x86: improve UP kernel when CPU-hotplug and SMP is enabled
[linux/fpc-iii.git] / drivers / net / tehuti.c
blob91f9054a1d9522b5f60f0347d6264beeba8d4c60
1 /*
2 * Tehuti Networks(R) Network Driver
3 * ethtool interface implementation
4 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
13 * RX HW/SW interaction overview
14 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
15 * There are 2 types of RX communication channels betwean driver and NIC.
16 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
17 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
18 * info about buffer's location, size and ID. An ID field is used to identify a
19 * buffer when it's returned with data via RXD Fifo (see below)
20 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
21 * filled by HW and is readen by SW. Each descriptor holds status and ID.
22 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
23 * via dma moves it into host memory, builds new RXD descriptor with same ID,
24 * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
26 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
27 * One holds 1.5K packets and another - 26K packets. Depending on incoming
28 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
29 * filled with data, HW builds new RXD descriptor for it and push it into single
30 * RXD Fifo.
32 * RX SW Data Structures
33 * ~~~~~~~~~~~~~~~~~~~~~
34 * skb db - used to keep track of all skbs owned by SW and their dma addresses.
35 * For RX case, ownership lasts from allocating new empty skb for RXF until
36 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
37 * skb db. Implemented as array with bitmask.
38 * fifo - keeps info about fifo's size and location, relevant HW registers,
39 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
40 * Implemented as simple struct.
42 * RX SW Execution Flow
43 * ~~~~~~~~~~~~~~~~~~~~
44 * Upon initialization (ifconfig up) driver creates RX fifos and initializes
45 * relevant registers. At the end of init phase, driver enables interrupts.
46 * NIC sees that there is no RXF buffers and raises
47 * RD_INTR interrupt, isr fills skbs and Rx begins.
48 * Driver has two receive operation modes:
49 * NAPI - interrupt-driven mixed with polling
50 * interrupt-driven only
52 * Interrupt-driven only flow is following. When buffer is ready, HW raises
53 * interrupt and isr is called. isr collects all available packets
54 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
56 * Rx buffer allocation note
57 * ~~~~~~~~~~~~~~~~~~~~~~~~~
58 * Driver cares to feed such amount of RxF descriptors that respective amount of
59 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
60 * overflow check in Bordeaux for RxD fifo free/used size.
61 * FIXME: this is NOT fully implemented, more work should be done
65 #include "tehuti.h"
66 #include "tehuti_fw.h"
68 static struct pci_device_id __devinitdata bdx_pci_tbl[] = {
69 {0x1FC9, 0x3009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
70 {0x1FC9, 0x3010, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
71 {0x1FC9, 0x3014, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
72 {0}
75 MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
77 /* Definitions needed by ISR or NAPI functions */
78 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
79 static void bdx_tx_cleanup(struct bdx_priv *priv);
80 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
82 /* Definitions needed by FW loading */
83 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
85 /* Definitions needed by hw_start */
86 static int bdx_tx_init(struct bdx_priv *priv);
87 static int bdx_rx_init(struct bdx_priv *priv);
89 /* Definitions needed by bdx_close */
90 static void bdx_rx_free(struct bdx_priv *priv);
91 static void bdx_tx_free(struct bdx_priv *priv);
93 /* Definitions needed by bdx_probe */
94 static void bdx_ethtool_ops(struct net_device *netdev);
96 /*************************************************************************
97 * Print Info *
98 *************************************************************************/
100 static void print_hw_id(struct pci_dev *pdev)
102 struct pci_nic *nic = pci_get_drvdata(pdev);
103 u16 pci_link_status = 0;
104 u16 pci_ctrl = 0;
106 pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
107 pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
109 printk(KERN_INFO "tehuti: %s%s\n", BDX_NIC_NAME,
110 nic->port_num == 1 ? "" : ", 2-Port");
111 printk(KERN_INFO
112 "tehuti: srom 0x%x fpga %d build %u lane# %d"
113 " max_pl 0x%x mrrs 0x%x\n",
114 readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
115 readl(nic->regs + FPGA_SEED),
116 GET_LINK_STATUS_LANES(pci_link_status),
117 GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
120 static void print_fw_id(struct pci_nic *nic)
122 printk(KERN_INFO "tehuti: fw 0x%x\n", readl(nic->regs + FW_VER));
125 static void print_eth_id(struct net_device *ndev)
127 printk(KERN_INFO "%s: %s, Port %c\n", ndev->name, BDX_NIC_NAME,
128 (ndev->if_port == 0) ? 'A' : 'B');
132 /*************************************************************************
133 * Code *
134 *************************************************************************/
136 #define bdx_enable_interrupts(priv) \
137 do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
138 #define bdx_disable_interrupts(priv) \
139 do { WRITE_REG(priv, regIMR, 0); } while (0)
141 /* bdx_fifo_init
142 * create TX/RX descriptor fifo for host-NIC communication.
143 * 1K extra space is allocated at the end of the fifo to simplify
144 * processing of descriptors that wraps around fifo's end
145 * @priv - NIC private structure
146 * @f - fifo to initialize
147 * @fsz_type - fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
148 * @reg_XXX - offsets of registers relative to base address
150 * Returns 0 on success, negative value on failure
153 static int
154 bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
155 u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
157 u16 memsz = FIFO_SIZE * (1 << fsz_type);
159 memset(f, 0, sizeof(struct fifo));
160 /* pci_alloc_consistent gives us 4k-aligned memory */
161 f->va = pci_alloc_consistent(priv->pdev,
162 memsz + FIFO_EXTRA_SPACE, &f->da);
163 if (!f->va) {
164 ERR("pci_alloc_consistent failed\n");
165 RET(-ENOMEM);
167 f->reg_CFG0 = reg_CFG0;
168 f->reg_CFG1 = reg_CFG1;
169 f->reg_RPTR = reg_RPTR;
170 f->reg_WPTR = reg_WPTR;
171 f->rptr = 0;
172 f->wptr = 0;
173 f->memsz = memsz;
174 f->size_mask = memsz - 1;
175 WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
176 WRITE_REG(priv, reg_CFG1, H32_64(f->da));
178 RET(0);
181 /* bdx_fifo_free - free all resources used by fifo
182 * @priv - NIC private structure
183 * @f - fifo to release
185 static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
187 ENTER;
188 if (f->va) {
189 pci_free_consistent(priv->pdev,
190 f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
191 f->va = NULL;
193 RET();
197 * bdx_link_changed - notifies OS about hw link state.
198 * @bdx_priv - hw adapter structure
200 static void bdx_link_changed(struct bdx_priv *priv)
202 u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
204 if (!link) {
205 if (netif_carrier_ok(priv->ndev)) {
206 netif_stop_queue(priv->ndev);
207 netif_carrier_off(priv->ndev);
208 ERR("%s: Link Down\n", priv->ndev->name);
210 } else {
211 if (!netif_carrier_ok(priv->ndev)) {
212 netif_wake_queue(priv->ndev);
213 netif_carrier_on(priv->ndev);
214 ERR("%s: Link Up\n", priv->ndev->name);
219 static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
221 if (isr & IR_RX_FREE_0) {
222 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
223 DBG("RX_FREE_0\n");
226 if (isr & IR_LNKCHG0)
227 bdx_link_changed(priv);
229 if (isr & IR_PCIE_LINK)
230 ERR("%s: PCI-E Link Fault\n", priv->ndev->name);
232 if (isr & IR_PCIE_TOUT)
233 ERR("%s: PCI-E Time Out\n", priv->ndev->name);
237 /* bdx_isr - Interrupt Service Routine for Bordeaux NIC
238 * @irq - interrupt number
239 * @ndev - network device
240 * @regs - CPU registers
242 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
244 * It reads ISR register to know interrupt reasons, and proceed them one by one.
245 * Reasons of interest are:
246 * RX_DESC - new packet has arrived and RXD fifo holds its descriptor
247 * RX_FREE - number of free Rx buffers in RXF fifo gets low
248 * TX_FREE - packet was transmited and RXF fifo holds its descriptor
251 static irqreturn_t bdx_isr_napi(int irq, void *dev)
253 struct net_device *ndev = dev;
254 struct bdx_priv *priv = ndev->priv;
255 u32 isr;
257 ENTER;
258 isr = (READ_REG(priv, regISR) & IR_RUN);
259 if (unlikely(!isr)) {
260 bdx_enable_interrupts(priv);
261 return IRQ_NONE; /* Not our interrupt */
264 if (isr & IR_EXTRA)
265 bdx_isr_extra(priv, isr);
267 if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
268 if (likely(netif_rx_schedule_prep(ndev, &priv->napi))) {
269 __netif_rx_schedule(ndev, &priv->napi);
270 RET(IRQ_HANDLED);
271 } else {
272 /* NOTE: we get here if intr has slipped into window
273 * between these lines in bdx_poll:
274 * bdx_enable_interrupts(priv);
275 * return 0;
276 * currently intrs are disabled (since we read ISR),
277 * and we have failed to register next poll.
278 * so we read the regs to trigger chip
279 * and allow further interupts. */
280 READ_REG(priv, regTXF_WPTR_0);
281 READ_REG(priv, regRXD_WPTR_0);
285 bdx_enable_interrupts(priv);
286 RET(IRQ_HANDLED);
289 static int bdx_poll(struct napi_struct *napi, int budget)
291 struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
292 struct net_device *dev = priv->ndev;
293 int work_done;
295 ENTER;
296 bdx_tx_cleanup(priv);
297 work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
298 if ((work_done < budget) ||
299 (priv->napi_stop++ >= 30)) {
300 DBG("rx poll is done. backing to isr-driven\n");
302 /* from time to time we exit to let NAPI layer release
303 * device lock and allow waiting tasks (eg rmmod) to advance) */
304 priv->napi_stop = 0;
306 netif_rx_complete(dev, napi);
307 bdx_enable_interrupts(priv);
309 return work_done;
312 /* bdx_fw_load - loads firmware to NIC
313 * @priv - NIC private structure
314 * Firmware is loaded via TXD fifo, so it must be initialized first.
315 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
316 * can have few of them). So all drivers use semaphore register to choose one
317 * that will actually load FW to NIC.
320 static int bdx_fw_load(struct bdx_priv *priv)
322 int master, i;
324 ENTER;
325 master = READ_REG(priv, regINIT_SEMAPHORE);
326 if (!READ_REG(priv, regINIT_STATUS) && master) {
327 bdx_tx_push_desc_safe(priv, s_firmLoad, sizeof(s_firmLoad));
328 mdelay(100);
330 for (i = 0; i < 200; i++) {
331 if (READ_REG(priv, regINIT_STATUS))
332 break;
333 mdelay(2);
335 if (master)
336 WRITE_REG(priv, regINIT_SEMAPHORE, 1);
338 if (i == 200) {
339 ERR("%s: firmware loading failed\n", priv->ndev->name);
340 DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
341 READ_REG(priv, regVPC),
342 READ_REG(priv, regVIC), READ_REG(priv, regINIT_STATUS), i);
343 RET(-EIO);
344 } else {
345 DBG("%s: firmware loading success\n", priv->ndev->name);
346 RET(0);
350 static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
352 u32 val;
354 ENTER;
355 DBG("mac0=%x mac1=%x mac2=%x\n",
356 READ_REG(priv, regUNC_MAC0_A),
357 READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
359 val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
360 WRITE_REG(priv, regUNC_MAC2_A, val);
361 val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
362 WRITE_REG(priv, regUNC_MAC1_A, val);
363 val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
364 WRITE_REG(priv, regUNC_MAC0_A, val);
366 DBG("mac0=%x mac1=%x mac2=%x\n",
367 READ_REG(priv, regUNC_MAC0_A),
368 READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
369 RET();
372 /* bdx_hw_start - inits registers and starts HW's Rx and Tx engines
373 * @priv - NIC private structure
375 static int bdx_hw_start(struct bdx_priv *priv)
377 int rc = -EIO;
378 struct net_device *ndev = priv->ndev;
380 ENTER;
381 bdx_link_changed(priv);
383 /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
384 WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
385 WRITE_REG(priv, regPAUSE_QUANT, 0x96);
386 WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
387 WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
388 WRITE_REG(priv, regRX_FULLNESS, 0);
389 WRITE_REG(priv, regTX_FULLNESS, 0);
390 WRITE_REG(priv, regCTRLST,
391 regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
393 WRITE_REG(priv, regVGLB, 0);
394 WRITE_REG(priv, regMAX_FRAME_A,
395 priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
397 DBG("RDINTCM=%08x\n", priv->rdintcm); /*NOTE: test script uses this */
398 WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
399 WRITE_REG(priv, regRDINTCM2, 0); /*cpu_to_le32(rcm.val)); */
401 DBG("TDINTCM=%08x\n", priv->tdintcm); /*NOTE: test script uses this */
402 WRITE_REG(priv, regTDINTCM0, priv->tdintcm); /* old val = 0x300064 */
404 /* Enable timer interrupt once in 2 secs. */
405 /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
406 bdx_restore_mac(priv->ndev, priv);
408 WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
409 GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
411 #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI)?0:IRQF_SHARED)
412 if ((rc = request_irq(priv->pdev->irq, &bdx_isr_napi, BDX_IRQ_TYPE,
413 ndev->name, ndev)))
414 goto err_irq;
415 bdx_enable_interrupts(priv);
417 RET(0);
419 err_irq:
420 RET(rc);
423 static void bdx_hw_stop(struct bdx_priv *priv)
425 ENTER;
426 bdx_disable_interrupts(priv);
427 free_irq(priv->pdev->irq, priv->ndev);
429 netif_carrier_off(priv->ndev);
430 netif_stop_queue(priv->ndev);
432 RET();
435 static int bdx_hw_reset_direct(void __iomem *regs)
437 u32 val, i;
438 ENTER;
440 /* reset sequences: read, write 1, read, write 0 */
441 val = readl(regs + regCLKPLL);
442 writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
443 udelay(50);
444 val = readl(regs + regCLKPLL);
445 writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
447 /* check that the PLLs are locked and reset ended */
448 for (i = 0; i < 70; i++, mdelay(10))
449 if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
450 /* do any PCI-E read transaction */
451 readl(regs + regRXD_CFG0_0);
452 return 0;
454 ERR("tehuti: HW reset failed\n");
455 return 1; /* failure */
458 static int bdx_hw_reset(struct bdx_priv *priv)
460 u32 val, i;
461 ENTER;
463 if (priv->port == 0) {
464 /* reset sequences: read, write 1, read, write 0 */
465 val = READ_REG(priv, regCLKPLL);
466 WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
467 udelay(50);
468 val = READ_REG(priv, regCLKPLL);
469 WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
471 /* check that the PLLs are locked and reset ended */
472 for (i = 0; i < 70; i++, mdelay(10))
473 if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
474 /* do any PCI-E read transaction */
475 READ_REG(priv, regRXD_CFG0_0);
476 return 0;
478 ERR("tehuti: HW reset failed\n");
479 return 1; /* failure */
482 static int bdx_sw_reset(struct bdx_priv *priv)
484 int i;
486 ENTER;
487 /* 1. load MAC (obsolete) */
488 /* 2. disable Rx (and Tx) */
489 WRITE_REG(priv, regGMAC_RXF_A, 0);
490 mdelay(100);
491 /* 3. disable port */
492 WRITE_REG(priv, regDIS_PORT, 1);
493 /* 4. disable queue */
494 WRITE_REG(priv, regDIS_QU, 1);
495 /* 5. wait until hw is disabled */
496 for (i = 0; i < 50; i++) {
497 if (READ_REG(priv, regRST_PORT) & 1)
498 break;
499 mdelay(10);
501 if (i == 50)
502 ERR("%s: SW reset timeout. continuing anyway\n",
503 priv->ndev->name);
505 /* 6. disable intrs */
506 WRITE_REG(priv, regRDINTCM0, 0);
507 WRITE_REG(priv, regTDINTCM0, 0);
508 WRITE_REG(priv, regIMR, 0);
509 READ_REG(priv, regISR);
511 /* 7. reset queue */
512 WRITE_REG(priv, regRST_QU, 1);
513 /* 8. reset port */
514 WRITE_REG(priv, regRST_PORT, 1);
515 /* 9. zero all read and write pointers */
516 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
517 DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
518 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
519 WRITE_REG(priv, i, 0);
520 /* 10. unseet port disable */
521 WRITE_REG(priv, regDIS_PORT, 0);
522 /* 11. unset queue disable */
523 WRITE_REG(priv, regDIS_QU, 0);
524 /* 12. unset queue reset */
525 WRITE_REG(priv, regRST_QU, 0);
526 /* 13. unset port reset */
527 WRITE_REG(priv, regRST_PORT, 0);
528 /* 14. enable Rx */
529 /* skiped. will be done later */
530 /* 15. save MAC (obsolete) */
531 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
532 DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
534 RET(0);
537 /* bdx_reset - performs right type of reset depending on hw type */
538 static int bdx_reset(struct bdx_priv *priv)
540 ENTER;
541 RET((priv->pdev->device == 0x3009)
542 ? bdx_hw_reset(priv)
543 : bdx_sw_reset(priv));
547 * bdx_close - Disables a network interface
548 * @netdev: network interface device structure
550 * Returns 0, this is not allowed to fail
552 * The close entry point is called when an interface is de-activated
553 * by the OS. The hardware is still under the drivers control, but
554 * needs to be disabled. A global MAC reset is issued to stop the
555 * hardware, and all transmit and receive resources are freed.
557 static int bdx_close(struct net_device *ndev)
559 struct bdx_priv *priv = NULL;
561 ENTER;
562 priv = ndev->priv;
564 napi_disable(&priv->napi);
566 bdx_reset(priv);
567 bdx_hw_stop(priv);
568 bdx_rx_free(priv);
569 bdx_tx_free(priv);
570 RET(0);
574 * bdx_open - Called when a network interface is made active
575 * @netdev: network interface device structure
577 * Returns 0 on success, negative value on failure
579 * The open entry point is called when a network interface is made
580 * active by the system (IFF_UP). At this point all resources needed
581 * for transmit and receive operations are allocated, the interrupt
582 * handler is registered with the OS, the watchdog timer is started,
583 * and the stack is notified that the interface is ready.
585 static int bdx_open(struct net_device *ndev)
587 struct bdx_priv *priv;
588 int rc;
590 ENTER;
591 priv = ndev->priv;
592 bdx_reset(priv);
593 if (netif_running(ndev))
594 netif_stop_queue(priv->ndev);
596 if ((rc = bdx_tx_init(priv)))
597 goto err;
599 if ((rc = bdx_rx_init(priv)))
600 goto err;
602 if ((rc = bdx_fw_load(priv)))
603 goto err;
605 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
607 if ((rc = bdx_hw_start(priv)))
608 goto err;
610 napi_enable(&priv->napi);
612 print_fw_id(priv->nic);
614 RET(0);
616 err:
617 bdx_close(ndev);
618 RET(rc);
621 static void __init bdx_firmware_endianess(void)
623 int i;
624 for (i = 0; i < ARRAY_SIZE(s_firmLoad); i++)
625 s_firmLoad[i] = CPU_CHIP_SWAP32(s_firmLoad[i]);
628 static int bdx_range_check(struct bdx_priv *priv, u32 offset)
630 return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
631 -EINVAL : 0;
634 static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
636 struct bdx_priv *priv = ndev->priv;
637 u32 data[3];
638 int error;
640 ENTER;
642 DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
643 if (cmd != SIOCDEVPRIVATE) {
644 error = copy_from_user(data, ifr->ifr_data, sizeof(data));
645 if (error) {
646 ERR("cant copy from user\n");
647 RET(error);
649 DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
652 if (!capable(CAP_SYS_RAWIO))
653 return -EPERM;
655 switch (data[0]) {
657 case BDX_OP_READ:
658 error = bdx_range_check(priv, data[1]);
659 if (error < 0)
660 return error;
661 data[2] = READ_REG(priv, data[1]);
662 DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
663 data[2]);
664 error = copy_to_user(ifr->ifr_data, data, sizeof(data));
665 if (error)
666 RET(error);
667 break;
669 case BDX_OP_WRITE:
670 error = bdx_range_check(priv, data[1]);
671 if (error < 0)
672 return error;
673 WRITE_REG(priv, data[1], data[2]);
674 DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
675 break;
677 default:
678 RET(-EOPNOTSUPP);
680 return 0;
683 static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
685 ENTER;
686 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
687 RET(bdx_ioctl_priv(ndev, ifr, cmd));
688 else
689 RET(-EOPNOTSUPP);
693 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
694 * by passing VLAN filter table to hardware
695 * @ndev network device
696 * @vid VLAN vid
697 * @op add or kill operation
699 static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
701 struct bdx_priv *priv = ndev->priv;
702 u32 reg, bit, val;
704 ENTER;
705 DBG2("vid=%d value=%d\n", (int)vid, enable);
706 if (unlikely(vid >= 4096)) {
707 ERR("tehuti: invalid VID: %u (> 4096)\n", vid);
708 RET();
710 reg = regVLAN_0 + (vid / 32) * 4;
711 bit = 1 << vid % 32;
712 val = READ_REG(priv, reg);
713 DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
714 if (enable)
715 val |= bit;
716 else
717 val &= ~bit;
718 DBG2("new val %x\n", val);
719 WRITE_REG(priv, reg, val);
720 RET();
724 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
725 * @ndev network device
726 * @vid VLAN vid to add
728 static void bdx_vlan_rx_add_vid(struct net_device *ndev, uint16_t vid)
730 __bdx_vlan_rx_vid(ndev, vid, 1);
734 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
735 * @ndev network device
736 * @vid VLAN vid to kill
738 static void bdx_vlan_rx_kill_vid(struct net_device *ndev, unsigned short vid)
740 __bdx_vlan_rx_vid(ndev, vid, 0);
744 * bdx_vlan_rx_register - kernel hook for adding VLAN group
745 * @ndev network device
746 * @grp VLAN group
748 static void
749 bdx_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
751 struct bdx_priv *priv = ndev->priv;
753 ENTER;
754 DBG("device='%s', group='%p'\n", ndev->name, grp);
755 priv->vlgrp = grp;
756 RET();
760 * bdx_change_mtu - Change the Maximum Transfer Unit
761 * @netdev: network interface device structure
762 * @new_mtu: new value for maximum frame size
764 * Returns 0 on success, negative on failure
766 static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
768 ENTER;
770 if (new_mtu == ndev->mtu)
771 RET(0);
773 /* enforce minimum frame size */
774 if (new_mtu < ETH_ZLEN) {
775 ERR("%s: %s mtu %d is less then minimal %d\n",
776 BDX_DRV_NAME, ndev->name, new_mtu, ETH_ZLEN);
777 RET(-EINVAL);
780 ndev->mtu = new_mtu;
781 if (netif_running(ndev)) {
782 bdx_close(ndev);
783 bdx_open(ndev);
785 RET(0);
788 static void bdx_setmulti(struct net_device *ndev)
790 struct bdx_priv *priv = ndev->priv;
792 u32 rxf_val =
793 GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
794 int i;
796 ENTER;
797 /* IMF - imperfect (hash) rx multicat filter */
798 /* PMF - perfect rx multicat filter */
800 /* FIXME: RXE(OFF) */
801 if (ndev->flags & IFF_PROMISC) {
802 rxf_val |= GMAC_RX_FILTER_PRM;
803 } else if (ndev->flags & IFF_ALLMULTI) {
804 /* set IMF to accept all multicast frmaes */
805 for (i = 0; i < MAC_MCST_HASH_NUM; i++)
806 WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
807 } else if (ndev->mc_count) {
808 u8 hash;
809 struct dev_mc_list *mclist;
810 u32 reg, val;
812 /* set IMF to deny all multicast frames */
813 for (i = 0; i < MAC_MCST_HASH_NUM; i++)
814 WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
815 /* set PMF to deny all multicast frames */
816 for (i = 0; i < MAC_MCST_NUM; i++) {
817 WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
818 WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
821 /* use PMF to accept first MAC_MCST_NUM (15) addresses */
822 /* TBD: sort addreses and write them in ascending order
823 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
824 * multicast frames throu IMF */
825 mclist = ndev->mc_list;
827 /* accept the rest of addresses throu IMF */
828 for (; mclist; mclist = mclist->next) {
829 hash = 0;
830 for (i = 0; i < ETH_ALEN; i++)
831 hash ^= mclist->dmi_addr[i];
832 reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
833 val = READ_REG(priv, reg);
834 val |= (1 << (hash % 32));
835 WRITE_REG(priv, reg, val);
838 } else {
839 DBG("only own mac %d\n", ndev->mc_count);
840 rxf_val |= GMAC_RX_FILTER_AB;
842 WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
843 /* enable RX */
844 /* FIXME: RXE(ON) */
845 RET();
848 static int bdx_set_mac(struct net_device *ndev, void *p)
850 struct bdx_priv *priv = ndev->priv;
851 struct sockaddr *addr = p;
853 ENTER;
855 if (netif_running(dev))
856 return -EBUSY
858 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
859 bdx_restore_mac(ndev, priv);
860 RET(0);
863 static int bdx_read_mac(struct bdx_priv *priv)
865 u16 macAddress[3], i;
866 ENTER;
868 macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
869 macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
870 macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
871 macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
872 macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
873 macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
874 for (i = 0; i < 3; i++) {
875 priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
876 priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
878 RET(0);
881 static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
883 u64 val;
885 val = READ_REG(priv, reg);
886 val |= ((u64) READ_REG(priv, reg + 8)) << 32;
887 return val;
890 /*Do the statistics-update work*/
891 static void bdx_update_stats(struct bdx_priv *priv)
893 struct bdx_stats *stats = &priv->hw_stats;
894 u64 *stats_vector = (u64 *) stats;
895 int i;
896 int addr;
898 /*Fill HW structure */
899 addr = 0x7200;
900 /*First 12 statistics - 0x7200 - 0x72B0 */
901 for (i = 0; i < 12; i++) {
902 stats_vector[i] = bdx_read_l2stat(priv, addr);
903 addr += 0x10;
905 BDX_ASSERT(addr != 0x72C0);
906 /* 0x72C0-0x72E0 RSRV */
907 addr = 0x72F0;
908 for (; i < 16; i++) {
909 stats_vector[i] = bdx_read_l2stat(priv, addr);
910 addr += 0x10;
912 BDX_ASSERT(addr != 0x7330);
913 /* 0x7330-0x7360 RSRV */
914 addr = 0x7370;
915 for (; i < 19; i++) {
916 stats_vector[i] = bdx_read_l2stat(priv, addr);
917 addr += 0x10;
919 BDX_ASSERT(addr != 0x73A0);
920 /* 0x73A0-0x73B0 RSRV */
921 addr = 0x73C0;
922 for (; i < 23; i++) {
923 stats_vector[i] = bdx_read_l2stat(priv, addr);
924 addr += 0x10;
926 BDX_ASSERT(addr != 0x7400);
927 BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
930 static struct net_device_stats *bdx_get_stats(struct net_device *ndev)
932 struct bdx_priv *priv = ndev->priv;
933 struct net_device_stats *net_stat = &priv->net_stats;
934 return net_stat;
937 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
938 u16 rxd_vlan);
939 static void print_rxfd(struct rxf_desc *rxfd);
941 /*************************************************************************
942 * Rx DB *
943 *************************************************************************/
945 static void bdx_rxdb_destroy(struct rxdb *db)
947 if (db)
948 vfree(db);
951 static struct rxdb *bdx_rxdb_create(int nelem)
953 struct rxdb *db;
954 int i;
956 db = vmalloc(sizeof(struct rxdb)
957 + (nelem * sizeof(int))
958 + (nelem * sizeof(struct rx_map)));
959 if (likely(db != NULL)) {
960 db->stack = (int *)(db + 1);
961 db->elems = (void *)(db->stack + nelem);
962 db->nelem = nelem;
963 db->top = nelem;
964 for (i = 0; i < nelem; i++)
965 db->stack[i] = nelem - i - 1; /* to make first allocs
966 close to db struct*/
969 return db;
972 static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
974 BDX_ASSERT(db->top <= 0);
975 return db->stack[--(db->top)];
978 static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
980 BDX_ASSERT((n < 0) || (n >= db->nelem));
981 return db->elems + n;
984 static inline int bdx_rxdb_available(struct rxdb *db)
986 return db->top;
989 static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
991 BDX_ASSERT((n >= db->nelem) || (n < 0));
992 db->stack[(db->top)++] = n;
995 /*************************************************************************
996 * Rx Init *
997 *************************************************************************/
999 /* bdx_rx_init - initialize RX all related HW and SW resources
1000 * @priv - NIC private structure
1002 * Returns 0 on success, negative value on failure
1004 * It creates rxf and rxd fifos, update relevant HW registers, preallocate
1005 * skb for rx. It assumes that Rx is desabled in HW
1006 * funcs are grouped for better cache usage
1008 * RxD fifo is smaller then RxF fifo by design. Upon high load, RxD will be
1009 * filled and packets will be dropped by nic without getting into host or
1010 * cousing interrupt. Anyway, in that condition, host has no chance to proccess
1011 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
1014 /* TBD: ensure proper packet size */
1016 static int bdx_rx_init(struct bdx_priv *priv)
1018 ENTER;
1020 if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
1021 regRXD_CFG0_0, regRXD_CFG1_0,
1022 regRXD_RPTR_0, regRXD_WPTR_0))
1023 goto err_mem;
1024 if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
1025 regRXF_CFG0_0, regRXF_CFG1_0,
1026 regRXF_RPTR_0, regRXF_WPTR_0))
1027 goto err_mem;
1028 if (!
1029 (priv->rxdb =
1030 bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
1031 sizeof(struct rxf_desc))))
1032 goto err_mem;
1034 priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
1035 return 0;
1037 err_mem:
1038 ERR("%s: %s: Rx init failed\n", BDX_DRV_NAME, priv->ndev->name);
1039 return -ENOMEM;
1042 /* bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1043 * @priv - NIC private structure
1044 * @f - RXF fifo
1046 static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1048 struct rx_map *dm;
1049 struct rxdb *db = priv->rxdb;
1050 u16 i;
1052 ENTER;
1053 DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
1054 db->nelem - bdx_rxdb_available(db));
1055 while (bdx_rxdb_available(db) > 0) {
1056 i = bdx_rxdb_alloc_elem(db);
1057 dm = bdx_rxdb_addr_elem(db, i);
1058 dm->dma = 0;
1060 for (i = 0; i < db->nelem; i++) {
1061 dm = bdx_rxdb_addr_elem(db, i);
1062 if (dm->dma) {
1063 pci_unmap_single(priv->pdev,
1064 dm->dma, f->m.pktsz,
1065 PCI_DMA_FROMDEVICE);
1066 dev_kfree_skb(dm->skb);
1071 /* bdx_rx_free - release all Rx resources
1072 * @priv - NIC private structure
1073 * It assumes that Rx is desabled in HW
1075 static void bdx_rx_free(struct bdx_priv *priv)
1077 ENTER;
1078 if (priv->rxdb) {
1079 bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
1080 bdx_rxdb_destroy(priv->rxdb);
1081 priv->rxdb = NULL;
1083 bdx_fifo_free(priv, &priv->rxf_fifo0.m);
1084 bdx_fifo_free(priv, &priv->rxd_fifo0.m);
1086 RET();
1089 /*************************************************************************
1090 * Rx Engine *
1091 *************************************************************************/
1093 /* bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1094 * @priv - nic's private structure
1095 * @f - RXF fifo that needs skbs
1096 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1097 * skb's virtual and physical addresses are stored in skb db.
1098 * To calculate free space, func uses cached values of RPTR and WPTR
1099 * When needed, it also updates RPTR and WPTR.
1102 /* TBD: do not update WPTR if no desc were written */
1104 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1106 struct sk_buff *skb;
1107 struct rxf_desc *rxfd;
1108 struct rx_map *dm;
1109 int dno, delta, idx;
1110 struct rxdb *db = priv->rxdb;
1112 ENTER;
1113 dno = bdx_rxdb_available(db) - 1;
1114 while (dno > 0) {
1115 if (!(skb = dev_alloc_skb(f->m.pktsz + NET_IP_ALIGN))) {
1116 ERR("NO MEM: dev_alloc_skb failed\n");
1117 break;
1119 skb->dev = priv->ndev;
1120 skb_reserve(skb, NET_IP_ALIGN);
1122 idx = bdx_rxdb_alloc_elem(db);
1123 dm = bdx_rxdb_addr_elem(db, idx);
1124 dm->dma = pci_map_single(priv->pdev,
1125 skb->data, f->m.pktsz,
1126 PCI_DMA_FROMDEVICE);
1127 dm->skb = skb;
1128 rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1129 rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1130 rxfd->va_lo = idx;
1131 rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1132 rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1133 rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1134 print_rxfd(rxfd);
1136 f->m.wptr += sizeof(struct rxf_desc);
1137 delta = f->m.wptr - f->m.memsz;
1138 if (unlikely(delta >= 0)) {
1139 f->m.wptr = delta;
1140 if (delta > 0) {
1141 memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1142 DBG("wrapped descriptor\n");
1145 dno--;
1147 /*TBD: to do - delayed rxf wptr like in txd */
1148 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1149 RET();
1152 static inline void
1153 NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
1154 struct sk_buff *skb)
1156 ENTER;
1157 DBG("rxdd->flags.bits.vtag=%d vlgrp=%p\n", GET_RXD_VTAG(rxd_val1),
1158 priv->vlgrp);
1159 if (priv->vlgrp && GET_RXD_VTAG(rxd_val1)) {
1160 DBG("%s: vlan rcv vlan '%x' vtag '%x', device name '%s'\n",
1161 priv->ndev->name,
1162 GET_RXD_VLAN_ID(rxd_vlan),
1163 GET_RXD_VTAG(rxd_val1),
1164 vlan_group_get_device(priv->vlgrp,
1165 GET_RXD_VLAN_ID(rxd_vlan))->name);
1166 /* NAPI variant of receive functions */
1167 vlan_hwaccel_receive_skb(skb, priv->vlgrp,
1168 GET_RXD_VLAN_TCI(rxd_vlan));
1169 } else {
1170 netif_receive_skb(skb);
1174 static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
1176 struct rxf_desc *rxfd;
1177 struct rx_map *dm;
1178 struct rxf_fifo *f;
1179 struct rxdb *db;
1180 struct sk_buff *skb;
1181 int delta;
1183 ENTER;
1184 DBG("priv=%p rxdd=%p\n", priv, rxdd);
1185 f = &priv->rxf_fifo0;
1186 db = priv->rxdb;
1187 DBG("db=%p f=%p\n", db, f);
1188 dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1189 DBG("dm=%p\n", dm);
1190 skb = dm->skb;
1191 rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1192 rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1193 rxfd->va_lo = rxdd->va_lo;
1194 rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1195 rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1196 rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1197 print_rxfd(rxfd);
1199 f->m.wptr += sizeof(struct rxf_desc);
1200 delta = f->m.wptr - f->m.memsz;
1201 if (unlikely(delta >= 0)) {
1202 f->m.wptr = delta;
1203 if (delta > 0) {
1204 memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1205 DBG("wrapped descriptor\n");
1208 RET();
1211 /* bdx_rx_receive - recieves full packets from RXD fifo and pass them to OS
1212 * NOTE: a special treatment is given to non-continous descriptors
1213 * that start near the end, wraps around and continue at the beginning. a second
1214 * part is copied right after the first, and then descriptor is interpreted as
1215 * normal. fifo has an extra space to allow such operations
1216 * @priv - nic's private structure
1217 * @f - RXF fifo that needs skbs
1220 /* TBD: replace memcpy func call by explicite inline asm */
1222 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
1224 struct sk_buff *skb, *skb2;
1225 struct rxd_desc *rxdd;
1226 struct rx_map *dm;
1227 struct rxf_fifo *rxf_fifo;
1228 int tmp_len, size;
1229 int done = 0;
1230 int max_done = BDX_MAX_RX_DONE;
1231 struct rxdb *db = NULL;
1232 /* Unmarshalled descriptor - copy of descriptor in host order */
1233 u32 rxd_val1;
1234 u16 len;
1235 u16 rxd_vlan;
1237 ENTER;
1238 max_done = budget;
1240 priv->ndev->last_rx = jiffies;
1241 f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
1243 size = f->m.wptr - f->m.rptr;
1244 if (size < 0)
1245 size = f->m.memsz + size; /* size is negative :-) */
1247 while (size > 0) {
1249 rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
1250 rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
1252 len = CPU_CHIP_SWAP16(rxdd->len);
1254 rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
1256 print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
1258 tmp_len = GET_RXD_BC(rxd_val1) << 3;
1259 BDX_ASSERT(tmp_len <= 0);
1260 size -= tmp_len;
1261 if (size < 0) /* test for partially arrived descriptor */
1262 break;
1264 f->m.rptr += tmp_len;
1266 tmp_len = f->m.rptr - f->m.memsz;
1267 if (unlikely(tmp_len >= 0)) {
1268 f->m.rptr = tmp_len;
1269 if (tmp_len > 0) {
1270 DBG("wrapped desc rptr=%d tmp_len=%d\n",
1271 f->m.rptr, tmp_len);
1272 memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
1276 if (unlikely(GET_RXD_ERR(rxd_val1))) {
1277 DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
1278 priv->net_stats.rx_errors++;
1279 bdx_recycle_skb(priv, rxdd);
1280 continue;
1283 rxf_fifo = &priv->rxf_fifo0;
1284 db = priv->rxdb;
1285 dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1286 skb = dm->skb;
1288 if (len < BDX_COPYBREAK &&
1289 (skb2 = dev_alloc_skb(len + NET_IP_ALIGN))) {
1290 skb_reserve(skb2, NET_IP_ALIGN);
1291 /*skb_put(skb2, len); */
1292 pci_dma_sync_single_for_cpu(priv->pdev,
1293 dm->dma, rxf_fifo->m.pktsz,
1294 PCI_DMA_FROMDEVICE);
1295 memcpy(skb2->data, skb->data, len);
1296 bdx_recycle_skb(priv, rxdd);
1297 skb = skb2;
1298 } else {
1299 pci_unmap_single(priv->pdev,
1300 dm->dma, rxf_fifo->m.pktsz,
1301 PCI_DMA_FROMDEVICE);
1302 bdx_rxdb_free_elem(db, rxdd->va_lo);
1305 priv->net_stats.rx_bytes += len;
1307 skb_put(skb, len);
1308 skb->dev = priv->ndev;
1309 skb->ip_summed = CHECKSUM_UNNECESSARY;
1310 skb->protocol = eth_type_trans(skb, priv->ndev);
1312 /* Non-IP packets aren't checksum-offloaded */
1313 if (GET_RXD_PKT_ID(rxd_val1) == 0)
1314 skb->ip_summed = CHECKSUM_NONE;
1316 NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
1318 if (++done >= max_done)
1319 break;
1322 priv->net_stats.rx_packets += done;
1324 /* FIXME: do smth to minimize pci accesses */
1325 WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1327 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
1329 RET(done);
1332 /*************************************************************************
1333 * Debug / Temprorary Code *
1334 *************************************************************************/
1335 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
1336 u16 rxd_vlan)
1338 DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d "
1339 "pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d "
1340 "va_lo %d va_hi %d\n",
1341 GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
1342 GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
1343 GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
1344 GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
1345 GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
1346 rxdd->va_hi);
1349 static void print_rxfd(struct rxf_desc *rxfd)
1351 DBG("=== RxF desc CHIP ORDER/ENDIANESS =============\n"
1352 "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1353 rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
1357 * TX HW/SW interaction overview
1358 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1359 * There are 2 types of TX communication channels betwean driver and NIC.
1360 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1361 * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1363 * Currently NIC supports TSO, checksuming and gather DMA
1364 * UFO and IP fragmentation is on the way
1366 * RX SW Data Structures
1367 * ~~~~~~~~~~~~~~~~~~~~~
1368 * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1369 * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1370 * acknowledges sent by TXF descriptors.
1371 * Implemented as cyclic buffer.
1372 * fifo - keeps info about fifo's size and location, relevant HW registers,
1373 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1374 * Implemented as simple struct.
1376 * TX SW Execution Flow
1377 * ~~~~~~~~~~~~~~~~~~~~
1378 * OS calls driver's hard_xmit method with packet to sent.
1379 * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1380 * by updating TXD WPTR.
1381 * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1382 * To prevent TXD fifo overflow without reading HW registers every time,
1383 * SW deploys "tx level" technique.
1384 * Upon strart up, tx level is initialized to TXD fifo length.
1385 * For every sent packet, SW gets its TXD descriptor sizei
1386 * (from precalculated array) and substructs it from tx level.
1387 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1388 * original TXD descriptor from txdb and adds it to tx level.
1389 * When Tx level drops under some predefined treshhold, the driver
1390 * stops the TX queue. When TX level rises above that level,
1391 * the tx queue is enabled again.
1393 * This technique avoids eccessive reading of RPTR and WPTR registers.
1394 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1397 /*************************************************************************
1398 * Tx DB *
1399 *************************************************************************/
1400 static inline int bdx_tx_db_size(struct txdb *db)
1402 int taken = db->wptr - db->rptr;
1403 if (taken < 0)
1404 taken = db->size + 1 + taken; /* (size + 1) equals memsz */
1406 return db->size - taken;
1409 /* __bdx_tx_ptr_next - helper function, increment read/write pointer + wrap
1410 * @d - tx data base
1411 * @ptr - read or write pointer
1413 static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
1415 BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */
1417 BDX_ASSERT(*pptr != db->rptr && /* expect either read */
1418 *pptr != db->wptr); /* or write pointer */
1420 BDX_ASSERT(*pptr < db->start || /* pointer has to be */
1421 *pptr >= db->end); /* in range */
1423 ++*pptr;
1424 if (unlikely(*pptr == db->end))
1425 *pptr = db->start;
1428 /* bdx_tx_db_inc_rptr - increment read pointer
1429 * @d - tx data base
1431 static inline void bdx_tx_db_inc_rptr(struct txdb *db)
1433 BDX_ASSERT(db->rptr == db->wptr); /* can't read from empty db */
1434 __bdx_tx_db_ptr_next(db, &db->rptr);
1437 /* bdx_tx_db_inc_rptr - increment write pointer
1438 * @d - tx data base
1440 static inline void bdx_tx_db_inc_wptr(struct txdb *db)
1442 __bdx_tx_db_ptr_next(db, &db->wptr);
1443 BDX_ASSERT(db->rptr == db->wptr); /* we can not get empty db as
1444 a result of write */
1447 /* bdx_tx_db_init - creates and initializes tx db
1448 * @d - tx data base
1449 * @sz_type - size of tx fifo
1450 * Returns 0 on success, error code otherwise
1452 static int bdx_tx_db_init(struct txdb *d, int sz_type)
1454 int memsz = FIFO_SIZE * (1 << (sz_type + 1));
1456 d->start = vmalloc(memsz);
1457 if (!d->start)
1458 return -ENOMEM;
1461 * In order to differentiate between db is empty and db is full
1462 * states at least one element should always be empty in order to
1463 * avoid rptr == wptr which means db is empty
1465 d->size = memsz / sizeof(struct tx_map) - 1;
1466 d->end = d->start + d->size + 1; /* just after last element */
1468 /* all dbs are created equally empty */
1469 d->rptr = d->start;
1470 d->wptr = d->start;
1472 return 0;
1475 /* bdx_tx_db_close - closes tx db and frees all memory
1476 * @d - tx data base
1478 static void bdx_tx_db_close(struct txdb *d)
1480 BDX_ASSERT(d == NULL);
1482 if (d->start) {
1483 vfree(d->start);
1484 d->start = NULL;
1488 /*************************************************************************
1489 * Tx Engine *
1490 *************************************************************************/
1492 /* sizes of tx desc (including padding if needed) as function
1493 * of skb's frag number */
1494 static struct {
1495 u16 bytes;
1496 u16 qwords; /* qword = 64 bit */
1497 } txd_sizes[MAX_SKB_FRAGS + 1];
1499 /* txdb_map_skb - creates and stores dma mappings for skb's data blocks
1500 * @priv - NIC private structure
1501 * @skb - socket buffer to map
1503 * It makes dma mappings for skb's data blocks and writes them to PBL of
1504 * new tx descriptor. It also stores them in the tx db, so they could be
1505 * unmaped after data was sent. It is reponsibility of a caller to make
1506 * sure that there is enough space in the tx db. Last element holds pointer
1507 * to skb itself and marked with zero length
1509 static inline void
1510 bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
1511 struct txd_desc *txdd)
1513 struct txdb *db = &priv->txdb;
1514 struct pbl *pbl = &txdd->pbl[0];
1515 int nr_frags = skb_shinfo(skb)->nr_frags;
1516 int i;
1518 db->wptr->len = skb->len - skb->data_len;
1519 db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
1520 db->wptr->len, PCI_DMA_TODEVICE);
1521 pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1522 pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1523 pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1524 DBG("=== pbl len: 0x%x ================\n", pbl->len);
1525 DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
1526 DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
1527 bdx_tx_db_inc_wptr(db);
1529 for (i = 0; i < nr_frags; i++) {
1530 struct skb_frag_struct *frag;
1532 frag = &skb_shinfo(skb)->frags[i];
1533 db->wptr->len = frag->size;
1534 db->wptr->addr.dma =
1535 pci_map_page(priv->pdev, frag->page, frag->page_offset,
1536 frag->size, PCI_DMA_TODEVICE);
1538 pbl++;
1539 pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1540 pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1541 pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1542 bdx_tx_db_inc_wptr(db);
1545 /* add skb clean up info. */
1546 db->wptr->len = -txd_sizes[nr_frags].bytes;
1547 db->wptr->addr.skb = skb;
1548 bdx_tx_db_inc_wptr(db);
1551 /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1552 * number of frags is used as index to fetch correct descriptors size,
1553 * instead of calculating it each time */
1554 static void __init init_txd_sizes(void)
1556 int i, lwords;
1558 /* 7 - is number of lwords in txd with one phys buffer
1559 * 3 - is number of lwords used for every additional phys buffer */
1560 for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
1561 lwords = 7 + (i * 3);
1562 if (lwords & 1)
1563 lwords++; /* pad it with 1 lword */
1564 txd_sizes[i].qwords = lwords >> 1;
1565 txd_sizes[i].bytes = lwords << 2;
1569 /* bdx_tx_init - initialize all Tx related stuff.
1570 * Namely, TXD and TXF fifos, database etc */
1571 static int bdx_tx_init(struct bdx_priv *priv)
1573 if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
1574 regTXD_CFG0_0,
1575 regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
1576 goto err_mem;
1577 if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
1578 regTXF_CFG0_0,
1579 regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
1580 goto err_mem;
1582 /* The TX db has to keep mappings for all packets sent (on TxD)
1583 * and not yet reclaimed (on TxF) */
1584 if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
1585 goto err_mem;
1587 priv->tx_level = BDX_MAX_TX_LEVEL;
1588 #ifdef BDX_DELAY_WPTR
1589 priv->tx_update_mark = priv->tx_level - 1024;
1590 #endif
1591 return 0;
1593 err_mem:
1594 ERR("tehuti: %s: Tx init failed\n", priv->ndev->name);
1595 return -ENOMEM;
1599 * bdx_tx_space - calculates avalable space in TX fifo
1600 * @priv - NIC private structure
1601 * Returns avaliable space in TX fifo in bytes
1603 static inline int bdx_tx_space(struct bdx_priv *priv)
1605 struct txd_fifo *f = &priv->txd_fifo0;
1606 int fsize;
1608 f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
1609 fsize = f->m.rptr - f->m.wptr;
1610 if (fsize <= 0)
1611 fsize = f->m.memsz + fsize;
1612 return (fsize);
1615 /* bdx_tx_transmit - send packet to NIC
1616 * @skb - packet to send
1617 * ndev - network device assigned to NIC
1618 * Return codes:
1619 * o NETDEV_TX_OK everything ok.
1620 * o NETDEV_TX_BUSY Cannot transmit packet, try later
1621 * Usually a bug, means queue start/stop flow control is broken in
1622 * the driver. Note: the driver must NOT put the skb in its DMA ring.
1623 * o NETDEV_TX_LOCKED Locking failed, please retry quickly.
1625 static int bdx_tx_transmit(struct sk_buff *skb, struct net_device *ndev)
1627 struct bdx_priv *priv = ndev->priv;
1628 struct txd_fifo *f = &priv->txd_fifo0;
1629 int txd_checksum = 7; /* full checksum */
1630 int txd_lgsnd = 0;
1631 int txd_vlan_id = 0;
1632 int txd_vtag = 0;
1633 int txd_mss = 0;
1635 int nr_frags = skb_shinfo(skb)->nr_frags;
1636 struct txd_desc *txdd;
1637 int len;
1638 unsigned long flags;
1640 ENTER;
1641 local_irq_save(flags);
1642 if (!spin_trylock(&priv->tx_lock)) {
1643 local_irq_restore(flags);
1644 DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n",
1645 BDX_DRV_NAME, ndev->name);
1646 return NETDEV_TX_LOCKED;
1649 /* build tx descriptor */
1650 BDX_ASSERT(f->m.wptr >= f->m.memsz); /* started with valid wptr */
1651 txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
1652 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
1653 txd_checksum = 0;
1655 if (skb_shinfo(skb)->gso_size) {
1656 txd_mss = skb_shinfo(skb)->gso_size;
1657 txd_lgsnd = 1;
1658 DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
1659 txd_mss);
1662 if (vlan_tx_tag_present(skb)) {
1663 /*Cut VLAN ID to 12 bits */
1664 txd_vlan_id = vlan_tx_tag_get(skb) & BITS_MASK(12);
1665 txd_vtag = 1;
1668 txdd->length = CPU_CHIP_SWAP16(skb->len);
1669 txdd->mss = CPU_CHIP_SWAP16(txd_mss);
1670 txdd->txd_val1 =
1671 CPU_CHIP_SWAP32(TXD_W1_VAL
1672 (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
1673 txd_lgsnd, txd_vlan_id));
1674 DBG("=== TxD desc =====================\n");
1675 DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
1676 DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
1678 bdx_tx_map_skb(priv, skb, txdd);
1680 /* increment TXD write pointer. In case of
1681 fifo wrapping copy reminder of the descriptor
1682 to the beginning */
1683 f->m.wptr += txd_sizes[nr_frags].bytes;
1684 len = f->m.wptr - f->m.memsz;
1685 if (unlikely(len >= 0)) {
1686 f->m.wptr = len;
1687 if (len > 0) {
1688 BDX_ASSERT(len > f->m.memsz);
1689 memcpy(f->m.va, f->m.va + f->m.memsz, len);
1692 BDX_ASSERT(f->m.wptr >= f->m.memsz); /* finished with valid wptr */
1694 priv->tx_level -= txd_sizes[nr_frags].bytes;
1695 BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1696 #ifdef BDX_DELAY_WPTR
1697 if (priv->tx_level > priv->tx_update_mark) {
1698 /* Force memory writes to complete before letting h/w
1699 know there are new descriptors to fetch.
1700 (might be needed on platforms like IA64)
1701 wmb(); */
1702 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1703 } else {
1704 if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
1705 priv->tx_noupd = 0;
1706 WRITE_REG(priv, f->m.reg_WPTR,
1707 f->m.wptr & TXF_WPTR_WR_PTR);
1710 #else
1711 /* Force memory writes to complete before letting h/w
1712 know there are new descriptors to fetch.
1713 (might be needed on platforms like IA64)
1714 wmb(); */
1715 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1717 #endif
1718 ndev->trans_start = jiffies;
1720 priv->net_stats.tx_packets++;
1721 priv->net_stats.tx_bytes += skb->len;
1723 if (priv->tx_level < BDX_MIN_TX_LEVEL) {
1724 DBG("%s: %s: TX Q STOP level %d\n",
1725 BDX_DRV_NAME, ndev->name, priv->tx_level);
1726 netif_stop_queue(ndev);
1729 spin_unlock_irqrestore(&priv->tx_lock, flags);
1730 return NETDEV_TX_OK;
1733 /* bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1734 * @priv - bdx adapter
1735 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1736 * that those packets were sent
1738 static void bdx_tx_cleanup(struct bdx_priv *priv)
1740 struct txf_fifo *f = &priv->txf_fifo0;
1741 struct txdb *db = &priv->txdb;
1742 int tx_level = 0;
1744 ENTER;
1745 f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
1746 BDX_ASSERT(f->m.rptr >= f->m.memsz); /* started with valid rptr */
1748 while (f->m.wptr != f->m.rptr) {
1749 f->m.rptr += BDX_TXF_DESC_SZ;
1750 f->m.rptr &= f->m.size_mask;
1752 /* unmap all the fragments */
1753 /* first has to come tx_maps containing dma */
1754 BDX_ASSERT(db->rptr->len == 0);
1755 do {
1756 BDX_ASSERT(db->rptr->addr.dma == 0);
1757 pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1758 db->rptr->len, PCI_DMA_TODEVICE);
1759 bdx_tx_db_inc_rptr(db);
1760 } while (db->rptr->len > 0);
1761 tx_level -= db->rptr->len; /* '-' koz len is negative */
1763 /* now should come skb pointer - free it */
1764 dev_kfree_skb_irq(db->rptr->addr.skb);
1765 bdx_tx_db_inc_rptr(db);
1768 /* let h/w know which TXF descriptors were cleaned */
1769 BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
1770 WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1772 /* We reclaimed resources, so in case the Q is stopped by xmit callback,
1773 * we resume the transmition and use tx_lock to synchronize with xmit.*/
1774 spin_lock(&priv->tx_lock);
1775 priv->tx_level += tx_level;
1776 BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1777 #ifdef BDX_DELAY_WPTR
1778 if (priv->tx_noupd) {
1779 priv->tx_noupd = 0;
1780 WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
1781 priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
1783 #endif
1785 if (unlikely(netif_queue_stopped(priv->ndev)
1786 && netif_carrier_ok(priv->ndev)
1787 && (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
1788 DBG("%s: %s: TX Q WAKE level %d\n",
1789 BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
1790 netif_wake_queue(priv->ndev);
1792 spin_unlock(&priv->tx_lock);
1795 /* bdx_tx_free_skbs - frees all skbs from TXD fifo.
1796 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1798 static void bdx_tx_free_skbs(struct bdx_priv *priv)
1800 struct txdb *db = &priv->txdb;
1802 ENTER;
1803 while (db->rptr != db->wptr) {
1804 if (likely(db->rptr->len))
1805 pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1806 db->rptr->len, PCI_DMA_TODEVICE);
1807 else
1808 dev_kfree_skb(db->rptr->addr.skb);
1809 bdx_tx_db_inc_rptr(db);
1811 RET();
1814 /* bdx_tx_free - frees all Tx resources */
1815 static void bdx_tx_free(struct bdx_priv *priv)
1817 ENTER;
1818 bdx_tx_free_skbs(priv);
1819 bdx_fifo_free(priv, &priv->txd_fifo0.m);
1820 bdx_fifo_free(priv, &priv->txf_fifo0.m);
1821 bdx_tx_db_close(&priv->txdb);
1824 /* bdx_tx_push_desc - push descriptor to TxD fifo
1825 * @priv - NIC private structure
1826 * @data - desc's data
1827 * @size - desc's size
1829 * Pushes desc to TxD fifo and overlaps it if needed.
1830 * NOTE: this func does not check for available space. this is responsibility
1831 * of the caller. Neither does it check that data size is smaller then
1832 * fifo size.
1834 static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
1836 struct txd_fifo *f = &priv->txd_fifo0;
1837 int i = f->m.memsz - f->m.wptr;
1839 if (size == 0)
1840 return;
1842 if (i > size) {
1843 memcpy(f->m.va + f->m.wptr, data, size);
1844 f->m.wptr += size;
1845 } else {
1846 memcpy(f->m.va + f->m.wptr, data, i);
1847 f->m.wptr = size - i;
1848 memcpy(f->m.va, data + i, f->m.wptr);
1850 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1853 /* bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1854 * @priv - NIC private structure
1855 * @data - desc's data
1856 * @size - desc's size
1858 * NOTE: this func does check for available space and, if neccessary, waits for
1859 * NIC to read existing data before writing new one.
1861 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
1863 int timer = 0;
1864 ENTER;
1866 while (size > 0) {
1867 /* we substruct 8 because when fifo is full rptr == wptr
1868 which also means that fifo is empty, we can understand
1869 the difference, but could hw do the same ??? :) */
1870 int avail = bdx_tx_space(priv) - 8;
1871 if (avail <= 0) {
1872 if (timer++ > 300) { /* prevent endless loop */
1873 DBG("timeout while writing desc to TxD fifo\n");
1874 break;
1876 udelay(50); /* give hw a chance to clean fifo */
1877 continue;
1879 avail = MIN(avail, size);
1880 DBG("about to push %d bytes starting %p size %d\n", avail,
1881 data, size);
1882 bdx_tx_push_desc(priv, data, avail);
1883 size -= avail;
1884 data += avail;
1886 RET();
1890 * bdx_probe - Device Initialization Routine
1891 * @pdev: PCI device information struct
1892 * @ent: entry in bdx_pci_tbl
1894 * Returns 0 on success, negative on failure
1896 * bdx_probe initializes an adapter identified by a pci_dev structure.
1897 * The OS initialization, configuring of the adapter private structure,
1898 * and a hardware reset occur.
1900 * functions and their order used as explained in
1901 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1905 /* TBD: netif_msg should be checked and implemented. I disable it for now */
1906 static int __devinit
1907 bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1909 struct net_device *ndev;
1910 struct bdx_priv *priv;
1911 int err, pci_using_dac, port;
1912 unsigned long pciaddr;
1913 u32 regionSize;
1914 struct pci_nic *nic;
1916 ENTER;
1918 nic = vmalloc(sizeof(*nic));
1919 if (!nic)
1920 RET(-ENOMEM);
1922 /************** pci *****************/
1923 if ((err = pci_enable_device(pdev))) /* it trigers interrupt, dunno why. */
1924 goto err_pci; /* it's not a problem though */
1926 if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
1927 !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
1928 pci_using_dac = 1;
1929 } else {
1930 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) ||
1931 (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
1932 printk(KERN_ERR "tehuti: No usable DMA configuration"
1933 ", aborting\n");
1934 goto err_dma;
1936 pci_using_dac = 0;
1939 if ((err = pci_request_regions(pdev, BDX_DRV_NAME)))
1940 goto err_dma;
1942 pci_set_master(pdev);
1944 pciaddr = pci_resource_start(pdev, 0);
1945 if (!pciaddr) {
1946 err = -EIO;
1947 ERR("tehuti: no MMIO resource\n");
1948 goto err_out_res;
1950 if ((regionSize = pci_resource_len(pdev, 0)) < BDX_REGS_SIZE) {
1951 err = -EIO;
1952 ERR("tehuti: MMIO resource (%x) too small\n", regionSize);
1953 goto err_out_res;
1956 nic->regs = ioremap(pciaddr, regionSize);
1957 if (!nic->regs) {
1958 err = -EIO;
1959 ERR("tehuti: ioremap failed\n");
1960 goto err_out_res;
1963 if (pdev->irq < 2) {
1964 err = -EIO;
1965 ERR("tehuti: invalid irq (%d)\n", pdev->irq);
1966 goto err_out_iomap;
1968 pci_set_drvdata(pdev, nic);
1970 if (pdev->device == 0x3014)
1971 nic->port_num = 2;
1972 else
1973 nic->port_num = 1;
1975 print_hw_id(pdev);
1977 bdx_hw_reset_direct(nic->regs);
1979 nic->irq_type = IRQ_INTX;
1980 #ifdef BDX_MSI
1981 if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
1982 if ((err = pci_enable_msi(pdev)))
1983 ERR("Tehuti: Can't eneble msi. error is %d\n", err);
1984 else
1985 nic->irq_type = IRQ_MSI;
1986 } else
1987 DBG("HW does not support MSI\n");
1988 #endif
1990 /************** netdev **************/
1991 for (port = 0; port < nic->port_num; port++) {
1992 if (!(ndev = alloc_etherdev(sizeof(struct bdx_priv)))) {
1993 err = -ENOMEM;
1994 printk(KERN_ERR "tehuti: alloc_etherdev failed\n");
1995 goto err_out_iomap;
1998 ndev->open = bdx_open;
1999 ndev->stop = bdx_close;
2000 ndev->hard_start_xmit = bdx_tx_transmit;
2001 ndev->do_ioctl = bdx_ioctl;
2002 ndev->set_multicast_list = bdx_setmulti;
2003 ndev->get_stats = bdx_get_stats;
2004 ndev->change_mtu = bdx_change_mtu;
2005 ndev->set_mac_address = bdx_set_mac;
2006 ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
2007 ndev->vlan_rx_register = bdx_vlan_rx_register;
2008 ndev->vlan_rx_add_vid = bdx_vlan_rx_add_vid;
2009 ndev->vlan_rx_kill_vid = bdx_vlan_rx_kill_vid;
2011 bdx_ethtool_ops(ndev); /* ethtool interface */
2013 /* these fields are used for info purposes only
2014 * so we can have them same for all ports of the board */
2015 ndev->if_port = port;
2016 ndev->base_addr = pciaddr;
2017 ndev->mem_start = pciaddr;
2018 ndev->mem_end = pciaddr + regionSize;
2019 ndev->irq = pdev->irq;
2020 ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
2021 | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
2022 NETIF_F_HW_VLAN_FILTER
2023 /*| NETIF_F_FRAGLIST */
2026 if (pci_using_dac)
2027 ndev->features |= NETIF_F_HIGHDMA;
2029 /************** priv ****************/
2030 priv = nic->priv[port] = ndev->priv;
2032 memset(priv, 0, sizeof(struct bdx_priv));
2033 priv->pBdxRegs = nic->regs + port * 0x8000;
2034 priv->port = port;
2035 priv->pdev = pdev;
2036 priv->ndev = ndev;
2037 priv->nic = nic;
2038 priv->msg_enable = BDX_DEF_MSG_ENABLE;
2040 netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
2042 if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
2043 DBG("HW statistics not supported\n");
2044 priv->stats_flag = 0;
2045 } else {
2046 priv->stats_flag = 1;
2049 /* Initialize fifo sizes. */
2050 priv->txd_size = 2;
2051 priv->txf_size = 2;
2052 priv->rxd_size = 2;
2053 priv->rxf_size = 3;
2055 /* Initialize the initial coalescing registers. */
2056 priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
2057 priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
2059 /* ndev->xmit_lock spinlock is not used.
2060 * Private priv->tx_lock is used for synchronization
2061 * between transmit and TX irq cleanup. In addition
2062 * set multicast list callback has to use priv->tx_lock.
2064 #ifdef BDX_LLTX
2065 ndev->features |= NETIF_F_LLTX;
2066 #endif
2067 spin_lock_init(&priv->tx_lock);
2069 /*bdx_hw_reset(priv); */
2070 if (bdx_read_mac(priv)) {
2071 printk(KERN_ERR "tehuti: load MAC address failed\n");
2072 goto err_out_iomap;
2074 SET_NETDEV_DEV(ndev, &pdev->dev);
2075 if ((err = register_netdev(ndev))) {
2076 printk(KERN_ERR "tehuti: register_netdev failed\n");
2077 goto err_out_free;
2079 netif_carrier_off(ndev);
2080 netif_stop_queue(ndev);
2082 print_eth_id(ndev);
2084 RET(0);
2086 err_out_free:
2087 free_netdev(ndev);
2088 err_out_iomap:
2089 iounmap(nic->regs);
2090 err_out_res:
2091 pci_release_regions(pdev);
2092 err_dma:
2093 pci_disable_device(pdev);
2094 err_pci:
2095 vfree(nic);
2097 RET(err);
2100 /****************** Ethtool interface *********************/
2101 /* get strings for tests */
2102 static const char
2103 bdx_test_names[][ETH_GSTRING_LEN] = {
2104 "No tests defined"
2107 /* get strings for statistics counters */
2108 static const char
2109 bdx_stat_names[][ETH_GSTRING_LEN] = {
2110 "InUCast", /* 0x7200 */
2111 "InMCast", /* 0x7210 */
2112 "InBCast", /* 0x7220 */
2113 "InPkts", /* 0x7230 */
2114 "InErrors", /* 0x7240 */
2115 "InDropped", /* 0x7250 */
2116 "FrameTooLong", /* 0x7260 */
2117 "FrameSequenceErrors", /* 0x7270 */
2118 "InVLAN", /* 0x7280 */
2119 "InDroppedDFE", /* 0x7290 */
2120 "InDroppedIntFull", /* 0x72A0 */
2121 "InFrameAlignErrors", /* 0x72B0 */
2123 /* 0x72C0-0x72E0 RSRV */
2125 "OutUCast", /* 0x72F0 */
2126 "OutMCast", /* 0x7300 */
2127 "OutBCast", /* 0x7310 */
2128 "OutPkts", /* 0x7320 */
2130 /* 0x7330-0x7360 RSRV */
2132 "OutVLAN", /* 0x7370 */
2133 "InUCastOctects", /* 0x7380 */
2134 "OutUCastOctects", /* 0x7390 */
2136 /* 0x73A0-0x73B0 RSRV */
2138 "InBCastOctects", /* 0x73C0 */
2139 "OutBCastOctects", /* 0x73D0 */
2140 "InOctects", /* 0x73E0 */
2141 "OutOctects", /* 0x73F0 */
2145 * bdx_get_settings - get device-specific settings
2146 * @netdev
2147 * @ecmd
2149 static int bdx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
2151 u32 rdintcm;
2152 u32 tdintcm;
2153 struct bdx_priv *priv = netdev->priv;
2155 rdintcm = priv->rdintcm;
2156 tdintcm = priv->tdintcm;
2158 ecmd->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
2159 ecmd->advertising = (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
2160 ecmd->speed = SPEED_10000;
2161 ecmd->duplex = DUPLEX_FULL;
2162 ecmd->port = PORT_FIBRE;
2163 ecmd->transceiver = XCVR_EXTERNAL; /* what does it mean? */
2164 ecmd->autoneg = AUTONEG_DISABLE;
2166 /* PCK_TH measures in multiples of FIFO bytes
2167 We translate to packets */
2168 ecmd->maxtxpkt =
2169 ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2170 ecmd->maxrxpkt =
2171 ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2173 return 0;
2177 * bdx_get_drvinfo - report driver information
2178 * @netdev
2179 * @drvinfo
2181 static void
2182 bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
2184 struct bdx_priv *priv = netdev->priv;
2186 strlcat(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
2187 strlcat(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
2188 strlcat(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
2189 strlcat(drvinfo->bus_info, pci_name(priv->pdev),
2190 sizeof(drvinfo->bus_info));
2192 drvinfo->n_stats = ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0);
2193 drvinfo->testinfo_len = 0;
2194 drvinfo->regdump_len = 0;
2195 drvinfo->eedump_len = 0;
2199 * bdx_get_rx_csum - report whether receive checksums are turned on or off
2200 * @netdev
2202 static u32 bdx_get_rx_csum(struct net_device *netdev)
2204 return 1; /* always on */
2208 * bdx_get_tx_csum - report whether transmit checksums are turned on or off
2209 * @netdev
2211 static u32 bdx_get_tx_csum(struct net_device *netdev)
2213 return (netdev->features & NETIF_F_IP_CSUM) != 0;
2217 * bdx_get_coalesce - get interrupt coalescing parameters
2218 * @netdev
2219 * @ecoal
2221 static int
2222 bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2224 u32 rdintcm;
2225 u32 tdintcm;
2226 struct bdx_priv *priv = netdev->priv;
2228 rdintcm = priv->rdintcm;
2229 tdintcm = priv->tdintcm;
2231 /* PCK_TH measures in multiples of FIFO bytes
2232 We translate to packets */
2233 ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
2234 ecoal->rx_max_coalesced_frames =
2235 ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2237 ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
2238 ecoal->tx_max_coalesced_frames =
2239 ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2241 /* adaptive parameters ignored */
2242 return 0;
2246 * bdx_set_coalesce - set interrupt coalescing parameters
2247 * @netdev
2248 * @ecoal
2250 static int
2251 bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2253 u32 rdintcm;
2254 u32 tdintcm;
2255 struct bdx_priv *priv = netdev->priv;
2256 int rx_coal;
2257 int tx_coal;
2258 int rx_max_coal;
2259 int tx_max_coal;
2261 /* Check for valid input */
2262 rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
2263 tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
2264 rx_max_coal = ecoal->rx_max_coalesced_frames;
2265 tx_max_coal = ecoal->tx_max_coalesced_frames;
2267 /* Translate from packets to multiples of FIFO bytes */
2268 rx_max_coal =
2269 (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
2270 / PCK_TH_MULT);
2271 tx_max_coal =
2272 (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
2273 / PCK_TH_MULT);
2275 if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF)
2276 || (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
2277 return -EINVAL;
2279 rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
2280 GET_RXF_TH(priv->rdintcm), rx_max_coal);
2281 tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
2282 tx_max_coal);
2284 priv->rdintcm = rdintcm;
2285 priv->tdintcm = tdintcm;
2287 WRITE_REG(priv, regRDINTCM0, rdintcm);
2288 WRITE_REG(priv, regTDINTCM0, tdintcm);
2290 return 0;
2293 /* Convert RX fifo size to number of pending packets */
2294 static inline int bdx_rx_fifo_size_to_packets(int rx_size)
2296 return ((FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc));
2299 /* Convert TX fifo size to number of pending packets */
2300 static inline int bdx_tx_fifo_size_to_packets(int tx_size)
2302 return ((FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ);
2306 * bdx_get_ringparam - report ring sizes
2307 * @netdev
2308 * @ring
2310 static void
2311 bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2313 struct bdx_priv *priv = netdev->priv;
2315 /*max_pending - the maximum-sized FIFO we allow */
2316 ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
2317 ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
2318 ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
2319 ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
2323 * bdx_set_ringparam - set ring sizes
2324 * @netdev
2325 * @ring
2327 static int
2328 bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2330 struct bdx_priv *priv = netdev->priv;
2331 int rx_size = 0;
2332 int tx_size = 0;
2334 for (; rx_size < 4; rx_size++) {
2335 if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
2336 break;
2338 if (rx_size == 4)
2339 rx_size = 3;
2341 for (; tx_size < 4; tx_size++) {
2342 if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
2343 break;
2345 if (tx_size == 4)
2346 tx_size = 3;
2348 /*Is there anything to do? */
2349 if ((rx_size == priv->rxf_size)
2350 && (tx_size == priv->txd_size))
2351 return 0;
2353 priv->rxf_size = rx_size;
2354 if (rx_size > 1)
2355 priv->rxd_size = rx_size - 1;
2356 else
2357 priv->rxd_size = rx_size;
2359 priv->txf_size = priv->txd_size = tx_size;
2361 if (netif_running(netdev)) {
2362 bdx_close(netdev);
2363 bdx_open(netdev);
2365 return 0;
2369 * bdx_get_strings - return a set of strings that describe the requested objects
2370 * @netdev
2371 * @data
2373 static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2375 switch (stringset) {
2376 case ETH_SS_TEST:
2377 memcpy(data, *bdx_test_names, sizeof(bdx_test_names));
2378 break;
2379 case ETH_SS_STATS:
2380 memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
2381 break;
2386 * bdx_get_stats_count - return number of 64bit statistics counters
2387 * @netdev
2389 static int bdx_get_stats_count(struct net_device *netdev)
2391 struct bdx_priv *priv = netdev->priv;
2392 BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
2393 != sizeof(struct bdx_stats) / sizeof(u64));
2394 return ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0);
2398 * bdx_get_ethtool_stats - return device's hardware L2 statistics
2399 * @netdev
2400 * @stats
2401 * @data
2403 static void bdx_get_ethtool_stats(struct net_device *netdev,
2404 struct ethtool_stats *stats, u64 *data)
2406 struct bdx_priv *priv = netdev->priv;
2408 if (priv->stats_flag) {
2410 /* Update stats from HW */
2411 bdx_update_stats(priv);
2413 /* Copy data to user buffer */
2414 memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
2419 * bdx_ethtool_ops - ethtool interface implementation
2420 * @netdev
2422 static void bdx_ethtool_ops(struct net_device *netdev)
2424 static struct ethtool_ops bdx_ethtool_ops = {
2425 .get_settings = bdx_get_settings,
2426 .get_drvinfo = bdx_get_drvinfo,
2427 .get_link = ethtool_op_get_link,
2428 .get_coalesce = bdx_get_coalesce,
2429 .set_coalesce = bdx_set_coalesce,
2430 .get_ringparam = bdx_get_ringparam,
2431 .set_ringparam = bdx_set_ringparam,
2432 .get_rx_csum = bdx_get_rx_csum,
2433 .get_tx_csum = bdx_get_tx_csum,
2434 .get_sg = ethtool_op_get_sg,
2435 .get_tso = ethtool_op_get_tso,
2436 .get_strings = bdx_get_strings,
2437 .get_stats_count = bdx_get_stats_count,
2438 .get_ethtool_stats = bdx_get_ethtool_stats,
2441 SET_ETHTOOL_OPS(netdev, &bdx_ethtool_ops);
2445 * bdx_remove - Device Removal Routine
2446 * @pdev: PCI device information struct
2448 * bdx_remove is called by the PCI subsystem to alert the driver
2449 * that it should release a PCI device. The could be caused by a
2450 * Hot-Plug event, or because the driver is going to be removed from
2451 * memory.
2453 static void __devexit bdx_remove(struct pci_dev *pdev)
2455 struct pci_nic *nic = pci_get_drvdata(pdev);
2456 struct net_device *ndev;
2457 int port;
2459 for (port = 0; port < nic->port_num; port++) {
2460 ndev = nic->priv[port]->ndev;
2461 unregister_netdev(ndev);
2462 free_netdev(ndev);
2465 /*bdx_hw_reset_direct(nic->regs); */
2466 #ifdef BDX_MSI
2467 if (nic->irq_type == IRQ_MSI)
2468 pci_disable_msi(pdev);
2469 #endif
2471 iounmap(nic->regs);
2472 pci_release_regions(pdev);
2473 pci_disable_device(pdev);
2474 pci_set_drvdata(pdev, NULL);
2475 vfree(nic);
2477 RET();
2480 static struct pci_driver bdx_pci_driver = {
2481 .name = BDX_DRV_NAME,
2482 .id_table = bdx_pci_tbl,
2483 .probe = bdx_probe,
2484 .remove = __devexit_p(bdx_remove),
2488 * print_driver_id - print parameters of the driver build
2490 static void __init print_driver_id(void)
2492 printk(KERN_INFO "%s: %s, %s\n", BDX_DRV_NAME, BDX_DRV_DESC,
2493 BDX_DRV_VERSION);
2494 printk(KERN_INFO "%s: Options: hw_csum %s\n", BDX_DRV_NAME,
2495 BDX_MSI_STRING);
2498 static int __init bdx_module_init(void)
2500 ENTER;
2501 bdx_firmware_endianess();
2502 init_txd_sizes();
2503 print_driver_id();
2504 RET(pci_register_driver(&bdx_pci_driver));
2507 module_init(bdx_module_init);
2509 static void __exit bdx_module_exit(void)
2511 ENTER;
2512 pci_unregister_driver(&bdx_pci_driver);
2513 RET();
2516 module_exit(bdx_module_exit);
2518 MODULE_LICENSE("GPL");
2519 MODULE_AUTHOR(DRIVER_AUTHOR);
2520 MODULE_DESCRIPTION(BDX_DRV_DESC);