1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent-io-tree.h"
18 #include "extent_map.h"
20 #include "btrfs_inode.h"
22 #include "check-integrity.h"
24 #include "rcu-string.h"
28 static struct kmem_cache
*extent_state_cache
;
29 static struct kmem_cache
*extent_buffer_cache
;
30 static struct bio_set btrfs_bioset
;
32 static inline bool extent_state_in_tree(const struct extent_state
*state
)
34 return !RB_EMPTY_NODE(&state
->rb_node
);
37 #ifdef CONFIG_BTRFS_DEBUG
38 static LIST_HEAD(states
);
39 static DEFINE_SPINLOCK(leak_lock
);
41 static inline void btrfs_leak_debug_add(spinlock_t
*lock
,
42 struct list_head
*new,
43 struct list_head
*head
)
47 spin_lock_irqsave(lock
, flags
);
49 spin_unlock_irqrestore(lock
, flags
);
52 static inline void btrfs_leak_debug_del(spinlock_t
*lock
,
53 struct list_head
*entry
)
57 spin_lock_irqsave(lock
, flags
);
59 spin_unlock_irqrestore(lock
, flags
);
62 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info
*fs_info
)
64 struct extent_buffer
*eb
;
68 * If we didn't get into open_ctree our allocated_ebs will not be
69 * initialized, so just skip this.
71 if (!fs_info
->allocated_ebs
.next
)
74 spin_lock_irqsave(&fs_info
->eb_leak_lock
, flags
);
75 while (!list_empty(&fs_info
->allocated_ebs
)) {
76 eb
= list_first_entry(&fs_info
->allocated_ebs
,
77 struct extent_buffer
, leak_list
);
79 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80 eb
->start
, eb
->len
, atomic_read(&eb
->refs
), eb
->bflags
,
81 btrfs_header_owner(eb
));
82 list_del(&eb
->leak_list
);
83 kmem_cache_free(extent_buffer_cache
, eb
);
85 spin_unlock_irqrestore(&fs_info
->eb_leak_lock
, flags
);
88 static inline void btrfs_extent_state_leak_debug_check(void)
90 struct extent_state
*state
;
92 while (!list_empty(&states
)) {
93 state
= list_entry(states
.next
, struct extent_state
, leak_list
);
94 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
95 state
->start
, state
->end
, state
->state
,
96 extent_state_in_tree(state
),
97 refcount_read(&state
->refs
));
98 list_del(&state
->leak_list
);
99 kmem_cache_free(extent_state_cache
, state
);
103 #define btrfs_debug_check_extent_io_range(tree, start, end) \
104 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
105 static inline void __btrfs_debug_check_extent_io_range(const char *caller
,
106 struct extent_io_tree
*tree
, u64 start
, u64 end
)
108 struct inode
*inode
= tree
->private_data
;
111 if (!inode
|| !is_data_inode(inode
))
114 isize
= i_size_read(inode
);
115 if (end
>= PAGE_SIZE
&& (end
% 2) == 0 && end
!= isize
- 1) {
116 btrfs_debug_rl(BTRFS_I(inode
)->root
->fs_info
,
117 "%s: ino %llu isize %llu odd range [%llu,%llu]",
118 caller
, btrfs_ino(BTRFS_I(inode
)), isize
, start
, end
);
122 #define btrfs_leak_debug_add(lock, new, head) do {} while (0)
123 #define btrfs_leak_debug_del(lock, entry) do {} while (0)
124 #define btrfs_extent_state_leak_debug_check() do {} while (0)
125 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
131 struct rb_node rb_node
;
134 struct extent_page_data
{
136 /* tells writepage not to lock the state bits for this range
137 * it still does the unlocking
139 unsigned int extent_locked
:1;
141 /* tells the submit_bio code to use REQ_SYNC */
142 unsigned int sync_io
:1;
145 static int add_extent_changeset(struct extent_state
*state
, unsigned bits
,
146 struct extent_changeset
*changeset
,
153 if (set
&& (state
->state
& bits
) == bits
)
155 if (!set
&& (state
->state
& bits
) == 0)
157 changeset
->bytes_changed
+= state
->end
- state
->start
+ 1;
158 ret
= ulist_add(&changeset
->range_changed
, state
->start
, state
->end
,
163 static int __must_check
submit_one_bio(struct bio
*bio
, int mirror_num
,
164 unsigned long bio_flags
)
166 blk_status_t ret
= 0;
167 struct extent_io_tree
*tree
= bio
->bi_private
;
169 bio
->bi_private
= NULL
;
172 ret
= tree
->ops
->submit_bio_hook(tree
->private_data
, bio
,
173 mirror_num
, bio_flags
);
175 btrfsic_submit_bio(bio
);
177 return blk_status_to_errno(ret
);
180 /* Cleanup unsubmitted bios */
181 static void end_write_bio(struct extent_page_data
*epd
, int ret
)
184 epd
->bio
->bi_status
= errno_to_blk_status(ret
);
191 * Submit bio from extent page data via submit_one_bio
193 * Return 0 if everything is OK.
194 * Return <0 for error.
196 static int __must_check
flush_write_bio(struct extent_page_data
*epd
)
201 ret
= submit_one_bio(epd
->bio
, 0, 0);
203 * Clean up of epd->bio is handled by its endio function.
204 * And endio is either triggered by successful bio execution
205 * or the error handler of submit bio hook.
206 * So at this point, no matter what happened, we don't need
207 * to clean up epd->bio.
214 int __init
extent_state_cache_init(void)
216 extent_state_cache
= kmem_cache_create("btrfs_extent_state",
217 sizeof(struct extent_state
), 0,
218 SLAB_MEM_SPREAD
, NULL
);
219 if (!extent_state_cache
)
224 int __init
extent_io_init(void)
226 extent_buffer_cache
= kmem_cache_create("btrfs_extent_buffer",
227 sizeof(struct extent_buffer
), 0,
228 SLAB_MEM_SPREAD
, NULL
);
229 if (!extent_buffer_cache
)
232 if (bioset_init(&btrfs_bioset
, BIO_POOL_SIZE
,
233 offsetof(struct btrfs_io_bio
, bio
),
235 goto free_buffer_cache
;
237 if (bioset_integrity_create(&btrfs_bioset
, BIO_POOL_SIZE
))
243 bioset_exit(&btrfs_bioset
);
246 kmem_cache_destroy(extent_buffer_cache
);
247 extent_buffer_cache
= NULL
;
251 void __cold
extent_state_cache_exit(void)
253 btrfs_extent_state_leak_debug_check();
254 kmem_cache_destroy(extent_state_cache
);
257 void __cold
extent_io_exit(void)
260 * Make sure all delayed rcu free are flushed before we
264 kmem_cache_destroy(extent_buffer_cache
);
265 bioset_exit(&btrfs_bioset
);
269 * For the file_extent_tree, we want to hold the inode lock when we lookup and
270 * update the disk_i_size, but lockdep will complain because our io_tree we hold
271 * the tree lock and get the inode lock when setting delalloc. These two things
272 * are unrelated, so make a class for the file_extent_tree so we don't get the
273 * two locking patterns mixed up.
275 static struct lock_class_key file_extent_tree_class
;
277 void extent_io_tree_init(struct btrfs_fs_info
*fs_info
,
278 struct extent_io_tree
*tree
, unsigned int owner
,
281 tree
->fs_info
= fs_info
;
282 tree
->state
= RB_ROOT
;
284 tree
->dirty_bytes
= 0;
285 spin_lock_init(&tree
->lock
);
286 tree
->private_data
= private_data
;
288 if (owner
== IO_TREE_INODE_FILE_EXTENT
)
289 lockdep_set_class(&tree
->lock
, &file_extent_tree_class
);
292 void extent_io_tree_release(struct extent_io_tree
*tree
)
294 spin_lock(&tree
->lock
);
296 * Do a single barrier for the waitqueue_active check here, the state
297 * of the waitqueue should not change once extent_io_tree_release is
301 while (!RB_EMPTY_ROOT(&tree
->state
)) {
302 struct rb_node
*node
;
303 struct extent_state
*state
;
305 node
= rb_first(&tree
->state
);
306 state
= rb_entry(node
, struct extent_state
, rb_node
);
307 rb_erase(&state
->rb_node
, &tree
->state
);
308 RB_CLEAR_NODE(&state
->rb_node
);
310 * btree io trees aren't supposed to have tasks waiting for
311 * changes in the flags of extent states ever.
313 ASSERT(!waitqueue_active(&state
->wq
));
314 free_extent_state(state
);
316 cond_resched_lock(&tree
->lock
);
318 spin_unlock(&tree
->lock
);
321 static struct extent_state
*alloc_extent_state(gfp_t mask
)
323 struct extent_state
*state
;
326 * The given mask might be not appropriate for the slab allocator,
327 * drop the unsupported bits
329 mask
&= ~(__GFP_DMA32
|__GFP_HIGHMEM
);
330 state
= kmem_cache_alloc(extent_state_cache
, mask
);
334 state
->failrec
= NULL
;
335 RB_CLEAR_NODE(&state
->rb_node
);
336 btrfs_leak_debug_add(&leak_lock
, &state
->leak_list
, &states
);
337 refcount_set(&state
->refs
, 1);
338 init_waitqueue_head(&state
->wq
);
339 trace_alloc_extent_state(state
, mask
, _RET_IP_
);
343 void free_extent_state(struct extent_state
*state
)
347 if (refcount_dec_and_test(&state
->refs
)) {
348 WARN_ON(extent_state_in_tree(state
));
349 btrfs_leak_debug_del(&leak_lock
, &state
->leak_list
);
350 trace_free_extent_state(state
, _RET_IP_
);
351 kmem_cache_free(extent_state_cache
, state
);
355 static struct rb_node
*tree_insert(struct rb_root
*root
,
356 struct rb_node
*search_start
,
358 struct rb_node
*node
,
359 struct rb_node
***p_in
,
360 struct rb_node
**parent_in
)
363 struct rb_node
*parent
= NULL
;
364 struct tree_entry
*entry
;
366 if (p_in
&& parent_in
) {
372 p
= search_start
? &search_start
: &root
->rb_node
;
375 entry
= rb_entry(parent
, struct tree_entry
, rb_node
);
377 if (offset
< entry
->start
)
379 else if (offset
> entry
->end
)
386 rb_link_node(node
, parent
, p
);
387 rb_insert_color(node
, root
);
392 * __etree_search - searche @tree for an entry that contains @offset. Such
393 * entry would have entry->start <= offset && entry->end >= offset.
395 * @tree - the tree to search
396 * @offset - offset that should fall within an entry in @tree
397 * @next_ret - pointer to the first entry whose range ends after @offset
398 * @prev - pointer to the first entry whose range begins before @offset
399 * @p_ret - pointer where new node should be anchored (used when inserting an
401 * @parent_ret - points to entry which would have been the parent of the entry,
404 * This function returns a pointer to the entry that contains @offset byte
405 * address. If no such entry exists, then NULL is returned and the other
406 * pointer arguments to the function are filled, otherwise the found entry is
407 * returned and other pointers are left untouched.
409 static struct rb_node
*__etree_search(struct extent_io_tree
*tree
, u64 offset
,
410 struct rb_node
**next_ret
,
411 struct rb_node
**prev_ret
,
412 struct rb_node
***p_ret
,
413 struct rb_node
**parent_ret
)
415 struct rb_root
*root
= &tree
->state
;
416 struct rb_node
**n
= &root
->rb_node
;
417 struct rb_node
*prev
= NULL
;
418 struct rb_node
*orig_prev
= NULL
;
419 struct tree_entry
*entry
;
420 struct tree_entry
*prev_entry
= NULL
;
424 entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
427 if (offset
< entry
->start
)
429 else if (offset
> entry
->end
)
442 while (prev
&& offset
> prev_entry
->end
) {
443 prev
= rb_next(prev
);
444 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
451 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
452 while (prev
&& offset
< prev_entry
->start
) {
453 prev
= rb_prev(prev
);
454 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
461 static inline struct rb_node
*
462 tree_search_for_insert(struct extent_io_tree
*tree
,
464 struct rb_node
***p_ret
,
465 struct rb_node
**parent_ret
)
467 struct rb_node
*next
= NULL
;
470 ret
= __etree_search(tree
, offset
, &next
, NULL
, p_ret
, parent_ret
);
476 static inline struct rb_node
*tree_search(struct extent_io_tree
*tree
,
479 return tree_search_for_insert(tree
, offset
, NULL
, NULL
);
483 * utility function to look for merge candidates inside a given range.
484 * Any extents with matching state are merged together into a single
485 * extent in the tree. Extents with EXTENT_IO in their state field
486 * are not merged because the end_io handlers need to be able to do
487 * operations on them without sleeping (or doing allocations/splits).
489 * This should be called with the tree lock held.
491 static void merge_state(struct extent_io_tree
*tree
,
492 struct extent_state
*state
)
494 struct extent_state
*other
;
495 struct rb_node
*other_node
;
497 if (state
->state
& (EXTENT_LOCKED
| EXTENT_BOUNDARY
))
500 other_node
= rb_prev(&state
->rb_node
);
502 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
503 if (other
->end
== state
->start
- 1 &&
504 other
->state
== state
->state
) {
505 if (tree
->private_data
&&
506 is_data_inode(tree
->private_data
))
507 btrfs_merge_delalloc_extent(tree
->private_data
,
509 state
->start
= other
->start
;
510 rb_erase(&other
->rb_node
, &tree
->state
);
511 RB_CLEAR_NODE(&other
->rb_node
);
512 free_extent_state(other
);
515 other_node
= rb_next(&state
->rb_node
);
517 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
518 if (other
->start
== state
->end
+ 1 &&
519 other
->state
== state
->state
) {
520 if (tree
->private_data
&&
521 is_data_inode(tree
->private_data
))
522 btrfs_merge_delalloc_extent(tree
->private_data
,
524 state
->end
= other
->end
;
525 rb_erase(&other
->rb_node
, &tree
->state
);
526 RB_CLEAR_NODE(&other
->rb_node
);
527 free_extent_state(other
);
532 static void set_state_bits(struct extent_io_tree
*tree
,
533 struct extent_state
*state
, unsigned *bits
,
534 struct extent_changeset
*changeset
);
537 * insert an extent_state struct into the tree. 'bits' are set on the
538 * struct before it is inserted.
540 * This may return -EEXIST if the extent is already there, in which case the
541 * state struct is freed.
543 * The tree lock is not taken internally. This is a utility function and
544 * probably isn't what you want to call (see set/clear_extent_bit).
546 static int insert_state(struct extent_io_tree
*tree
,
547 struct extent_state
*state
, u64 start
, u64 end
,
549 struct rb_node
**parent
,
550 unsigned *bits
, struct extent_changeset
*changeset
)
552 struct rb_node
*node
;
555 btrfs_err(tree
->fs_info
,
556 "insert state: end < start %llu %llu", end
, start
);
559 state
->start
= start
;
562 set_state_bits(tree
, state
, bits
, changeset
);
564 node
= tree_insert(&tree
->state
, NULL
, end
, &state
->rb_node
, p
, parent
);
566 struct extent_state
*found
;
567 found
= rb_entry(node
, struct extent_state
, rb_node
);
568 btrfs_err(tree
->fs_info
,
569 "found node %llu %llu on insert of %llu %llu",
570 found
->start
, found
->end
, start
, end
);
573 merge_state(tree
, state
);
578 * split a given extent state struct in two, inserting the preallocated
579 * struct 'prealloc' as the newly created second half. 'split' indicates an
580 * offset inside 'orig' where it should be split.
583 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
584 * are two extent state structs in the tree:
585 * prealloc: [orig->start, split - 1]
586 * orig: [ split, orig->end ]
588 * The tree locks are not taken by this function. They need to be held
591 static int split_state(struct extent_io_tree
*tree
, struct extent_state
*orig
,
592 struct extent_state
*prealloc
, u64 split
)
594 struct rb_node
*node
;
596 if (tree
->private_data
&& is_data_inode(tree
->private_data
))
597 btrfs_split_delalloc_extent(tree
->private_data
, orig
, split
);
599 prealloc
->start
= orig
->start
;
600 prealloc
->end
= split
- 1;
601 prealloc
->state
= orig
->state
;
604 node
= tree_insert(&tree
->state
, &orig
->rb_node
, prealloc
->end
,
605 &prealloc
->rb_node
, NULL
, NULL
);
607 free_extent_state(prealloc
);
613 static struct extent_state
*next_state(struct extent_state
*state
)
615 struct rb_node
*next
= rb_next(&state
->rb_node
);
617 return rb_entry(next
, struct extent_state
, rb_node
);
623 * utility function to clear some bits in an extent state struct.
624 * it will optionally wake up anyone waiting on this state (wake == 1).
626 * If no bits are set on the state struct after clearing things, the
627 * struct is freed and removed from the tree
629 static struct extent_state
*clear_state_bit(struct extent_io_tree
*tree
,
630 struct extent_state
*state
,
631 unsigned *bits
, int wake
,
632 struct extent_changeset
*changeset
)
634 struct extent_state
*next
;
635 unsigned bits_to_clear
= *bits
& ~EXTENT_CTLBITS
;
638 if ((bits_to_clear
& EXTENT_DIRTY
) && (state
->state
& EXTENT_DIRTY
)) {
639 u64 range
= state
->end
- state
->start
+ 1;
640 WARN_ON(range
> tree
->dirty_bytes
);
641 tree
->dirty_bytes
-= range
;
644 if (tree
->private_data
&& is_data_inode(tree
->private_data
))
645 btrfs_clear_delalloc_extent(tree
->private_data
, state
, bits
);
647 ret
= add_extent_changeset(state
, bits_to_clear
, changeset
, 0);
649 state
->state
&= ~bits_to_clear
;
652 if (state
->state
== 0) {
653 next
= next_state(state
);
654 if (extent_state_in_tree(state
)) {
655 rb_erase(&state
->rb_node
, &tree
->state
);
656 RB_CLEAR_NODE(&state
->rb_node
);
657 free_extent_state(state
);
662 merge_state(tree
, state
);
663 next
= next_state(state
);
668 static struct extent_state
*
669 alloc_extent_state_atomic(struct extent_state
*prealloc
)
672 prealloc
= alloc_extent_state(GFP_ATOMIC
);
677 static void extent_io_tree_panic(struct extent_io_tree
*tree
, int err
)
679 struct inode
*inode
= tree
->private_data
;
681 btrfs_panic(btrfs_sb(inode
->i_sb
), err
,
682 "locking error: extent tree was modified by another thread while locked");
686 * clear some bits on a range in the tree. This may require splitting
687 * or inserting elements in the tree, so the gfp mask is used to
688 * indicate which allocations or sleeping are allowed.
690 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
691 * the given range from the tree regardless of state (ie for truncate).
693 * the range [start, end] is inclusive.
695 * This takes the tree lock, and returns 0 on success and < 0 on error.
697 int __clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
698 unsigned bits
, int wake
, int delete,
699 struct extent_state
**cached_state
,
700 gfp_t mask
, struct extent_changeset
*changeset
)
702 struct extent_state
*state
;
703 struct extent_state
*cached
;
704 struct extent_state
*prealloc
= NULL
;
705 struct rb_node
*node
;
710 btrfs_debug_check_extent_io_range(tree
, start
, end
);
711 trace_btrfs_clear_extent_bit(tree
, start
, end
- start
+ 1, bits
);
713 if (bits
& EXTENT_DELALLOC
)
714 bits
|= EXTENT_NORESERVE
;
717 bits
|= ~EXTENT_CTLBITS
;
719 if (bits
& (EXTENT_LOCKED
| EXTENT_BOUNDARY
))
722 if (!prealloc
&& gfpflags_allow_blocking(mask
)) {
724 * Don't care for allocation failure here because we might end
725 * up not needing the pre-allocated extent state at all, which
726 * is the case if we only have in the tree extent states that
727 * cover our input range and don't cover too any other range.
728 * If we end up needing a new extent state we allocate it later.
730 prealloc
= alloc_extent_state(mask
);
733 spin_lock(&tree
->lock
);
735 cached
= *cached_state
;
738 *cached_state
= NULL
;
742 if (cached
&& extent_state_in_tree(cached
) &&
743 cached
->start
<= start
&& cached
->end
> start
) {
745 refcount_dec(&cached
->refs
);
750 free_extent_state(cached
);
753 * this search will find the extents that end after
756 node
= tree_search(tree
, start
);
759 state
= rb_entry(node
, struct extent_state
, rb_node
);
761 if (state
->start
> end
)
763 WARN_ON(state
->end
< start
);
764 last_end
= state
->end
;
766 /* the state doesn't have the wanted bits, go ahead */
767 if (!(state
->state
& bits
)) {
768 state
= next_state(state
);
773 * | ---- desired range ---- |
775 * | ------------- state -------------- |
777 * We need to split the extent we found, and may flip
778 * bits on second half.
780 * If the extent we found extends past our range, we
781 * just split and search again. It'll get split again
782 * the next time though.
784 * If the extent we found is inside our range, we clear
785 * the desired bit on it.
788 if (state
->start
< start
) {
789 prealloc
= alloc_extent_state_atomic(prealloc
);
791 err
= split_state(tree
, state
, prealloc
, start
);
793 extent_io_tree_panic(tree
, err
);
798 if (state
->end
<= end
) {
799 state
= clear_state_bit(tree
, state
, &bits
, wake
,
806 * | ---- desired range ---- |
808 * We need to split the extent, and clear the bit
811 if (state
->start
<= end
&& state
->end
> end
) {
812 prealloc
= alloc_extent_state_atomic(prealloc
);
814 err
= split_state(tree
, state
, prealloc
, end
+ 1);
816 extent_io_tree_panic(tree
, err
);
821 clear_state_bit(tree
, prealloc
, &bits
, wake
, changeset
);
827 state
= clear_state_bit(tree
, state
, &bits
, wake
, changeset
);
829 if (last_end
== (u64
)-1)
831 start
= last_end
+ 1;
832 if (start
<= end
&& state
&& !need_resched())
838 spin_unlock(&tree
->lock
);
839 if (gfpflags_allow_blocking(mask
))
844 spin_unlock(&tree
->lock
);
846 free_extent_state(prealloc
);
852 static void wait_on_state(struct extent_io_tree
*tree
,
853 struct extent_state
*state
)
854 __releases(tree
->lock
)
855 __acquires(tree
->lock
)
858 prepare_to_wait(&state
->wq
, &wait
, TASK_UNINTERRUPTIBLE
);
859 spin_unlock(&tree
->lock
);
861 spin_lock(&tree
->lock
);
862 finish_wait(&state
->wq
, &wait
);
866 * waits for one or more bits to clear on a range in the state tree.
867 * The range [start, end] is inclusive.
868 * The tree lock is taken by this function
870 static void wait_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
873 struct extent_state
*state
;
874 struct rb_node
*node
;
876 btrfs_debug_check_extent_io_range(tree
, start
, end
);
878 spin_lock(&tree
->lock
);
882 * this search will find all the extents that end after
885 node
= tree_search(tree
, start
);
890 state
= rb_entry(node
, struct extent_state
, rb_node
);
892 if (state
->start
> end
)
895 if (state
->state
& bits
) {
896 start
= state
->start
;
897 refcount_inc(&state
->refs
);
898 wait_on_state(tree
, state
);
899 free_extent_state(state
);
902 start
= state
->end
+ 1;
907 if (!cond_resched_lock(&tree
->lock
)) {
908 node
= rb_next(node
);
913 spin_unlock(&tree
->lock
);
916 static void set_state_bits(struct extent_io_tree
*tree
,
917 struct extent_state
*state
,
918 unsigned *bits
, struct extent_changeset
*changeset
)
920 unsigned bits_to_set
= *bits
& ~EXTENT_CTLBITS
;
923 if (tree
->private_data
&& is_data_inode(tree
->private_data
))
924 btrfs_set_delalloc_extent(tree
->private_data
, state
, bits
);
926 if ((bits_to_set
& EXTENT_DIRTY
) && !(state
->state
& EXTENT_DIRTY
)) {
927 u64 range
= state
->end
- state
->start
+ 1;
928 tree
->dirty_bytes
+= range
;
930 ret
= add_extent_changeset(state
, bits_to_set
, changeset
, 1);
932 state
->state
|= bits_to_set
;
935 static void cache_state_if_flags(struct extent_state
*state
,
936 struct extent_state
**cached_ptr
,
939 if (cached_ptr
&& !(*cached_ptr
)) {
940 if (!flags
|| (state
->state
& flags
)) {
942 refcount_inc(&state
->refs
);
947 static void cache_state(struct extent_state
*state
,
948 struct extent_state
**cached_ptr
)
950 return cache_state_if_flags(state
, cached_ptr
,
951 EXTENT_LOCKED
| EXTENT_BOUNDARY
);
955 * set some bits on a range in the tree. This may require allocations or
956 * sleeping, so the gfp mask is used to indicate what is allowed.
958 * If any of the exclusive bits are set, this will fail with -EEXIST if some
959 * part of the range already has the desired bits set. The start of the
960 * existing range is returned in failed_start in this case.
962 * [start, end] is inclusive This takes the tree lock.
965 static int __must_check
966 __set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
967 unsigned bits
, unsigned exclusive_bits
,
968 u64
*failed_start
, struct extent_state
**cached_state
,
969 gfp_t mask
, struct extent_changeset
*changeset
)
971 struct extent_state
*state
;
972 struct extent_state
*prealloc
= NULL
;
973 struct rb_node
*node
;
975 struct rb_node
*parent
;
980 btrfs_debug_check_extent_io_range(tree
, start
, end
);
981 trace_btrfs_set_extent_bit(tree
, start
, end
- start
+ 1, bits
);
984 if (!prealloc
&& gfpflags_allow_blocking(mask
)) {
986 * Don't care for allocation failure here because we might end
987 * up not needing the pre-allocated extent state at all, which
988 * is the case if we only have in the tree extent states that
989 * cover our input range and don't cover too any other range.
990 * If we end up needing a new extent state we allocate it later.
992 prealloc
= alloc_extent_state(mask
);
995 spin_lock(&tree
->lock
);
996 if (cached_state
&& *cached_state
) {
997 state
= *cached_state
;
998 if (state
->start
<= start
&& state
->end
> start
&&
999 extent_state_in_tree(state
)) {
1000 node
= &state
->rb_node
;
1005 * this search will find all the extents that end after
1008 node
= tree_search_for_insert(tree
, start
, &p
, &parent
);
1010 prealloc
= alloc_extent_state_atomic(prealloc
);
1012 err
= insert_state(tree
, prealloc
, start
, end
,
1013 &p
, &parent
, &bits
, changeset
);
1015 extent_io_tree_panic(tree
, err
);
1017 cache_state(prealloc
, cached_state
);
1021 state
= rb_entry(node
, struct extent_state
, rb_node
);
1023 last_start
= state
->start
;
1024 last_end
= state
->end
;
1027 * | ---- desired range ---- |
1030 * Just lock what we found and keep going
1032 if (state
->start
== start
&& state
->end
<= end
) {
1033 if (state
->state
& exclusive_bits
) {
1034 *failed_start
= state
->start
;
1039 set_state_bits(tree
, state
, &bits
, changeset
);
1040 cache_state(state
, cached_state
);
1041 merge_state(tree
, state
);
1042 if (last_end
== (u64
)-1)
1044 start
= last_end
+ 1;
1045 state
= next_state(state
);
1046 if (start
< end
&& state
&& state
->start
== start
&&
1053 * | ---- desired range ---- |
1056 * | ------------- state -------------- |
1058 * We need to split the extent we found, and may flip bits on
1061 * If the extent we found extends past our
1062 * range, we just split and search again. It'll get split
1063 * again the next time though.
1065 * If the extent we found is inside our range, we set the
1066 * desired bit on it.
1068 if (state
->start
< start
) {
1069 if (state
->state
& exclusive_bits
) {
1070 *failed_start
= start
;
1076 * If this extent already has all the bits we want set, then
1077 * skip it, not necessary to split it or do anything with it.
1079 if ((state
->state
& bits
) == bits
) {
1080 start
= state
->end
+ 1;
1081 cache_state(state
, cached_state
);
1085 prealloc
= alloc_extent_state_atomic(prealloc
);
1087 err
= split_state(tree
, state
, prealloc
, start
);
1089 extent_io_tree_panic(tree
, err
);
1094 if (state
->end
<= end
) {
1095 set_state_bits(tree
, state
, &bits
, changeset
);
1096 cache_state(state
, cached_state
);
1097 merge_state(tree
, state
);
1098 if (last_end
== (u64
)-1)
1100 start
= last_end
+ 1;
1101 state
= next_state(state
);
1102 if (start
< end
&& state
&& state
->start
== start
&&
1109 * | ---- desired range ---- |
1110 * | state | or | state |
1112 * There's a hole, we need to insert something in it and
1113 * ignore the extent we found.
1115 if (state
->start
> start
) {
1117 if (end
< last_start
)
1120 this_end
= last_start
- 1;
1122 prealloc
= alloc_extent_state_atomic(prealloc
);
1126 * Avoid to free 'prealloc' if it can be merged with
1129 err
= insert_state(tree
, prealloc
, start
, this_end
,
1130 NULL
, NULL
, &bits
, changeset
);
1132 extent_io_tree_panic(tree
, err
);
1134 cache_state(prealloc
, cached_state
);
1136 start
= this_end
+ 1;
1140 * | ---- desired range ---- |
1142 * We need to split the extent, and set the bit
1145 if (state
->start
<= end
&& state
->end
> end
) {
1146 if (state
->state
& exclusive_bits
) {
1147 *failed_start
= start
;
1152 prealloc
= alloc_extent_state_atomic(prealloc
);
1154 err
= split_state(tree
, state
, prealloc
, end
+ 1);
1156 extent_io_tree_panic(tree
, err
);
1158 set_state_bits(tree
, prealloc
, &bits
, changeset
);
1159 cache_state(prealloc
, cached_state
);
1160 merge_state(tree
, prealloc
);
1168 spin_unlock(&tree
->lock
);
1169 if (gfpflags_allow_blocking(mask
))
1174 spin_unlock(&tree
->lock
);
1176 free_extent_state(prealloc
);
1182 int set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1183 unsigned bits
, u64
* failed_start
,
1184 struct extent_state
**cached_state
, gfp_t mask
)
1186 return __set_extent_bit(tree
, start
, end
, bits
, 0, failed_start
,
1187 cached_state
, mask
, NULL
);
1192 * convert_extent_bit - convert all bits in a given range from one bit to
1194 * @tree: the io tree to search
1195 * @start: the start offset in bytes
1196 * @end: the end offset in bytes (inclusive)
1197 * @bits: the bits to set in this range
1198 * @clear_bits: the bits to clear in this range
1199 * @cached_state: state that we're going to cache
1201 * This will go through and set bits for the given range. If any states exist
1202 * already in this range they are set with the given bit and cleared of the
1203 * clear_bits. This is only meant to be used by things that are mergeable, ie
1204 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1205 * boundary bits like LOCK.
1207 * All allocations are done with GFP_NOFS.
1209 int convert_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1210 unsigned bits
, unsigned clear_bits
,
1211 struct extent_state
**cached_state
)
1213 struct extent_state
*state
;
1214 struct extent_state
*prealloc
= NULL
;
1215 struct rb_node
*node
;
1217 struct rb_node
*parent
;
1221 bool first_iteration
= true;
1223 btrfs_debug_check_extent_io_range(tree
, start
, end
);
1224 trace_btrfs_convert_extent_bit(tree
, start
, end
- start
+ 1, bits
,
1230 * Best effort, don't worry if extent state allocation fails
1231 * here for the first iteration. We might have a cached state
1232 * that matches exactly the target range, in which case no
1233 * extent state allocations are needed. We'll only know this
1234 * after locking the tree.
1236 prealloc
= alloc_extent_state(GFP_NOFS
);
1237 if (!prealloc
&& !first_iteration
)
1241 spin_lock(&tree
->lock
);
1242 if (cached_state
&& *cached_state
) {
1243 state
= *cached_state
;
1244 if (state
->start
<= start
&& state
->end
> start
&&
1245 extent_state_in_tree(state
)) {
1246 node
= &state
->rb_node
;
1252 * this search will find all the extents that end after
1255 node
= tree_search_for_insert(tree
, start
, &p
, &parent
);
1257 prealloc
= alloc_extent_state_atomic(prealloc
);
1262 err
= insert_state(tree
, prealloc
, start
, end
,
1263 &p
, &parent
, &bits
, NULL
);
1265 extent_io_tree_panic(tree
, err
);
1266 cache_state(prealloc
, cached_state
);
1270 state
= rb_entry(node
, struct extent_state
, rb_node
);
1272 last_start
= state
->start
;
1273 last_end
= state
->end
;
1276 * | ---- desired range ---- |
1279 * Just lock what we found and keep going
1281 if (state
->start
== start
&& state
->end
<= end
) {
1282 set_state_bits(tree
, state
, &bits
, NULL
);
1283 cache_state(state
, cached_state
);
1284 state
= clear_state_bit(tree
, state
, &clear_bits
, 0, NULL
);
1285 if (last_end
== (u64
)-1)
1287 start
= last_end
+ 1;
1288 if (start
< end
&& state
&& state
->start
== start
&&
1295 * | ---- desired range ---- |
1298 * | ------------- state -------------- |
1300 * We need to split the extent we found, and may flip bits on
1303 * If the extent we found extends past our
1304 * range, we just split and search again. It'll get split
1305 * again the next time though.
1307 * If the extent we found is inside our range, we set the
1308 * desired bit on it.
1310 if (state
->start
< start
) {
1311 prealloc
= alloc_extent_state_atomic(prealloc
);
1316 err
= split_state(tree
, state
, prealloc
, start
);
1318 extent_io_tree_panic(tree
, err
);
1322 if (state
->end
<= end
) {
1323 set_state_bits(tree
, state
, &bits
, NULL
);
1324 cache_state(state
, cached_state
);
1325 state
= clear_state_bit(tree
, state
, &clear_bits
, 0,
1327 if (last_end
== (u64
)-1)
1329 start
= last_end
+ 1;
1330 if (start
< end
&& state
&& state
->start
== start
&&
1337 * | ---- desired range ---- |
1338 * | state | or | state |
1340 * There's a hole, we need to insert something in it and
1341 * ignore the extent we found.
1343 if (state
->start
> start
) {
1345 if (end
< last_start
)
1348 this_end
= last_start
- 1;
1350 prealloc
= alloc_extent_state_atomic(prealloc
);
1357 * Avoid to free 'prealloc' if it can be merged with
1360 err
= insert_state(tree
, prealloc
, start
, this_end
,
1361 NULL
, NULL
, &bits
, NULL
);
1363 extent_io_tree_panic(tree
, err
);
1364 cache_state(prealloc
, cached_state
);
1366 start
= this_end
+ 1;
1370 * | ---- desired range ---- |
1372 * We need to split the extent, and set the bit
1375 if (state
->start
<= end
&& state
->end
> end
) {
1376 prealloc
= alloc_extent_state_atomic(prealloc
);
1382 err
= split_state(tree
, state
, prealloc
, end
+ 1);
1384 extent_io_tree_panic(tree
, err
);
1386 set_state_bits(tree
, prealloc
, &bits
, NULL
);
1387 cache_state(prealloc
, cached_state
);
1388 clear_state_bit(tree
, prealloc
, &clear_bits
, 0, NULL
);
1396 spin_unlock(&tree
->lock
);
1398 first_iteration
= false;
1402 spin_unlock(&tree
->lock
);
1404 free_extent_state(prealloc
);
1409 /* wrappers around set/clear extent bit */
1410 int set_record_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1411 unsigned bits
, struct extent_changeset
*changeset
)
1414 * We don't support EXTENT_LOCKED yet, as current changeset will
1415 * record any bits changed, so for EXTENT_LOCKED case, it will
1416 * either fail with -EEXIST or changeset will record the whole
1419 BUG_ON(bits
& EXTENT_LOCKED
);
1421 return __set_extent_bit(tree
, start
, end
, bits
, 0, NULL
, NULL
, GFP_NOFS
,
1425 int set_extent_bits_nowait(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1428 return __set_extent_bit(tree
, start
, end
, bits
, 0, NULL
, NULL
,
1432 int clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1433 unsigned bits
, int wake
, int delete,
1434 struct extent_state
**cached
)
1436 return __clear_extent_bit(tree
, start
, end
, bits
, wake
, delete,
1437 cached
, GFP_NOFS
, NULL
);
1440 int clear_record_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1441 unsigned bits
, struct extent_changeset
*changeset
)
1444 * Don't support EXTENT_LOCKED case, same reason as
1445 * set_record_extent_bits().
1447 BUG_ON(bits
& EXTENT_LOCKED
);
1449 return __clear_extent_bit(tree
, start
, end
, bits
, 0, 0, NULL
, GFP_NOFS
,
1454 * either insert or lock state struct between start and end use mask to tell
1455 * us if waiting is desired.
1457 int lock_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1458 struct extent_state
**cached_state
)
1464 err
= __set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
,
1465 EXTENT_LOCKED
, &failed_start
,
1466 cached_state
, GFP_NOFS
, NULL
);
1467 if (err
== -EEXIST
) {
1468 wait_extent_bit(tree
, failed_start
, end
, EXTENT_LOCKED
);
1469 start
= failed_start
;
1472 WARN_ON(start
> end
);
1477 int try_lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1482 err
= __set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, EXTENT_LOCKED
,
1483 &failed_start
, NULL
, GFP_NOFS
, NULL
);
1484 if (err
== -EEXIST
) {
1485 if (failed_start
> start
)
1486 clear_extent_bit(tree
, start
, failed_start
- 1,
1487 EXTENT_LOCKED
, 1, 0, NULL
);
1493 void extent_range_clear_dirty_for_io(struct inode
*inode
, u64 start
, u64 end
)
1495 unsigned long index
= start
>> PAGE_SHIFT
;
1496 unsigned long end_index
= end
>> PAGE_SHIFT
;
1499 while (index
<= end_index
) {
1500 page
= find_get_page(inode
->i_mapping
, index
);
1501 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1502 clear_page_dirty_for_io(page
);
1508 void extent_range_redirty_for_io(struct inode
*inode
, u64 start
, u64 end
)
1510 unsigned long index
= start
>> PAGE_SHIFT
;
1511 unsigned long end_index
= end
>> PAGE_SHIFT
;
1514 while (index
<= end_index
) {
1515 page
= find_get_page(inode
->i_mapping
, index
);
1516 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1517 __set_page_dirty_nobuffers(page
);
1518 account_page_redirty(page
);
1524 /* find the first state struct with 'bits' set after 'start', and
1525 * return it. tree->lock must be held. NULL will returned if
1526 * nothing was found after 'start'
1528 static struct extent_state
*
1529 find_first_extent_bit_state(struct extent_io_tree
*tree
,
1530 u64 start
, unsigned bits
)
1532 struct rb_node
*node
;
1533 struct extent_state
*state
;
1536 * this search will find all the extents that end after
1539 node
= tree_search(tree
, start
);
1544 state
= rb_entry(node
, struct extent_state
, rb_node
);
1545 if (state
->end
>= start
&& (state
->state
& bits
))
1548 node
= rb_next(node
);
1557 * find the first offset in the io tree with 'bits' set. zero is
1558 * returned if we find something, and *start_ret and *end_ret are
1559 * set to reflect the state struct that was found.
1561 * If nothing was found, 1 is returned. If found something, return 0.
1563 int find_first_extent_bit(struct extent_io_tree
*tree
, u64 start
,
1564 u64
*start_ret
, u64
*end_ret
, unsigned bits
,
1565 struct extent_state
**cached_state
)
1567 struct extent_state
*state
;
1570 spin_lock(&tree
->lock
);
1571 if (cached_state
&& *cached_state
) {
1572 state
= *cached_state
;
1573 if (state
->end
== start
- 1 && extent_state_in_tree(state
)) {
1574 while ((state
= next_state(state
)) != NULL
) {
1575 if (state
->state
& bits
)
1578 free_extent_state(*cached_state
);
1579 *cached_state
= NULL
;
1582 free_extent_state(*cached_state
);
1583 *cached_state
= NULL
;
1586 state
= find_first_extent_bit_state(tree
, start
, bits
);
1589 cache_state_if_flags(state
, cached_state
, 0);
1590 *start_ret
= state
->start
;
1591 *end_ret
= state
->end
;
1595 spin_unlock(&tree
->lock
);
1600 * find_contiguous_extent_bit: find a contiguous area of bits
1601 * @tree - io tree to check
1602 * @start - offset to start the search from
1603 * @start_ret - the first offset we found with the bits set
1604 * @end_ret - the final contiguous range of the bits that were set
1605 * @bits - bits to look for
1607 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1608 * to set bits appropriately, and then merge them again. During this time it
1609 * will drop the tree->lock, so use this helper if you want to find the actual
1610 * contiguous area for given bits. We will search to the first bit we find, and
1611 * then walk down the tree until we find a non-contiguous area. The area
1612 * returned will be the full contiguous area with the bits set.
1614 int find_contiguous_extent_bit(struct extent_io_tree
*tree
, u64 start
,
1615 u64
*start_ret
, u64
*end_ret
, unsigned bits
)
1617 struct extent_state
*state
;
1620 spin_lock(&tree
->lock
);
1621 state
= find_first_extent_bit_state(tree
, start
, bits
);
1623 *start_ret
= state
->start
;
1624 *end_ret
= state
->end
;
1625 while ((state
= next_state(state
)) != NULL
) {
1626 if (state
->start
> (*end_ret
+ 1))
1628 *end_ret
= state
->end
;
1632 spin_unlock(&tree
->lock
);
1637 * find_first_clear_extent_bit - find the first range that has @bits not set.
1638 * This range could start before @start.
1640 * @tree - the tree to search
1641 * @start - the offset at/after which the found extent should start
1642 * @start_ret - records the beginning of the range
1643 * @end_ret - records the end of the range (inclusive)
1644 * @bits - the set of bits which must be unset
1646 * Since unallocated range is also considered one which doesn't have the bits
1647 * set it's possible that @end_ret contains -1, this happens in case the range
1648 * spans (last_range_end, end of device]. In this case it's up to the caller to
1649 * trim @end_ret to the appropriate size.
1651 void find_first_clear_extent_bit(struct extent_io_tree
*tree
, u64 start
,
1652 u64
*start_ret
, u64
*end_ret
, unsigned bits
)
1654 struct extent_state
*state
;
1655 struct rb_node
*node
, *prev
= NULL
, *next
;
1657 spin_lock(&tree
->lock
);
1659 /* Find first extent with bits cleared */
1661 node
= __etree_search(tree
, start
, &next
, &prev
, NULL
, NULL
);
1662 if (!node
&& !next
&& !prev
) {
1664 * Tree is completely empty, send full range and let
1665 * caller deal with it
1670 } else if (!node
&& !next
) {
1672 * We are past the last allocated chunk, set start at
1673 * the end of the last extent.
1675 state
= rb_entry(prev
, struct extent_state
, rb_node
);
1676 *start_ret
= state
->end
+ 1;
1683 * At this point 'node' either contains 'start' or start is
1686 state
= rb_entry(node
, struct extent_state
, rb_node
);
1688 if (in_range(start
, state
->start
, state
->end
- state
->start
+ 1)) {
1689 if (state
->state
& bits
) {
1691 * |--range with bits sets--|
1695 start
= state
->end
+ 1;
1698 * 'start' falls within a range that doesn't
1699 * have the bits set, so take its start as
1700 * the beginning of the desired range
1702 * |--range with bits cleared----|
1706 *start_ret
= state
->start
;
1711 * |---prev range---|---hole/unset---|---node range---|
1717 * |---hole/unset--||--first node--|
1722 state
= rb_entry(prev
, struct extent_state
,
1724 *start_ret
= state
->end
+ 1;
1733 * Find the longest stretch from start until an entry which has the
1737 state
= rb_entry(node
, struct extent_state
, rb_node
);
1738 if (state
->end
>= start
&& !(state
->state
& bits
)) {
1739 *end_ret
= state
->end
;
1741 *end_ret
= state
->start
- 1;
1745 node
= rb_next(node
);
1750 spin_unlock(&tree
->lock
);
1754 * find a contiguous range of bytes in the file marked as delalloc, not
1755 * more than 'max_bytes'. start and end are used to return the range,
1757 * true is returned if we find something, false if nothing was in the tree
1759 bool btrfs_find_delalloc_range(struct extent_io_tree
*tree
, u64
*start
,
1760 u64
*end
, u64 max_bytes
,
1761 struct extent_state
**cached_state
)
1763 struct rb_node
*node
;
1764 struct extent_state
*state
;
1765 u64 cur_start
= *start
;
1767 u64 total_bytes
= 0;
1769 spin_lock(&tree
->lock
);
1772 * this search will find all the extents that end after
1775 node
= tree_search(tree
, cur_start
);
1782 state
= rb_entry(node
, struct extent_state
, rb_node
);
1783 if (found
&& (state
->start
!= cur_start
||
1784 (state
->state
& EXTENT_BOUNDARY
))) {
1787 if (!(state
->state
& EXTENT_DELALLOC
)) {
1793 *start
= state
->start
;
1794 *cached_state
= state
;
1795 refcount_inc(&state
->refs
);
1799 cur_start
= state
->end
+ 1;
1800 node
= rb_next(node
);
1801 total_bytes
+= state
->end
- state
->start
+ 1;
1802 if (total_bytes
>= max_bytes
)
1808 spin_unlock(&tree
->lock
);
1812 static int __process_pages_contig(struct address_space
*mapping
,
1813 struct page
*locked_page
,
1814 pgoff_t start_index
, pgoff_t end_index
,
1815 unsigned long page_ops
, pgoff_t
*index_ret
);
1817 static noinline
void __unlock_for_delalloc(struct inode
*inode
,
1818 struct page
*locked_page
,
1821 unsigned long index
= start
>> PAGE_SHIFT
;
1822 unsigned long end_index
= end
>> PAGE_SHIFT
;
1824 ASSERT(locked_page
);
1825 if (index
== locked_page
->index
&& end_index
== index
)
1828 __process_pages_contig(inode
->i_mapping
, locked_page
, index
, end_index
,
1832 static noinline
int lock_delalloc_pages(struct inode
*inode
,
1833 struct page
*locked_page
,
1837 unsigned long index
= delalloc_start
>> PAGE_SHIFT
;
1838 unsigned long index_ret
= index
;
1839 unsigned long end_index
= delalloc_end
>> PAGE_SHIFT
;
1842 ASSERT(locked_page
);
1843 if (index
== locked_page
->index
&& index
== end_index
)
1846 ret
= __process_pages_contig(inode
->i_mapping
, locked_page
, index
,
1847 end_index
, PAGE_LOCK
, &index_ret
);
1849 __unlock_for_delalloc(inode
, locked_page
, delalloc_start
,
1850 (u64
)index_ret
<< PAGE_SHIFT
);
1855 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1856 * more than @max_bytes. @Start and @end are used to return the range,
1858 * Return: true if we find something
1859 * false if nothing was in the tree
1862 noinline_for_stack
bool find_lock_delalloc_range(struct inode
*inode
,
1863 struct page
*locked_page
, u64
*start
,
1866 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
1867 u64 max_bytes
= BTRFS_MAX_EXTENT_SIZE
;
1871 struct extent_state
*cached_state
= NULL
;
1876 /* step one, find a bunch of delalloc bytes starting at start */
1877 delalloc_start
= *start
;
1879 found
= btrfs_find_delalloc_range(tree
, &delalloc_start
, &delalloc_end
,
1880 max_bytes
, &cached_state
);
1881 if (!found
|| delalloc_end
<= *start
) {
1882 *start
= delalloc_start
;
1883 *end
= delalloc_end
;
1884 free_extent_state(cached_state
);
1889 * start comes from the offset of locked_page. We have to lock
1890 * pages in order, so we can't process delalloc bytes before
1893 if (delalloc_start
< *start
)
1894 delalloc_start
= *start
;
1897 * make sure to limit the number of pages we try to lock down
1899 if (delalloc_end
+ 1 - delalloc_start
> max_bytes
)
1900 delalloc_end
= delalloc_start
+ max_bytes
- 1;
1902 /* step two, lock all the pages after the page that has start */
1903 ret
= lock_delalloc_pages(inode
, locked_page
,
1904 delalloc_start
, delalloc_end
);
1905 ASSERT(!ret
|| ret
== -EAGAIN
);
1906 if (ret
== -EAGAIN
) {
1907 /* some of the pages are gone, lets avoid looping by
1908 * shortening the size of the delalloc range we're searching
1910 free_extent_state(cached_state
);
1911 cached_state
= NULL
;
1913 max_bytes
= PAGE_SIZE
;
1922 /* step three, lock the state bits for the whole range */
1923 lock_extent_bits(tree
, delalloc_start
, delalloc_end
, &cached_state
);
1925 /* then test to make sure it is all still delalloc */
1926 ret
= test_range_bit(tree
, delalloc_start
, delalloc_end
,
1927 EXTENT_DELALLOC
, 1, cached_state
);
1929 unlock_extent_cached(tree
, delalloc_start
, delalloc_end
,
1931 __unlock_for_delalloc(inode
, locked_page
,
1932 delalloc_start
, delalloc_end
);
1936 free_extent_state(cached_state
);
1937 *start
= delalloc_start
;
1938 *end
= delalloc_end
;
1943 static int __process_pages_contig(struct address_space
*mapping
,
1944 struct page
*locked_page
,
1945 pgoff_t start_index
, pgoff_t end_index
,
1946 unsigned long page_ops
, pgoff_t
*index_ret
)
1948 unsigned long nr_pages
= end_index
- start_index
+ 1;
1949 unsigned long pages_locked
= 0;
1950 pgoff_t index
= start_index
;
1951 struct page
*pages
[16];
1956 if (page_ops
& PAGE_LOCK
) {
1957 ASSERT(page_ops
== PAGE_LOCK
);
1958 ASSERT(index_ret
&& *index_ret
== start_index
);
1961 if ((page_ops
& PAGE_SET_ERROR
) && nr_pages
> 0)
1962 mapping_set_error(mapping
, -EIO
);
1964 while (nr_pages
> 0) {
1965 ret
= find_get_pages_contig(mapping
, index
,
1966 min_t(unsigned long,
1967 nr_pages
, ARRAY_SIZE(pages
)), pages
);
1970 * Only if we're going to lock these pages,
1971 * can we find nothing at @index.
1973 ASSERT(page_ops
& PAGE_LOCK
);
1978 for (i
= 0; i
< ret
; i
++) {
1979 if (page_ops
& PAGE_SET_PRIVATE2
)
1980 SetPagePrivate2(pages
[i
]);
1982 if (locked_page
&& pages
[i
] == locked_page
) {
1987 if (page_ops
& PAGE_CLEAR_DIRTY
)
1988 clear_page_dirty_for_io(pages
[i
]);
1989 if (page_ops
& PAGE_SET_WRITEBACK
)
1990 set_page_writeback(pages
[i
]);
1991 if (page_ops
& PAGE_SET_ERROR
)
1992 SetPageError(pages
[i
]);
1993 if (page_ops
& PAGE_END_WRITEBACK
)
1994 end_page_writeback(pages
[i
]);
1995 if (page_ops
& PAGE_UNLOCK
)
1996 unlock_page(pages
[i
]);
1997 if (page_ops
& PAGE_LOCK
) {
1998 lock_page(pages
[i
]);
1999 if (!PageDirty(pages
[i
]) ||
2000 pages
[i
]->mapping
!= mapping
) {
2001 unlock_page(pages
[i
]);
2015 if (err
&& index_ret
)
2016 *index_ret
= start_index
+ pages_locked
- 1;
2020 void extent_clear_unlock_delalloc(struct inode
*inode
, u64 start
, u64 end
,
2021 struct page
*locked_page
,
2022 unsigned clear_bits
,
2023 unsigned long page_ops
)
2025 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, clear_bits
, 1, 0,
2028 __process_pages_contig(inode
->i_mapping
, locked_page
,
2029 start
>> PAGE_SHIFT
, end
>> PAGE_SHIFT
,
2034 * count the number of bytes in the tree that have a given bit(s)
2035 * set. This can be fairly slow, except for EXTENT_DIRTY which is
2036 * cached. The total number found is returned.
2038 u64
count_range_bits(struct extent_io_tree
*tree
,
2039 u64
*start
, u64 search_end
, u64 max_bytes
,
2040 unsigned bits
, int contig
)
2042 struct rb_node
*node
;
2043 struct extent_state
*state
;
2044 u64 cur_start
= *start
;
2045 u64 total_bytes
= 0;
2049 if (WARN_ON(search_end
<= cur_start
))
2052 spin_lock(&tree
->lock
);
2053 if (cur_start
== 0 && bits
== EXTENT_DIRTY
) {
2054 total_bytes
= tree
->dirty_bytes
;
2058 * this search will find all the extents that end after
2061 node
= tree_search(tree
, cur_start
);
2066 state
= rb_entry(node
, struct extent_state
, rb_node
);
2067 if (state
->start
> search_end
)
2069 if (contig
&& found
&& state
->start
> last
+ 1)
2071 if (state
->end
>= cur_start
&& (state
->state
& bits
) == bits
) {
2072 total_bytes
+= min(search_end
, state
->end
) + 1 -
2073 max(cur_start
, state
->start
);
2074 if (total_bytes
>= max_bytes
)
2077 *start
= max(cur_start
, state
->start
);
2081 } else if (contig
&& found
) {
2084 node
= rb_next(node
);
2089 spin_unlock(&tree
->lock
);
2094 * set the private field for a given byte offset in the tree. If there isn't
2095 * an extent_state there already, this does nothing.
2097 int set_state_failrec(struct extent_io_tree
*tree
, u64 start
,
2098 struct io_failure_record
*failrec
)
2100 struct rb_node
*node
;
2101 struct extent_state
*state
;
2104 spin_lock(&tree
->lock
);
2106 * this search will find all the extents that end after
2109 node
= tree_search(tree
, start
);
2114 state
= rb_entry(node
, struct extent_state
, rb_node
);
2115 if (state
->start
!= start
) {
2119 state
->failrec
= failrec
;
2121 spin_unlock(&tree
->lock
);
2125 int get_state_failrec(struct extent_io_tree
*tree
, u64 start
,
2126 struct io_failure_record
**failrec
)
2128 struct rb_node
*node
;
2129 struct extent_state
*state
;
2132 spin_lock(&tree
->lock
);
2134 * this search will find all the extents that end after
2137 node
= tree_search(tree
, start
);
2142 state
= rb_entry(node
, struct extent_state
, rb_node
);
2143 if (state
->start
!= start
) {
2147 *failrec
= state
->failrec
;
2149 spin_unlock(&tree
->lock
);
2154 * searches a range in the state tree for a given mask.
2155 * If 'filled' == 1, this returns 1 only if every extent in the tree
2156 * has the bits set. Otherwise, 1 is returned if any bit in the
2157 * range is found set.
2159 int test_range_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
2160 unsigned bits
, int filled
, struct extent_state
*cached
)
2162 struct extent_state
*state
= NULL
;
2163 struct rb_node
*node
;
2166 spin_lock(&tree
->lock
);
2167 if (cached
&& extent_state_in_tree(cached
) && cached
->start
<= start
&&
2168 cached
->end
> start
)
2169 node
= &cached
->rb_node
;
2171 node
= tree_search(tree
, start
);
2172 while (node
&& start
<= end
) {
2173 state
= rb_entry(node
, struct extent_state
, rb_node
);
2175 if (filled
&& state
->start
> start
) {
2180 if (state
->start
> end
)
2183 if (state
->state
& bits
) {
2187 } else if (filled
) {
2192 if (state
->end
== (u64
)-1)
2195 start
= state
->end
+ 1;
2198 node
= rb_next(node
);
2205 spin_unlock(&tree
->lock
);
2210 * helper function to set a given page up to date if all the
2211 * extents in the tree for that page are up to date
2213 static void check_page_uptodate(struct extent_io_tree
*tree
, struct page
*page
)
2215 u64 start
= page_offset(page
);
2216 u64 end
= start
+ PAGE_SIZE
- 1;
2217 if (test_range_bit(tree
, start
, end
, EXTENT_UPTODATE
, 1, NULL
))
2218 SetPageUptodate(page
);
2221 int free_io_failure(struct extent_io_tree
*failure_tree
,
2222 struct extent_io_tree
*io_tree
,
2223 struct io_failure_record
*rec
)
2228 set_state_failrec(failure_tree
, rec
->start
, NULL
);
2229 ret
= clear_extent_bits(failure_tree
, rec
->start
,
2230 rec
->start
+ rec
->len
- 1,
2231 EXTENT_LOCKED
| EXTENT_DIRTY
);
2235 ret
= clear_extent_bits(io_tree
, rec
->start
,
2236 rec
->start
+ rec
->len
- 1,
2246 * this bypasses the standard btrfs submit functions deliberately, as
2247 * the standard behavior is to write all copies in a raid setup. here we only
2248 * want to write the one bad copy. so we do the mapping for ourselves and issue
2249 * submit_bio directly.
2250 * to avoid any synchronization issues, wait for the data after writing, which
2251 * actually prevents the read that triggered the error from finishing.
2252 * currently, there can be no more than two copies of every data bit. thus,
2253 * exactly one rewrite is required.
2255 int repair_io_failure(struct btrfs_fs_info
*fs_info
, u64 ino
, u64 start
,
2256 u64 length
, u64 logical
, struct page
*page
,
2257 unsigned int pg_offset
, int mirror_num
)
2260 struct btrfs_device
*dev
;
2263 struct btrfs_bio
*bbio
= NULL
;
2266 ASSERT(!(fs_info
->sb
->s_flags
& SB_RDONLY
));
2267 BUG_ON(!mirror_num
);
2269 bio
= btrfs_io_bio_alloc(1);
2270 bio
->bi_iter
.bi_size
= 0;
2271 map_length
= length
;
2274 * Avoid races with device replace and make sure our bbio has devices
2275 * associated to its stripes that don't go away while we are doing the
2276 * read repair operation.
2278 btrfs_bio_counter_inc_blocked(fs_info
);
2279 if (btrfs_is_parity_mirror(fs_info
, logical
, length
)) {
2281 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2282 * to update all raid stripes, but here we just want to correct
2283 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2284 * stripe's dev and sector.
2286 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_READ
, logical
,
2287 &map_length
, &bbio
, 0);
2289 btrfs_bio_counter_dec(fs_info
);
2293 ASSERT(bbio
->mirror_num
== 1);
2295 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_WRITE
, logical
,
2296 &map_length
, &bbio
, mirror_num
);
2298 btrfs_bio_counter_dec(fs_info
);
2302 BUG_ON(mirror_num
!= bbio
->mirror_num
);
2305 sector
= bbio
->stripes
[bbio
->mirror_num
- 1].physical
>> 9;
2306 bio
->bi_iter
.bi_sector
= sector
;
2307 dev
= bbio
->stripes
[bbio
->mirror_num
- 1].dev
;
2308 btrfs_put_bbio(bbio
);
2309 if (!dev
|| !dev
->bdev
||
2310 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
)) {
2311 btrfs_bio_counter_dec(fs_info
);
2315 bio_set_dev(bio
, dev
->bdev
);
2316 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
;
2317 bio_add_page(bio
, page
, length
, pg_offset
);
2319 if (btrfsic_submit_bio_wait(bio
)) {
2320 /* try to remap that extent elsewhere? */
2321 btrfs_bio_counter_dec(fs_info
);
2323 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_WRITE_ERRS
);
2327 btrfs_info_rl_in_rcu(fs_info
,
2328 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2330 rcu_str_deref(dev
->name
), sector
);
2331 btrfs_bio_counter_dec(fs_info
);
2336 int btrfs_repair_eb_io_failure(const struct extent_buffer
*eb
, int mirror_num
)
2338 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
2339 u64 start
= eb
->start
;
2340 int i
, num_pages
= num_extent_pages(eb
);
2343 if (sb_rdonly(fs_info
->sb
))
2346 for (i
= 0; i
< num_pages
; i
++) {
2347 struct page
*p
= eb
->pages
[i
];
2349 ret
= repair_io_failure(fs_info
, 0, start
, PAGE_SIZE
, start
, p
,
2350 start
- page_offset(p
), mirror_num
);
2360 * each time an IO finishes, we do a fast check in the IO failure tree
2361 * to see if we need to process or clean up an io_failure_record
2363 int clean_io_failure(struct btrfs_fs_info
*fs_info
,
2364 struct extent_io_tree
*failure_tree
,
2365 struct extent_io_tree
*io_tree
, u64 start
,
2366 struct page
*page
, u64 ino
, unsigned int pg_offset
)
2369 struct io_failure_record
*failrec
;
2370 struct extent_state
*state
;
2375 ret
= count_range_bits(failure_tree
, &private, (u64
)-1, 1,
2380 ret
= get_state_failrec(failure_tree
, start
, &failrec
);
2384 BUG_ON(!failrec
->this_mirror
);
2386 if (failrec
->in_validation
) {
2387 /* there was no real error, just free the record */
2388 btrfs_debug(fs_info
,
2389 "clean_io_failure: freeing dummy error at %llu",
2393 if (sb_rdonly(fs_info
->sb
))
2396 spin_lock(&io_tree
->lock
);
2397 state
= find_first_extent_bit_state(io_tree
,
2400 spin_unlock(&io_tree
->lock
);
2402 if (state
&& state
->start
<= failrec
->start
&&
2403 state
->end
>= failrec
->start
+ failrec
->len
- 1) {
2404 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
,
2406 if (num_copies
> 1) {
2407 repair_io_failure(fs_info
, ino
, start
, failrec
->len
,
2408 failrec
->logical
, page
, pg_offset
,
2409 failrec
->failed_mirror
);
2414 free_io_failure(failure_tree
, io_tree
, failrec
);
2420 * Can be called when
2421 * - hold extent lock
2422 * - under ordered extent
2423 * - the inode is freeing
2425 void btrfs_free_io_failure_record(struct btrfs_inode
*inode
, u64 start
, u64 end
)
2427 struct extent_io_tree
*failure_tree
= &inode
->io_failure_tree
;
2428 struct io_failure_record
*failrec
;
2429 struct extent_state
*state
, *next
;
2431 if (RB_EMPTY_ROOT(&failure_tree
->state
))
2434 spin_lock(&failure_tree
->lock
);
2435 state
= find_first_extent_bit_state(failure_tree
, start
, EXTENT_DIRTY
);
2437 if (state
->start
> end
)
2440 ASSERT(state
->end
<= end
);
2442 next
= next_state(state
);
2444 failrec
= state
->failrec
;
2445 free_extent_state(state
);
2450 spin_unlock(&failure_tree
->lock
);
2453 int btrfs_get_io_failure_record(struct inode
*inode
, u64 start
, u64 end
,
2454 struct io_failure_record
**failrec_ret
)
2456 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2457 struct io_failure_record
*failrec
;
2458 struct extent_map
*em
;
2459 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2460 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
2461 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
2465 ret
= get_state_failrec(failure_tree
, start
, &failrec
);
2467 failrec
= kzalloc(sizeof(*failrec
), GFP_NOFS
);
2471 failrec
->start
= start
;
2472 failrec
->len
= end
- start
+ 1;
2473 failrec
->this_mirror
= 0;
2474 failrec
->bio_flags
= 0;
2475 failrec
->in_validation
= 0;
2477 read_lock(&em_tree
->lock
);
2478 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
2480 read_unlock(&em_tree
->lock
);
2485 if (em
->start
> start
|| em
->start
+ em
->len
<= start
) {
2486 free_extent_map(em
);
2489 read_unlock(&em_tree
->lock
);
2495 logical
= start
- em
->start
;
2496 logical
= em
->block_start
+ logical
;
2497 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
2498 logical
= em
->block_start
;
2499 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
2500 extent_set_compress_type(&failrec
->bio_flags
,
2504 btrfs_debug(fs_info
,
2505 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2506 logical
, start
, failrec
->len
);
2508 failrec
->logical
= logical
;
2509 free_extent_map(em
);
2511 /* set the bits in the private failure tree */
2512 ret
= set_extent_bits(failure_tree
, start
, end
,
2513 EXTENT_LOCKED
| EXTENT_DIRTY
);
2515 ret
= set_state_failrec(failure_tree
, start
, failrec
);
2516 /* set the bits in the inode's tree */
2518 ret
= set_extent_bits(tree
, start
, end
, EXTENT_DAMAGED
);
2524 btrfs_debug(fs_info
,
2525 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2526 failrec
->logical
, failrec
->start
, failrec
->len
,
2527 failrec
->in_validation
);
2529 * when data can be on disk more than twice, add to failrec here
2530 * (e.g. with a list for failed_mirror) to make
2531 * clean_io_failure() clean all those errors at once.
2535 *failrec_ret
= failrec
;
2540 static bool btrfs_check_repairable(struct inode
*inode
, bool needs_validation
,
2541 struct io_failure_record
*failrec
,
2544 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2547 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
, failrec
->len
);
2548 if (num_copies
== 1) {
2550 * we only have a single copy of the data, so don't bother with
2551 * all the retry and error correction code that follows. no
2552 * matter what the error is, it is very likely to persist.
2554 btrfs_debug(fs_info
,
2555 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2556 num_copies
, failrec
->this_mirror
, failed_mirror
);
2561 * there are two premises:
2562 * a) deliver good data to the caller
2563 * b) correct the bad sectors on disk
2565 if (needs_validation
) {
2567 * to fulfill b), we need to know the exact failing sectors, as
2568 * we don't want to rewrite any more than the failed ones. thus,
2569 * we need separate read requests for the failed bio
2571 * if the following BUG_ON triggers, our validation request got
2572 * merged. we need separate requests for our algorithm to work.
2574 BUG_ON(failrec
->in_validation
);
2575 failrec
->in_validation
= 1;
2576 failrec
->this_mirror
= failed_mirror
;
2579 * we're ready to fulfill a) and b) alongside. get a good copy
2580 * of the failed sector and if we succeed, we have setup
2581 * everything for repair_io_failure to do the rest for us.
2583 if (failrec
->in_validation
) {
2584 BUG_ON(failrec
->this_mirror
!= failed_mirror
);
2585 failrec
->in_validation
= 0;
2586 failrec
->this_mirror
= 0;
2588 failrec
->failed_mirror
= failed_mirror
;
2589 failrec
->this_mirror
++;
2590 if (failrec
->this_mirror
== failed_mirror
)
2591 failrec
->this_mirror
++;
2594 if (failrec
->this_mirror
> num_copies
) {
2595 btrfs_debug(fs_info
,
2596 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2597 num_copies
, failrec
->this_mirror
, failed_mirror
);
2604 static bool btrfs_io_needs_validation(struct inode
*inode
, struct bio
*bio
)
2607 const u32 blocksize
= inode
->i_sb
->s_blocksize
;
2610 * If bi_status is BLK_STS_OK, then this was a checksum error, not an
2611 * I/O error. In this case, we already know exactly which sector was
2612 * bad, so we don't need to validate.
2614 if (bio
->bi_status
== BLK_STS_OK
)
2618 * We need to validate each sector individually if the failed I/O was
2619 * for multiple sectors.
2621 * There are a few possible bios that can end up here:
2622 * 1. A buffered read bio, which is not cloned.
2623 * 2. A direct I/O read bio, which is cloned.
2624 * 3. A (buffered or direct) repair bio, which is not cloned.
2626 * For cloned bios (case 2), we can get the size from
2627 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
2628 * it from the bvecs.
2630 if (bio_flagged(bio
, BIO_CLONED
)) {
2631 if (btrfs_io_bio(bio
)->iter
.bi_size
> blocksize
)
2634 struct bio_vec
*bvec
;
2637 bio_for_each_bvec_all(bvec
, bio
, i
) {
2638 len
+= bvec
->bv_len
;
2639 if (len
> blocksize
)
2646 blk_status_t
btrfs_submit_read_repair(struct inode
*inode
,
2647 struct bio
*failed_bio
, u64 phy_offset
,
2648 struct page
*page
, unsigned int pgoff
,
2649 u64 start
, u64 end
, int failed_mirror
,
2650 submit_bio_hook_t
*submit_bio_hook
)
2652 struct io_failure_record
*failrec
;
2653 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2654 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
2655 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2656 struct btrfs_io_bio
*failed_io_bio
= btrfs_io_bio(failed_bio
);
2657 const int icsum
= phy_offset
>> inode
->i_sb
->s_blocksize_bits
;
2658 bool need_validation
;
2659 struct bio
*repair_bio
;
2660 struct btrfs_io_bio
*repair_io_bio
;
2661 blk_status_t status
;
2664 btrfs_debug(fs_info
,
2665 "repair read error: read error at %llu", start
);
2667 BUG_ON(bio_op(failed_bio
) == REQ_OP_WRITE
);
2669 ret
= btrfs_get_io_failure_record(inode
, start
, end
, &failrec
);
2671 return errno_to_blk_status(ret
);
2673 need_validation
= btrfs_io_needs_validation(inode
, failed_bio
);
2675 if (!btrfs_check_repairable(inode
, need_validation
, failrec
,
2677 free_io_failure(failure_tree
, tree
, failrec
);
2678 return BLK_STS_IOERR
;
2681 repair_bio
= btrfs_io_bio_alloc(1);
2682 repair_io_bio
= btrfs_io_bio(repair_bio
);
2683 repair_bio
->bi_opf
= REQ_OP_READ
;
2684 if (need_validation
)
2685 repair_bio
->bi_opf
|= REQ_FAILFAST_DEV
;
2686 repair_bio
->bi_end_io
= failed_bio
->bi_end_io
;
2687 repair_bio
->bi_iter
.bi_sector
= failrec
->logical
>> 9;
2688 repair_bio
->bi_private
= failed_bio
->bi_private
;
2690 if (failed_io_bio
->csum
) {
2691 const u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
2693 repair_io_bio
->csum
= repair_io_bio
->csum_inline
;
2694 memcpy(repair_io_bio
->csum
,
2695 failed_io_bio
->csum
+ csum_size
* icsum
, csum_size
);
2698 bio_add_page(repair_bio
, page
, failrec
->len
, pgoff
);
2699 repair_io_bio
->logical
= failrec
->start
;
2700 repair_io_bio
->iter
= repair_bio
->bi_iter
;
2702 btrfs_debug(btrfs_sb(inode
->i_sb
),
2703 "repair read error: submitting new read to mirror %d, in_validation=%d",
2704 failrec
->this_mirror
, failrec
->in_validation
);
2706 status
= submit_bio_hook(inode
, repair_bio
, failrec
->this_mirror
,
2707 failrec
->bio_flags
);
2709 free_io_failure(failure_tree
, tree
, failrec
);
2710 bio_put(repair_bio
);
2715 /* lots and lots of room for performance fixes in the end_bio funcs */
2717 void end_extent_writepage(struct page
*page
, int err
, u64 start
, u64 end
)
2719 int uptodate
= (err
== 0);
2722 btrfs_writepage_endio_finish_ordered(page
, start
, end
, uptodate
);
2725 ClearPageUptodate(page
);
2727 ret
= err
< 0 ? err
: -EIO
;
2728 mapping_set_error(page
->mapping
, ret
);
2733 * after a writepage IO is done, we need to:
2734 * clear the uptodate bits on error
2735 * clear the writeback bits in the extent tree for this IO
2736 * end_page_writeback if the page has no more pending IO
2738 * Scheduling is not allowed, so the extent state tree is expected
2739 * to have one and only one object corresponding to this IO.
2741 static void end_bio_extent_writepage(struct bio
*bio
)
2743 int error
= blk_status_to_errno(bio
->bi_status
);
2744 struct bio_vec
*bvec
;
2747 struct bvec_iter_all iter_all
;
2749 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
2750 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
2751 struct page
*page
= bvec
->bv_page
;
2752 struct inode
*inode
= page
->mapping
->host
;
2753 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2755 /* We always issue full-page reads, but if some block
2756 * in a page fails to read, blk_update_request() will
2757 * advance bv_offset and adjust bv_len to compensate.
2758 * Print a warning for nonzero offsets, and an error
2759 * if they don't add up to a full page. */
2760 if (bvec
->bv_offset
|| bvec
->bv_len
!= PAGE_SIZE
) {
2761 if (bvec
->bv_offset
+ bvec
->bv_len
!= PAGE_SIZE
)
2763 "partial page write in btrfs with offset %u and length %u",
2764 bvec
->bv_offset
, bvec
->bv_len
);
2767 "incomplete page write in btrfs with offset %u and length %u",
2768 bvec
->bv_offset
, bvec
->bv_len
);
2771 start
= page_offset(page
);
2772 end
= start
+ bvec
->bv_offset
+ bvec
->bv_len
- 1;
2774 end_extent_writepage(page
, error
, start
, end
);
2775 end_page_writeback(page
);
2782 endio_readpage_release_extent(struct extent_io_tree
*tree
, u64 start
, u64 len
,
2785 struct extent_state
*cached
= NULL
;
2786 u64 end
= start
+ len
- 1;
2788 if (uptodate
&& tree
->track_uptodate
)
2789 set_extent_uptodate(tree
, start
, end
, &cached
, GFP_ATOMIC
);
2790 unlock_extent_cached_atomic(tree
, start
, end
, &cached
);
2794 * after a readpage IO is done, we need to:
2795 * clear the uptodate bits on error
2796 * set the uptodate bits if things worked
2797 * set the page up to date if all extents in the tree are uptodate
2798 * clear the lock bit in the extent tree
2799 * unlock the page if there are no other extents locked for it
2801 * Scheduling is not allowed, so the extent state tree is expected
2802 * to have one and only one object corresponding to this IO.
2804 static void end_bio_extent_readpage(struct bio
*bio
)
2806 struct bio_vec
*bvec
;
2807 int uptodate
= !bio
->bi_status
;
2808 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
2809 struct extent_io_tree
*tree
, *failure_tree
;
2814 u64 extent_start
= 0;
2818 struct bvec_iter_all iter_all
;
2820 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
2821 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
2822 struct page
*page
= bvec
->bv_page
;
2823 struct inode
*inode
= page
->mapping
->host
;
2824 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2825 bool data_inode
= btrfs_ino(BTRFS_I(inode
))
2826 != BTRFS_BTREE_INODE_OBJECTID
;
2828 btrfs_debug(fs_info
,
2829 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2830 (u64
)bio
->bi_iter
.bi_sector
, bio
->bi_status
,
2831 io_bio
->mirror_num
);
2832 tree
= &BTRFS_I(inode
)->io_tree
;
2833 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2835 /* We always issue full-page reads, but if some block
2836 * in a page fails to read, blk_update_request() will
2837 * advance bv_offset and adjust bv_len to compensate.
2838 * Print a warning for nonzero offsets, and an error
2839 * if they don't add up to a full page. */
2840 if (bvec
->bv_offset
|| bvec
->bv_len
!= PAGE_SIZE
) {
2841 if (bvec
->bv_offset
+ bvec
->bv_len
!= PAGE_SIZE
)
2843 "partial page read in btrfs with offset %u and length %u",
2844 bvec
->bv_offset
, bvec
->bv_len
);
2847 "incomplete page read in btrfs with offset %u and length %u",
2848 bvec
->bv_offset
, bvec
->bv_len
);
2851 start
= page_offset(page
);
2852 end
= start
+ bvec
->bv_offset
+ bvec
->bv_len
- 1;
2855 mirror
= io_bio
->mirror_num
;
2856 if (likely(uptodate
)) {
2857 ret
= tree
->ops
->readpage_end_io_hook(io_bio
, offset
,
2863 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
,
2864 failure_tree
, tree
, start
,
2866 btrfs_ino(BTRFS_I(inode
)), 0);
2869 if (likely(uptodate
))
2875 * The generic bio_readpage_error handles errors the
2876 * following way: If possible, new read requests are
2877 * created and submitted and will end up in
2878 * end_bio_extent_readpage as well (if we're lucky,
2879 * not in the !uptodate case). In that case it returns
2880 * 0 and we just go on with the next page in our bio.
2881 * If it can't handle the error it will return -EIO and
2882 * we remain responsible for that page.
2884 if (!btrfs_submit_read_repair(inode
, bio
, offset
, page
,
2885 start
- page_offset(page
),
2887 tree
->ops
->submit_bio_hook
)) {
2888 uptodate
= !bio
->bi_status
;
2893 struct extent_buffer
*eb
;
2895 eb
= (struct extent_buffer
*)page
->private;
2896 set_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
2897 eb
->read_mirror
= mirror
;
2898 atomic_dec(&eb
->io_pages
);
2899 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD
,
2901 btree_readahead_hook(eb
, -EIO
);
2904 if (likely(uptodate
)) {
2905 loff_t i_size
= i_size_read(inode
);
2906 pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2909 /* Zero out the end if this page straddles i_size */
2910 off
= offset_in_page(i_size
);
2911 if (page
->index
== end_index
&& off
)
2912 zero_user_segment(page
, off
, PAGE_SIZE
);
2913 SetPageUptodate(page
);
2915 ClearPageUptodate(page
);
2921 if (unlikely(!uptodate
)) {
2923 endio_readpage_release_extent(tree
,
2929 endio_readpage_release_extent(tree
, start
,
2930 end
- start
+ 1, 0);
2931 } else if (!extent_len
) {
2932 extent_start
= start
;
2933 extent_len
= end
+ 1 - start
;
2934 } else if (extent_start
+ extent_len
== start
) {
2935 extent_len
+= end
+ 1 - start
;
2937 endio_readpage_release_extent(tree
, extent_start
,
2938 extent_len
, uptodate
);
2939 extent_start
= start
;
2940 extent_len
= end
+ 1 - start
;
2945 endio_readpage_release_extent(tree
, extent_start
, extent_len
,
2947 btrfs_io_bio_free_csum(io_bio
);
2952 * Initialize the members up to but not including 'bio'. Use after allocating a
2953 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2954 * 'bio' because use of __GFP_ZERO is not supported.
2956 static inline void btrfs_io_bio_init(struct btrfs_io_bio
*btrfs_bio
)
2958 memset(btrfs_bio
, 0, offsetof(struct btrfs_io_bio
, bio
));
2962 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2963 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2964 * for the appropriate container_of magic
2966 struct bio
*btrfs_bio_alloc(u64 first_byte
)
2970 bio
= bio_alloc_bioset(GFP_NOFS
, BIO_MAX_PAGES
, &btrfs_bioset
);
2971 bio
->bi_iter
.bi_sector
= first_byte
>> 9;
2972 btrfs_io_bio_init(btrfs_io_bio(bio
));
2976 struct bio
*btrfs_bio_clone(struct bio
*bio
)
2978 struct btrfs_io_bio
*btrfs_bio
;
2981 /* Bio allocation backed by a bioset does not fail */
2982 new = bio_clone_fast(bio
, GFP_NOFS
, &btrfs_bioset
);
2983 btrfs_bio
= btrfs_io_bio(new);
2984 btrfs_io_bio_init(btrfs_bio
);
2985 btrfs_bio
->iter
= bio
->bi_iter
;
2989 struct bio
*btrfs_io_bio_alloc(unsigned int nr_iovecs
)
2993 /* Bio allocation backed by a bioset does not fail */
2994 bio
= bio_alloc_bioset(GFP_NOFS
, nr_iovecs
, &btrfs_bioset
);
2995 btrfs_io_bio_init(btrfs_io_bio(bio
));
2999 struct bio
*btrfs_bio_clone_partial(struct bio
*orig
, int offset
, int size
)
3002 struct btrfs_io_bio
*btrfs_bio
;
3004 /* this will never fail when it's backed by a bioset */
3005 bio
= bio_clone_fast(orig
, GFP_NOFS
, &btrfs_bioset
);
3008 btrfs_bio
= btrfs_io_bio(bio
);
3009 btrfs_io_bio_init(btrfs_bio
);
3011 bio_trim(bio
, offset
>> 9, size
>> 9);
3012 btrfs_bio
->iter
= bio
->bi_iter
;
3017 * @opf: bio REQ_OP_* and REQ_* flags as one value
3018 * @wbc: optional writeback control for io accounting
3019 * @page: page to add to the bio
3020 * @pg_offset: offset of the new bio or to check whether we are adding
3021 * a contiguous page to the previous one
3022 * @size: portion of page that we want to write
3023 * @offset: starting offset in the page
3024 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
3025 * @end_io_func: end_io callback for new bio
3026 * @mirror_num: desired mirror to read/write
3027 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3028 * @bio_flags: flags of the current bio to see if we can merge them
3030 static int submit_extent_page(unsigned int opf
,
3031 struct writeback_control
*wbc
,
3032 struct page
*page
, u64 offset
,
3033 size_t size
, unsigned long pg_offset
,
3034 struct bio
**bio_ret
,
3035 bio_end_io_t end_io_func
,
3037 unsigned long prev_bio_flags
,
3038 unsigned long bio_flags
,
3039 bool force_bio_submit
)
3043 size_t page_size
= min_t(size_t, size
, PAGE_SIZE
);
3044 sector_t sector
= offset
>> 9;
3045 struct extent_io_tree
*tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
3051 bool can_merge
= true;
3054 if (prev_bio_flags
& EXTENT_BIO_COMPRESSED
)
3055 contig
= bio
->bi_iter
.bi_sector
== sector
;
3057 contig
= bio_end_sector(bio
) == sector
;
3060 if (btrfs_bio_fits_in_stripe(page
, page_size
, bio
, bio_flags
))
3063 if (prev_bio_flags
!= bio_flags
|| !contig
|| !can_merge
||
3065 bio_add_page(bio
, page
, page_size
, pg_offset
) < page_size
) {
3066 ret
= submit_one_bio(bio
, mirror_num
, prev_bio_flags
);
3074 wbc_account_cgroup_owner(wbc
, page
, page_size
);
3079 bio
= btrfs_bio_alloc(offset
);
3080 bio_add_page(bio
, page
, page_size
, pg_offset
);
3081 bio
->bi_end_io
= end_io_func
;
3082 bio
->bi_private
= tree
;
3083 bio
->bi_write_hint
= page
->mapping
->host
->i_write_hint
;
3086 struct block_device
*bdev
;
3088 bdev
= BTRFS_I(page
->mapping
->host
)->root
->fs_info
->fs_devices
->latest_bdev
;
3089 bio_set_dev(bio
, bdev
);
3090 wbc_init_bio(wbc
, bio
);
3091 wbc_account_cgroup_owner(wbc
, page
, page_size
);
3099 static void attach_extent_buffer_page(struct extent_buffer
*eb
,
3102 if (!PagePrivate(page
))
3103 attach_page_private(page
, eb
);
3105 WARN_ON(page
->private != (unsigned long)eb
);
3108 void set_page_extent_mapped(struct page
*page
)
3110 if (!PagePrivate(page
))
3111 attach_page_private(page
, (void *)EXTENT_PAGE_PRIVATE
);
3114 static struct extent_map
*
3115 __get_extent_map(struct inode
*inode
, struct page
*page
, size_t pg_offset
,
3116 u64 start
, u64 len
, get_extent_t
*get_extent
,
3117 struct extent_map
**em_cached
)
3119 struct extent_map
*em
;
3121 if (em_cached
&& *em_cached
) {
3123 if (extent_map_in_tree(em
) && start
>= em
->start
&&
3124 start
< extent_map_end(em
)) {
3125 refcount_inc(&em
->refs
);
3129 free_extent_map(em
);
3133 em
= get_extent(BTRFS_I(inode
), page
, pg_offset
, start
, len
);
3134 if (em_cached
&& !IS_ERR_OR_NULL(em
)) {
3136 refcount_inc(&em
->refs
);
3142 * basic readpage implementation. Locked extent state structs are inserted
3143 * into the tree that are removed when the IO is done (by the end_io
3145 * XXX JDM: This needs looking at to ensure proper page locking
3146 * return 0 on success, otherwise return error
3148 static int __do_readpage(struct page
*page
,
3149 get_extent_t
*get_extent
,
3150 struct extent_map
**em_cached
,
3151 struct bio
**bio
, int mirror_num
,
3152 unsigned long *bio_flags
, unsigned int read_flags
,
3155 struct inode
*inode
= page
->mapping
->host
;
3156 u64 start
= page_offset(page
);
3157 const u64 end
= start
+ PAGE_SIZE
- 1;
3160 u64 last_byte
= i_size_read(inode
);
3163 struct extent_map
*em
;
3166 size_t pg_offset
= 0;
3168 size_t disk_io_size
;
3169 size_t blocksize
= inode
->i_sb
->s_blocksize
;
3170 unsigned long this_bio_flag
= 0;
3171 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
3173 set_page_extent_mapped(page
);
3175 if (!PageUptodate(page
)) {
3176 if (cleancache_get_page(page
) == 0) {
3177 BUG_ON(blocksize
!= PAGE_SIZE
);
3178 unlock_extent(tree
, start
, end
);
3183 if (page
->index
== last_byte
>> PAGE_SHIFT
) {
3185 size_t zero_offset
= offset_in_page(last_byte
);
3188 iosize
= PAGE_SIZE
- zero_offset
;
3189 userpage
= kmap_atomic(page
);
3190 memset(userpage
+ zero_offset
, 0, iosize
);
3191 flush_dcache_page(page
);
3192 kunmap_atomic(userpage
);
3195 while (cur
<= end
) {
3196 bool force_bio_submit
= false;
3199 if (cur
>= last_byte
) {
3201 struct extent_state
*cached
= NULL
;
3203 iosize
= PAGE_SIZE
- pg_offset
;
3204 userpage
= kmap_atomic(page
);
3205 memset(userpage
+ pg_offset
, 0, iosize
);
3206 flush_dcache_page(page
);
3207 kunmap_atomic(userpage
);
3208 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
3210 unlock_extent_cached(tree
, cur
,
3211 cur
+ iosize
- 1, &cached
);
3214 em
= __get_extent_map(inode
, page
, pg_offset
, cur
,
3215 end
- cur
+ 1, get_extent
, em_cached
);
3216 if (IS_ERR_OR_NULL(em
)) {
3218 unlock_extent(tree
, cur
, end
);
3221 extent_offset
= cur
- em
->start
;
3222 BUG_ON(extent_map_end(em
) <= cur
);
3225 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
3226 this_bio_flag
|= EXTENT_BIO_COMPRESSED
;
3227 extent_set_compress_type(&this_bio_flag
,
3231 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
3232 cur_end
= min(extent_map_end(em
) - 1, end
);
3233 iosize
= ALIGN(iosize
, blocksize
);
3234 if (this_bio_flag
& EXTENT_BIO_COMPRESSED
) {
3235 disk_io_size
= em
->block_len
;
3236 offset
= em
->block_start
;
3238 offset
= em
->block_start
+ extent_offset
;
3239 disk_io_size
= iosize
;
3241 block_start
= em
->block_start
;
3242 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
3243 block_start
= EXTENT_MAP_HOLE
;
3246 * If we have a file range that points to a compressed extent
3247 * and it's followed by a consecutive file range that points to
3248 * to the same compressed extent (possibly with a different
3249 * offset and/or length, so it either points to the whole extent
3250 * or only part of it), we must make sure we do not submit a
3251 * single bio to populate the pages for the 2 ranges because
3252 * this makes the compressed extent read zero out the pages
3253 * belonging to the 2nd range. Imagine the following scenario:
3256 * [0 - 8K] [8K - 24K]
3259 * points to extent X, points to extent X,
3260 * offset 4K, length of 8K offset 0, length 16K
3262 * [extent X, compressed length = 4K uncompressed length = 16K]
3264 * If the bio to read the compressed extent covers both ranges,
3265 * it will decompress extent X into the pages belonging to the
3266 * first range and then it will stop, zeroing out the remaining
3267 * pages that belong to the other range that points to extent X.
3268 * So here we make sure we submit 2 bios, one for the first
3269 * range and another one for the third range. Both will target
3270 * the same physical extent from disk, but we can't currently
3271 * make the compressed bio endio callback populate the pages
3272 * for both ranges because each compressed bio is tightly
3273 * coupled with a single extent map, and each range can have
3274 * an extent map with a different offset value relative to the
3275 * uncompressed data of our extent and different lengths. This
3276 * is a corner case so we prioritize correctness over
3277 * non-optimal behavior (submitting 2 bios for the same extent).
3279 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) &&
3280 prev_em_start
&& *prev_em_start
!= (u64
)-1 &&
3281 *prev_em_start
!= em
->start
)
3282 force_bio_submit
= true;
3285 *prev_em_start
= em
->start
;
3287 free_extent_map(em
);
3290 /* we've found a hole, just zero and go on */
3291 if (block_start
== EXTENT_MAP_HOLE
) {
3293 struct extent_state
*cached
= NULL
;
3295 userpage
= kmap_atomic(page
);
3296 memset(userpage
+ pg_offset
, 0, iosize
);
3297 flush_dcache_page(page
);
3298 kunmap_atomic(userpage
);
3300 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
3302 unlock_extent_cached(tree
, cur
,
3303 cur
+ iosize
- 1, &cached
);
3305 pg_offset
+= iosize
;
3308 /* the get_extent function already copied into the page */
3309 if (test_range_bit(tree
, cur
, cur_end
,
3310 EXTENT_UPTODATE
, 1, NULL
)) {
3311 check_page_uptodate(tree
, page
);
3312 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3314 pg_offset
+= iosize
;
3317 /* we have an inline extent but it didn't get marked up
3318 * to date. Error out
3320 if (block_start
== EXTENT_MAP_INLINE
) {
3322 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3324 pg_offset
+= iosize
;
3328 ret
= submit_extent_page(REQ_OP_READ
| read_flags
, NULL
,
3329 page
, offset
, disk_io_size
,
3331 end_bio_extent_readpage
, mirror_num
,
3337 *bio_flags
= this_bio_flag
;
3340 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3344 pg_offset
+= iosize
;
3348 if (!PageError(page
))
3349 SetPageUptodate(page
);
3355 static inline void contiguous_readpages(struct page
*pages
[], int nr_pages
,
3357 struct extent_map
**em_cached
,
3359 unsigned long *bio_flags
,
3362 struct btrfs_inode
*inode
= BTRFS_I(pages
[0]->mapping
->host
);
3365 btrfs_lock_and_flush_ordered_range(inode
, start
, end
, NULL
);
3367 for (index
= 0; index
< nr_pages
; index
++) {
3368 __do_readpage(pages
[index
], btrfs_get_extent
, em_cached
,
3369 bio
, 0, bio_flags
, REQ_RAHEAD
, prev_em_start
);
3370 put_page(pages
[index
]);
3374 static int __extent_read_full_page(struct page
*page
,
3375 get_extent_t
*get_extent
,
3376 struct bio
**bio
, int mirror_num
,
3377 unsigned long *bio_flags
,
3378 unsigned int read_flags
)
3380 struct btrfs_inode
*inode
= BTRFS_I(page
->mapping
->host
);
3381 u64 start
= page_offset(page
);
3382 u64 end
= start
+ PAGE_SIZE
- 1;
3385 btrfs_lock_and_flush_ordered_range(inode
, start
, end
, NULL
);
3387 ret
= __do_readpage(page
, get_extent
, NULL
, bio
, mirror_num
,
3388 bio_flags
, read_flags
, NULL
);
3392 int extent_read_full_page(struct page
*page
, get_extent_t
*get_extent
,
3395 struct bio
*bio
= NULL
;
3396 unsigned long bio_flags
= 0;
3399 ret
= __extent_read_full_page(page
, get_extent
, &bio
, mirror_num
,
3402 ret
= submit_one_bio(bio
, mirror_num
, bio_flags
);
3406 static void update_nr_written(struct writeback_control
*wbc
,
3407 unsigned long nr_written
)
3409 wbc
->nr_to_write
-= nr_written
;
3413 * helper for __extent_writepage, doing all of the delayed allocation setup.
3415 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3416 * to write the page (copy into inline extent). In this case the IO has
3417 * been started and the page is already unlocked.
3419 * This returns 0 if all went well (page still locked)
3420 * This returns < 0 if there were errors (page still locked)
3422 static noinline_for_stack
int writepage_delalloc(struct inode
*inode
,
3423 struct page
*page
, struct writeback_control
*wbc
,
3424 u64 delalloc_start
, unsigned long *nr_written
)
3426 u64 page_end
= delalloc_start
+ PAGE_SIZE
- 1;
3428 u64 delalloc_to_write
= 0;
3429 u64 delalloc_end
= 0;
3431 int page_started
= 0;
3434 while (delalloc_end
< page_end
) {
3435 found
= find_lock_delalloc_range(inode
, page
,
3439 delalloc_start
= delalloc_end
+ 1;
3442 ret
= btrfs_run_delalloc_range(inode
, page
, delalloc_start
,
3443 delalloc_end
, &page_started
, nr_written
, wbc
);
3447 * btrfs_run_delalloc_range should return < 0 for error
3448 * but just in case, we use > 0 here meaning the IO is
3449 * started, so we don't want to return > 0 unless
3450 * things are going well.
3452 ret
= ret
< 0 ? ret
: -EIO
;
3456 * delalloc_end is already one less than the total length, so
3457 * we don't subtract one from PAGE_SIZE
3459 delalloc_to_write
+= (delalloc_end
- delalloc_start
+
3460 PAGE_SIZE
) >> PAGE_SHIFT
;
3461 delalloc_start
= delalloc_end
+ 1;
3463 if (wbc
->nr_to_write
< delalloc_to_write
) {
3466 if (delalloc_to_write
< thresh
* 2)
3467 thresh
= delalloc_to_write
;
3468 wbc
->nr_to_write
= min_t(u64
, delalloc_to_write
,
3472 /* did the fill delalloc function already unlock and start
3477 * we've unlocked the page, so we can't update
3478 * the mapping's writeback index, just update
3481 wbc
->nr_to_write
-= *nr_written
;
3492 * helper for __extent_writepage. This calls the writepage start hooks,
3493 * and does the loop to map the page into extents and bios.
3495 * We return 1 if the IO is started and the page is unlocked,
3496 * 0 if all went well (page still locked)
3497 * < 0 if there were errors (page still locked)
3499 static noinline_for_stack
int __extent_writepage_io(struct inode
*inode
,
3501 struct writeback_control
*wbc
,
3502 struct extent_page_data
*epd
,
3504 unsigned long nr_written
,
3507 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
3508 u64 start
= page_offset(page
);
3509 u64 page_end
= start
+ PAGE_SIZE
- 1;
3515 struct extent_map
*em
;
3516 size_t pg_offset
= 0;
3520 const unsigned int write_flags
= wbc_to_write_flags(wbc
);
3523 ret
= btrfs_writepage_cow_fixup(page
, start
, page_end
);
3525 /* Fixup worker will requeue */
3526 redirty_page_for_writepage(wbc
, page
);
3527 update_nr_written(wbc
, nr_written
);
3533 * we don't want to touch the inode after unlocking the page,
3534 * so we update the mapping writeback index now
3536 update_nr_written(wbc
, nr_written
+ 1);
3539 blocksize
= inode
->i_sb
->s_blocksize
;
3541 while (cur
<= end
) {
3545 if (cur
>= i_size
) {
3546 btrfs_writepage_endio_finish_ordered(page
, cur
,
3550 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, cur
,
3552 if (IS_ERR_OR_NULL(em
)) {
3554 ret
= PTR_ERR_OR_ZERO(em
);
3558 extent_offset
= cur
- em
->start
;
3559 em_end
= extent_map_end(em
);
3560 BUG_ON(em_end
<= cur
);
3562 iosize
= min(em_end
- cur
, end
- cur
+ 1);
3563 iosize
= ALIGN(iosize
, blocksize
);
3564 offset
= em
->block_start
+ extent_offset
;
3565 block_start
= em
->block_start
;
3566 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
3567 free_extent_map(em
);
3571 * compressed and inline extents are written through other
3574 if (compressed
|| block_start
== EXTENT_MAP_HOLE
||
3575 block_start
== EXTENT_MAP_INLINE
) {
3579 btrfs_writepage_endio_finish_ordered(page
, cur
,
3580 cur
+ iosize
- 1, 1);
3582 pg_offset
+= iosize
;
3586 btrfs_set_range_writeback(tree
, cur
, cur
+ iosize
- 1);
3587 if (!PageWriteback(page
)) {
3588 btrfs_err(BTRFS_I(inode
)->root
->fs_info
,
3589 "page %lu not writeback, cur %llu end %llu",
3590 page
->index
, cur
, end
);
3593 ret
= submit_extent_page(REQ_OP_WRITE
| write_flags
, wbc
,
3594 page
, offset
, iosize
, pg_offset
,
3596 end_bio_extent_writepage
,
3600 if (PageWriteback(page
))
3601 end_page_writeback(page
);
3605 pg_offset
+= iosize
;
3613 * the writepage semantics are similar to regular writepage. extent
3614 * records are inserted to lock ranges in the tree, and as dirty areas
3615 * are found, they are marked writeback. Then the lock bits are removed
3616 * and the end_io handler clears the writeback ranges
3618 * Return 0 if everything goes well.
3619 * Return <0 for error.
3621 static int __extent_writepage(struct page
*page
, struct writeback_control
*wbc
,
3622 struct extent_page_data
*epd
)
3624 struct inode
*inode
= page
->mapping
->host
;
3625 u64 start
= page_offset(page
);
3626 u64 page_end
= start
+ PAGE_SIZE
- 1;
3630 loff_t i_size
= i_size_read(inode
);
3631 unsigned long end_index
= i_size
>> PAGE_SHIFT
;
3632 unsigned long nr_written
= 0;
3634 trace___extent_writepage(page
, inode
, wbc
);
3636 WARN_ON(!PageLocked(page
));
3638 ClearPageError(page
);
3640 pg_offset
= offset_in_page(i_size
);
3641 if (page
->index
> end_index
||
3642 (page
->index
== end_index
&& !pg_offset
)) {
3643 page
->mapping
->a_ops
->invalidatepage(page
, 0, PAGE_SIZE
);
3648 if (page
->index
== end_index
) {
3651 userpage
= kmap_atomic(page
);
3652 memset(userpage
+ pg_offset
, 0,
3653 PAGE_SIZE
- pg_offset
);
3654 kunmap_atomic(userpage
);
3655 flush_dcache_page(page
);
3658 set_page_extent_mapped(page
);
3660 if (!epd
->extent_locked
) {
3661 ret
= writepage_delalloc(inode
, page
, wbc
, start
, &nr_written
);
3668 ret
= __extent_writepage_io(inode
, page
, wbc
, epd
,
3669 i_size
, nr_written
, &nr
);
3675 /* make sure the mapping tag for page dirty gets cleared */
3676 set_page_writeback(page
);
3677 end_page_writeback(page
);
3679 if (PageError(page
)) {
3680 ret
= ret
< 0 ? ret
: -EIO
;
3681 end_extent_writepage(page
, ret
, start
, page_end
);
3688 void wait_on_extent_buffer_writeback(struct extent_buffer
*eb
)
3690 wait_on_bit_io(&eb
->bflags
, EXTENT_BUFFER_WRITEBACK
,
3691 TASK_UNINTERRUPTIBLE
);
3694 static void end_extent_buffer_writeback(struct extent_buffer
*eb
)
3696 clear_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
);
3697 smp_mb__after_atomic();
3698 wake_up_bit(&eb
->bflags
, EXTENT_BUFFER_WRITEBACK
);
3702 * Lock eb pages and flush the bio if we can't the locks
3704 * Return 0 if nothing went wrong
3705 * Return >0 is same as 0, except bio is not submitted
3706 * Return <0 if something went wrong, no page is locked
3708 static noinline_for_stack
int lock_extent_buffer_for_io(struct extent_buffer
*eb
,
3709 struct extent_page_data
*epd
)
3711 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
3712 int i
, num_pages
, failed_page_nr
;
3716 if (!btrfs_try_tree_write_lock(eb
)) {
3717 ret
= flush_write_bio(epd
);
3721 btrfs_tree_lock(eb
);
3724 if (test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
)) {
3725 btrfs_tree_unlock(eb
);
3729 ret
= flush_write_bio(epd
);
3735 wait_on_extent_buffer_writeback(eb
);
3736 btrfs_tree_lock(eb
);
3737 if (!test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
))
3739 btrfs_tree_unlock(eb
);
3744 * We need to do this to prevent races in people who check if the eb is
3745 * under IO since we can end up having no IO bits set for a short period
3748 spin_lock(&eb
->refs_lock
);
3749 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
3750 set_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
);
3751 spin_unlock(&eb
->refs_lock
);
3752 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
3753 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
3755 fs_info
->dirty_metadata_batch
);
3758 spin_unlock(&eb
->refs_lock
);
3761 btrfs_tree_unlock(eb
);
3766 num_pages
= num_extent_pages(eb
);
3767 for (i
= 0; i
< num_pages
; i
++) {
3768 struct page
*p
= eb
->pages
[i
];
3770 if (!trylock_page(p
)) {
3774 err
= flush_write_bio(epd
);
3788 /* Unlock already locked pages */
3789 for (i
= 0; i
< failed_page_nr
; i
++)
3790 unlock_page(eb
->pages
[i
]);
3792 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3793 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3794 * be made and undo everything done before.
3796 btrfs_tree_lock(eb
);
3797 spin_lock(&eb
->refs_lock
);
3798 set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
3799 end_extent_buffer_writeback(eb
);
3800 spin_unlock(&eb
->refs_lock
);
3801 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
, eb
->len
,
3802 fs_info
->dirty_metadata_batch
);
3803 btrfs_clear_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
3804 btrfs_tree_unlock(eb
);
3808 static void set_btree_ioerr(struct page
*page
)
3810 struct extent_buffer
*eb
= (struct extent_buffer
*)page
->private;
3811 struct btrfs_fs_info
*fs_info
;
3814 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
))
3818 * If we error out, we should add back the dirty_metadata_bytes
3819 * to make it consistent.
3821 fs_info
= eb
->fs_info
;
3822 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
3823 eb
->len
, fs_info
->dirty_metadata_batch
);
3826 * If writeback for a btree extent that doesn't belong to a log tree
3827 * failed, increment the counter transaction->eb_write_errors.
3828 * We do this because while the transaction is running and before it's
3829 * committing (when we call filemap_fdata[write|wait]_range against
3830 * the btree inode), we might have
3831 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3832 * returns an error or an error happens during writeback, when we're
3833 * committing the transaction we wouldn't know about it, since the pages
3834 * can be no longer dirty nor marked anymore for writeback (if a
3835 * subsequent modification to the extent buffer didn't happen before the
3836 * transaction commit), which makes filemap_fdata[write|wait]_range not
3837 * able to find the pages tagged with SetPageError at transaction
3838 * commit time. So if this happens we must abort the transaction,
3839 * otherwise we commit a super block with btree roots that point to
3840 * btree nodes/leafs whose content on disk is invalid - either garbage
3841 * or the content of some node/leaf from a past generation that got
3842 * cowed or deleted and is no longer valid.
3844 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3845 * not be enough - we need to distinguish between log tree extents vs
3846 * non-log tree extents, and the next filemap_fdatawait_range() call
3847 * will catch and clear such errors in the mapping - and that call might
3848 * be from a log sync and not from a transaction commit. Also, checking
3849 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3850 * not done and would not be reliable - the eb might have been released
3851 * from memory and reading it back again means that flag would not be
3852 * set (since it's a runtime flag, not persisted on disk).
3854 * Using the flags below in the btree inode also makes us achieve the
3855 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3856 * writeback for all dirty pages and before filemap_fdatawait_range()
3857 * is called, the writeback for all dirty pages had already finished
3858 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3859 * filemap_fdatawait_range() would return success, as it could not know
3860 * that writeback errors happened (the pages were no longer tagged for
3863 switch (eb
->log_index
) {
3865 set_bit(BTRFS_FS_BTREE_ERR
, &eb
->fs_info
->flags
);
3868 set_bit(BTRFS_FS_LOG1_ERR
, &eb
->fs_info
->flags
);
3871 set_bit(BTRFS_FS_LOG2_ERR
, &eb
->fs_info
->flags
);
3874 BUG(); /* unexpected, logic error */
3878 static void end_bio_extent_buffer_writepage(struct bio
*bio
)
3880 struct bio_vec
*bvec
;
3881 struct extent_buffer
*eb
;
3883 struct bvec_iter_all iter_all
;
3885 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
3886 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
3887 struct page
*page
= bvec
->bv_page
;
3889 eb
= (struct extent_buffer
*)page
->private;
3891 done
= atomic_dec_and_test(&eb
->io_pages
);
3893 if (bio
->bi_status
||
3894 test_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
)) {
3895 ClearPageUptodate(page
);
3896 set_btree_ioerr(page
);
3899 end_page_writeback(page
);
3904 end_extent_buffer_writeback(eb
);
3910 static noinline_for_stack
int write_one_eb(struct extent_buffer
*eb
,
3911 struct writeback_control
*wbc
,
3912 struct extent_page_data
*epd
)
3914 u64 offset
= eb
->start
;
3917 unsigned long start
, end
;
3918 unsigned int write_flags
= wbc_to_write_flags(wbc
) | REQ_META
;
3921 clear_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
);
3922 num_pages
= num_extent_pages(eb
);
3923 atomic_set(&eb
->io_pages
, num_pages
);
3925 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3926 nritems
= btrfs_header_nritems(eb
);
3927 if (btrfs_header_level(eb
) > 0) {
3928 end
= btrfs_node_key_ptr_offset(nritems
);
3930 memzero_extent_buffer(eb
, end
, eb
->len
- end
);
3934 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3936 start
= btrfs_item_nr_offset(nritems
);
3937 end
= BTRFS_LEAF_DATA_OFFSET
+ leaf_data_end(eb
);
3938 memzero_extent_buffer(eb
, start
, end
- start
);
3941 for (i
= 0; i
< num_pages
; i
++) {
3942 struct page
*p
= eb
->pages
[i
];
3944 clear_page_dirty_for_io(p
);
3945 set_page_writeback(p
);
3946 ret
= submit_extent_page(REQ_OP_WRITE
| write_flags
, wbc
,
3947 p
, offset
, PAGE_SIZE
, 0,
3949 end_bio_extent_buffer_writepage
,
3953 if (PageWriteback(p
))
3954 end_page_writeback(p
);
3955 if (atomic_sub_and_test(num_pages
- i
, &eb
->io_pages
))
3956 end_extent_buffer_writeback(eb
);
3960 offset
+= PAGE_SIZE
;
3961 update_nr_written(wbc
, 1);
3965 if (unlikely(ret
)) {
3966 for (; i
< num_pages
; i
++) {
3967 struct page
*p
= eb
->pages
[i
];
3968 clear_page_dirty_for_io(p
);
3976 int btree_write_cache_pages(struct address_space
*mapping
,
3977 struct writeback_control
*wbc
)
3979 struct extent_buffer
*eb
, *prev_eb
= NULL
;
3980 struct extent_page_data epd
= {
3983 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
3985 struct btrfs_fs_info
*fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
3988 int nr_to_write_done
= 0;
3989 struct pagevec pvec
;
3992 pgoff_t end
; /* Inclusive */
3996 pagevec_init(&pvec
);
3997 if (wbc
->range_cyclic
) {
3998 index
= mapping
->writeback_index
; /* Start from prev offset */
4001 * Start from the beginning does not need to cycle over the
4002 * range, mark it as scanned.
4004 scanned
= (index
== 0);
4006 index
= wbc
->range_start
>> PAGE_SHIFT
;
4007 end
= wbc
->range_end
>> PAGE_SHIFT
;
4010 if (wbc
->sync_mode
== WB_SYNC_ALL
)
4011 tag
= PAGECACHE_TAG_TOWRITE
;
4013 tag
= PAGECACHE_TAG_DIRTY
;
4015 if (wbc
->sync_mode
== WB_SYNC_ALL
)
4016 tag_pages_for_writeback(mapping
, index
, end
);
4017 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
4018 (nr_pages
= pagevec_lookup_range_tag(&pvec
, mapping
, &index
, end
,
4022 for (i
= 0; i
< nr_pages
; i
++) {
4023 struct page
*page
= pvec
.pages
[i
];
4025 if (!PagePrivate(page
))
4028 spin_lock(&mapping
->private_lock
);
4029 if (!PagePrivate(page
)) {
4030 spin_unlock(&mapping
->private_lock
);
4034 eb
= (struct extent_buffer
*)page
->private;
4037 * Shouldn't happen and normally this would be a BUG_ON
4038 * but no sense in crashing the users box for something
4039 * we can survive anyway.
4042 spin_unlock(&mapping
->private_lock
);
4046 if (eb
== prev_eb
) {
4047 spin_unlock(&mapping
->private_lock
);
4051 ret
= atomic_inc_not_zero(&eb
->refs
);
4052 spin_unlock(&mapping
->private_lock
);
4057 ret
= lock_extent_buffer_for_io(eb
, &epd
);
4059 free_extent_buffer(eb
);
4061 } else if (ret
< 0) {
4063 free_extent_buffer(eb
);
4067 ret
= write_one_eb(eb
, wbc
, &epd
);
4070 free_extent_buffer(eb
);
4073 free_extent_buffer(eb
);
4076 * the filesystem may choose to bump up nr_to_write.
4077 * We have to make sure to honor the new nr_to_write
4080 nr_to_write_done
= wbc
->nr_to_write
<= 0;
4082 pagevec_release(&pvec
);
4085 if (!scanned
&& !done
) {
4087 * We hit the last page and there is more work to be done: wrap
4088 * back to the start of the file
4096 end_write_bio(&epd
, ret
);
4100 * If something went wrong, don't allow any metadata write bio to be
4103 * This would prevent use-after-free if we had dirty pages not
4104 * cleaned up, which can still happen by fuzzed images.
4107 * Allowing existing tree block to be allocated for other trees.
4109 * - Log tree operations
4110 * Exiting tree blocks get allocated to log tree, bumps its
4111 * generation, then get cleaned in tree re-balance.
4112 * Such tree block will not be written back, since it's clean,
4113 * thus no WRITTEN flag set.
4114 * And after log writes back, this tree block is not traced by
4115 * any dirty extent_io_tree.
4117 * - Offending tree block gets re-dirtied from its original owner
4118 * Since it has bumped generation, no WRITTEN flag, it can be
4119 * reused without COWing. This tree block will not be traced
4120 * by btrfs_transaction::dirty_pages.
4122 * Now such dirty tree block will not be cleaned by any dirty
4123 * extent io tree. Thus we don't want to submit such wild eb
4124 * if the fs already has error.
4126 if (!test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
4127 ret
= flush_write_bio(&epd
);
4130 end_write_bio(&epd
, ret
);
4136 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4137 * @mapping: address space structure to write
4138 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4139 * @data: data passed to __extent_writepage function
4141 * If a page is already under I/O, write_cache_pages() skips it, even
4142 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4143 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4144 * and msync() need to guarantee that all the data which was dirty at the time
4145 * the call was made get new I/O started against them. If wbc->sync_mode is
4146 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4147 * existing IO to complete.
4149 static int extent_write_cache_pages(struct address_space
*mapping
,
4150 struct writeback_control
*wbc
,
4151 struct extent_page_data
*epd
)
4153 struct inode
*inode
= mapping
->host
;
4156 int nr_to_write_done
= 0;
4157 struct pagevec pvec
;
4160 pgoff_t end
; /* Inclusive */
4162 int range_whole
= 0;
4167 * We have to hold onto the inode so that ordered extents can do their
4168 * work when the IO finishes. The alternative to this is failing to add
4169 * an ordered extent if the igrab() fails there and that is a huge pain
4170 * to deal with, so instead just hold onto the inode throughout the
4171 * writepages operation. If it fails here we are freeing up the inode
4172 * anyway and we'd rather not waste our time writing out stuff that is
4173 * going to be truncated anyway.
4178 pagevec_init(&pvec
);
4179 if (wbc
->range_cyclic
) {
4180 index
= mapping
->writeback_index
; /* Start from prev offset */
4183 * Start from the beginning does not need to cycle over the
4184 * range, mark it as scanned.
4186 scanned
= (index
== 0);
4188 index
= wbc
->range_start
>> PAGE_SHIFT
;
4189 end
= wbc
->range_end
>> PAGE_SHIFT
;
4190 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
4196 * We do the tagged writepage as long as the snapshot flush bit is set
4197 * and we are the first one who do the filemap_flush() on this inode.
4199 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4200 * not race in and drop the bit.
4202 if (range_whole
&& wbc
->nr_to_write
== LONG_MAX
&&
4203 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH
,
4204 &BTRFS_I(inode
)->runtime_flags
))
4205 wbc
->tagged_writepages
= 1;
4207 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
4208 tag
= PAGECACHE_TAG_TOWRITE
;
4210 tag
= PAGECACHE_TAG_DIRTY
;
4212 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
4213 tag_pages_for_writeback(mapping
, index
, end
);
4215 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
4216 (nr_pages
= pagevec_lookup_range_tag(&pvec
, mapping
,
4217 &index
, end
, tag
))) {
4220 for (i
= 0; i
< nr_pages
; i
++) {
4221 struct page
*page
= pvec
.pages
[i
];
4223 done_index
= page
->index
+ 1;
4225 * At this point we hold neither the i_pages lock nor
4226 * the page lock: the page may be truncated or
4227 * invalidated (changing page->mapping to NULL),
4228 * or even swizzled back from swapper_space to
4229 * tmpfs file mapping
4231 if (!trylock_page(page
)) {
4232 ret
= flush_write_bio(epd
);
4237 if (unlikely(page
->mapping
!= mapping
)) {
4242 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
4243 if (PageWriteback(page
)) {
4244 ret
= flush_write_bio(epd
);
4247 wait_on_page_writeback(page
);
4250 if (PageWriteback(page
) ||
4251 !clear_page_dirty_for_io(page
)) {
4256 ret
= __extent_writepage(page
, wbc
, epd
);
4263 * the filesystem may choose to bump up nr_to_write.
4264 * We have to make sure to honor the new nr_to_write
4267 nr_to_write_done
= wbc
->nr_to_write
<= 0;
4269 pagevec_release(&pvec
);
4272 if (!scanned
&& !done
) {
4274 * We hit the last page and there is more work to be done: wrap
4275 * back to the start of the file
4281 * If we're looping we could run into a page that is locked by a
4282 * writer and that writer could be waiting on writeback for a
4283 * page in our current bio, and thus deadlock, so flush the
4286 ret
= flush_write_bio(epd
);
4291 if (wbc
->range_cyclic
|| (wbc
->nr_to_write
> 0 && range_whole
))
4292 mapping
->writeback_index
= done_index
;
4294 btrfs_add_delayed_iput(inode
);
4298 int extent_write_full_page(struct page
*page
, struct writeback_control
*wbc
)
4301 struct extent_page_data epd
= {
4304 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
4307 ret
= __extent_writepage(page
, wbc
, &epd
);
4310 end_write_bio(&epd
, ret
);
4314 ret
= flush_write_bio(&epd
);
4319 int extent_write_locked_range(struct inode
*inode
, u64 start
, u64 end
,
4323 struct address_space
*mapping
= inode
->i_mapping
;
4325 unsigned long nr_pages
= (end
- start
+ PAGE_SIZE
) >>
4328 struct extent_page_data epd
= {
4331 .sync_io
= mode
== WB_SYNC_ALL
,
4333 struct writeback_control wbc_writepages
= {
4335 .nr_to_write
= nr_pages
* 2,
4336 .range_start
= start
,
4337 .range_end
= end
+ 1,
4338 /* We're called from an async helper function */
4339 .punt_to_cgroup
= 1,
4340 .no_cgroup_owner
= 1,
4343 wbc_attach_fdatawrite_inode(&wbc_writepages
, inode
);
4344 while (start
<= end
) {
4345 page
= find_get_page(mapping
, start
>> PAGE_SHIFT
);
4346 if (clear_page_dirty_for_io(page
))
4347 ret
= __extent_writepage(page
, &wbc_writepages
, &epd
);
4349 btrfs_writepage_endio_finish_ordered(page
, start
,
4350 start
+ PAGE_SIZE
- 1, 1);
4359 ret
= flush_write_bio(&epd
);
4361 end_write_bio(&epd
, ret
);
4363 wbc_detach_inode(&wbc_writepages
);
4367 int extent_writepages(struct address_space
*mapping
,
4368 struct writeback_control
*wbc
)
4371 struct extent_page_data epd
= {
4374 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
4377 ret
= extent_write_cache_pages(mapping
, wbc
, &epd
);
4380 end_write_bio(&epd
, ret
);
4383 ret
= flush_write_bio(&epd
);
4387 void extent_readahead(struct readahead_control
*rac
)
4389 struct bio
*bio
= NULL
;
4390 unsigned long bio_flags
= 0;
4391 struct page
*pagepool
[16];
4392 struct extent_map
*em_cached
= NULL
;
4393 u64 prev_em_start
= (u64
)-1;
4396 while ((nr
= readahead_page_batch(rac
, pagepool
))) {
4397 u64 contig_start
= page_offset(pagepool
[0]);
4398 u64 contig_end
= page_offset(pagepool
[nr
- 1]) + PAGE_SIZE
- 1;
4400 ASSERT(contig_start
+ nr
* PAGE_SIZE
- 1 == contig_end
);
4402 contiguous_readpages(pagepool
, nr
, contig_start
, contig_end
,
4403 &em_cached
, &bio
, &bio_flags
, &prev_em_start
);
4407 free_extent_map(em_cached
);
4410 if (submit_one_bio(bio
, 0, bio_flags
))
4416 * basic invalidatepage code, this waits on any locked or writeback
4417 * ranges corresponding to the page, and then deletes any extent state
4418 * records from the tree
4420 int extent_invalidatepage(struct extent_io_tree
*tree
,
4421 struct page
*page
, unsigned long offset
)
4423 struct extent_state
*cached_state
= NULL
;
4424 u64 start
= page_offset(page
);
4425 u64 end
= start
+ PAGE_SIZE
- 1;
4426 size_t blocksize
= page
->mapping
->host
->i_sb
->s_blocksize
;
4428 start
+= ALIGN(offset
, blocksize
);
4432 lock_extent_bits(tree
, start
, end
, &cached_state
);
4433 wait_on_page_writeback(page
);
4434 clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
| EXTENT_DELALLOC
|
4435 EXTENT_DO_ACCOUNTING
, 1, 1, &cached_state
);
4440 * a helper for releasepage, this tests for areas of the page that
4441 * are locked or under IO and drops the related state bits if it is safe
4444 static int try_release_extent_state(struct extent_io_tree
*tree
,
4445 struct page
*page
, gfp_t mask
)
4447 u64 start
= page_offset(page
);
4448 u64 end
= start
+ PAGE_SIZE
- 1;
4451 if (test_range_bit(tree
, start
, end
, EXTENT_LOCKED
, 0, NULL
)) {
4455 * at this point we can safely clear everything except the
4456 * locked bit and the nodatasum bit
4458 ret
= __clear_extent_bit(tree
, start
, end
,
4459 ~(EXTENT_LOCKED
| EXTENT_NODATASUM
),
4460 0, 0, NULL
, mask
, NULL
);
4462 /* if clear_extent_bit failed for enomem reasons,
4463 * we can't allow the release to continue.
4474 * a helper for releasepage. As long as there are no locked extents
4475 * in the range corresponding to the page, both state records and extent
4476 * map records are removed
4478 int try_release_extent_mapping(struct page
*page
, gfp_t mask
)
4480 struct extent_map
*em
;
4481 u64 start
= page_offset(page
);
4482 u64 end
= start
+ PAGE_SIZE
- 1;
4483 struct btrfs_inode
*btrfs_inode
= BTRFS_I(page
->mapping
->host
);
4484 struct extent_io_tree
*tree
= &btrfs_inode
->io_tree
;
4485 struct extent_map_tree
*map
= &btrfs_inode
->extent_tree
;
4487 if (gfpflags_allow_blocking(mask
) &&
4488 page
->mapping
->host
->i_size
> SZ_16M
) {
4490 while (start
<= end
) {
4491 len
= end
- start
+ 1;
4492 write_lock(&map
->lock
);
4493 em
= lookup_extent_mapping(map
, start
, len
);
4495 write_unlock(&map
->lock
);
4498 if (test_bit(EXTENT_FLAG_PINNED
, &em
->flags
) ||
4499 em
->start
!= start
) {
4500 write_unlock(&map
->lock
);
4501 free_extent_map(em
);
4504 if (!test_range_bit(tree
, em
->start
,
4505 extent_map_end(em
) - 1,
4506 EXTENT_LOCKED
, 0, NULL
)) {
4507 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4508 &btrfs_inode
->runtime_flags
);
4509 remove_extent_mapping(map
, em
);
4510 /* once for the rb tree */
4511 free_extent_map(em
);
4513 start
= extent_map_end(em
);
4514 write_unlock(&map
->lock
);
4517 free_extent_map(em
);
4520 return try_release_extent_state(tree
, page
, mask
);
4524 * helper function for fiemap, which doesn't want to see any holes.
4525 * This maps until we find something past 'last'
4527 static struct extent_map
*get_extent_skip_holes(struct inode
*inode
,
4528 u64 offset
, u64 last
)
4530 u64 sectorsize
= btrfs_inode_sectorsize(inode
);
4531 struct extent_map
*em
;
4538 len
= last
- offset
;
4541 len
= ALIGN(len
, sectorsize
);
4542 em
= btrfs_get_extent_fiemap(BTRFS_I(inode
), offset
, len
);
4543 if (IS_ERR_OR_NULL(em
))
4546 /* if this isn't a hole return it */
4547 if (em
->block_start
!= EXTENT_MAP_HOLE
)
4550 /* this is a hole, advance to the next extent */
4551 offset
= extent_map_end(em
);
4552 free_extent_map(em
);
4560 * To cache previous fiemap extent
4562 * Will be used for merging fiemap extent
4564 struct fiemap_cache
{
4573 * Helper to submit fiemap extent.
4575 * Will try to merge current fiemap extent specified by @offset, @phys,
4576 * @len and @flags with cached one.
4577 * And only when we fails to merge, cached one will be submitted as
4580 * Return value is the same as fiemap_fill_next_extent().
4582 static int emit_fiemap_extent(struct fiemap_extent_info
*fieinfo
,
4583 struct fiemap_cache
*cache
,
4584 u64 offset
, u64 phys
, u64 len
, u32 flags
)
4592 * Sanity check, extent_fiemap() should have ensured that new
4593 * fiemap extent won't overlap with cached one.
4596 * NOTE: Physical address can overlap, due to compression
4598 if (cache
->offset
+ cache
->len
> offset
) {
4604 * Only merges fiemap extents if
4605 * 1) Their logical addresses are continuous
4607 * 2) Their physical addresses are continuous
4608 * So truly compressed (physical size smaller than logical size)
4609 * extents won't get merged with each other
4611 * 3) Share same flags except FIEMAP_EXTENT_LAST
4612 * So regular extent won't get merged with prealloc extent
4614 if (cache
->offset
+ cache
->len
== offset
&&
4615 cache
->phys
+ cache
->len
== phys
&&
4616 (cache
->flags
& ~FIEMAP_EXTENT_LAST
) ==
4617 (flags
& ~FIEMAP_EXTENT_LAST
)) {
4619 cache
->flags
|= flags
;
4620 goto try_submit_last
;
4623 /* Not mergeable, need to submit cached one */
4624 ret
= fiemap_fill_next_extent(fieinfo
, cache
->offset
, cache
->phys
,
4625 cache
->len
, cache
->flags
);
4626 cache
->cached
= false;
4630 cache
->cached
= true;
4631 cache
->offset
= offset
;
4634 cache
->flags
= flags
;
4636 if (cache
->flags
& FIEMAP_EXTENT_LAST
) {
4637 ret
= fiemap_fill_next_extent(fieinfo
, cache
->offset
,
4638 cache
->phys
, cache
->len
, cache
->flags
);
4639 cache
->cached
= false;
4645 * Emit last fiemap cache
4647 * The last fiemap cache may still be cached in the following case:
4649 * |<- Fiemap range ->|
4650 * |<------------ First extent ----------->|
4652 * In this case, the first extent range will be cached but not emitted.
4653 * So we must emit it before ending extent_fiemap().
4655 static int emit_last_fiemap_cache(struct fiemap_extent_info
*fieinfo
,
4656 struct fiemap_cache
*cache
)
4663 ret
= fiemap_fill_next_extent(fieinfo
, cache
->offset
, cache
->phys
,
4664 cache
->len
, cache
->flags
);
4665 cache
->cached
= false;
4671 int extent_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
4672 __u64 start
, __u64 len
)
4676 u64 max
= start
+ len
;
4680 u64 last_for_get_extent
= 0;
4682 u64 isize
= i_size_read(inode
);
4683 struct btrfs_key found_key
;
4684 struct extent_map
*em
= NULL
;
4685 struct extent_state
*cached_state
= NULL
;
4686 struct btrfs_path
*path
;
4687 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4688 struct fiemap_cache cache
= { 0 };
4689 struct ulist
*roots
;
4690 struct ulist
*tmp_ulist
;
4699 path
= btrfs_alloc_path();
4702 path
->leave_spinning
= 1;
4704 roots
= ulist_alloc(GFP_KERNEL
);
4705 tmp_ulist
= ulist_alloc(GFP_KERNEL
);
4706 if (!roots
|| !tmp_ulist
) {
4708 goto out_free_ulist
;
4711 start
= round_down(start
, btrfs_inode_sectorsize(inode
));
4712 len
= round_up(max
, btrfs_inode_sectorsize(inode
)) - start
;
4715 * lookup the last file extent. We're not using i_size here
4716 * because there might be preallocation past i_size
4718 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
4719 btrfs_ino(BTRFS_I(inode
)), -1, 0);
4721 goto out_free_ulist
;
4729 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
, path
->slots
[0]);
4730 found_type
= found_key
.type
;
4732 /* No extents, but there might be delalloc bits */
4733 if (found_key
.objectid
!= btrfs_ino(BTRFS_I(inode
)) ||
4734 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
4735 /* have to trust i_size as the end */
4737 last_for_get_extent
= isize
;
4740 * remember the start of the last extent. There are a
4741 * bunch of different factors that go into the length of the
4742 * extent, so its much less complex to remember where it started
4744 last
= found_key
.offset
;
4745 last_for_get_extent
= last
+ 1;
4747 btrfs_release_path(path
);
4750 * we might have some extents allocated but more delalloc past those
4751 * extents. so, we trust isize unless the start of the last extent is
4756 last_for_get_extent
= isize
;
4759 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
4762 em
= get_extent_skip_holes(inode
, start
, last_for_get_extent
);
4771 u64 offset_in_extent
= 0;
4773 /* break if the extent we found is outside the range */
4774 if (em
->start
>= max
|| extent_map_end(em
) < off
)
4778 * get_extent may return an extent that starts before our
4779 * requested range. We have to make sure the ranges
4780 * we return to fiemap always move forward and don't
4781 * overlap, so adjust the offsets here
4783 em_start
= max(em
->start
, off
);
4786 * record the offset from the start of the extent
4787 * for adjusting the disk offset below. Only do this if the
4788 * extent isn't compressed since our in ram offset may be past
4789 * what we have actually allocated on disk.
4791 if (!test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
4792 offset_in_extent
= em_start
- em
->start
;
4793 em_end
= extent_map_end(em
);
4794 em_len
= em_end
- em_start
;
4796 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
)
4797 disko
= em
->block_start
+ offset_in_extent
;
4802 * bump off for our next call to get_extent
4804 off
= extent_map_end(em
);
4808 if (em
->block_start
== EXTENT_MAP_LAST_BYTE
) {
4810 flags
|= FIEMAP_EXTENT_LAST
;
4811 } else if (em
->block_start
== EXTENT_MAP_INLINE
) {
4812 flags
|= (FIEMAP_EXTENT_DATA_INLINE
|
4813 FIEMAP_EXTENT_NOT_ALIGNED
);
4814 } else if (em
->block_start
== EXTENT_MAP_DELALLOC
) {
4815 flags
|= (FIEMAP_EXTENT_DELALLOC
|
4816 FIEMAP_EXTENT_UNKNOWN
);
4817 } else if (fieinfo
->fi_extents_max
) {
4818 u64 bytenr
= em
->block_start
-
4819 (em
->start
- em
->orig_start
);
4822 * As btrfs supports shared space, this information
4823 * can be exported to userspace tools via
4824 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4825 * then we're just getting a count and we can skip the
4828 ret
= btrfs_check_shared(root
,
4829 btrfs_ino(BTRFS_I(inode
)),
4830 bytenr
, roots
, tmp_ulist
);
4834 flags
|= FIEMAP_EXTENT_SHARED
;
4837 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
4838 flags
|= FIEMAP_EXTENT_ENCODED
;
4839 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
4840 flags
|= FIEMAP_EXTENT_UNWRITTEN
;
4842 free_extent_map(em
);
4844 if ((em_start
>= last
) || em_len
== (u64
)-1 ||
4845 (last
== (u64
)-1 && isize
<= em_end
)) {
4846 flags
|= FIEMAP_EXTENT_LAST
;
4850 /* now scan forward to see if this is really the last extent. */
4851 em
= get_extent_skip_holes(inode
, off
, last_for_get_extent
);
4857 flags
|= FIEMAP_EXTENT_LAST
;
4860 ret
= emit_fiemap_extent(fieinfo
, &cache
, em_start
, disko
,
4870 ret
= emit_last_fiemap_cache(fieinfo
, &cache
);
4871 free_extent_map(em
);
4873 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
4877 btrfs_free_path(path
);
4879 ulist_free(tmp_ulist
);
4883 static void __free_extent_buffer(struct extent_buffer
*eb
)
4885 kmem_cache_free(extent_buffer_cache
, eb
);
4888 int extent_buffer_under_io(const struct extent_buffer
*eb
)
4890 return (atomic_read(&eb
->io_pages
) ||
4891 test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
) ||
4892 test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
4896 * Release all pages attached to the extent buffer.
4898 static void btrfs_release_extent_buffer_pages(struct extent_buffer
*eb
)
4902 int mapped
= !test_bit(EXTENT_BUFFER_UNMAPPED
, &eb
->bflags
);
4904 BUG_ON(extent_buffer_under_io(eb
));
4906 num_pages
= num_extent_pages(eb
);
4907 for (i
= 0; i
< num_pages
; i
++) {
4908 struct page
*page
= eb
->pages
[i
];
4913 spin_lock(&page
->mapping
->private_lock
);
4915 * We do this since we'll remove the pages after we've
4916 * removed the eb from the radix tree, so we could race
4917 * and have this page now attached to the new eb. So
4918 * only clear page_private if it's still connected to
4921 if (PagePrivate(page
) &&
4922 page
->private == (unsigned long)eb
) {
4923 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
4924 BUG_ON(PageDirty(page
));
4925 BUG_ON(PageWriteback(page
));
4927 * We need to make sure we haven't be attached
4930 detach_page_private(page
);
4934 spin_unlock(&page
->mapping
->private_lock
);
4936 /* One for when we allocated the page */
4942 * Helper for releasing the extent buffer.
4944 static inline void btrfs_release_extent_buffer(struct extent_buffer
*eb
)
4946 btrfs_release_extent_buffer_pages(eb
);
4947 btrfs_leak_debug_del(&eb
->fs_info
->eb_leak_lock
, &eb
->leak_list
);
4948 __free_extent_buffer(eb
);
4951 static struct extent_buffer
*
4952 __alloc_extent_buffer(struct btrfs_fs_info
*fs_info
, u64 start
,
4955 struct extent_buffer
*eb
= NULL
;
4957 eb
= kmem_cache_zalloc(extent_buffer_cache
, GFP_NOFS
|__GFP_NOFAIL
);
4960 eb
->fs_info
= fs_info
;
4962 rwlock_init(&eb
->lock
);
4963 atomic_set(&eb
->blocking_readers
, 0);
4964 eb
->blocking_writers
= 0;
4965 eb
->lock_nested
= false;
4966 init_waitqueue_head(&eb
->write_lock_wq
);
4967 init_waitqueue_head(&eb
->read_lock_wq
);
4969 btrfs_leak_debug_add(&fs_info
->eb_leak_lock
, &eb
->leak_list
,
4970 &fs_info
->allocated_ebs
);
4972 spin_lock_init(&eb
->refs_lock
);
4973 atomic_set(&eb
->refs
, 1);
4974 atomic_set(&eb
->io_pages
, 0);
4977 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4979 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4980 > MAX_INLINE_EXTENT_BUFFER_SIZE
);
4981 BUG_ON(len
> MAX_INLINE_EXTENT_BUFFER_SIZE
);
4983 #ifdef CONFIG_BTRFS_DEBUG
4984 eb
->spinning_writers
= 0;
4985 atomic_set(&eb
->spinning_readers
, 0);
4986 atomic_set(&eb
->read_locks
, 0);
4987 eb
->write_locks
= 0;
4993 struct extent_buffer
*btrfs_clone_extent_buffer(const struct extent_buffer
*src
)
4997 struct extent_buffer
*new;
4998 int num_pages
= num_extent_pages(src
);
5000 new = __alloc_extent_buffer(src
->fs_info
, src
->start
, src
->len
);
5004 for (i
= 0; i
< num_pages
; i
++) {
5005 p
= alloc_page(GFP_NOFS
);
5007 btrfs_release_extent_buffer(new);
5010 attach_extent_buffer_page(new, p
);
5011 WARN_ON(PageDirty(p
));
5014 copy_page(page_address(p
), page_address(src
->pages
[i
]));
5017 set_bit(EXTENT_BUFFER_UPTODATE
, &new->bflags
);
5018 set_bit(EXTENT_BUFFER_UNMAPPED
, &new->bflags
);
5023 struct extent_buffer
*__alloc_dummy_extent_buffer(struct btrfs_fs_info
*fs_info
,
5024 u64 start
, unsigned long len
)
5026 struct extent_buffer
*eb
;
5030 eb
= __alloc_extent_buffer(fs_info
, start
, len
);
5034 num_pages
= num_extent_pages(eb
);
5035 for (i
= 0; i
< num_pages
; i
++) {
5036 eb
->pages
[i
] = alloc_page(GFP_NOFS
);
5040 set_extent_buffer_uptodate(eb
);
5041 btrfs_set_header_nritems(eb
, 0);
5042 set_bit(EXTENT_BUFFER_UNMAPPED
, &eb
->bflags
);
5047 __free_page(eb
->pages
[i
- 1]);
5048 __free_extent_buffer(eb
);
5052 struct extent_buffer
*alloc_dummy_extent_buffer(struct btrfs_fs_info
*fs_info
,
5055 return __alloc_dummy_extent_buffer(fs_info
, start
, fs_info
->nodesize
);
5058 static void check_buffer_tree_ref(struct extent_buffer
*eb
)
5061 /* the ref bit is tricky. We have to make sure it is set
5062 * if we have the buffer dirty. Otherwise the
5063 * code to free a buffer can end up dropping a dirty
5066 * Once the ref bit is set, it won't go away while the
5067 * buffer is dirty or in writeback, and it also won't
5068 * go away while we have the reference count on the
5071 * We can't just set the ref bit without bumping the
5072 * ref on the eb because free_extent_buffer might
5073 * see the ref bit and try to clear it. If this happens
5074 * free_extent_buffer might end up dropping our original
5075 * ref by mistake and freeing the page before we are able
5076 * to add one more ref.
5078 * So bump the ref count first, then set the bit. If someone
5079 * beat us to it, drop the ref we added.
5081 refs
= atomic_read(&eb
->refs
);
5082 if (refs
>= 2 && test_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5085 spin_lock(&eb
->refs_lock
);
5086 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5087 atomic_inc(&eb
->refs
);
5088 spin_unlock(&eb
->refs_lock
);
5091 static void mark_extent_buffer_accessed(struct extent_buffer
*eb
,
5092 struct page
*accessed
)
5096 check_buffer_tree_ref(eb
);
5098 num_pages
= num_extent_pages(eb
);
5099 for (i
= 0; i
< num_pages
; i
++) {
5100 struct page
*p
= eb
->pages
[i
];
5103 mark_page_accessed(p
);
5107 struct extent_buffer
*find_extent_buffer(struct btrfs_fs_info
*fs_info
,
5110 struct extent_buffer
*eb
;
5113 eb
= radix_tree_lookup(&fs_info
->buffer_radix
,
5114 start
>> PAGE_SHIFT
);
5115 if (eb
&& atomic_inc_not_zero(&eb
->refs
)) {
5118 * Lock our eb's refs_lock to avoid races with
5119 * free_extent_buffer. When we get our eb it might be flagged
5120 * with EXTENT_BUFFER_STALE and another task running
5121 * free_extent_buffer might have seen that flag set,
5122 * eb->refs == 2, that the buffer isn't under IO (dirty and
5123 * writeback flags not set) and it's still in the tree (flag
5124 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5125 * of decrementing the extent buffer's reference count twice.
5126 * So here we could race and increment the eb's reference count,
5127 * clear its stale flag, mark it as dirty and drop our reference
5128 * before the other task finishes executing free_extent_buffer,
5129 * which would later result in an attempt to free an extent
5130 * buffer that is dirty.
5132 if (test_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
)) {
5133 spin_lock(&eb
->refs_lock
);
5134 spin_unlock(&eb
->refs_lock
);
5136 mark_extent_buffer_accessed(eb
, NULL
);
5144 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5145 struct extent_buffer
*alloc_test_extent_buffer(struct btrfs_fs_info
*fs_info
,
5148 struct extent_buffer
*eb
, *exists
= NULL
;
5151 eb
= find_extent_buffer(fs_info
, start
);
5154 eb
= alloc_dummy_extent_buffer(fs_info
, start
);
5156 return ERR_PTR(-ENOMEM
);
5157 eb
->fs_info
= fs_info
;
5159 ret
= radix_tree_preload(GFP_NOFS
);
5161 exists
= ERR_PTR(ret
);
5164 spin_lock(&fs_info
->buffer_lock
);
5165 ret
= radix_tree_insert(&fs_info
->buffer_radix
,
5166 start
>> PAGE_SHIFT
, eb
);
5167 spin_unlock(&fs_info
->buffer_lock
);
5168 radix_tree_preload_end();
5169 if (ret
== -EEXIST
) {
5170 exists
= find_extent_buffer(fs_info
, start
);
5176 check_buffer_tree_ref(eb
);
5177 set_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
);
5181 btrfs_release_extent_buffer(eb
);
5186 struct extent_buffer
*alloc_extent_buffer(struct btrfs_fs_info
*fs_info
,
5189 unsigned long len
= fs_info
->nodesize
;
5192 unsigned long index
= start
>> PAGE_SHIFT
;
5193 struct extent_buffer
*eb
;
5194 struct extent_buffer
*exists
= NULL
;
5196 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
5200 if (!IS_ALIGNED(start
, fs_info
->sectorsize
)) {
5201 btrfs_err(fs_info
, "bad tree block start %llu", start
);
5202 return ERR_PTR(-EINVAL
);
5205 eb
= find_extent_buffer(fs_info
, start
);
5209 eb
= __alloc_extent_buffer(fs_info
, start
, len
);
5211 return ERR_PTR(-ENOMEM
);
5213 num_pages
= num_extent_pages(eb
);
5214 for (i
= 0; i
< num_pages
; i
++, index
++) {
5215 p
= find_or_create_page(mapping
, index
, GFP_NOFS
|__GFP_NOFAIL
);
5217 exists
= ERR_PTR(-ENOMEM
);
5221 spin_lock(&mapping
->private_lock
);
5222 if (PagePrivate(p
)) {
5224 * We could have already allocated an eb for this page
5225 * and attached one so lets see if we can get a ref on
5226 * the existing eb, and if we can we know it's good and
5227 * we can just return that one, else we know we can just
5228 * overwrite page->private.
5230 exists
= (struct extent_buffer
*)p
->private;
5231 if (atomic_inc_not_zero(&exists
->refs
)) {
5232 spin_unlock(&mapping
->private_lock
);
5235 mark_extent_buffer_accessed(exists
, p
);
5241 * Do this so attach doesn't complain and we need to
5242 * drop the ref the old guy had.
5244 ClearPagePrivate(p
);
5245 WARN_ON(PageDirty(p
));
5248 attach_extent_buffer_page(eb
, p
);
5249 spin_unlock(&mapping
->private_lock
);
5250 WARN_ON(PageDirty(p
));
5252 if (!PageUptodate(p
))
5256 * We can't unlock the pages just yet since the extent buffer
5257 * hasn't been properly inserted in the radix tree, this
5258 * opens a race with btree_releasepage which can free a page
5259 * while we are still filling in all pages for the buffer and
5264 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5266 ret
= radix_tree_preload(GFP_NOFS
);
5268 exists
= ERR_PTR(ret
);
5272 spin_lock(&fs_info
->buffer_lock
);
5273 ret
= radix_tree_insert(&fs_info
->buffer_radix
,
5274 start
>> PAGE_SHIFT
, eb
);
5275 spin_unlock(&fs_info
->buffer_lock
);
5276 radix_tree_preload_end();
5277 if (ret
== -EEXIST
) {
5278 exists
= find_extent_buffer(fs_info
, start
);
5284 /* add one reference for the tree */
5285 check_buffer_tree_ref(eb
);
5286 set_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
);
5289 * Now it's safe to unlock the pages because any calls to
5290 * btree_releasepage will correctly detect that a page belongs to a
5291 * live buffer and won't free them prematurely.
5293 for (i
= 0; i
< num_pages
; i
++)
5294 unlock_page(eb
->pages
[i
]);
5298 WARN_ON(!atomic_dec_and_test(&eb
->refs
));
5299 for (i
= 0; i
< num_pages
; i
++) {
5301 unlock_page(eb
->pages
[i
]);
5304 btrfs_release_extent_buffer(eb
);
5308 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head
*head
)
5310 struct extent_buffer
*eb
=
5311 container_of(head
, struct extent_buffer
, rcu_head
);
5313 __free_extent_buffer(eb
);
5316 static int release_extent_buffer(struct extent_buffer
*eb
)
5317 __releases(&eb
->refs_lock
)
5319 lockdep_assert_held(&eb
->refs_lock
);
5321 WARN_ON(atomic_read(&eb
->refs
) == 0);
5322 if (atomic_dec_and_test(&eb
->refs
)) {
5323 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
)) {
5324 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
5326 spin_unlock(&eb
->refs_lock
);
5328 spin_lock(&fs_info
->buffer_lock
);
5329 radix_tree_delete(&fs_info
->buffer_radix
,
5330 eb
->start
>> PAGE_SHIFT
);
5331 spin_unlock(&fs_info
->buffer_lock
);
5333 spin_unlock(&eb
->refs_lock
);
5336 btrfs_leak_debug_del(&eb
->fs_info
->eb_leak_lock
, &eb
->leak_list
);
5337 /* Should be safe to release our pages at this point */
5338 btrfs_release_extent_buffer_pages(eb
);
5339 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5340 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED
, &eb
->bflags
))) {
5341 __free_extent_buffer(eb
);
5345 call_rcu(&eb
->rcu_head
, btrfs_release_extent_buffer_rcu
);
5348 spin_unlock(&eb
->refs_lock
);
5353 void free_extent_buffer(struct extent_buffer
*eb
)
5361 refs
= atomic_read(&eb
->refs
);
5362 if ((!test_bit(EXTENT_BUFFER_UNMAPPED
, &eb
->bflags
) && refs
<= 3)
5363 || (test_bit(EXTENT_BUFFER_UNMAPPED
, &eb
->bflags
) &&
5366 old
= atomic_cmpxchg(&eb
->refs
, refs
, refs
- 1);
5371 spin_lock(&eb
->refs_lock
);
5372 if (atomic_read(&eb
->refs
) == 2 &&
5373 test_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
) &&
5374 !extent_buffer_under_io(eb
) &&
5375 test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5376 atomic_dec(&eb
->refs
);
5379 * I know this is terrible, but it's temporary until we stop tracking
5380 * the uptodate bits and such for the extent buffers.
5382 release_extent_buffer(eb
);
5385 void free_extent_buffer_stale(struct extent_buffer
*eb
)
5390 spin_lock(&eb
->refs_lock
);
5391 set_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
);
5393 if (atomic_read(&eb
->refs
) == 2 && !extent_buffer_under_io(eb
) &&
5394 test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5395 atomic_dec(&eb
->refs
);
5396 release_extent_buffer(eb
);
5399 void clear_extent_buffer_dirty(const struct extent_buffer
*eb
)
5405 num_pages
= num_extent_pages(eb
);
5407 for (i
= 0; i
< num_pages
; i
++) {
5408 page
= eb
->pages
[i
];
5409 if (!PageDirty(page
))
5413 WARN_ON(!PagePrivate(page
));
5415 clear_page_dirty_for_io(page
);
5416 xa_lock_irq(&page
->mapping
->i_pages
);
5417 if (!PageDirty(page
))
5418 __xa_clear_mark(&page
->mapping
->i_pages
,
5419 page_index(page
), PAGECACHE_TAG_DIRTY
);
5420 xa_unlock_irq(&page
->mapping
->i_pages
);
5421 ClearPageError(page
);
5424 WARN_ON(atomic_read(&eb
->refs
) == 0);
5427 bool set_extent_buffer_dirty(struct extent_buffer
*eb
)
5433 check_buffer_tree_ref(eb
);
5435 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
5437 num_pages
= num_extent_pages(eb
);
5438 WARN_ON(atomic_read(&eb
->refs
) == 0);
5439 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
));
5442 for (i
= 0; i
< num_pages
; i
++)
5443 set_page_dirty(eb
->pages
[i
]);
5445 #ifdef CONFIG_BTRFS_DEBUG
5446 for (i
= 0; i
< num_pages
; i
++)
5447 ASSERT(PageDirty(eb
->pages
[i
]));
5453 void clear_extent_buffer_uptodate(struct extent_buffer
*eb
)
5459 clear_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5460 num_pages
= num_extent_pages(eb
);
5461 for (i
= 0; i
< num_pages
; i
++) {
5462 page
= eb
->pages
[i
];
5464 ClearPageUptodate(page
);
5468 void set_extent_buffer_uptodate(struct extent_buffer
*eb
)
5474 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5475 num_pages
= num_extent_pages(eb
);
5476 for (i
= 0; i
< num_pages
; i
++) {
5477 page
= eb
->pages
[i
];
5478 SetPageUptodate(page
);
5482 int read_extent_buffer_pages(struct extent_buffer
*eb
, int wait
, int mirror_num
)
5488 int locked_pages
= 0;
5489 int all_uptodate
= 1;
5491 unsigned long num_reads
= 0;
5492 struct bio
*bio
= NULL
;
5493 unsigned long bio_flags
= 0;
5495 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
5498 num_pages
= num_extent_pages(eb
);
5499 for (i
= 0; i
< num_pages
; i
++) {
5500 page
= eb
->pages
[i
];
5501 if (wait
== WAIT_NONE
) {
5502 if (!trylock_page(page
))
5510 * We need to firstly lock all pages to make sure that
5511 * the uptodate bit of our pages won't be affected by
5512 * clear_extent_buffer_uptodate().
5514 for (i
= 0; i
< num_pages
; i
++) {
5515 page
= eb
->pages
[i
];
5516 if (!PageUptodate(page
)) {
5523 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5527 clear_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
5528 eb
->read_mirror
= 0;
5529 atomic_set(&eb
->io_pages
, num_reads
);
5530 for (i
= 0; i
< num_pages
; i
++) {
5531 page
= eb
->pages
[i
];
5533 if (!PageUptodate(page
)) {
5535 atomic_dec(&eb
->io_pages
);
5540 ClearPageError(page
);
5541 err
= __extent_read_full_page(page
,
5542 btree_get_extent
, &bio
,
5543 mirror_num
, &bio_flags
,
5548 * We use &bio in above __extent_read_full_page,
5549 * so we ensure that if it returns error, the
5550 * current page fails to add itself to bio and
5551 * it's been unlocked.
5553 * We must dec io_pages by ourselves.
5555 atomic_dec(&eb
->io_pages
);
5563 err
= submit_one_bio(bio
, mirror_num
, bio_flags
);
5568 if (ret
|| wait
!= WAIT_COMPLETE
)
5571 for (i
= 0; i
< num_pages
; i
++) {
5572 page
= eb
->pages
[i
];
5573 wait_on_page_locked(page
);
5574 if (!PageUptodate(page
))
5581 while (locked_pages
> 0) {
5583 page
= eb
->pages
[locked_pages
];
5589 void read_extent_buffer(const struct extent_buffer
*eb
, void *dstv
,
5590 unsigned long start
, unsigned long len
)
5596 char *dst
= (char *)dstv
;
5597 unsigned long i
= start
>> PAGE_SHIFT
;
5599 if (start
+ len
> eb
->len
) {
5600 WARN(1, KERN_ERR
"btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5601 eb
->start
, eb
->len
, start
, len
);
5602 memset(dst
, 0, len
);
5606 offset
= offset_in_page(start
);
5609 page
= eb
->pages
[i
];
5611 cur
= min(len
, (PAGE_SIZE
- offset
));
5612 kaddr
= page_address(page
);
5613 memcpy(dst
, kaddr
+ offset
, cur
);
5622 int read_extent_buffer_to_user(const struct extent_buffer
*eb
,
5624 unsigned long start
, unsigned long len
)
5630 char __user
*dst
= (char __user
*)dstv
;
5631 unsigned long i
= start
>> PAGE_SHIFT
;
5634 WARN_ON(start
> eb
->len
);
5635 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5637 offset
= offset_in_page(start
);
5640 page
= eb
->pages
[i
];
5642 cur
= min(len
, (PAGE_SIZE
- offset
));
5643 kaddr
= page_address(page
);
5644 if (copy_to_user(dst
, kaddr
+ offset
, cur
)) {
5658 int memcmp_extent_buffer(const struct extent_buffer
*eb
, const void *ptrv
,
5659 unsigned long start
, unsigned long len
)
5665 char *ptr
= (char *)ptrv
;
5666 unsigned long i
= start
>> PAGE_SHIFT
;
5669 WARN_ON(start
> eb
->len
);
5670 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5672 offset
= offset_in_page(start
);
5675 page
= eb
->pages
[i
];
5677 cur
= min(len
, (PAGE_SIZE
- offset
));
5679 kaddr
= page_address(page
);
5680 ret
= memcmp(ptr
, kaddr
+ offset
, cur
);
5692 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer
*eb
,
5697 WARN_ON(!PageUptodate(eb
->pages
[0]));
5698 kaddr
= page_address(eb
->pages
[0]);
5699 memcpy(kaddr
+ offsetof(struct btrfs_header
, chunk_tree_uuid
), srcv
,
5703 void write_extent_buffer_fsid(const struct extent_buffer
*eb
, const void *srcv
)
5707 WARN_ON(!PageUptodate(eb
->pages
[0]));
5708 kaddr
= page_address(eb
->pages
[0]);
5709 memcpy(kaddr
+ offsetof(struct btrfs_header
, fsid
), srcv
,
5713 void write_extent_buffer(const struct extent_buffer
*eb
, const void *srcv
,
5714 unsigned long start
, unsigned long len
)
5720 char *src
= (char *)srcv
;
5721 unsigned long i
= start
>> PAGE_SHIFT
;
5723 WARN_ON(start
> eb
->len
);
5724 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5726 offset
= offset_in_page(start
);
5729 page
= eb
->pages
[i
];
5730 WARN_ON(!PageUptodate(page
));
5732 cur
= min(len
, PAGE_SIZE
- offset
);
5733 kaddr
= page_address(page
);
5734 memcpy(kaddr
+ offset
, src
, cur
);
5743 void memzero_extent_buffer(const struct extent_buffer
*eb
, unsigned long start
,
5750 unsigned long i
= start
>> PAGE_SHIFT
;
5752 WARN_ON(start
> eb
->len
);
5753 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5755 offset
= offset_in_page(start
);
5758 page
= eb
->pages
[i
];
5759 WARN_ON(!PageUptodate(page
));
5761 cur
= min(len
, PAGE_SIZE
- offset
);
5762 kaddr
= page_address(page
);
5763 memset(kaddr
+ offset
, 0, cur
);
5771 void copy_extent_buffer_full(const struct extent_buffer
*dst
,
5772 const struct extent_buffer
*src
)
5777 ASSERT(dst
->len
== src
->len
);
5779 num_pages
= num_extent_pages(dst
);
5780 for (i
= 0; i
< num_pages
; i
++)
5781 copy_page(page_address(dst
->pages
[i
]),
5782 page_address(src
->pages
[i
]));
5785 void copy_extent_buffer(const struct extent_buffer
*dst
,
5786 const struct extent_buffer
*src
,
5787 unsigned long dst_offset
, unsigned long src_offset
,
5790 u64 dst_len
= dst
->len
;
5795 unsigned long i
= dst_offset
>> PAGE_SHIFT
;
5797 WARN_ON(src
->len
!= dst_len
);
5799 offset
= offset_in_page(dst_offset
);
5802 page
= dst
->pages
[i
];
5803 WARN_ON(!PageUptodate(page
));
5805 cur
= min(len
, (unsigned long)(PAGE_SIZE
- offset
));
5807 kaddr
= page_address(page
);
5808 read_extent_buffer(src
, kaddr
+ offset
, src_offset
, cur
);
5818 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5820 * @eb: the extent buffer
5821 * @start: offset of the bitmap item in the extent buffer
5823 * @page_index: return index of the page in the extent buffer that contains the
5825 * @page_offset: return offset into the page given by page_index
5827 * This helper hides the ugliness of finding the byte in an extent buffer which
5828 * contains a given bit.
5830 static inline void eb_bitmap_offset(const struct extent_buffer
*eb
,
5831 unsigned long start
, unsigned long nr
,
5832 unsigned long *page_index
,
5833 size_t *page_offset
)
5835 size_t byte_offset
= BIT_BYTE(nr
);
5839 * The byte we want is the offset of the extent buffer + the offset of
5840 * the bitmap item in the extent buffer + the offset of the byte in the
5843 offset
= start
+ byte_offset
;
5845 *page_index
= offset
>> PAGE_SHIFT
;
5846 *page_offset
= offset_in_page(offset
);
5850 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5851 * @eb: the extent buffer
5852 * @start: offset of the bitmap item in the extent buffer
5853 * @nr: bit number to test
5855 int extent_buffer_test_bit(const struct extent_buffer
*eb
, unsigned long start
,
5863 eb_bitmap_offset(eb
, start
, nr
, &i
, &offset
);
5864 page
= eb
->pages
[i
];
5865 WARN_ON(!PageUptodate(page
));
5866 kaddr
= page_address(page
);
5867 return 1U & (kaddr
[offset
] >> (nr
& (BITS_PER_BYTE
- 1)));
5871 * extent_buffer_bitmap_set - set an area of a bitmap
5872 * @eb: the extent buffer
5873 * @start: offset of the bitmap item in the extent buffer
5874 * @pos: bit number of the first bit
5875 * @len: number of bits to set
5877 void extent_buffer_bitmap_set(const struct extent_buffer
*eb
, unsigned long start
,
5878 unsigned long pos
, unsigned long len
)
5884 const unsigned int size
= pos
+ len
;
5885 int bits_to_set
= BITS_PER_BYTE
- (pos
% BITS_PER_BYTE
);
5886 u8 mask_to_set
= BITMAP_FIRST_BYTE_MASK(pos
);
5888 eb_bitmap_offset(eb
, start
, pos
, &i
, &offset
);
5889 page
= eb
->pages
[i
];
5890 WARN_ON(!PageUptodate(page
));
5891 kaddr
= page_address(page
);
5893 while (len
>= bits_to_set
) {
5894 kaddr
[offset
] |= mask_to_set
;
5896 bits_to_set
= BITS_PER_BYTE
;
5898 if (++offset
>= PAGE_SIZE
&& len
> 0) {
5900 page
= eb
->pages
[++i
];
5901 WARN_ON(!PageUptodate(page
));
5902 kaddr
= page_address(page
);
5906 mask_to_set
&= BITMAP_LAST_BYTE_MASK(size
);
5907 kaddr
[offset
] |= mask_to_set
;
5913 * extent_buffer_bitmap_clear - clear an area of a bitmap
5914 * @eb: the extent buffer
5915 * @start: offset of the bitmap item in the extent buffer
5916 * @pos: bit number of the first bit
5917 * @len: number of bits to clear
5919 void extent_buffer_bitmap_clear(const struct extent_buffer
*eb
,
5920 unsigned long start
, unsigned long pos
,
5927 const unsigned int size
= pos
+ len
;
5928 int bits_to_clear
= BITS_PER_BYTE
- (pos
% BITS_PER_BYTE
);
5929 u8 mask_to_clear
= BITMAP_FIRST_BYTE_MASK(pos
);
5931 eb_bitmap_offset(eb
, start
, pos
, &i
, &offset
);
5932 page
= eb
->pages
[i
];
5933 WARN_ON(!PageUptodate(page
));
5934 kaddr
= page_address(page
);
5936 while (len
>= bits_to_clear
) {
5937 kaddr
[offset
] &= ~mask_to_clear
;
5938 len
-= bits_to_clear
;
5939 bits_to_clear
= BITS_PER_BYTE
;
5941 if (++offset
>= PAGE_SIZE
&& len
> 0) {
5943 page
= eb
->pages
[++i
];
5944 WARN_ON(!PageUptodate(page
));
5945 kaddr
= page_address(page
);
5949 mask_to_clear
&= BITMAP_LAST_BYTE_MASK(size
);
5950 kaddr
[offset
] &= ~mask_to_clear
;
5954 static inline bool areas_overlap(unsigned long src
, unsigned long dst
, unsigned long len
)
5956 unsigned long distance
= (src
> dst
) ? src
- dst
: dst
- src
;
5957 return distance
< len
;
5960 static void copy_pages(struct page
*dst_page
, struct page
*src_page
,
5961 unsigned long dst_off
, unsigned long src_off
,
5964 char *dst_kaddr
= page_address(dst_page
);
5966 int must_memmove
= 0;
5968 if (dst_page
!= src_page
) {
5969 src_kaddr
= page_address(src_page
);
5971 src_kaddr
= dst_kaddr
;
5972 if (areas_overlap(src_off
, dst_off
, len
))
5977 memmove(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
5979 memcpy(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
5982 void memcpy_extent_buffer(const struct extent_buffer
*dst
,
5983 unsigned long dst_offset
, unsigned long src_offset
,
5986 struct btrfs_fs_info
*fs_info
= dst
->fs_info
;
5988 size_t dst_off_in_page
;
5989 size_t src_off_in_page
;
5990 unsigned long dst_i
;
5991 unsigned long src_i
;
5993 if (src_offset
+ len
> dst
->len
) {
5995 "memmove bogus src_offset %lu move len %lu dst len %lu",
5996 src_offset
, len
, dst
->len
);
5999 if (dst_offset
+ len
> dst
->len
) {
6001 "memmove bogus dst_offset %lu move len %lu dst len %lu",
6002 dst_offset
, len
, dst
->len
);
6007 dst_off_in_page
= offset_in_page(dst_offset
);
6008 src_off_in_page
= offset_in_page(src_offset
);
6010 dst_i
= dst_offset
>> PAGE_SHIFT
;
6011 src_i
= src_offset
>> PAGE_SHIFT
;
6013 cur
= min(len
, (unsigned long)(PAGE_SIZE
-
6015 cur
= min_t(unsigned long, cur
,
6016 (unsigned long)(PAGE_SIZE
- dst_off_in_page
));
6018 copy_pages(dst
->pages
[dst_i
], dst
->pages
[src_i
],
6019 dst_off_in_page
, src_off_in_page
, cur
);
6027 void memmove_extent_buffer(const struct extent_buffer
*dst
,
6028 unsigned long dst_offset
, unsigned long src_offset
,
6031 struct btrfs_fs_info
*fs_info
= dst
->fs_info
;
6033 size_t dst_off_in_page
;
6034 size_t src_off_in_page
;
6035 unsigned long dst_end
= dst_offset
+ len
- 1;
6036 unsigned long src_end
= src_offset
+ len
- 1;
6037 unsigned long dst_i
;
6038 unsigned long src_i
;
6040 if (src_offset
+ len
> dst
->len
) {
6042 "memmove bogus src_offset %lu move len %lu len %lu",
6043 src_offset
, len
, dst
->len
);
6046 if (dst_offset
+ len
> dst
->len
) {
6048 "memmove bogus dst_offset %lu move len %lu len %lu",
6049 dst_offset
, len
, dst
->len
);
6052 if (dst_offset
< src_offset
) {
6053 memcpy_extent_buffer(dst
, dst_offset
, src_offset
, len
);
6057 dst_i
= dst_end
>> PAGE_SHIFT
;
6058 src_i
= src_end
>> PAGE_SHIFT
;
6060 dst_off_in_page
= offset_in_page(dst_end
);
6061 src_off_in_page
= offset_in_page(src_end
);
6063 cur
= min_t(unsigned long, len
, src_off_in_page
+ 1);
6064 cur
= min(cur
, dst_off_in_page
+ 1);
6065 copy_pages(dst
->pages
[dst_i
], dst
->pages
[src_i
],
6066 dst_off_in_page
- cur
+ 1,
6067 src_off_in_page
- cur
+ 1, cur
);
6075 int try_release_extent_buffer(struct page
*page
)
6077 struct extent_buffer
*eb
;
6080 * We need to make sure nobody is attaching this page to an eb right
6083 spin_lock(&page
->mapping
->private_lock
);
6084 if (!PagePrivate(page
)) {
6085 spin_unlock(&page
->mapping
->private_lock
);
6089 eb
= (struct extent_buffer
*)page
->private;
6093 * This is a little awful but should be ok, we need to make sure that
6094 * the eb doesn't disappear out from under us while we're looking at
6097 spin_lock(&eb
->refs_lock
);
6098 if (atomic_read(&eb
->refs
) != 1 || extent_buffer_under_io(eb
)) {
6099 spin_unlock(&eb
->refs_lock
);
6100 spin_unlock(&page
->mapping
->private_lock
);
6103 spin_unlock(&page
->mapping
->private_lock
);
6106 * If tree ref isn't set then we know the ref on this eb is a real ref,
6107 * so just return, this page will likely be freed soon anyway.
6109 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
)) {
6110 spin_unlock(&eb
->refs_lock
);
6114 return release_extent_buffer(eb
);