sched/deadline: Don't balance during wakeup if wakee is pinned
[linux/fpc-iii.git] / drivers / clocksource / arm_arch_timer.c
blob2133f9d59d06323bbf1f69ca80c21ddee66904f6
1 /*
2 * linux/drivers/clocksource/arm_arch_timer.c
4 * Copyright (C) 2011 ARM Ltd.
5 * All Rights Reserved
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/interrupt.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_address.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/sched_clock.h>
25 #include <asm/arch_timer.h>
26 #include <asm/virt.h>
28 #include <clocksource/arm_arch_timer.h>
30 #define CNTTIDR 0x08
31 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
33 #define CNTVCT_LO 0x08
34 #define CNTVCT_HI 0x0c
35 #define CNTFRQ 0x10
36 #define CNTP_TVAL 0x28
37 #define CNTP_CTL 0x2c
38 #define CNTV_TVAL 0x38
39 #define CNTV_CTL 0x3c
41 #define ARCH_CP15_TIMER BIT(0)
42 #define ARCH_MEM_TIMER BIT(1)
43 static unsigned arch_timers_present __initdata;
45 static void __iomem *arch_counter_base;
47 struct arch_timer {
48 void __iomem *base;
49 struct clock_event_device evt;
52 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
54 static u32 arch_timer_rate;
56 enum ppi_nr {
57 PHYS_SECURE_PPI,
58 PHYS_NONSECURE_PPI,
59 VIRT_PPI,
60 HYP_PPI,
61 MAX_TIMER_PPI
64 static int arch_timer_ppi[MAX_TIMER_PPI];
66 static struct clock_event_device __percpu *arch_timer_evt;
68 static bool arch_timer_use_virtual = true;
69 static bool arch_timer_c3stop;
70 static bool arch_timer_mem_use_virtual;
73 * Architected system timer support.
76 static __always_inline
77 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
78 struct clock_event_device *clk)
80 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
81 struct arch_timer *timer = to_arch_timer(clk);
82 switch (reg) {
83 case ARCH_TIMER_REG_CTRL:
84 writel_relaxed(val, timer->base + CNTP_CTL);
85 break;
86 case ARCH_TIMER_REG_TVAL:
87 writel_relaxed(val, timer->base + CNTP_TVAL);
88 break;
90 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
91 struct arch_timer *timer = to_arch_timer(clk);
92 switch (reg) {
93 case ARCH_TIMER_REG_CTRL:
94 writel_relaxed(val, timer->base + CNTV_CTL);
95 break;
96 case ARCH_TIMER_REG_TVAL:
97 writel_relaxed(val, timer->base + CNTV_TVAL);
98 break;
100 } else {
101 arch_timer_reg_write_cp15(access, reg, val);
105 static __always_inline
106 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
107 struct clock_event_device *clk)
109 u32 val;
111 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
112 struct arch_timer *timer = to_arch_timer(clk);
113 switch (reg) {
114 case ARCH_TIMER_REG_CTRL:
115 val = readl_relaxed(timer->base + CNTP_CTL);
116 break;
117 case ARCH_TIMER_REG_TVAL:
118 val = readl_relaxed(timer->base + CNTP_TVAL);
119 break;
121 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
122 struct arch_timer *timer = to_arch_timer(clk);
123 switch (reg) {
124 case ARCH_TIMER_REG_CTRL:
125 val = readl_relaxed(timer->base + CNTV_CTL);
126 break;
127 case ARCH_TIMER_REG_TVAL:
128 val = readl_relaxed(timer->base + CNTV_TVAL);
129 break;
131 } else {
132 val = arch_timer_reg_read_cp15(access, reg);
135 return val;
138 static __always_inline irqreturn_t timer_handler(const int access,
139 struct clock_event_device *evt)
141 unsigned long ctrl;
143 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
144 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
145 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
146 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
147 evt->event_handler(evt);
148 return IRQ_HANDLED;
151 return IRQ_NONE;
154 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
156 struct clock_event_device *evt = dev_id;
158 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
161 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
163 struct clock_event_device *evt = dev_id;
165 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
168 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
170 struct clock_event_device *evt = dev_id;
172 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
175 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
177 struct clock_event_device *evt = dev_id;
179 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
182 static __always_inline void timer_set_mode(const int access, int mode,
183 struct clock_event_device *clk)
185 unsigned long ctrl;
186 switch (mode) {
187 case CLOCK_EVT_MODE_UNUSED:
188 case CLOCK_EVT_MODE_SHUTDOWN:
189 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
190 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
191 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
192 break;
193 default:
194 break;
198 static void arch_timer_set_mode_virt(enum clock_event_mode mode,
199 struct clock_event_device *clk)
201 timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
204 static void arch_timer_set_mode_phys(enum clock_event_mode mode,
205 struct clock_event_device *clk)
207 timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
210 static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode,
211 struct clock_event_device *clk)
213 timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk);
216 static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode,
217 struct clock_event_device *clk)
219 timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk);
222 static __always_inline void set_next_event(const int access, unsigned long evt,
223 struct clock_event_device *clk)
225 unsigned long ctrl;
226 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
227 ctrl |= ARCH_TIMER_CTRL_ENABLE;
228 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
229 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
230 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
233 static int arch_timer_set_next_event_virt(unsigned long evt,
234 struct clock_event_device *clk)
236 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
237 return 0;
240 static int arch_timer_set_next_event_phys(unsigned long evt,
241 struct clock_event_device *clk)
243 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
244 return 0;
247 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
248 struct clock_event_device *clk)
250 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
251 return 0;
254 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
255 struct clock_event_device *clk)
257 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
258 return 0;
261 static void __arch_timer_setup(unsigned type,
262 struct clock_event_device *clk)
264 clk->features = CLOCK_EVT_FEAT_ONESHOT;
266 if (type == ARCH_CP15_TIMER) {
267 if (arch_timer_c3stop)
268 clk->features |= CLOCK_EVT_FEAT_C3STOP;
269 clk->name = "arch_sys_timer";
270 clk->rating = 450;
271 clk->cpumask = cpumask_of(smp_processor_id());
272 if (arch_timer_use_virtual) {
273 clk->irq = arch_timer_ppi[VIRT_PPI];
274 clk->set_mode = arch_timer_set_mode_virt;
275 clk->set_next_event = arch_timer_set_next_event_virt;
276 } else {
277 clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
278 clk->set_mode = arch_timer_set_mode_phys;
279 clk->set_next_event = arch_timer_set_next_event_phys;
281 } else {
282 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
283 clk->name = "arch_mem_timer";
284 clk->rating = 400;
285 clk->cpumask = cpu_all_mask;
286 if (arch_timer_mem_use_virtual) {
287 clk->set_mode = arch_timer_set_mode_virt_mem;
288 clk->set_next_event =
289 arch_timer_set_next_event_virt_mem;
290 } else {
291 clk->set_mode = arch_timer_set_mode_phys_mem;
292 clk->set_next_event =
293 arch_timer_set_next_event_phys_mem;
297 clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
299 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
302 static void arch_timer_evtstrm_enable(int divider)
304 u32 cntkctl = arch_timer_get_cntkctl();
306 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
307 /* Set the divider and enable virtual event stream */
308 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
309 | ARCH_TIMER_VIRT_EVT_EN;
310 arch_timer_set_cntkctl(cntkctl);
311 elf_hwcap |= HWCAP_EVTSTRM;
312 #ifdef CONFIG_COMPAT
313 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
314 #endif
317 static void arch_timer_configure_evtstream(void)
319 int evt_stream_div, pos;
321 /* Find the closest power of two to the divisor */
322 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
323 pos = fls(evt_stream_div);
324 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
325 pos--;
326 /* enable event stream */
327 arch_timer_evtstrm_enable(min(pos, 15));
330 static void arch_counter_set_user_access(void)
332 u32 cntkctl = arch_timer_get_cntkctl();
334 /* Disable user access to the timers and the physical counter */
335 /* Also disable virtual event stream */
336 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
337 | ARCH_TIMER_USR_VT_ACCESS_EN
338 | ARCH_TIMER_VIRT_EVT_EN
339 | ARCH_TIMER_USR_PCT_ACCESS_EN);
341 /* Enable user access to the virtual counter */
342 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
344 arch_timer_set_cntkctl(cntkctl);
347 static int arch_timer_setup(struct clock_event_device *clk)
349 __arch_timer_setup(ARCH_CP15_TIMER, clk);
351 if (arch_timer_use_virtual)
352 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
353 else {
354 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
355 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
356 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
359 arch_counter_set_user_access();
360 if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
361 arch_timer_configure_evtstream();
363 return 0;
366 static void
367 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
369 /* Who has more than one independent system counter? */
370 if (arch_timer_rate)
371 return;
373 /* Try to determine the frequency from the device tree or CNTFRQ */
374 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
375 if (cntbase)
376 arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
377 else
378 arch_timer_rate = arch_timer_get_cntfrq();
381 /* Check the timer frequency. */
382 if (arch_timer_rate == 0)
383 pr_warn("Architected timer frequency not available\n");
386 static void arch_timer_banner(unsigned type)
388 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
389 type & ARCH_CP15_TIMER ? "cp15" : "",
390 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
391 type & ARCH_MEM_TIMER ? "mmio" : "",
392 (unsigned long)arch_timer_rate / 1000000,
393 (unsigned long)(arch_timer_rate / 10000) % 100,
394 type & ARCH_CP15_TIMER ?
395 arch_timer_use_virtual ? "virt" : "phys" :
397 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
398 type & ARCH_MEM_TIMER ?
399 arch_timer_mem_use_virtual ? "virt" : "phys" :
400 "");
403 u32 arch_timer_get_rate(void)
405 return arch_timer_rate;
408 static u64 arch_counter_get_cntvct_mem(void)
410 u32 vct_lo, vct_hi, tmp_hi;
412 do {
413 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
414 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
415 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
416 } while (vct_hi != tmp_hi);
418 return ((u64) vct_hi << 32) | vct_lo;
422 * Default to cp15 based access because arm64 uses this function for
423 * sched_clock() before DT is probed and the cp15 method is guaranteed
424 * to exist on arm64. arm doesn't use this before DT is probed so even
425 * if we don't have the cp15 accessors we won't have a problem.
427 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
429 static cycle_t arch_counter_read(struct clocksource *cs)
431 return arch_timer_read_counter();
434 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
436 return arch_timer_read_counter();
439 static struct clocksource clocksource_counter = {
440 .name = "arch_sys_counter",
441 .rating = 400,
442 .read = arch_counter_read,
443 .mask = CLOCKSOURCE_MASK(56),
444 .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
447 static struct cyclecounter cyclecounter = {
448 .read = arch_counter_read_cc,
449 .mask = CLOCKSOURCE_MASK(56),
452 static struct timecounter timecounter;
454 struct timecounter *arch_timer_get_timecounter(void)
456 return &timecounter;
459 static void __init arch_counter_register(unsigned type)
461 u64 start_count;
463 /* Register the CP15 based counter if we have one */
464 if (type & ARCH_CP15_TIMER) {
465 arch_timer_read_counter = arch_counter_get_cntvct;
466 } else {
467 arch_timer_read_counter = arch_counter_get_cntvct_mem;
469 /* If the clocksource name is "arch_sys_counter" the
470 * VDSO will attempt to read the CP15-based counter.
471 * Ensure this does not happen when CP15-based
472 * counter is not available.
474 clocksource_counter.name = "arch_mem_counter";
477 start_count = arch_timer_read_counter();
478 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
479 cyclecounter.mult = clocksource_counter.mult;
480 cyclecounter.shift = clocksource_counter.shift;
481 timecounter_init(&timecounter, &cyclecounter, start_count);
483 /* 56 bits minimum, so we assume worst case rollover */
484 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
487 static void arch_timer_stop(struct clock_event_device *clk)
489 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
490 clk->irq, smp_processor_id());
492 if (arch_timer_use_virtual)
493 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
494 else {
495 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
496 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
497 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
500 clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
503 static int arch_timer_cpu_notify(struct notifier_block *self,
504 unsigned long action, void *hcpu)
507 * Grab cpu pointer in each case to avoid spurious
508 * preemptible warnings
510 switch (action & ~CPU_TASKS_FROZEN) {
511 case CPU_STARTING:
512 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
513 break;
514 case CPU_DYING:
515 arch_timer_stop(this_cpu_ptr(arch_timer_evt));
516 break;
519 return NOTIFY_OK;
522 static struct notifier_block arch_timer_cpu_nb = {
523 .notifier_call = arch_timer_cpu_notify,
526 #ifdef CONFIG_CPU_PM
527 static unsigned int saved_cntkctl;
528 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
529 unsigned long action, void *hcpu)
531 if (action == CPU_PM_ENTER)
532 saved_cntkctl = arch_timer_get_cntkctl();
533 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
534 arch_timer_set_cntkctl(saved_cntkctl);
535 return NOTIFY_OK;
538 static struct notifier_block arch_timer_cpu_pm_notifier = {
539 .notifier_call = arch_timer_cpu_pm_notify,
542 static int __init arch_timer_cpu_pm_init(void)
544 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
546 #else
547 static int __init arch_timer_cpu_pm_init(void)
549 return 0;
551 #endif
553 static int __init arch_timer_register(void)
555 int err;
556 int ppi;
558 arch_timer_evt = alloc_percpu(struct clock_event_device);
559 if (!arch_timer_evt) {
560 err = -ENOMEM;
561 goto out;
564 if (arch_timer_use_virtual) {
565 ppi = arch_timer_ppi[VIRT_PPI];
566 err = request_percpu_irq(ppi, arch_timer_handler_virt,
567 "arch_timer", arch_timer_evt);
568 } else {
569 ppi = arch_timer_ppi[PHYS_SECURE_PPI];
570 err = request_percpu_irq(ppi, arch_timer_handler_phys,
571 "arch_timer", arch_timer_evt);
572 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
573 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
574 err = request_percpu_irq(ppi, arch_timer_handler_phys,
575 "arch_timer", arch_timer_evt);
576 if (err)
577 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
578 arch_timer_evt);
582 if (err) {
583 pr_err("arch_timer: can't register interrupt %d (%d)\n",
584 ppi, err);
585 goto out_free;
588 err = register_cpu_notifier(&arch_timer_cpu_nb);
589 if (err)
590 goto out_free_irq;
592 err = arch_timer_cpu_pm_init();
593 if (err)
594 goto out_unreg_notify;
596 /* Immediately configure the timer on the boot CPU */
597 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
599 return 0;
601 out_unreg_notify:
602 unregister_cpu_notifier(&arch_timer_cpu_nb);
603 out_free_irq:
604 if (arch_timer_use_virtual)
605 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
606 else {
607 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
608 arch_timer_evt);
609 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
610 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
611 arch_timer_evt);
614 out_free:
615 free_percpu(arch_timer_evt);
616 out:
617 return err;
620 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
622 int ret;
623 irq_handler_t func;
624 struct arch_timer *t;
626 t = kzalloc(sizeof(*t), GFP_KERNEL);
627 if (!t)
628 return -ENOMEM;
630 t->base = base;
631 t->evt.irq = irq;
632 __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
634 if (arch_timer_mem_use_virtual)
635 func = arch_timer_handler_virt_mem;
636 else
637 func = arch_timer_handler_phys_mem;
639 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
640 if (ret) {
641 pr_err("arch_timer: Failed to request mem timer irq\n");
642 kfree(t);
645 return ret;
648 static const struct of_device_id arch_timer_of_match[] __initconst = {
649 { .compatible = "arm,armv7-timer", },
650 { .compatible = "arm,armv8-timer", },
654 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
655 { .compatible = "arm,armv7-timer-mem", },
659 static bool __init
660 arch_timer_probed(int type, const struct of_device_id *matches)
662 struct device_node *dn;
663 bool probed = false;
665 dn = of_find_matching_node(NULL, matches);
666 if (dn && of_device_is_available(dn) && (arch_timers_present & type))
667 probed = true;
668 of_node_put(dn);
670 return probed;
673 static void __init arch_timer_common_init(void)
675 unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
677 /* Wait until both nodes are probed if we have two timers */
678 if ((arch_timers_present & mask) != mask) {
679 if (!arch_timer_probed(ARCH_MEM_TIMER, arch_timer_mem_of_match))
680 return;
681 if (!arch_timer_probed(ARCH_CP15_TIMER, arch_timer_of_match))
682 return;
685 arch_timer_banner(arch_timers_present);
686 arch_counter_register(arch_timers_present);
687 arch_timer_arch_init();
690 static void __init arch_timer_init(struct device_node *np)
692 int i;
694 if (arch_timers_present & ARCH_CP15_TIMER) {
695 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
696 return;
699 arch_timers_present |= ARCH_CP15_TIMER;
700 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
701 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
702 arch_timer_detect_rate(NULL, np);
705 * If HYP mode is available, we know that the physical timer
706 * has been configured to be accessible from PL1. Use it, so
707 * that a guest can use the virtual timer instead.
709 * If no interrupt provided for virtual timer, we'll have to
710 * stick to the physical timer. It'd better be accessible...
712 if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
713 arch_timer_use_virtual = false;
715 if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
716 !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
717 pr_warn("arch_timer: No interrupt available, giving up\n");
718 return;
722 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
724 arch_timer_register();
725 arch_timer_common_init();
727 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
728 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);
730 static void __init arch_timer_mem_init(struct device_node *np)
732 struct device_node *frame, *best_frame = NULL;
733 void __iomem *cntctlbase, *base;
734 unsigned int irq;
735 u32 cnttidr;
737 arch_timers_present |= ARCH_MEM_TIMER;
738 cntctlbase = of_iomap(np, 0);
739 if (!cntctlbase) {
740 pr_err("arch_timer: Can't find CNTCTLBase\n");
741 return;
744 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
745 iounmap(cntctlbase);
748 * Try to find a virtual capable frame. Otherwise fall back to a
749 * physical capable frame.
751 for_each_available_child_of_node(np, frame) {
752 int n;
754 if (of_property_read_u32(frame, "frame-number", &n)) {
755 pr_err("arch_timer: Missing frame-number\n");
756 of_node_put(best_frame);
757 of_node_put(frame);
758 return;
761 if (cnttidr & CNTTIDR_VIRT(n)) {
762 of_node_put(best_frame);
763 best_frame = frame;
764 arch_timer_mem_use_virtual = true;
765 break;
767 of_node_put(best_frame);
768 best_frame = of_node_get(frame);
771 base = arch_counter_base = of_iomap(best_frame, 0);
772 if (!base) {
773 pr_err("arch_timer: Can't map frame's registers\n");
774 of_node_put(best_frame);
775 return;
778 if (arch_timer_mem_use_virtual)
779 irq = irq_of_parse_and_map(best_frame, 1);
780 else
781 irq = irq_of_parse_and_map(best_frame, 0);
782 of_node_put(best_frame);
783 if (!irq) {
784 pr_err("arch_timer: Frame missing %s irq",
785 arch_timer_mem_use_virtual ? "virt" : "phys");
786 return;
789 arch_timer_detect_rate(base, np);
790 arch_timer_mem_register(base, irq);
791 arch_timer_common_init();
793 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
794 arch_timer_mem_init);