usb: typec: intel_pmc_mux: Add support for USB4
[linux/fpc-iii.git] / fs / pipe.c
blob60dbee457143674cc01651e03f213f53776aeaa1
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/pipe.c
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
6 */
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
29 #include <linux/uaccess.h>
30 #include <asm/ioctls.h>
32 #include "internal.h"
35 * The max size that a non-root user is allowed to grow the pipe. Can
36 * be set by root in /proc/sys/fs/pipe-max-size
38 unsigned int pipe_max_size = 1048576;
40 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
41 * matches default values.
43 unsigned long pipe_user_pages_hard;
44 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
47 * We use head and tail indices that aren't masked off, except at the point of
48 * dereference, but rather they're allowed to wrap naturally. This means there
49 * isn't a dead spot in the buffer, but the ring has to be a power of two and
50 * <= 2^31.
51 * -- David Howells 2019-09-23.
53 * Reads with count = 0 should always return 0.
54 * -- Julian Bradfield 1999-06-07.
56 * FIFOs and Pipes now generate SIGIO for both readers and writers.
57 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
59 * pipe_read & write cleanup
60 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
63 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
65 if (pipe->files)
66 mutex_lock_nested(&pipe->mutex, subclass);
69 void pipe_lock(struct pipe_inode_info *pipe)
72 * pipe_lock() nests non-pipe inode locks (for writing to a file)
74 pipe_lock_nested(pipe, I_MUTEX_PARENT);
76 EXPORT_SYMBOL(pipe_lock);
78 void pipe_unlock(struct pipe_inode_info *pipe)
80 if (pipe->files)
81 mutex_unlock(&pipe->mutex);
83 EXPORT_SYMBOL(pipe_unlock);
85 static inline void __pipe_lock(struct pipe_inode_info *pipe)
87 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
90 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
92 mutex_unlock(&pipe->mutex);
95 void pipe_double_lock(struct pipe_inode_info *pipe1,
96 struct pipe_inode_info *pipe2)
98 BUG_ON(pipe1 == pipe2);
100 if (pipe1 < pipe2) {
101 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
102 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
103 } else {
104 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
105 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
109 /* Drop the inode semaphore and wait for a pipe event, atomically */
110 void pipe_wait(struct pipe_inode_info *pipe)
112 DEFINE_WAIT(rdwait);
113 DEFINE_WAIT(wrwait);
116 * Pipes are system-local resources, so sleeping on them
117 * is considered a noninteractive wait:
119 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
120 prepare_to_wait(&pipe->wr_wait, &wrwait, TASK_INTERRUPTIBLE);
121 pipe_unlock(pipe);
122 schedule();
123 finish_wait(&pipe->rd_wait, &rdwait);
124 finish_wait(&pipe->wr_wait, &wrwait);
125 pipe_lock(pipe);
128 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
129 struct pipe_buffer *buf)
131 struct page *page = buf->page;
134 * If nobody else uses this page, and we don't already have a
135 * temporary page, let's keep track of it as a one-deep
136 * allocation cache. (Otherwise just release our reference to it)
138 if (page_count(page) == 1 && !pipe->tmp_page)
139 pipe->tmp_page = page;
140 else
141 put_page(page);
144 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
145 struct pipe_buffer *buf)
147 struct page *page = buf->page;
149 if (page_count(page) != 1)
150 return false;
151 memcg_kmem_uncharge_page(page, 0);
152 __SetPageLocked(page);
153 return true;
157 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
158 * @pipe: the pipe that the buffer belongs to
159 * @buf: the buffer to attempt to steal
161 * Description:
162 * This function attempts to steal the &struct page attached to
163 * @buf. If successful, this function returns 0 and returns with
164 * the page locked. The caller may then reuse the page for whatever
165 * he wishes; the typical use is insertion into a different file
166 * page cache.
168 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
169 struct pipe_buffer *buf)
171 struct page *page = buf->page;
174 * A reference of one is golden, that means that the owner of this
175 * page is the only one holding a reference to it. lock the page
176 * and return OK.
178 if (page_count(page) == 1) {
179 lock_page(page);
180 return true;
182 return false;
184 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
187 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
188 * @pipe: the pipe that the buffer belongs to
189 * @buf: the buffer to get a reference to
191 * Description:
192 * This function grabs an extra reference to @buf. It's used in
193 * in the tee() system call, when we duplicate the buffers in one
194 * pipe into another.
196 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
198 return try_get_page(buf->page);
200 EXPORT_SYMBOL(generic_pipe_buf_get);
203 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
204 * @pipe: the pipe that the buffer belongs to
205 * @buf: the buffer to put a reference to
207 * Description:
208 * This function releases a reference to @buf.
210 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
211 struct pipe_buffer *buf)
213 put_page(buf->page);
215 EXPORT_SYMBOL(generic_pipe_buf_release);
217 static const struct pipe_buf_operations anon_pipe_buf_ops = {
218 .release = anon_pipe_buf_release,
219 .try_steal = anon_pipe_buf_try_steal,
220 .get = generic_pipe_buf_get,
223 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
224 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
226 unsigned int head = READ_ONCE(pipe->head);
227 unsigned int tail = READ_ONCE(pipe->tail);
228 unsigned int writers = READ_ONCE(pipe->writers);
230 return !pipe_empty(head, tail) || !writers;
233 static ssize_t
234 pipe_read(struct kiocb *iocb, struct iov_iter *to)
236 size_t total_len = iov_iter_count(to);
237 struct file *filp = iocb->ki_filp;
238 struct pipe_inode_info *pipe = filp->private_data;
239 bool was_full, wake_next_reader = false;
240 ssize_t ret;
242 /* Null read succeeds. */
243 if (unlikely(total_len == 0))
244 return 0;
246 ret = 0;
247 __pipe_lock(pipe);
250 * We only wake up writers if the pipe was full when we started
251 * reading in order to avoid unnecessary wakeups.
253 * But when we do wake up writers, we do so using a sync wakeup
254 * (WF_SYNC), because we want them to get going and generate more
255 * data for us.
257 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
258 for (;;) {
259 unsigned int head = pipe->head;
260 unsigned int tail = pipe->tail;
261 unsigned int mask = pipe->ring_size - 1;
263 #ifdef CONFIG_WATCH_QUEUE
264 if (pipe->note_loss) {
265 struct watch_notification n;
267 if (total_len < 8) {
268 if (ret == 0)
269 ret = -ENOBUFS;
270 break;
273 n.type = WATCH_TYPE_META;
274 n.subtype = WATCH_META_LOSS_NOTIFICATION;
275 n.info = watch_sizeof(n);
276 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
277 if (ret == 0)
278 ret = -EFAULT;
279 break;
281 ret += sizeof(n);
282 total_len -= sizeof(n);
283 pipe->note_loss = false;
285 #endif
287 if (!pipe_empty(head, tail)) {
288 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
289 size_t chars = buf->len;
290 size_t written;
291 int error;
293 if (chars > total_len) {
294 if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
295 if (ret == 0)
296 ret = -ENOBUFS;
297 break;
299 chars = total_len;
302 error = pipe_buf_confirm(pipe, buf);
303 if (error) {
304 if (!ret)
305 ret = error;
306 break;
309 written = copy_page_to_iter(buf->page, buf->offset, chars, to);
310 if (unlikely(written < chars)) {
311 if (!ret)
312 ret = -EFAULT;
313 break;
315 ret += chars;
316 buf->offset += chars;
317 buf->len -= chars;
319 /* Was it a packet buffer? Clean up and exit */
320 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
321 total_len = chars;
322 buf->len = 0;
325 if (!buf->len) {
326 pipe_buf_release(pipe, buf);
327 spin_lock_irq(&pipe->rd_wait.lock);
328 #ifdef CONFIG_WATCH_QUEUE
329 if (buf->flags & PIPE_BUF_FLAG_LOSS)
330 pipe->note_loss = true;
331 #endif
332 tail++;
333 pipe->tail = tail;
334 spin_unlock_irq(&pipe->rd_wait.lock);
336 total_len -= chars;
337 if (!total_len)
338 break; /* common path: read succeeded */
339 if (!pipe_empty(head, tail)) /* More to do? */
340 continue;
343 if (!pipe->writers)
344 break;
345 if (ret)
346 break;
347 if (filp->f_flags & O_NONBLOCK) {
348 ret = -EAGAIN;
349 break;
351 __pipe_unlock(pipe);
354 * We only get here if we didn't actually read anything.
356 * However, we could have seen (and removed) a zero-sized
357 * pipe buffer, and might have made space in the buffers
358 * that way.
360 * You can't make zero-sized pipe buffers by doing an empty
361 * write (not even in packet mode), but they can happen if
362 * the writer gets an EFAULT when trying to fill a buffer
363 * that already got allocated and inserted in the buffer
364 * array.
366 * So we still need to wake up any pending writers in the
367 * _very_ unlikely case that the pipe was full, but we got
368 * no data.
370 if (unlikely(was_full)) {
371 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
372 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
376 * But because we didn't read anything, at this point we can
377 * just return directly with -ERESTARTSYS if we're interrupted,
378 * since we've done any required wakeups and there's no need
379 * to mark anything accessed. And we've dropped the lock.
381 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
382 return -ERESTARTSYS;
384 __pipe_lock(pipe);
385 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
386 wake_next_reader = true;
388 if (pipe_empty(pipe->head, pipe->tail))
389 wake_next_reader = false;
390 __pipe_unlock(pipe);
392 if (was_full) {
393 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
394 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
396 if (wake_next_reader)
397 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
398 if (ret > 0)
399 file_accessed(filp);
400 return ret;
403 static inline int is_packetized(struct file *file)
405 return (file->f_flags & O_DIRECT) != 0;
408 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
409 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
411 unsigned int head = READ_ONCE(pipe->head);
412 unsigned int tail = READ_ONCE(pipe->tail);
413 unsigned int max_usage = READ_ONCE(pipe->max_usage);
415 return !pipe_full(head, tail, max_usage) ||
416 !READ_ONCE(pipe->readers);
419 static ssize_t
420 pipe_write(struct kiocb *iocb, struct iov_iter *from)
422 struct file *filp = iocb->ki_filp;
423 struct pipe_inode_info *pipe = filp->private_data;
424 unsigned int head;
425 ssize_t ret = 0;
426 size_t total_len = iov_iter_count(from);
427 ssize_t chars;
428 bool was_empty = false;
429 bool wake_next_writer = false;
431 /* Null write succeeds. */
432 if (unlikely(total_len == 0))
433 return 0;
435 __pipe_lock(pipe);
437 if (!pipe->readers) {
438 send_sig(SIGPIPE, current, 0);
439 ret = -EPIPE;
440 goto out;
443 #ifdef CONFIG_WATCH_QUEUE
444 if (pipe->watch_queue) {
445 ret = -EXDEV;
446 goto out;
448 #endif
451 * Only wake up if the pipe started out empty, since
452 * otherwise there should be no readers waiting.
454 * If it wasn't empty we try to merge new data into
455 * the last buffer.
457 * That naturally merges small writes, but it also
458 * page-aligs the rest of the writes for large writes
459 * spanning multiple pages.
461 head = pipe->head;
462 was_empty = pipe_empty(head, pipe->tail);
463 chars = total_len & (PAGE_SIZE-1);
464 if (chars && !was_empty) {
465 unsigned int mask = pipe->ring_size - 1;
466 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
467 int offset = buf->offset + buf->len;
469 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
470 offset + chars <= PAGE_SIZE) {
471 ret = pipe_buf_confirm(pipe, buf);
472 if (ret)
473 goto out;
475 ret = copy_page_from_iter(buf->page, offset, chars, from);
476 if (unlikely(ret < chars)) {
477 ret = -EFAULT;
478 goto out;
481 buf->len += ret;
482 if (!iov_iter_count(from))
483 goto out;
487 for (;;) {
488 if (!pipe->readers) {
489 send_sig(SIGPIPE, current, 0);
490 if (!ret)
491 ret = -EPIPE;
492 break;
495 head = pipe->head;
496 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
497 unsigned int mask = pipe->ring_size - 1;
498 struct pipe_buffer *buf = &pipe->bufs[head & mask];
499 struct page *page = pipe->tmp_page;
500 int copied;
502 if (!page) {
503 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
504 if (unlikely(!page)) {
505 ret = ret ? : -ENOMEM;
506 break;
508 pipe->tmp_page = page;
511 /* Allocate a slot in the ring in advance and attach an
512 * empty buffer. If we fault or otherwise fail to use
513 * it, either the reader will consume it or it'll still
514 * be there for the next write.
516 spin_lock_irq(&pipe->rd_wait.lock);
518 head = pipe->head;
519 if (pipe_full(head, pipe->tail, pipe->max_usage)) {
520 spin_unlock_irq(&pipe->rd_wait.lock);
521 continue;
524 pipe->head = head + 1;
525 spin_unlock_irq(&pipe->rd_wait.lock);
527 /* Insert it into the buffer array */
528 buf = &pipe->bufs[head & mask];
529 buf->page = page;
530 buf->ops = &anon_pipe_buf_ops;
531 buf->offset = 0;
532 buf->len = 0;
533 if (is_packetized(filp))
534 buf->flags = PIPE_BUF_FLAG_PACKET;
535 else
536 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
537 pipe->tmp_page = NULL;
539 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
540 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
541 if (!ret)
542 ret = -EFAULT;
543 break;
545 ret += copied;
546 buf->offset = 0;
547 buf->len = copied;
549 if (!iov_iter_count(from))
550 break;
553 if (!pipe_full(head, pipe->tail, pipe->max_usage))
554 continue;
556 /* Wait for buffer space to become available. */
557 if (filp->f_flags & O_NONBLOCK) {
558 if (!ret)
559 ret = -EAGAIN;
560 break;
562 if (signal_pending(current)) {
563 if (!ret)
564 ret = -ERESTARTSYS;
565 break;
569 * We're going to release the pipe lock and wait for more
570 * space. We wake up any readers if necessary, and then
571 * after waiting we need to re-check whether the pipe
572 * become empty while we dropped the lock.
574 __pipe_unlock(pipe);
575 if (was_empty) {
576 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
577 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
579 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
580 __pipe_lock(pipe);
581 was_empty = pipe_empty(pipe->head, pipe->tail);
582 wake_next_writer = true;
584 out:
585 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
586 wake_next_writer = false;
587 __pipe_unlock(pipe);
590 * If we do do a wakeup event, we do a 'sync' wakeup, because we
591 * want the reader to start processing things asap, rather than
592 * leave the data pending.
594 * This is particularly important for small writes, because of
595 * how (for example) the GNU make jobserver uses small writes to
596 * wake up pending jobs
598 if (was_empty) {
599 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
600 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
602 if (wake_next_writer)
603 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
604 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
605 int err = file_update_time(filp);
606 if (err)
607 ret = err;
608 sb_end_write(file_inode(filp)->i_sb);
610 return ret;
613 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
615 struct pipe_inode_info *pipe = filp->private_data;
616 int count, head, tail, mask;
618 switch (cmd) {
619 case FIONREAD:
620 __pipe_lock(pipe);
621 count = 0;
622 head = pipe->head;
623 tail = pipe->tail;
624 mask = pipe->ring_size - 1;
626 while (tail != head) {
627 count += pipe->bufs[tail & mask].len;
628 tail++;
630 __pipe_unlock(pipe);
632 return put_user(count, (int __user *)arg);
634 #ifdef CONFIG_WATCH_QUEUE
635 case IOC_WATCH_QUEUE_SET_SIZE: {
636 int ret;
637 __pipe_lock(pipe);
638 ret = watch_queue_set_size(pipe, arg);
639 __pipe_unlock(pipe);
640 return ret;
643 case IOC_WATCH_QUEUE_SET_FILTER:
644 return watch_queue_set_filter(
645 pipe, (struct watch_notification_filter __user *)arg);
646 #endif
648 default:
649 return -ENOIOCTLCMD;
653 /* No kernel lock held - fine */
654 static __poll_t
655 pipe_poll(struct file *filp, poll_table *wait)
657 __poll_t mask;
658 struct pipe_inode_info *pipe = filp->private_data;
659 unsigned int head, tail;
662 * Reading pipe state only -- no need for acquiring the semaphore.
664 * But because this is racy, the code has to add the
665 * entry to the poll table _first_ ..
667 if (filp->f_mode & FMODE_READ)
668 poll_wait(filp, &pipe->rd_wait, wait);
669 if (filp->f_mode & FMODE_WRITE)
670 poll_wait(filp, &pipe->wr_wait, wait);
673 * .. and only then can you do the racy tests. That way,
674 * if something changes and you got it wrong, the poll
675 * table entry will wake you up and fix it.
677 head = READ_ONCE(pipe->head);
678 tail = READ_ONCE(pipe->tail);
680 mask = 0;
681 if (filp->f_mode & FMODE_READ) {
682 if (!pipe_empty(head, tail))
683 mask |= EPOLLIN | EPOLLRDNORM;
684 if (!pipe->writers && filp->f_version != pipe->w_counter)
685 mask |= EPOLLHUP;
688 if (filp->f_mode & FMODE_WRITE) {
689 if (!pipe_full(head, tail, pipe->max_usage))
690 mask |= EPOLLOUT | EPOLLWRNORM;
692 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
693 * behave exactly like pipes for poll().
695 if (!pipe->readers)
696 mask |= EPOLLERR;
699 return mask;
702 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
704 int kill = 0;
706 spin_lock(&inode->i_lock);
707 if (!--pipe->files) {
708 inode->i_pipe = NULL;
709 kill = 1;
711 spin_unlock(&inode->i_lock);
713 if (kill)
714 free_pipe_info(pipe);
717 static int
718 pipe_release(struct inode *inode, struct file *file)
720 struct pipe_inode_info *pipe = file->private_data;
722 __pipe_lock(pipe);
723 if (file->f_mode & FMODE_READ)
724 pipe->readers--;
725 if (file->f_mode & FMODE_WRITE)
726 pipe->writers--;
728 /* Was that the last reader or writer, but not the other side? */
729 if (!pipe->readers != !pipe->writers) {
730 wake_up_interruptible_all(&pipe->rd_wait);
731 wake_up_interruptible_all(&pipe->wr_wait);
732 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
733 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
735 __pipe_unlock(pipe);
737 put_pipe_info(inode, pipe);
738 return 0;
741 static int
742 pipe_fasync(int fd, struct file *filp, int on)
744 struct pipe_inode_info *pipe = filp->private_data;
745 int retval = 0;
747 __pipe_lock(pipe);
748 if (filp->f_mode & FMODE_READ)
749 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
750 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
751 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
752 if (retval < 0 && (filp->f_mode & FMODE_READ))
753 /* this can happen only if on == T */
754 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
756 __pipe_unlock(pipe);
757 return retval;
760 unsigned long account_pipe_buffers(struct user_struct *user,
761 unsigned long old, unsigned long new)
763 return atomic_long_add_return(new - old, &user->pipe_bufs);
766 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
768 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
770 return soft_limit && user_bufs > soft_limit;
773 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
775 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
777 return hard_limit && user_bufs > hard_limit;
780 bool pipe_is_unprivileged_user(void)
782 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
785 struct pipe_inode_info *alloc_pipe_info(void)
787 struct pipe_inode_info *pipe;
788 unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
789 struct user_struct *user = get_current_user();
790 unsigned long user_bufs;
791 unsigned int max_size = READ_ONCE(pipe_max_size);
793 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
794 if (pipe == NULL)
795 goto out_free_uid;
797 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
798 pipe_bufs = max_size >> PAGE_SHIFT;
800 user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
802 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
803 user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
804 pipe_bufs = 1;
807 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
808 goto out_revert_acct;
810 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
811 GFP_KERNEL_ACCOUNT);
813 if (pipe->bufs) {
814 init_waitqueue_head(&pipe->rd_wait);
815 init_waitqueue_head(&pipe->wr_wait);
816 pipe->r_counter = pipe->w_counter = 1;
817 pipe->max_usage = pipe_bufs;
818 pipe->ring_size = pipe_bufs;
819 pipe->nr_accounted = pipe_bufs;
820 pipe->user = user;
821 mutex_init(&pipe->mutex);
822 return pipe;
825 out_revert_acct:
826 (void) account_pipe_buffers(user, pipe_bufs, 0);
827 kfree(pipe);
828 out_free_uid:
829 free_uid(user);
830 return NULL;
833 void free_pipe_info(struct pipe_inode_info *pipe)
835 int i;
837 #ifdef CONFIG_WATCH_QUEUE
838 if (pipe->watch_queue) {
839 watch_queue_clear(pipe->watch_queue);
840 put_watch_queue(pipe->watch_queue);
842 #endif
844 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
845 free_uid(pipe->user);
846 for (i = 0; i < pipe->ring_size; i++) {
847 struct pipe_buffer *buf = pipe->bufs + i;
848 if (buf->ops)
849 pipe_buf_release(pipe, buf);
851 if (pipe->tmp_page)
852 __free_page(pipe->tmp_page);
853 kfree(pipe->bufs);
854 kfree(pipe);
857 static struct vfsmount *pipe_mnt __read_mostly;
860 * pipefs_dname() is called from d_path().
862 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
864 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
865 d_inode(dentry)->i_ino);
868 static const struct dentry_operations pipefs_dentry_operations = {
869 .d_dname = pipefs_dname,
872 static struct inode * get_pipe_inode(void)
874 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
875 struct pipe_inode_info *pipe;
877 if (!inode)
878 goto fail_inode;
880 inode->i_ino = get_next_ino();
882 pipe = alloc_pipe_info();
883 if (!pipe)
884 goto fail_iput;
886 inode->i_pipe = pipe;
887 pipe->files = 2;
888 pipe->readers = pipe->writers = 1;
889 inode->i_fop = &pipefifo_fops;
892 * Mark the inode dirty from the very beginning,
893 * that way it will never be moved to the dirty
894 * list because "mark_inode_dirty()" will think
895 * that it already _is_ on the dirty list.
897 inode->i_state = I_DIRTY;
898 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
899 inode->i_uid = current_fsuid();
900 inode->i_gid = current_fsgid();
901 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
903 return inode;
905 fail_iput:
906 iput(inode);
908 fail_inode:
909 return NULL;
912 int create_pipe_files(struct file **res, int flags)
914 struct inode *inode = get_pipe_inode();
915 struct file *f;
917 if (!inode)
918 return -ENFILE;
920 if (flags & O_NOTIFICATION_PIPE) {
921 #ifdef CONFIG_WATCH_QUEUE
922 if (watch_queue_init(inode->i_pipe) < 0) {
923 iput(inode);
924 return -ENOMEM;
926 #else
927 return -ENOPKG;
928 #endif
931 f = alloc_file_pseudo(inode, pipe_mnt, "",
932 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
933 &pipefifo_fops);
934 if (IS_ERR(f)) {
935 free_pipe_info(inode->i_pipe);
936 iput(inode);
937 return PTR_ERR(f);
940 f->private_data = inode->i_pipe;
942 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
943 &pipefifo_fops);
944 if (IS_ERR(res[0])) {
945 put_pipe_info(inode, inode->i_pipe);
946 fput(f);
947 return PTR_ERR(res[0]);
949 res[0]->private_data = inode->i_pipe;
950 res[1] = f;
951 stream_open(inode, res[0]);
952 stream_open(inode, res[1]);
953 return 0;
956 static int __do_pipe_flags(int *fd, struct file **files, int flags)
958 int error;
959 int fdw, fdr;
961 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
962 return -EINVAL;
964 error = create_pipe_files(files, flags);
965 if (error)
966 return error;
968 error = get_unused_fd_flags(flags);
969 if (error < 0)
970 goto err_read_pipe;
971 fdr = error;
973 error = get_unused_fd_flags(flags);
974 if (error < 0)
975 goto err_fdr;
976 fdw = error;
978 audit_fd_pair(fdr, fdw);
979 fd[0] = fdr;
980 fd[1] = fdw;
981 return 0;
983 err_fdr:
984 put_unused_fd(fdr);
985 err_read_pipe:
986 fput(files[0]);
987 fput(files[1]);
988 return error;
991 int do_pipe_flags(int *fd, int flags)
993 struct file *files[2];
994 int error = __do_pipe_flags(fd, files, flags);
995 if (!error) {
996 fd_install(fd[0], files[0]);
997 fd_install(fd[1], files[1]);
999 return error;
1003 * sys_pipe() is the normal C calling standard for creating
1004 * a pipe. It's not the way Unix traditionally does this, though.
1006 static int do_pipe2(int __user *fildes, int flags)
1008 struct file *files[2];
1009 int fd[2];
1010 int error;
1012 error = __do_pipe_flags(fd, files, flags);
1013 if (!error) {
1014 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1015 fput(files[0]);
1016 fput(files[1]);
1017 put_unused_fd(fd[0]);
1018 put_unused_fd(fd[1]);
1019 error = -EFAULT;
1020 } else {
1021 fd_install(fd[0], files[0]);
1022 fd_install(fd[1], files[1]);
1025 return error;
1028 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1030 return do_pipe2(fildes, flags);
1033 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1035 return do_pipe2(fildes, 0);
1038 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1040 int cur = *cnt;
1042 while (cur == *cnt) {
1043 pipe_wait(pipe);
1044 if (signal_pending(current))
1045 break;
1047 return cur == *cnt ? -ERESTARTSYS : 0;
1050 static void wake_up_partner(struct pipe_inode_info *pipe)
1052 wake_up_interruptible_all(&pipe->rd_wait);
1053 wake_up_interruptible_all(&pipe->wr_wait);
1056 static int fifo_open(struct inode *inode, struct file *filp)
1058 struct pipe_inode_info *pipe;
1059 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1060 int ret;
1062 filp->f_version = 0;
1064 spin_lock(&inode->i_lock);
1065 if (inode->i_pipe) {
1066 pipe = inode->i_pipe;
1067 pipe->files++;
1068 spin_unlock(&inode->i_lock);
1069 } else {
1070 spin_unlock(&inode->i_lock);
1071 pipe = alloc_pipe_info();
1072 if (!pipe)
1073 return -ENOMEM;
1074 pipe->files = 1;
1075 spin_lock(&inode->i_lock);
1076 if (unlikely(inode->i_pipe)) {
1077 inode->i_pipe->files++;
1078 spin_unlock(&inode->i_lock);
1079 free_pipe_info(pipe);
1080 pipe = inode->i_pipe;
1081 } else {
1082 inode->i_pipe = pipe;
1083 spin_unlock(&inode->i_lock);
1086 filp->private_data = pipe;
1087 /* OK, we have a pipe and it's pinned down */
1089 __pipe_lock(pipe);
1091 /* We can only do regular read/write on fifos */
1092 stream_open(inode, filp);
1094 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1095 case FMODE_READ:
1097 * O_RDONLY
1098 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1099 * opened, even when there is no process writing the FIFO.
1101 pipe->r_counter++;
1102 if (pipe->readers++ == 0)
1103 wake_up_partner(pipe);
1105 if (!is_pipe && !pipe->writers) {
1106 if ((filp->f_flags & O_NONBLOCK)) {
1107 /* suppress EPOLLHUP until we have
1108 * seen a writer */
1109 filp->f_version = pipe->w_counter;
1110 } else {
1111 if (wait_for_partner(pipe, &pipe->w_counter))
1112 goto err_rd;
1115 break;
1117 case FMODE_WRITE:
1119 * O_WRONLY
1120 * POSIX.1 says that O_NONBLOCK means return -1 with
1121 * errno=ENXIO when there is no process reading the FIFO.
1123 ret = -ENXIO;
1124 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1125 goto err;
1127 pipe->w_counter++;
1128 if (!pipe->writers++)
1129 wake_up_partner(pipe);
1131 if (!is_pipe && !pipe->readers) {
1132 if (wait_for_partner(pipe, &pipe->r_counter))
1133 goto err_wr;
1135 break;
1137 case FMODE_READ | FMODE_WRITE:
1139 * O_RDWR
1140 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1141 * This implementation will NEVER block on a O_RDWR open, since
1142 * the process can at least talk to itself.
1145 pipe->readers++;
1146 pipe->writers++;
1147 pipe->r_counter++;
1148 pipe->w_counter++;
1149 if (pipe->readers == 1 || pipe->writers == 1)
1150 wake_up_partner(pipe);
1151 break;
1153 default:
1154 ret = -EINVAL;
1155 goto err;
1158 /* Ok! */
1159 __pipe_unlock(pipe);
1160 return 0;
1162 err_rd:
1163 if (!--pipe->readers)
1164 wake_up_interruptible(&pipe->wr_wait);
1165 ret = -ERESTARTSYS;
1166 goto err;
1168 err_wr:
1169 if (!--pipe->writers)
1170 wake_up_interruptible_all(&pipe->rd_wait);
1171 ret = -ERESTARTSYS;
1172 goto err;
1174 err:
1175 __pipe_unlock(pipe);
1177 put_pipe_info(inode, pipe);
1178 return ret;
1181 const struct file_operations pipefifo_fops = {
1182 .open = fifo_open,
1183 .llseek = no_llseek,
1184 .read_iter = pipe_read,
1185 .write_iter = pipe_write,
1186 .poll = pipe_poll,
1187 .unlocked_ioctl = pipe_ioctl,
1188 .release = pipe_release,
1189 .fasync = pipe_fasync,
1193 * Currently we rely on the pipe array holding a power-of-2 number
1194 * of pages. Returns 0 on error.
1196 unsigned int round_pipe_size(unsigned long size)
1198 if (size > (1U << 31))
1199 return 0;
1201 /* Minimum pipe size, as required by POSIX */
1202 if (size < PAGE_SIZE)
1203 return PAGE_SIZE;
1205 return roundup_pow_of_two(size);
1209 * Resize the pipe ring to a number of slots.
1211 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1213 struct pipe_buffer *bufs;
1214 unsigned int head, tail, mask, n;
1217 * We can shrink the pipe, if arg is greater than the ring occupancy.
1218 * Since we don't expect a lot of shrink+grow operations, just free and
1219 * allocate again like we would do for growing. If the pipe currently
1220 * contains more buffers than arg, then return busy.
1222 mask = pipe->ring_size - 1;
1223 head = pipe->head;
1224 tail = pipe->tail;
1225 n = pipe_occupancy(pipe->head, pipe->tail);
1226 if (nr_slots < n)
1227 return -EBUSY;
1229 bufs = kcalloc(nr_slots, sizeof(*bufs),
1230 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1231 if (unlikely(!bufs))
1232 return -ENOMEM;
1235 * The pipe array wraps around, so just start the new one at zero
1236 * and adjust the indices.
1238 if (n > 0) {
1239 unsigned int h = head & mask;
1240 unsigned int t = tail & mask;
1241 if (h > t) {
1242 memcpy(bufs, pipe->bufs + t,
1243 n * sizeof(struct pipe_buffer));
1244 } else {
1245 unsigned int tsize = pipe->ring_size - t;
1246 if (h > 0)
1247 memcpy(bufs + tsize, pipe->bufs,
1248 h * sizeof(struct pipe_buffer));
1249 memcpy(bufs, pipe->bufs + t,
1250 tsize * sizeof(struct pipe_buffer));
1254 head = n;
1255 tail = 0;
1257 kfree(pipe->bufs);
1258 pipe->bufs = bufs;
1259 pipe->ring_size = nr_slots;
1260 if (pipe->max_usage > nr_slots)
1261 pipe->max_usage = nr_slots;
1262 pipe->tail = tail;
1263 pipe->head = head;
1265 /* This might have made more room for writers */
1266 wake_up_interruptible(&pipe->wr_wait);
1267 return 0;
1271 * Allocate a new array of pipe buffers and copy the info over. Returns the
1272 * pipe size if successful, or return -ERROR on error.
1274 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1276 unsigned long user_bufs;
1277 unsigned int nr_slots, size;
1278 long ret = 0;
1280 #ifdef CONFIG_WATCH_QUEUE
1281 if (pipe->watch_queue)
1282 return -EBUSY;
1283 #endif
1285 size = round_pipe_size(arg);
1286 nr_slots = size >> PAGE_SHIFT;
1288 if (!nr_slots)
1289 return -EINVAL;
1292 * If trying to increase the pipe capacity, check that an
1293 * unprivileged user is not trying to exceed various limits
1294 * (soft limit check here, hard limit check just below).
1295 * Decreasing the pipe capacity is always permitted, even
1296 * if the user is currently over a limit.
1298 if (nr_slots > pipe->max_usage &&
1299 size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1300 return -EPERM;
1302 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1304 if (nr_slots > pipe->max_usage &&
1305 (too_many_pipe_buffers_hard(user_bufs) ||
1306 too_many_pipe_buffers_soft(user_bufs)) &&
1307 pipe_is_unprivileged_user()) {
1308 ret = -EPERM;
1309 goto out_revert_acct;
1312 ret = pipe_resize_ring(pipe, nr_slots);
1313 if (ret < 0)
1314 goto out_revert_acct;
1316 pipe->max_usage = nr_slots;
1317 pipe->nr_accounted = nr_slots;
1318 return pipe->max_usage * PAGE_SIZE;
1320 out_revert_acct:
1321 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1322 return ret;
1326 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1327 * location, so checking ->i_pipe is not enough to verify that this is a
1328 * pipe.
1330 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1332 struct pipe_inode_info *pipe = file->private_data;
1334 if (file->f_op != &pipefifo_fops || !pipe)
1335 return NULL;
1336 #ifdef CONFIG_WATCH_QUEUE
1337 if (for_splice && pipe->watch_queue)
1338 return NULL;
1339 #endif
1340 return pipe;
1343 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1345 struct pipe_inode_info *pipe;
1346 long ret;
1348 pipe = get_pipe_info(file, false);
1349 if (!pipe)
1350 return -EBADF;
1352 __pipe_lock(pipe);
1354 switch (cmd) {
1355 case F_SETPIPE_SZ:
1356 ret = pipe_set_size(pipe, arg);
1357 break;
1358 case F_GETPIPE_SZ:
1359 ret = pipe->max_usage * PAGE_SIZE;
1360 break;
1361 default:
1362 ret = -EINVAL;
1363 break;
1366 __pipe_unlock(pipe);
1367 return ret;
1370 static const struct super_operations pipefs_ops = {
1371 .destroy_inode = free_inode_nonrcu,
1372 .statfs = simple_statfs,
1376 * pipefs should _never_ be mounted by userland - too much of security hassle,
1377 * no real gain from having the whole whorehouse mounted. So we don't need
1378 * any operations on the root directory. However, we need a non-trivial
1379 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1382 static int pipefs_init_fs_context(struct fs_context *fc)
1384 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1385 if (!ctx)
1386 return -ENOMEM;
1387 ctx->ops = &pipefs_ops;
1388 ctx->dops = &pipefs_dentry_operations;
1389 return 0;
1392 static struct file_system_type pipe_fs_type = {
1393 .name = "pipefs",
1394 .init_fs_context = pipefs_init_fs_context,
1395 .kill_sb = kill_anon_super,
1398 static int __init init_pipe_fs(void)
1400 int err = register_filesystem(&pipe_fs_type);
1402 if (!err) {
1403 pipe_mnt = kern_mount(&pipe_fs_type);
1404 if (IS_ERR(pipe_mnt)) {
1405 err = PTR_ERR(pipe_mnt);
1406 unregister_filesystem(&pipe_fs_type);
1409 return err;
1412 fs_initcall(init_pipe_fs);