1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/fsnotify_backend.h>
4 #include <linux/namei.h>
5 #include <linux/mount.h>
6 #include <linux/kthread.h>
7 #include <linux/refcount.h>
8 #include <linux/slab.h>
16 struct audit_chunk
*root
;
17 struct list_head chunks
;
18 struct list_head rules
;
19 struct list_head list
;
20 struct list_head same_root
;
26 struct list_head hash
;
28 struct fsnotify_mark
*mark
;
29 struct list_head trees
; /* with root here */
34 struct list_head list
;
35 struct audit_tree
*owner
;
36 unsigned index
; /* index; upper bit indicates 'will prune' */
40 struct audit_tree_mark
{
41 struct fsnotify_mark mark
;
42 struct audit_chunk
*chunk
;
45 static LIST_HEAD(tree_list
);
46 static LIST_HEAD(prune_list
);
47 static struct task_struct
*prune_thread
;
50 * One struct chunk is attached to each inode of interest through
51 * audit_tree_mark (fsnotify mark). We replace struct chunk on tagging /
52 * untagging, the mark is stable as long as there is chunk attached. The
53 * association between mark and chunk is protected by hash_lock and
54 * audit_tree_group->mark_mutex. Thus as long as we hold
55 * audit_tree_group->mark_mutex and check that the mark is alive by
56 * FSNOTIFY_MARK_FLAG_ATTACHED flag check, we are sure the mark points to
59 * Rules have pointer to struct audit_tree.
60 * Rules have struct list_head rlist forming a list of rules over
62 * References to struct chunk are collected at audit_inode{,_child}()
63 * time and used in AUDIT_TREE rule matching.
64 * These references are dropped at the same time we are calling
65 * audit_free_names(), etc.
67 * Cyclic lists galore:
68 * tree.chunks anchors chunk.owners[].list hash_lock
69 * tree.rules anchors rule.rlist audit_filter_mutex
70 * chunk.trees anchors tree.same_root hash_lock
71 * chunk.hash is a hash with middle bits of watch.inode as
72 * a hash function. RCU, hash_lock
74 * tree is refcounted; one reference for "some rules on rules_list refer to
75 * it", one for each chunk with pointer to it.
77 * chunk is refcounted by embedded .refs. Mark associated with the chunk holds
78 * one chunk reference. This reference is dropped either when a mark is going
79 * to be freed (corresponding inode goes away) or when chunk attached to the
80 * mark gets replaced. This reference must be dropped using
81 * audit_mark_put_chunk() to make sure the reference is dropped only after RCU
82 * grace period as it protects RCU readers of the hash table.
84 * node.index allows to get from node.list to containing chunk.
85 * MSB of that sucker is stolen to mark taggings that we might have to
86 * revert - several operations have very unpleasant cleanup logics and
87 * that makes a difference. Some.
90 static struct fsnotify_group
*audit_tree_group
;
91 static struct kmem_cache
*audit_tree_mark_cachep __read_mostly
;
93 static struct audit_tree
*alloc_tree(const char *s
)
95 struct audit_tree
*tree
;
97 tree
= kmalloc(sizeof(struct audit_tree
) + strlen(s
) + 1, GFP_KERNEL
);
99 refcount_set(&tree
->count
, 1);
101 INIT_LIST_HEAD(&tree
->chunks
);
102 INIT_LIST_HEAD(&tree
->rules
);
103 INIT_LIST_HEAD(&tree
->list
);
104 INIT_LIST_HEAD(&tree
->same_root
);
106 strcpy(tree
->pathname
, s
);
111 static inline void get_tree(struct audit_tree
*tree
)
113 refcount_inc(&tree
->count
);
116 static inline void put_tree(struct audit_tree
*tree
)
118 if (refcount_dec_and_test(&tree
->count
))
119 kfree_rcu(tree
, head
);
122 /* to avoid bringing the entire thing in audit.h */
123 const char *audit_tree_path(struct audit_tree
*tree
)
125 return tree
->pathname
;
128 static void free_chunk(struct audit_chunk
*chunk
)
132 for (i
= 0; i
< chunk
->count
; i
++) {
133 if (chunk
->owners
[i
].owner
)
134 put_tree(chunk
->owners
[i
].owner
);
139 void audit_put_chunk(struct audit_chunk
*chunk
)
141 if (atomic_long_dec_and_test(&chunk
->refs
))
145 static void __put_chunk(struct rcu_head
*rcu
)
147 struct audit_chunk
*chunk
= container_of(rcu
, struct audit_chunk
, head
);
148 audit_put_chunk(chunk
);
152 * Drop reference to the chunk that was held by the mark. This is the reference
153 * that gets dropped after we've removed the chunk from the hash table and we
154 * use it to make sure chunk cannot be freed before RCU grace period expires.
156 static void audit_mark_put_chunk(struct audit_chunk
*chunk
)
158 call_rcu(&chunk
->head
, __put_chunk
);
161 static inline struct audit_tree_mark
*audit_mark(struct fsnotify_mark
*mark
)
163 return container_of(mark
, struct audit_tree_mark
, mark
);
166 static struct audit_chunk
*mark_chunk(struct fsnotify_mark
*mark
)
168 return audit_mark(mark
)->chunk
;
171 static void audit_tree_destroy_watch(struct fsnotify_mark
*mark
)
173 kmem_cache_free(audit_tree_mark_cachep
, audit_mark(mark
));
176 static struct fsnotify_mark
*alloc_mark(void)
178 struct audit_tree_mark
*amark
;
180 amark
= kmem_cache_zalloc(audit_tree_mark_cachep
, GFP_KERNEL
);
183 fsnotify_init_mark(&amark
->mark
, audit_tree_group
);
184 amark
->mark
.mask
= FS_IN_IGNORED
;
188 static struct audit_chunk
*alloc_chunk(int count
)
190 struct audit_chunk
*chunk
;
194 size
= offsetof(struct audit_chunk
, owners
) + count
* sizeof(struct node
);
195 chunk
= kzalloc(size
, GFP_KERNEL
);
199 INIT_LIST_HEAD(&chunk
->hash
);
200 INIT_LIST_HEAD(&chunk
->trees
);
201 chunk
->count
= count
;
202 atomic_long_set(&chunk
->refs
, 1);
203 for (i
= 0; i
< count
; i
++) {
204 INIT_LIST_HEAD(&chunk
->owners
[i
].list
);
205 chunk
->owners
[i
].index
= i
;
210 enum {HASH_SIZE
= 128};
211 static struct list_head chunk_hash_heads
[HASH_SIZE
];
212 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(hash_lock
);
214 /* Function to return search key in our hash from inode. */
215 static unsigned long inode_to_key(const struct inode
*inode
)
217 /* Use address pointed to by connector->obj as the key */
218 return (unsigned long)&inode
->i_fsnotify_marks
;
221 static inline struct list_head
*chunk_hash(unsigned long key
)
223 unsigned long n
= key
/ L1_CACHE_BYTES
;
224 return chunk_hash_heads
+ n
% HASH_SIZE
;
227 /* hash_lock & mark->group->mark_mutex is held by caller */
228 static void insert_hash(struct audit_chunk
*chunk
)
230 struct list_head
*list
;
233 * Make sure chunk is fully initialized before making it visible in the
234 * hash. Pairs with a data dependency barrier in READ_ONCE() in
235 * audit_tree_lookup().
238 WARN_ON_ONCE(!chunk
->key
);
239 list
= chunk_hash(chunk
->key
);
240 list_add_rcu(&chunk
->hash
, list
);
243 /* called under rcu_read_lock */
244 struct audit_chunk
*audit_tree_lookup(const struct inode
*inode
)
246 unsigned long key
= inode_to_key(inode
);
247 struct list_head
*list
= chunk_hash(key
);
248 struct audit_chunk
*p
;
250 list_for_each_entry_rcu(p
, list
, hash
) {
252 * We use a data dependency barrier in READ_ONCE() to make sure
253 * the chunk we see is fully initialized.
255 if (READ_ONCE(p
->key
) == key
) {
256 atomic_long_inc(&p
->refs
);
263 bool audit_tree_match(struct audit_chunk
*chunk
, struct audit_tree
*tree
)
266 for (n
= 0; n
< chunk
->count
; n
++)
267 if (chunk
->owners
[n
].owner
== tree
)
272 /* tagging and untagging inodes with trees */
274 static struct audit_chunk
*find_chunk(struct node
*p
)
276 int index
= p
->index
& ~(1U<<31);
278 return container_of(p
, struct audit_chunk
, owners
[0]);
281 static void replace_mark_chunk(struct fsnotify_mark
*mark
,
282 struct audit_chunk
*chunk
)
284 struct audit_chunk
*old
;
286 assert_spin_locked(&hash_lock
);
287 old
= mark_chunk(mark
);
288 audit_mark(mark
)->chunk
= chunk
;
295 static void replace_chunk(struct audit_chunk
*new, struct audit_chunk
*old
)
297 struct audit_tree
*owner
;
301 list_splice_init(&old
->trees
, &new->trees
);
302 list_for_each_entry(owner
, &new->trees
, same_root
)
304 for (i
= j
= 0; j
< old
->count
; i
++, j
++) {
305 if (!old
->owners
[j
].owner
) {
309 owner
= old
->owners
[j
].owner
;
310 new->owners
[i
].owner
= owner
;
311 new->owners
[i
].index
= old
->owners
[j
].index
- j
+ i
;
312 if (!owner
) /* result of earlier fallback */
315 list_replace_init(&old
->owners
[j
].list
, &new->owners
[i
].list
);
317 replace_mark_chunk(old
->mark
, new);
319 * Make sure chunk is fully initialized before making it visible in the
320 * hash. Pairs with a data dependency barrier in READ_ONCE() in
321 * audit_tree_lookup().
324 list_replace_rcu(&old
->hash
, &new->hash
);
327 static void remove_chunk_node(struct audit_chunk
*chunk
, struct node
*p
)
329 struct audit_tree
*owner
= p
->owner
;
331 if (owner
->root
== chunk
) {
332 list_del_init(&owner
->same_root
);
335 list_del_init(&p
->list
);
340 static int chunk_count_trees(struct audit_chunk
*chunk
)
345 for (i
= 0; i
< chunk
->count
; i
++)
346 if (chunk
->owners
[i
].owner
)
351 static void untag_chunk(struct audit_chunk
*chunk
, struct fsnotify_mark
*mark
)
353 struct audit_chunk
*new;
356 mutex_lock(&audit_tree_group
->mark_mutex
);
358 * mark_mutex stabilizes chunk attached to the mark so we can check
359 * whether it didn't change while we've dropped hash_lock.
361 if (!(mark
->flags
& FSNOTIFY_MARK_FLAG_ATTACHED
) ||
362 mark_chunk(mark
) != chunk
)
365 size
= chunk_count_trees(chunk
);
367 spin_lock(&hash_lock
);
368 list_del_init(&chunk
->trees
);
369 list_del_rcu(&chunk
->hash
);
370 replace_mark_chunk(mark
, NULL
);
371 spin_unlock(&hash_lock
);
372 fsnotify_detach_mark(mark
);
373 mutex_unlock(&audit_tree_group
->mark_mutex
);
374 audit_mark_put_chunk(chunk
);
375 fsnotify_free_mark(mark
);
379 new = alloc_chunk(size
);
383 spin_lock(&hash_lock
);
385 * This has to go last when updating chunk as once replace_chunk() is
386 * called, new RCU readers can see the new chunk.
388 replace_chunk(new, chunk
);
389 spin_unlock(&hash_lock
);
390 mutex_unlock(&audit_tree_group
->mark_mutex
);
391 audit_mark_put_chunk(chunk
);
395 mutex_unlock(&audit_tree_group
->mark_mutex
);
398 /* Call with group->mark_mutex held, releases it */
399 static int create_chunk(struct inode
*inode
, struct audit_tree
*tree
)
401 struct fsnotify_mark
*mark
;
402 struct audit_chunk
*chunk
= alloc_chunk(1);
405 mutex_unlock(&audit_tree_group
->mark_mutex
);
411 mutex_unlock(&audit_tree_group
->mark_mutex
);
416 if (fsnotify_add_inode_mark_locked(mark
, inode
, 0)) {
417 mutex_unlock(&audit_tree_group
->mark_mutex
);
418 fsnotify_put_mark(mark
);
423 spin_lock(&hash_lock
);
425 spin_unlock(&hash_lock
);
426 fsnotify_detach_mark(mark
);
427 mutex_unlock(&audit_tree_group
->mark_mutex
);
428 fsnotify_free_mark(mark
);
429 fsnotify_put_mark(mark
);
433 replace_mark_chunk(mark
, chunk
);
434 chunk
->owners
[0].index
= (1U << 31);
435 chunk
->owners
[0].owner
= tree
;
437 list_add(&chunk
->owners
[0].list
, &tree
->chunks
);
440 list_add(&tree
->same_root
, &chunk
->trees
);
442 chunk
->key
= inode_to_key(inode
);
444 * Inserting into the hash table has to go last as once we do that RCU
445 * readers can see the chunk.
448 spin_unlock(&hash_lock
);
449 mutex_unlock(&audit_tree_group
->mark_mutex
);
451 * Drop our initial reference. When mark we point to is getting freed,
452 * we get notification through ->freeing_mark callback and cleanup
453 * chunk pointing to this mark.
455 fsnotify_put_mark(mark
);
459 /* the first tagged inode becomes root of tree */
460 static int tag_chunk(struct inode
*inode
, struct audit_tree
*tree
)
462 struct fsnotify_mark
*mark
;
463 struct audit_chunk
*chunk
, *old
;
467 mutex_lock(&audit_tree_group
->mark_mutex
);
468 mark
= fsnotify_find_mark(&inode
->i_fsnotify_marks
, audit_tree_group
);
470 return create_chunk(inode
, tree
);
473 * Found mark is guaranteed to be attached and mark_mutex protects mark
474 * from getting detached and thus it makes sure there is chunk attached
477 /* are we already there? */
478 spin_lock(&hash_lock
);
479 old
= mark_chunk(mark
);
480 for (n
= 0; n
< old
->count
; n
++) {
481 if (old
->owners
[n
].owner
== tree
) {
482 spin_unlock(&hash_lock
);
483 mutex_unlock(&audit_tree_group
->mark_mutex
);
484 fsnotify_put_mark(mark
);
488 spin_unlock(&hash_lock
);
490 chunk
= alloc_chunk(old
->count
+ 1);
492 mutex_unlock(&audit_tree_group
->mark_mutex
);
493 fsnotify_put_mark(mark
);
497 spin_lock(&hash_lock
);
499 spin_unlock(&hash_lock
);
500 mutex_unlock(&audit_tree_group
->mark_mutex
);
501 fsnotify_put_mark(mark
);
505 p
= &chunk
->owners
[chunk
->count
- 1];
506 p
->index
= (chunk
->count
- 1) | (1U<<31);
509 list_add(&p
->list
, &tree
->chunks
);
512 list_add(&tree
->same_root
, &chunk
->trees
);
515 * This has to go last when updating chunk as once replace_chunk() is
516 * called, new RCU readers can see the new chunk.
518 replace_chunk(chunk
, old
);
519 spin_unlock(&hash_lock
);
520 mutex_unlock(&audit_tree_group
->mark_mutex
);
521 fsnotify_put_mark(mark
); /* pair to fsnotify_find_mark */
522 audit_mark_put_chunk(old
);
527 static void audit_tree_log_remove_rule(struct audit_context
*context
,
528 struct audit_krule
*rule
)
530 struct audit_buffer
*ab
;
534 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CONFIG_CHANGE
);
537 audit_log_format(ab
, "op=remove_rule dir=");
538 audit_log_untrustedstring(ab
, rule
->tree
->pathname
);
539 audit_log_key(ab
, rule
->filterkey
);
540 audit_log_format(ab
, " list=%d res=1", rule
->listnr
);
544 static void kill_rules(struct audit_context
*context
, struct audit_tree
*tree
)
546 struct audit_krule
*rule
, *next
;
547 struct audit_entry
*entry
;
549 list_for_each_entry_safe(rule
, next
, &tree
->rules
, rlist
) {
550 entry
= container_of(rule
, struct audit_entry
, rule
);
552 list_del_init(&rule
->rlist
);
554 /* not a half-baked one */
555 audit_tree_log_remove_rule(context
, rule
);
557 audit_remove_mark(entry
->rule
.exe
);
559 list_del_rcu(&entry
->list
);
560 list_del(&entry
->rule
.list
);
561 call_rcu(&entry
->rcu
, audit_free_rule_rcu
);
567 * Remove tree from chunks. If 'tagged' is set, remove tree only from tagged
568 * chunks. The function expects tagged chunks are all at the beginning of the
571 static void prune_tree_chunks(struct audit_tree
*victim
, bool tagged
)
573 spin_lock(&hash_lock
);
574 while (!list_empty(&victim
->chunks
)) {
576 struct audit_chunk
*chunk
;
577 struct fsnotify_mark
*mark
;
579 p
= list_first_entry(&victim
->chunks
, struct node
, list
);
580 /* have we run out of marked? */
581 if (tagged
&& !(p
->index
& (1U<<31)))
583 chunk
= find_chunk(p
);
585 remove_chunk_node(chunk
, p
);
586 /* Racing with audit_tree_freeing_mark()? */
589 fsnotify_get_mark(mark
);
590 spin_unlock(&hash_lock
);
592 untag_chunk(chunk
, mark
);
593 fsnotify_put_mark(mark
);
595 spin_lock(&hash_lock
);
597 spin_unlock(&hash_lock
);
602 * finish killing struct audit_tree
604 static void prune_one(struct audit_tree
*victim
)
606 prune_tree_chunks(victim
, false);
609 /* trim the uncommitted chunks from tree */
611 static void trim_marked(struct audit_tree
*tree
)
613 struct list_head
*p
, *q
;
614 spin_lock(&hash_lock
);
616 spin_unlock(&hash_lock
);
620 for (p
= tree
->chunks
.next
; p
!= &tree
->chunks
; p
= q
) {
621 struct node
*node
= list_entry(p
, struct node
, list
);
623 if (node
->index
& (1U<<31)) {
625 list_add(p
, &tree
->chunks
);
628 spin_unlock(&hash_lock
);
630 prune_tree_chunks(tree
, true);
632 spin_lock(&hash_lock
);
633 if (!tree
->root
&& !tree
->goner
) {
635 spin_unlock(&hash_lock
);
636 mutex_lock(&audit_filter_mutex
);
637 kill_rules(audit_context(), tree
);
638 list_del_init(&tree
->list
);
639 mutex_unlock(&audit_filter_mutex
);
642 spin_unlock(&hash_lock
);
646 static void audit_schedule_prune(void);
648 /* called with audit_filter_mutex */
649 int audit_remove_tree_rule(struct audit_krule
*rule
)
651 struct audit_tree
*tree
;
654 spin_lock(&hash_lock
);
655 list_del_init(&rule
->rlist
);
656 if (list_empty(&tree
->rules
) && !tree
->goner
) {
658 list_del_init(&tree
->same_root
);
660 list_move(&tree
->list
, &prune_list
);
662 spin_unlock(&hash_lock
);
663 audit_schedule_prune();
667 spin_unlock(&hash_lock
);
673 static int compare_root(struct vfsmount
*mnt
, void *arg
)
675 return inode_to_key(d_backing_inode(mnt
->mnt_root
)) ==
679 void audit_trim_trees(void)
681 struct list_head cursor
;
683 mutex_lock(&audit_filter_mutex
);
684 list_add(&cursor
, &tree_list
);
685 while (cursor
.next
!= &tree_list
) {
686 struct audit_tree
*tree
;
688 struct vfsmount
*root_mnt
;
692 tree
= container_of(cursor
.next
, struct audit_tree
, list
);
695 list_add(&cursor
, &tree
->list
);
696 mutex_unlock(&audit_filter_mutex
);
698 err
= kern_path(tree
->pathname
, 0, &path
);
702 root_mnt
= collect_mounts(&path
);
704 if (IS_ERR(root_mnt
))
707 spin_lock(&hash_lock
);
708 list_for_each_entry(node
, &tree
->chunks
, list
) {
709 struct audit_chunk
*chunk
= find_chunk(node
);
710 /* this could be NULL if the watch is dying else where... */
711 node
->index
|= 1U<<31;
712 if (iterate_mounts(compare_root
,
713 (void *)(chunk
->key
),
715 node
->index
&= ~(1U<<31);
717 spin_unlock(&hash_lock
);
719 drop_collected_mounts(root_mnt
);
722 mutex_lock(&audit_filter_mutex
);
725 mutex_unlock(&audit_filter_mutex
);
728 int audit_make_tree(struct audit_krule
*rule
, char *pathname
, u32 op
)
731 if (pathname
[0] != '/' ||
732 rule
->listnr
!= AUDIT_FILTER_EXIT
||
734 rule
->inode_f
|| rule
->watch
|| rule
->tree
)
736 rule
->tree
= alloc_tree(pathname
);
742 void audit_put_tree(struct audit_tree
*tree
)
747 static int tag_mount(struct vfsmount
*mnt
, void *arg
)
749 return tag_chunk(d_backing_inode(mnt
->mnt_root
), arg
);
753 * That gets run when evict_chunk() ends up needing to kill audit_tree.
754 * Runs from a separate thread.
756 static int prune_tree_thread(void *unused
)
759 if (list_empty(&prune_list
)) {
760 set_current_state(TASK_INTERRUPTIBLE
);
765 mutex_lock(&audit_filter_mutex
);
767 while (!list_empty(&prune_list
)) {
768 struct audit_tree
*victim
;
770 victim
= list_entry(prune_list
.next
,
771 struct audit_tree
, list
);
772 list_del_init(&victim
->list
);
774 mutex_unlock(&audit_filter_mutex
);
778 mutex_lock(&audit_filter_mutex
);
781 mutex_unlock(&audit_filter_mutex
);
787 static int audit_launch_prune(void)
791 prune_thread
= kthread_run(prune_tree_thread
, NULL
,
793 if (IS_ERR(prune_thread
)) {
794 pr_err("cannot start thread audit_prune_tree");
801 /* called with audit_filter_mutex */
802 int audit_add_tree_rule(struct audit_krule
*rule
)
804 struct audit_tree
*seed
= rule
->tree
, *tree
;
806 struct vfsmount
*mnt
;
810 list_for_each_entry(tree
, &tree_list
, list
) {
811 if (!strcmp(seed
->pathname
, tree
->pathname
)) {
814 list_add(&rule
->rlist
, &tree
->rules
);
819 list_add(&tree
->list
, &tree_list
);
820 list_add(&rule
->rlist
, &tree
->rules
);
821 /* do not set rule->tree yet */
822 mutex_unlock(&audit_filter_mutex
);
824 if (unlikely(!prune_thread
)) {
825 err
= audit_launch_prune();
830 err
= kern_path(tree
->pathname
, 0, &path
);
833 mnt
= collect_mounts(&path
);
841 err
= iterate_mounts(tag_mount
, tree
, mnt
);
842 drop_collected_mounts(mnt
);
846 spin_lock(&hash_lock
);
847 list_for_each_entry(node
, &tree
->chunks
, list
)
848 node
->index
&= ~(1U<<31);
849 spin_unlock(&hash_lock
);
855 mutex_lock(&audit_filter_mutex
);
856 if (list_empty(&rule
->rlist
)) {
865 mutex_lock(&audit_filter_mutex
);
866 list_del_init(&tree
->list
);
867 list_del_init(&tree
->rules
);
872 int audit_tag_tree(char *old
, char *new)
874 struct list_head cursor
, barrier
;
876 struct path path1
, path2
;
877 struct vfsmount
*tagged
;
880 err
= kern_path(new, 0, &path2
);
883 tagged
= collect_mounts(&path2
);
886 return PTR_ERR(tagged
);
888 err
= kern_path(old
, 0, &path1
);
890 drop_collected_mounts(tagged
);
894 mutex_lock(&audit_filter_mutex
);
895 list_add(&barrier
, &tree_list
);
896 list_add(&cursor
, &barrier
);
898 while (cursor
.next
!= &tree_list
) {
899 struct audit_tree
*tree
;
902 tree
= container_of(cursor
.next
, struct audit_tree
, list
);
905 list_add(&cursor
, &tree
->list
);
906 mutex_unlock(&audit_filter_mutex
);
908 err
= kern_path(tree
->pathname
, 0, &path2
);
910 good_one
= path_is_under(&path1
, &path2
);
916 mutex_lock(&audit_filter_mutex
);
920 failed
= iterate_mounts(tag_mount
, tree
, tagged
);
923 mutex_lock(&audit_filter_mutex
);
927 mutex_lock(&audit_filter_mutex
);
928 spin_lock(&hash_lock
);
930 list_del(&tree
->list
);
931 list_add(&tree
->list
, &tree_list
);
933 spin_unlock(&hash_lock
);
937 while (barrier
.prev
!= &tree_list
) {
938 struct audit_tree
*tree
;
940 tree
= container_of(barrier
.prev
, struct audit_tree
, list
);
942 list_del(&tree
->list
);
943 list_add(&tree
->list
, &barrier
);
944 mutex_unlock(&audit_filter_mutex
);
948 spin_lock(&hash_lock
);
949 list_for_each_entry(node
, &tree
->chunks
, list
)
950 node
->index
&= ~(1U<<31);
951 spin_unlock(&hash_lock
);
957 mutex_lock(&audit_filter_mutex
);
961 mutex_unlock(&audit_filter_mutex
);
963 drop_collected_mounts(tagged
);
968 static void audit_schedule_prune(void)
970 wake_up_process(prune_thread
);
974 * ... and that one is done if evict_chunk() decides to delay until the end
975 * of syscall. Runs synchronously.
977 void audit_kill_trees(struct audit_context
*context
)
979 struct list_head
*list
= &context
->killed_trees
;
982 mutex_lock(&audit_filter_mutex
);
984 while (!list_empty(list
)) {
985 struct audit_tree
*victim
;
987 victim
= list_entry(list
->next
, struct audit_tree
, list
);
988 kill_rules(context
, victim
);
989 list_del_init(&victim
->list
);
991 mutex_unlock(&audit_filter_mutex
);
995 mutex_lock(&audit_filter_mutex
);
998 mutex_unlock(&audit_filter_mutex
);
1003 * Here comes the stuff asynchronous to auditctl operations
1006 static void evict_chunk(struct audit_chunk
*chunk
)
1008 struct audit_tree
*owner
;
1009 struct list_head
*postponed
= audit_killed_trees();
1013 mutex_lock(&audit_filter_mutex
);
1014 spin_lock(&hash_lock
);
1015 while (!list_empty(&chunk
->trees
)) {
1016 owner
= list_entry(chunk
->trees
.next
,
1017 struct audit_tree
, same_root
);
1020 list_del_init(&owner
->same_root
);
1021 spin_unlock(&hash_lock
);
1023 kill_rules(audit_context(), owner
);
1024 list_move(&owner
->list
, &prune_list
);
1027 list_move(&owner
->list
, postponed
);
1029 spin_lock(&hash_lock
);
1031 list_del_rcu(&chunk
->hash
);
1032 for (n
= 0; n
< chunk
->count
; n
++)
1033 list_del_init(&chunk
->owners
[n
].list
);
1034 spin_unlock(&hash_lock
);
1035 mutex_unlock(&audit_filter_mutex
);
1037 audit_schedule_prune();
1040 static int audit_tree_handle_event(struct fsnotify_group
*group
,
1041 struct inode
*to_tell
,
1042 u32 mask
, const void *data
, int data_type
,
1043 const struct qstr
*file_name
, u32 cookie
,
1044 struct fsnotify_iter_info
*iter_info
)
1049 static void audit_tree_freeing_mark(struct fsnotify_mark
*mark
,
1050 struct fsnotify_group
*group
)
1052 struct audit_chunk
*chunk
;
1054 mutex_lock(&mark
->group
->mark_mutex
);
1055 spin_lock(&hash_lock
);
1056 chunk
= mark_chunk(mark
);
1057 replace_mark_chunk(mark
, NULL
);
1058 spin_unlock(&hash_lock
);
1059 mutex_unlock(&mark
->group
->mark_mutex
);
1062 audit_mark_put_chunk(chunk
);
1066 * We are guaranteed to have at least one reference to the mark from
1067 * either the inode or the caller of fsnotify_destroy_mark().
1069 BUG_ON(refcount_read(&mark
->refcnt
) < 1);
1072 static const struct fsnotify_ops audit_tree_ops
= {
1073 .handle_event
= audit_tree_handle_event
,
1074 .freeing_mark
= audit_tree_freeing_mark
,
1075 .free_mark
= audit_tree_destroy_watch
,
1078 static int __init
audit_tree_init(void)
1082 audit_tree_mark_cachep
= KMEM_CACHE(audit_tree_mark
, SLAB_PANIC
);
1084 audit_tree_group
= fsnotify_alloc_group(&audit_tree_ops
);
1085 if (IS_ERR(audit_tree_group
))
1086 audit_panic("cannot initialize fsnotify group for rectree watches");
1088 for (i
= 0; i
< HASH_SIZE
; i
++)
1089 INIT_LIST_HEAD(&chunk_hash_heads
[i
]);
1093 __initcall(audit_tree_init
);