1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
29 #include <linux/uaccess.h>
30 #include <asm/ioctls.h>
35 * The max size that a non-root user is allowed to grow the pipe. Can
36 * be set by root in /proc/sys/fs/pipe-max-size
38 unsigned int pipe_max_size
= 1048576;
40 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
41 * matches default values.
43 unsigned long pipe_user_pages_hard
;
44 unsigned long pipe_user_pages_soft
= PIPE_DEF_BUFFERS
* INR_OPEN_CUR
;
47 * We use head and tail indices that aren't masked off, except at the point of
48 * dereference, but rather they're allowed to wrap naturally. This means there
49 * isn't a dead spot in the buffer, but the ring has to be a power of two and
51 * -- David Howells 2019-09-23.
53 * Reads with count = 0 should always return 0.
54 * -- Julian Bradfield 1999-06-07.
56 * FIFOs and Pipes now generate SIGIO for both readers and writers.
57 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
59 * pipe_read & write cleanup
60 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
63 static void pipe_lock_nested(struct pipe_inode_info
*pipe
, int subclass
)
66 mutex_lock_nested(&pipe
->mutex
, subclass
);
69 void pipe_lock(struct pipe_inode_info
*pipe
)
72 * pipe_lock() nests non-pipe inode locks (for writing to a file)
74 pipe_lock_nested(pipe
, I_MUTEX_PARENT
);
76 EXPORT_SYMBOL(pipe_lock
);
78 void pipe_unlock(struct pipe_inode_info
*pipe
)
81 mutex_unlock(&pipe
->mutex
);
83 EXPORT_SYMBOL(pipe_unlock
);
85 static inline void __pipe_lock(struct pipe_inode_info
*pipe
)
87 mutex_lock_nested(&pipe
->mutex
, I_MUTEX_PARENT
);
90 static inline void __pipe_unlock(struct pipe_inode_info
*pipe
)
92 mutex_unlock(&pipe
->mutex
);
95 void pipe_double_lock(struct pipe_inode_info
*pipe1
,
96 struct pipe_inode_info
*pipe2
)
98 BUG_ON(pipe1
== pipe2
);
101 pipe_lock_nested(pipe1
, I_MUTEX_PARENT
);
102 pipe_lock_nested(pipe2
, I_MUTEX_CHILD
);
104 pipe_lock_nested(pipe2
, I_MUTEX_PARENT
);
105 pipe_lock_nested(pipe1
, I_MUTEX_CHILD
);
109 /* Drop the inode semaphore and wait for a pipe event, atomically */
110 void pipe_wait(struct pipe_inode_info
*pipe
)
116 * Pipes are system-local resources, so sleeping on them
117 * is considered a noninteractive wait:
119 prepare_to_wait(&pipe
->rd_wait
, &rdwait
, TASK_INTERRUPTIBLE
);
120 prepare_to_wait(&pipe
->wr_wait
, &wrwait
, TASK_INTERRUPTIBLE
);
123 finish_wait(&pipe
->rd_wait
, &rdwait
);
124 finish_wait(&pipe
->wr_wait
, &wrwait
);
128 static void anon_pipe_buf_release(struct pipe_inode_info
*pipe
,
129 struct pipe_buffer
*buf
)
131 struct page
*page
= buf
->page
;
134 * If nobody else uses this page, and we don't already have a
135 * temporary page, let's keep track of it as a one-deep
136 * allocation cache. (Otherwise just release our reference to it)
138 if (page_count(page
) == 1 && !pipe
->tmp_page
)
139 pipe
->tmp_page
= page
;
144 static bool anon_pipe_buf_try_steal(struct pipe_inode_info
*pipe
,
145 struct pipe_buffer
*buf
)
147 struct page
*page
= buf
->page
;
149 if (page_count(page
) != 1)
151 memcg_kmem_uncharge_page(page
, 0);
152 __SetPageLocked(page
);
157 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
158 * @pipe: the pipe that the buffer belongs to
159 * @buf: the buffer to attempt to steal
162 * This function attempts to steal the &struct page attached to
163 * @buf. If successful, this function returns 0 and returns with
164 * the page locked. The caller may then reuse the page for whatever
165 * he wishes; the typical use is insertion into a different file
168 bool generic_pipe_buf_try_steal(struct pipe_inode_info
*pipe
,
169 struct pipe_buffer
*buf
)
171 struct page
*page
= buf
->page
;
174 * A reference of one is golden, that means that the owner of this
175 * page is the only one holding a reference to it. lock the page
178 if (page_count(page
) == 1) {
184 EXPORT_SYMBOL(generic_pipe_buf_try_steal
);
187 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
188 * @pipe: the pipe that the buffer belongs to
189 * @buf: the buffer to get a reference to
192 * This function grabs an extra reference to @buf. It's used in
193 * in the tee() system call, when we duplicate the buffers in one
196 bool generic_pipe_buf_get(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
)
198 return try_get_page(buf
->page
);
200 EXPORT_SYMBOL(generic_pipe_buf_get
);
203 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
204 * @pipe: the pipe that the buffer belongs to
205 * @buf: the buffer to put a reference to
208 * This function releases a reference to @buf.
210 void generic_pipe_buf_release(struct pipe_inode_info
*pipe
,
211 struct pipe_buffer
*buf
)
215 EXPORT_SYMBOL(generic_pipe_buf_release
);
217 static const struct pipe_buf_operations anon_pipe_buf_ops
= {
218 .release
= anon_pipe_buf_release
,
219 .try_steal
= anon_pipe_buf_try_steal
,
220 .get
= generic_pipe_buf_get
,
223 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
224 static inline bool pipe_readable(const struct pipe_inode_info
*pipe
)
226 unsigned int head
= READ_ONCE(pipe
->head
);
227 unsigned int tail
= READ_ONCE(pipe
->tail
);
228 unsigned int writers
= READ_ONCE(pipe
->writers
);
230 return !pipe_empty(head
, tail
) || !writers
;
234 pipe_read(struct kiocb
*iocb
, struct iov_iter
*to
)
236 size_t total_len
= iov_iter_count(to
);
237 struct file
*filp
= iocb
->ki_filp
;
238 struct pipe_inode_info
*pipe
= filp
->private_data
;
239 bool was_full
, wake_next_reader
= false;
242 /* Null read succeeds. */
243 if (unlikely(total_len
== 0))
250 * We only wake up writers if the pipe was full when we started
251 * reading in order to avoid unnecessary wakeups.
253 * But when we do wake up writers, we do so using a sync wakeup
254 * (WF_SYNC), because we want them to get going and generate more
257 was_full
= pipe_full(pipe
->head
, pipe
->tail
, pipe
->max_usage
);
259 unsigned int head
= pipe
->head
;
260 unsigned int tail
= pipe
->tail
;
261 unsigned int mask
= pipe
->ring_size
- 1;
263 #ifdef CONFIG_WATCH_QUEUE
264 if (pipe
->note_loss
) {
265 struct watch_notification n
;
273 n
.type
= WATCH_TYPE_META
;
274 n
.subtype
= WATCH_META_LOSS_NOTIFICATION
;
275 n
.info
= watch_sizeof(n
);
276 if (copy_to_iter(&n
, sizeof(n
), to
) != sizeof(n
)) {
282 total_len
-= sizeof(n
);
283 pipe
->note_loss
= false;
287 if (!pipe_empty(head
, tail
)) {
288 struct pipe_buffer
*buf
= &pipe
->bufs
[tail
& mask
];
289 size_t chars
= buf
->len
;
293 if (chars
> total_len
) {
294 if (buf
->flags
& PIPE_BUF_FLAG_WHOLE
) {
302 error
= pipe_buf_confirm(pipe
, buf
);
309 written
= copy_page_to_iter(buf
->page
, buf
->offset
, chars
, to
);
310 if (unlikely(written
< chars
)) {
316 buf
->offset
+= chars
;
319 /* Was it a packet buffer? Clean up and exit */
320 if (buf
->flags
& PIPE_BUF_FLAG_PACKET
) {
326 pipe_buf_release(pipe
, buf
);
327 spin_lock_irq(&pipe
->rd_wait
.lock
);
328 #ifdef CONFIG_WATCH_QUEUE
329 if (buf
->flags
& PIPE_BUF_FLAG_LOSS
)
330 pipe
->note_loss
= true;
334 spin_unlock_irq(&pipe
->rd_wait
.lock
);
338 break; /* common path: read succeeded */
339 if (!pipe_empty(head
, tail
)) /* More to do? */
347 if (filp
->f_flags
& O_NONBLOCK
) {
354 * We only get here if we didn't actually read anything.
356 * However, we could have seen (and removed) a zero-sized
357 * pipe buffer, and might have made space in the buffers
360 * You can't make zero-sized pipe buffers by doing an empty
361 * write (not even in packet mode), but they can happen if
362 * the writer gets an EFAULT when trying to fill a buffer
363 * that already got allocated and inserted in the buffer
366 * So we still need to wake up any pending writers in the
367 * _very_ unlikely case that the pipe was full, but we got
370 if (unlikely(was_full
)) {
371 wake_up_interruptible_sync_poll(&pipe
->wr_wait
, EPOLLOUT
| EPOLLWRNORM
);
372 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
376 * But because we didn't read anything, at this point we can
377 * just return directly with -ERESTARTSYS if we're interrupted,
378 * since we've done any required wakeups and there's no need
379 * to mark anything accessed. And we've dropped the lock.
381 if (wait_event_interruptible_exclusive(pipe
->rd_wait
, pipe_readable(pipe
)) < 0)
385 was_full
= pipe_full(pipe
->head
, pipe
->tail
, pipe
->max_usage
);
386 wake_next_reader
= true;
388 if (pipe_empty(pipe
->head
, pipe
->tail
))
389 wake_next_reader
= false;
393 wake_up_interruptible_sync_poll(&pipe
->wr_wait
, EPOLLOUT
| EPOLLWRNORM
);
394 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
396 if (wake_next_reader
)
397 wake_up_interruptible_sync_poll(&pipe
->rd_wait
, EPOLLIN
| EPOLLRDNORM
);
403 static inline int is_packetized(struct file
*file
)
405 return (file
->f_flags
& O_DIRECT
) != 0;
408 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
409 static inline bool pipe_writable(const struct pipe_inode_info
*pipe
)
411 unsigned int head
= READ_ONCE(pipe
->head
);
412 unsigned int tail
= READ_ONCE(pipe
->tail
);
413 unsigned int max_usage
= READ_ONCE(pipe
->max_usage
);
415 return !pipe_full(head
, tail
, max_usage
) ||
416 !READ_ONCE(pipe
->readers
);
420 pipe_write(struct kiocb
*iocb
, struct iov_iter
*from
)
422 struct file
*filp
= iocb
->ki_filp
;
423 struct pipe_inode_info
*pipe
= filp
->private_data
;
426 size_t total_len
= iov_iter_count(from
);
428 bool was_empty
= false;
429 bool wake_next_writer
= false;
431 /* Null write succeeds. */
432 if (unlikely(total_len
== 0))
437 if (!pipe
->readers
) {
438 send_sig(SIGPIPE
, current
, 0);
443 #ifdef CONFIG_WATCH_QUEUE
444 if (pipe
->watch_queue
) {
451 * Only wake up if the pipe started out empty, since
452 * otherwise there should be no readers waiting.
454 * If it wasn't empty we try to merge new data into
457 * That naturally merges small writes, but it also
458 * page-aligs the rest of the writes for large writes
459 * spanning multiple pages.
462 was_empty
= pipe_empty(head
, pipe
->tail
);
463 chars
= total_len
& (PAGE_SIZE
-1);
464 if (chars
&& !was_empty
) {
465 unsigned int mask
= pipe
->ring_size
- 1;
466 struct pipe_buffer
*buf
= &pipe
->bufs
[(head
- 1) & mask
];
467 int offset
= buf
->offset
+ buf
->len
;
469 if ((buf
->flags
& PIPE_BUF_FLAG_CAN_MERGE
) &&
470 offset
+ chars
<= PAGE_SIZE
) {
471 ret
= pipe_buf_confirm(pipe
, buf
);
475 ret
= copy_page_from_iter(buf
->page
, offset
, chars
, from
);
476 if (unlikely(ret
< chars
)) {
482 if (!iov_iter_count(from
))
488 if (!pipe
->readers
) {
489 send_sig(SIGPIPE
, current
, 0);
496 if (!pipe_full(head
, pipe
->tail
, pipe
->max_usage
)) {
497 unsigned int mask
= pipe
->ring_size
- 1;
498 struct pipe_buffer
*buf
= &pipe
->bufs
[head
& mask
];
499 struct page
*page
= pipe
->tmp_page
;
503 page
= alloc_page(GFP_HIGHUSER
| __GFP_ACCOUNT
);
504 if (unlikely(!page
)) {
505 ret
= ret
? : -ENOMEM
;
508 pipe
->tmp_page
= page
;
511 /* Allocate a slot in the ring in advance and attach an
512 * empty buffer. If we fault or otherwise fail to use
513 * it, either the reader will consume it or it'll still
514 * be there for the next write.
516 spin_lock_irq(&pipe
->rd_wait
.lock
);
519 if (pipe_full(head
, pipe
->tail
, pipe
->max_usage
)) {
520 spin_unlock_irq(&pipe
->rd_wait
.lock
);
524 pipe
->head
= head
+ 1;
525 spin_unlock_irq(&pipe
->rd_wait
.lock
);
527 /* Insert it into the buffer array */
528 buf
= &pipe
->bufs
[head
& mask
];
530 buf
->ops
= &anon_pipe_buf_ops
;
533 if (is_packetized(filp
))
534 buf
->flags
= PIPE_BUF_FLAG_PACKET
;
536 buf
->flags
= PIPE_BUF_FLAG_CAN_MERGE
;
537 pipe
->tmp_page
= NULL
;
539 copied
= copy_page_from_iter(page
, 0, PAGE_SIZE
, from
);
540 if (unlikely(copied
< PAGE_SIZE
&& iov_iter_count(from
))) {
549 if (!iov_iter_count(from
))
553 if (!pipe_full(head
, pipe
->tail
, pipe
->max_usage
))
556 /* Wait for buffer space to become available. */
557 if (filp
->f_flags
& O_NONBLOCK
) {
562 if (signal_pending(current
)) {
569 * We're going to release the pipe lock and wait for more
570 * space. We wake up any readers if necessary, and then
571 * after waiting we need to re-check whether the pipe
572 * become empty while we dropped the lock.
576 wake_up_interruptible_sync_poll(&pipe
->rd_wait
, EPOLLIN
| EPOLLRDNORM
);
577 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
579 wait_event_interruptible_exclusive(pipe
->wr_wait
, pipe_writable(pipe
));
581 was_empty
= pipe_empty(pipe
->head
, pipe
->tail
);
582 wake_next_writer
= true;
585 if (pipe_full(pipe
->head
, pipe
->tail
, pipe
->max_usage
))
586 wake_next_writer
= false;
590 * If we do do a wakeup event, we do a 'sync' wakeup, because we
591 * want the reader to start processing things asap, rather than
592 * leave the data pending.
594 * This is particularly important for small writes, because of
595 * how (for example) the GNU make jobserver uses small writes to
596 * wake up pending jobs
599 wake_up_interruptible_sync_poll(&pipe
->rd_wait
, EPOLLIN
| EPOLLRDNORM
);
600 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
602 if (wake_next_writer
)
603 wake_up_interruptible_sync_poll(&pipe
->wr_wait
, EPOLLOUT
| EPOLLWRNORM
);
604 if (ret
> 0 && sb_start_write_trylock(file_inode(filp
)->i_sb
)) {
605 int err
= file_update_time(filp
);
608 sb_end_write(file_inode(filp
)->i_sb
);
613 static long pipe_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
)
615 struct pipe_inode_info
*pipe
= filp
->private_data
;
616 int count
, head
, tail
, mask
;
624 mask
= pipe
->ring_size
- 1;
626 while (tail
!= head
) {
627 count
+= pipe
->bufs
[tail
& mask
].len
;
632 return put_user(count
, (int __user
*)arg
);
634 #ifdef CONFIG_WATCH_QUEUE
635 case IOC_WATCH_QUEUE_SET_SIZE
: {
638 ret
= watch_queue_set_size(pipe
, arg
);
643 case IOC_WATCH_QUEUE_SET_FILTER
:
644 return watch_queue_set_filter(
645 pipe
, (struct watch_notification_filter __user
*)arg
);
653 /* No kernel lock held - fine */
655 pipe_poll(struct file
*filp
, poll_table
*wait
)
658 struct pipe_inode_info
*pipe
= filp
->private_data
;
659 unsigned int head
, tail
;
662 * Reading pipe state only -- no need for acquiring the semaphore.
664 * But because this is racy, the code has to add the
665 * entry to the poll table _first_ ..
667 if (filp
->f_mode
& FMODE_READ
)
668 poll_wait(filp
, &pipe
->rd_wait
, wait
);
669 if (filp
->f_mode
& FMODE_WRITE
)
670 poll_wait(filp
, &pipe
->wr_wait
, wait
);
673 * .. and only then can you do the racy tests. That way,
674 * if something changes and you got it wrong, the poll
675 * table entry will wake you up and fix it.
677 head
= READ_ONCE(pipe
->head
);
678 tail
= READ_ONCE(pipe
->tail
);
681 if (filp
->f_mode
& FMODE_READ
) {
682 if (!pipe_empty(head
, tail
))
683 mask
|= EPOLLIN
| EPOLLRDNORM
;
684 if (!pipe
->writers
&& filp
->f_version
!= pipe
->w_counter
)
688 if (filp
->f_mode
& FMODE_WRITE
) {
689 if (!pipe_full(head
, tail
, pipe
->max_usage
))
690 mask
|= EPOLLOUT
| EPOLLWRNORM
;
692 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
693 * behave exactly like pipes for poll().
702 static void put_pipe_info(struct inode
*inode
, struct pipe_inode_info
*pipe
)
706 spin_lock(&inode
->i_lock
);
707 if (!--pipe
->files
) {
708 inode
->i_pipe
= NULL
;
711 spin_unlock(&inode
->i_lock
);
714 free_pipe_info(pipe
);
718 pipe_release(struct inode
*inode
, struct file
*file
)
720 struct pipe_inode_info
*pipe
= file
->private_data
;
723 if (file
->f_mode
& FMODE_READ
)
725 if (file
->f_mode
& FMODE_WRITE
)
728 /* Was that the last reader or writer, but not the other side? */
729 if (!pipe
->readers
!= !pipe
->writers
) {
730 wake_up_interruptible_all(&pipe
->rd_wait
);
731 wake_up_interruptible_all(&pipe
->wr_wait
);
732 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
733 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
737 put_pipe_info(inode
, pipe
);
742 pipe_fasync(int fd
, struct file
*filp
, int on
)
744 struct pipe_inode_info
*pipe
= filp
->private_data
;
748 if (filp
->f_mode
& FMODE_READ
)
749 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_readers
);
750 if ((filp
->f_mode
& FMODE_WRITE
) && retval
>= 0) {
751 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_writers
);
752 if (retval
< 0 && (filp
->f_mode
& FMODE_READ
))
753 /* this can happen only if on == T */
754 fasync_helper(-1, filp
, 0, &pipe
->fasync_readers
);
760 unsigned long account_pipe_buffers(struct user_struct
*user
,
761 unsigned long old
, unsigned long new)
763 return atomic_long_add_return(new - old
, &user
->pipe_bufs
);
766 bool too_many_pipe_buffers_soft(unsigned long user_bufs
)
768 unsigned long soft_limit
= READ_ONCE(pipe_user_pages_soft
);
770 return soft_limit
&& user_bufs
> soft_limit
;
773 bool too_many_pipe_buffers_hard(unsigned long user_bufs
)
775 unsigned long hard_limit
= READ_ONCE(pipe_user_pages_hard
);
777 return hard_limit
&& user_bufs
> hard_limit
;
780 bool pipe_is_unprivileged_user(void)
782 return !capable(CAP_SYS_RESOURCE
) && !capable(CAP_SYS_ADMIN
);
785 struct pipe_inode_info
*alloc_pipe_info(void)
787 struct pipe_inode_info
*pipe
;
788 unsigned long pipe_bufs
= PIPE_DEF_BUFFERS
;
789 struct user_struct
*user
= get_current_user();
790 unsigned long user_bufs
;
791 unsigned int max_size
= READ_ONCE(pipe_max_size
);
793 pipe
= kzalloc(sizeof(struct pipe_inode_info
), GFP_KERNEL_ACCOUNT
);
797 if (pipe_bufs
* PAGE_SIZE
> max_size
&& !capable(CAP_SYS_RESOURCE
))
798 pipe_bufs
= max_size
>> PAGE_SHIFT
;
800 user_bufs
= account_pipe_buffers(user
, 0, pipe_bufs
);
802 if (too_many_pipe_buffers_soft(user_bufs
) && pipe_is_unprivileged_user()) {
803 user_bufs
= account_pipe_buffers(user
, pipe_bufs
, 1);
807 if (too_many_pipe_buffers_hard(user_bufs
) && pipe_is_unprivileged_user())
808 goto out_revert_acct
;
810 pipe
->bufs
= kcalloc(pipe_bufs
, sizeof(struct pipe_buffer
),
814 init_waitqueue_head(&pipe
->rd_wait
);
815 init_waitqueue_head(&pipe
->wr_wait
);
816 pipe
->r_counter
= pipe
->w_counter
= 1;
817 pipe
->max_usage
= pipe_bufs
;
818 pipe
->ring_size
= pipe_bufs
;
819 pipe
->nr_accounted
= pipe_bufs
;
821 mutex_init(&pipe
->mutex
);
826 (void) account_pipe_buffers(user
, pipe_bufs
, 0);
833 void free_pipe_info(struct pipe_inode_info
*pipe
)
837 #ifdef CONFIG_WATCH_QUEUE
838 if (pipe
->watch_queue
) {
839 watch_queue_clear(pipe
->watch_queue
);
840 put_watch_queue(pipe
->watch_queue
);
844 (void) account_pipe_buffers(pipe
->user
, pipe
->nr_accounted
, 0);
845 free_uid(pipe
->user
);
846 for (i
= 0; i
< pipe
->ring_size
; i
++) {
847 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
849 pipe_buf_release(pipe
, buf
);
852 __free_page(pipe
->tmp_page
);
857 static struct vfsmount
*pipe_mnt __read_mostly
;
860 * pipefs_dname() is called from d_path().
862 static char *pipefs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
864 return dynamic_dname(dentry
, buffer
, buflen
, "pipe:[%lu]",
865 d_inode(dentry
)->i_ino
);
868 static const struct dentry_operations pipefs_dentry_operations
= {
869 .d_dname
= pipefs_dname
,
872 static struct inode
* get_pipe_inode(void)
874 struct inode
*inode
= new_inode_pseudo(pipe_mnt
->mnt_sb
);
875 struct pipe_inode_info
*pipe
;
880 inode
->i_ino
= get_next_ino();
882 pipe
= alloc_pipe_info();
886 inode
->i_pipe
= pipe
;
888 pipe
->readers
= pipe
->writers
= 1;
889 inode
->i_fop
= &pipefifo_fops
;
892 * Mark the inode dirty from the very beginning,
893 * that way it will never be moved to the dirty
894 * list because "mark_inode_dirty()" will think
895 * that it already _is_ on the dirty list.
897 inode
->i_state
= I_DIRTY
;
898 inode
->i_mode
= S_IFIFO
| S_IRUSR
| S_IWUSR
;
899 inode
->i_uid
= current_fsuid();
900 inode
->i_gid
= current_fsgid();
901 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
912 int create_pipe_files(struct file
**res
, int flags
)
914 struct inode
*inode
= get_pipe_inode();
920 if (flags
& O_NOTIFICATION_PIPE
) {
921 #ifdef CONFIG_WATCH_QUEUE
922 if (watch_queue_init(inode
->i_pipe
) < 0) {
931 f
= alloc_file_pseudo(inode
, pipe_mnt
, "",
932 O_WRONLY
| (flags
& (O_NONBLOCK
| O_DIRECT
)),
935 free_pipe_info(inode
->i_pipe
);
940 f
->private_data
= inode
->i_pipe
;
942 res
[0] = alloc_file_clone(f
, O_RDONLY
| (flags
& O_NONBLOCK
),
944 if (IS_ERR(res
[0])) {
945 put_pipe_info(inode
, inode
->i_pipe
);
947 return PTR_ERR(res
[0]);
949 res
[0]->private_data
= inode
->i_pipe
;
951 stream_open(inode
, res
[0]);
952 stream_open(inode
, res
[1]);
956 static int __do_pipe_flags(int *fd
, struct file
**files
, int flags
)
961 if (flags
& ~(O_CLOEXEC
| O_NONBLOCK
| O_DIRECT
| O_NOTIFICATION_PIPE
))
964 error
= create_pipe_files(files
, flags
);
968 error
= get_unused_fd_flags(flags
);
973 error
= get_unused_fd_flags(flags
);
978 audit_fd_pair(fdr
, fdw
);
991 int do_pipe_flags(int *fd
, int flags
)
993 struct file
*files
[2];
994 int error
= __do_pipe_flags(fd
, files
, flags
);
996 fd_install(fd
[0], files
[0]);
997 fd_install(fd
[1], files
[1]);
1003 * sys_pipe() is the normal C calling standard for creating
1004 * a pipe. It's not the way Unix traditionally does this, though.
1006 static int do_pipe2(int __user
*fildes
, int flags
)
1008 struct file
*files
[2];
1012 error
= __do_pipe_flags(fd
, files
, flags
);
1014 if (unlikely(copy_to_user(fildes
, fd
, sizeof(fd
)))) {
1017 put_unused_fd(fd
[0]);
1018 put_unused_fd(fd
[1]);
1021 fd_install(fd
[0], files
[0]);
1022 fd_install(fd
[1], files
[1]);
1028 SYSCALL_DEFINE2(pipe2
, int __user
*, fildes
, int, flags
)
1030 return do_pipe2(fildes
, flags
);
1033 SYSCALL_DEFINE1(pipe
, int __user
*, fildes
)
1035 return do_pipe2(fildes
, 0);
1038 static int wait_for_partner(struct pipe_inode_info
*pipe
, unsigned int *cnt
)
1042 while (cur
== *cnt
) {
1044 if (signal_pending(current
))
1047 return cur
== *cnt
? -ERESTARTSYS
: 0;
1050 static void wake_up_partner(struct pipe_inode_info
*pipe
)
1052 wake_up_interruptible_all(&pipe
->rd_wait
);
1053 wake_up_interruptible_all(&pipe
->wr_wait
);
1056 static int fifo_open(struct inode
*inode
, struct file
*filp
)
1058 struct pipe_inode_info
*pipe
;
1059 bool is_pipe
= inode
->i_sb
->s_magic
== PIPEFS_MAGIC
;
1062 filp
->f_version
= 0;
1064 spin_lock(&inode
->i_lock
);
1065 if (inode
->i_pipe
) {
1066 pipe
= inode
->i_pipe
;
1068 spin_unlock(&inode
->i_lock
);
1070 spin_unlock(&inode
->i_lock
);
1071 pipe
= alloc_pipe_info();
1075 spin_lock(&inode
->i_lock
);
1076 if (unlikely(inode
->i_pipe
)) {
1077 inode
->i_pipe
->files
++;
1078 spin_unlock(&inode
->i_lock
);
1079 free_pipe_info(pipe
);
1080 pipe
= inode
->i_pipe
;
1082 inode
->i_pipe
= pipe
;
1083 spin_unlock(&inode
->i_lock
);
1086 filp
->private_data
= pipe
;
1087 /* OK, we have a pipe and it's pinned down */
1091 /* We can only do regular read/write on fifos */
1092 stream_open(inode
, filp
);
1094 switch (filp
->f_mode
& (FMODE_READ
| FMODE_WRITE
)) {
1098 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1099 * opened, even when there is no process writing the FIFO.
1102 if (pipe
->readers
++ == 0)
1103 wake_up_partner(pipe
);
1105 if (!is_pipe
&& !pipe
->writers
) {
1106 if ((filp
->f_flags
& O_NONBLOCK
)) {
1107 /* suppress EPOLLHUP until we have
1109 filp
->f_version
= pipe
->w_counter
;
1111 if (wait_for_partner(pipe
, &pipe
->w_counter
))
1120 * POSIX.1 says that O_NONBLOCK means return -1 with
1121 * errno=ENXIO when there is no process reading the FIFO.
1124 if (!is_pipe
&& (filp
->f_flags
& O_NONBLOCK
) && !pipe
->readers
)
1128 if (!pipe
->writers
++)
1129 wake_up_partner(pipe
);
1131 if (!is_pipe
&& !pipe
->readers
) {
1132 if (wait_for_partner(pipe
, &pipe
->r_counter
))
1137 case FMODE_READ
| FMODE_WRITE
:
1140 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1141 * This implementation will NEVER block on a O_RDWR open, since
1142 * the process can at least talk to itself.
1149 if (pipe
->readers
== 1 || pipe
->writers
== 1)
1150 wake_up_partner(pipe
);
1159 __pipe_unlock(pipe
);
1163 if (!--pipe
->readers
)
1164 wake_up_interruptible(&pipe
->wr_wait
);
1169 if (!--pipe
->writers
)
1170 wake_up_interruptible_all(&pipe
->rd_wait
);
1175 __pipe_unlock(pipe
);
1177 put_pipe_info(inode
, pipe
);
1181 const struct file_operations pipefifo_fops
= {
1183 .llseek
= no_llseek
,
1184 .read_iter
= pipe_read
,
1185 .write_iter
= pipe_write
,
1187 .unlocked_ioctl
= pipe_ioctl
,
1188 .release
= pipe_release
,
1189 .fasync
= pipe_fasync
,
1193 * Currently we rely on the pipe array holding a power-of-2 number
1194 * of pages. Returns 0 on error.
1196 unsigned int round_pipe_size(unsigned long size
)
1198 if (size
> (1U << 31))
1201 /* Minimum pipe size, as required by POSIX */
1202 if (size
< PAGE_SIZE
)
1205 return roundup_pow_of_two(size
);
1209 * Resize the pipe ring to a number of slots.
1211 int pipe_resize_ring(struct pipe_inode_info
*pipe
, unsigned int nr_slots
)
1213 struct pipe_buffer
*bufs
;
1214 unsigned int head
, tail
, mask
, n
;
1217 * We can shrink the pipe, if arg is greater than the ring occupancy.
1218 * Since we don't expect a lot of shrink+grow operations, just free and
1219 * allocate again like we would do for growing. If the pipe currently
1220 * contains more buffers than arg, then return busy.
1222 mask
= pipe
->ring_size
- 1;
1225 n
= pipe_occupancy(pipe
->head
, pipe
->tail
);
1229 bufs
= kcalloc(nr_slots
, sizeof(*bufs
),
1230 GFP_KERNEL_ACCOUNT
| __GFP_NOWARN
);
1231 if (unlikely(!bufs
))
1235 * The pipe array wraps around, so just start the new one at zero
1236 * and adjust the indices.
1239 unsigned int h
= head
& mask
;
1240 unsigned int t
= tail
& mask
;
1242 memcpy(bufs
, pipe
->bufs
+ t
,
1243 n
* sizeof(struct pipe_buffer
));
1245 unsigned int tsize
= pipe
->ring_size
- t
;
1247 memcpy(bufs
+ tsize
, pipe
->bufs
,
1248 h
* sizeof(struct pipe_buffer
));
1249 memcpy(bufs
, pipe
->bufs
+ t
,
1250 tsize
* sizeof(struct pipe_buffer
));
1259 pipe
->ring_size
= nr_slots
;
1260 if (pipe
->max_usage
> nr_slots
)
1261 pipe
->max_usage
= nr_slots
;
1265 /* This might have made more room for writers */
1266 wake_up_interruptible(&pipe
->wr_wait
);
1271 * Allocate a new array of pipe buffers and copy the info over. Returns the
1272 * pipe size if successful, or return -ERROR on error.
1274 static long pipe_set_size(struct pipe_inode_info
*pipe
, unsigned long arg
)
1276 unsigned long user_bufs
;
1277 unsigned int nr_slots
, size
;
1280 #ifdef CONFIG_WATCH_QUEUE
1281 if (pipe
->watch_queue
)
1285 size
= round_pipe_size(arg
);
1286 nr_slots
= size
>> PAGE_SHIFT
;
1292 * If trying to increase the pipe capacity, check that an
1293 * unprivileged user is not trying to exceed various limits
1294 * (soft limit check here, hard limit check just below).
1295 * Decreasing the pipe capacity is always permitted, even
1296 * if the user is currently over a limit.
1298 if (nr_slots
> pipe
->max_usage
&&
1299 size
> pipe_max_size
&& !capable(CAP_SYS_RESOURCE
))
1302 user_bufs
= account_pipe_buffers(pipe
->user
, pipe
->nr_accounted
, nr_slots
);
1304 if (nr_slots
> pipe
->max_usage
&&
1305 (too_many_pipe_buffers_hard(user_bufs
) ||
1306 too_many_pipe_buffers_soft(user_bufs
)) &&
1307 pipe_is_unprivileged_user()) {
1309 goto out_revert_acct
;
1312 ret
= pipe_resize_ring(pipe
, nr_slots
);
1314 goto out_revert_acct
;
1316 pipe
->max_usage
= nr_slots
;
1317 pipe
->nr_accounted
= nr_slots
;
1318 return pipe
->max_usage
* PAGE_SIZE
;
1321 (void) account_pipe_buffers(pipe
->user
, nr_slots
, pipe
->nr_accounted
);
1326 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1327 * location, so checking ->i_pipe is not enough to verify that this is a
1330 struct pipe_inode_info
*get_pipe_info(struct file
*file
, bool for_splice
)
1332 struct pipe_inode_info
*pipe
= file
->private_data
;
1334 if (file
->f_op
!= &pipefifo_fops
|| !pipe
)
1336 #ifdef CONFIG_WATCH_QUEUE
1337 if (for_splice
&& pipe
->watch_queue
)
1343 long pipe_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1345 struct pipe_inode_info
*pipe
;
1348 pipe
= get_pipe_info(file
, false);
1356 ret
= pipe_set_size(pipe
, arg
);
1359 ret
= pipe
->max_usage
* PAGE_SIZE
;
1366 __pipe_unlock(pipe
);
1370 static const struct super_operations pipefs_ops
= {
1371 .destroy_inode
= free_inode_nonrcu
,
1372 .statfs
= simple_statfs
,
1376 * pipefs should _never_ be mounted by userland - too much of security hassle,
1377 * no real gain from having the whole whorehouse mounted. So we don't need
1378 * any operations on the root directory. However, we need a non-trivial
1379 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1382 static int pipefs_init_fs_context(struct fs_context
*fc
)
1384 struct pseudo_fs_context
*ctx
= init_pseudo(fc
, PIPEFS_MAGIC
);
1387 ctx
->ops
= &pipefs_ops
;
1388 ctx
->dops
= &pipefs_dentry_operations
;
1392 static struct file_system_type pipe_fs_type
= {
1394 .init_fs_context
= pipefs_init_fs_context
,
1395 .kill_sb
= kill_anon_super
,
1398 static int __init
init_pipe_fs(void)
1400 int err
= register_filesystem(&pipe_fs_type
);
1403 pipe_mnt
= kern_mount(&pipe_fs_type
);
1404 if (IS_ERR(pipe_mnt
)) {
1405 err
= PTR_ERR(pipe_mnt
);
1406 unregister_filesystem(&pipe_fs_type
);
1412 fs_initcall(init_pipe_fs
);