * max_slot can put a limit on how far into the leaf we'll push items. The
3759 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3762 static noinline
int __push_leaf_left(struct btrfs_path
*path
, int data_size
,
3763 int empty
, struct extent_buffer
*left
,
3764 int free_space
, u32 right_nritems
,
3767 struct btrfs_fs_info
*fs_info
= left
->fs_info
;
3768 struct btrfs_disk_key disk_key
;
3769 struct extent_buffer
*right
= path
->nodes
[0];
3773 struct btrfs_item
*item
;
3774 u32 old_left_nritems
;
3778 u32 old_left_item_size
;
3779 struct btrfs_map_token token
;
3782 nr
= min(right_nritems
, max_slot
);
3784 nr
= min(right_nritems
- 1, max_slot
);
3786 for (i
= 0; i
< nr
; i
++) {
3787 item
= btrfs_item_nr(i
);
3789 if (!empty
&& push_items
> 0) {
3790 if (path
->slots
[0] < i
)
3792 if (path
->slots
[0] == i
) {
3793 int space
= btrfs_leaf_free_space(right
);
3795 if (space
+ push_space
* 2 > free_space
)
3800 if (path
->slots
[0] == i
)
3801 push_space
+= data_size
;
3803 this_item_size
= btrfs_item_size(right
, item
);
3804 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3808 push_space
+= this_item_size
+ sizeof(*item
);
3811 if (push_items
== 0) {
3815 WARN_ON(!empty
&& push_items
== btrfs_header_nritems(right
));
3817 /* push data from right to left */
3818 copy_extent_buffer(left
, right
,
3819 btrfs_item_nr_offset(btrfs_header_nritems(left
)),
3820 btrfs_item_nr_offset(0),
3821 push_items
* sizeof(struct btrfs_item
));
3823 push_space
= BTRFS_LEAF_DATA_SIZE(fs_info
) -
3824 btrfs_item_offset_nr(right
, push_items
- 1);
3826 copy_extent_buffer(left
, right
, BTRFS_LEAF_DATA_OFFSET
+
3827 leaf_data_end(left
) - push_space
,
3828 BTRFS_LEAF_DATA_OFFSET
+
3829 btrfs_item_offset_nr(right
, push_items
- 1),
3831 old_left_nritems
= btrfs_header_nritems(left
);
3832 BUG_ON(old_left_nritems
<= 0);
3834 btrfs_init_map_token(&token
, left
);
3835 old_left_item_size
= btrfs_item_offset_nr(left
, old_left_nritems
- 1);
3836 for (i
= old_left_nritems
; i
< old_left_nritems
+ push_items
; i
++) {
3839 item
= btrfs_item_nr(i
);
3841 ioff
= btrfs_token_item_offset(&token
, item
);
3842 btrfs_set_token_item_offset(&token
, item
,
3843 ioff
- (BTRFS_LEAF_DATA_SIZE(fs_info
) - old_left_item_size
));
3845 btrfs_set_header_nritems(left
, old_left_nritems
+ push_items
);
3847 /* fixup right node */
3848 if (push_items
> right_nritems
)
3849 WARN(1, KERN_CRIT
"push items %d nr %u\n", push_items
,
3852 if (push_items
< right_nritems
) {
3853 push_space
= btrfs_item_offset_nr(right
, push_items
- 1) -
3854 leaf_data_end(right
);
3855 memmove_extent_buffer(right
, BTRFS_LEAF_DATA_OFFSET
+
3856 BTRFS_LEAF_DATA_SIZE(fs_info
) - push_space
,
3857 BTRFS_LEAF_DATA_OFFSET
+
3858 leaf_data_end(right
), push_space
);
3860 memmove_extent_buffer(right
, btrfs_item_nr_offset(0),
3861 btrfs_item_nr_offset(push_items
),
3862 (btrfs_header_nritems(right
) - push_items
) *
3863 sizeof(struct btrfs_item
));
3866 btrfs_init_map_token(&token
, right
);
3867 right_nritems
-= push_items
;
3868 btrfs_set_header_nritems(right
, right_nritems
);
3869 push_space
= BTRFS_LEAF_DATA_SIZE(fs_info
);
3870 for (i
= 0; i
< right_nritems
; i
++) {
3871 item
= btrfs_item_nr(i
);
3873 push_space
= push_space
- btrfs_token_item_size(&token
, item
);
3874 btrfs_set_token_item_offset(&token
, item
, push_space
);
3877 btrfs_mark_buffer_dirty(left
);
3879 btrfs_mark_buffer_dirty(right
);
3881 btrfs_clean_tree_block(right
);
3883 btrfs_item_key(right
, &disk_key
, 0);
3884 fixup_low_keys(path
, &disk_key
, 1);
3886 /* then fixup the leaf pointer in the path */
3887 if (path
->slots
[0] < push_items
) {
3888 path
->slots
[0] += old_left_nritems
;
3889 btrfs_tree_unlock(path
->nodes
[0]);
3890 free_extent_buffer(path
->nodes
[0]);
3891 path
->nodes
[0] = left
;
3892 path
->slots
[1] -= 1;
3894 btrfs_tree_unlock(left
);
3895 free_extent_buffer(left
);
3896 path
->slots
[0] -= push_items
;
3898 BUG_ON(path
->slots
[0] < 0);
3901 btrfs_tree_unlock(left
);
3902 free_extent_buffer(left
);
3907 * push some data in the path leaf to the left, trying to free up at
3908 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3910 * max_slot can put a limit on how far into the leaf we'll push items. The
3911 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3914 static int push_leaf_left(struct btrfs_trans_handle
*trans
, struct btrfs_root
3915 *root
, struct btrfs_path
*path
, int min_data_size
,
3916 int data_size
, int empty
, u32 max_slot
)
3918 struct extent_buffer
*right
= path
->nodes
[0];
3919 struct extent_buffer
*left
;
3925 slot
= path
->slots
[1];
3928 if (!path
->nodes
[1])
3931 right_nritems
= btrfs_header_nritems(right
);
3932 if (right_nritems
== 0)
3935 btrfs_assert_tree_locked(path
->nodes
[1]);
3937 left
= btrfs_read_node_slot(path
->nodes
[1], slot
- 1);
3939 * slot - 1 is not valid or we fail to read the left node,
3940 * no big deal, just return.
3945 btrfs_tree_lock(left
);
3946 btrfs_set_lock_blocking_write(left
);
3948 free_space
= btrfs_leaf_free_space(left
);
3949 if (free_space
< data_size
) {
3954 /* cow and double check */
3955 ret
= btrfs_cow_block(trans
, root
, left
,
3956 path
->nodes
[1], slot
- 1, &left
);
3958 /* we hit -ENOSPC, but it isn't fatal here */
3964 free_space
= btrfs_leaf_free_space(left
);
3965 if (free_space
< data_size
) {
3970 return __push_leaf_left(path
, min_data_size
,
3971 empty
, left
, free_space
, right_nritems
,
3974 btrfs_tree_unlock(left
);
3975 free_extent_buffer(left
);
3980 * split the path's leaf in two, making sure there is at least data_size
3981 * available for the resulting leaf level of the path.
3983 static noinline
void copy_for_split(struct btrfs_trans_handle
*trans
,
3984 struct btrfs_path
*path
,
3985 struct extent_buffer
*l
,
3986 struct extent_buffer
*right
,
3987 int slot
, int mid
, int nritems
)
3989 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
3993 struct btrfs_disk_key disk_key
;
3994 struct btrfs_map_token token
;
3996 nritems
= nritems
- mid
;
3997 btrfs_set_header_nritems(right
, nritems
);
3998 data_copy_size
= btrfs_item_end_nr(l
, mid
) - leaf_data_end(l
);
4000 copy_extent_buffer(right
, l
, btrfs_item_nr_offset(0),
4001 btrfs_item_nr_offset(mid
),
4002 nritems
* sizeof(struct btrfs_item
));
4004 copy_extent_buffer(right
, l
,
4005 BTRFS_LEAF_DATA_OFFSET
+ BTRFS_LEAF_DATA_SIZE(fs_info
) -
4006 data_copy_size
, BTRFS_LEAF_DATA_OFFSET
+
4007 leaf_data_end(l
), data_copy_size
);
4009 rt_data_off
= BTRFS_LEAF_DATA_SIZE(fs_info
) - btrfs_item_end_nr(l
, mid
);
4011 btrfs_init_map_token(&token
, right
);
4012 for (i
= 0; i
< nritems
; i
++) {
4013 struct btrfs_item
*item
= btrfs_item_nr(i
);
4016 ioff
= btrfs_token_item_offset(&token
, item
);
4017 btrfs_set_token_item_offset(&token
, item
, ioff
+ rt_data_off
);
4020 btrfs_set_header_nritems(l
, mid
);
4021 btrfs_item_key(right
, &disk_key
, 0);
4022 insert_ptr(trans
, path
, &disk_key
, right
->start
, path
->slots
[1] + 1, 1);
4024 btrfs_mark_buffer_dirty(right
);
4025 btrfs_mark_buffer_dirty(l
);
4026 BUG_ON(path
->slots
[0] != slot
);
4029 btrfs_tree_unlock(path
->nodes
[0]);
4030 free_extent_buffer(path
->nodes
[0]);
4031 path
->nodes
[0] = right
;
4032 path
->slots
[0] -= mid
;
4033 path
->slots
[1] += 1;
4035 btrfs_tree_unlock(right
);
4036 free_extent_buffer(right
);
4039 BUG_ON(path
->slots
[0] < 0);
4043 * double splits happen when we need to insert a big item in the middle
4044 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4045 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4048 * We avoid this by trying to push the items on either side of our target
4049 * into the adjacent leaves. If all goes well we can avoid the double split
4052 static noinline
int push_for_double_split(struct btrfs_trans_handle
*trans
,
4053 struct btrfs_root
*root
,
4054 struct btrfs_path
*path
,
4061 int space_needed
= data_size
;
4063 slot
= path
->slots
[0];
4064 if (slot
< btrfs_header_nritems(path
->nodes
[0]))
4065 space_needed
-= btrfs_leaf_free_space(path
->nodes
[0]);
4068 * try to push all the items after our slot into the
4071 ret
= push_leaf_right(trans
, root
, path
, 1, space_needed
, 0, slot
);
4078 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4080 * our goal is to get our slot at the start or end of a leaf. If
4081 * we've done so we're done
4083 if (path
->slots
[0] == 0 || path
->slots
[0] == nritems
)
4086 if (btrfs_leaf_free_space(path
->nodes
[0]) >= data_size
)
4089 /* try to push all the items before our slot into the next leaf */
4090 slot
= path
->slots
[0];
4091 space_needed
= data_size
;
4093 space_needed
-= btrfs_leaf_free_space(path
->nodes
[0]);
4094 ret
= push_leaf_left(trans
, root
, path
, 1, space_needed
, 0, slot
);
4107 * split the path's leaf in two, making sure there is at least data_size
4108 * available for the resulting leaf level of the path.
4110 * returns 0 if all went well and < 0 on failure.
4112 static noinline
int split_leaf(struct btrfs_trans_handle
*trans
,
4113 struct btrfs_root
*root
,
4114 const struct btrfs_key
*ins_key
,
4115 struct btrfs_path
*path
, int data_size
,
4118 struct btrfs_disk_key disk_key
;
4119 struct extent_buffer
*l
;
4123 struct extent_buffer
*right
;
4124 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4128 int num_doubles
= 0;
4129 int tried_avoid_double
= 0;
4132 slot
= path
->slots
[0];
4133 if (extend
&& data_size
+ btrfs_item_size_nr(l
, slot
) +
4134 sizeof(struct btrfs_item
) > BTRFS_LEAF_DATA_SIZE(fs_info
))
4137 /* first try to make some room by pushing left and right */
4138 if (data_size
&& path
->nodes
[1]) {
4139 int space_needed
= data_size
;
4141 if (slot
< btrfs_header_nritems(l
))
4142 space_needed
-= btrfs_leaf_free_space(l
);
4144 wret
= push_leaf_right(trans
, root
, path
, space_needed
,
4145 space_needed
, 0, 0);
4149 space_needed
= data_size
;
4151 space_needed
-= btrfs_leaf_free_space(l
);
4152 wret
= push_leaf_left(trans
, root
, path
, space_needed
,
4153 space_needed
, 0, (u32
)-1);
4159 /* did the pushes work? */
4160 if (btrfs_leaf_free_space(l
) >= data_size
)
4164 if (!path
->nodes
[1]) {
4165 ret
= insert_new_root(trans
, root
, path
, 1);
4172 slot
= path
->slots
[0];
4173 nritems
= btrfs_header_nritems(l
);
4174 mid
= (nritems
+ 1) / 2;
4178 leaf_space_used(l
, mid
, nritems
- mid
) + data_size
>
4179 BTRFS_LEAF_DATA_SIZE(fs_info
)) {
4180 if (slot
>= nritems
) {
4184 if (mid
!= nritems
&&
4185 leaf_space_used(l
, mid
, nritems
- mid
) +
4186 data_size
> BTRFS_LEAF_DATA_SIZE(fs_info
)) {
4187 if (data_size
&& !tried_avoid_double
)
4188 goto push_for_double
;
4194 if (leaf_space_used(l
, 0, mid
) + data_size
>
4195 BTRFS_LEAF_DATA_SIZE(fs_info
)) {
4196 if (!extend
&& data_size
&& slot
== 0) {
4198 } else if ((extend
|| !data_size
) && slot
== 0) {
4202 if (mid
!= nritems
&&
4203 leaf_space_used(l
, mid
, nritems
- mid
) +
4204 data_size
> BTRFS_LEAF_DATA_SIZE(fs_info
)) {
4205 if (data_size
&& !tried_avoid_double
)
4206 goto push_for_double
;
4214 btrfs_cpu_key_to_disk(&disk_key
, ins_key
);
4216 btrfs_item_key(l
, &disk_key
, mid
);
4218 right
= alloc_tree_block_no_bg_flush(trans
, root
, 0, &disk_key
, 0,
4221 return PTR_ERR(right
);
4223 root_add_used(root
, fs_info
->nodesize
);
4227 btrfs_set_header_nritems(right
, 0);
4228 insert_ptr(trans
, path
, &disk_key
,
4229 right
->start
, path
->slots
[1] + 1, 1);
4230 btrfs_tree_unlock(path
->nodes
[0]);
4231 free_extent_buffer(path
->nodes
[0]);
4232 path
->nodes
[0] = right
;
4234 path
->slots
[1] += 1;
4236 btrfs_set_header_nritems(right
, 0);
4237 insert_ptr(trans
, path
, &disk_key
,
4238 right
->start
, path
->slots
[1], 1);
4239 btrfs_tree_unlock(path
->nodes
[0]);
4240 free_extent_buffer(path
->nodes
[0]);
4241 path
->nodes
[0] = right
;
4243 if (path
->slots
[1] == 0)
4244 fixup_low_keys(path
, &disk_key
, 1);
4247 * We create a new leaf 'right' for the required ins_len and
4248 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4249 * the content of ins_len to 'right'.
4254 copy_for_split(trans
, path
, l
, right
, slot
, mid
, nritems
);
4257 BUG_ON(num_doubles
!= 0);
4265 push_for_double_split(trans
, root
, path
, data_size
);
4266 tried_avoid_double
= 1;
4267 if (btrfs_leaf_free_space(path
->nodes
[0]) >= data_size
)
4272 static noinline
int setup_leaf_for_split(struct btrfs_trans_handle
*trans
,
4273 struct btrfs_root
*root
,
4274 struct btrfs_path
*path
, int ins_len
)
4276 struct btrfs_key key
;
4277 struct extent_buffer
*leaf
;
4278 struct btrfs_file_extent_item
*fi
;
4283 leaf
= path
->nodes
[0];
4284 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4286 BUG_ON(key
.type
!= BTRFS_EXTENT_DATA_KEY
&&
4287 key
.type
!= BTRFS_EXTENT_CSUM_KEY
);
4289 if (btrfs_leaf_free_space(leaf
) >= ins_len
)
4292 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4293 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4294 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4295 struct btrfs_file_extent_item
);
4296 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
4298 btrfs_release_path(path
);
4300 path
->keep_locks
= 1;
4301 path
->search_for_split
= 1;
4302 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
4303 path
->search_for_split
= 0;
4310 leaf
= path
->nodes
[0];
4311 /* if our item isn't there, return now */
4312 if (item_size
!= btrfs_item_size_nr(leaf
, path
->slots
[0]))
4315 /* the leaf has changed, it now has room. return now */
4316 if (btrfs_leaf_free_space(path
->nodes
[0]) >= ins_len
)
4319 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4320 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4321 struct btrfs_file_extent_item
);
4322 if (extent_len
!= btrfs_file_extent_num_bytes(leaf
, fi
))
4326 btrfs_set_path_blocking(path
);
4327 ret
= split_leaf(trans
, root
, &key
, path
, ins_len
, 1);
4331 path
->keep_locks
= 0;
4332 btrfs_unlock_up_safe(path
, 1);
4335 path
->keep_locks
= 0;
4339 static noinline
int split_item(struct btrfs_path
*path
,
4340 const struct btrfs_key
*new_key
,
4341 unsigned long split_offset
)
4343 struct extent_buffer
*leaf
;
4344 struct btrfs_item
*item
;
4345 struct btrfs_item
*new_item
;
4351 struct btrfs_disk_key disk_key
;
4353 leaf
= path
->nodes
[0];
4354 BUG_ON(btrfs_leaf_free_space(leaf
) < sizeof(struct btrfs_item
));
4356 btrfs_set_path_blocking(path
);
4358 item
= btrfs_item_nr(path
->slots
[0]);
4359 orig_offset
= btrfs_item_offset(leaf
, item
);
4360 item_size
= btrfs_item_size(leaf
, item
);
4362 buf
= kmalloc(item_size
, GFP_NOFS
);
4366 read_extent_buffer(leaf
, buf
, btrfs_item_ptr_offset(leaf
,
4367 path
->slots
[0]), item_size
);
4369 slot
= path
->slots
[0] + 1;
4370 nritems
= btrfs_header_nritems(leaf
);
4371 if (slot
!= nritems
) {
4372 /* shift the items */
4373 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ 1),
4374 btrfs_item_nr_offset(slot
),
4375 (nritems
- slot
) * sizeof(struct btrfs_item
));
4378 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
4379 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4381 new_item
= btrfs_item_nr(slot
);
4383 btrfs_set_item_offset(leaf
, new_item
, orig_offset
);
4384 btrfs_set_item_size(leaf
, new_item
, item_size
- split_offset
);
4386 btrfs_set_item_offset(leaf
, item
,
4387 orig_offset
+ item_size
- split_offset
);
4388 btrfs_set_item_size(leaf
, item
, split_offset
);
4390 btrfs_set_header_nritems(leaf
, nritems
+ 1);
4392 /* write the data for the start of the original item */
4393 write_extent_buffer(leaf
, buf
,
4394 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4397 /* write the data for the new item */
4398 write_extent_buffer(leaf
, buf
+ split_offset
,
4399 btrfs_item_ptr_offset(leaf
, slot
),
4400 item_size
- split_offset
);
4401 btrfs_mark_buffer_dirty(leaf
);
4403 BUG_ON(btrfs_leaf_free_space(leaf
) < 0);
4409 * This function splits a single item into two items,
4410 * giving 'new_key' to the new item and splitting the
4411 * old one at split_offset (from the start of the item).
4413 * The path may be released by this operation. After
4414 * the split, the path is pointing to the old item. The
4415 * new item is going to be in the same node as the old one.
4417 * Note, the item being split must be smaller enough to live alone on
4418 * a tree block with room for one extra struct btrfs_item
4420 * This allows us to split the item in place, keeping a lock on the
4421 * leaf the entire time.
4423 int btrfs_split_item(struct btrfs_trans_handle
*trans
,
4424 struct btrfs_root
*root
,
4425 struct btrfs_path
*path
,
4426 const struct btrfs_key
*new_key
,
4427 unsigned long split_offset
)
4430 ret
= setup_leaf_for_split(trans
, root
, path
,
4431 sizeof(struct btrfs_item
));
4435 ret
= split_item(path
, new_key
, split_offset
);
4440 * This function duplicate a item, giving 'new_key' to the new item.
4441 * It guarantees both items live in the same tree leaf and the new item
4442 * is contiguous with the original item.
4444 * This allows us to split file extent in place, keeping a lock on the
4445 * leaf the entire time.
4447 int btrfs_duplicate_item(struct btrfs_trans_handle
*trans
,
4448 struct btrfs_root
*root
,
4449 struct btrfs_path
*path
,
4450 const struct btrfs_key
*new_key
)
4452 struct extent_buffer
*leaf
;
4456 leaf
= path
->nodes
[0];
4457 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4458 ret
= setup_leaf_for_split(trans
, root
, path
,
4459 item_size
+ sizeof(struct btrfs_item
));
4464 setup_items_for_insert(root
, path
, new_key
, &item_size
,
4465 item_size
, item_size
+
4466 sizeof(struct btrfs_item
), 1);
4467 leaf
= path
->nodes
[0];
4468 memcpy_extent_buffer(leaf
,
4469 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4470 btrfs_item_ptr_offset(leaf
, path
->slots
[0] - 1),
4476 * make the item pointed to by the path smaller. new_size indicates
4477 * how small to make it, and from_end tells us if we just chop bytes
4478 * off the end of the item or if we shift the item to chop bytes off
4481 void btrfs_truncate_item(struct btrfs_path
*path
, u32 new_size
, int from_end
)
4484 struct extent_buffer
*leaf
;
4485 struct btrfs_item
*item
;
4487 unsigned int data_end
;
4488 unsigned int old_data_start
;
4489 unsigned int old_size
;
4490 unsigned int size_diff
;
4492 struct btrfs_map_token token
;
4494 leaf
= path
->nodes
[0];
4495 slot
= path
->slots
[0];
4497 old_size
= btrfs_item_size_nr(leaf
, slot
);
4498 if (old_size
== new_size
)
4501 nritems
= btrfs_header_nritems(leaf
);
4502 data_end
= leaf_data_end(leaf
);
4504 old_data_start
= btrfs_item_offset_nr(leaf
, slot
);
4506 size_diff
= old_size
- new_size
;
4509 BUG_ON(slot
>= nritems
);
4512 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4514 /* first correct the data pointers */
4515 btrfs_init_map_token(&token
, leaf
);
4516 for (i
= slot
; i
< nritems
; i
++) {
4518 item
= btrfs_item_nr(i
);
4520 ioff
= btrfs_token_item_offset(&token
, item
);
4521 btrfs_set_token_item_offset(&token
, item
, ioff
+ size_diff
);
4524 /* shift the data */
4526 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4527 data_end
+ size_diff
, BTRFS_LEAF_DATA_OFFSET
+
4528 data_end
, old_data_start
+ new_size
- data_end
);
4530 struct btrfs_disk_key disk_key
;
4533 btrfs_item_key(leaf
, &disk_key
, slot
);
4535 if (btrfs_disk_key_type(&disk_key
) == BTRFS_EXTENT_DATA_KEY
) {
4537 struct btrfs_file_extent_item
*fi
;
4539 fi
= btrfs_item_ptr(leaf
, slot
,
4540 struct btrfs_file_extent_item
);
4541 fi
= (struct btrfs_file_extent_item
*)(
4542 (unsigned long)fi
- size_diff
);
4544 if (btrfs_file_extent_type(leaf
, fi
) ==
4545 BTRFS_FILE_EXTENT_INLINE
) {
4546 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
4547 memmove_extent_buffer(leaf
, ptr
,
4549 BTRFS_FILE_EXTENT_INLINE_DATA_START
);
4553 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4554 data_end
+ size_diff
, BTRFS_LEAF_DATA_OFFSET
+
4555 data_end
, old_data_start
- data_end
);
4557 offset
= btrfs_disk_key_offset(&disk_key
);
4558 btrfs_set_disk_key_offset(&disk_key
, offset
+ size_diff
);
4559 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4561 fixup_low_keys(path
, &disk_key
, 1);
4564 item
= btrfs_item_nr(slot
);
4565 btrfs_set_item_size(leaf
, item
, new_size
);
4566 btrfs_mark_buffer_dirty(leaf
);
4568 if (btrfs_leaf_free_space(leaf
) < 0) {
4569 btrfs_print_leaf(leaf
);
4575 * make the item pointed to by the path bigger, data_size is the added size.
4577 void btrfs_extend_item(struct btrfs_path
*path
, u32 data_size
)
4580 struct extent_buffer
*leaf
;
4581 struct btrfs_item
*item
;
4583 unsigned int data_end
;
4584 unsigned int old_data
;
4585 unsigned int old_size
;
4587 struct btrfs_map_token token
;
4589 leaf
= path
->nodes
[0];
4591 nritems
= btrfs_header_nritems(leaf
);
4592 data_end
= leaf_data_end(leaf
);
4594 if (btrfs_leaf_free_space(leaf
) < data_size
) {
4595 btrfs_print_leaf(leaf
);
4598 slot
= path
->slots
[0];
4599 old_data
= btrfs_item_end_nr(leaf
, slot
);
4602 if (slot
>= nritems
) {
4603 btrfs_print_leaf(leaf
);
4604 btrfs_crit(leaf
->fs_info
, "slot %d too large, nritems %d",
4610 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4612 /* first correct the data pointers */
4613 btrfs_init_map_token(&token
, leaf
);
4614 for (i
= slot
; i
< nritems
; i
++) {
4616 item
= btrfs_item_nr(i
);
4618 ioff
= btrfs_token_item_offset(&token
, item
);
4619 btrfs_set_token_item_offset(&token
, item
, ioff
- data_size
);
4622 /* shift the data */
4623 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4624 data_end
- data_size
, BTRFS_LEAF_DATA_OFFSET
+
4625 data_end
, old_data
- data_end
);
4627 data_end
= old_data
;
4628 old_size
= btrfs_item_size_nr(leaf
, slot
);
4629 item
= btrfs_item_nr(slot
);
4630 btrfs_set_item_size(leaf
, item
, old_size
+ data_size
);
4631 btrfs_mark_buffer_dirty(leaf
);
4633 if (btrfs_leaf_free_space(leaf
) < 0) {
4634 btrfs_print_leaf(leaf
);
4640 * this is a helper for btrfs_insert_empty_items, the main goal here is
4641 * to save stack depth by doing the bulk of the work in a function
4642 * that doesn't call btrfs_search_slot
4644 void setup_items_for_insert(struct btrfs_root
*root
, struct btrfs_path
*path
,
4645 const struct btrfs_key
*cpu_key
, u32
*data_size
,
4646 u32 total_data
, u32 total_size
, int nr
)
4648 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4649 struct btrfs_item
*item
;
4652 unsigned int data_end
;
4653 struct btrfs_disk_key disk_key
;
4654 struct extent_buffer
*leaf
;
4656 struct btrfs_map_token token
;
4658 if (path
->slots
[0] == 0) {
4659 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
4660 fixup_low_keys(path
, &disk_key
, 1);
4662 btrfs_unlock_up_safe(path
, 1);
4664 leaf
= path
->nodes
[0];
4665 slot
= path
->slots
[0];
4667 nritems
= btrfs_header_nritems(leaf
);
4668 data_end
= leaf_data_end(leaf
);
4670 if (btrfs_leaf_free_space(leaf
) < total_size
) {
4671 btrfs_print_leaf(leaf
);
4672 btrfs_crit(fs_info
, "not enough freespace need %u have %d",
4673 total_size
, btrfs_leaf_free_space(leaf
));
4677 btrfs_init_map_token(&token
, leaf
);
4678 if (slot
!= nritems
) {
4679 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
4681 if (old_data
< data_end
) {
4682 btrfs_print_leaf(leaf
);
4683 btrfs_crit(fs_info
, "slot %d old_data %d data_end %d",
4684 slot
, old_data
, data_end
);
4688 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4690 /* first correct the data pointers */
4691 for (i
= slot
; i
< nritems
; i
++) {
4694 item
= btrfs_item_nr(i
);
4695 ioff
= btrfs_token_item_offset(&token
, item
);
4696 btrfs_set_token_item_offset(&token
, item
,
4699 /* shift the items */
4700 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
4701 btrfs_item_nr_offset(slot
),
4702 (nritems
- slot
) * sizeof(struct btrfs_item
));
4704 /* shift the data */
4705 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4706 data_end
- total_data
, BTRFS_LEAF_DATA_OFFSET
+
4707 data_end
, old_data
- data_end
);
4708 data_end
= old_data
;
4711 /* setup the item for the new data */
4712 for (i
= 0; i
< nr
; i
++) {
4713 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
4714 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
4715 item
= btrfs_item_nr(slot
+ i
);
4716 btrfs_set_token_item_offset(&token
, item
, data_end
- data_size
[i
]);
4717 data_end
-= data_size
[i
];
4718 btrfs_set_token_item_size(&token
, item
, data_size
[i
]);
4721 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
4722 btrfs_mark_buffer_dirty(leaf
);
4724 if (btrfs_leaf_free_space(leaf
) < 0) {
4725 btrfs_print_leaf(leaf
);
4731 * Given a key and some data, insert items into the tree.
4732 * This does all the path init required, making room in the tree if needed.
4734 int btrfs_insert_empty_items(struct btrfs_trans_handle
*trans
,
4735 struct btrfs_root
*root
,
4736 struct btrfs_path
*path
,
4737 const struct btrfs_key
*cpu_key
, u32
*data_size
,
4746 for (i
= 0; i
< nr
; i
++)
4747 total_data
+= data_size
[i
];
4749 total_size
= total_data
+ (nr
* sizeof(struct btrfs_item
));
4750 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
4756 slot
= path
->slots
[0];
4759 setup_items_for_insert(root
, path
, cpu_key
, data_size
,
4760 total_data
, total_size
, nr
);
4765 * Given a key and some data, insert an item into the tree.
4766 * This does all the path init required, making room in the tree if needed.
4768 int btrfs_insert_item(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4769 const struct btrfs_key
*cpu_key
, void *data
,
4773 struct btrfs_path
*path
;
4774 struct extent_buffer
*leaf
;
4777 path
= btrfs_alloc_path();
4780 ret
= btrfs_insert_empty_item(trans
, root
, path
, cpu_key
, data_size
);
4782 leaf
= path
->nodes
[0];
4783 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
4784 write_extent_buffer(leaf
, data
, ptr
, data_size
);
4785 btrfs_mark_buffer_dirty(leaf
);
4787 btrfs_free_path(path
);
4792 * delete the pointer from a given node.
4794 * the tree should have been previously balanced so the deletion does not
4797 static void del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
,
4798 int level
, int slot
)
4800 struct extent_buffer
*parent
= path
->nodes
[level
];
4804 nritems
= btrfs_header_nritems(parent
);
4805 if (slot
!= nritems
- 1) {
4807 ret
= tree_mod_log_insert_move(parent
, slot
, slot
+ 1,
4808 nritems
- slot
- 1);
4811 memmove_extent_buffer(parent
,
4812 btrfs_node_key_ptr_offset(slot
),
4813 btrfs_node_key_ptr_offset(slot
+ 1),
4814 sizeof(struct btrfs_key_ptr
) *
4815 (nritems
- slot
- 1));
4817 ret
= tree_mod_log_insert_key(parent
, slot
, MOD_LOG_KEY_REMOVE
,
4823 btrfs_set_header_nritems(parent
, nritems
);
4824 if (nritems
== 0 && parent
== root
->node
) {
4825 BUG_ON(btrfs_header_level(root
->node
) != 1);
4826 /* just turn the root into a leaf and break */
4827 btrfs_set_header_level(root
->node
, 0);
4828 } else if (slot
== 0) {
4829 struct btrfs_disk_key disk_key
;
4831 btrfs_node_key(parent
, &disk_key
, 0);
4832 fixup_low_keys(path
, &disk_key
, level
+ 1);
4834 btrfs_mark_buffer_dirty(parent
);
4838 * a helper function to delete the leaf pointed to by path->slots[1] and
4841 * This deletes the pointer in path->nodes[1] and frees the leaf
4842 * block extent. zero is returned if it all worked out, < 0 otherwise.
4844 * The path must have already been setup for deleting the leaf, including
4845 * all the proper balancing. path->nodes[1] must be locked.
4847 static noinline
void btrfs_del_leaf(struct btrfs_trans_handle
*trans
,
4848 struct btrfs_root
*root
,
4849 struct btrfs_path
*path
,
4850 struct extent_buffer
*leaf
)
4852 WARN_ON(btrfs_header_generation(leaf
) != trans
->transid
);
4853 del_ptr(root
, path
, 1, path
->slots
[1]);
4856 * btrfs_free_extent is expensive, we want to make sure we
4857 * aren't holding any locks when we call it
4859 btrfs_unlock_up_safe(path
, 0);
4861 root_sub_used(root
, leaf
->len
);
4863 atomic_inc(&leaf
->refs
);
4864 btrfs_free_tree_block(trans
, root
, leaf
, 0, 1);
4865 free_extent_buffer_stale(leaf
);
4868 * delete the item at the leaf level in path. If that empties
4869 * the leaf, remove it from the tree
4871 int btrfs_del_items(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4872 struct btrfs_path
*path
, int slot
, int nr
)
4874 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4875 struct extent_buffer
*leaf
;
4876 struct btrfs_item
*item
;
4884 leaf
= path
->nodes
[0];
4885 last_off
= btrfs_item_offset_nr(leaf
, slot
+ nr
- 1);
4887 for (i
= 0; i
< nr
; i
++)
4888 dsize
+= btrfs_item_size_nr(leaf
, slot
+ i
);
4890 nritems
= btrfs_header_nritems(leaf
);
4892 if (slot
+ nr
!= nritems
) {
4893 int data_end
= leaf_data_end(leaf
);
4894 struct btrfs_map_token token
;
4896 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4898 BTRFS_LEAF_DATA_OFFSET
+ data_end
,
4899 last_off
- data_end
);
4901 btrfs_init_map_token(&token
, leaf
);
4902 for (i
= slot
+ nr
; i
< nritems
; i
++) {
4905 item
= btrfs_item_nr(i
);
4906 ioff
= btrfs_token_item_offset(&token
, item
);
4907 btrfs_set_token_item_offset(&token
, item
, ioff
+ dsize
);
4910 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
),
4911 btrfs_item_nr_offset(slot
+ nr
),
4912 sizeof(struct btrfs_item
) *
4913 (nritems
- slot
- nr
));
4915 btrfs_set_header_nritems(leaf
, nritems
- nr
);
4918 /* delete the leaf if we've emptied it */
4920 if (leaf
== root
->node
) {
4921 btrfs_set_header_level(leaf
, 0);
4923 btrfs_set_path_blocking(path
);
4924 btrfs_clean_tree_block(leaf
);
4925 btrfs_del_leaf(trans
, root
, path
, leaf
);
4928 int used
= leaf_space_used(leaf
, 0, nritems
);
4930 struct btrfs_disk_key disk_key
;
4932 btrfs_item_key(leaf
, &disk_key
, 0);
4933 fixup_low_keys(path
, &disk_key
, 1);
4936 /* delete the leaf if it is mostly empty */
4937 if (used
< BTRFS_LEAF_DATA_SIZE(fs_info
) / 3) {
4938 /* push_leaf_left fixes the path.
4939 * make sure the path still points to our leaf
4940 * for possible call to del_ptr below
4942 slot
= path
->slots
[1];
4943 atomic_inc(&leaf
->refs
);
4945 btrfs_set_path_blocking(path
);
4946 wret
= push_leaf_left(trans
, root
, path
, 1, 1,
4948 if (wret
< 0 && wret
!= -ENOSPC
)
4951 if (path
->nodes
[0] == leaf
&&
4952 btrfs_header_nritems(leaf
)) {
4953 wret
= push_leaf_right(trans
, root
, path
, 1,
4955 if (wret
< 0 && wret
!= -ENOSPC
)
4959 if (btrfs_header_nritems(leaf
) == 0) {
4960 path
->slots
[1] = slot
;
4961 btrfs_del_leaf(trans
, root
, path
, leaf
);
4962 free_extent_buffer(leaf
);
4965 /* if we're still in the path, make sure
4966 * we're dirty. Otherwise, one of the
4967 * push_leaf functions must have already
4968 * dirtied this buffer
4970 if (path
->nodes
[0] == leaf
)
4971 btrfs_mark_buffer_dirty(leaf
);
4972 free_extent_buffer(leaf
);
4975 btrfs_mark_buffer_dirty(leaf
);
4982 * search the tree again to find a leaf with lesser keys
4983 * returns 0 if it found something or 1 if there are no lesser leaves.
4984 * returns < 0 on io errors.
4986 * This may release the path, and so you may lose any locks held at the
4989 int btrfs_prev_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
4991 struct btrfs_key key
;
4992 struct btrfs_disk_key found_key
;
4995 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, 0);
4997 if (key
.offset
> 0) {
4999 } else if (key
.type
> 0) {
5001 key
.offset
= (u64
)-1;
5002 } else if (key
.objectid
> 0) {
5005 key
.offset
= (u64
)-1;
5010 btrfs_release_path(path
);
5011 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5014 btrfs_item_key(path
->nodes
[0], &found_key
, 0);
5015 ret
= comp_keys(&found_key
, &key
);
5017 * We might have had an item with the previous key in the tree right
5018 * before we released our path. And after we released our path, that
5019 * item might have been pushed to the first slot (0) of the leaf we
5020 * were holding due to a tree balance. Alternatively, an item with the
5021 * previous key can exist as the only element of a leaf (big fat item).
5022 * Therefore account for these 2 cases, so that our callers (like
5023 * btrfs_previous_item) don't miss an existing item with a key matching
5024 * the previous key we computed above.
5032 * A helper function to walk down the tree starting at min_key, and looking
5033 * for nodes or leaves that are have a minimum transaction id.
5034 * This is used by the btree defrag code, and tree logging
5036 * This does not cow, but it does stuff the starting key it finds back
5037 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5038 * key and get a writable path.
5040 * This honors path->lowest_level to prevent descent past a given level
5043 * min_trans indicates the oldest transaction that you are interested
5044 * in walking through. Any nodes or leaves older than min_trans are
5045 * skipped over (without reading them).
5047 * returns zero if something useful was found, < 0 on error and 1 if there
5048 * was nothing in the tree that matched the search criteria.
5050 int btrfs_search_forward(struct btrfs_root
*root
, struct btrfs_key
*min_key
,
5051 struct btrfs_path
*path
,
5054 struct extent_buffer
*cur
;
5055 struct btrfs_key found_key
;
5061 int keep_locks
= path
->keep_locks
;
5063 path
->keep_locks
= 1;
5065 cur
= btrfs_read_lock_root_node(root
);
5066 level
= btrfs_header_level(cur
);
5067 WARN_ON(path
->nodes
[level
]);
5068 path
->nodes
[level
] = cur
;
5069 path
->locks
[level
] = BTRFS_READ_LOCK
;
5071 if (btrfs_header_generation(cur
) < min_trans
) {
5076 nritems
= btrfs_header_nritems(cur
);
5077 level
= btrfs_header_level(cur
);
5078 sret
= btrfs_bin_search(cur
, min_key
, &slot
);
5084 /* at the lowest level, we're done, setup the path and exit */
5085 if (level
== path
->lowest_level
) {
5086 if (slot
>= nritems
)
5089 path
->slots
[level
] = slot
;
5090 btrfs_item_key_to_cpu(cur
, &found_key
, slot
);
5093 if (sret
&& slot
> 0)
5096 * check this node pointer against the min_trans parameters.
5097 * If it is too old, old, skip to the next one.
5099 while (slot
< nritems
) {
5102 gen
= btrfs_node_ptr_generation(cur
, slot
);
5103 if (gen
< min_trans
) {
5111 * we didn't find a candidate key in this node, walk forward
5112 * and find another one
5114 if (slot
>= nritems
) {
5115 path
->slots
[level
] = slot
;
5116 btrfs_set_path_blocking(path
);
5117 sret
= btrfs_find_next_key(root
, path
, min_key
, level
,
5120 btrfs_release_path(path
);
5126 /* save our key for returning back */
5127 btrfs_node_key_to_cpu(cur
, &found_key
, slot
);
5128 path
->slots
[level
] = slot
;
5129 if (level
== path
->lowest_level
) {
5133 btrfs_set_path_blocking(path
);
5134 cur
= btrfs_read_node_slot(cur
, slot
);
5140 btrfs_tree_read_lock(cur
);
5142 path
->locks
[level
- 1] = BTRFS_READ_LOCK
;
5143 path
->nodes
[level
- 1] = cur
;
5144 unlock_up(path
, level
, 1, 0, NULL
);
5147 path
->keep_locks
= keep_locks
;
5149 btrfs_unlock_up_safe(path
, path
->lowest_level
+ 1);
5150 btrfs_set_path_blocking(path
);
5151 memcpy(min_key
, &found_key
, sizeof(found_key
));
5157 * this is similar to btrfs_next_leaf, but does not try to preserve
5158 * and fixup the path. It looks for and returns the next key in the
5159 * tree based on the current path and the min_trans parameters.
5161 * 0 is returned if another key is found, < 0 if there are any errors
5162 * and 1 is returned if there are no higher keys in the tree
5164 * path->keep_locks should be set to 1 on the search made before
5165 * calling this function.
5167 int btrfs_find_next_key(struct btrfs_root
*root
, struct btrfs_path
*path
,
5168 struct btrfs_key
*key
, int level
, u64 min_trans
)
5171 struct extent_buffer
*c
;
5173 WARN_ON(!path
->keep_locks
&& !path
->skip_locking
);
5174 while (level
< BTRFS_MAX_LEVEL
) {
5175 if (!path
->nodes
[level
])
5178 slot
= path
->slots
[level
] + 1;
5179 c
= path
->nodes
[level
];
5181 if (slot
>= btrfs_header_nritems(c
)) {
5184 struct btrfs_key cur_key
;
5185 if (level
+ 1 >= BTRFS_MAX_LEVEL
||
5186 !path
->nodes
[level
+ 1])
5189 if (path
->locks
[level
+ 1] || path
->skip_locking
) {
5194 slot
= btrfs_header_nritems(c
) - 1;
5196 btrfs_item_key_to_cpu(c
, &cur_key
, slot
);
5198 btrfs_node_key_to_cpu(c
, &cur_key
, slot
);
5200 orig_lowest
= path
->lowest_level
;
5201 btrfs_release_path(path
);
5202 path
->lowest_level
= level
;
5203 ret
= btrfs_search_slot(NULL
, root
, &cur_key
, path
,
5205 path
->lowest_level
= orig_lowest
;
5209 c
= path
->nodes
[level
];
5210 slot
= path
->slots
[level
];
5217 btrfs_item_key_to_cpu(c
, key
, slot
);
5219 u64 gen
= btrfs_node_ptr_generation(c
, slot
);
5221 if (gen
< min_trans
) {
5225 btrfs_node_key_to_cpu(c
, key
, slot
);
5233 * search the tree again to find a leaf with greater keys
5234 * returns 0 if it found something or 1 if there are no greater leaves.
5235 * returns < 0 on io errors.
5237 int btrfs_next_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
5239 return btrfs_next_old_leaf(root
, path
, 0);
5242 int btrfs_next_old_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
,
5247 struct extent_buffer
*c
;
5248 struct extent_buffer
*next
;
5249 struct btrfs_key key
;
5252 int old_spinning
= path
->leave_spinning
;
5253 int next_rw_lock
= 0;
5255 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5259 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, nritems
- 1);
5264 btrfs_release_path(path
);
5266 path
->keep_locks
= 1;
5267 path
->leave_spinning
= 1;
5270 ret
= btrfs_search_old_slot(root
, &key
, path
, time_seq
);
5272 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5273 path
->keep_locks
= 0;
5278 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5280 * by releasing the path above we dropped all our locks. A balance
5281 * could have added more items next to the key that used to be
5282 * at the very end of the block. So, check again here and
5283 * advance the path if there are now more items available.
5285 if (nritems
> 0 && path
->slots
[0] < nritems
- 1) {
5292 * So the above check misses one case:
5293 * - after releasing the path above, someone has removed the item that
5294 * used to be at the very end of the block, and balance between leafs
5295 * gets another one with bigger key.offset to replace it.
5297 * This one should be returned as well, or we can get leaf corruption
5298 * later(esp. in __btrfs_drop_extents()).
5300 * And a bit more explanation about this check,
5301 * with ret > 0, the key isn't found, the path points to the slot
5302 * where it should be inserted, so the path->slots[0] item must be the
5305 if (nritems
> 0 && ret
> 0 && path
->slots
[0] == nritems
- 1) {
5310 while (level
< BTRFS_MAX_LEVEL
) {
5311 if (!path
->nodes
[level
]) {
5316 slot
= path
->slots
[level
] + 1;
5317 c
= path
->nodes
[level
];
5318 if (slot
>= btrfs_header_nritems(c
)) {
5320 if (level
== BTRFS_MAX_LEVEL
) {
5328 btrfs_tree_unlock_rw(next
, next_rw_lock
);
5329 free_extent_buffer(next
);
5333 next_rw_lock
= path
->locks
[level
];
5334 ret
= read_block_for_search(root
, path
, &next
, level
,
5340 btrfs_release_path(path
);
5344 if (!path
->skip_locking
) {
5345 ret
= btrfs_try_tree_read_lock(next
);
5346 if (!ret
&& time_seq
) {
5348 * If we don't get the lock, we may be racing
5349 * with push_leaf_left, holding that lock while
5350 * itself waiting for the leaf we've currently
5351 * locked. To solve this situation, we give up
5352 * on our lock and cycle.
5354 free_extent_buffer(next
);
5355 btrfs_release_path(path
);
5360 btrfs_set_path_blocking(path
);
5361 btrfs_tree_read_lock(next
);
5363 next_rw_lock
= BTRFS_READ_LOCK
;
5367 path
->slots
[level
] = slot
;
5370 c
= path
->nodes
[level
];
5371 if (path
->locks
[level
])
5372 btrfs_tree_unlock_rw(c
, path
->locks
[level
]);
5374 free_extent_buffer(c
);
5375 path
->nodes
[level
] = next
;
5376 path
->slots
[level
] = 0;
5377 if (!path
->skip_locking
)
5378 path
->locks
[level
] = next_rw_lock
;
5382 ret
= read_block_for_search(root
, path
, &next
, level
,
5388 btrfs_release_path(path
);
5392 if (!path
->skip_locking
) {
5393 ret
= btrfs_try_tree_read_lock(next
);
5395 btrfs_set_path_blocking(path
);
5396 btrfs_tree_read_lock(next
);
5398 next_rw_lock
= BTRFS_READ_LOCK
;
5403 unlock_up(path
, 0, 1, 0, NULL
);
5404 path
->leave_spinning
= old_spinning
;
5406 btrfs_set_path_blocking(path
);
5412 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5413 * searching until it gets past min_objectid or finds an item of 'type'
5415 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5417 int btrfs_previous_item(struct btrfs_root
*root
,
5418 struct btrfs_path
*path
, u64 min_objectid
,
5421 struct btrfs_key found_key
;
5422 struct extent_buffer
*leaf
;
5427 if (path
->slots
[0] == 0) {
5428 btrfs_set_path_blocking(path
);
5429 ret
= btrfs_prev_leaf(root
, path
);
5435 leaf
= path
->nodes
[0];
5436 nritems
= btrfs_header_nritems(leaf
);
5439 if (path
->slots
[0] == nritems
)
5442 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5443 if (found_key
.objectid
< min_objectid
)
5445 if (found_key
.type
== type
)
5447 if (found_key
.objectid
== min_objectid
&&
5448 found_key
.type
< type
)
5455 * search in extent tree to find a previous Metadata/Data extent item with
5458 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5460 int btrfs_previous_extent_item(struct btrfs_root
*root
,
5461 struct btrfs_path
*path
, u64 min_objectid
)
5463 struct btrfs_key found_key
;
5464 struct extent_buffer
*leaf
;
5469 if (path
->slots
[0] == 0) {
5470 btrfs_set_path_blocking(path
);
5471 ret
= btrfs_prev_leaf(root
, path
);
5477 leaf
= path
->nodes
[0];
5478 nritems
= btrfs_header_nritems(leaf
);
5481 if (path
->slots
[0] == nritems
)
5484 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5485 if (found_key
.objectid
< min_objectid
)
5487 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
||
5488 found_key
.type
== BTRFS_METADATA_ITEM_KEY
)
5490 if (found_key
.objectid
== min_objectid
&&
5491 found_key
.type
< BTRFS_EXTENT_ITEM_KEY
)