usb: typec: intel_pmc_mux: Add support for USB4
[linux/fpc-iii.git] / fs / io_uring.c
blobe507737f044e08d34c29fc724c0ec10abda98113
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/io_uring.h>
85 #include <uapi/linux/io_uring.h>
87 #include "internal.h"
88 #include "io-wq.h"
90 #define IORING_MAX_ENTRIES 32768
91 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
94 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
96 #define IORING_FILE_TABLE_SHIFT 9
97 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
98 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
99 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
101 struct io_uring {
102 u32 head ____cacheline_aligned_in_smp;
103 u32 tail ____cacheline_aligned_in_smp;
107 * This data is shared with the application through the mmap at offsets
108 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
110 * The offsets to the member fields are published through struct
111 * io_sqring_offsets when calling io_uring_setup.
113 struct io_rings {
115 * Head and tail offsets into the ring; the offsets need to be
116 * masked to get valid indices.
118 * The kernel controls head of the sq ring and the tail of the cq ring,
119 * and the application controls tail of the sq ring and the head of the
120 * cq ring.
122 struct io_uring sq, cq;
124 * Bitmasks to apply to head and tail offsets (constant, equals
125 * ring_entries - 1)
127 u32 sq_ring_mask, cq_ring_mask;
128 /* Ring sizes (constant, power of 2) */
129 u32 sq_ring_entries, cq_ring_entries;
131 * Number of invalid entries dropped by the kernel due to
132 * invalid index stored in array
134 * Written by the kernel, shouldn't be modified by the
135 * application (i.e. get number of "new events" by comparing to
136 * cached value).
138 * After a new SQ head value was read by the application this
139 * counter includes all submissions that were dropped reaching
140 * the new SQ head (and possibly more).
142 u32 sq_dropped;
144 * Runtime SQ flags
146 * Written by the kernel, shouldn't be modified by the
147 * application.
149 * The application needs a full memory barrier before checking
150 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
152 u32 sq_flags;
154 * Runtime CQ flags
156 * Written by the application, shouldn't be modified by the
157 * kernel.
159 u32 cq_flags;
161 * Number of completion events lost because the queue was full;
162 * this should be avoided by the application by making sure
163 * there are not more requests pending than there is space in
164 * the completion queue.
166 * Written by the kernel, shouldn't be modified by the
167 * application (i.e. get number of "new events" by comparing to
168 * cached value).
170 * As completion events come in out of order this counter is not
171 * ordered with any other data.
173 u32 cq_overflow;
175 * Ring buffer of completion events.
177 * The kernel writes completion events fresh every time they are
178 * produced, so the application is allowed to modify pending
179 * entries.
181 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
184 struct io_mapped_ubuf {
185 u64 ubuf;
186 size_t len;
187 struct bio_vec *bvec;
188 unsigned int nr_bvecs;
191 struct fixed_file_table {
192 struct file **files;
195 struct fixed_file_ref_node {
196 struct percpu_ref refs;
197 struct list_head node;
198 struct list_head file_list;
199 struct fixed_file_data *file_data;
200 struct llist_node llist;
203 struct fixed_file_data {
204 struct fixed_file_table *table;
205 struct io_ring_ctx *ctx;
207 struct percpu_ref *cur_refs;
208 struct percpu_ref refs;
209 struct completion done;
210 struct list_head ref_list;
211 spinlock_t lock;
214 struct io_buffer {
215 struct list_head list;
216 __u64 addr;
217 __s32 len;
218 __u16 bid;
221 struct io_ring_ctx {
222 struct {
223 struct percpu_ref refs;
224 } ____cacheline_aligned_in_smp;
226 struct {
227 unsigned int flags;
228 unsigned int compat: 1;
229 unsigned int account_mem: 1;
230 unsigned int cq_overflow_flushed: 1;
231 unsigned int drain_next: 1;
232 unsigned int eventfd_async: 1;
235 * Ring buffer of indices into array of io_uring_sqe, which is
236 * mmapped by the application using the IORING_OFF_SQES offset.
238 * This indirection could e.g. be used to assign fixed
239 * io_uring_sqe entries to operations and only submit them to
240 * the queue when needed.
242 * The kernel modifies neither the indices array nor the entries
243 * array.
245 u32 *sq_array;
246 unsigned cached_sq_head;
247 unsigned sq_entries;
248 unsigned sq_mask;
249 unsigned sq_thread_idle;
250 unsigned cached_sq_dropped;
251 atomic_t cached_cq_overflow;
252 unsigned long sq_check_overflow;
254 struct list_head defer_list;
255 struct list_head timeout_list;
256 struct list_head cq_overflow_list;
258 wait_queue_head_t inflight_wait;
259 struct io_uring_sqe *sq_sqes;
260 } ____cacheline_aligned_in_smp;
262 struct io_rings *rings;
264 /* IO offload */
265 struct io_wq *io_wq;
266 struct task_struct *sqo_thread; /* if using sq thread polling */
267 struct mm_struct *sqo_mm;
268 wait_queue_head_t sqo_wait;
271 * If used, fixed file set. Writers must ensure that ->refs is dead,
272 * readers must ensure that ->refs is alive as long as the file* is
273 * used. Only updated through io_uring_register(2).
275 struct fixed_file_data *file_data;
276 unsigned nr_user_files;
277 int ring_fd;
278 struct file *ring_file;
280 /* if used, fixed mapped user buffers */
281 unsigned nr_user_bufs;
282 struct io_mapped_ubuf *user_bufs;
284 struct user_struct *user;
286 const struct cred *creds;
288 struct completion ref_comp;
289 struct completion sq_thread_comp;
291 /* if all else fails... */
292 struct io_kiocb *fallback_req;
294 #if defined(CONFIG_UNIX)
295 struct socket *ring_sock;
296 #endif
298 struct idr io_buffer_idr;
300 struct idr personality_idr;
302 struct {
303 unsigned cached_cq_tail;
304 unsigned cq_entries;
305 unsigned cq_mask;
306 atomic_t cq_timeouts;
307 unsigned long cq_check_overflow;
308 struct wait_queue_head cq_wait;
309 struct fasync_struct *cq_fasync;
310 struct eventfd_ctx *cq_ev_fd;
311 } ____cacheline_aligned_in_smp;
313 struct {
314 struct mutex uring_lock;
315 wait_queue_head_t wait;
316 } ____cacheline_aligned_in_smp;
318 struct {
319 spinlock_t completion_lock;
322 * ->poll_list is protected by the ctx->uring_lock for
323 * io_uring instances that don't use IORING_SETUP_SQPOLL.
324 * For SQPOLL, only the single threaded io_sq_thread() will
325 * manipulate the list, hence no extra locking is needed there.
327 struct list_head poll_list;
328 struct hlist_head *cancel_hash;
329 unsigned cancel_hash_bits;
330 bool poll_multi_file;
332 spinlock_t inflight_lock;
333 struct list_head inflight_list;
334 } ____cacheline_aligned_in_smp;
336 struct delayed_work file_put_work;
337 struct llist_head file_put_llist;
339 struct work_struct exit_work;
343 * First field must be the file pointer in all the
344 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
346 struct io_poll_iocb {
347 struct file *file;
348 union {
349 struct wait_queue_head *head;
350 u64 addr;
352 __poll_t events;
353 bool done;
354 bool canceled;
355 struct wait_queue_entry wait;
358 struct io_close {
359 struct file *file;
360 struct file *put_file;
361 int fd;
364 struct io_timeout_data {
365 struct io_kiocb *req;
366 struct hrtimer timer;
367 struct timespec64 ts;
368 enum hrtimer_mode mode;
371 struct io_accept {
372 struct file *file;
373 struct sockaddr __user *addr;
374 int __user *addr_len;
375 int flags;
376 unsigned long nofile;
379 struct io_sync {
380 struct file *file;
381 loff_t len;
382 loff_t off;
383 int flags;
384 int mode;
387 struct io_cancel {
388 struct file *file;
389 u64 addr;
392 struct io_timeout {
393 struct file *file;
394 u64 addr;
395 int flags;
396 u32 off;
397 u32 target_seq;
400 struct io_rw {
401 /* NOTE: kiocb has the file as the first member, so don't do it here */
402 struct kiocb kiocb;
403 u64 addr;
404 u64 len;
407 struct io_connect {
408 struct file *file;
409 struct sockaddr __user *addr;
410 int addr_len;
413 struct io_sr_msg {
414 struct file *file;
415 union {
416 struct user_msghdr __user *msg;
417 void __user *buf;
419 int msg_flags;
420 int bgid;
421 size_t len;
422 struct io_buffer *kbuf;
425 struct io_open {
426 struct file *file;
427 int dfd;
428 struct filename *filename;
429 struct open_how how;
430 unsigned long nofile;
433 struct io_files_update {
434 struct file *file;
435 u64 arg;
436 u32 nr_args;
437 u32 offset;
440 struct io_fadvise {
441 struct file *file;
442 u64 offset;
443 u32 len;
444 u32 advice;
447 struct io_madvise {
448 struct file *file;
449 u64 addr;
450 u32 len;
451 u32 advice;
454 struct io_epoll {
455 struct file *file;
456 int epfd;
457 int op;
458 int fd;
459 struct epoll_event event;
462 struct io_splice {
463 struct file *file_out;
464 struct file *file_in;
465 loff_t off_out;
466 loff_t off_in;
467 u64 len;
468 unsigned int flags;
471 struct io_provide_buf {
472 struct file *file;
473 __u64 addr;
474 __s32 len;
475 __u32 bgid;
476 __u16 nbufs;
477 __u16 bid;
480 struct io_statx {
481 struct file *file;
482 int dfd;
483 unsigned int mask;
484 unsigned int flags;
485 const char __user *filename;
486 struct statx __user *buffer;
489 struct io_async_connect {
490 struct sockaddr_storage address;
493 struct io_async_msghdr {
494 struct iovec fast_iov[UIO_FASTIOV];
495 struct iovec *iov;
496 struct sockaddr __user *uaddr;
497 struct msghdr msg;
498 struct sockaddr_storage addr;
501 struct io_async_rw {
502 struct iovec fast_iov[UIO_FASTIOV];
503 struct iovec *iov;
504 ssize_t nr_segs;
505 ssize_t size;
508 struct io_async_ctx {
509 union {
510 struct io_async_rw rw;
511 struct io_async_msghdr msg;
512 struct io_async_connect connect;
513 struct io_timeout_data timeout;
517 enum {
518 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
519 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
520 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
521 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
522 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
523 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
525 REQ_F_LINK_HEAD_BIT,
526 REQ_F_LINK_NEXT_BIT,
527 REQ_F_FAIL_LINK_BIT,
528 REQ_F_INFLIGHT_BIT,
529 REQ_F_CUR_POS_BIT,
530 REQ_F_NOWAIT_BIT,
531 REQ_F_LINK_TIMEOUT_BIT,
532 REQ_F_TIMEOUT_BIT,
533 REQ_F_ISREG_BIT,
534 REQ_F_MUST_PUNT_BIT,
535 REQ_F_TIMEOUT_NOSEQ_BIT,
536 REQ_F_COMP_LOCKED_BIT,
537 REQ_F_NEED_CLEANUP_BIT,
538 REQ_F_OVERFLOW_BIT,
539 REQ_F_POLLED_BIT,
540 REQ_F_BUFFER_SELECTED_BIT,
541 REQ_F_NO_FILE_TABLE_BIT,
542 REQ_F_QUEUE_TIMEOUT_BIT,
543 REQ_F_WORK_INITIALIZED_BIT,
544 REQ_F_TASK_PINNED_BIT,
546 /* not a real bit, just to check we're not overflowing the space */
547 __REQ_F_LAST_BIT,
550 enum {
551 /* ctx owns file */
552 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
553 /* drain existing IO first */
554 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
555 /* linked sqes */
556 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
557 /* doesn't sever on completion < 0 */
558 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
559 /* IOSQE_ASYNC */
560 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
561 /* IOSQE_BUFFER_SELECT */
562 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
564 /* head of a link */
565 REQ_F_LINK_HEAD = BIT(REQ_F_LINK_HEAD_BIT),
566 /* already grabbed next link */
567 REQ_F_LINK_NEXT = BIT(REQ_F_LINK_NEXT_BIT),
568 /* fail rest of links */
569 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
570 /* on inflight list */
571 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
572 /* read/write uses file position */
573 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
574 /* must not punt to workers */
575 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
576 /* has linked timeout */
577 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
578 /* timeout request */
579 REQ_F_TIMEOUT = BIT(REQ_F_TIMEOUT_BIT),
580 /* regular file */
581 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
582 /* must be punted even for NONBLOCK */
583 REQ_F_MUST_PUNT = BIT(REQ_F_MUST_PUNT_BIT),
584 /* no timeout sequence */
585 REQ_F_TIMEOUT_NOSEQ = BIT(REQ_F_TIMEOUT_NOSEQ_BIT),
586 /* completion under lock */
587 REQ_F_COMP_LOCKED = BIT(REQ_F_COMP_LOCKED_BIT),
588 /* needs cleanup */
589 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
590 /* in overflow list */
591 REQ_F_OVERFLOW = BIT(REQ_F_OVERFLOW_BIT),
592 /* already went through poll handler */
593 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
594 /* buffer already selected */
595 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
596 /* doesn't need file table for this request */
597 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
598 /* needs to queue linked timeout */
599 REQ_F_QUEUE_TIMEOUT = BIT(REQ_F_QUEUE_TIMEOUT_BIT),
600 /* io_wq_work is initialized */
601 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
602 /* req->task is refcounted */
603 REQ_F_TASK_PINNED = BIT(REQ_F_TASK_PINNED_BIT),
606 struct async_poll {
607 struct io_poll_iocb poll;
608 struct io_wq_work work;
612 * NOTE! Each of the iocb union members has the file pointer
613 * as the first entry in their struct definition. So you can
614 * access the file pointer through any of the sub-structs,
615 * or directly as just 'ki_filp' in this struct.
617 struct io_kiocb {
618 union {
619 struct file *file;
620 struct io_rw rw;
621 struct io_poll_iocb poll;
622 struct io_accept accept;
623 struct io_sync sync;
624 struct io_cancel cancel;
625 struct io_timeout timeout;
626 struct io_connect connect;
627 struct io_sr_msg sr_msg;
628 struct io_open open;
629 struct io_close close;
630 struct io_files_update files_update;
631 struct io_fadvise fadvise;
632 struct io_madvise madvise;
633 struct io_epoll epoll;
634 struct io_splice splice;
635 struct io_provide_buf pbuf;
636 struct io_statx statx;
639 struct io_async_ctx *io;
640 int cflags;
641 u8 opcode;
642 /* polled IO has completed */
643 u8 iopoll_completed;
645 u16 buf_index;
647 struct io_ring_ctx *ctx;
648 struct list_head list;
649 unsigned int flags;
650 refcount_t refs;
651 struct task_struct *task;
652 unsigned long fsize;
653 u64 user_data;
654 u32 result;
655 u32 sequence;
657 struct list_head link_list;
659 struct list_head inflight_entry;
661 struct percpu_ref *fixed_file_refs;
663 union {
665 * Only commands that never go async can use the below fields,
666 * obviously. Right now only IORING_OP_POLL_ADD uses them, and
667 * async armed poll handlers for regular commands. The latter
668 * restore the work, if needed.
670 struct {
671 struct callback_head task_work;
672 struct hlist_node hash_node;
673 struct async_poll *apoll;
675 struct io_wq_work work;
679 #define IO_PLUG_THRESHOLD 2
680 #define IO_IOPOLL_BATCH 8
682 struct io_submit_state {
683 struct blk_plug plug;
686 * io_kiocb alloc cache
688 void *reqs[IO_IOPOLL_BATCH];
689 unsigned int free_reqs;
692 * File reference cache
694 struct file *file;
695 unsigned int fd;
696 unsigned int has_refs;
697 unsigned int used_refs;
698 unsigned int ios_left;
701 struct io_op_def {
702 /* needs req->io allocated for deferral/async */
703 unsigned async_ctx : 1;
704 /* needs current->mm setup, does mm access */
705 unsigned needs_mm : 1;
706 /* needs req->file assigned */
707 unsigned needs_file : 1;
708 /* don't fail if file grab fails */
709 unsigned needs_file_no_error : 1;
710 /* hash wq insertion if file is a regular file */
711 unsigned hash_reg_file : 1;
712 /* unbound wq insertion if file is a non-regular file */
713 unsigned unbound_nonreg_file : 1;
714 /* opcode is not supported by this kernel */
715 unsigned not_supported : 1;
716 /* needs file table */
717 unsigned file_table : 1;
718 /* needs ->fs */
719 unsigned needs_fs : 1;
720 /* set if opcode supports polled "wait" */
721 unsigned pollin : 1;
722 unsigned pollout : 1;
723 /* op supports buffer selection */
724 unsigned buffer_select : 1;
727 static const struct io_op_def io_op_defs[] = {
728 [IORING_OP_NOP] = {},
729 [IORING_OP_READV] = {
730 .async_ctx = 1,
731 .needs_mm = 1,
732 .needs_file = 1,
733 .unbound_nonreg_file = 1,
734 .pollin = 1,
735 .buffer_select = 1,
737 [IORING_OP_WRITEV] = {
738 .async_ctx = 1,
739 .needs_mm = 1,
740 .needs_file = 1,
741 .hash_reg_file = 1,
742 .unbound_nonreg_file = 1,
743 .pollout = 1,
745 [IORING_OP_FSYNC] = {
746 .needs_file = 1,
748 [IORING_OP_READ_FIXED] = {
749 .needs_file = 1,
750 .unbound_nonreg_file = 1,
751 .pollin = 1,
753 [IORING_OP_WRITE_FIXED] = {
754 .needs_file = 1,
755 .hash_reg_file = 1,
756 .unbound_nonreg_file = 1,
757 .pollout = 1,
759 [IORING_OP_POLL_ADD] = {
760 .needs_file = 1,
761 .unbound_nonreg_file = 1,
763 [IORING_OP_POLL_REMOVE] = {},
764 [IORING_OP_SYNC_FILE_RANGE] = {
765 .needs_file = 1,
767 [IORING_OP_SENDMSG] = {
768 .async_ctx = 1,
769 .needs_mm = 1,
770 .needs_file = 1,
771 .unbound_nonreg_file = 1,
772 .needs_fs = 1,
773 .pollout = 1,
775 [IORING_OP_RECVMSG] = {
776 .async_ctx = 1,
777 .needs_mm = 1,
778 .needs_file = 1,
779 .unbound_nonreg_file = 1,
780 .needs_fs = 1,
781 .pollin = 1,
782 .buffer_select = 1,
784 [IORING_OP_TIMEOUT] = {
785 .async_ctx = 1,
786 .needs_mm = 1,
788 [IORING_OP_TIMEOUT_REMOVE] = {},
789 [IORING_OP_ACCEPT] = {
790 .needs_mm = 1,
791 .needs_file = 1,
792 .unbound_nonreg_file = 1,
793 .file_table = 1,
794 .pollin = 1,
796 [IORING_OP_ASYNC_CANCEL] = {},
797 [IORING_OP_LINK_TIMEOUT] = {
798 .async_ctx = 1,
799 .needs_mm = 1,
801 [IORING_OP_CONNECT] = {
802 .async_ctx = 1,
803 .needs_mm = 1,
804 .needs_file = 1,
805 .unbound_nonreg_file = 1,
806 .pollout = 1,
808 [IORING_OP_FALLOCATE] = {
809 .needs_file = 1,
811 [IORING_OP_OPENAT] = {
812 .file_table = 1,
813 .needs_fs = 1,
815 [IORING_OP_CLOSE] = {
816 .needs_file = 1,
817 .needs_file_no_error = 1,
818 .file_table = 1,
820 [IORING_OP_FILES_UPDATE] = {
821 .needs_mm = 1,
822 .file_table = 1,
824 [IORING_OP_STATX] = {
825 .needs_mm = 1,
826 .needs_fs = 1,
827 .file_table = 1,
829 [IORING_OP_READ] = {
830 .needs_mm = 1,
831 .needs_file = 1,
832 .unbound_nonreg_file = 1,
833 .pollin = 1,
834 .buffer_select = 1,
836 [IORING_OP_WRITE] = {
837 .needs_mm = 1,
838 .needs_file = 1,
839 .unbound_nonreg_file = 1,
840 .pollout = 1,
842 [IORING_OP_FADVISE] = {
843 .needs_file = 1,
845 [IORING_OP_MADVISE] = {
846 .needs_mm = 1,
848 [IORING_OP_SEND] = {
849 .needs_mm = 1,
850 .needs_file = 1,
851 .unbound_nonreg_file = 1,
852 .pollout = 1,
854 [IORING_OP_RECV] = {
855 .needs_mm = 1,
856 .needs_file = 1,
857 .unbound_nonreg_file = 1,
858 .pollin = 1,
859 .buffer_select = 1,
861 [IORING_OP_OPENAT2] = {
862 .file_table = 1,
863 .needs_fs = 1,
865 [IORING_OP_EPOLL_CTL] = {
866 .unbound_nonreg_file = 1,
867 .file_table = 1,
869 [IORING_OP_SPLICE] = {
870 .needs_file = 1,
871 .hash_reg_file = 1,
872 .unbound_nonreg_file = 1,
874 [IORING_OP_PROVIDE_BUFFERS] = {},
875 [IORING_OP_REMOVE_BUFFERS] = {},
876 [IORING_OP_TEE] = {
877 .needs_file = 1,
878 .hash_reg_file = 1,
879 .unbound_nonreg_file = 1,
883 static void io_wq_submit_work(struct io_wq_work **workptr);
884 static void io_cqring_fill_event(struct io_kiocb *req, long res);
885 static void io_put_req(struct io_kiocb *req);
886 static void __io_double_put_req(struct io_kiocb *req);
887 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
888 static void io_queue_linked_timeout(struct io_kiocb *req);
889 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
890 struct io_uring_files_update *ip,
891 unsigned nr_args);
892 static int io_grab_files(struct io_kiocb *req);
893 static void io_complete_rw_common(struct kiocb *kiocb, long res);
894 static void io_cleanup_req(struct io_kiocb *req);
895 static int io_file_get(struct io_submit_state *state, struct io_kiocb *req,
896 int fd, struct file **out_file, bool fixed);
897 static void __io_queue_sqe(struct io_kiocb *req,
898 const struct io_uring_sqe *sqe);
900 static struct kmem_cache *req_cachep;
902 static const struct file_operations io_uring_fops;
904 struct sock *io_uring_get_socket(struct file *file)
906 #if defined(CONFIG_UNIX)
907 if (file->f_op == &io_uring_fops) {
908 struct io_ring_ctx *ctx = file->private_data;
910 return ctx->ring_sock->sk;
912 #endif
913 return NULL;
915 EXPORT_SYMBOL(io_uring_get_socket);
917 static void io_get_req_task(struct io_kiocb *req)
919 if (req->flags & REQ_F_TASK_PINNED)
920 return;
921 get_task_struct(req->task);
922 req->flags |= REQ_F_TASK_PINNED;
925 /* not idempotent -- it doesn't clear REQ_F_TASK_PINNED */
926 static void __io_put_req_task(struct io_kiocb *req)
928 if (req->flags & REQ_F_TASK_PINNED)
929 put_task_struct(req->task);
932 static void io_file_put_work(struct work_struct *work);
935 * Note: must call io_req_init_async() for the first time you
936 * touch any members of io_wq_work.
938 static inline void io_req_init_async(struct io_kiocb *req)
940 if (req->flags & REQ_F_WORK_INITIALIZED)
941 return;
943 memset(&req->work, 0, sizeof(req->work));
944 req->flags |= REQ_F_WORK_INITIALIZED;
947 static inline bool io_async_submit(struct io_ring_ctx *ctx)
949 return ctx->flags & IORING_SETUP_SQPOLL;
952 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
954 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
956 complete(&ctx->ref_comp);
959 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
961 struct io_ring_ctx *ctx;
962 int hash_bits;
964 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
965 if (!ctx)
966 return NULL;
968 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
969 if (!ctx->fallback_req)
970 goto err;
973 * Use 5 bits less than the max cq entries, that should give us around
974 * 32 entries per hash list if totally full and uniformly spread.
976 hash_bits = ilog2(p->cq_entries);
977 hash_bits -= 5;
978 if (hash_bits <= 0)
979 hash_bits = 1;
980 ctx->cancel_hash_bits = hash_bits;
981 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
982 GFP_KERNEL);
983 if (!ctx->cancel_hash)
984 goto err;
985 __hash_init(ctx->cancel_hash, 1U << hash_bits);
987 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
988 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
989 goto err;
991 ctx->flags = p->flags;
992 init_waitqueue_head(&ctx->sqo_wait);
993 init_waitqueue_head(&ctx->cq_wait);
994 INIT_LIST_HEAD(&ctx->cq_overflow_list);
995 init_completion(&ctx->ref_comp);
996 init_completion(&ctx->sq_thread_comp);
997 idr_init(&ctx->io_buffer_idr);
998 idr_init(&ctx->personality_idr);
999 mutex_init(&ctx->uring_lock);
1000 init_waitqueue_head(&ctx->wait);
1001 spin_lock_init(&ctx->completion_lock);
1002 INIT_LIST_HEAD(&ctx->poll_list);
1003 INIT_LIST_HEAD(&ctx->defer_list);
1004 INIT_LIST_HEAD(&ctx->timeout_list);
1005 init_waitqueue_head(&ctx->inflight_wait);
1006 spin_lock_init(&ctx->inflight_lock);
1007 INIT_LIST_HEAD(&ctx->inflight_list);
1008 INIT_DELAYED_WORK(&ctx->file_put_work, io_file_put_work);
1009 init_llist_head(&ctx->file_put_llist);
1010 return ctx;
1011 err:
1012 if (ctx->fallback_req)
1013 kmem_cache_free(req_cachep, ctx->fallback_req);
1014 kfree(ctx->cancel_hash);
1015 kfree(ctx);
1016 return NULL;
1019 static inline bool __req_need_defer(struct io_kiocb *req)
1021 struct io_ring_ctx *ctx = req->ctx;
1023 return req->sequence != ctx->cached_cq_tail
1024 + atomic_read(&ctx->cached_cq_overflow);
1027 static inline bool req_need_defer(struct io_kiocb *req)
1029 if (unlikely(req->flags & REQ_F_IO_DRAIN))
1030 return __req_need_defer(req);
1032 return false;
1035 static void __io_commit_cqring(struct io_ring_ctx *ctx)
1037 struct io_rings *rings = ctx->rings;
1039 /* order cqe stores with ring update */
1040 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
1042 if (wq_has_sleeper(&ctx->cq_wait)) {
1043 wake_up_interruptible(&ctx->cq_wait);
1044 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1048 static inline void io_req_work_grab_env(struct io_kiocb *req,
1049 const struct io_op_def *def)
1051 if (!req->work.mm && def->needs_mm) {
1052 mmgrab(current->mm);
1053 req->work.mm = current->mm;
1055 if (!req->work.creds)
1056 req->work.creds = get_current_cred();
1057 if (!req->work.fs && def->needs_fs) {
1058 spin_lock(&current->fs->lock);
1059 if (!current->fs->in_exec) {
1060 req->work.fs = current->fs;
1061 req->work.fs->users++;
1062 } else {
1063 req->work.flags |= IO_WQ_WORK_CANCEL;
1065 spin_unlock(&current->fs->lock);
1069 static inline void io_req_work_drop_env(struct io_kiocb *req)
1071 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1072 return;
1074 if (req->work.mm) {
1075 mmdrop(req->work.mm);
1076 req->work.mm = NULL;
1078 if (req->work.creds) {
1079 put_cred(req->work.creds);
1080 req->work.creds = NULL;
1082 if (req->work.fs) {
1083 struct fs_struct *fs = req->work.fs;
1085 spin_lock(&req->work.fs->lock);
1086 if (--fs->users)
1087 fs = NULL;
1088 spin_unlock(&req->work.fs->lock);
1089 if (fs)
1090 free_fs_struct(fs);
1094 static inline void io_prep_async_work(struct io_kiocb *req,
1095 struct io_kiocb **link)
1097 const struct io_op_def *def = &io_op_defs[req->opcode];
1099 if (req->flags & REQ_F_ISREG) {
1100 if (def->hash_reg_file)
1101 io_wq_hash_work(&req->work, file_inode(req->file));
1102 } else {
1103 if (def->unbound_nonreg_file)
1104 req->work.flags |= IO_WQ_WORK_UNBOUND;
1107 io_req_init_async(req);
1108 io_req_work_grab_env(req, def);
1110 *link = io_prep_linked_timeout(req);
1113 static inline void io_queue_async_work(struct io_kiocb *req)
1115 struct io_ring_ctx *ctx = req->ctx;
1116 struct io_kiocb *link;
1118 io_prep_async_work(req, &link);
1120 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1121 &req->work, req->flags);
1122 io_wq_enqueue(ctx->io_wq, &req->work);
1124 if (link)
1125 io_queue_linked_timeout(link);
1128 static void io_kill_timeout(struct io_kiocb *req)
1130 int ret;
1132 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
1133 if (ret != -1) {
1134 atomic_inc(&req->ctx->cq_timeouts);
1135 list_del_init(&req->list);
1136 req->flags |= REQ_F_COMP_LOCKED;
1137 io_cqring_fill_event(req, 0);
1138 io_put_req(req);
1142 static void io_kill_timeouts(struct io_ring_ctx *ctx)
1144 struct io_kiocb *req, *tmp;
1146 spin_lock_irq(&ctx->completion_lock);
1147 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, list)
1148 io_kill_timeout(req);
1149 spin_unlock_irq(&ctx->completion_lock);
1152 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1154 do {
1155 struct io_kiocb *req = list_first_entry(&ctx->defer_list,
1156 struct io_kiocb, list);
1158 if (req_need_defer(req))
1159 break;
1160 list_del_init(&req->list);
1161 io_queue_async_work(req);
1162 } while (!list_empty(&ctx->defer_list));
1165 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1167 while (!list_empty(&ctx->timeout_list)) {
1168 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1169 struct io_kiocb, list);
1171 if (req->flags & REQ_F_TIMEOUT_NOSEQ)
1172 break;
1173 if (req->timeout.target_seq != ctx->cached_cq_tail
1174 - atomic_read(&ctx->cq_timeouts))
1175 break;
1177 list_del_init(&req->list);
1178 io_kill_timeout(req);
1182 static void io_commit_cqring(struct io_ring_ctx *ctx)
1184 io_flush_timeouts(ctx);
1185 __io_commit_cqring(ctx);
1187 if (unlikely(!list_empty(&ctx->defer_list)))
1188 __io_queue_deferred(ctx);
1191 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1193 struct io_rings *rings = ctx->rings;
1194 unsigned tail;
1196 tail = ctx->cached_cq_tail;
1198 * writes to the cq entry need to come after reading head; the
1199 * control dependency is enough as we're using WRITE_ONCE to
1200 * fill the cq entry
1202 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1203 return NULL;
1205 ctx->cached_cq_tail++;
1206 return &rings->cqes[tail & ctx->cq_mask];
1209 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1211 if (!ctx->cq_ev_fd)
1212 return false;
1213 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1214 return false;
1215 if (!ctx->eventfd_async)
1216 return true;
1217 return io_wq_current_is_worker();
1220 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1222 if (waitqueue_active(&ctx->wait))
1223 wake_up(&ctx->wait);
1224 if (waitqueue_active(&ctx->sqo_wait))
1225 wake_up(&ctx->sqo_wait);
1226 if (io_should_trigger_evfd(ctx))
1227 eventfd_signal(ctx->cq_ev_fd, 1);
1230 /* Returns true if there are no backlogged entries after the flush */
1231 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1233 struct io_rings *rings = ctx->rings;
1234 struct io_uring_cqe *cqe;
1235 struct io_kiocb *req;
1236 unsigned long flags;
1237 LIST_HEAD(list);
1239 if (!force) {
1240 if (list_empty_careful(&ctx->cq_overflow_list))
1241 return true;
1242 if ((ctx->cached_cq_tail - READ_ONCE(rings->cq.head) ==
1243 rings->cq_ring_entries))
1244 return false;
1247 spin_lock_irqsave(&ctx->completion_lock, flags);
1249 /* if force is set, the ring is going away. always drop after that */
1250 if (force)
1251 ctx->cq_overflow_flushed = 1;
1253 cqe = NULL;
1254 while (!list_empty(&ctx->cq_overflow_list)) {
1255 cqe = io_get_cqring(ctx);
1256 if (!cqe && !force)
1257 break;
1259 req = list_first_entry(&ctx->cq_overflow_list, struct io_kiocb,
1260 list);
1261 list_move(&req->list, &list);
1262 req->flags &= ~REQ_F_OVERFLOW;
1263 if (cqe) {
1264 WRITE_ONCE(cqe->user_data, req->user_data);
1265 WRITE_ONCE(cqe->res, req->result);
1266 WRITE_ONCE(cqe->flags, req->cflags);
1267 } else {
1268 WRITE_ONCE(ctx->rings->cq_overflow,
1269 atomic_inc_return(&ctx->cached_cq_overflow));
1273 io_commit_cqring(ctx);
1274 if (cqe) {
1275 clear_bit(0, &ctx->sq_check_overflow);
1276 clear_bit(0, &ctx->cq_check_overflow);
1278 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1279 io_cqring_ev_posted(ctx);
1281 while (!list_empty(&list)) {
1282 req = list_first_entry(&list, struct io_kiocb, list);
1283 list_del(&req->list);
1284 io_put_req(req);
1287 return cqe != NULL;
1290 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1292 struct io_ring_ctx *ctx = req->ctx;
1293 struct io_uring_cqe *cqe;
1295 trace_io_uring_complete(ctx, req->user_data, res);
1298 * If we can't get a cq entry, userspace overflowed the
1299 * submission (by quite a lot). Increment the overflow count in
1300 * the ring.
1302 cqe = io_get_cqring(ctx);
1303 if (likely(cqe)) {
1304 WRITE_ONCE(cqe->user_data, req->user_data);
1305 WRITE_ONCE(cqe->res, res);
1306 WRITE_ONCE(cqe->flags, cflags);
1307 } else if (ctx->cq_overflow_flushed) {
1308 WRITE_ONCE(ctx->rings->cq_overflow,
1309 atomic_inc_return(&ctx->cached_cq_overflow));
1310 } else {
1311 if (list_empty(&ctx->cq_overflow_list)) {
1312 set_bit(0, &ctx->sq_check_overflow);
1313 set_bit(0, &ctx->cq_check_overflow);
1315 req->flags |= REQ_F_OVERFLOW;
1316 refcount_inc(&req->refs);
1317 req->result = res;
1318 req->cflags = cflags;
1319 list_add_tail(&req->list, &ctx->cq_overflow_list);
1323 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1325 __io_cqring_fill_event(req, res, 0);
1328 static void __io_cqring_add_event(struct io_kiocb *req, long res, long cflags)
1330 struct io_ring_ctx *ctx = req->ctx;
1331 unsigned long flags;
1333 spin_lock_irqsave(&ctx->completion_lock, flags);
1334 __io_cqring_fill_event(req, res, cflags);
1335 io_commit_cqring(ctx);
1336 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1338 io_cqring_ev_posted(ctx);
1341 static void io_cqring_add_event(struct io_kiocb *req, long res)
1343 __io_cqring_add_event(req, res, 0);
1346 static inline bool io_is_fallback_req(struct io_kiocb *req)
1348 return req == (struct io_kiocb *)
1349 ((unsigned long) req->ctx->fallback_req & ~1UL);
1352 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1354 struct io_kiocb *req;
1356 req = ctx->fallback_req;
1357 if (!test_and_set_bit_lock(0, (unsigned long *) &ctx->fallback_req))
1358 return req;
1360 return NULL;
1363 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx,
1364 struct io_submit_state *state)
1366 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1367 struct io_kiocb *req;
1369 if (!state) {
1370 req = kmem_cache_alloc(req_cachep, gfp);
1371 if (unlikely(!req))
1372 goto fallback;
1373 } else if (!state->free_reqs) {
1374 size_t sz;
1375 int ret;
1377 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1378 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
1381 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1382 * retry single alloc to be on the safe side.
1384 if (unlikely(ret <= 0)) {
1385 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1386 if (!state->reqs[0])
1387 goto fallback;
1388 ret = 1;
1390 state->free_reqs = ret - 1;
1391 req = state->reqs[ret - 1];
1392 } else {
1393 state->free_reqs--;
1394 req = state->reqs[state->free_reqs];
1397 return req;
1398 fallback:
1399 return io_get_fallback_req(ctx);
1402 static inline void io_put_file(struct io_kiocb *req, struct file *file,
1403 bool fixed)
1405 if (fixed)
1406 percpu_ref_put(req->fixed_file_refs);
1407 else
1408 fput(file);
1411 static void __io_req_aux_free(struct io_kiocb *req)
1413 if (req->flags & REQ_F_NEED_CLEANUP)
1414 io_cleanup_req(req);
1416 kfree(req->io);
1417 if (req->file)
1418 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
1419 __io_put_req_task(req);
1420 io_req_work_drop_env(req);
1423 static void __io_free_req(struct io_kiocb *req)
1425 __io_req_aux_free(req);
1427 if (req->flags & REQ_F_INFLIGHT) {
1428 struct io_ring_ctx *ctx = req->ctx;
1429 unsigned long flags;
1431 spin_lock_irqsave(&ctx->inflight_lock, flags);
1432 list_del(&req->inflight_entry);
1433 if (waitqueue_active(&ctx->inflight_wait))
1434 wake_up(&ctx->inflight_wait);
1435 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
1438 percpu_ref_put(&req->ctx->refs);
1439 if (likely(!io_is_fallback_req(req)))
1440 kmem_cache_free(req_cachep, req);
1441 else
1442 clear_bit_unlock(0, (unsigned long *) &req->ctx->fallback_req);
1445 struct req_batch {
1446 void *reqs[IO_IOPOLL_BATCH];
1447 int to_free;
1448 int need_iter;
1451 static void io_free_req_many(struct io_ring_ctx *ctx, struct req_batch *rb)
1453 if (!rb->to_free)
1454 return;
1455 if (rb->need_iter) {
1456 int i, inflight = 0;
1457 unsigned long flags;
1459 for (i = 0; i < rb->to_free; i++) {
1460 struct io_kiocb *req = rb->reqs[i];
1462 if (req->flags & REQ_F_INFLIGHT)
1463 inflight++;
1464 __io_req_aux_free(req);
1466 if (!inflight)
1467 goto do_free;
1469 spin_lock_irqsave(&ctx->inflight_lock, flags);
1470 for (i = 0; i < rb->to_free; i++) {
1471 struct io_kiocb *req = rb->reqs[i];
1473 if (req->flags & REQ_F_INFLIGHT) {
1474 list_del(&req->inflight_entry);
1475 if (!--inflight)
1476 break;
1479 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
1481 if (waitqueue_active(&ctx->inflight_wait))
1482 wake_up(&ctx->inflight_wait);
1484 do_free:
1485 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
1486 percpu_ref_put_many(&ctx->refs, rb->to_free);
1487 rb->to_free = rb->need_iter = 0;
1490 static bool io_link_cancel_timeout(struct io_kiocb *req)
1492 struct io_ring_ctx *ctx = req->ctx;
1493 int ret;
1495 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
1496 if (ret != -1) {
1497 io_cqring_fill_event(req, -ECANCELED);
1498 io_commit_cqring(ctx);
1499 req->flags &= ~REQ_F_LINK_HEAD;
1500 io_put_req(req);
1501 return true;
1504 return false;
1507 static void io_req_link_next(struct io_kiocb *req, struct io_kiocb **nxtptr)
1509 struct io_ring_ctx *ctx = req->ctx;
1510 bool wake_ev = false;
1512 /* Already got next link */
1513 if (req->flags & REQ_F_LINK_NEXT)
1514 return;
1517 * The list should never be empty when we are called here. But could
1518 * potentially happen if the chain is messed up, check to be on the
1519 * safe side.
1521 while (!list_empty(&req->link_list)) {
1522 struct io_kiocb *nxt = list_first_entry(&req->link_list,
1523 struct io_kiocb, link_list);
1525 if (unlikely((req->flags & REQ_F_LINK_TIMEOUT) &&
1526 (nxt->flags & REQ_F_TIMEOUT))) {
1527 list_del_init(&nxt->link_list);
1528 wake_ev |= io_link_cancel_timeout(nxt);
1529 req->flags &= ~REQ_F_LINK_TIMEOUT;
1530 continue;
1533 list_del_init(&req->link_list);
1534 if (!list_empty(&nxt->link_list))
1535 nxt->flags |= REQ_F_LINK_HEAD;
1536 *nxtptr = nxt;
1537 break;
1540 req->flags |= REQ_F_LINK_NEXT;
1541 if (wake_ev)
1542 io_cqring_ev_posted(ctx);
1546 * Called if REQ_F_LINK_HEAD is set, and we fail the head request
1548 static void io_fail_links(struct io_kiocb *req)
1550 struct io_ring_ctx *ctx = req->ctx;
1551 unsigned long flags;
1553 spin_lock_irqsave(&ctx->completion_lock, flags);
1555 while (!list_empty(&req->link_list)) {
1556 struct io_kiocb *link = list_first_entry(&req->link_list,
1557 struct io_kiocb, link_list);
1559 list_del_init(&link->link_list);
1560 trace_io_uring_fail_link(req, link);
1562 if ((req->flags & REQ_F_LINK_TIMEOUT) &&
1563 link->opcode == IORING_OP_LINK_TIMEOUT) {
1564 io_link_cancel_timeout(link);
1565 } else {
1566 io_cqring_fill_event(link, -ECANCELED);
1567 __io_double_put_req(link);
1569 req->flags &= ~REQ_F_LINK_TIMEOUT;
1572 io_commit_cqring(ctx);
1573 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1574 io_cqring_ev_posted(ctx);
1577 static void io_req_find_next(struct io_kiocb *req, struct io_kiocb **nxt)
1579 if (likely(!(req->flags & REQ_F_LINK_HEAD)))
1580 return;
1583 * If LINK is set, we have dependent requests in this chain. If we
1584 * didn't fail this request, queue the first one up, moving any other
1585 * dependencies to the next request. In case of failure, fail the rest
1586 * of the chain.
1588 if (req->flags & REQ_F_FAIL_LINK) {
1589 io_fail_links(req);
1590 } else if ((req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_COMP_LOCKED)) ==
1591 REQ_F_LINK_TIMEOUT) {
1592 struct io_ring_ctx *ctx = req->ctx;
1593 unsigned long flags;
1596 * If this is a timeout link, we could be racing with the
1597 * timeout timer. Grab the completion lock for this case to
1598 * protect against that.
1600 spin_lock_irqsave(&ctx->completion_lock, flags);
1601 io_req_link_next(req, nxt);
1602 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1603 } else {
1604 io_req_link_next(req, nxt);
1608 static void io_free_req(struct io_kiocb *req)
1610 struct io_kiocb *nxt = NULL;
1612 io_req_find_next(req, &nxt);
1613 __io_free_req(req);
1615 if (nxt)
1616 io_queue_async_work(nxt);
1619 static void io_wq_assign_next(struct io_wq_work **workptr, struct io_kiocb *nxt)
1621 struct io_kiocb *link;
1622 const struct io_op_def *def = &io_op_defs[nxt->opcode];
1624 if ((nxt->flags & REQ_F_ISREG) && def->hash_reg_file)
1625 io_wq_hash_work(&nxt->work, file_inode(nxt->file));
1627 *workptr = &nxt->work;
1628 link = io_prep_linked_timeout(nxt);
1629 if (link)
1630 nxt->flags |= REQ_F_QUEUE_TIMEOUT;
1634 * Drop reference to request, return next in chain (if there is one) if this
1635 * was the last reference to this request.
1637 __attribute__((nonnull))
1638 static void io_put_req_find_next(struct io_kiocb *req, struct io_kiocb **nxtptr)
1640 if (refcount_dec_and_test(&req->refs)) {
1641 io_req_find_next(req, nxtptr);
1642 __io_free_req(req);
1646 static void io_put_req(struct io_kiocb *req)
1648 if (refcount_dec_and_test(&req->refs))
1649 io_free_req(req);
1652 static void io_steal_work(struct io_kiocb *req,
1653 struct io_wq_work **workptr)
1656 * It's in an io-wq worker, so there always should be at least
1657 * one reference, which will be dropped in io_put_work() just
1658 * after the current handler returns.
1660 * It also means, that if the counter dropped to 1, then there is
1661 * no asynchronous users left, so it's safe to steal the next work.
1663 if (refcount_read(&req->refs) == 1) {
1664 struct io_kiocb *nxt = NULL;
1666 io_req_find_next(req, &nxt);
1667 if (nxt)
1668 io_wq_assign_next(workptr, nxt);
1673 * Must only be used if we don't need to care about links, usually from
1674 * within the completion handling itself.
1676 static void __io_double_put_req(struct io_kiocb *req)
1678 /* drop both submit and complete references */
1679 if (refcount_sub_and_test(2, &req->refs))
1680 __io_free_req(req);
1683 static void io_double_put_req(struct io_kiocb *req)
1685 /* drop both submit and complete references */
1686 if (refcount_sub_and_test(2, &req->refs))
1687 io_free_req(req);
1690 static unsigned io_cqring_events(struct io_ring_ctx *ctx, bool noflush)
1692 struct io_rings *rings = ctx->rings;
1694 if (test_bit(0, &ctx->cq_check_overflow)) {
1696 * noflush == true is from the waitqueue handler, just ensure
1697 * we wake up the task, and the next invocation will flush the
1698 * entries. We cannot safely to it from here.
1700 if (noflush && !list_empty(&ctx->cq_overflow_list))
1701 return -1U;
1703 io_cqring_overflow_flush(ctx, false);
1706 /* See comment at the top of this file */
1707 smp_rmb();
1708 return ctx->cached_cq_tail - READ_ONCE(rings->cq.head);
1711 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
1713 struct io_rings *rings = ctx->rings;
1715 /* make sure SQ entry isn't read before tail */
1716 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
1719 static inline bool io_req_multi_free(struct req_batch *rb, struct io_kiocb *req)
1721 if ((req->flags & REQ_F_LINK_HEAD) || io_is_fallback_req(req))
1722 return false;
1724 if (req->file || req->io)
1725 rb->need_iter++;
1727 rb->reqs[rb->to_free++] = req;
1728 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
1729 io_free_req_many(req->ctx, rb);
1730 return true;
1733 static int io_put_kbuf(struct io_kiocb *req)
1735 struct io_buffer *kbuf;
1736 int cflags;
1738 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
1739 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
1740 cflags |= IORING_CQE_F_BUFFER;
1741 req->rw.addr = 0;
1742 kfree(kbuf);
1743 return cflags;
1746 static void io_iopoll_queue(struct list_head *again)
1748 struct io_kiocb *req;
1750 do {
1751 req = list_first_entry(again, struct io_kiocb, list);
1752 list_del(&req->list);
1754 /* shouldn't happen unless io_uring is dying, cancel reqs */
1755 if (unlikely(!current->mm)) {
1756 io_complete_rw_common(&req->rw.kiocb, -EAGAIN);
1757 io_put_req(req);
1758 continue;
1761 refcount_inc(&req->refs);
1762 io_queue_async_work(req);
1763 } while (!list_empty(again));
1767 * Find and free completed poll iocbs
1769 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
1770 struct list_head *done)
1772 struct req_batch rb;
1773 struct io_kiocb *req;
1774 LIST_HEAD(again);
1776 /* order with ->result store in io_complete_rw_iopoll() */
1777 smp_rmb();
1779 rb.to_free = rb.need_iter = 0;
1780 while (!list_empty(done)) {
1781 int cflags = 0;
1783 req = list_first_entry(done, struct io_kiocb, list);
1784 if (READ_ONCE(req->result) == -EAGAIN) {
1785 req->iopoll_completed = 0;
1786 list_move_tail(&req->list, &again);
1787 continue;
1789 list_del(&req->list);
1791 if (req->flags & REQ_F_BUFFER_SELECTED)
1792 cflags = io_put_kbuf(req);
1794 __io_cqring_fill_event(req, req->result, cflags);
1795 (*nr_events)++;
1797 if (refcount_dec_and_test(&req->refs) &&
1798 !io_req_multi_free(&rb, req))
1799 io_free_req(req);
1802 io_commit_cqring(ctx);
1803 if (ctx->flags & IORING_SETUP_SQPOLL)
1804 io_cqring_ev_posted(ctx);
1805 io_free_req_many(ctx, &rb);
1807 if (!list_empty(&again))
1808 io_iopoll_queue(&again);
1811 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
1812 long min)
1814 struct io_kiocb *req, *tmp;
1815 LIST_HEAD(done);
1816 bool spin;
1817 int ret;
1820 * Only spin for completions if we don't have multiple devices hanging
1821 * off our complete list, and we're under the requested amount.
1823 spin = !ctx->poll_multi_file && *nr_events < min;
1825 ret = 0;
1826 list_for_each_entry_safe(req, tmp, &ctx->poll_list, list) {
1827 struct kiocb *kiocb = &req->rw.kiocb;
1830 * Move completed and retryable entries to our local lists.
1831 * If we find a request that requires polling, break out
1832 * and complete those lists first, if we have entries there.
1834 if (READ_ONCE(req->iopoll_completed)) {
1835 list_move_tail(&req->list, &done);
1836 continue;
1838 if (!list_empty(&done))
1839 break;
1841 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
1842 if (ret < 0)
1843 break;
1845 if (ret && spin)
1846 spin = false;
1847 ret = 0;
1850 if (!list_empty(&done))
1851 io_iopoll_complete(ctx, nr_events, &done);
1853 return ret;
1857 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
1858 * non-spinning poll check - we'll still enter the driver poll loop, but only
1859 * as a non-spinning completion check.
1861 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
1862 long min)
1864 while (!list_empty(&ctx->poll_list) && !need_resched()) {
1865 int ret;
1867 ret = io_do_iopoll(ctx, nr_events, min);
1868 if (ret < 0)
1869 return ret;
1870 if (!min || *nr_events >= min)
1871 return 0;
1874 return 1;
1878 * We can't just wait for polled events to come to us, we have to actively
1879 * find and complete them.
1881 static void io_iopoll_reap_events(struct io_ring_ctx *ctx)
1883 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1884 return;
1886 mutex_lock(&ctx->uring_lock);
1887 while (!list_empty(&ctx->poll_list)) {
1888 unsigned int nr_events = 0;
1890 io_iopoll_getevents(ctx, &nr_events, 1);
1893 * Ensure we allow local-to-the-cpu processing to take place,
1894 * in this case we need to ensure that we reap all events.
1896 cond_resched();
1898 mutex_unlock(&ctx->uring_lock);
1901 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
1902 long min)
1904 int iters = 0, ret = 0;
1907 * We disallow the app entering submit/complete with polling, but we
1908 * still need to lock the ring to prevent racing with polled issue
1909 * that got punted to a workqueue.
1911 mutex_lock(&ctx->uring_lock);
1912 do {
1913 int tmin = 0;
1916 * Don't enter poll loop if we already have events pending.
1917 * If we do, we can potentially be spinning for commands that
1918 * already triggered a CQE (eg in error).
1920 if (io_cqring_events(ctx, false))
1921 break;
1924 * If a submit got punted to a workqueue, we can have the
1925 * application entering polling for a command before it gets
1926 * issued. That app will hold the uring_lock for the duration
1927 * of the poll right here, so we need to take a breather every
1928 * now and then to ensure that the issue has a chance to add
1929 * the poll to the issued list. Otherwise we can spin here
1930 * forever, while the workqueue is stuck trying to acquire the
1931 * very same mutex.
1933 if (!(++iters & 7)) {
1934 mutex_unlock(&ctx->uring_lock);
1935 mutex_lock(&ctx->uring_lock);
1938 if (*nr_events < min)
1939 tmin = min - *nr_events;
1941 ret = io_iopoll_getevents(ctx, nr_events, tmin);
1942 if (ret <= 0)
1943 break;
1944 ret = 0;
1945 } while (min && !*nr_events && !need_resched());
1947 mutex_unlock(&ctx->uring_lock);
1948 return ret;
1951 static void kiocb_end_write(struct io_kiocb *req)
1954 * Tell lockdep we inherited freeze protection from submission
1955 * thread.
1957 if (req->flags & REQ_F_ISREG) {
1958 struct inode *inode = file_inode(req->file);
1960 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1962 file_end_write(req->file);
1965 static inline void req_set_fail_links(struct io_kiocb *req)
1967 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1968 req->flags |= REQ_F_FAIL_LINK;
1971 static void io_complete_rw_common(struct kiocb *kiocb, long res)
1973 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1974 int cflags = 0;
1976 if (kiocb->ki_flags & IOCB_WRITE)
1977 kiocb_end_write(req);
1979 if (res != req->result)
1980 req_set_fail_links(req);
1981 if (req->flags & REQ_F_BUFFER_SELECTED)
1982 cflags = io_put_kbuf(req);
1983 __io_cqring_add_event(req, res, cflags);
1986 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
1988 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1990 io_complete_rw_common(kiocb, res);
1991 io_put_req(req);
1994 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
1996 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1998 if (kiocb->ki_flags & IOCB_WRITE)
1999 kiocb_end_write(req);
2001 if (res != -EAGAIN && res != req->result)
2002 req_set_fail_links(req);
2004 WRITE_ONCE(req->result, res);
2005 /* order with io_poll_complete() checking ->result */
2006 smp_wmb();
2007 WRITE_ONCE(req->iopoll_completed, 1);
2011 * After the iocb has been issued, it's safe to be found on the poll list.
2012 * Adding the kiocb to the list AFTER submission ensures that we don't
2013 * find it from a io_iopoll_getevents() thread before the issuer is done
2014 * accessing the kiocb cookie.
2016 static void io_iopoll_req_issued(struct io_kiocb *req)
2018 struct io_ring_ctx *ctx = req->ctx;
2021 * Track whether we have multiple files in our lists. This will impact
2022 * how we do polling eventually, not spinning if we're on potentially
2023 * different devices.
2025 if (list_empty(&ctx->poll_list)) {
2026 ctx->poll_multi_file = false;
2027 } else if (!ctx->poll_multi_file) {
2028 struct io_kiocb *list_req;
2030 list_req = list_first_entry(&ctx->poll_list, struct io_kiocb,
2031 list);
2032 if (list_req->file != req->file)
2033 ctx->poll_multi_file = true;
2037 * For fast devices, IO may have already completed. If it has, add
2038 * it to the front so we find it first.
2040 if (READ_ONCE(req->iopoll_completed))
2041 list_add(&req->list, &ctx->poll_list);
2042 else
2043 list_add_tail(&req->list, &ctx->poll_list);
2045 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2046 wq_has_sleeper(&ctx->sqo_wait))
2047 wake_up(&ctx->sqo_wait);
2050 static void __io_state_file_put(struct io_submit_state *state)
2052 int diff = state->has_refs - state->used_refs;
2054 if (diff)
2055 fput_many(state->file, diff);
2056 state->file = NULL;
2059 static inline void io_state_file_put(struct io_submit_state *state)
2061 if (state->file)
2062 __io_state_file_put(state);
2066 * Get as many references to a file as we have IOs left in this submission,
2067 * assuming most submissions are for one file, or at least that each file
2068 * has more than one submission.
2070 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2072 if (!state)
2073 return fget(fd);
2075 if (state->file) {
2076 if (state->fd == fd) {
2077 state->used_refs++;
2078 state->ios_left--;
2079 return state->file;
2081 __io_state_file_put(state);
2083 state->file = fget_many(fd, state->ios_left);
2084 if (!state->file)
2085 return NULL;
2087 state->fd = fd;
2088 state->has_refs = state->ios_left;
2089 state->used_refs = 1;
2090 state->ios_left--;
2091 return state->file;
2095 * If we tracked the file through the SCM inflight mechanism, we could support
2096 * any file. For now, just ensure that anything potentially problematic is done
2097 * inline.
2099 static bool io_file_supports_async(struct file *file, int rw)
2101 umode_t mode = file_inode(file)->i_mode;
2103 if (S_ISBLK(mode) || S_ISCHR(mode) || S_ISSOCK(mode))
2104 return true;
2105 if (S_ISREG(mode) && file->f_op != &io_uring_fops)
2106 return true;
2108 /* any ->read/write should understand O_NONBLOCK */
2109 if (file->f_flags & O_NONBLOCK)
2110 return true;
2112 if (!(file->f_mode & FMODE_NOWAIT))
2113 return false;
2115 if (rw == READ)
2116 return file->f_op->read_iter != NULL;
2118 return file->f_op->write_iter != NULL;
2121 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2122 bool force_nonblock)
2124 struct io_ring_ctx *ctx = req->ctx;
2125 struct kiocb *kiocb = &req->rw.kiocb;
2126 unsigned ioprio;
2127 int ret;
2129 if (S_ISREG(file_inode(req->file)->i_mode))
2130 req->flags |= REQ_F_ISREG;
2132 kiocb->ki_pos = READ_ONCE(sqe->off);
2133 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
2134 req->flags |= REQ_F_CUR_POS;
2135 kiocb->ki_pos = req->file->f_pos;
2137 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2138 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2139 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2140 if (unlikely(ret))
2141 return ret;
2143 ioprio = READ_ONCE(sqe->ioprio);
2144 if (ioprio) {
2145 ret = ioprio_check_cap(ioprio);
2146 if (ret)
2147 return ret;
2149 kiocb->ki_ioprio = ioprio;
2150 } else
2151 kiocb->ki_ioprio = get_current_ioprio();
2153 /* don't allow async punt if RWF_NOWAIT was requested */
2154 if (kiocb->ki_flags & IOCB_NOWAIT)
2155 req->flags |= REQ_F_NOWAIT;
2157 if (force_nonblock)
2158 kiocb->ki_flags |= IOCB_NOWAIT;
2160 if (ctx->flags & IORING_SETUP_IOPOLL) {
2161 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2162 !kiocb->ki_filp->f_op->iopoll)
2163 return -EOPNOTSUPP;
2165 kiocb->ki_flags |= IOCB_HIPRI;
2166 kiocb->ki_complete = io_complete_rw_iopoll;
2167 req->result = 0;
2168 req->iopoll_completed = 0;
2169 } else {
2170 if (kiocb->ki_flags & IOCB_HIPRI)
2171 return -EINVAL;
2172 kiocb->ki_complete = io_complete_rw;
2175 req->rw.addr = READ_ONCE(sqe->addr);
2176 req->rw.len = READ_ONCE(sqe->len);
2177 req->buf_index = READ_ONCE(sqe->buf_index);
2178 return 0;
2181 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2183 switch (ret) {
2184 case -EIOCBQUEUED:
2185 break;
2186 case -ERESTARTSYS:
2187 case -ERESTARTNOINTR:
2188 case -ERESTARTNOHAND:
2189 case -ERESTART_RESTARTBLOCK:
2191 * We can't just restart the syscall, since previously
2192 * submitted sqes may already be in progress. Just fail this
2193 * IO with EINTR.
2195 ret = -EINTR;
2196 /* fall through */
2197 default:
2198 kiocb->ki_complete(kiocb, ret, 0);
2202 static void kiocb_done(struct kiocb *kiocb, ssize_t ret)
2204 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2206 if (req->flags & REQ_F_CUR_POS)
2207 req->file->f_pos = kiocb->ki_pos;
2208 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2209 io_complete_rw(kiocb, ret, 0);
2210 else
2211 io_rw_done(kiocb, ret);
2214 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
2215 struct iov_iter *iter)
2217 struct io_ring_ctx *ctx = req->ctx;
2218 size_t len = req->rw.len;
2219 struct io_mapped_ubuf *imu;
2220 u16 index, buf_index;
2221 size_t offset;
2222 u64 buf_addr;
2224 /* attempt to use fixed buffers without having provided iovecs */
2225 if (unlikely(!ctx->user_bufs))
2226 return -EFAULT;
2228 buf_index = req->buf_index;
2229 if (unlikely(buf_index >= ctx->nr_user_bufs))
2230 return -EFAULT;
2232 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2233 imu = &ctx->user_bufs[index];
2234 buf_addr = req->rw.addr;
2236 /* overflow */
2237 if (buf_addr + len < buf_addr)
2238 return -EFAULT;
2239 /* not inside the mapped region */
2240 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
2241 return -EFAULT;
2244 * May not be a start of buffer, set size appropriately
2245 * and advance us to the beginning.
2247 offset = buf_addr - imu->ubuf;
2248 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2250 if (offset) {
2252 * Don't use iov_iter_advance() here, as it's really slow for
2253 * using the latter parts of a big fixed buffer - it iterates
2254 * over each segment manually. We can cheat a bit here, because
2255 * we know that:
2257 * 1) it's a BVEC iter, we set it up
2258 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2259 * first and last bvec
2261 * So just find our index, and adjust the iterator afterwards.
2262 * If the offset is within the first bvec (or the whole first
2263 * bvec, just use iov_iter_advance(). This makes it easier
2264 * since we can just skip the first segment, which may not
2265 * be PAGE_SIZE aligned.
2267 const struct bio_vec *bvec = imu->bvec;
2269 if (offset <= bvec->bv_len) {
2270 iov_iter_advance(iter, offset);
2271 } else {
2272 unsigned long seg_skip;
2274 /* skip first vec */
2275 offset -= bvec->bv_len;
2276 seg_skip = 1 + (offset >> PAGE_SHIFT);
2278 iter->bvec = bvec + seg_skip;
2279 iter->nr_segs -= seg_skip;
2280 iter->count -= bvec->bv_len + offset;
2281 iter->iov_offset = offset & ~PAGE_MASK;
2285 return len;
2288 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
2290 if (needs_lock)
2291 mutex_unlock(&ctx->uring_lock);
2294 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
2297 * "Normal" inline submissions always hold the uring_lock, since we
2298 * grab it from the system call. Same is true for the SQPOLL offload.
2299 * The only exception is when we've detached the request and issue it
2300 * from an async worker thread, grab the lock for that case.
2302 if (needs_lock)
2303 mutex_lock(&ctx->uring_lock);
2306 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
2307 int bgid, struct io_buffer *kbuf,
2308 bool needs_lock)
2310 struct io_buffer *head;
2312 if (req->flags & REQ_F_BUFFER_SELECTED)
2313 return kbuf;
2315 io_ring_submit_lock(req->ctx, needs_lock);
2317 lockdep_assert_held(&req->ctx->uring_lock);
2319 head = idr_find(&req->ctx->io_buffer_idr, bgid);
2320 if (head) {
2321 if (!list_empty(&head->list)) {
2322 kbuf = list_last_entry(&head->list, struct io_buffer,
2323 list);
2324 list_del(&kbuf->list);
2325 } else {
2326 kbuf = head;
2327 idr_remove(&req->ctx->io_buffer_idr, bgid);
2329 if (*len > kbuf->len)
2330 *len = kbuf->len;
2331 } else {
2332 kbuf = ERR_PTR(-ENOBUFS);
2335 io_ring_submit_unlock(req->ctx, needs_lock);
2337 return kbuf;
2340 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
2341 bool needs_lock)
2343 struct io_buffer *kbuf;
2344 u16 bgid;
2346 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2347 bgid = req->buf_index;
2348 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
2349 if (IS_ERR(kbuf))
2350 return kbuf;
2351 req->rw.addr = (u64) (unsigned long) kbuf;
2352 req->flags |= REQ_F_BUFFER_SELECTED;
2353 return u64_to_user_ptr(kbuf->addr);
2356 #ifdef CONFIG_COMPAT
2357 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
2358 bool needs_lock)
2360 struct compat_iovec __user *uiov;
2361 compat_ssize_t clen;
2362 void __user *buf;
2363 ssize_t len;
2365 uiov = u64_to_user_ptr(req->rw.addr);
2366 if (!access_ok(uiov, sizeof(*uiov)))
2367 return -EFAULT;
2368 if (__get_user(clen, &uiov->iov_len))
2369 return -EFAULT;
2370 if (clen < 0)
2371 return -EINVAL;
2373 len = clen;
2374 buf = io_rw_buffer_select(req, &len, needs_lock);
2375 if (IS_ERR(buf))
2376 return PTR_ERR(buf);
2377 iov[0].iov_base = buf;
2378 iov[0].iov_len = (compat_size_t) len;
2379 return 0;
2381 #endif
2383 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2384 bool needs_lock)
2386 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
2387 void __user *buf;
2388 ssize_t len;
2390 if (copy_from_user(iov, uiov, sizeof(*uiov)))
2391 return -EFAULT;
2393 len = iov[0].iov_len;
2394 if (len < 0)
2395 return -EINVAL;
2396 buf = io_rw_buffer_select(req, &len, needs_lock);
2397 if (IS_ERR(buf))
2398 return PTR_ERR(buf);
2399 iov[0].iov_base = buf;
2400 iov[0].iov_len = len;
2401 return 0;
2404 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2405 bool needs_lock)
2407 if (req->flags & REQ_F_BUFFER_SELECTED) {
2408 struct io_buffer *kbuf;
2410 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2411 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
2412 iov[0].iov_len = kbuf->len;
2413 return 0;
2415 if (!req->rw.len)
2416 return 0;
2417 else if (req->rw.len > 1)
2418 return -EINVAL;
2420 #ifdef CONFIG_COMPAT
2421 if (req->ctx->compat)
2422 return io_compat_import(req, iov, needs_lock);
2423 #endif
2425 return __io_iov_buffer_select(req, iov, needs_lock);
2428 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
2429 struct iovec **iovec, struct iov_iter *iter,
2430 bool needs_lock)
2432 void __user *buf = u64_to_user_ptr(req->rw.addr);
2433 size_t sqe_len = req->rw.len;
2434 ssize_t ret;
2435 u8 opcode;
2437 opcode = req->opcode;
2438 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
2439 *iovec = NULL;
2440 return io_import_fixed(req, rw, iter);
2443 /* buffer index only valid with fixed read/write, or buffer select */
2444 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
2445 return -EINVAL;
2447 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
2448 if (req->flags & REQ_F_BUFFER_SELECT) {
2449 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
2450 if (IS_ERR(buf)) {
2451 *iovec = NULL;
2452 return PTR_ERR(buf);
2454 req->rw.len = sqe_len;
2457 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
2458 *iovec = NULL;
2459 return ret < 0 ? ret : sqe_len;
2462 if (req->io) {
2463 struct io_async_rw *iorw = &req->io->rw;
2465 *iovec = iorw->iov;
2466 iov_iter_init(iter, rw, *iovec, iorw->nr_segs, iorw->size);
2467 if (iorw->iov == iorw->fast_iov)
2468 *iovec = NULL;
2469 return iorw->size;
2472 if (req->flags & REQ_F_BUFFER_SELECT) {
2473 ret = io_iov_buffer_select(req, *iovec, needs_lock);
2474 if (!ret) {
2475 ret = (*iovec)->iov_len;
2476 iov_iter_init(iter, rw, *iovec, 1, ret);
2478 *iovec = NULL;
2479 return ret;
2482 #ifdef CONFIG_COMPAT
2483 if (req->ctx->compat)
2484 return compat_import_iovec(rw, buf, sqe_len, UIO_FASTIOV,
2485 iovec, iter);
2486 #endif
2488 return import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter);
2492 * For files that don't have ->read_iter() and ->write_iter(), handle them
2493 * by looping over ->read() or ->write() manually.
2495 static ssize_t loop_rw_iter(int rw, struct file *file, struct kiocb *kiocb,
2496 struct iov_iter *iter)
2498 ssize_t ret = 0;
2501 * Don't support polled IO through this interface, and we can't
2502 * support non-blocking either. For the latter, this just causes
2503 * the kiocb to be handled from an async context.
2505 if (kiocb->ki_flags & IOCB_HIPRI)
2506 return -EOPNOTSUPP;
2507 if (kiocb->ki_flags & IOCB_NOWAIT)
2508 return -EAGAIN;
2510 while (iov_iter_count(iter)) {
2511 struct iovec iovec;
2512 ssize_t nr;
2514 if (!iov_iter_is_bvec(iter)) {
2515 iovec = iov_iter_iovec(iter);
2516 } else {
2517 /* fixed buffers import bvec */
2518 iovec.iov_base = kmap(iter->bvec->bv_page)
2519 + iter->iov_offset;
2520 iovec.iov_len = min(iter->count,
2521 iter->bvec->bv_len - iter->iov_offset);
2524 if (rw == READ) {
2525 nr = file->f_op->read(file, iovec.iov_base,
2526 iovec.iov_len, &kiocb->ki_pos);
2527 } else {
2528 nr = file->f_op->write(file, iovec.iov_base,
2529 iovec.iov_len, &kiocb->ki_pos);
2532 if (iov_iter_is_bvec(iter))
2533 kunmap(iter->bvec->bv_page);
2535 if (nr < 0) {
2536 if (!ret)
2537 ret = nr;
2538 break;
2540 ret += nr;
2541 if (nr != iovec.iov_len)
2542 break;
2543 iov_iter_advance(iter, nr);
2546 return ret;
2549 static void io_req_map_rw(struct io_kiocb *req, ssize_t io_size,
2550 struct iovec *iovec, struct iovec *fast_iov,
2551 struct iov_iter *iter)
2553 req->io->rw.nr_segs = iter->nr_segs;
2554 req->io->rw.size = io_size;
2555 req->io->rw.iov = iovec;
2556 if (!req->io->rw.iov) {
2557 req->io->rw.iov = req->io->rw.fast_iov;
2558 if (req->io->rw.iov != fast_iov)
2559 memcpy(req->io->rw.iov, fast_iov,
2560 sizeof(struct iovec) * iter->nr_segs);
2561 } else {
2562 req->flags |= REQ_F_NEED_CLEANUP;
2566 static inline int __io_alloc_async_ctx(struct io_kiocb *req)
2568 req->io = kmalloc(sizeof(*req->io), GFP_KERNEL);
2569 return req->io == NULL;
2572 static int io_alloc_async_ctx(struct io_kiocb *req)
2574 if (!io_op_defs[req->opcode].async_ctx)
2575 return 0;
2577 return __io_alloc_async_ctx(req);
2580 static int io_setup_async_rw(struct io_kiocb *req, ssize_t io_size,
2581 struct iovec *iovec, struct iovec *fast_iov,
2582 struct iov_iter *iter)
2584 if (!io_op_defs[req->opcode].async_ctx)
2585 return 0;
2586 if (!req->io) {
2587 if (__io_alloc_async_ctx(req))
2588 return -ENOMEM;
2590 io_req_map_rw(req, io_size, iovec, fast_iov, iter);
2592 return 0;
2595 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2596 bool force_nonblock)
2598 struct io_async_ctx *io;
2599 struct iov_iter iter;
2600 ssize_t ret;
2602 ret = io_prep_rw(req, sqe, force_nonblock);
2603 if (ret)
2604 return ret;
2606 if (unlikely(!(req->file->f_mode & FMODE_READ)))
2607 return -EBADF;
2609 /* either don't need iovec imported or already have it */
2610 if (!req->io || req->flags & REQ_F_NEED_CLEANUP)
2611 return 0;
2613 io = req->io;
2614 io->rw.iov = io->rw.fast_iov;
2615 req->io = NULL;
2616 ret = io_import_iovec(READ, req, &io->rw.iov, &iter, !force_nonblock);
2617 req->io = io;
2618 if (ret < 0)
2619 return ret;
2621 io_req_map_rw(req, ret, io->rw.iov, io->rw.fast_iov, &iter);
2622 return 0;
2625 static int io_read(struct io_kiocb *req, bool force_nonblock)
2627 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2628 struct kiocb *kiocb = &req->rw.kiocb;
2629 struct iov_iter iter;
2630 size_t iov_count;
2631 ssize_t io_size, ret;
2633 ret = io_import_iovec(READ, req, &iovec, &iter, !force_nonblock);
2634 if (ret < 0)
2635 return ret;
2637 /* Ensure we clear previously set non-block flag */
2638 if (!force_nonblock)
2639 kiocb->ki_flags &= ~IOCB_NOWAIT;
2641 req->result = 0;
2642 io_size = ret;
2643 if (req->flags & REQ_F_LINK_HEAD)
2644 req->result = io_size;
2647 * If the file doesn't support async, mark it as REQ_F_MUST_PUNT so
2648 * we know to async punt it even if it was opened O_NONBLOCK
2650 if (force_nonblock && !io_file_supports_async(req->file, READ))
2651 goto copy_iov;
2653 iov_count = iov_iter_count(&iter);
2654 ret = rw_verify_area(READ, req->file, &kiocb->ki_pos, iov_count);
2655 if (!ret) {
2656 ssize_t ret2;
2658 if (req->file->f_op->read_iter)
2659 ret2 = call_read_iter(req->file, kiocb, &iter);
2660 else
2661 ret2 = loop_rw_iter(READ, req->file, kiocb, &iter);
2663 /* Catch -EAGAIN return for forced non-blocking submission */
2664 if (!force_nonblock || ret2 != -EAGAIN) {
2665 kiocb_done(kiocb, ret2);
2666 } else {
2667 copy_iov:
2668 ret = io_setup_async_rw(req, io_size, iovec,
2669 inline_vecs, &iter);
2670 if (ret)
2671 goto out_free;
2672 /* any defer here is final, must blocking retry */
2673 if (!(req->flags & REQ_F_NOWAIT) &&
2674 !file_can_poll(req->file))
2675 req->flags |= REQ_F_MUST_PUNT;
2676 return -EAGAIN;
2679 out_free:
2680 if (!(req->flags & REQ_F_NEED_CLEANUP))
2681 kfree(iovec);
2682 return ret;
2685 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2686 bool force_nonblock)
2688 struct io_async_ctx *io;
2689 struct iov_iter iter;
2690 ssize_t ret;
2692 ret = io_prep_rw(req, sqe, force_nonblock);
2693 if (ret)
2694 return ret;
2696 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
2697 return -EBADF;
2699 req->fsize = rlimit(RLIMIT_FSIZE);
2701 /* either don't need iovec imported or already have it */
2702 if (!req->io || req->flags & REQ_F_NEED_CLEANUP)
2703 return 0;
2705 io = req->io;
2706 io->rw.iov = io->rw.fast_iov;
2707 req->io = NULL;
2708 ret = io_import_iovec(WRITE, req, &io->rw.iov, &iter, !force_nonblock);
2709 req->io = io;
2710 if (ret < 0)
2711 return ret;
2713 io_req_map_rw(req, ret, io->rw.iov, io->rw.fast_iov, &iter);
2714 return 0;
2717 static int io_write(struct io_kiocb *req, bool force_nonblock)
2719 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2720 struct kiocb *kiocb = &req->rw.kiocb;
2721 struct iov_iter iter;
2722 size_t iov_count;
2723 ssize_t ret, io_size;
2725 ret = io_import_iovec(WRITE, req, &iovec, &iter, !force_nonblock);
2726 if (ret < 0)
2727 return ret;
2729 /* Ensure we clear previously set non-block flag */
2730 if (!force_nonblock)
2731 req->rw.kiocb.ki_flags &= ~IOCB_NOWAIT;
2733 req->result = 0;
2734 io_size = ret;
2735 if (req->flags & REQ_F_LINK_HEAD)
2736 req->result = io_size;
2739 * If the file doesn't support async, mark it as REQ_F_MUST_PUNT so
2740 * we know to async punt it even if it was opened O_NONBLOCK
2742 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
2743 goto copy_iov;
2745 /* file path doesn't support NOWAIT for non-direct_IO */
2746 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
2747 (req->flags & REQ_F_ISREG))
2748 goto copy_iov;
2750 iov_count = iov_iter_count(&iter);
2751 ret = rw_verify_area(WRITE, req->file, &kiocb->ki_pos, iov_count);
2752 if (!ret) {
2753 ssize_t ret2;
2756 * Open-code file_start_write here to grab freeze protection,
2757 * which will be released by another thread in
2758 * io_complete_rw(). Fool lockdep by telling it the lock got
2759 * released so that it doesn't complain about the held lock when
2760 * we return to userspace.
2762 if (req->flags & REQ_F_ISREG) {
2763 __sb_start_write(file_inode(req->file)->i_sb,
2764 SB_FREEZE_WRITE, true);
2765 __sb_writers_release(file_inode(req->file)->i_sb,
2766 SB_FREEZE_WRITE);
2768 kiocb->ki_flags |= IOCB_WRITE;
2770 if (!force_nonblock)
2771 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = req->fsize;
2773 if (req->file->f_op->write_iter)
2774 ret2 = call_write_iter(req->file, kiocb, &iter);
2775 else
2776 ret2 = loop_rw_iter(WRITE, req->file, kiocb, &iter);
2778 if (!force_nonblock)
2779 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = RLIM_INFINITY;
2782 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
2783 * retry them without IOCB_NOWAIT.
2785 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
2786 ret2 = -EAGAIN;
2787 if (!force_nonblock || ret2 != -EAGAIN) {
2788 kiocb_done(kiocb, ret2);
2789 } else {
2790 copy_iov:
2791 ret = io_setup_async_rw(req, io_size, iovec,
2792 inline_vecs, &iter);
2793 if (ret)
2794 goto out_free;
2795 /* any defer here is final, must blocking retry */
2796 if (!(req->flags & REQ_F_NOWAIT) &&
2797 !file_can_poll(req->file))
2798 req->flags |= REQ_F_MUST_PUNT;
2799 return -EAGAIN;
2802 out_free:
2803 if (!(req->flags & REQ_F_NEED_CLEANUP))
2804 kfree(iovec);
2805 return ret;
2808 static int __io_splice_prep(struct io_kiocb *req,
2809 const struct io_uring_sqe *sqe)
2811 struct io_splice* sp = &req->splice;
2812 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
2813 int ret;
2815 if (req->flags & REQ_F_NEED_CLEANUP)
2816 return 0;
2817 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
2818 return -EINVAL;
2820 sp->file_in = NULL;
2821 sp->len = READ_ONCE(sqe->len);
2822 sp->flags = READ_ONCE(sqe->splice_flags);
2824 if (unlikely(sp->flags & ~valid_flags))
2825 return -EINVAL;
2827 ret = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in), &sp->file_in,
2828 (sp->flags & SPLICE_F_FD_IN_FIXED));
2829 if (ret)
2830 return ret;
2831 req->flags |= REQ_F_NEED_CLEANUP;
2833 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
2835 * Splice operation will be punted aync, and here need to
2836 * modify io_wq_work.flags, so initialize io_wq_work firstly.
2838 io_req_init_async(req);
2839 req->work.flags |= IO_WQ_WORK_UNBOUND;
2842 return 0;
2845 static int io_tee_prep(struct io_kiocb *req,
2846 const struct io_uring_sqe *sqe)
2848 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
2849 return -EINVAL;
2850 return __io_splice_prep(req, sqe);
2853 static int io_tee(struct io_kiocb *req, bool force_nonblock)
2855 struct io_splice *sp = &req->splice;
2856 struct file *in = sp->file_in;
2857 struct file *out = sp->file_out;
2858 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
2859 long ret = 0;
2861 if (force_nonblock)
2862 return -EAGAIN;
2863 if (sp->len)
2864 ret = do_tee(in, out, sp->len, flags);
2866 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
2867 req->flags &= ~REQ_F_NEED_CLEANUP;
2869 io_cqring_add_event(req, ret);
2870 if (ret != sp->len)
2871 req_set_fail_links(req);
2872 io_put_req(req);
2873 return 0;
2876 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2878 struct io_splice* sp = &req->splice;
2880 sp->off_in = READ_ONCE(sqe->splice_off_in);
2881 sp->off_out = READ_ONCE(sqe->off);
2882 return __io_splice_prep(req, sqe);
2885 static int io_splice(struct io_kiocb *req, bool force_nonblock)
2887 struct io_splice *sp = &req->splice;
2888 struct file *in = sp->file_in;
2889 struct file *out = sp->file_out;
2890 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
2891 loff_t *poff_in, *poff_out;
2892 long ret = 0;
2894 if (force_nonblock)
2895 return -EAGAIN;
2897 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
2898 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
2900 if (sp->len)
2901 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
2903 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
2904 req->flags &= ~REQ_F_NEED_CLEANUP;
2906 io_cqring_add_event(req, ret);
2907 if (ret != sp->len)
2908 req_set_fail_links(req);
2909 io_put_req(req);
2910 return 0;
2914 * IORING_OP_NOP just posts a completion event, nothing else.
2916 static int io_nop(struct io_kiocb *req)
2918 struct io_ring_ctx *ctx = req->ctx;
2920 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
2921 return -EINVAL;
2923 io_cqring_add_event(req, 0);
2924 io_put_req(req);
2925 return 0;
2928 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2930 struct io_ring_ctx *ctx = req->ctx;
2932 if (!req->file)
2933 return -EBADF;
2935 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
2936 return -EINVAL;
2937 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
2938 return -EINVAL;
2940 req->sync.flags = READ_ONCE(sqe->fsync_flags);
2941 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
2942 return -EINVAL;
2944 req->sync.off = READ_ONCE(sqe->off);
2945 req->sync.len = READ_ONCE(sqe->len);
2946 return 0;
2949 static int io_fsync(struct io_kiocb *req, bool force_nonblock)
2951 loff_t end = req->sync.off + req->sync.len;
2952 int ret;
2954 /* fsync always requires a blocking context */
2955 if (force_nonblock)
2956 return -EAGAIN;
2958 ret = vfs_fsync_range(req->file, req->sync.off,
2959 end > 0 ? end : LLONG_MAX,
2960 req->sync.flags & IORING_FSYNC_DATASYNC);
2961 if (ret < 0)
2962 req_set_fail_links(req);
2963 io_cqring_add_event(req, ret);
2964 io_put_req(req);
2965 return 0;
2968 static int io_fallocate_prep(struct io_kiocb *req,
2969 const struct io_uring_sqe *sqe)
2971 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
2972 return -EINVAL;
2973 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
2974 return -EINVAL;
2976 req->sync.off = READ_ONCE(sqe->off);
2977 req->sync.len = READ_ONCE(sqe->addr);
2978 req->sync.mode = READ_ONCE(sqe->len);
2979 req->fsize = rlimit(RLIMIT_FSIZE);
2980 return 0;
2983 static int io_fallocate(struct io_kiocb *req, bool force_nonblock)
2985 int ret;
2987 /* fallocate always requiring blocking context */
2988 if (force_nonblock)
2989 return -EAGAIN;
2991 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = req->fsize;
2992 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
2993 req->sync.len);
2994 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = RLIM_INFINITY;
2995 if (ret < 0)
2996 req_set_fail_links(req);
2997 io_cqring_add_event(req, ret);
2998 io_put_req(req);
2999 return 0;
3002 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3004 const char __user *fname;
3005 int ret;
3007 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3008 return -EINVAL;
3009 if (unlikely(sqe->ioprio || sqe->buf_index))
3010 return -EINVAL;
3011 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3012 return -EBADF;
3014 /* open.how should be already initialised */
3015 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
3016 req->open.how.flags |= O_LARGEFILE;
3018 req->open.dfd = READ_ONCE(sqe->fd);
3019 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3020 req->open.filename = getname(fname);
3021 if (IS_ERR(req->open.filename)) {
3022 ret = PTR_ERR(req->open.filename);
3023 req->open.filename = NULL;
3024 return ret;
3026 req->open.nofile = rlimit(RLIMIT_NOFILE);
3027 req->flags |= REQ_F_NEED_CLEANUP;
3028 return 0;
3031 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3033 u64 flags, mode;
3035 if (req->flags & REQ_F_NEED_CLEANUP)
3036 return 0;
3037 mode = READ_ONCE(sqe->len);
3038 flags = READ_ONCE(sqe->open_flags);
3039 req->open.how = build_open_how(flags, mode);
3040 return __io_openat_prep(req, sqe);
3043 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3045 struct open_how __user *how;
3046 size_t len;
3047 int ret;
3049 if (req->flags & REQ_F_NEED_CLEANUP)
3050 return 0;
3051 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3052 len = READ_ONCE(sqe->len);
3053 if (len < OPEN_HOW_SIZE_VER0)
3054 return -EINVAL;
3056 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
3057 len);
3058 if (ret)
3059 return ret;
3061 return __io_openat_prep(req, sqe);
3064 static int io_openat2(struct io_kiocb *req, bool force_nonblock)
3066 struct open_flags op;
3067 struct file *file;
3068 int ret;
3070 if (force_nonblock)
3071 return -EAGAIN;
3073 ret = build_open_flags(&req->open.how, &op);
3074 if (ret)
3075 goto err;
3077 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
3078 if (ret < 0)
3079 goto err;
3081 file = do_filp_open(req->open.dfd, req->open.filename, &op);
3082 if (IS_ERR(file)) {
3083 put_unused_fd(ret);
3084 ret = PTR_ERR(file);
3085 } else {
3086 fsnotify_open(file);
3087 fd_install(ret, file);
3089 err:
3090 putname(req->open.filename);
3091 req->flags &= ~REQ_F_NEED_CLEANUP;
3092 if (ret < 0)
3093 req_set_fail_links(req);
3094 io_cqring_add_event(req, ret);
3095 io_put_req(req);
3096 return 0;
3099 static int io_openat(struct io_kiocb *req, bool force_nonblock)
3101 return io_openat2(req, force_nonblock);
3104 static int io_remove_buffers_prep(struct io_kiocb *req,
3105 const struct io_uring_sqe *sqe)
3107 struct io_provide_buf *p = &req->pbuf;
3108 u64 tmp;
3110 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
3111 return -EINVAL;
3113 tmp = READ_ONCE(sqe->fd);
3114 if (!tmp || tmp > USHRT_MAX)
3115 return -EINVAL;
3117 memset(p, 0, sizeof(*p));
3118 p->nbufs = tmp;
3119 p->bgid = READ_ONCE(sqe->buf_group);
3120 return 0;
3123 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
3124 int bgid, unsigned nbufs)
3126 unsigned i = 0;
3128 /* shouldn't happen */
3129 if (!nbufs)
3130 return 0;
3132 /* the head kbuf is the list itself */
3133 while (!list_empty(&buf->list)) {
3134 struct io_buffer *nxt;
3136 nxt = list_first_entry(&buf->list, struct io_buffer, list);
3137 list_del(&nxt->list);
3138 kfree(nxt);
3139 if (++i == nbufs)
3140 return i;
3142 i++;
3143 kfree(buf);
3144 idr_remove(&ctx->io_buffer_idr, bgid);
3146 return i;
3149 static int io_remove_buffers(struct io_kiocb *req, bool force_nonblock)
3151 struct io_provide_buf *p = &req->pbuf;
3152 struct io_ring_ctx *ctx = req->ctx;
3153 struct io_buffer *head;
3154 int ret = 0;
3156 io_ring_submit_lock(ctx, !force_nonblock);
3158 lockdep_assert_held(&ctx->uring_lock);
3160 ret = -ENOENT;
3161 head = idr_find(&ctx->io_buffer_idr, p->bgid);
3162 if (head)
3163 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
3165 io_ring_submit_lock(ctx, !force_nonblock);
3166 if (ret < 0)
3167 req_set_fail_links(req);
3168 io_cqring_add_event(req, ret);
3169 io_put_req(req);
3170 return 0;
3173 static int io_provide_buffers_prep(struct io_kiocb *req,
3174 const struct io_uring_sqe *sqe)
3176 struct io_provide_buf *p = &req->pbuf;
3177 u64 tmp;
3179 if (sqe->ioprio || sqe->rw_flags)
3180 return -EINVAL;
3182 tmp = READ_ONCE(sqe->fd);
3183 if (!tmp || tmp > USHRT_MAX)
3184 return -E2BIG;
3185 p->nbufs = tmp;
3186 p->addr = READ_ONCE(sqe->addr);
3187 p->len = READ_ONCE(sqe->len);
3189 if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
3190 return -EFAULT;
3192 p->bgid = READ_ONCE(sqe->buf_group);
3193 tmp = READ_ONCE(sqe->off);
3194 if (tmp > USHRT_MAX)
3195 return -E2BIG;
3196 p->bid = tmp;
3197 return 0;
3200 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
3202 struct io_buffer *buf;
3203 u64 addr = pbuf->addr;
3204 int i, bid = pbuf->bid;
3206 for (i = 0; i < pbuf->nbufs; i++) {
3207 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
3208 if (!buf)
3209 break;
3211 buf->addr = addr;
3212 buf->len = pbuf->len;
3213 buf->bid = bid;
3214 addr += pbuf->len;
3215 bid++;
3216 if (!*head) {
3217 INIT_LIST_HEAD(&buf->list);
3218 *head = buf;
3219 } else {
3220 list_add_tail(&buf->list, &(*head)->list);
3224 return i ? i : -ENOMEM;
3227 static int io_provide_buffers(struct io_kiocb *req, bool force_nonblock)
3229 struct io_provide_buf *p = &req->pbuf;
3230 struct io_ring_ctx *ctx = req->ctx;
3231 struct io_buffer *head, *list;
3232 int ret = 0;
3234 io_ring_submit_lock(ctx, !force_nonblock);
3236 lockdep_assert_held(&ctx->uring_lock);
3238 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
3240 ret = io_add_buffers(p, &head);
3241 if (ret < 0)
3242 goto out;
3244 if (!list) {
3245 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
3246 GFP_KERNEL);
3247 if (ret < 0) {
3248 __io_remove_buffers(ctx, head, p->bgid, -1U);
3249 goto out;
3252 out:
3253 io_ring_submit_unlock(ctx, !force_nonblock);
3254 if (ret < 0)
3255 req_set_fail_links(req);
3256 io_cqring_add_event(req, ret);
3257 io_put_req(req);
3258 return 0;
3261 static int io_epoll_ctl_prep(struct io_kiocb *req,
3262 const struct io_uring_sqe *sqe)
3264 #if defined(CONFIG_EPOLL)
3265 if (sqe->ioprio || sqe->buf_index)
3266 return -EINVAL;
3267 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3268 return -EINVAL;
3270 req->epoll.epfd = READ_ONCE(sqe->fd);
3271 req->epoll.op = READ_ONCE(sqe->len);
3272 req->epoll.fd = READ_ONCE(sqe->off);
3274 if (ep_op_has_event(req->epoll.op)) {
3275 struct epoll_event __user *ev;
3277 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
3278 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
3279 return -EFAULT;
3282 return 0;
3283 #else
3284 return -EOPNOTSUPP;
3285 #endif
3288 static int io_epoll_ctl(struct io_kiocb *req, bool force_nonblock)
3290 #if defined(CONFIG_EPOLL)
3291 struct io_epoll *ie = &req->epoll;
3292 int ret;
3294 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
3295 if (force_nonblock && ret == -EAGAIN)
3296 return -EAGAIN;
3298 if (ret < 0)
3299 req_set_fail_links(req);
3300 io_cqring_add_event(req, ret);
3301 io_put_req(req);
3302 return 0;
3303 #else
3304 return -EOPNOTSUPP;
3305 #endif
3308 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3310 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
3311 if (sqe->ioprio || sqe->buf_index || sqe->off)
3312 return -EINVAL;
3313 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3314 return -EINVAL;
3316 req->madvise.addr = READ_ONCE(sqe->addr);
3317 req->madvise.len = READ_ONCE(sqe->len);
3318 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
3319 return 0;
3320 #else
3321 return -EOPNOTSUPP;
3322 #endif
3325 static int io_madvise(struct io_kiocb *req, bool force_nonblock)
3327 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
3328 struct io_madvise *ma = &req->madvise;
3329 int ret;
3331 if (force_nonblock)
3332 return -EAGAIN;
3334 ret = do_madvise(ma->addr, ma->len, ma->advice);
3335 if (ret < 0)
3336 req_set_fail_links(req);
3337 io_cqring_add_event(req, ret);
3338 io_put_req(req);
3339 return 0;
3340 #else
3341 return -EOPNOTSUPP;
3342 #endif
3345 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3347 if (sqe->ioprio || sqe->buf_index || sqe->addr)
3348 return -EINVAL;
3349 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3350 return -EINVAL;
3352 req->fadvise.offset = READ_ONCE(sqe->off);
3353 req->fadvise.len = READ_ONCE(sqe->len);
3354 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
3355 return 0;
3358 static int io_fadvise(struct io_kiocb *req, bool force_nonblock)
3360 struct io_fadvise *fa = &req->fadvise;
3361 int ret;
3363 if (force_nonblock) {
3364 switch (fa->advice) {
3365 case POSIX_FADV_NORMAL:
3366 case POSIX_FADV_RANDOM:
3367 case POSIX_FADV_SEQUENTIAL:
3368 break;
3369 default:
3370 return -EAGAIN;
3374 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
3375 if (ret < 0)
3376 req_set_fail_links(req);
3377 io_cqring_add_event(req, ret);
3378 io_put_req(req);
3379 return 0;
3382 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3384 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3385 return -EINVAL;
3386 if (sqe->ioprio || sqe->buf_index)
3387 return -EINVAL;
3388 if (req->flags & REQ_F_FIXED_FILE)
3389 return -EBADF;
3391 req->statx.dfd = READ_ONCE(sqe->fd);
3392 req->statx.mask = READ_ONCE(sqe->len);
3393 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
3394 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3395 req->statx.flags = READ_ONCE(sqe->statx_flags);
3397 return 0;
3400 static int io_statx(struct io_kiocb *req, bool force_nonblock)
3402 struct io_statx *ctx = &req->statx;
3403 int ret;
3405 if (force_nonblock) {
3406 /* only need file table for an actual valid fd */
3407 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
3408 req->flags |= REQ_F_NO_FILE_TABLE;
3409 return -EAGAIN;
3412 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
3413 ctx->buffer);
3415 if (ret < 0)
3416 req_set_fail_links(req);
3417 io_cqring_add_event(req, ret);
3418 io_put_req(req);
3419 return 0;
3422 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3425 * If we queue this for async, it must not be cancellable. That would
3426 * leave the 'file' in an undeterminate state, and here need to modify
3427 * io_wq_work.flags, so initialize io_wq_work firstly.
3429 io_req_init_async(req);
3430 req->work.flags |= IO_WQ_WORK_NO_CANCEL;
3432 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3433 return -EINVAL;
3434 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
3435 sqe->rw_flags || sqe->buf_index)
3436 return -EINVAL;
3437 if (req->flags & REQ_F_FIXED_FILE)
3438 return -EBADF;
3440 req->close.fd = READ_ONCE(sqe->fd);
3441 if ((req->file && req->file->f_op == &io_uring_fops) ||
3442 req->close.fd == req->ctx->ring_fd)
3443 return -EBADF;
3445 req->close.put_file = NULL;
3446 return 0;
3449 static int io_close(struct io_kiocb *req, bool force_nonblock)
3451 struct io_close *close = &req->close;
3452 int ret;
3454 /* might be already done during nonblock submission */
3455 if (!close->put_file) {
3456 ret = __close_fd_get_file(close->fd, &close->put_file);
3457 if (ret < 0)
3458 return (ret == -ENOENT) ? -EBADF : ret;
3461 /* if the file has a flush method, be safe and punt to async */
3462 if (close->put_file->f_op->flush && force_nonblock) {
3463 /* avoid grabbing files - we don't need the files */
3464 req->flags |= REQ_F_NO_FILE_TABLE | REQ_F_MUST_PUNT;
3465 return -EAGAIN;
3468 /* No ->flush() or already async, safely close from here */
3469 ret = filp_close(close->put_file, req->work.files);
3470 if (ret < 0)
3471 req_set_fail_links(req);
3472 io_cqring_add_event(req, ret);
3473 fput(close->put_file);
3474 close->put_file = NULL;
3475 io_put_req(req);
3476 return 0;
3479 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3481 struct io_ring_ctx *ctx = req->ctx;
3483 if (!req->file)
3484 return -EBADF;
3486 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3487 return -EINVAL;
3488 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3489 return -EINVAL;
3491 req->sync.off = READ_ONCE(sqe->off);
3492 req->sync.len = READ_ONCE(sqe->len);
3493 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
3494 return 0;
3497 static int io_sync_file_range(struct io_kiocb *req, bool force_nonblock)
3499 int ret;
3501 /* sync_file_range always requires a blocking context */
3502 if (force_nonblock)
3503 return -EAGAIN;
3505 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
3506 req->sync.flags);
3507 if (ret < 0)
3508 req_set_fail_links(req);
3509 io_cqring_add_event(req, ret);
3510 io_put_req(req);
3511 return 0;
3514 #if defined(CONFIG_NET)
3515 static int io_setup_async_msg(struct io_kiocb *req,
3516 struct io_async_msghdr *kmsg)
3518 if (req->io)
3519 return -EAGAIN;
3520 if (io_alloc_async_ctx(req)) {
3521 if (kmsg->iov != kmsg->fast_iov)
3522 kfree(kmsg->iov);
3523 return -ENOMEM;
3525 req->flags |= REQ_F_NEED_CLEANUP;
3526 memcpy(&req->io->msg, kmsg, sizeof(*kmsg));
3527 return -EAGAIN;
3530 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3532 struct io_sr_msg *sr = &req->sr_msg;
3533 struct io_async_ctx *io = req->io;
3534 int ret;
3536 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3537 return -EINVAL;
3539 sr->msg_flags = READ_ONCE(sqe->msg_flags);
3540 sr->msg = u64_to_user_ptr(READ_ONCE(sqe->addr));
3541 sr->len = READ_ONCE(sqe->len);
3543 #ifdef CONFIG_COMPAT
3544 if (req->ctx->compat)
3545 sr->msg_flags |= MSG_CMSG_COMPAT;
3546 #endif
3548 if (!io || req->opcode == IORING_OP_SEND)
3549 return 0;
3550 /* iovec is already imported */
3551 if (req->flags & REQ_F_NEED_CLEANUP)
3552 return 0;
3554 io->msg.iov = io->msg.fast_iov;
3555 ret = sendmsg_copy_msghdr(&io->msg.msg, sr->msg, sr->msg_flags,
3556 &io->msg.iov);
3557 if (!ret)
3558 req->flags |= REQ_F_NEED_CLEANUP;
3559 return ret;
3562 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock)
3564 struct io_async_msghdr *kmsg = NULL;
3565 struct socket *sock;
3566 int ret;
3568 sock = sock_from_file(req->file, &ret);
3569 if (sock) {
3570 struct io_async_ctx io;
3571 unsigned flags;
3573 if (req->io) {
3574 kmsg = &req->io->msg;
3575 kmsg->msg.msg_name = &req->io->msg.addr;
3576 /* if iov is set, it's allocated already */
3577 if (!kmsg->iov)
3578 kmsg->iov = kmsg->fast_iov;
3579 kmsg->msg.msg_iter.iov = kmsg->iov;
3580 } else {
3581 struct io_sr_msg *sr = &req->sr_msg;
3583 kmsg = &io.msg;
3584 kmsg->msg.msg_name = &io.msg.addr;
3586 io.msg.iov = io.msg.fast_iov;
3587 ret = sendmsg_copy_msghdr(&io.msg.msg, sr->msg,
3588 sr->msg_flags, &io.msg.iov);
3589 if (ret)
3590 return ret;
3593 flags = req->sr_msg.msg_flags;
3594 if (flags & MSG_DONTWAIT)
3595 req->flags |= REQ_F_NOWAIT;
3596 else if (force_nonblock)
3597 flags |= MSG_DONTWAIT;
3599 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
3600 if (force_nonblock && ret == -EAGAIN)
3601 return io_setup_async_msg(req, kmsg);
3602 if (ret == -ERESTARTSYS)
3603 ret = -EINTR;
3606 if (kmsg && kmsg->iov != kmsg->fast_iov)
3607 kfree(kmsg->iov);
3608 req->flags &= ~REQ_F_NEED_CLEANUP;
3609 io_cqring_add_event(req, ret);
3610 if (ret < 0)
3611 req_set_fail_links(req);
3612 io_put_req(req);
3613 return 0;
3616 static int io_send(struct io_kiocb *req, bool force_nonblock)
3618 struct socket *sock;
3619 int ret;
3621 sock = sock_from_file(req->file, &ret);
3622 if (sock) {
3623 struct io_sr_msg *sr = &req->sr_msg;
3624 struct msghdr msg;
3625 struct iovec iov;
3626 unsigned flags;
3628 ret = import_single_range(WRITE, sr->buf, sr->len, &iov,
3629 &msg.msg_iter);
3630 if (ret)
3631 return ret;
3633 msg.msg_name = NULL;
3634 msg.msg_control = NULL;
3635 msg.msg_controllen = 0;
3636 msg.msg_namelen = 0;
3638 flags = req->sr_msg.msg_flags;
3639 if (flags & MSG_DONTWAIT)
3640 req->flags |= REQ_F_NOWAIT;
3641 else if (force_nonblock)
3642 flags |= MSG_DONTWAIT;
3644 msg.msg_flags = flags;
3645 ret = sock_sendmsg(sock, &msg);
3646 if (force_nonblock && ret == -EAGAIN)
3647 return -EAGAIN;
3648 if (ret == -ERESTARTSYS)
3649 ret = -EINTR;
3652 io_cqring_add_event(req, ret);
3653 if (ret < 0)
3654 req_set_fail_links(req);
3655 io_put_req(req);
3656 return 0;
3659 static int __io_recvmsg_copy_hdr(struct io_kiocb *req, struct io_async_ctx *io)
3661 struct io_sr_msg *sr = &req->sr_msg;
3662 struct iovec __user *uiov;
3663 size_t iov_len;
3664 int ret;
3666 ret = __copy_msghdr_from_user(&io->msg.msg, sr->msg, &io->msg.uaddr,
3667 &uiov, &iov_len);
3668 if (ret)
3669 return ret;
3671 if (req->flags & REQ_F_BUFFER_SELECT) {
3672 if (iov_len > 1)
3673 return -EINVAL;
3674 if (copy_from_user(io->msg.iov, uiov, sizeof(*uiov)))
3675 return -EFAULT;
3676 sr->len = io->msg.iov[0].iov_len;
3677 iov_iter_init(&io->msg.msg.msg_iter, READ, io->msg.iov, 1,
3678 sr->len);
3679 io->msg.iov = NULL;
3680 } else {
3681 ret = import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
3682 &io->msg.iov, &io->msg.msg.msg_iter);
3683 if (ret > 0)
3684 ret = 0;
3687 return ret;
3690 #ifdef CONFIG_COMPAT
3691 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
3692 struct io_async_ctx *io)
3694 struct compat_msghdr __user *msg_compat;
3695 struct io_sr_msg *sr = &req->sr_msg;
3696 struct compat_iovec __user *uiov;
3697 compat_uptr_t ptr;
3698 compat_size_t len;
3699 int ret;
3701 msg_compat = (struct compat_msghdr __user *) sr->msg;
3702 ret = __get_compat_msghdr(&io->msg.msg, msg_compat, &io->msg.uaddr,
3703 &ptr, &len);
3704 if (ret)
3705 return ret;
3707 uiov = compat_ptr(ptr);
3708 if (req->flags & REQ_F_BUFFER_SELECT) {
3709 compat_ssize_t clen;
3711 if (len > 1)
3712 return -EINVAL;
3713 if (!access_ok(uiov, sizeof(*uiov)))
3714 return -EFAULT;
3715 if (__get_user(clen, &uiov->iov_len))
3716 return -EFAULT;
3717 if (clen < 0)
3718 return -EINVAL;
3719 sr->len = io->msg.iov[0].iov_len;
3720 io->msg.iov = NULL;
3721 } else {
3722 ret = compat_import_iovec(READ, uiov, len, UIO_FASTIOV,
3723 &io->msg.iov,
3724 &io->msg.msg.msg_iter);
3725 if (ret < 0)
3726 return ret;
3729 return 0;
3731 #endif
3733 static int io_recvmsg_copy_hdr(struct io_kiocb *req, struct io_async_ctx *io)
3735 io->msg.iov = io->msg.fast_iov;
3737 #ifdef CONFIG_COMPAT
3738 if (req->ctx->compat)
3739 return __io_compat_recvmsg_copy_hdr(req, io);
3740 #endif
3742 return __io_recvmsg_copy_hdr(req, io);
3745 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
3746 int *cflags, bool needs_lock)
3748 struct io_sr_msg *sr = &req->sr_msg;
3749 struct io_buffer *kbuf;
3751 if (!(req->flags & REQ_F_BUFFER_SELECT))
3752 return NULL;
3754 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
3755 if (IS_ERR(kbuf))
3756 return kbuf;
3758 sr->kbuf = kbuf;
3759 req->flags |= REQ_F_BUFFER_SELECTED;
3761 *cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
3762 *cflags |= IORING_CQE_F_BUFFER;
3763 return kbuf;
3766 static int io_recvmsg_prep(struct io_kiocb *req,
3767 const struct io_uring_sqe *sqe)
3769 struct io_sr_msg *sr = &req->sr_msg;
3770 struct io_async_ctx *io = req->io;
3771 int ret;
3773 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3774 return -EINVAL;
3776 sr->msg_flags = READ_ONCE(sqe->msg_flags);
3777 sr->msg = u64_to_user_ptr(READ_ONCE(sqe->addr));
3778 sr->len = READ_ONCE(sqe->len);
3779 sr->bgid = READ_ONCE(sqe->buf_group);
3781 #ifdef CONFIG_COMPAT
3782 if (req->ctx->compat)
3783 sr->msg_flags |= MSG_CMSG_COMPAT;
3784 #endif
3786 if (!io || req->opcode == IORING_OP_RECV)
3787 return 0;
3788 /* iovec is already imported */
3789 if (req->flags & REQ_F_NEED_CLEANUP)
3790 return 0;
3792 ret = io_recvmsg_copy_hdr(req, io);
3793 if (!ret)
3794 req->flags |= REQ_F_NEED_CLEANUP;
3795 return ret;
3798 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock)
3800 struct io_async_msghdr *kmsg = NULL;
3801 struct socket *sock;
3802 int ret, cflags = 0;
3804 sock = sock_from_file(req->file, &ret);
3805 if (sock) {
3806 struct io_buffer *kbuf;
3807 struct io_async_ctx io;
3808 unsigned flags;
3810 if (req->io) {
3811 kmsg = &req->io->msg;
3812 kmsg->msg.msg_name = &req->io->msg.addr;
3813 /* if iov is set, it's allocated already */
3814 if (!kmsg->iov)
3815 kmsg->iov = kmsg->fast_iov;
3816 kmsg->msg.msg_iter.iov = kmsg->iov;
3817 } else {
3818 kmsg = &io.msg;
3819 kmsg->msg.msg_name = &io.msg.addr;
3821 ret = io_recvmsg_copy_hdr(req, &io);
3822 if (ret)
3823 return ret;
3826 kbuf = io_recv_buffer_select(req, &cflags, !force_nonblock);
3827 if (IS_ERR(kbuf)) {
3828 return PTR_ERR(kbuf);
3829 } else if (kbuf) {
3830 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3831 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->iov,
3832 1, req->sr_msg.len);
3835 flags = req->sr_msg.msg_flags;
3836 if (flags & MSG_DONTWAIT)
3837 req->flags |= REQ_F_NOWAIT;
3838 else if (force_nonblock)
3839 flags |= MSG_DONTWAIT;
3841 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.msg,
3842 kmsg->uaddr, flags);
3843 if (force_nonblock && ret == -EAGAIN)
3844 return io_setup_async_msg(req, kmsg);
3845 if (ret == -ERESTARTSYS)
3846 ret = -EINTR;
3849 if (kmsg && kmsg->iov != kmsg->fast_iov)
3850 kfree(kmsg->iov);
3851 req->flags &= ~REQ_F_NEED_CLEANUP;
3852 __io_cqring_add_event(req, ret, cflags);
3853 if (ret < 0)
3854 req_set_fail_links(req);
3855 io_put_req(req);
3856 return 0;
3859 static int io_recv(struct io_kiocb *req, bool force_nonblock)
3861 struct io_buffer *kbuf = NULL;
3862 struct socket *sock;
3863 int ret, cflags = 0;
3865 sock = sock_from_file(req->file, &ret);
3866 if (sock) {
3867 struct io_sr_msg *sr = &req->sr_msg;
3868 void __user *buf = sr->buf;
3869 struct msghdr msg;
3870 struct iovec iov;
3871 unsigned flags;
3873 kbuf = io_recv_buffer_select(req, &cflags, !force_nonblock);
3874 if (IS_ERR(kbuf))
3875 return PTR_ERR(kbuf);
3876 else if (kbuf)
3877 buf = u64_to_user_ptr(kbuf->addr);
3879 ret = import_single_range(READ, buf, sr->len, &iov,
3880 &msg.msg_iter);
3881 if (ret) {
3882 kfree(kbuf);
3883 return ret;
3886 req->flags |= REQ_F_NEED_CLEANUP;
3887 msg.msg_name = NULL;
3888 msg.msg_control = NULL;
3889 msg.msg_controllen = 0;
3890 msg.msg_namelen = 0;
3891 msg.msg_iocb = NULL;
3892 msg.msg_flags = 0;
3894 flags = req->sr_msg.msg_flags;
3895 if (flags & MSG_DONTWAIT)
3896 req->flags |= REQ_F_NOWAIT;
3897 else if (force_nonblock)
3898 flags |= MSG_DONTWAIT;
3900 ret = sock_recvmsg(sock, &msg, flags);
3901 if (force_nonblock && ret == -EAGAIN)
3902 return -EAGAIN;
3903 if (ret == -ERESTARTSYS)
3904 ret = -EINTR;
3907 kfree(kbuf);
3908 req->flags &= ~REQ_F_NEED_CLEANUP;
3909 __io_cqring_add_event(req, ret, cflags);
3910 if (ret < 0)
3911 req_set_fail_links(req);
3912 io_put_req(req);
3913 return 0;
3916 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3918 struct io_accept *accept = &req->accept;
3920 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3921 return -EINVAL;
3922 if (sqe->ioprio || sqe->len || sqe->buf_index)
3923 return -EINVAL;
3925 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
3926 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3927 accept->flags = READ_ONCE(sqe->accept_flags);
3928 accept->nofile = rlimit(RLIMIT_NOFILE);
3929 return 0;
3932 static int io_accept(struct io_kiocb *req, bool force_nonblock)
3934 struct io_accept *accept = &req->accept;
3935 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
3936 int ret;
3938 if (req->file->f_flags & O_NONBLOCK)
3939 req->flags |= REQ_F_NOWAIT;
3941 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
3942 accept->addr_len, accept->flags,
3943 accept->nofile);
3944 if (ret == -EAGAIN && force_nonblock)
3945 return -EAGAIN;
3946 if (ret < 0) {
3947 if (ret == -ERESTARTSYS)
3948 ret = -EINTR;
3949 req_set_fail_links(req);
3951 io_cqring_add_event(req, ret);
3952 io_put_req(req);
3953 return 0;
3956 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3958 struct io_connect *conn = &req->connect;
3959 struct io_async_ctx *io = req->io;
3961 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3962 return -EINVAL;
3963 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
3964 return -EINVAL;
3966 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
3967 conn->addr_len = READ_ONCE(sqe->addr2);
3969 if (!io)
3970 return 0;
3972 return move_addr_to_kernel(conn->addr, conn->addr_len,
3973 &io->connect.address);
3976 static int io_connect(struct io_kiocb *req, bool force_nonblock)
3978 struct io_async_ctx __io, *io;
3979 unsigned file_flags;
3980 int ret;
3982 if (req->io) {
3983 io = req->io;
3984 } else {
3985 ret = move_addr_to_kernel(req->connect.addr,
3986 req->connect.addr_len,
3987 &__io.connect.address);
3988 if (ret)
3989 goto out;
3990 io = &__io;
3993 file_flags = force_nonblock ? O_NONBLOCK : 0;
3995 ret = __sys_connect_file(req->file, &io->connect.address,
3996 req->connect.addr_len, file_flags);
3997 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
3998 if (req->io)
3999 return -EAGAIN;
4000 if (io_alloc_async_ctx(req)) {
4001 ret = -ENOMEM;
4002 goto out;
4004 memcpy(&req->io->connect, &__io.connect, sizeof(__io.connect));
4005 return -EAGAIN;
4007 if (ret == -ERESTARTSYS)
4008 ret = -EINTR;
4009 out:
4010 if (ret < 0)
4011 req_set_fail_links(req);
4012 io_cqring_add_event(req, ret);
4013 io_put_req(req);
4014 return 0;
4016 #else /* !CONFIG_NET */
4017 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4019 return -EOPNOTSUPP;
4022 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock)
4024 return -EOPNOTSUPP;
4027 static int io_send(struct io_kiocb *req, bool force_nonblock)
4029 return -EOPNOTSUPP;
4032 static int io_recvmsg_prep(struct io_kiocb *req,
4033 const struct io_uring_sqe *sqe)
4035 return -EOPNOTSUPP;
4038 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock)
4040 return -EOPNOTSUPP;
4043 static int io_recv(struct io_kiocb *req, bool force_nonblock)
4045 return -EOPNOTSUPP;
4048 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4050 return -EOPNOTSUPP;
4053 static int io_accept(struct io_kiocb *req, bool force_nonblock)
4055 return -EOPNOTSUPP;
4058 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4060 return -EOPNOTSUPP;
4063 static int io_connect(struct io_kiocb *req, bool force_nonblock)
4065 return -EOPNOTSUPP;
4067 #endif /* CONFIG_NET */
4069 struct io_poll_table {
4070 struct poll_table_struct pt;
4071 struct io_kiocb *req;
4072 int error;
4075 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
4076 __poll_t mask, task_work_func_t func)
4078 struct task_struct *tsk;
4079 int ret;
4081 /* for instances that support it check for an event match first: */
4082 if (mask && !(mask & poll->events))
4083 return 0;
4085 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
4087 list_del_init(&poll->wait.entry);
4089 tsk = req->task;
4090 req->result = mask;
4091 init_task_work(&req->task_work, func);
4093 * If this fails, then the task is exiting. When a task exits, the
4094 * work gets canceled, so just cancel this request as well instead
4095 * of executing it. We can't safely execute it anyway, as we may not
4096 * have the needed state needed for it anyway.
4098 ret = task_work_add(tsk, &req->task_work, true);
4099 if (unlikely(ret)) {
4100 WRITE_ONCE(poll->canceled, true);
4101 tsk = io_wq_get_task(req->ctx->io_wq);
4102 task_work_add(tsk, &req->task_work, true);
4104 wake_up_process(tsk);
4105 return 1;
4108 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
4109 __acquires(&req->ctx->completion_lock)
4111 struct io_ring_ctx *ctx = req->ctx;
4113 if (!req->result && !READ_ONCE(poll->canceled)) {
4114 struct poll_table_struct pt = { ._key = poll->events };
4116 req->result = vfs_poll(req->file, &pt) & poll->events;
4119 spin_lock_irq(&ctx->completion_lock);
4120 if (!req->result && !READ_ONCE(poll->canceled)) {
4121 add_wait_queue(poll->head, &poll->wait);
4122 return true;
4125 return false;
4128 static void io_poll_remove_double(struct io_kiocb *req)
4130 struct io_poll_iocb *poll = (struct io_poll_iocb *) req->io;
4132 lockdep_assert_held(&req->ctx->completion_lock);
4134 if (poll && poll->head) {
4135 struct wait_queue_head *head = poll->head;
4137 spin_lock(&head->lock);
4138 list_del_init(&poll->wait.entry);
4139 if (poll->wait.private)
4140 refcount_dec(&req->refs);
4141 poll->head = NULL;
4142 spin_unlock(&head->lock);
4146 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
4148 struct io_ring_ctx *ctx = req->ctx;
4150 io_poll_remove_double(req);
4151 req->poll.done = true;
4152 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
4153 io_commit_cqring(ctx);
4156 static void io_poll_task_handler(struct io_kiocb *req, struct io_kiocb **nxt)
4158 struct io_ring_ctx *ctx = req->ctx;
4160 if (io_poll_rewait(req, &req->poll)) {
4161 spin_unlock_irq(&ctx->completion_lock);
4162 return;
4165 hash_del(&req->hash_node);
4166 io_poll_complete(req, req->result, 0);
4167 req->flags |= REQ_F_COMP_LOCKED;
4168 io_put_req_find_next(req, nxt);
4169 spin_unlock_irq(&ctx->completion_lock);
4171 io_cqring_ev_posted(ctx);
4174 static void io_poll_task_func(struct callback_head *cb)
4176 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
4177 struct io_kiocb *nxt = NULL;
4179 io_poll_task_handler(req, &nxt);
4180 if (nxt) {
4181 struct io_ring_ctx *ctx = nxt->ctx;
4183 mutex_lock(&ctx->uring_lock);
4184 __io_queue_sqe(nxt, NULL);
4185 mutex_unlock(&ctx->uring_lock);
4189 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
4190 int sync, void *key)
4192 struct io_kiocb *req = wait->private;
4193 struct io_poll_iocb *poll = (struct io_poll_iocb *) req->io;
4194 __poll_t mask = key_to_poll(key);
4196 /* for instances that support it check for an event match first: */
4197 if (mask && !(mask & poll->events))
4198 return 0;
4200 if (req->poll.head) {
4201 bool done;
4203 spin_lock(&req->poll.head->lock);
4204 done = list_empty(&req->poll.wait.entry);
4205 if (!done)
4206 list_del_init(&req->poll.wait.entry);
4207 spin_unlock(&req->poll.head->lock);
4208 if (!done)
4209 __io_async_wake(req, poll, mask, io_poll_task_func);
4211 refcount_dec(&req->refs);
4212 return 1;
4215 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
4216 wait_queue_func_t wake_func)
4218 poll->head = NULL;
4219 poll->done = false;
4220 poll->canceled = false;
4221 poll->events = events;
4222 INIT_LIST_HEAD(&poll->wait.entry);
4223 init_waitqueue_func_entry(&poll->wait, wake_func);
4226 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
4227 struct wait_queue_head *head)
4229 struct io_kiocb *req = pt->req;
4232 * If poll->head is already set, it's because the file being polled
4233 * uses multiple waitqueues for poll handling (eg one for read, one
4234 * for write). Setup a separate io_poll_iocb if this happens.
4236 if (unlikely(poll->head)) {
4237 /* already have a 2nd entry, fail a third attempt */
4238 if (req->io) {
4239 pt->error = -EINVAL;
4240 return;
4242 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
4243 if (!poll) {
4244 pt->error = -ENOMEM;
4245 return;
4247 io_init_poll_iocb(poll, req->poll.events, io_poll_double_wake);
4248 refcount_inc(&req->refs);
4249 poll->wait.private = req;
4250 req->io = (void *) poll;
4253 pt->error = 0;
4254 poll->head = head;
4255 add_wait_queue(head, &poll->wait);
4258 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
4259 struct poll_table_struct *p)
4261 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
4263 __io_queue_proc(&pt->req->apoll->poll, pt, head);
4266 static void io_sq_thread_drop_mm(struct io_ring_ctx *ctx)
4268 struct mm_struct *mm = current->mm;
4270 if (mm) {
4271 kthread_unuse_mm(mm);
4272 mmput(mm);
4276 static int io_sq_thread_acquire_mm(struct io_ring_ctx *ctx,
4277 struct io_kiocb *req)
4279 if (io_op_defs[req->opcode].needs_mm && !current->mm) {
4280 if (unlikely(!mmget_not_zero(ctx->sqo_mm)))
4281 return -EFAULT;
4282 kthread_use_mm(ctx->sqo_mm);
4285 return 0;
4288 static void io_async_task_func(struct callback_head *cb)
4290 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
4291 struct async_poll *apoll = req->apoll;
4292 struct io_ring_ctx *ctx = req->ctx;
4293 bool canceled = false;
4295 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
4297 if (io_poll_rewait(req, &apoll->poll)) {
4298 spin_unlock_irq(&ctx->completion_lock);
4299 return;
4302 /* If req is still hashed, it cannot have been canceled. Don't check. */
4303 if (hash_hashed(&req->hash_node)) {
4304 hash_del(&req->hash_node);
4305 } else {
4306 canceled = READ_ONCE(apoll->poll.canceled);
4307 if (canceled) {
4308 io_cqring_fill_event(req, -ECANCELED);
4309 io_commit_cqring(ctx);
4313 spin_unlock_irq(&ctx->completion_lock);
4315 /* restore ->work in case we need to retry again */
4316 if (req->flags & REQ_F_WORK_INITIALIZED)
4317 memcpy(&req->work, &apoll->work, sizeof(req->work));
4318 kfree(apoll);
4320 if (!canceled) {
4321 __set_current_state(TASK_RUNNING);
4322 if (io_sq_thread_acquire_mm(ctx, req)) {
4323 io_cqring_add_event(req, -EFAULT);
4324 goto end_req;
4326 mutex_lock(&ctx->uring_lock);
4327 __io_queue_sqe(req, NULL);
4328 mutex_unlock(&ctx->uring_lock);
4329 } else {
4330 io_cqring_ev_posted(ctx);
4331 end_req:
4332 req_set_fail_links(req);
4333 io_double_put_req(req);
4337 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
4338 void *key)
4340 struct io_kiocb *req = wait->private;
4341 struct io_poll_iocb *poll = &req->apoll->poll;
4343 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
4344 key_to_poll(key));
4346 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
4349 static void io_poll_req_insert(struct io_kiocb *req)
4351 struct io_ring_ctx *ctx = req->ctx;
4352 struct hlist_head *list;
4354 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
4355 hlist_add_head(&req->hash_node, list);
4358 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
4359 struct io_poll_iocb *poll,
4360 struct io_poll_table *ipt, __poll_t mask,
4361 wait_queue_func_t wake_func)
4362 __acquires(&ctx->completion_lock)
4364 struct io_ring_ctx *ctx = req->ctx;
4365 bool cancel = false;
4367 poll->file = req->file;
4368 io_init_poll_iocb(poll, mask, wake_func);
4369 poll->wait.private = req;
4371 ipt->pt._key = mask;
4372 ipt->req = req;
4373 ipt->error = -EINVAL;
4375 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
4377 spin_lock_irq(&ctx->completion_lock);
4378 if (likely(poll->head)) {
4379 spin_lock(&poll->head->lock);
4380 if (unlikely(list_empty(&poll->wait.entry))) {
4381 if (ipt->error)
4382 cancel = true;
4383 ipt->error = 0;
4384 mask = 0;
4386 if (mask || ipt->error)
4387 list_del_init(&poll->wait.entry);
4388 else if (cancel)
4389 WRITE_ONCE(poll->canceled, true);
4390 else if (!poll->done) /* actually waiting for an event */
4391 io_poll_req_insert(req);
4392 spin_unlock(&poll->head->lock);
4395 return mask;
4398 static bool io_arm_poll_handler(struct io_kiocb *req)
4400 const struct io_op_def *def = &io_op_defs[req->opcode];
4401 struct io_ring_ctx *ctx = req->ctx;
4402 struct async_poll *apoll;
4403 struct io_poll_table ipt;
4404 __poll_t mask, ret;
4405 bool had_io;
4407 if (!req->file || !file_can_poll(req->file))
4408 return false;
4409 if (req->flags & (REQ_F_MUST_PUNT | REQ_F_POLLED))
4410 return false;
4411 if (!def->pollin && !def->pollout)
4412 return false;
4414 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
4415 if (unlikely(!apoll))
4416 return false;
4418 req->flags |= REQ_F_POLLED;
4419 if (req->flags & REQ_F_WORK_INITIALIZED)
4420 memcpy(&apoll->work, &req->work, sizeof(req->work));
4421 had_io = req->io != NULL;
4423 io_get_req_task(req);
4424 req->apoll = apoll;
4425 INIT_HLIST_NODE(&req->hash_node);
4427 mask = 0;
4428 if (def->pollin)
4429 mask |= POLLIN | POLLRDNORM;
4430 if (def->pollout)
4431 mask |= POLLOUT | POLLWRNORM;
4432 mask |= POLLERR | POLLPRI;
4434 ipt.pt._qproc = io_async_queue_proc;
4436 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
4437 io_async_wake);
4438 if (ret) {
4439 ipt.error = 0;
4440 /* only remove double add if we did it here */
4441 if (!had_io)
4442 io_poll_remove_double(req);
4443 spin_unlock_irq(&ctx->completion_lock);
4444 if (req->flags & REQ_F_WORK_INITIALIZED)
4445 memcpy(&req->work, &apoll->work, sizeof(req->work));
4446 kfree(apoll);
4447 return false;
4449 spin_unlock_irq(&ctx->completion_lock);
4450 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
4451 apoll->poll.events);
4452 return true;
4455 static bool __io_poll_remove_one(struct io_kiocb *req,
4456 struct io_poll_iocb *poll)
4458 bool do_complete = false;
4460 spin_lock(&poll->head->lock);
4461 WRITE_ONCE(poll->canceled, true);
4462 if (!list_empty(&poll->wait.entry)) {
4463 list_del_init(&poll->wait.entry);
4464 do_complete = true;
4466 spin_unlock(&poll->head->lock);
4467 hash_del(&req->hash_node);
4468 return do_complete;
4471 static bool io_poll_remove_one(struct io_kiocb *req)
4473 bool do_complete;
4475 if (req->opcode == IORING_OP_POLL_ADD) {
4476 io_poll_remove_double(req);
4477 do_complete = __io_poll_remove_one(req, &req->poll);
4478 } else {
4479 struct async_poll *apoll = req->apoll;
4481 /* non-poll requests have submit ref still */
4482 do_complete = __io_poll_remove_one(req, &apoll->poll);
4483 if (do_complete) {
4484 io_put_req(req);
4486 * restore ->work because we will call
4487 * io_req_work_drop_env below when dropping the
4488 * final reference.
4490 if (req->flags & REQ_F_WORK_INITIALIZED)
4491 memcpy(&req->work, &apoll->work,
4492 sizeof(req->work));
4493 kfree(apoll);
4497 if (do_complete) {
4498 io_cqring_fill_event(req, -ECANCELED);
4499 io_commit_cqring(req->ctx);
4500 req->flags |= REQ_F_COMP_LOCKED;
4501 io_put_req(req);
4504 return do_complete;
4507 static void io_poll_remove_all(struct io_ring_ctx *ctx)
4509 struct hlist_node *tmp;
4510 struct io_kiocb *req;
4511 int posted = 0, i;
4513 spin_lock_irq(&ctx->completion_lock);
4514 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
4515 struct hlist_head *list;
4517 list = &ctx->cancel_hash[i];
4518 hlist_for_each_entry_safe(req, tmp, list, hash_node)
4519 posted += io_poll_remove_one(req);
4521 spin_unlock_irq(&ctx->completion_lock);
4523 if (posted)
4524 io_cqring_ev_posted(ctx);
4527 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
4529 struct hlist_head *list;
4530 struct io_kiocb *req;
4532 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
4533 hlist_for_each_entry(req, list, hash_node) {
4534 if (sqe_addr != req->user_data)
4535 continue;
4536 if (io_poll_remove_one(req))
4537 return 0;
4538 return -EALREADY;
4541 return -ENOENT;
4544 static int io_poll_remove_prep(struct io_kiocb *req,
4545 const struct io_uring_sqe *sqe)
4547 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4548 return -EINVAL;
4549 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
4550 sqe->poll_events)
4551 return -EINVAL;
4553 req->poll.addr = READ_ONCE(sqe->addr);
4554 return 0;
4558 * Find a running poll command that matches one specified in sqe->addr,
4559 * and remove it if found.
4561 static int io_poll_remove(struct io_kiocb *req)
4563 struct io_ring_ctx *ctx = req->ctx;
4564 u64 addr;
4565 int ret;
4567 addr = req->poll.addr;
4568 spin_lock_irq(&ctx->completion_lock);
4569 ret = io_poll_cancel(ctx, addr);
4570 spin_unlock_irq(&ctx->completion_lock);
4572 io_cqring_add_event(req, ret);
4573 if (ret < 0)
4574 req_set_fail_links(req);
4575 io_put_req(req);
4576 return 0;
4579 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
4580 void *key)
4582 struct io_kiocb *req = wait->private;
4583 struct io_poll_iocb *poll = &req->poll;
4585 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
4588 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
4589 struct poll_table_struct *p)
4591 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
4593 __io_queue_proc(&pt->req->poll, pt, head);
4596 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4598 struct io_poll_iocb *poll = &req->poll;
4599 u16 events;
4601 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4602 return -EINVAL;
4603 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
4604 return -EINVAL;
4605 if (!poll->file)
4606 return -EBADF;
4608 events = READ_ONCE(sqe->poll_events);
4609 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP;
4611 io_get_req_task(req);
4612 return 0;
4615 static int io_poll_add(struct io_kiocb *req)
4617 struct io_poll_iocb *poll = &req->poll;
4618 struct io_ring_ctx *ctx = req->ctx;
4619 struct io_poll_table ipt;
4620 __poll_t mask;
4622 INIT_HLIST_NODE(&req->hash_node);
4623 INIT_LIST_HEAD(&req->list);
4624 ipt.pt._qproc = io_poll_queue_proc;
4626 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
4627 io_poll_wake);
4629 if (mask) { /* no async, we'd stolen it */
4630 ipt.error = 0;
4631 io_poll_complete(req, mask, 0);
4633 spin_unlock_irq(&ctx->completion_lock);
4635 if (mask) {
4636 io_cqring_ev_posted(ctx);
4637 io_put_req(req);
4639 return ipt.error;
4642 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
4644 struct io_timeout_data *data = container_of(timer,
4645 struct io_timeout_data, timer);
4646 struct io_kiocb *req = data->req;
4647 struct io_ring_ctx *ctx = req->ctx;
4648 unsigned long flags;
4650 atomic_inc(&ctx->cq_timeouts);
4652 spin_lock_irqsave(&ctx->completion_lock, flags);
4654 * We could be racing with timeout deletion. If the list is empty,
4655 * then timeout lookup already found it and will be handling it.
4657 if (!list_empty(&req->list))
4658 list_del_init(&req->list);
4660 io_cqring_fill_event(req, -ETIME);
4661 io_commit_cqring(ctx);
4662 spin_unlock_irqrestore(&ctx->completion_lock, flags);
4664 io_cqring_ev_posted(ctx);
4665 req_set_fail_links(req);
4666 io_put_req(req);
4667 return HRTIMER_NORESTART;
4670 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
4672 struct io_kiocb *req;
4673 int ret = -ENOENT;
4675 list_for_each_entry(req, &ctx->timeout_list, list) {
4676 if (user_data == req->user_data) {
4677 list_del_init(&req->list);
4678 ret = 0;
4679 break;
4683 if (ret == -ENOENT)
4684 return ret;
4686 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
4687 if (ret == -1)
4688 return -EALREADY;
4690 req_set_fail_links(req);
4691 io_cqring_fill_event(req, -ECANCELED);
4692 io_put_req(req);
4693 return 0;
4696 static int io_timeout_remove_prep(struct io_kiocb *req,
4697 const struct io_uring_sqe *sqe)
4699 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4700 return -EINVAL;
4701 if (sqe->flags || sqe->ioprio || sqe->buf_index || sqe->len)
4702 return -EINVAL;
4704 req->timeout.addr = READ_ONCE(sqe->addr);
4705 req->timeout.flags = READ_ONCE(sqe->timeout_flags);
4706 if (req->timeout.flags)
4707 return -EINVAL;
4709 return 0;
4713 * Remove or update an existing timeout command
4715 static int io_timeout_remove(struct io_kiocb *req)
4717 struct io_ring_ctx *ctx = req->ctx;
4718 int ret;
4720 spin_lock_irq(&ctx->completion_lock);
4721 ret = io_timeout_cancel(ctx, req->timeout.addr);
4723 io_cqring_fill_event(req, ret);
4724 io_commit_cqring(ctx);
4725 spin_unlock_irq(&ctx->completion_lock);
4726 io_cqring_ev_posted(ctx);
4727 if (ret < 0)
4728 req_set_fail_links(req);
4729 io_put_req(req);
4730 return 0;
4733 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
4734 bool is_timeout_link)
4736 struct io_timeout_data *data;
4737 unsigned flags;
4738 u32 off = READ_ONCE(sqe->off);
4740 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4741 return -EINVAL;
4742 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
4743 return -EINVAL;
4744 if (off && is_timeout_link)
4745 return -EINVAL;
4746 flags = READ_ONCE(sqe->timeout_flags);
4747 if (flags & ~IORING_TIMEOUT_ABS)
4748 return -EINVAL;
4750 req->timeout.off = off;
4752 if (!req->io && io_alloc_async_ctx(req))
4753 return -ENOMEM;
4755 data = &req->io->timeout;
4756 data->req = req;
4757 req->flags |= REQ_F_TIMEOUT;
4759 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
4760 return -EFAULT;
4762 if (flags & IORING_TIMEOUT_ABS)
4763 data->mode = HRTIMER_MODE_ABS;
4764 else
4765 data->mode = HRTIMER_MODE_REL;
4767 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
4768 return 0;
4771 static int io_timeout(struct io_kiocb *req)
4773 struct io_ring_ctx *ctx = req->ctx;
4774 struct io_timeout_data *data = &req->io->timeout;
4775 struct list_head *entry;
4776 u32 tail, off = req->timeout.off;
4778 spin_lock_irq(&ctx->completion_lock);
4781 * sqe->off holds how many events that need to occur for this
4782 * timeout event to be satisfied. If it isn't set, then this is
4783 * a pure timeout request, sequence isn't used.
4785 if (!off) {
4786 req->flags |= REQ_F_TIMEOUT_NOSEQ;
4787 entry = ctx->timeout_list.prev;
4788 goto add;
4791 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
4792 req->timeout.target_seq = tail + off;
4795 * Insertion sort, ensuring the first entry in the list is always
4796 * the one we need first.
4798 list_for_each_prev(entry, &ctx->timeout_list) {
4799 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb, list);
4801 if (nxt->flags & REQ_F_TIMEOUT_NOSEQ)
4802 continue;
4803 /* nxt.seq is behind @tail, otherwise would've been completed */
4804 if (off >= nxt->timeout.target_seq - tail)
4805 break;
4807 add:
4808 list_add(&req->list, entry);
4809 data->timer.function = io_timeout_fn;
4810 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
4811 spin_unlock_irq(&ctx->completion_lock);
4812 return 0;
4815 static bool io_cancel_cb(struct io_wq_work *work, void *data)
4817 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
4819 return req->user_data == (unsigned long) data;
4822 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
4824 enum io_wq_cancel cancel_ret;
4825 int ret = 0;
4827 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
4828 switch (cancel_ret) {
4829 case IO_WQ_CANCEL_OK:
4830 ret = 0;
4831 break;
4832 case IO_WQ_CANCEL_RUNNING:
4833 ret = -EALREADY;
4834 break;
4835 case IO_WQ_CANCEL_NOTFOUND:
4836 ret = -ENOENT;
4837 break;
4840 return ret;
4843 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
4844 struct io_kiocb *req, __u64 sqe_addr,
4845 int success_ret)
4847 unsigned long flags;
4848 int ret;
4850 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
4851 if (ret != -ENOENT) {
4852 spin_lock_irqsave(&ctx->completion_lock, flags);
4853 goto done;
4856 spin_lock_irqsave(&ctx->completion_lock, flags);
4857 ret = io_timeout_cancel(ctx, sqe_addr);
4858 if (ret != -ENOENT)
4859 goto done;
4860 ret = io_poll_cancel(ctx, sqe_addr);
4861 done:
4862 if (!ret)
4863 ret = success_ret;
4864 io_cqring_fill_event(req, ret);
4865 io_commit_cqring(ctx);
4866 spin_unlock_irqrestore(&ctx->completion_lock, flags);
4867 io_cqring_ev_posted(ctx);
4869 if (ret < 0)
4870 req_set_fail_links(req);
4871 io_put_req(req);
4874 static int io_async_cancel_prep(struct io_kiocb *req,
4875 const struct io_uring_sqe *sqe)
4877 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4878 return -EINVAL;
4879 if (sqe->flags || sqe->ioprio || sqe->off || sqe->len ||
4880 sqe->cancel_flags)
4881 return -EINVAL;
4883 req->cancel.addr = READ_ONCE(sqe->addr);
4884 return 0;
4887 static int io_async_cancel(struct io_kiocb *req)
4889 struct io_ring_ctx *ctx = req->ctx;
4891 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
4892 return 0;
4895 static int io_files_update_prep(struct io_kiocb *req,
4896 const struct io_uring_sqe *sqe)
4898 if (sqe->flags || sqe->ioprio || sqe->rw_flags)
4899 return -EINVAL;
4901 req->files_update.offset = READ_ONCE(sqe->off);
4902 req->files_update.nr_args = READ_ONCE(sqe->len);
4903 if (!req->files_update.nr_args)
4904 return -EINVAL;
4905 req->files_update.arg = READ_ONCE(sqe->addr);
4906 return 0;
4909 static int io_files_update(struct io_kiocb *req, bool force_nonblock)
4911 struct io_ring_ctx *ctx = req->ctx;
4912 struct io_uring_files_update up;
4913 int ret;
4915 if (force_nonblock)
4916 return -EAGAIN;
4918 up.offset = req->files_update.offset;
4919 up.fds = req->files_update.arg;
4921 mutex_lock(&ctx->uring_lock);
4922 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
4923 mutex_unlock(&ctx->uring_lock);
4925 if (ret < 0)
4926 req_set_fail_links(req);
4927 io_cqring_add_event(req, ret);
4928 io_put_req(req);
4929 return 0;
4932 static int io_req_defer_prep(struct io_kiocb *req,
4933 const struct io_uring_sqe *sqe)
4935 ssize_t ret = 0;
4937 if (!sqe)
4938 return 0;
4940 io_req_init_async(req);
4942 if (io_op_defs[req->opcode].file_table) {
4943 ret = io_grab_files(req);
4944 if (unlikely(ret))
4945 return ret;
4948 io_req_work_grab_env(req, &io_op_defs[req->opcode]);
4950 switch (req->opcode) {
4951 case IORING_OP_NOP:
4952 break;
4953 case IORING_OP_READV:
4954 case IORING_OP_READ_FIXED:
4955 case IORING_OP_READ:
4956 ret = io_read_prep(req, sqe, true);
4957 break;
4958 case IORING_OP_WRITEV:
4959 case IORING_OP_WRITE_FIXED:
4960 case IORING_OP_WRITE:
4961 ret = io_write_prep(req, sqe, true);
4962 break;
4963 case IORING_OP_POLL_ADD:
4964 ret = io_poll_add_prep(req, sqe);
4965 break;
4966 case IORING_OP_POLL_REMOVE:
4967 ret = io_poll_remove_prep(req, sqe);
4968 break;
4969 case IORING_OP_FSYNC:
4970 ret = io_prep_fsync(req, sqe);
4971 break;
4972 case IORING_OP_SYNC_FILE_RANGE:
4973 ret = io_prep_sfr(req, sqe);
4974 break;
4975 case IORING_OP_SENDMSG:
4976 case IORING_OP_SEND:
4977 ret = io_sendmsg_prep(req, sqe);
4978 break;
4979 case IORING_OP_RECVMSG:
4980 case IORING_OP_RECV:
4981 ret = io_recvmsg_prep(req, sqe);
4982 break;
4983 case IORING_OP_CONNECT:
4984 ret = io_connect_prep(req, sqe);
4985 break;
4986 case IORING_OP_TIMEOUT:
4987 ret = io_timeout_prep(req, sqe, false);
4988 break;
4989 case IORING_OP_TIMEOUT_REMOVE:
4990 ret = io_timeout_remove_prep(req, sqe);
4991 break;
4992 case IORING_OP_ASYNC_CANCEL:
4993 ret = io_async_cancel_prep(req, sqe);
4994 break;
4995 case IORING_OP_LINK_TIMEOUT:
4996 ret = io_timeout_prep(req, sqe, true);
4997 break;
4998 case IORING_OP_ACCEPT:
4999 ret = io_accept_prep(req, sqe);
5000 break;
5001 case IORING_OP_FALLOCATE:
5002 ret = io_fallocate_prep(req, sqe);
5003 break;
5004 case IORING_OP_OPENAT:
5005 ret = io_openat_prep(req, sqe);
5006 break;
5007 case IORING_OP_CLOSE:
5008 ret = io_close_prep(req, sqe);
5009 break;
5010 case IORING_OP_FILES_UPDATE:
5011 ret = io_files_update_prep(req, sqe);
5012 break;
5013 case IORING_OP_STATX:
5014 ret = io_statx_prep(req, sqe);
5015 break;
5016 case IORING_OP_FADVISE:
5017 ret = io_fadvise_prep(req, sqe);
5018 break;
5019 case IORING_OP_MADVISE:
5020 ret = io_madvise_prep(req, sqe);
5021 break;
5022 case IORING_OP_OPENAT2:
5023 ret = io_openat2_prep(req, sqe);
5024 break;
5025 case IORING_OP_EPOLL_CTL:
5026 ret = io_epoll_ctl_prep(req, sqe);
5027 break;
5028 case IORING_OP_SPLICE:
5029 ret = io_splice_prep(req, sqe);
5030 break;
5031 case IORING_OP_PROVIDE_BUFFERS:
5032 ret = io_provide_buffers_prep(req, sqe);
5033 break;
5034 case IORING_OP_REMOVE_BUFFERS:
5035 ret = io_remove_buffers_prep(req, sqe);
5036 break;
5037 case IORING_OP_TEE:
5038 ret = io_tee_prep(req, sqe);
5039 break;
5040 default:
5041 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
5042 req->opcode);
5043 ret = -EINVAL;
5044 break;
5047 return ret;
5050 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5052 struct io_ring_ctx *ctx = req->ctx;
5053 int ret;
5055 /* Still need defer if there is pending req in defer list. */
5056 if (!req_need_defer(req) && list_empty_careful(&ctx->defer_list))
5057 return 0;
5059 if (!req->io) {
5060 if (io_alloc_async_ctx(req))
5061 return -EAGAIN;
5062 ret = io_req_defer_prep(req, sqe);
5063 if (ret < 0)
5064 return ret;
5067 spin_lock_irq(&ctx->completion_lock);
5068 if (!req_need_defer(req) && list_empty(&ctx->defer_list)) {
5069 spin_unlock_irq(&ctx->completion_lock);
5070 return 0;
5073 trace_io_uring_defer(ctx, req, req->user_data);
5074 list_add_tail(&req->list, &ctx->defer_list);
5075 spin_unlock_irq(&ctx->completion_lock);
5076 return -EIOCBQUEUED;
5079 static void io_cleanup_req(struct io_kiocb *req)
5081 struct io_async_ctx *io = req->io;
5083 switch (req->opcode) {
5084 case IORING_OP_READV:
5085 case IORING_OP_READ_FIXED:
5086 case IORING_OP_READ:
5087 if (req->flags & REQ_F_BUFFER_SELECTED)
5088 kfree((void *)(unsigned long)req->rw.addr);
5089 /* fallthrough */
5090 case IORING_OP_WRITEV:
5091 case IORING_OP_WRITE_FIXED:
5092 case IORING_OP_WRITE:
5093 if (io->rw.iov != io->rw.fast_iov)
5094 kfree(io->rw.iov);
5095 break;
5096 case IORING_OP_RECVMSG:
5097 if (req->flags & REQ_F_BUFFER_SELECTED)
5098 kfree(req->sr_msg.kbuf);
5099 /* fallthrough */
5100 case IORING_OP_SENDMSG:
5101 if (io->msg.iov != io->msg.fast_iov)
5102 kfree(io->msg.iov);
5103 break;
5104 case IORING_OP_RECV:
5105 if (req->flags & REQ_F_BUFFER_SELECTED)
5106 kfree(req->sr_msg.kbuf);
5107 break;
5108 case IORING_OP_OPENAT:
5109 case IORING_OP_OPENAT2:
5110 break;
5111 case IORING_OP_SPLICE:
5112 case IORING_OP_TEE:
5113 io_put_file(req, req->splice.file_in,
5114 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
5115 break;
5118 req->flags &= ~REQ_F_NEED_CLEANUP;
5121 static int io_issue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5122 bool force_nonblock)
5124 struct io_ring_ctx *ctx = req->ctx;
5125 int ret;
5127 switch (req->opcode) {
5128 case IORING_OP_NOP:
5129 ret = io_nop(req);
5130 break;
5131 case IORING_OP_READV:
5132 case IORING_OP_READ_FIXED:
5133 case IORING_OP_READ:
5134 if (sqe) {
5135 ret = io_read_prep(req, sqe, force_nonblock);
5136 if (ret < 0)
5137 break;
5139 ret = io_read(req, force_nonblock);
5140 break;
5141 case IORING_OP_WRITEV:
5142 case IORING_OP_WRITE_FIXED:
5143 case IORING_OP_WRITE:
5144 if (sqe) {
5145 ret = io_write_prep(req, sqe, force_nonblock);
5146 if (ret < 0)
5147 break;
5149 ret = io_write(req, force_nonblock);
5150 break;
5151 case IORING_OP_FSYNC:
5152 if (sqe) {
5153 ret = io_prep_fsync(req, sqe);
5154 if (ret < 0)
5155 break;
5157 ret = io_fsync(req, force_nonblock);
5158 break;
5159 case IORING_OP_POLL_ADD:
5160 if (sqe) {
5161 ret = io_poll_add_prep(req, sqe);
5162 if (ret)
5163 break;
5165 ret = io_poll_add(req);
5166 break;
5167 case IORING_OP_POLL_REMOVE:
5168 if (sqe) {
5169 ret = io_poll_remove_prep(req, sqe);
5170 if (ret < 0)
5171 break;
5173 ret = io_poll_remove(req);
5174 break;
5175 case IORING_OP_SYNC_FILE_RANGE:
5176 if (sqe) {
5177 ret = io_prep_sfr(req, sqe);
5178 if (ret < 0)
5179 break;
5181 ret = io_sync_file_range(req, force_nonblock);
5182 break;
5183 case IORING_OP_SENDMSG:
5184 case IORING_OP_SEND:
5185 if (sqe) {
5186 ret = io_sendmsg_prep(req, sqe);
5187 if (ret < 0)
5188 break;
5190 if (req->opcode == IORING_OP_SENDMSG)
5191 ret = io_sendmsg(req, force_nonblock);
5192 else
5193 ret = io_send(req, force_nonblock);
5194 break;
5195 case IORING_OP_RECVMSG:
5196 case IORING_OP_RECV:
5197 if (sqe) {
5198 ret = io_recvmsg_prep(req, sqe);
5199 if (ret)
5200 break;
5202 if (req->opcode == IORING_OP_RECVMSG)
5203 ret = io_recvmsg(req, force_nonblock);
5204 else
5205 ret = io_recv(req, force_nonblock);
5206 break;
5207 case IORING_OP_TIMEOUT:
5208 if (sqe) {
5209 ret = io_timeout_prep(req, sqe, false);
5210 if (ret)
5211 break;
5213 ret = io_timeout(req);
5214 break;
5215 case IORING_OP_TIMEOUT_REMOVE:
5216 if (sqe) {
5217 ret = io_timeout_remove_prep(req, sqe);
5218 if (ret)
5219 break;
5221 ret = io_timeout_remove(req);
5222 break;
5223 case IORING_OP_ACCEPT:
5224 if (sqe) {
5225 ret = io_accept_prep(req, sqe);
5226 if (ret)
5227 break;
5229 ret = io_accept(req, force_nonblock);
5230 break;
5231 case IORING_OP_CONNECT:
5232 if (sqe) {
5233 ret = io_connect_prep(req, sqe);
5234 if (ret)
5235 break;
5237 ret = io_connect(req, force_nonblock);
5238 break;
5239 case IORING_OP_ASYNC_CANCEL:
5240 if (sqe) {
5241 ret = io_async_cancel_prep(req, sqe);
5242 if (ret)
5243 break;
5245 ret = io_async_cancel(req);
5246 break;
5247 case IORING_OP_FALLOCATE:
5248 if (sqe) {
5249 ret = io_fallocate_prep(req, sqe);
5250 if (ret)
5251 break;
5253 ret = io_fallocate(req, force_nonblock);
5254 break;
5255 case IORING_OP_OPENAT:
5256 if (sqe) {
5257 ret = io_openat_prep(req, sqe);
5258 if (ret)
5259 break;
5261 ret = io_openat(req, force_nonblock);
5262 break;
5263 case IORING_OP_CLOSE:
5264 if (sqe) {
5265 ret = io_close_prep(req, sqe);
5266 if (ret)
5267 break;
5269 ret = io_close(req, force_nonblock);
5270 break;
5271 case IORING_OP_FILES_UPDATE:
5272 if (sqe) {
5273 ret = io_files_update_prep(req, sqe);
5274 if (ret)
5275 break;
5277 ret = io_files_update(req, force_nonblock);
5278 break;
5279 case IORING_OP_STATX:
5280 if (sqe) {
5281 ret = io_statx_prep(req, sqe);
5282 if (ret)
5283 break;
5285 ret = io_statx(req, force_nonblock);
5286 break;
5287 case IORING_OP_FADVISE:
5288 if (sqe) {
5289 ret = io_fadvise_prep(req, sqe);
5290 if (ret)
5291 break;
5293 ret = io_fadvise(req, force_nonblock);
5294 break;
5295 case IORING_OP_MADVISE:
5296 if (sqe) {
5297 ret = io_madvise_prep(req, sqe);
5298 if (ret)
5299 break;
5301 ret = io_madvise(req, force_nonblock);
5302 break;
5303 case IORING_OP_OPENAT2:
5304 if (sqe) {
5305 ret = io_openat2_prep(req, sqe);
5306 if (ret)
5307 break;
5309 ret = io_openat2(req, force_nonblock);
5310 break;
5311 case IORING_OP_EPOLL_CTL:
5312 if (sqe) {
5313 ret = io_epoll_ctl_prep(req, sqe);
5314 if (ret)
5315 break;
5317 ret = io_epoll_ctl(req, force_nonblock);
5318 break;
5319 case IORING_OP_SPLICE:
5320 if (sqe) {
5321 ret = io_splice_prep(req, sqe);
5322 if (ret < 0)
5323 break;
5325 ret = io_splice(req, force_nonblock);
5326 break;
5327 case IORING_OP_PROVIDE_BUFFERS:
5328 if (sqe) {
5329 ret = io_provide_buffers_prep(req, sqe);
5330 if (ret)
5331 break;
5333 ret = io_provide_buffers(req, force_nonblock);
5334 break;
5335 case IORING_OP_REMOVE_BUFFERS:
5336 if (sqe) {
5337 ret = io_remove_buffers_prep(req, sqe);
5338 if (ret)
5339 break;
5341 ret = io_remove_buffers(req, force_nonblock);
5342 break;
5343 case IORING_OP_TEE:
5344 if (sqe) {
5345 ret = io_tee_prep(req, sqe);
5346 if (ret < 0)
5347 break;
5349 ret = io_tee(req, force_nonblock);
5350 break;
5351 default:
5352 ret = -EINVAL;
5353 break;
5356 if (ret)
5357 return ret;
5359 /* If the op doesn't have a file, we're not polling for it */
5360 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
5361 const bool in_async = io_wq_current_is_worker();
5363 /* workqueue context doesn't hold uring_lock, grab it now */
5364 if (in_async)
5365 mutex_lock(&ctx->uring_lock);
5367 io_iopoll_req_issued(req);
5369 if (in_async)
5370 mutex_unlock(&ctx->uring_lock);
5373 return 0;
5376 static void io_arm_async_linked_timeout(struct io_kiocb *req)
5378 struct io_kiocb *link;
5380 /* link head's timeout is queued in io_queue_async_work() */
5381 if (!(req->flags & REQ_F_QUEUE_TIMEOUT))
5382 return;
5384 link = list_first_entry(&req->link_list, struct io_kiocb, link_list);
5385 io_queue_linked_timeout(link);
5388 static void io_wq_submit_work(struct io_wq_work **workptr)
5390 struct io_wq_work *work = *workptr;
5391 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5392 int ret = 0;
5394 io_arm_async_linked_timeout(req);
5396 /* if NO_CANCEL is set, we must still run the work */
5397 if ((work->flags & (IO_WQ_WORK_CANCEL|IO_WQ_WORK_NO_CANCEL)) ==
5398 IO_WQ_WORK_CANCEL) {
5399 ret = -ECANCELED;
5402 if (!ret) {
5403 do {
5404 ret = io_issue_sqe(req, NULL, false);
5406 * We can get EAGAIN for polled IO even though we're
5407 * forcing a sync submission from here, since we can't
5408 * wait for request slots on the block side.
5410 if (ret != -EAGAIN)
5411 break;
5412 cond_resched();
5413 } while (1);
5416 if (ret) {
5417 req_set_fail_links(req);
5418 io_cqring_add_event(req, ret);
5419 io_put_req(req);
5422 io_steal_work(req, workptr);
5425 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
5426 int index)
5428 struct fixed_file_table *table;
5430 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
5431 return table->files[index & IORING_FILE_TABLE_MASK];
5434 static int io_file_get(struct io_submit_state *state, struct io_kiocb *req,
5435 int fd, struct file **out_file, bool fixed)
5437 struct io_ring_ctx *ctx = req->ctx;
5438 struct file *file;
5440 if (fixed) {
5441 if (unlikely(!ctx->file_data ||
5442 (unsigned) fd >= ctx->nr_user_files))
5443 return -EBADF;
5444 fd = array_index_nospec(fd, ctx->nr_user_files);
5445 file = io_file_from_index(ctx, fd);
5446 if (file) {
5447 req->fixed_file_refs = ctx->file_data->cur_refs;
5448 percpu_ref_get(req->fixed_file_refs);
5450 } else {
5451 trace_io_uring_file_get(ctx, fd);
5452 file = __io_file_get(state, fd);
5455 if (file || io_op_defs[req->opcode].needs_file_no_error) {
5456 *out_file = file;
5457 return 0;
5459 return -EBADF;
5462 static int io_req_set_file(struct io_submit_state *state, struct io_kiocb *req,
5463 int fd)
5465 bool fixed;
5467 fixed = (req->flags & REQ_F_FIXED_FILE) != 0;
5468 if (unlikely(!fixed && io_async_submit(req->ctx)))
5469 return -EBADF;
5471 return io_file_get(state, req, fd, &req->file, fixed);
5474 static int io_grab_files(struct io_kiocb *req)
5476 int ret = -EBADF;
5477 struct io_ring_ctx *ctx = req->ctx;
5479 if (req->work.files || (req->flags & REQ_F_NO_FILE_TABLE))
5480 return 0;
5481 if (!ctx->ring_file)
5482 return -EBADF;
5484 rcu_read_lock();
5485 spin_lock_irq(&ctx->inflight_lock);
5487 * We use the f_ops->flush() handler to ensure that we can flush
5488 * out work accessing these files if the fd is closed. Check if
5489 * the fd has changed since we started down this path, and disallow
5490 * this operation if it has.
5492 if (fcheck(ctx->ring_fd) == ctx->ring_file) {
5493 list_add(&req->inflight_entry, &ctx->inflight_list);
5494 req->flags |= REQ_F_INFLIGHT;
5495 req->work.files = current->files;
5496 ret = 0;
5498 spin_unlock_irq(&ctx->inflight_lock);
5499 rcu_read_unlock();
5501 return ret;
5504 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
5506 struct io_timeout_data *data = container_of(timer,
5507 struct io_timeout_data, timer);
5508 struct io_kiocb *req = data->req;
5509 struct io_ring_ctx *ctx = req->ctx;
5510 struct io_kiocb *prev = NULL;
5511 unsigned long flags;
5513 spin_lock_irqsave(&ctx->completion_lock, flags);
5516 * We don't expect the list to be empty, that will only happen if we
5517 * race with the completion of the linked work.
5519 if (!list_empty(&req->link_list)) {
5520 prev = list_entry(req->link_list.prev, struct io_kiocb,
5521 link_list);
5522 if (refcount_inc_not_zero(&prev->refs)) {
5523 list_del_init(&req->link_list);
5524 prev->flags &= ~REQ_F_LINK_TIMEOUT;
5525 } else
5526 prev = NULL;
5529 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5531 if (prev) {
5532 req_set_fail_links(prev);
5533 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
5534 io_put_req(prev);
5535 } else {
5536 io_cqring_add_event(req, -ETIME);
5537 io_put_req(req);
5539 return HRTIMER_NORESTART;
5542 static void io_queue_linked_timeout(struct io_kiocb *req)
5544 struct io_ring_ctx *ctx = req->ctx;
5547 * If the list is now empty, then our linked request finished before
5548 * we got a chance to setup the timer
5550 spin_lock_irq(&ctx->completion_lock);
5551 if (!list_empty(&req->link_list)) {
5552 struct io_timeout_data *data = &req->io->timeout;
5554 data->timer.function = io_link_timeout_fn;
5555 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
5556 data->mode);
5558 spin_unlock_irq(&ctx->completion_lock);
5560 /* drop submission reference */
5561 io_put_req(req);
5564 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
5566 struct io_kiocb *nxt;
5568 if (!(req->flags & REQ_F_LINK_HEAD))
5569 return NULL;
5570 /* for polled retry, if flag is set, we already went through here */
5571 if (req->flags & REQ_F_POLLED)
5572 return NULL;
5574 nxt = list_first_entry_or_null(&req->link_list, struct io_kiocb,
5575 link_list);
5576 if (!nxt || nxt->opcode != IORING_OP_LINK_TIMEOUT)
5577 return NULL;
5579 req->flags |= REQ_F_LINK_TIMEOUT;
5580 return nxt;
5583 static void __io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5585 struct io_kiocb *linked_timeout;
5586 struct io_kiocb *nxt;
5587 const struct cred *old_creds = NULL;
5588 int ret;
5590 again:
5591 linked_timeout = io_prep_linked_timeout(req);
5593 if ((req->flags & REQ_F_WORK_INITIALIZED) && req->work.creds &&
5594 req->work.creds != current_cred()) {
5595 if (old_creds)
5596 revert_creds(old_creds);
5597 if (old_creds == req->work.creds)
5598 old_creds = NULL; /* restored original creds */
5599 else
5600 old_creds = override_creds(req->work.creds);
5603 ret = io_issue_sqe(req, sqe, true);
5606 * We async punt it if the file wasn't marked NOWAIT, or if the file
5607 * doesn't support non-blocking read/write attempts
5609 if (ret == -EAGAIN && (!(req->flags & REQ_F_NOWAIT) ||
5610 (req->flags & REQ_F_MUST_PUNT))) {
5611 if (io_arm_poll_handler(req)) {
5612 if (linked_timeout)
5613 io_queue_linked_timeout(linked_timeout);
5614 goto exit;
5616 punt:
5617 io_req_init_async(req);
5619 if (io_op_defs[req->opcode].file_table) {
5620 ret = io_grab_files(req);
5621 if (ret)
5622 goto err;
5626 * Queued up for async execution, worker will release
5627 * submit reference when the iocb is actually submitted.
5629 io_queue_async_work(req);
5630 goto exit;
5633 err:
5634 nxt = NULL;
5635 /* drop submission reference */
5636 io_put_req_find_next(req, &nxt);
5638 if (linked_timeout) {
5639 if (!ret)
5640 io_queue_linked_timeout(linked_timeout);
5641 else
5642 io_put_req(linked_timeout);
5645 /* and drop final reference, if we failed */
5646 if (ret) {
5647 io_cqring_add_event(req, ret);
5648 req_set_fail_links(req);
5649 io_put_req(req);
5651 if (nxt) {
5652 req = nxt;
5654 if (req->flags & REQ_F_FORCE_ASYNC)
5655 goto punt;
5656 goto again;
5658 exit:
5659 if (old_creds)
5660 revert_creds(old_creds);
5663 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5665 int ret;
5667 ret = io_req_defer(req, sqe);
5668 if (ret) {
5669 if (ret != -EIOCBQUEUED) {
5670 fail_req:
5671 io_cqring_add_event(req, ret);
5672 req_set_fail_links(req);
5673 io_double_put_req(req);
5675 } else if (req->flags & REQ_F_FORCE_ASYNC) {
5676 if (!req->io) {
5677 ret = -EAGAIN;
5678 if (io_alloc_async_ctx(req))
5679 goto fail_req;
5680 ret = io_req_defer_prep(req, sqe);
5681 if (unlikely(ret < 0))
5682 goto fail_req;
5686 * Never try inline submit of IOSQE_ASYNC is set, go straight
5687 * to async execution.
5689 req->work.flags |= IO_WQ_WORK_CONCURRENT;
5690 io_queue_async_work(req);
5691 } else {
5692 __io_queue_sqe(req, sqe);
5696 static inline void io_queue_link_head(struct io_kiocb *req)
5698 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
5699 io_cqring_add_event(req, -ECANCELED);
5700 io_double_put_req(req);
5701 } else
5702 io_queue_sqe(req, NULL);
5705 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5706 struct io_kiocb **link)
5708 struct io_ring_ctx *ctx = req->ctx;
5709 int ret;
5712 * If we already have a head request, queue this one for async
5713 * submittal once the head completes. If we don't have a head but
5714 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
5715 * submitted sync once the chain is complete. If none of those
5716 * conditions are true (normal request), then just queue it.
5718 if (*link) {
5719 struct io_kiocb *head = *link;
5722 * Taking sequential execution of a link, draining both sides
5723 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
5724 * requests in the link. So, it drains the head and the
5725 * next after the link request. The last one is done via
5726 * drain_next flag to persist the effect across calls.
5728 if (req->flags & REQ_F_IO_DRAIN) {
5729 head->flags |= REQ_F_IO_DRAIN;
5730 ctx->drain_next = 1;
5732 if (io_alloc_async_ctx(req))
5733 return -EAGAIN;
5735 ret = io_req_defer_prep(req, sqe);
5736 if (ret) {
5737 /* fail even hard links since we don't submit */
5738 head->flags |= REQ_F_FAIL_LINK;
5739 return ret;
5741 trace_io_uring_link(ctx, req, head);
5742 list_add_tail(&req->link_list, &head->link_list);
5744 /* last request of a link, enqueue the link */
5745 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
5746 io_queue_link_head(head);
5747 *link = NULL;
5749 } else {
5750 if (unlikely(ctx->drain_next)) {
5751 req->flags |= REQ_F_IO_DRAIN;
5752 ctx->drain_next = 0;
5754 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
5755 req->flags |= REQ_F_LINK_HEAD;
5756 INIT_LIST_HEAD(&req->link_list);
5758 if (io_alloc_async_ctx(req))
5759 return -EAGAIN;
5761 ret = io_req_defer_prep(req, sqe);
5762 if (ret)
5763 req->flags |= REQ_F_FAIL_LINK;
5764 *link = req;
5765 } else {
5766 io_queue_sqe(req, sqe);
5770 return 0;
5774 * Batched submission is done, ensure local IO is flushed out.
5776 static void io_submit_state_end(struct io_submit_state *state)
5778 blk_finish_plug(&state->plug);
5779 io_state_file_put(state);
5780 if (state->free_reqs)
5781 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
5785 * Start submission side cache.
5787 static void io_submit_state_start(struct io_submit_state *state,
5788 unsigned int max_ios)
5790 blk_start_plug(&state->plug);
5791 state->free_reqs = 0;
5792 state->file = NULL;
5793 state->ios_left = max_ios;
5796 static void io_commit_sqring(struct io_ring_ctx *ctx)
5798 struct io_rings *rings = ctx->rings;
5801 * Ensure any loads from the SQEs are done at this point,
5802 * since once we write the new head, the application could
5803 * write new data to them.
5805 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
5809 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
5810 * that is mapped by userspace. This means that care needs to be taken to
5811 * ensure that reads are stable, as we cannot rely on userspace always
5812 * being a good citizen. If members of the sqe are validated and then later
5813 * used, it's important that those reads are done through READ_ONCE() to
5814 * prevent a re-load down the line.
5816 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
5818 u32 *sq_array = ctx->sq_array;
5819 unsigned head;
5822 * The cached sq head (or cq tail) serves two purposes:
5824 * 1) allows us to batch the cost of updating the user visible
5825 * head updates.
5826 * 2) allows the kernel side to track the head on its own, even
5827 * though the application is the one updating it.
5829 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
5830 if (likely(head < ctx->sq_entries))
5831 return &ctx->sq_sqes[head];
5833 /* drop invalid entries */
5834 ctx->cached_sq_dropped++;
5835 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
5836 return NULL;
5839 static inline void io_consume_sqe(struct io_ring_ctx *ctx)
5841 ctx->cached_sq_head++;
5844 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
5845 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
5846 IOSQE_BUFFER_SELECT)
5848 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
5849 const struct io_uring_sqe *sqe,
5850 struct io_submit_state *state)
5852 unsigned int sqe_flags;
5853 int id;
5856 * All io need record the previous position, if LINK vs DARIN,
5857 * it can be used to mark the position of the first IO in the
5858 * link list.
5860 req->sequence = ctx->cached_sq_head - ctx->cached_sq_dropped;
5861 req->opcode = READ_ONCE(sqe->opcode);
5862 req->user_data = READ_ONCE(sqe->user_data);
5863 req->io = NULL;
5864 req->file = NULL;
5865 req->ctx = ctx;
5866 req->flags = 0;
5867 /* one is dropped after submission, the other at completion */
5868 refcount_set(&req->refs, 2);
5869 req->task = current;
5870 req->result = 0;
5872 if (unlikely(req->opcode >= IORING_OP_LAST))
5873 return -EINVAL;
5875 if (unlikely(io_sq_thread_acquire_mm(ctx, req)))
5876 return -EFAULT;
5878 sqe_flags = READ_ONCE(sqe->flags);
5879 /* enforce forwards compatibility on users */
5880 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
5881 return -EINVAL;
5883 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
5884 !io_op_defs[req->opcode].buffer_select)
5885 return -EOPNOTSUPP;
5887 id = READ_ONCE(sqe->personality);
5888 if (id) {
5889 io_req_init_async(req);
5890 req->work.creds = idr_find(&ctx->personality_idr, id);
5891 if (unlikely(!req->work.creds))
5892 return -EINVAL;
5893 get_cred(req->work.creds);
5896 /* same numerical values with corresponding REQ_F_*, safe to copy */
5897 req->flags |= sqe_flags;
5899 if (!io_op_defs[req->opcode].needs_file)
5900 return 0;
5902 return io_req_set_file(state, req, READ_ONCE(sqe->fd));
5905 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr,
5906 struct file *ring_file, int ring_fd)
5908 struct io_submit_state state, *statep = NULL;
5909 struct io_kiocb *link = NULL;
5910 int i, submitted = 0;
5912 /* if we have a backlog and couldn't flush it all, return BUSY */
5913 if (test_bit(0, &ctx->sq_check_overflow)) {
5914 if (!list_empty(&ctx->cq_overflow_list) &&
5915 !io_cqring_overflow_flush(ctx, false))
5916 return -EBUSY;
5919 /* make sure SQ entry isn't read before tail */
5920 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
5922 if (!percpu_ref_tryget_many(&ctx->refs, nr))
5923 return -EAGAIN;
5925 if (nr > IO_PLUG_THRESHOLD) {
5926 io_submit_state_start(&state, nr);
5927 statep = &state;
5930 ctx->ring_fd = ring_fd;
5931 ctx->ring_file = ring_file;
5933 for (i = 0; i < nr; i++) {
5934 const struct io_uring_sqe *sqe;
5935 struct io_kiocb *req;
5936 int err;
5938 sqe = io_get_sqe(ctx);
5939 if (unlikely(!sqe)) {
5940 io_consume_sqe(ctx);
5941 break;
5943 req = io_alloc_req(ctx, statep);
5944 if (unlikely(!req)) {
5945 if (!submitted)
5946 submitted = -EAGAIN;
5947 break;
5950 err = io_init_req(ctx, req, sqe, statep);
5951 io_consume_sqe(ctx);
5952 /* will complete beyond this point, count as submitted */
5953 submitted++;
5955 if (unlikely(err)) {
5956 fail_req:
5957 io_cqring_add_event(req, err);
5958 io_double_put_req(req);
5959 break;
5962 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
5963 true, io_async_submit(ctx));
5964 err = io_submit_sqe(req, sqe, &link);
5965 if (err)
5966 goto fail_req;
5969 if (unlikely(submitted != nr)) {
5970 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
5972 percpu_ref_put_many(&ctx->refs, nr - ref_used);
5974 if (link)
5975 io_queue_link_head(link);
5976 if (statep)
5977 io_submit_state_end(&state);
5979 /* Commit SQ ring head once we've consumed and submitted all SQEs */
5980 io_commit_sqring(ctx);
5982 return submitted;
5985 static int io_sq_thread(void *data)
5987 struct io_ring_ctx *ctx = data;
5988 const struct cred *old_cred;
5989 DEFINE_WAIT(wait);
5990 unsigned long timeout;
5991 int ret = 0;
5993 complete(&ctx->sq_thread_comp);
5995 old_cred = override_creds(ctx->creds);
5997 timeout = jiffies + ctx->sq_thread_idle;
5998 while (!kthread_should_park()) {
5999 unsigned int to_submit;
6001 if (!list_empty(&ctx->poll_list)) {
6002 unsigned nr_events = 0;
6004 mutex_lock(&ctx->uring_lock);
6005 if (!list_empty(&ctx->poll_list))
6006 io_iopoll_getevents(ctx, &nr_events, 0);
6007 else
6008 timeout = jiffies + ctx->sq_thread_idle;
6009 mutex_unlock(&ctx->uring_lock);
6012 to_submit = io_sqring_entries(ctx);
6015 * If submit got -EBUSY, flag us as needing the application
6016 * to enter the kernel to reap and flush events.
6018 if (!to_submit || ret == -EBUSY || need_resched()) {
6020 * Drop cur_mm before scheduling, we can't hold it for
6021 * long periods (or over schedule()). Do this before
6022 * adding ourselves to the waitqueue, as the unuse/drop
6023 * may sleep.
6025 io_sq_thread_drop_mm(ctx);
6028 * We're polling. If we're within the defined idle
6029 * period, then let us spin without work before going
6030 * to sleep. The exception is if we got EBUSY doing
6031 * more IO, we should wait for the application to
6032 * reap events and wake us up.
6034 if (!list_empty(&ctx->poll_list) || need_resched() ||
6035 (!time_after(jiffies, timeout) && ret != -EBUSY &&
6036 !percpu_ref_is_dying(&ctx->refs))) {
6037 if (current->task_works)
6038 task_work_run();
6039 cond_resched();
6040 continue;
6043 prepare_to_wait(&ctx->sqo_wait, &wait,
6044 TASK_INTERRUPTIBLE);
6047 * While doing polled IO, before going to sleep, we need
6048 * to check if there are new reqs added to poll_list, it
6049 * is because reqs may have been punted to io worker and
6050 * will be added to poll_list later, hence check the
6051 * poll_list again.
6053 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
6054 !list_empty_careful(&ctx->poll_list)) {
6055 finish_wait(&ctx->sqo_wait, &wait);
6056 continue;
6059 /* Tell userspace we may need a wakeup call */
6060 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6061 /* make sure to read SQ tail after writing flags */
6062 smp_mb();
6064 to_submit = io_sqring_entries(ctx);
6065 if (!to_submit || ret == -EBUSY) {
6066 if (kthread_should_park()) {
6067 finish_wait(&ctx->sqo_wait, &wait);
6068 break;
6070 if (current->task_works) {
6071 task_work_run();
6072 finish_wait(&ctx->sqo_wait, &wait);
6073 continue;
6075 if (signal_pending(current))
6076 flush_signals(current);
6077 schedule();
6078 finish_wait(&ctx->sqo_wait, &wait);
6080 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6081 ret = 0;
6082 continue;
6084 finish_wait(&ctx->sqo_wait, &wait);
6086 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6089 mutex_lock(&ctx->uring_lock);
6090 if (likely(!percpu_ref_is_dying(&ctx->refs)))
6091 ret = io_submit_sqes(ctx, to_submit, NULL, -1);
6092 mutex_unlock(&ctx->uring_lock);
6093 timeout = jiffies + ctx->sq_thread_idle;
6096 if (current->task_works)
6097 task_work_run();
6099 io_sq_thread_drop_mm(ctx);
6100 revert_creds(old_cred);
6102 kthread_parkme();
6104 return 0;
6107 struct io_wait_queue {
6108 struct wait_queue_entry wq;
6109 struct io_ring_ctx *ctx;
6110 unsigned to_wait;
6111 unsigned nr_timeouts;
6114 static inline bool io_should_wake(struct io_wait_queue *iowq, bool noflush)
6116 struct io_ring_ctx *ctx = iowq->ctx;
6119 * Wake up if we have enough events, or if a timeout occurred since we
6120 * started waiting. For timeouts, we always want to return to userspace,
6121 * regardless of event count.
6123 return io_cqring_events(ctx, noflush) >= iowq->to_wait ||
6124 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
6127 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
6128 int wake_flags, void *key)
6130 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
6131 wq);
6133 /* use noflush == true, as we can't safely rely on locking context */
6134 if (!io_should_wake(iowq, true))
6135 return -1;
6137 return autoremove_wake_function(curr, mode, wake_flags, key);
6141 * Wait until events become available, if we don't already have some. The
6142 * application must reap them itself, as they reside on the shared cq ring.
6144 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
6145 const sigset_t __user *sig, size_t sigsz)
6147 struct io_wait_queue iowq = {
6148 .wq = {
6149 .private = current,
6150 .func = io_wake_function,
6151 .entry = LIST_HEAD_INIT(iowq.wq.entry),
6153 .ctx = ctx,
6154 .to_wait = min_events,
6156 struct io_rings *rings = ctx->rings;
6157 int ret = 0;
6159 do {
6160 if (io_cqring_events(ctx, false) >= min_events)
6161 return 0;
6162 if (!current->task_works)
6163 break;
6164 task_work_run();
6165 } while (1);
6167 if (sig) {
6168 #ifdef CONFIG_COMPAT
6169 if (in_compat_syscall())
6170 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
6171 sigsz);
6172 else
6173 #endif
6174 ret = set_user_sigmask(sig, sigsz);
6176 if (ret)
6177 return ret;
6180 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
6181 trace_io_uring_cqring_wait(ctx, min_events);
6182 do {
6183 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
6184 TASK_INTERRUPTIBLE);
6185 if (current->task_works)
6186 task_work_run();
6187 if (io_should_wake(&iowq, false))
6188 break;
6189 schedule();
6190 if (signal_pending(current)) {
6191 ret = -EINTR;
6192 break;
6194 } while (1);
6195 finish_wait(&ctx->wait, &iowq.wq);
6197 restore_saved_sigmask_unless(ret == -EINTR);
6199 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
6202 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
6204 #if defined(CONFIG_UNIX)
6205 if (ctx->ring_sock) {
6206 struct sock *sock = ctx->ring_sock->sk;
6207 struct sk_buff *skb;
6209 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
6210 kfree_skb(skb);
6212 #else
6213 int i;
6215 for (i = 0; i < ctx->nr_user_files; i++) {
6216 struct file *file;
6218 file = io_file_from_index(ctx, i);
6219 if (file)
6220 fput(file);
6222 #endif
6225 static void io_file_ref_kill(struct percpu_ref *ref)
6227 struct fixed_file_data *data;
6229 data = container_of(ref, struct fixed_file_data, refs);
6230 complete(&data->done);
6233 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
6235 struct fixed_file_data *data = ctx->file_data;
6236 struct fixed_file_ref_node *ref_node = NULL;
6237 unsigned nr_tables, i;
6239 if (!data)
6240 return -ENXIO;
6242 spin_lock(&data->lock);
6243 if (!list_empty(&data->ref_list))
6244 ref_node = list_first_entry(&data->ref_list,
6245 struct fixed_file_ref_node, node);
6246 spin_unlock(&data->lock);
6247 if (ref_node)
6248 percpu_ref_kill(&ref_node->refs);
6250 percpu_ref_kill(&data->refs);
6252 /* wait for all refs nodes to complete */
6253 flush_delayed_work(&ctx->file_put_work);
6254 wait_for_completion(&data->done);
6256 __io_sqe_files_unregister(ctx);
6257 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
6258 for (i = 0; i < nr_tables; i++)
6259 kfree(data->table[i].files);
6260 kfree(data->table);
6261 percpu_ref_exit(&data->refs);
6262 kfree(data);
6263 ctx->file_data = NULL;
6264 ctx->nr_user_files = 0;
6265 return 0;
6268 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
6270 if (ctx->sqo_thread) {
6271 wait_for_completion(&ctx->sq_thread_comp);
6273 * The park is a bit of a work-around, without it we get
6274 * warning spews on shutdown with SQPOLL set and affinity
6275 * set to a single CPU.
6277 kthread_park(ctx->sqo_thread);
6278 kthread_stop(ctx->sqo_thread);
6279 ctx->sqo_thread = NULL;
6283 static void io_finish_async(struct io_ring_ctx *ctx)
6285 io_sq_thread_stop(ctx);
6287 if (ctx->io_wq) {
6288 io_wq_destroy(ctx->io_wq);
6289 ctx->io_wq = NULL;
6293 #if defined(CONFIG_UNIX)
6295 * Ensure the UNIX gc is aware of our file set, so we are certain that
6296 * the io_uring can be safely unregistered on process exit, even if we have
6297 * loops in the file referencing.
6299 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
6301 struct sock *sk = ctx->ring_sock->sk;
6302 struct scm_fp_list *fpl;
6303 struct sk_buff *skb;
6304 int i, nr_files;
6306 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
6307 if (!fpl)
6308 return -ENOMEM;
6310 skb = alloc_skb(0, GFP_KERNEL);
6311 if (!skb) {
6312 kfree(fpl);
6313 return -ENOMEM;
6316 skb->sk = sk;
6318 nr_files = 0;
6319 fpl->user = get_uid(ctx->user);
6320 for (i = 0; i < nr; i++) {
6321 struct file *file = io_file_from_index(ctx, i + offset);
6323 if (!file)
6324 continue;
6325 fpl->fp[nr_files] = get_file(file);
6326 unix_inflight(fpl->user, fpl->fp[nr_files]);
6327 nr_files++;
6330 if (nr_files) {
6331 fpl->max = SCM_MAX_FD;
6332 fpl->count = nr_files;
6333 UNIXCB(skb).fp = fpl;
6334 skb->destructor = unix_destruct_scm;
6335 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
6336 skb_queue_head(&sk->sk_receive_queue, skb);
6338 for (i = 0; i < nr_files; i++)
6339 fput(fpl->fp[i]);
6340 } else {
6341 kfree_skb(skb);
6342 kfree(fpl);
6345 return 0;
6349 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
6350 * causes regular reference counting to break down. We rely on the UNIX
6351 * garbage collection to take care of this problem for us.
6353 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
6355 unsigned left, total;
6356 int ret = 0;
6358 total = 0;
6359 left = ctx->nr_user_files;
6360 while (left) {
6361 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
6363 ret = __io_sqe_files_scm(ctx, this_files, total);
6364 if (ret)
6365 break;
6366 left -= this_files;
6367 total += this_files;
6370 if (!ret)
6371 return 0;
6373 while (total < ctx->nr_user_files) {
6374 struct file *file = io_file_from_index(ctx, total);
6376 if (file)
6377 fput(file);
6378 total++;
6381 return ret;
6383 #else
6384 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
6386 return 0;
6388 #endif
6390 static int io_sqe_alloc_file_tables(struct io_ring_ctx *ctx, unsigned nr_tables,
6391 unsigned nr_files)
6393 int i;
6395 for (i = 0; i < nr_tables; i++) {
6396 struct fixed_file_table *table = &ctx->file_data->table[i];
6397 unsigned this_files;
6399 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
6400 table->files = kcalloc(this_files, sizeof(struct file *),
6401 GFP_KERNEL);
6402 if (!table->files)
6403 break;
6404 nr_files -= this_files;
6407 if (i == nr_tables)
6408 return 0;
6410 for (i = 0; i < nr_tables; i++) {
6411 struct fixed_file_table *table = &ctx->file_data->table[i];
6412 kfree(table->files);
6414 return 1;
6417 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
6419 #if defined(CONFIG_UNIX)
6420 struct sock *sock = ctx->ring_sock->sk;
6421 struct sk_buff_head list, *head = &sock->sk_receive_queue;
6422 struct sk_buff *skb;
6423 int i;
6425 __skb_queue_head_init(&list);
6428 * Find the skb that holds this file in its SCM_RIGHTS. When found,
6429 * remove this entry and rearrange the file array.
6431 skb = skb_dequeue(head);
6432 while (skb) {
6433 struct scm_fp_list *fp;
6435 fp = UNIXCB(skb).fp;
6436 for (i = 0; i < fp->count; i++) {
6437 int left;
6439 if (fp->fp[i] != file)
6440 continue;
6442 unix_notinflight(fp->user, fp->fp[i]);
6443 left = fp->count - 1 - i;
6444 if (left) {
6445 memmove(&fp->fp[i], &fp->fp[i + 1],
6446 left * sizeof(struct file *));
6448 fp->count--;
6449 if (!fp->count) {
6450 kfree_skb(skb);
6451 skb = NULL;
6452 } else {
6453 __skb_queue_tail(&list, skb);
6455 fput(file);
6456 file = NULL;
6457 break;
6460 if (!file)
6461 break;
6463 __skb_queue_tail(&list, skb);
6465 skb = skb_dequeue(head);
6468 if (skb_peek(&list)) {
6469 spin_lock_irq(&head->lock);
6470 while ((skb = __skb_dequeue(&list)) != NULL)
6471 __skb_queue_tail(head, skb);
6472 spin_unlock_irq(&head->lock);
6474 #else
6475 fput(file);
6476 #endif
6479 struct io_file_put {
6480 struct list_head list;
6481 struct file *file;
6484 static void __io_file_put_work(struct fixed_file_ref_node *ref_node)
6486 struct fixed_file_data *file_data = ref_node->file_data;
6487 struct io_ring_ctx *ctx = file_data->ctx;
6488 struct io_file_put *pfile, *tmp;
6490 list_for_each_entry_safe(pfile, tmp, &ref_node->file_list, list) {
6491 list_del(&pfile->list);
6492 io_ring_file_put(ctx, pfile->file);
6493 kfree(pfile);
6496 spin_lock(&file_data->lock);
6497 list_del(&ref_node->node);
6498 spin_unlock(&file_data->lock);
6500 percpu_ref_exit(&ref_node->refs);
6501 kfree(ref_node);
6502 percpu_ref_put(&file_data->refs);
6505 static void io_file_put_work(struct work_struct *work)
6507 struct io_ring_ctx *ctx;
6508 struct llist_node *node;
6510 ctx = container_of(work, struct io_ring_ctx, file_put_work.work);
6511 node = llist_del_all(&ctx->file_put_llist);
6513 while (node) {
6514 struct fixed_file_ref_node *ref_node;
6515 struct llist_node *next = node->next;
6517 ref_node = llist_entry(node, struct fixed_file_ref_node, llist);
6518 __io_file_put_work(ref_node);
6519 node = next;
6523 static void io_file_data_ref_zero(struct percpu_ref *ref)
6525 struct fixed_file_ref_node *ref_node;
6526 struct io_ring_ctx *ctx;
6527 bool first_add;
6528 int delay = HZ;
6530 ref_node = container_of(ref, struct fixed_file_ref_node, refs);
6531 ctx = ref_node->file_data->ctx;
6533 if (percpu_ref_is_dying(&ctx->file_data->refs))
6534 delay = 0;
6536 first_add = llist_add(&ref_node->llist, &ctx->file_put_llist);
6537 if (!delay)
6538 mod_delayed_work(system_wq, &ctx->file_put_work, 0);
6539 else if (first_add)
6540 queue_delayed_work(system_wq, &ctx->file_put_work, delay);
6543 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
6544 struct io_ring_ctx *ctx)
6546 struct fixed_file_ref_node *ref_node;
6548 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
6549 if (!ref_node)
6550 return ERR_PTR(-ENOMEM);
6552 if (percpu_ref_init(&ref_node->refs, io_file_data_ref_zero,
6553 0, GFP_KERNEL)) {
6554 kfree(ref_node);
6555 return ERR_PTR(-ENOMEM);
6557 INIT_LIST_HEAD(&ref_node->node);
6558 INIT_LIST_HEAD(&ref_node->file_list);
6559 ref_node->file_data = ctx->file_data;
6560 return ref_node;
6563 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node)
6565 percpu_ref_exit(&ref_node->refs);
6566 kfree(ref_node);
6569 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
6570 unsigned nr_args)
6572 __s32 __user *fds = (__s32 __user *) arg;
6573 unsigned nr_tables;
6574 struct file *file;
6575 int fd, ret = 0;
6576 unsigned i;
6577 struct fixed_file_ref_node *ref_node;
6579 if (ctx->file_data)
6580 return -EBUSY;
6581 if (!nr_args)
6582 return -EINVAL;
6583 if (nr_args > IORING_MAX_FIXED_FILES)
6584 return -EMFILE;
6586 ctx->file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL);
6587 if (!ctx->file_data)
6588 return -ENOMEM;
6589 ctx->file_data->ctx = ctx;
6590 init_completion(&ctx->file_data->done);
6591 INIT_LIST_HEAD(&ctx->file_data->ref_list);
6592 spin_lock_init(&ctx->file_data->lock);
6594 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
6595 ctx->file_data->table = kcalloc(nr_tables,
6596 sizeof(struct fixed_file_table),
6597 GFP_KERNEL);
6598 if (!ctx->file_data->table) {
6599 kfree(ctx->file_data);
6600 ctx->file_data = NULL;
6601 return -ENOMEM;
6604 if (percpu_ref_init(&ctx->file_data->refs, io_file_ref_kill,
6605 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) {
6606 kfree(ctx->file_data->table);
6607 kfree(ctx->file_data);
6608 ctx->file_data = NULL;
6609 return -ENOMEM;
6612 if (io_sqe_alloc_file_tables(ctx, nr_tables, nr_args)) {
6613 percpu_ref_exit(&ctx->file_data->refs);
6614 kfree(ctx->file_data->table);
6615 kfree(ctx->file_data);
6616 ctx->file_data = NULL;
6617 return -ENOMEM;
6620 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
6621 struct fixed_file_table *table;
6622 unsigned index;
6624 ret = -EFAULT;
6625 if (copy_from_user(&fd, &fds[i], sizeof(fd)))
6626 break;
6627 /* allow sparse sets */
6628 if (fd == -1) {
6629 ret = 0;
6630 continue;
6633 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
6634 index = i & IORING_FILE_TABLE_MASK;
6635 file = fget(fd);
6637 ret = -EBADF;
6638 if (!file)
6639 break;
6642 * Don't allow io_uring instances to be registered. If UNIX
6643 * isn't enabled, then this causes a reference cycle and this
6644 * instance can never get freed. If UNIX is enabled we'll
6645 * handle it just fine, but there's still no point in allowing
6646 * a ring fd as it doesn't support regular read/write anyway.
6648 if (file->f_op == &io_uring_fops) {
6649 fput(file);
6650 break;
6652 ret = 0;
6653 table->files[index] = file;
6656 if (ret) {
6657 for (i = 0; i < ctx->nr_user_files; i++) {
6658 file = io_file_from_index(ctx, i);
6659 if (file)
6660 fput(file);
6662 for (i = 0; i < nr_tables; i++)
6663 kfree(ctx->file_data->table[i].files);
6665 kfree(ctx->file_data->table);
6666 kfree(ctx->file_data);
6667 ctx->file_data = NULL;
6668 ctx->nr_user_files = 0;
6669 return ret;
6672 ret = io_sqe_files_scm(ctx);
6673 if (ret) {
6674 io_sqe_files_unregister(ctx);
6675 return ret;
6678 ref_node = alloc_fixed_file_ref_node(ctx);
6679 if (IS_ERR(ref_node)) {
6680 io_sqe_files_unregister(ctx);
6681 return PTR_ERR(ref_node);
6684 ctx->file_data->cur_refs = &ref_node->refs;
6685 spin_lock(&ctx->file_data->lock);
6686 list_add(&ref_node->node, &ctx->file_data->ref_list);
6687 spin_unlock(&ctx->file_data->lock);
6688 percpu_ref_get(&ctx->file_data->refs);
6689 return ret;
6692 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
6693 int index)
6695 #if defined(CONFIG_UNIX)
6696 struct sock *sock = ctx->ring_sock->sk;
6697 struct sk_buff_head *head = &sock->sk_receive_queue;
6698 struct sk_buff *skb;
6701 * See if we can merge this file into an existing skb SCM_RIGHTS
6702 * file set. If there's no room, fall back to allocating a new skb
6703 * and filling it in.
6705 spin_lock_irq(&head->lock);
6706 skb = skb_peek(head);
6707 if (skb) {
6708 struct scm_fp_list *fpl = UNIXCB(skb).fp;
6710 if (fpl->count < SCM_MAX_FD) {
6711 __skb_unlink(skb, head);
6712 spin_unlock_irq(&head->lock);
6713 fpl->fp[fpl->count] = get_file(file);
6714 unix_inflight(fpl->user, fpl->fp[fpl->count]);
6715 fpl->count++;
6716 spin_lock_irq(&head->lock);
6717 __skb_queue_head(head, skb);
6718 } else {
6719 skb = NULL;
6722 spin_unlock_irq(&head->lock);
6724 if (skb) {
6725 fput(file);
6726 return 0;
6729 return __io_sqe_files_scm(ctx, 1, index);
6730 #else
6731 return 0;
6732 #endif
6735 static int io_queue_file_removal(struct fixed_file_data *data,
6736 struct file *file)
6738 struct io_file_put *pfile;
6739 struct percpu_ref *refs = data->cur_refs;
6740 struct fixed_file_ref_node *ref_node;
6742 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
6743 if (!pfile)
6744 return -ENOMEM;
6746 ref_node = container_of(refs, struct fixed_file_ref_node, refs);
6747 pfile->file = file;
6748 list_add(&pfile->list, &ref_node->file_list);
6750 return 0;
6753 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
6754 struct io_uring_files_update *up,
6755 unsigned nr_args)
6757 struct fixed_file_data *data = ctx->file_data;
6758 struct fixed_file_ref_node *ref_node;
6759 struct file *file;
6760 __s32 __user *fds;
6761 int fd, i, err;
6762 __u32 done;
6763 bool needs_switch = false;
6765 if (check_add_overflow(up->offset, nr_args, &done))
6766 return -EOVERFLOW;
6767 if (done > ctx->nr_user_files)
6768 return -EINVAL;
6770 ref_node = alloc_fixed_file_ref_node(ctx);
6771 if (IS_ERR(ref_node))
6772 return PTR_ERR(ref_node);
6774 done = 0;
6775 fds = u64_to_user_ptr(up->fds);
6776 while (nr_args) {
6777 struct fixed_file_table *table;
6778 unsigned index;
6780 err = 0;
6781 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
6782 err = -EFAULT;
6783 break;
6785 i = array_index_nospec(up->offset, ctx->nr_user_files);
6786 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
6787 index = i & IORING_FILE_TABLE_MASK;
6788 if (table->files[index]) {
6789 file = io_file_from_index(ctx, index);
6790 err = io_queue_file_removal(data, file);
6791 if (err)
6792 break;
6793 table->files[index] = NULL;
6794 needs_switch = true;
6796 if (fd != -1) {
6797 file = fget(fd);
6798 if (!file) {
6799 err = -EBADF;
6800 break;
6803 * Don't allow io_uring instances to be registered. If
6804 * UNIX isn't enabled, then this causes a reference
6805 * cycle and this instance can never get freed. If UNIX
6806 * is enabled we'll handle it just fine, but there's
6807 * still no point in allowing a ring fd as it doesn't
6808 * support regular read/write anyway.
6810 if (file->f_op == &io_uring_fops) {
6811 fput(file);
6812 err = -EBADF;
6813 break;
6815 table->files[index] = file;
6816 err = io_sqe_file_register(ctx, file, i);
6817 if (err)
6818 break;
6820 nr_args--;
6821 done++;
6822 up->offset++;
6825 if (needs_switch) {
6826 percpu_ref_kill(data->cur_refs);
6827 spin_lock(&data->lock);
6828 list_add(&ref_node->node, &data->ref_list);
6829 data->cur_refs = &ref_node->refs;
6830 spin_unlock(&data->lock);
6831 percpu_ref_get(&ctx->file_data->refs);
6832 } else
6833 destroy_fixed_file_ref_node(ref_node);
6835 return done ? done : err;
6838 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
6839 unsigned nr_args)
6841 struct io_uring_files_update up;
6843 if (!ctx->file_data)
6844 return -ENXIO;
6845 if (!nr_args)
6846 return -EINVAL;
6847 if (copy_from_user(&up, arg, sizeof(up)))
6848 return -EFAULT;
6849 if (up.resv)
6850 return -EINVAL;
6852 return __io_sqe_files_update(ctx, &up, nr_args);
6855 static void io_free_work(struct io_wq_work *work)
6857 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6859 /* Consider that io_steal_work() relies on this ref */
6860 io_put_req(req);
6863 static int io_init_wq_offload(struct io_ring_ctx *ctx,
6864 struct io_uring_params *p)
6866 struct io_wq_data data;
6867 struct fd f;
6868 struct io_ring_ctx *ctx_attach;
6869 unsigned int concurrency;
6870 int ret = 0;
6872 data.user = ctx->user;
6873 data.free_work = io_free_work;
6874 data.do_work = io_wq_submit_work;
6876 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
6877 /* Do QD, or 4 * CPUS, whatever is smallest */
6878 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
6880 ctx->io_wq = io_wq_create(concurrency, &data);
6881 if (IS_ERR(ctx->io_wq)) {
6882 ret = PTR_ERR(ctx->io_wq);
6883 ctx->io_wq = NULL;
6885 return ret;
6888 f = fdget(p->wq_fd);
6889 if (!f.file)
6890 return -EBADF;
6892 if (f.file->f_op != &io_uring_fops) {
6893 ret = -EINVAL;
6894 goto out_fput;
6897 ctx_attach = f.file->private_data;
6898 /* @io_wq is protected by holding the fd */
6899 if (!io_wq_get(ctx_attach->io_wq, &data)) {
6900 ret = -EINVAL;
6901 goto out_fput;
6904 ctx->io_wq = ctx_attach->io_wq;
6905 out_fput:
6906 fdput(f);
6907 return ret;
6910 static int io_sq_offload_start(struct io_ring_ctx *ctx,
6911 struct io_uring_params *p)
6913 int ret;
6915 mmgrab(current->mm);
6916 ctx->sqo_mm = current->mm;
6918 if (ctx->flags & IORING_SETUP_SQPOLL) {
6919 ret = -EPERM;
6920 if (!capable(CAP_SYS_ADMIN))
6921 goto err;
6923 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
6924 if (!ctx->sq_thread_idle)
6925 ctx->sq_thread_idle = HZ;
6927 if (p->flags & IORING_SETUP_SQ_AFF) {
6928 int cpu = p->sq_thread_cpu;
6930 ret = -EINVAL;
6931 if (cpu >= nr_cpu_ids)
6932 goto err;
6933 if (!cpu_online(cpu))
6934 goto err;
6936 ctx->sqo_thread = kthread_create_on_cpu(io_sq_thread,
6937 ctx, cpu,
6938 "io_uring-sq");
6939 } else {
6940 ctx->sqo_thread = kthread_create(io_sq_thread, ctx,
6941 "io_uring-sq");
6943 if (IS_ERR(ctx->sqo_thread)) {
6944 ret = PTR_ERR(ctx->sqo_thread);
6945 ctx->sqo_thread = NULL;
6946 goto err;
6948 wake_up_process(ctx->sqo_thread);
6949 } else if (p->flags & IORING_SETUP_SQ_AFF) {
6950 /* Can't have SQ_AFF without SQPOLL */
6951 ret = -EINVAL;
6952 goto err;
6955 ret = io_init_wq_offload(ctx, p);
6956 if (ret)
6957 goto err;
6959 return 0;
6960 err:
6961 io_finish_async(ctx);
6962 mmdrop(ctx->sqo_mm);
6963 ctx->sqo_mm = NULL;
6964 return ret;
6967 static void io_unaccount_mem(struct user_struct *user, unsigned long nr_pages)
6969 atomic_long_sub(nr_pages, &user->locked_vm);
6972 static int io_account_mem(struct user_struct *user, unsigned long nr_pages)
6974 unsigned long page_limit, cur_pages, new_pages;
6976 /* Don't allow more pages than we can safely lock */
6977 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
6979 do {
6980 cur_pages = atomic_long_read(&user->locked_vm);
6981 new_pages = cur_pages + nr_pages;
6982 if (new_pages > page_limit)
6983 return -ENOMEM;
6984 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
6985 new_pages) != cur_pages);
6987 return 0;
6990 static void io_mem_free(void *ptr)
6992 struct page *page;
6994 if (!ptr)
6995 return;
6997 page = virt_to_head_page(ptr);
6998 if (put_page_testzero(page))
6999 free_compound_page(page);
7002 static void *io_mem_alloc(size_t size)
7004 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
7005 __GFP_NORETRY;
7007 return (void *) __get_free_pages(gfp_flags, get_order(size));
7010 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
7011 size_t *sq_offset)
7013 struct io_rings *rings;
7014 size_t off, sq_array_size;
7016 off = struct_size(rings, cqes, cq_entries);
7017 if (off == SIZE_MAX)
7018 return SIZE_MAX;
7020 #ifdef CONFIG_SMP
7021 off = ALIGN(off, SMP_CACHE_BYTES);
7022 if (off == 0)
7023 return SIZE_MAX;
7024 #endif
7026 sq_array_size = array_size(sizeof(u32), sq_entries);
7027 if (sq_array_size == SIZE_MAX)
7028 return SIZE_MAX;
7030 if (check_add_overflow(off, sq_array_size, &off))
7031 return SIZE_MAX;
7033 if (sq_offset)
7034 *sq_offset = off;
7036 return off;
7039 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
7041 size_t pages;
7043 pages = (size_t)1 << get_order(
7044 rings_size(sq_entries, cq_entries, NULL));
7045 pages += (size_t)1 << get_order(
7046 array_size(sizeof(struct io_uring_sqe), sq_entries));
7048 return pages;
7051 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
7053 int i, j;
7055 if (!ctx->user_bufs)
7056 return -ENXIO;
7058 for (i = 0; i < ctx->nr_user_bufs; i++) {
7059 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
7061 for (j = 0; j < imu->nr_bvecs; j++)
7062 unpin_user_page(imu->bvec[j].bv_page);
7064 if (ctx->account_mem)
7065 io_unaccount_mem(ctx->user, imu->nr_bvecs);
7066 kvfree(imu->bvec);
7067 imu->nr_bvecs = 0;
7070 kfree(ctx->user_bufs);
7071 ctx->user_bufs = NULL;
7072 ctx->nr_user_bufs = 0;
7073 return 0;
7076 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
7077 void __user *arg, unsigned index)
7079 struct iovec __user *src;
7081 #ifdef CONFIG_COMPAT
7082 if (ctx->compat) {
7083 struct compat_iovec __user *ciovs;
7084 struct compat_iovec ciov;
7086 ciovs = (struct compat_iovec __user *) arg;
7087 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
7088 return -EFAULT;
7090 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
7091 dst->iov_len = ciov.iov_len;
7092 return 0;
7094 #endif
7095 src = (struct iovec __user *) arg;
7096 if (copy_from_user(dst, &src[index], sizeof(*dst)))
7097 return -EFAULT;
7098 return 0;
7101 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
7102 unsigned nr_args)
7104 struct vm_area_struct **vmas = NULL;
7105 struct page **pages = NULL;
7106 int i, j, got_pages = 0;
7107 int ret = -EINVAL;
7109 if (ctx->user_bufs)
7110 return -EBUSY;
7111 if (!nr_args || nr_args > UIO_MAXIOV)
7112 return -EINVAL;
7114 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
7115 GFP_KERNEL);
7116 if (!ctx->user_bufs)
7117 return -ENOMEM;
7119 for (i = 0; i < nr_args; i++) {
7120 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
7121 unsigned long off, start, end, ubuf;
7122 int pret, nr_pages;
7123 struct iovec iov;
7124 size_t size;
7126 ret = io_copy_iov(ctx, &iov, arg, i);
7127 if (ret)
7128 goto err;
7131 * Don't impose further limits on the size and buffer
7132 * constraints here, we'll -EINVAL later when IO is
7133 * submitted if they are wrong.
7135 ret = -EFAULT;
7136 if (!iov.iov_base || !iov.iov_len)
7137 goto err;
7139 /* arbitrary limit, but we need something */
7140 if (iov.iov_len > SZ_1G)
7141 goto err;
7143 ubuf = (unsigned long) iov.iov_base;
7144 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
7145 start = ubuf >> PAGE_SHIFT;
7146 nr_pages = end - start;
7148 if (ctx->account_mem) {
7149 ret = io_account_mem(ctx->user, nr_pages);
7150 if (ret)
7151 goto err;
7154 ret = 0;
7155 if (!pages || nr_pages > got_pages) {
7156 kvfree(vmas);
7157 kvfree(pages);
7158 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
7159 GFP_KERNEL);
7160 vmas = kvmalloc_array(nr_pages,
7161 sizeof(struct vm_area_struct *),
7162 GFP_KERNEL);
7163 if (!pages || !vmas) {
7164 ret = -ENOMEM;
7165 if (ctx->account_mem)
7166 io_unaccount_mem(ctx->user, nr_pages);
7167 goto err;
7169 got_pages = nr_pages;
7172 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
7173 GFP_KERNEL);
7174 ret = -ENOMEM;
7175 if (!imu->bvec) {
7176 if (ctx->account_mem)
7177 io_unaccount_mem(ctx->user, nr_pages);
7178 goto err;
7181 ret = 0;
7182 mmap_read_lock(current->mm);
7183 pret = pin_user_pages(ubuf, nr_pages,
7184 FOLL_WRITE | FOLL_LONGTERM,
7185 pages, vmas);
7186 if (pret == nr_pages) {
7187 /* don't support file backed memory */
7188 for (j = 0; j < nr_pages; j++) {
7189 struct vm_area_struct *vma = vmas[j];
7191 if (vma->vm_file &&
7192 !is_file_hugepages(vma->vm_file)) {
7193 ret = -EOPNOTSUPP;
7194 break;
7197 } else {
7198 ret = pret < 0 ? pret : -EFAULT;
7200 mmap_read_unlock(current->mm);
7201 if (ret) {
7203 * if we did partial map, or found file backed vmas,
7204 * release any pages we did get
7206 if (pret > 0)
7207 unpin_user_pages(pages, pret);
7208 if (ctx->account_mem)
7209 io_unaccount_mem(ctx->user, nr_pages);
7210 kvfree(imu->bvec);
7211 goto err;
7214 off = ubuf & ~PAGE_MASK;
7215 size = iov.iov_len;
7216 for (j = 0; j < nr_pages; j++) {
7217 size_t vec_len;
7219 vec_len = min_t(size_t, size, PAGE_SIZE - off);
7220 imu->bvec[j].bv_page = pages[j];
7221 imu->bvec[j].bv_len = vec_len;
7222 imu->bvec[j].bv_offset = off;
7223 off = 0;
7224 size -= vec_len;
7226 /* store original address for later verification */
7227 imu->ubuf = ubuf;
7228 imu->len = iov.iov_len;
7229 imu->nr_bvecs = nr_pages;
7231 ctx->nr_user_bufs++;
7233 kvfree(pages);
7234 kvfree(vmas);
7235 return 0;
7236 err:
7237 kvfree(pages);
7238 kvfree(vmas);
7239 io_sqe_buffer_unregister(ctx);
7240 return ret;
7243 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
7245 __s32 __user *fds = arg;
7246 int fd;
7248 if (ctx->cq_ev_fd)
7249 return -EBUSY;
7251 if (copy_from_user(&fd, fds, sizeof(*fds)))
7252 return -EFAULT;
7254 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
7255 if (IS_ERR(ctx->cq_ev_fd)) {
7256 int ret = PTR_ERR(ctx->cq_ev_fd);
7257 ctx->cq_ev_fd = NULL;
7258 return ret;
7261 return 0;
7264 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
7266 if (ctx->cq_ev_fd) {
7267 eventfd_ctx_put(ctx->cq_ev_fd);
7268 ctx->cq_ev_fd = NULL;
7269 return 0;
7272 return -ENXIO;
7275 static int __io_destroy_buffers(int id, void *p, void *data)
7277 struct io_ring_ctx *ctx = data;
7278 struct io_buffer *buf = p;
7280 __io_remove_buffers(ctx, buf, id, -1U);
7281 return 0;
7284 static void io_destroy_buffers(struct io_ring_ctx *ctx)
7286 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
7287 idr_destroy(&ctx->io_buffer_idr);
7290 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
7292 io_finish_async(ctx);
7293 if (ctx->sqo_mm)
7294 mmdrop(ctx->sqo_mm);
7296 io_iopoll_reap_events(ctx);
7297 io_sqe_buffer_unregister(ctx);
7298 io_sqe_files_unregister(ctx);
7299 io_eventfd_unregister(ctx);
7300 io_destroy_buffers(ctx);
7301 idr_destroy(&ctx->personality_idr);
7303 #if defined(CONFIG_UNIX)
7304 if (ctx->ring_sock) {
7305 ctx->ring_sock->file = NULL; /* so that iput() is called */
7306 sock_release(ctx->ring_sock);
7308 #endif
7310 io_mem_free(ctx->rings);
7311 io_mem_free(ctx->sq_sqes);
7313 percpu_ref_exit(&ctx->refs);
7314 if (ctx->account_mem)
7315 io_unaccount_mem(ctx->user,
7316 ring_pages(ctx->sq_entries, ctx->cq_entries));
7317 free_uid(ctx->user);
7318 put_cred(ctx->creds);
7319 kfree(ctx->cancel_hash);
7320 kmem_cache_free(req_cachep, ctx->fallback_req);
7321 kfree(ctx);
7324 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
7326 struct io_ring_ctx *ctx = file->private_data;
7327 __poll_t mask = 0;
7329 poll_wait(file, &ctx->cq_wait, wait);
7331 * synchronizes with barrier from wq_has_sleeper call in
7332 * io_commit_cqring
7334 smp_rmb();
7335 if (READ_ONCE(ctx->rings->sq.tail) - ctx->cached_sq_head !=
7336 ctx->rings->sq_ring_entries)
7337 mask |= EPOLLOUT | EPOLLWRNORM;
7338 if (io_cqring_events(ctx, false))
7339 mask |= EPOLLIN | EPOLLRDNORM;
7341 return mask;
7344 static int io_uring_fasync(int fd, struct file *file, int on)
7346 struct io_ring_ctx *ctx = file->private_data;
7348 return fasync_helper(fd, file, on, &ctx->cq_fasync);
7351 static int io_remove_personalities(int id, void *p, void *data)
7353 struct io_ring_ctx *ctx = data;
7354 const struct cred *cred;
7356 cred = idr_remove(&ctx->personality_idr, id);
7357 if (cred)
7358 put_cred(cred);
7359 return 0;
7362 static void io_ring_exit_work(struct work_struct *work)
7364 struct io_ring_ctx *ctx;
7366 ctx = container_of(work, struct io_ring_ctx, exit_work);
7367 if (ctx->rings)
7368 io_cqring_overflow_flush(ctx, true);
7371 * If we're doing polled IO and end up having requests being
7372 * submitted async (out-of-line), then completions can come in while
7373 * we're waiting for refs to drop. We need to reap these manually,
7374 * as nobody else will be looking for them.
7376 while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20)) {
7377 io_iopoll_reap_events(ctx);
7378 if (ctx->rings)
7379 io_cqring_overflow_flush(ctx, true);
7381 io_ring_ctx_free(ctx);
7384 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
7386 mutex_lock(&ctx->uring_lock);
7387 percpu_ref_kill(&ctx->refs);
7388 mutex_unlock(&ctx->uring_lock);
7390 io_kill_timeouts(ctx);
7391 io_poll_remove_all(ctx);
7393 if (ctx->io_wq)
7394 io_wq_cancel_all(ctx->io_wq);
7396 io_iopoll_reap_events(ctx);
7397 /* if we failed setting up the ctx, we might not have any rings */
7398 if (ctx->rings)
7399 io_cqring_overflow_flush(ctx, true);
7400 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
7401 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
7402 queue_work(system_wq, &ctx->exit_work);
7405 static int io_uring_release(struct inode *inode, struct file *file)
7407 struct io_ring_ctx *ctx = file->private_data;
7409 file->private_data = NULL;
7410 io_ring_ctx_wait_and_kill(ctx);
7411 return 0;
7414 static bool io_wq_files_match(struct io_wq_work *work, void *data)
7416 struct files_struct *files = data;
7418 return work->files == files;
7421 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
7422 struct files_struct *files)
7424 if (list_empty_careful(&ctx->inflight_list))
7425 return;
7427 /* cancel all at once, should be faster than doing it one by one*/
7428 io_wq_cancel_cb(ctx->io_wq, io_wq_files_match, files, true);
7430 while (!list_empty_careful(&ctx->inflight_list)) {
7431 struct io_kiocb *cancel_req = NULL, *req;
7432 DEFINE_WAIT(wait);
7434 spin_lock_irq(&ctx->inflight_lock);
7435 list_for_each_entry(req, &ctx->inflight_list, inflight_entry) {
7436 if (req->work.files != files)
7437 continue;
7438 /* req is being completed, ignore */
7439 if (!refcount_inc_not_zero(&req->refs))
7440 continue;
7441 cancel_req = req;
7442 break;
7444 if (cancel_req)
7445 prepare_to_wait(&ctx->inflight_wait, &wait,
7446 TASK_UNINTERRUPTIBLE);
7447 spin_unlock_irq(&ctx->inflight_lock);
7449 /* We need to keep going until we don't find a matching req */
7450 if (!cancel_req)
7451 break;
7453 if (cancel_req->flags & REQ_F_OVERFLOW) {
7454 spin_lock_irq(&ctx->completion_lock);
7455 list_del(&cancel_req->list);
7456 cancel_req->flags &= ~REQ_F_OVERFLOW;
7457 if (list_empty(&ctx->cq_overflow_list)) {
7458 clear_bit(0, &ctx->sq_check_overflow);
7459 clear_bit(0, &ctx->cq_check_overflow);
7461 spin_unlock_irq(&ctx->completion_lock);
7463 WRITE_ONCE(ctx->rings->cq_overflow,
7464 atomic_inc_return(&ctx->cached_cq_overflow));
7467 * Put inflight ref and overflow ref. If that's
7468 * all we had, then we're done with this request.
7470 if (refcount_sub_and_test(2, &cancel_req->refs)) {
7471 io_free_req(cancel_req);
7472 finish_wait(&ctx->inflight_wait, &wait);
7473 continue;
7475 } else {
7476 io_wq_cancel_work(ctx->io_wq, &cancel_req->work);
7477 io_put_req(cancel_req);
7480 schedule();
7481 finish_wait(&ctx->inflight_wait, &wait);
7485 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
7487 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7488 struct task_struct *task = data;
7490 return req->task == task;
7493 static int io_uring_flush(struct file *file, void *data)
7495 struct io_ring_ctx *ctx = file->private_data;
7497 io_uring_cancel_files(ctx, data);
7500 * If the task is going away, cancel work it may have pending
7502 if (fatal_signal_pending(current) || (current->flags & PF_EXITING))
7503 io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb, current, true);
7505 return 0;
7508 static void *io_uring_validate_mmap_request(struct file *file,
7509 loff_t pgoff, size_t sz)
7511 struct io_ring_ctx *ctx = file->private_data;
7512 loff_t offset = pgoff << PAGE_SHIFT;
7513 struct page *page;
7514 void *ptr;
7516 switch (offset) {
7517 case IORING_OFF_SQ_RING:
7518 case IORING_OFF_CQ_RING:
7519 ptr = ctx->rings;
7520 break;
7521 case IORING_OFF_SQES:
7522 ptr = ctx->sq_sqes;
7523 break;
7524 default:
7525 return ERR_PTR(-EINVAL);
7528 page = virt_to_head_page(ptr);
7529 if (sz > page_size(page))
7530 return ERR_PTR(-EINVAL);
7532 return ptr;
7535 #ifdef CONFIG_MMU
7537 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
7539 size_t sz = vma->vm_end - vma->vm_start;
7540 unsigned long pfn;
7541 void *ptr;
7543 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
7544 if (IS_ERR(ptr))
7545 return PTR_ERR(ptr);
7547 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
7548 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
7551 #else /* !CONFIG_MMU */
7553 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
7555 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
7558 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
7560 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
7563 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
7564 unsigned long addr, unsigned long len,
7565 unsigned long pgoff, unsigned long flags)
7567 void *ptr;
7569 ptr = io_uring_validate_mmap_request(file, pgoff, len);
7570 if (IS_ERR(ptr))
7571 return PTR_ERR(ptr);
7573 return (unsigned long) ptr;
7576 #endif /* !CONFIG_MMU */
7578 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
7579 u32, min_complete, u32, flags, const sigset_t __user *, sig,
7580 size_t, sigsz)
7582 struct io_ring_ctx *ctx;
7583 long ret = -EBADF;
7584 int submitted = 0;
7585 struct fd f;
7587 if (current->task_works)
7588 task_work_run();
7590 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP))
7591 return -EINVAL;
7593 f = fdget(fd);
7594 if (!f.file)
7595 return -EBADF;
7597 ret = -EOPNOTSUPP;
7598 if (f.file->f_op != &io_uring_fops)
7599 goto out_fput;
7601 ret = -ENXIO;
7602 ctx = f.file->private_data;
7603 if (!percpu_ref_tryget(&ctx->refs))
7604 goto out_fput;
7607 * For SQ polling, the thread will do all submissions and completions.
7608 * Just return the requested submit count, and wake the thread if
7609 * we were asked to.
7611 ret = 0;
7612 if (ctx->flags & IORING_SETUP_SQPOLL) {
7613 if (!list_empty_careful(&ctx->cq_overflow_list))
7614 io_cqring_overflow_flush(ctx, false);
7615 if (flags & IORING_ENTER_SQ_WAKEUP)
7616 wake_up(&ctx->sqo_wait);
7617 submitted = to_submit;
7618 } else if (to_submit) {
7619 mutex_lock(&ctx->uring_lock);
7620 submitted = io_submit_sqes(ctx, to_submit, f.file, fd);
7621 mutex_unlock(&ctx->uring_lock);
7623 if (submitted != to_submit)
7624 goto out;
7626 if (flags & IORING_ENTER_GETEVENTS) {
7627 unsigned nr_events = 0;
7629 min_complete = min(min_complete, ctx->cq_entries);
7632 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
7633 * space applications don't need to do io completion events
7634 * polling again, they can rely on io_sq_thread to do polling
7635 * work, which can reduce cpu usage and uring_lock contention.
7637 if (ctx->flags & IORING_SETUP_IOPOLL &&
7638 !(ctx->flags & IORING_SETUP_SQPOLL)) {
7639 ret = io_iopoll_check(ctx, &nr_events, min_complete);
7640 } else {
7641 ret = io_cqring_wait(ctx, min_complete, sig, sigsz);
7645 out:
7646 percpu_ref_put(&ctx->refs);
7647 out_fput:
7648 fdput(f);
7649 return submitted ? submitted : ret;
7652 #ifdef CONFIG_PROC_FS
7653 static int io_uring_show_cred(int id, void *p, void *data)
7655 const struct cred *cred = p;
7656 struct seq_file *m = data;
7657 struct user_namespace *uns = seq_user_ns(m);
7658 struct group_info *gi;
7659 kernel_cap_t cap;
7660 unsigned __capi;
7661 int g;
7663 seq_printf(m, "%5d\n", id);
7664 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
7665 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
7666 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
7667 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
7668 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
7669 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
7670 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
7671 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
7672 seq_puts(m, "\n\tGroups:\t");
7673 gi = cred->group_info;
7674 for (g = 0; g < gi->ngroups; g++) {
7675 seq_put_decimal_ull(m, g ? " " : "",
7676 from_kgid_munged(uns, gi->gid[g]));
7678 seq_puts(m, "\n\tCapEff:\t");
7679 cap = cred->cap_effective;
7680 CAP_FOR_EACH_U32(__capi)
7681 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
7682 seq_putc(m, '\n');
7683 return 0;
7686 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
7688 int i;
7690 mutex_lock(&ctx->uring_lock);
7691 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
7692 for (i = 0; i < ctx->nr_user_files; i++) {
7693 struct fixed_file_table *table;
7694 struct file *f;
7696 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7697 f = table->files[i & IORING_FILE_TABLE_MASK];
7698 if (f)
7699 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
7700 else
7701 seq_printf(m, "%5u: <none>\n", i);
7703 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
7704 for (i = 0; i < ctx->nr_user_bufs; i++) {
7705 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
7707 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
7708 (unsigned int) buf->len);
7710 if (!idr_is_empty(&ctx->personality_idr)) {
7711 seq_printf(m, "Personalities:\n");
7712 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
7714 seq_printf(m, "PollList:\n");
7715 spin_lock_irq(&ctx->completion_lock);
7716 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
7717 struct hlist_head *list = &ctx->cancel_hash[i];
7718 struct io_kiocb *req;
7720 hlist_for_each_entry(req, list, hash_node)
7721 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
7722 req->task->task_works != NULL);
7724 spin_unlock_irq(&ctx->completion_lock);
7725 mutex_unlock(&ctx->uring_lock);
7728 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
7730 struct io_ring_ctx *ctx = f->private_data;
7732 if (percpu_ref_tryget(&ctx->refs)) {
7733 __io_uring_show_fdinfo(ctx, m);
7734 percpu_ref_put(&ctx->refs);
7737 #endif
7739 static const struct file_operations io_uring_fops = {
7740 .release = io_uring_release,
7741 .flush = io_uring_flush,
7742 .mmap = io_uring_mmap,
7743 #ifndef CONFIG_MMU
7744 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
7745 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
7746 #endif
7747 .poll = io_uring_poll,
7748 .fasync = io_uring_fasync,
7749 #ifdef CONFIG_PROC_FS
7750 .show_fdinfo = io_uring_show_fdinfo,
7751 #endif
7754 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
7755 struct io_uring_params *p)
7757 struct io_rings *rings;
7758 size_t size, sq_array_offset;
7760 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
7761 if (size == SIZE_MAX)
7762 return -EOVERFLOW;
7764 rings = io_mem_alloc(size);
7765 if (!rings)
7766 return -ENOMEM;
7768 ctx->rings = rings;
7769 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
7770 rings->sq_ring_mask = p->sq_entries - 1;
7771 rings->cq_ring_mask = p->cq_entries - 1;
7772 rings->sq_ring_entries = p->sq_entries;
7773 rings->cq_ring_entries = p->cq_entries;
7774 ctx->sq_mask = rings->sq_ring_mask;
7775 ctx->cq_mask = rings->cq_ring_mask;
7776 ctx->sq_entries = rings->sq_ring_entries;
7777 ctx->cq_entries = rings->cq_ring_entries;
7779 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
7780 if (size == SIZE_MAX) {
7781 io_mem_free(ctx->rings);
7782 ctx->rings = NULL;
7783 return -EOVERFLOW;
7786 ctx->sq_sqes = io_mem_alloc(size);
7787 if (!ctx->sq_sqes) {
7788 io_mem_free(ctx->rings);
7789 ctx->rings = NULL;
7790 return -ENOMEM;
7793 return 0;
7797 * Allocate an anonymous fd, this is what constitutes the application
7798 * visible backing of an io_uring instance. The application mmaps this
7799 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
7800 * we have to tie this fd to a socket for file garbage collection purposes.
7802 static int io_uring_get_fd(struct io_ring_ctx *ctx)
7804 struct file *file;
7805 int ret;
7807 #if defined(CONFIG_UNIX)
7808 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
7809 &ctx->ring_sock);
7810 if (ret)
7811 return ret;
7812 #endif
7814 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
7815 if (ret < 0)
7816 goto err;
7818 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
7819 O_RDWR | O_CLOEXEC);
7820 if (IS_ERR(file)) {
7821 put_unused_fd(ret);
7822 ret = PTR_ERR(file);
7823 goto err;
7826 #if defined(CONFIG_UNIX)
7827 ctx->ring_sock->file = file;
7828 #endif
7829 fd_install(ret, file);
7830 return ret;
7831 err:
7832 #if defined(CONFIG_UNIX)
7833 sock_release(ctx->ring_sock);
7834 ctx->ring_sock = NULL;
7835 #endif
7836 return ret;
7839 static int io_uring_create(unsigned entries, struct io_uring_params *p,
7840 struct io_uring_params __user *params)
7842 struct user_struct *user = NULL;
7843 struct io_ring_ctx *ctx;
7844 bool account_mem;
7845 int ret;
7847 if (!entries)
7848 return -EINVAL;
7849 if (entries > IORING_MAX_ENTRIES) {
7850 if (!(p->flags & IORING_SETUP_CLAMP))
7851 return -EINVAL;
7852 entries = IORING_MAX_ENTRIES;
7856 * Use twice as many entries for the CQ ring. It's possible for the
7857 * application to drive a higher depth than the size of the SQ ring,
7858 * since the sqes are only used at submission time. This allows for
7859 * some flexibility in overcommitting a bit. If the application has
7860 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
7861 * of CQ ring entries manually.
7863 p->sq_entries = roundup_pow_of_two(entries);
7864 if (p->flags & IORING_SETUP_CQSIZE) {
7866 * If IORING_SETUP_CQSIZE is set, we do the same roundup
7867 * to a power-of-two, if it isn't already. We do NOT impose
7868 * any cq vs sq ring sizing.
7870 if (p->cq_entries < p->sq_entries)
7871 return -EINVAL;
7872 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
7873 if (!(p->flags & IORING_SETUP_CLAMP))
7874 return -EINVAL;
7875 p->cq_entries = IORING_MAX_CQ_ENTRIES;
7877 p->cq_entries = roundup_pow_of_two(p->cq_entries);
7878 } else {
7879 p->cq_entries = 2 * p->sq_entries;
7882 user = get_uid(current_user());
7883 account_mem = !capable(CAP_IPC_LOCK);
7885 if (account_mem) {
7886 ret = io_account_mem(user,
7887 ring_pages(p->sq_entries, p->cq_entries));
7888 if (ret) {
7889 free_uid(user);
7890 return ret;
7894 ctx = io_ring_ctx_alloc(p);
7895 if (!ctx) {
7896 if (account_mem)
7897 io_unaccount_mem(user, ring_pages(p->sq_entries,
7898 p->cq_entries));
7899 free_uid(user);
7900 return -ENOMEM;
7902 ctx->compat = in_compat_syscall();
7903 ctx->account_mem = account_mem;
7904 ctx->user = user;
7905 ctx->creds = get_current_cred();
7907 ret = io_allocate_scq_urings(ctx, p);
7908 if (ret)
7909 goto err;
7911 ret = io_sq_offload_start(ctx, p);
7912 if (ret)
7913 goto err;
7915 memset(&p->sq_off, 0, sizeof(p->sq_off));
7916 p->sq_off.head = offsetof(struct io_rings, sq.head);
7917 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
7918 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
7919 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
7920 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
7921 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
7922 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
7924 memset(&p->cq_off, 0, sizeof(p->cq_off));
7925 p->cq_off.head = offsetof(struct io_rings, cq.head);
7926 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
7927 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
7928 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
7929 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
7930 p->cq_off.cqes = offsetof(struct io_rings, cqes);
7931 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
7933 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
7934 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
7935 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL;
7937 if (copy_to_user(params, p, sizeof(*p))) {
7938 ret = -EFAULT;
7939 goto err;
7942 * Install ring fd as the very last thing, so we don't risk someone
7943 * having closed it before we finish setup
7945 ret = io_uring_get_fd(ctx);
7946 if (ret < 0)
7947 goto err;
7949 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
7950 return ret;
7951 err:
7952 io_ring_ctx_wait_and_kill(ctx);
7953 return ret;
7957 * Sets up an aio uring context, and returns the fd. Applications asks for a
7958 * ring size, we return the actual sq/cq ring sizes (among other things) in the
7959 * params structure passed in.
7961 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
7963 struct io_uring_params p;
7964 int i;
7966 if (copy_from_user(&p, params, sizeof(p)))
7967 return -EFAULT;
7968 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
7969 if (p.resv[i])
7970 return -EINVAL;
7973 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
7974 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
7975 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ))
7976 return -EINVAL;
7978 return io_uring_create(entries, &p, params);
7981 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
7982 struct io_uring_params __user *, params)
7984 return io_uring_setup(entries, params);
7987 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
7989 struct io_uring_probe *p;
7990 size_t size;
7991 int i, ret;
7993 size = struct_size(p, ops, nr_args);
7994 if (size == SIZE_MAX)
7995 return -EOVERFLOW;
7996 p = kzalloc(size, GFP_KERNEL);
7997 if (!p)
7998 return -ENOMEM;
8000 ret = -EFAULT;
8001 if (copy_from_user(p, arg, size))
8002 goto out;
8003 ret = -EINVAL;
8004 if (memchr_inv(p, 0, size))
8005 goto out;
8007 p->last_op = IORING_OP_LAST - 1;
8008 if (nr_args > IORING_OP_LAST)
8009 nr_args = IORING_OP_LAST;
8011 for (i = 0; i < nr_args; i++) {
8012 p->ops[i].op = i;
8013 if (!io_op_defs[i].not_supported)
8014 p->ops[i].flags = IO_URING_OP_SUPPORTED;
8016 p->ops_len = i;
8018 ret = 0;
8019 if (copy_to_user(arg, p, size))
8020 ret = -EFAULT;
8021 out:
8022 kfree(p);
8023 return ret;
8026 static int io_register_personality(struct io_ring_ctx *ctx)
8028 const struct cred *creds = get_current_cred();
8029 int id;
8031 id = idr_alloc_cyclic(&ctx->personality_idr, (void *) creds, 1,
8032 USHRT_MAX, GFP_KERNEL);
8033 if (id < 0)
8034 put_cred(creds);
8035 return id;
8038 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
8040 const struct cred *old_creds;
8042 old_creds = idr_remove(&ctx->personality_idr, id);
8043 if (old_creds) {
8044 put_cred(old_creds);
8045 return 0;
8048 return -EINVAL;
8051 static bool io_register_op_must_quiesce(int op)
8053 switch (op) {
8054 case IORING_UNREGISTER_FILES:
8055 case IORING_REGISTER_FILES_UPDATE:
8056 case IORING_REGISTER_PROBE:
8057 case IORING_REGISTER_PERSONALITY:
8058 case IORING_UNREGISTER_PERSONALITY:
8059 return false;
8060 default:
8061 return true;
8065 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
8066 void __user *arg, unsigned nr_args)
8067 __releases(ctx->uring_lock)
8068 __acquires(ctx->uring_lock)
8070 int ret;
8073 * We're inside the ring mutex, if the ref is already dying, then
8074 * someone else killed the ctx or is already going through
8075 * io_uring_register().
8077 if (percpu_ref_is_dying(&ctx->refs))
8078 return -ENXIO;
8080 if (io_register_op_must_quiesce(opcode)) {
8081 percpu_ref_kill(&ctx->refs);
8084 * Drop uring mutex before waiting for references to exit. If
8085 * another thread is currently inside io_uring_enter() it might
8086 * need to grab the uring_lock to make progress. If we hold it
8087 * here across the drain wait, then we can deadlock. It's safe
8088 * to drop the mutex here, since no new references will come in
8089 * after we've killed the percpu ref.
8091 mutex_unlock(&ctx->uring_lock);
8092 ret = wait_for_completion_interruptible(&ctx->ref_comp);
8093 mutex_lock(&ctx->uring_lock);
8094 if (ret) {
8095 percpu_ref_resurrect(&ctx->refs);
8096 ret = -EINTR;
8097 goto out;
8101 switch (opcode) {
8102 case IORING_REGISTER_BUFFERS:
8103 ret = io_sqe_buffer_register(ctx, arg, nr_args);
8104 break;
8105 case IORING_UNREGISTER_BUFFERS:
8106 ret = -EINVAL;
8107 if (arg || nr_args)
8108 break;
8109 ret = io_sqe_buffer_unregister(ctx);
8110 break;
8111 case IORING_REGISTER_FILES:
8112 ret = io_sqe_files_register(ctx, arg, nr_args);
8113 break;
8114 case IORING_UNREGISTER_FILES:
8115 ret = -EINVAL;
8116 if (arg || nr_args)
8117 break;
8118 ret = io_sqe_files_unregister(ctx);
8119 break;
8120 case IORING_REGISTER_FILES_UPDATE:
8121 ret = io_sqe_files_update(ctx, arg, nr_args);
8122 break;
8123 case IORING_REGISTER_EVENTFD:
8124 case IORING_REGISTER_EVENTFD_ASYNC:
8125 ret = -EINVAL;
8126 if (nr_args != 1)
8127 break;
8128 ret = io_eventfd_register(ctx, arg);
8129 if (ret)
8130 break;
8131 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
8132 ctx->eventfd_async = 1;
8133 else
8134 ctx->eventfd_async = 0;
8135 break;
8136 case IORING_UNREGISTER_EVENTFD:
8137 ret = -EINVAL;
8138 if (arg || nr_args)
8139 break;
8140 ret = io_eventfd_unregister(ctx);
8141 break;
8142 case IORING_REGISTER_PROBE:
8143 ret = -EINVAL;
8144 if (!arg || nr_args > 256)
8145 break;
8146 ret = io_probe(ctx, arg, nr_args);
8147 break;
8148 case IORING_REGISTER_PERSONALITY:
8149 ret = -EINVAL;
8150 if (arg || nr_args)
8151 break;
8152 ret = io_register_personality(ctx);
8153 break;
8154 case IORING_UNREGISTER_PERSONALITY:
8155 ret = -EINVAL;
8156 if (arg)
8157 break;
8158 ret = io_unregister_personality(ctx, nr_args);
8159 break;
8160 default:
8161 ret = -EINVAL;
8162 break;
8165 if (io_register_op_must_quiesce(opcode)) {
8166 /* bring the ctx back to life */
8167 percpu_ref_reinit(&ctx->refs);
8168 out:
8169 reinit_completion(&ctx->ref_comp);
8171 return ret;
8174 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
8175 void __user *, arg, unsigned int, nr_args)
8177 struct io_ring_ctx *ctx;
8178 long ret = -EBADF;
8179 struct fd f;
8181 f = fdget(fd);
8182 if (!f.file)
8183 return -EBADF;
8185 ret = -EOPNOTSUPP;
8186 if (f.file->f_op != &io_uring_fops)
8187 goto out_fput;
8189 ctx = f.file->private_data;
8191 mutex_lock(&ctx->uring_lock);
8192 ret = __io_uring_register(ctx, opcode, arg, nr_args);
8193 mutex_unlock(&ctx->uring_lock);
8194 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
8195 ctx->cq_ev_fd != NULL, ret);
8196 out_fput:
8197 fdput(f);
8198 return ret;
8201 static int __init io_uring_init(void)
8203 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
8204 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
8205 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
8206 } while (0)
8208 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
8209 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
8210 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
8211 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
8212 BUILD_BUG_SQE_ELEM(1, __u8, flags);
8213 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
8214 BUILD_BUG_SQE_ELEM(4, __s32, fd);
8215 BUILD_BUG_SQE_ELEM(8, __u64, off);
8216 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
8217 BUILD_BUG_SQE_ELEM(16, __u64, addr);
8218 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
8219 BUILD_BUG_SQE_ELEM(24, __u32, len);
8220 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
8221 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
8222 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
8223 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
8224 BUILD_BUG_SQE_ELEM(28, __u16, poll_events);
8225 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
8226 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
8227 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
8228 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
8229 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
8230 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
8231 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
8232 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
8233 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
8234 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
8235 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
8236 BUILD_BUG_SQE_ELEM(42, __u16, personality);
8237 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
8239 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
8240 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
8241 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
8242 return 0;
8244 __initcall(io_uring_init);