[PATCH] uml: move libc-dependent skas memory mapping code
[linux/fpc-iii.git] / kernel / fork.c
blob4ae8cfc1c89cffdee486c2a3b28316e583a40747
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/cn_proc.h>
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/uaccess.h>
51 #include <asm/mmu_context.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlbflush.h>
56 * Protected counters by write_lock_irq(&tasklist_lock)
58 unsigned long total_forks; /* Handle normal Linux uptimes. */
59 int nr_threads; /* The idle threads do not count.. */
61 int max_threads; /* tunable limit on nr_threads */
63 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
65 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
67 EXPORT_SYMBOL(tasklist_lock);
69 int nr_processes(void)
71 int cpu;
72 int total = 0;
74 for_each_online_cpu(cpu)
75 total += per_cpu(process_counts, cpu);
77 return total;
80 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
81 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
82 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
83 static kmem_cache_t *task_struct_cachep;
84 #endif
86 /* SLAB cache for signal_struct structures (tsk->signal) */
87 kmem_cache_t *signal_cachep;
89 /* SLAB cache for sighand_struct structures (tsk->sighand) */
90 kmem_cache_t *sighand_cachep;
92 /* SLAB cache for files_struct structures (tsk->files) */
93 kmem_cache_t *files_cachep;
95 /* SLAB cache for fs_struct structures (tsk->fs) */
96 kmem_cache_t *fs_cachep;
98 /* SLAB cache for vm_area_struct structures */
99 kmem_cache_t *vm_area_cachep;
101 /* SLAB cache for mm_struct structures (tsk->mm) */
102 static kmem_cache_t *mm_cachep;
104 void free_task(struct task_struct *tsk)
106 free_thread_info(tsk->thread_info);
107 free_task_struct(tsk);
109 EXPORT_SYMBOL(free_task);
111 void __put_task_struct(struct task_struct *tsk)
113 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
114 WARN_ON(atomic_read(&tsk->usage));
115 WARN_ON(tsk == current);
117 if (unlikely(tsk->audit_context))
118 audit_free(tsk);
119 security_task_free(tsk);
120 free_uid(tsk->user);
121 put_group_info(tsk->group_info);
123 if (!profile_handoff_task(tsk))
124 free_task(tsk);
127 void __init fork_init(unsigned long mempages)
129 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
130 #ifndef ARCH_MIN_TASKALIGN
131 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
132 #endif
133 /* create a slab on which task_structs can be allocated */
134 task_struct_cachep =
135 kmem_cache_create("task_struct", sizeof(struct task_struct),
136 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
137 #endif
140 * The default maximum number of threads is set to a safe
141 * value: the thread structures can take up at most half
142 * of memory.
144 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
147 * we need to allow at least 20 threads to boot a system
149 if(max_threads < 20)
150 max_threads = 20;
152 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
153 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
154 init_task.signal->rlim[RLIMIT_SIGPENDING] =
155 init_task.signal->rlim[RLIMIT_NPROC];
158 static struct task_struct *dup_task_struct(struct task_struct *orig)
160 struct task_struct *tsk;
161 struct thread_info *ti;
163 prepare_to_copy(orig);
165 tsk = alloc_task_struct();
166 if (!tsk)
167 return NULL;
169 ti = alloc_thread_info(tsk);
170 if (!ti) {
171 free_task_struct(tsk);
172 return NULL;
175 *tsk = *orig;
176 tsk->thread_info = ti;
177 setup_thread_stack(tsk, orig);
179 /* One for us, one for whoever does the "release_task()" (usually parent) */
180 atomic_set(&tsk->usage,2);
181 atomic_set(&tsk->fs_excl, 0);
182 return tsk;
185 #ifdef CONFIG_MMU
186 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
188 struct vm_area_struct *mpnt, *tmp, **pprev;
189 struct rb_node **rb_link, *rb_parent;
190 int retval;
191 unsigned long charge;
192 struct mempolicy *pol;
194 down_write(&oldmm->mmap_sem);
195 flush_cache_mm(oldmm);
196 down_write(&mm->mmap_sem);
198 mm->locked_vm = 0;
199 mm->mmap = NULL;
200 mm->mmap_cache = NULL;
201 mm->free_area_cache = oldmm->mmap_base;
202 mm->cached_hole_size = ~0UL;
203 mm->map_count = 0;
204 cpus_clear(mm->cpu_vm_mask);
205 mm->mm_rb = RB_ROOT;
206 rb_link = &mm->mm_rb.rb_node;
207 rb_parent = NULL;
208 pprev = &mm->mmap;
210 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
211 struct file *file;
213 if (mpnt->vm_flags & VM_DONTCOPY) {
214 long pages = vma_pages(mpnt);
215 mm->total_vm -= pages;
216 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
217 -pages);
218 continue;
220 charge = 0;
221 if (mpnt->vm_flags & VM_ACCOUNT) {
222 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
223 if (security_vm_enough_memory(len))
224 goto fail_nomem;
225 charge = len;
227 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
228 if (!tmp)
229 goto fail_nomem;
230 *tmp = *mpnt;
231 pol = mpol_copy(vma_policy(mpnt));
232 retval = PTR_ERR(pol);
233 if (IS_ERR(pol))
234 goto fail_nomem_policy;
235 vma_set_policy(tmp, pol);
236 tmp->vm_flags &= ~VM_LOCKED;
237 tmp->vm_mm = mm;
238 tmp->vm_next = NULL;
239 anon_vma_link(tmp);
240 file = tmp->vm_file;
241 if (file) {
242 struct inode *inode = file->f_dentry->d_inode;
243 get_file(file);
244 if (tmp->vm_flags & VM_DENYWRITE)
245 atomic_dec(&inode->i_writecount);
247 /* insert tmp into the share list, just after mpnt */
248 spin_lock(&file->f_mapping->i_mmap_lock);
249 tmp->vm_truncate_count = mpnt->vm_truncate_count;
250 flush_dcache_mmap_lock(file->f_mapping);
251 vma_prio_tree_add(tmp, mpnt);
252 flush_dcache_mmap_unlock(file->f_mapping);
253 spin_unlock(&file->f_mapping->i_mmap_lock);
257 * Link in the new vma and copy the page table entries.
259 *pprev = tmp;
260 pprev = &tmp->vm_next;
262 __vma_link_rb(mm, tmp, rb_link, rb_parent);
263 rb_link = &tmp->vm_rb.rb_right;
264 rb_parent = &tmp->vm_rb;
266 mm->map_count++;
267 retval = copy_page_range(mm, oldmm, mpnt);
269 if (tmp->vm_ops && tmp->vm_ops->open)
270 tmp->vm_ops->open(tmp);
272 if (retval)
273 goto out;
275 retval = 0;
276 out:
277 up_write(&mm->mmap_sem);
278 flush_tlb_mm(oldmm);
279 up_write(&oldmm->mmap_sem);
280 return retval;
281 fail_nomem_policy:
282 kmem_cache_free(vm_area_cachep, tmp);
283 fail_nomem:
284 retval = -ENOMEM;
285 vm_unacct_memory(charge);
286 goto out;
289 static inline int mm_alloc_pgd(struct mm_struct * mm)
291 mm->pgd = pgd_alloc(mm);
292 if (unlikely(!mm->pgd))
293 return -ENOMEM;
294 return 0;
297 static inline void mm_free_pgd(struct mm_struct * mm)
299 pgd_free(mm->pgd);
301 #else
302 #define dup_mmap(mm, oldmm) (0)
303 #define mm_alloc_pgd(mm) (0)
304 #define mm_free_pgd(mm)
305 #endif /* CONFIG_MMU */
307 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
309 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
310 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
312 #include <linux/init_task.h>
314 static struct mm_struct * mm_init(struct mm_struct * mm)
316 atomic_set(&mm->mm_users, 1);
317 atomic_set(&mm->mm_count, 1);
318 init_rwsem(&mm->mmap_sem);
319 INIT_LIST_HEAD(&mm->mmlist);
320 mm->core_waiters = 0;
321 mm->nr_ptes = 0;
322 set_mm_counter(mm, file_rss, 0);
323 set_mm_counter(mm, anon_rss, 0);
324 spin_lock_init(&mm->page_table_lock);
325 rwlock_init(&mm->ioctx_list_lock);
326 mm->ioctx_list = NULL;
327 mm->free_area_cache = TASK_UNMAPPED_BASE;
328 mm->cached_hole_size = ~0UL;
330 if (likely(!mm_alloc_pgd(mm))) {
331 mm->def_flags = 0;
332 return mm;
334 free_mm(mm);
335 return NULL;
339 * Allocate and initialize an mm_struct.
341 struct mm_struct * mm_alloc(void)
343 struct mm_struct * mm;
345 mm = allocate_mm();
346 if (mm) {
347 memset(mm, 0, sizeof(*mm));
348 mm = mm_init(mm);
350 return mm;
354 * Called when the last reference to the mm
355 * is dropped: either by a lazy thread or by
356 * mmput. Free the page directory and the mm.
358 void fastcall __mmdrop(struct mm_struct *mm)
360 BUG_ON(mm == &init_mm);
361 mm_free_pgd(mm);
362 destroy_context(mm);
363 free_mm(mm);
367 * Decrement the use count and release all resources for an mm.
369 void mmput(struct mm_struct *mm)
371 if (atomic_dec_and_test(&mm->mm_users)) {
372 exit_aio(mm);
373 exit_mmap(mm);
374 if (!list_empty(&mm->mmlist)) {
375 spin_lock(&mmlist_lock);
376 list_del(&mm->mmlist);
377 spin_unlock(&mmlist_lock);
379 put_swap_token(mm);
380 mmdrop(mm);
383 EXPORT_SYMBOL_GPL(mmput);
386 * get_task_mm - acquire a reference to the task's mm
388 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
389 * this kernel workthread has transiently adopted a user mm with use_mm,
390 * to do its AIO) is not set and if so returns a reference to it, after
391 * bumping up the use count. User must release the mm via mmput()
392 * after use. Typically used by /proc and ptrace.
394 struct mm_struct *get_task_mm(struct task_struct *task)
396 struct mm_struct *mm;
398 task_lock(task);
399 mm = task->mm;
400 if (mm) {
401 if (task->flags & PF_BORROWED_MM)
402 mm = NULL;
403 else
404 atomic_inc(&mm->mm_users);
406 task_unlock(task);
407 return mm;
409 EXPORT_SYMBOL_GPL(get_task_mm);
411 /* Please note the differences between mmput and mm_release.
412 * mmput is called whenever we stop holding onto a mm_struct,
413 * error success whatever.
415 * mm_release is called after a mm_struct has been removed
416 * from the current process.
418 * This difference is important for error handling, when we
419 * only half set up a mm_struct for a new process and need to restore
420 * the old one. Because we mmput the new mm_struct before
421 * restoring the old one. . .
422 * Eric Biederman 10 January 1998
424 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
426 struct completion *vfork_done = tsk->vfork_done;
428 /* Get rid of any cached register state */
429 deactivate_mm(tsk, mm);
431 /* notify parent sleeping on vfork() */
432 if (vfork_done) {
433 tsk->vfork_done = NULL;
434 complete(vfork_done);
436 if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
437 u32 __user * tidptr = tsk->clear_child_tid;
438 tsk->clear_child_tid = NULL;
441 * We don't check the error code - if userspace has
442 * not set up a proper pointer then tough luck.
444 put_user(0, tidptr);
445 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
449 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
451 struct mm_struct * mm, *oldmm;
452 int retval;
454 tsk->min_flt = tsk->maj_flt = 0;
455 tsk->nvcsw = tsk->nivcsw = 0;
457 tsk->mm = NULL;
458 tsk->active_mm = NULL;
461 * Are we cloning a kernel thread?
463 * We need to steal a active VM for that..
465 oldmm = current->mm;
466 if (!oldmm)
467 return 0;
469 if (clone_flags & CLONE_VM) {
470 atomic_inc(&oldmm->mm_users);
471 mm = oldmm;
472 goto good_mm;
475 retval = -ENOMEM;
476 mm = allocate_mm();
477 if (!mm)
478 goto fail_nomem;
480 /* Copy the current MM stuff.. */
481 memcpy(mm, oldmm, sizeof(*mm));
482 if (!mm_init(mm))
483 goto fail_nomem;
485 if (init_new_context(tsk,mm))
486 goto fail_nocontext;
488 retval = dup_mmap(mm, oldmm);
489 if (retval)
490 goto free_pt;
492 mm->hiwater_rss = get_mm_rss(mm);
493 mm->hiwater_vm = mm->total_vm;
495 good_mm:
496 tsk->mm = mm;
497 tsk->active_mm = mm;
498 return 0;
500 free_pt:
501 mmput(mm);
502 fail_nomem:
503 return retval;
505 fail_nocontext:
507 * If init_new_context() failed, we cannot use mmput() to free the mm
508 * because it calls destroy_context()
510 mm_free_pgd(mm);
511 free_mm(mm);
512 return retval;
515 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
517 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
518 /* We don't need to lock fs - think why ;-) */
519 if (fs) {
520 atomic_set(&fs->count, 1);
521 rwlock_init(&fs->lock);
522 fs->umask = old->umask;
523 read_lock(&old->lock);
524 fs->rootmnt = mntget(old->rootmnt);
525 fs->root = dget(old->root);
526 fs->pwdmnt = mntget(old->pwdmnt);
527 fs->pwd = dget(old->pwd);
528 if (old->altroot) {
529 fs->altrootmnt = mntget(old->altrootmnt);
530 fs->altroot = dget(old->altroot);
531 } else {
532 fs->altrootmnt = NULL;
533 fs->altroot = NULL;
535 read_unlock(&old->lock);
537 return fs;
540 struct fs_struct *copy_fs_struct(struct fs_struct *old)
542 return __copy_fs_struct(old);
545 EXPORT_SYMBOL_GPL(copy_fs_struct);
547 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
549 if (clone_flags & CLONE_FS) {
550 atomic_inc(&current->fs->count);
551 return 0;
553 tsk->fs = __copy_fs_struct(current->fs);
554 if (!tsk->fs)
555 return -ENOMEM;
556 return 0;
559 static int count_open_files(struct fdtable *fdt)
561 int size = fdt->max_fdset;
562 int i;
564 /* Find the last open fd */
565 for (i = size/(8*sizeof(long)); i > 0; ) {
566 if (fdt->open_fds->fds_bits[--i])
567 break;
569 i = (i+1) * 8 * sizeof(long);
570 return i;
573 static struct files_struct *alloc_files(void)
575 struct files_struct *newf;
576 struct fdtable *fdt;
578 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
579 if (!newf)
580 goto out;
582 atomic_set(&newf->count, 1);
584 spin_lock_init(&newf->file_lock);
585 fdt = &newf->fdtab;
586 fdt->next_fd = 0;
587 fdt->max_fds = NR_OPEN_DEFAULT;
588 fdt->max_fdset = __FD_SETSIZE;
589 fdt->close_on_exec = &newf->close_on_exec_init;
590 fdt->open_fds = &newf->open_fds_init;
591 fdt->fd = &newf->fd_array[0];
592 INIT_RCU_HEAD(&fdt->rcu);
593 fdt->free_files = NULL;
594 fdt->next = NULL;
595 rcu_assign_pointer(newf->fdt, fdt);
596 out:
597 return newf;
600 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
602 struct files_struct *oldf, *newf;
603 struct file **old_fds, **new_fds;
604 int open_files, size, i, error = 0, expand;
605 struct fdtable *old_fdt, *new_fdt;
608 * A background process may not have any files ...
610 oldf = current->files;
611 if (!oldf)
612 goto out;
614 if (clone_flags & CLONE_FILES) {
615 atomic_inc(&oldf->count);
616 goto out;
620 * Note: we may be using current for both targets (See exec.c)
621 * This works because we cache current->files (old) as oldf. Don't
622 * break this.
624 tsk->files = NULL;
625 error = -ENOMEM;
626 newf = alloc_files();
627 if (!newf)
628 goto out;
630 spin_lock(&oldf->file_lock);
631 old_fdt = files_fdtable(oldf);
632 new_fdt = files_fdtable(newf);
633 size = old_fdt->max_fdset;
634 open_files = count_open_files(old_fdt);
635 expand = 0;
638 * Check whether we need to allocate a larger fd array or fd set.
639 * Note: we're not a clone task, so the open count won't change.
641 if (open_files > new_fdt->max_fdset) {
642 new_fdt->max_fdset = 0;
643 expand = 1;
645 if (open_files > new_fdt->max_fds) {
646 new_fdt->max_fds = 0;
647 expand = 1;
650 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
651 if (expand) {
652 spin_unlock(&oldf->file_lock);
653 spin_lock(&newf->file_lock);
654 error = expand_files(newf, open_files-1);
655 spin_unlock(&newf->file_lock);
656 if (error < 0)
657 goto out_release;
658 new_fdt = files_fdtable(newf);
660 * Reacquire the oldf lock and a pointer to its fd table
661 * who knows it may have a new bigger fd table. We need
662 * the latest pointer.
664 spin_lock(&oldf->file_lock);
665 old_fdt = files_fdtable(oldf);
668 old_fds = old_fdt->fd;
669 new_fds = new_fdt->fd;
671 memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
672 memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
674 for (i = open_files; i != 0; i--) {
675 struct file *f = *old_fds++;
676 if (f) {
677 get_file(f);
678 } else {
680 * The fd may be claimed in the fd bitmap but not yet
681 * instantiated in the files array if a sibling thread
682 * is partway through open(). So make sure that this
683 * fd is available to the new process.
685 FD_CLR(open_files - i, new_fdt->open_fds);
687 rcu_assign_pointer(*new_fds++, f);
689 spin_unlock(&oldf->file_lock);
691 /* compute the remainder to be cleared */
692 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
694 /* This is long word aligned thus could use a optimized version */
695 memset(new_fds, 0, size);
697 if (new_fdt->max_fdset > open_files) {
698 int left = (new_fdt->max_fdset-open_files)/8;
699 int start = open_files / (8 * sizeof(unsigned long));
701 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
702 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
705 tsk->files = newf;
706 error = 0;
707 out:
708 return error;
710 out_release:
711 free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
712 free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
713 free_fd_array(new_fdt->fd, new_fdt->max_fds);
714 kmem_cache_free(files_cachep, newf);
715 goto out;
719 * Helper to unshare the files of the current task.
720 * We don't want to expose copy_files internals to
721 * the exec layer of the kernel.
724 int unshare_files(void)
726 struct files_struct *files = current->files;
727 int rc;
729 if(!files)
730 BUG();
732 /* This can race but the race causes us to copy when we don't
733 need to and drop the copy */
734 if(atomic_read(&files->count) == 1)
736 atomic_inc(&files->count);
737 return 0;
739 rc = copy_files(0, current);
740 if(rc)
741 current->files = files;
742 return rc;
745 EXPORT_SYMBOL(unshare_files);
747 void sighand_free_cb(struct rcu_head *rhp)
749 struct sighand_struct *sp;
751 sp = container_of(rhp, struct sighand_struct, rcu);
752 kmem_cache_free(sighand_cachep, sp);
755 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
757 struct sighand_struct *sig;
759 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
760 atomic_inc(&current->sighand->count);
761 return 0;
763 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
764 rcu_assign_pointer(tsk->sighand, sig);
765 if (!sig)
766 return -ENOMEM;
767 spin_lock_init(&sig->siglock);
768 atomic_set(&sig->count, 1);
769 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
770 return 0;
773 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
775 struct signal_struct *sig;
776 int ret;
778 if (clone_flags & CLONE_THREAD) {
779 atomic_inc(&current->signal->count);
780 atomic_inc(&current->signal->live);
781 return 0;
783 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
784 tsk->signal = sig;
785 if (!sig)
786 return -ENOMEM;
788 ret = copy_thread_group_keys(tsk);
789 if (ret < 0) {
790 kmem_cache_free(signal_cachep, sig);
791 return ret;
794 atomic_set(&sig->count, 1);
795 atomic_set(&sig->live, 1);
796 init_waitqueue_head(&sig->wait_chldexit);
797 sig->flags = 0;
798 sig->group_exit_code = 0;
799 sig->group_exit_task = NULL;
800 sig->group_stop_count = 0;
801 sig->curr_target = NULL;
802 init_sigpending(&sig->shared_pending);
803 INIT_LIST_HEAD(&sig->posix_timers);
805 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC);
806 sig->it_real_incr.tv64 = 0;
807 sig->real_timer.function = it_real_fn;
808 sig->real_timer.data = tsk;
810 sig->it_virt_expires = cputime_zero;
811 sig->it_virt_incr = cputime_zero;
812 sig->it_prof_expires = cputime_zero;
813 sig->it_prof_incr = cputime_zero;
815 sig->leader = 0; /* session leadership doesn't inherit */
816 sig->tty_old_pgrp = 0;
818 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
819 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
820 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
821 sig->sched_time = 0;
822 INIT_LIST_HEAD(&sig->cpu_timers[0]);
823 INIT_LIST_HEAD(&sig->cpu_timers[1]);
824 INIT_LIST_HEAD(&sig->cpu_timers[2]);
826 task_lock(current->group_leader);
827 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
828 task_unlock(current->group_leader);
830 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
832 * New sole thread in the process gets an expiry time
833 * of the whole CPU time limit.
835 tsk->it_prof_expires =
836 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
839 return 0;
842 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
844 unsigned long new_flags = p->flags;
846 new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
847 new_flags |= PF_FORKNOEXEC;
848 if (!(clone_flags & CLONE_PTRACE))
849 p->ptrace = 0;
850 p->flags = new_flags;
853 asmlinkage long sys_set_tid_address(int __user *tidptr)
855 current->clear_child_tid = tidptr;
857 return current->pid;
861 * This creates a new process as a copy of the old one,
862 * but does not actually start it yet.
864 * It copies the registers, and all the appropriate
865 * parts of the process environment (as per the clone
866 * flags). The actual kick-off is left to the caller.
868 static task_t *copy_process(unsigned long clone_flags,
869 unsigned long stack_start,
870 struct pt_regs *regs,
871 unsigned long stack_size,
872 int __user *parent_tidptr,
873 int __user *child_tidptr,
874 int pid)
876 int retval;
877 struct task_struct *p = NULL;
879 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
880 return ERR_PTR(-EINVAL);
883 * Thread groups must share signals as well, and detached threads
884 * can only be started up within the thread group.
886 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
887 return ERR_PTR(-EINVAL);
890 * Shared signal handlers imply shared VM. By way of the above,
891 * thread groups also imply shared VM. Blocking this case allows
892 * for various simplifications in other code.
894 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
895 return ERR_PTR(-EINVAL);
897 retval = security_task_create(clone_flags);
898 if (retval)
899 goto fork_out;
901 retval = -ENOMEM;
902 p = dup_task_struct(current);
903 if (!p)
904 goto fork_out;
906 retval = -EAGAIN;
907 if (atomic_read(&p->user->processes) >=
908 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
909 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
910 p->user != &root_user)
911 goto bad_fork_free;
914 atomic_inc(&p->user->__count);
915 atomic_inc(&p->user->processes);
916 get_group_info(p->group_info);
919 * If multiple threads are within copy_process(), then this check
920 * triggers too late. This doesn't hurt, the check is only there
921 * to stop root fork bombs.
923 if (nr_threads >= max_threads)
924 goto bad_fork_cleanup_count;
926 if (!try_module_get(task_thread_info(p)->exec_domain->module))
927 goto bad_fork_cleanup_count;
929 if (p->binfmt && !try_module_get(p->binfmt->module))
930 goto bad_fork_cleanup_put_domain;
932 p->did_exec = 0;
933 copy_flags(clone_flags, p);
934 p->pid = pid;
935 retval = -EFAULT;
936 if (clone_flags & CLONE_PARENT_SETTID)
937 if (put_user(p->pid, parent_tidptr))
938 goto bad_fork_cleanup;
940 p->proc_dentry = NULL;
942 INIT_LIST_HEAD(&p->children);
943 INIT_LIST_HEAD(&p->sibling);
944 p->vfork_done = NULL;
945 spin_lock_init(&p->alloc_lock);
946 spin_lock_init(&p->proc_lock);
948 clear_tsk_thread_flag(p, TIF_SIGPENDING);
949 init_sigpending(&p->pending);
951 p->utime = cputime_zero;
952 p->stime = cputime_zero;
953 p->sched_time = 0;
954 p->rchar = 0; /* I/O counter: bytes read */
955 p->wchar = 0; /* I/O counter: bytes written */
956 p->syscr = 0; /* I/O counter: read syscalls */
957 p->syscw = 0; /* I/O counter: write syscalls */
958 acct_clear_integrals(p);
960 p->it_virt_expires = cputime_zero;
961 p->it_prof_expires = cputime_zero;
962 p->it_sched_expires = 0;
963 INIT_LIST_HEAD(&p->cpu_timers[0]);
964 INIT_LIST_HEAD(&p->cpu_timers[1]);
965 INIT_LIST_HEAD(&p->cpu_timers[2]);
967 p->lock_depth = -1; /* -1 = no lock */
968 do_posix_clock_monotonic_gettime(&p->start_time);
969 p->security = NULL;
970 p->io_context = NULL;
971 p->io_wait = NULL;
972 p->audit_context = NULL;
973 cpuset_fork(p);
974 #ifdef CONFIG_NUMA
975 p->mempolicy = mpol_copy(p->mempolicy);
976 if (IS_ERR(p->mempolicy)) {
977 retval = PTR_ERR(p->mempolicy);
978 p->mempolicy = NULL;
979 goto bad_fork_cleanup_cpuset;
981 #endif
983 #ifdef CONFIG_DEBUG_MUTEXES
984 p->blocked_on = NULL; /* not blocked yet */
985 #endif
987 p->tgid = p->pid;
988 if (clone_flags & CLONE_THREAD)
989 p->tgid = current->tgid;
991 if ((retval = security_task_alloc(p)))
992 goto bad_fork_cleanup_policy;
993 if ((retval = audit_alloc(p)))
994 goto bad_fork_cleanup_security;
995 /* copy all the process information */
996 if ((retval = copy_semundo(clone_flags, p)))
997 goto bad_fork_cleanup_audit;
998 if ((retval = copy_files(clone_flags, p)))
999 goto bad_fork_cleanup_semundo;
1000 if ((retval = copy_fs(clone_flags, p)))
1001 goto bad_fork_cleanup_files;
1002 if ((retval = copy_sighand(clone_flags, p)))
1003 goto bad_fork_cleanup_fs;
1004 if ((retval = copy_signal(clone_flags, p)))
1005 goto bad_fork_cleanup_sighand;
1006 if ((retval = copy_mm(clone_flags, p)))
1007 goto bad_fork_cleanup_signal;
1008 if ((retval = copy_keys(clone_flags, p)))
1009 goto bad_fork_cleanup_mm;
1010 if ((retval = copy_namespace(clone_flags, p)))
1011 goto bad_fork_cleanup_keys;
1012 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1013 if (retval)
1014 goto bad_fork_cleanup_namespace;
1016 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1018 * Clear TID on mm_release()?
1020 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1023 * Syscall tracing should be turned off in the child regardless
1024 * of CLONE_PTRACE.
1026 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1027 #ifdef TIF_SYSCALL_EMU
1028 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1029 #endif
1031 /* Our parent execution domain becomes current domain
1032 These must match for thread signalling to apply */
1034 p->parent_exec_id = p->self_exec_id;
1036 /* ok, now we should be set up.. */
1037 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1038 p->pdeath_signal = 0;
1039 p->exit_state = 0;
1042 * Ok, make it visible to the rest of the system.
1043 * We dont wake it up yet.
1045 p->group_leader = p;
1046 INIT_LIST_HEAD(&p->ptrace_children);
1047 INIT_LIST_HEAD(&p->ptrace_list);
1049 /* Perform scheduler related setup. Assign this task to a CPU. */
1050 sched_fork(p, clone_flags);
1052 /* Need tasklist lock for parent etc handling! */
1053 write_lock_irq(&tasklist_lock);
1056 * The task hasn't been attached yet, so its cpus_allowed mask will
1057 * not be changed, nor will its assigned CPU.
1059 * The cpus_allowed mask of the parent may have changed after it was
1060 * copied first time - so re-copy it here, then check the child's CPU
1061 * to ensure it is on a valid CPU (and if not, just force it back to
1062 * parent's CPU). This avoids alot of nasty races.
1064 p->cpus_allowed = current->cpus_allowed;
1065 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1066 !cpu_online(task_cpu(p))))
1067 set_task_cpu(p, smp_processor_id());
1070 * Check for pending SIGKILL! The new thread should not be allowed
1071 * to slip out of an OOM kill. (or normal SIGKILL.)
1073 if (sigismember(&current->pending.signal, SIGKILL)) {
1074 write_unlock_irq(&tasklist_lock);
1075 retval = -EINTR;
1076 goto bad_fork_cleanup_namespace;
1079 /* CLONE_PARENT re-uses the old parent */
1080 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1081 p->real_parent = current->real_parent;
1082 else
1083 p->real_parent = current;
1084 p->parent = p->real_parent;
1086 if (clone_flags & CLONE_THREAD) {
1087 spin_lock(&current->sighand->siglock);
1089 * Important: if an exit-all has been started then
1090 * do not create this new thread - the whole thread
1091 * group is supposed to exit anyway.
1093 if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1094 spin_unlock(&current->sighand->siglock);
1095 write_unlock_irq(&tasklist_lock);
1096 retval = -EAGAIN;
1097 goto bad_fork_cleanup_namespace;
1099 p->group_leader = current->group_leader;
1101 if (current->signal->group_stop_count > 0) {
1103 * There is an all-stop in progress for the group.
1104 * We ourselves will stop as soon as we check signals.
1105 * Make the new thread part of that group stop too.
1107 current->signal->group_stop_count++;
1108 set_tsk_thread_flag(p, TIF_SIGPENDING);
1111 if (!cputime_eq(current->signal->it_virt_expires,
1112 cputime_zero) ||
1113 !cputime_eq(current->signal->it_prof_expires,
1114 cputime_zero) ||
1115 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1116 !list_empty(&current->signal->cpu_timers[0]) ||
1117 !list_empty(&current->signal->cpu_timers[1]) ||
1118 !list_empty(&current->signal->cpu_timers[2])) {
1120 * Have child wake up on its first tick to check
1121 * for process CPU timers.
1123 p->it_prof_expires = jiffies_to_cputime(1);
1126 spin_unlock(&current->sighand->siglock);
1130 * inherit ioprio
1132 p->ioprio = current->ioprio;
1134 SET_LINKS(p);
1135 if (unlikely(p->ptrace & PT_PTRACED))
1136 __ptrace_link(p, current->parent);
1138 attach_pid(p, PIDTYPE_PID, p->pid);
1139 attach_pid(p, PIDTYPE_TGID, p->tgid);
1140 if (thread_group_leader(p)) {
1141 p->signal->tty = current->signal->tty;
1142 p->signal->pgrp = process_group(current);
1143 p->signal->session = current->signal->session;
1144 attach_pid(p, PIDTYPE_PGID, process_group(p));
1145 attach_pid(p, PIDTYPE_SID, p->signal->session);
1146 if (p->pid)
1147 __get_cpu_var(process_counts)++;
1150 nr_threads++;
1151 total_forks++;
1152 write_unlock_irq(&tasklist_lock);
1153 proc_fork_connector(p);
1154 return p;
1156 bad_fork_cleanup_namespace:
1157 exit_namespace(p);
1158 bad_fork_cleanup_keys:
1159 exit_keys(p);
1160 bad_fork_cleanup_mm:
1161 if (p->mm)
1162 mmput(p->mm);
1163 bad_fork_cleanup_signal:
1164 exit_signal(p);
1165 bad_fork_cleanup_sighand:
1166 exit_sighand(p);
1167 bad_fork_cleanup_fs:
1168 exit_fs(p); /* blocking */
1169 bad_fork_cleanup_files:
1170 exit_files(p); /* blocking */
1171 bad_fork_cleanup_semundo:
1172 exit_sem(p);
1173 bad_fork_cleanup_audit:
1174 audit_free(p);
1175 bad_fork_cleanup_security:
1176 security_task_free(p);
1177 bad_fork_cleanup_policy:
1178 #ifdef CONFIG_NUMA
1179 mpol_free(p->mempolicy);
1180 bad_fork_cleanup_cpuset:
1181 #endif
1182 cpuset_exit(p);
1183 bad_fork_cleanup:
1184 if (p->binfmt)
1185 module_put(p->binfmt->module);
1186 bad_fork_cleanup_put_domain:
1187 module_put(task_thread_info(p)->exec_domain->module);
1188 bad_fork_cleanup_count:
1189 put_group_info(p->group_info);
1190 atomic_dec(&p->user->processes);
1191 free_uid(p->user);
1192 bad_fork_free:
1193 free_task(p);
1194 fork_out:
1195 return ERR_PTR(retval);
1198 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1200 memset(regs, 0, sizeof(struct pt_regs));
1201 return regs;
1204 task_t * __devinit fork_idle(int cpu)
1206 task_t *task;
1207 struct pt_regs regs;
1209 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1210 if (!task)
1211 return ERR_PTR(-ENOMEM);
1212 init_idle(task, cpu);
1213 unhash_process(task);
1214 return task;
1217 static inline int fork_traceflag (unsigned clone_flags)
1219 if (clone_flags & CLONE_UNTRACED)
1220 return 0;
1221 else if (clone_flags & CLONE_VFORK) {
1222 if (current->ptrace & PT_TRACE_VFORK)
1223 return PTRACE_EVENT_VFORK;
1224 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1225 if (current->ptrace & PT_TRACE_CLONE)
1226 return PTRACE_EVENT_CLONE;
1227 } else if (current->ptrace & PT_TRACE_FORK)
1228 return PTRACE_EVENT_FORK;
1230 return 0;
1234 * Ok, this is the main fork-routine.
1236 * It copies the process, and if successful kick-starts
1237 * it and waits for it to finish using the VM if required.
1239 long do_fork(unsigned long clone_flags,
1240 unsigned long stack_start,
1241 struct pt_regs *regs,
1242 unsigned long stack_size,
1243 int __user *parent_tidptr,
1244 int __user *child_tidptr)
1246 struct task_struct *p;
1247 int trace = 0;
1248 long pid = alloc_pidmap();
1250 if (pid < 0)
1251 return -EAGAIN;
1252 if (unlikely(current->ptrace)) {
1253 trace = fork_traceflag (clone_flags);
1254 if (trace)
1255 clone_flags |= CLONE_PTRACE;
1258 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1260 * Do this prior waking up the new thread - the thread pointer
1261 * might get invalid after that point, if the thread exits quickly.
1263 if (!IS_ERR(p)) {
1264 struct completion vfork;
1266 if (clone_flags & CLONE_VFORK) {
1267 p->vfork_done = &vfork;
1268 init_completion(&vfork);
1271 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1273 * We'll start up with an immediate SIGSTOP.
1275 sigaddset(&p->pending.signal, SIGSTOP);
1276 set_tsk_thread_flag(p, TIF_SIGPENDING);
1279 if (!(clone_flags & CLONE_STOPPED))
1280 wake_up_new_task(p, clone_flags);
1281 else
1282 p->state = TASK_STOPPED;
1284 if (unlikely (trace)) {
1285 current->ptrace_message = pid;
1286 ptrace_notify ((trace << 8) | SIGTRAP);
1289 if (clone_flags & CLONE_VFORK) {
1290 wait_for_completion(&vfork);
1291 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1292 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1294 } else {
1295 free_pidmap(pid);
1296 pid = PTR_ERR(p);
1298 return pid;
1301 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1302 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1303 #endif
1305 void __init proc_caches_init(void)
1307 sighand_cachep = kmem_cache_create("sighand_cache",
1308 sizeof(struct sighand_struct), 0,
1309 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1310 signal_cachep = kmem_cache_create("signal_cache",
1311 sizeof(struct signal_struct), 0,
1312 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1313 files_cachep = kmem_cache_create("files_cache",
1314 sizeof(struct files_struct), 0,
1315 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1316 fs_cachep = kmem_cache_create("fs_cache",
1317 sizeof(struct fs_struct), 0,
1318 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1319 vm_area_cachep = kmem_cache_create("vm_area_struct",
1320 sizeof(struct vm_area_struct), 0,
1321 SLAB_PANIC, NULL, NULL);
1322 mm_cachep = kmem_cache_create("mm_struct",
1323 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1324 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);