2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
41 static bool blk_mq_poll(struct request_queue
*q
, blk_qc_t cookie
);
42 static void blk_mq_poll_stats_start(struct request_queue
*q
);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
);
45 static int blk_mq_poll_stats_bkt(const struct request
*rq
)
47 int ddir
, bytes
, bucket
;
49 ddir
= rq_data_dir(rq
);
50 bytes
= blk_rq_bytes(rq
);
52 bucket
= ddir
+ 2*(ilog2(bytes
) - 9);
56 else if (bucket
>= BLK_MQ_POLL_STATS_BKTS
)
57 return ddir
+ BLK_MQ_POLL_STATS_BKTS
- 2;
63 * Check if any of the ctx's have pending work in this hardware queue
65 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
67 return !list_empty_careful(&hctx
->dispatch
) ||
68 sbitmap_any_bit_set(&hctx
->ctx_map
) ||
69 blk_mq_sched_has_work(hctx
);
73 * Mark this ctx as having pending work in this hardware queue
75 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
76 struct blk_mq_ctx
*ctx
)
78 if (!sbitmap_test_bit(&hctx
->ctx_map
, ctx
->index_hw
))
79 sbitmap_set_bit(&hctx
->ctx_map
, ctx
->index_hw
);
82 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
83 struct blk_mq_ctx
*ctx
)
85 sbitmap_clear_bit(&hctx
->ctx_map
, ctx
->index_hw
);
89 struct hd_struct
*part
;
90 unsigned int *inflight
;
93 static void blk_mq_check_inflight(struct blk_mq_hw_ctx
*hctx
,
94 struct request
*rq
, void *priv
,
97 struct mq_inflight
*mi
= priv
;
100 * index[0] counts the specific partition that was asked for. index[1]
101 * counts the ones that are active on the whole device, so increment
102 * that if mi->part is indeed a partition, and not a whole device.
104 if (rq
->part
== mi
->part
)
106 if (mi
->part
->partno
)
110 void blk_mq_in_flight(struct request_queue
*q
, struct hd_struct
*part
,
111 unsigned int inflight
[2])
113 struct mq_inflight mi
= { .part
= part
, .inflight
= inflight
, };
115 inflight
[0] = inflight
[1] = 0;
116 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight
, &mi
);
119 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx
*hctx
,
120 struct request
*rq
, void *priv
,
123 struct mq_inflight
*mi
= priv
;
125 if (rq
->part
== mi
->part
)
126 mi
->inflight
[rq_data_dir(rq
)]++;
129 void blk_mq_in_flight_rw(struct request_queue
*q
, struct hd_struct
*part
,
130 unsigned int inflight
[2])
132 struct mq_inflight mi
= { .part
= part
, .inflight
= inflight
, };
134 inflight
[0] = inflight
[1] = 0;
135 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight_rw
, &mi
);
138 void blk_freeze_queue_start(struct request_queue
*q
)
142 freeze_depth
= atomic_inc_return(&q
->mq_freeze_depth
);
143 if (freeze_depth
== 1) {
144 percpu_ref_kill(&q
->q_usage_counter
);
146 blk_mq_run_hw_queues(q
, false);
149 EXPORT_SYMBOL_GPL(blk_freeze_queue_start
);
151 void blk_mq_freeze_queue_wait(struct request_queue
*q
)
153 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->q_usage_counter
));
155 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait
);
157 int blk_mq_freeze_queue_wait_timeout(struct request_queue
*q
,
158 unsigned long timeout
)
160 return wait_event_timeout(q
->mq_freeze_wq
,
161 percpu_ref_is_zero(&q
->q_usage_counter
),
164 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout
);
167 * Guarantee no request is in use, so we can change any data structure of
168 * the queue afterward.
170 void blk_freeze_queue(struct request_queue
*q
)
173 * In the !blk_mq case we are only calling this to kill the
174 * q_usage_counter, otherwise this increases the freeze depth
175 * and waits for it to return to zero. For this reason there is
176 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
177 * exported to drivers as the only user for unfreeze is blk_mq.
179 blk_freeze_queue_start(q
);
182 blk_mq_freeze_queue_wait(q
);
185 void blk_mq_freeze_queue(struct request_queue
*q
)
188 * ...just an alias to keep freeze and unfreeze actions balanced
189 * in the blk_mq_* namespace
193 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
195 void blk_mq_unfreeze_queue(struct request_queue
*q
)
199 freeze_depth
= atomic_dec_return(&q
->mq_freeze_depth
);
200 WARN_ON_ONCE(freeze_depth
< 0);
202 percpu_ref_resurrect(&q
->q_usage_counter
);
203 wake_up_all(&q
->mq_freeze_wq
);
206 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
209 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
210 * mpt3sas driver such that this function can be removed.
212 void blk_mq_quiesce_queue_nowait(struct request_queue
*q
)
214 blk_queue_flag_set(QUEUE_FLAG_QUIESCED
, q
);
216 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait
);
219 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
222 * Note: this function does not prevent that the struct request end_io()
223 * callback function is invoked. Once this function is returned, we make
224 * sure no dispatch can happen until the queue is unquiesced via
225 * blk_mq_unquiesce_queue().
227 void blk_mq_quiesce_queue(struct request_queue
*q
)
229 struct blk_mq_hw_ctx
*hctx
;
233 blk_mq_quiesce_queue_nowait(q
);
235 queue_for_each_hw_ctx(q
, hctx
, i
) {
236 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
237 synchronize_srcu(hctx
->srcu
);
244 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue
);
247 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
250 * This function recovers queue into the state before quiescing
251 * which is done by blk_mq_quiesce_queue.
253 void blk_mq_unquiesce_queue(struct request_queue
*q
)
255 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED
, q
);
257 /* dispatch requests which are inserted during quiescing */
258 blk_mq_run_hw_queues(q
, true);
260 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue
);
262 void blk_mq_wake_waiters(struct request_queue
*q
)
264 struct blk_mq_hw_ctx
*hctx
;
267 queue_for_each_hw_ctx(q
, hctx
, i
)
268 if (blk_mq_hw_queue_mapped(hctx
))
269 blk_mq_tag_wakeup_all(hctx
->tags
, true);
272 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
274 return blk_mq_has_free_tags(hctx
->tags
);
276 EXPORT_SYMBOL(blk_mq_can_queue
);
278 static struct request
*blk_mq_rq_ctx_init(struct blk_mq_alloc_data
*data
,
279 unsigned int tag
, unsigned int op
)
281 struct blk_mq_tags
*tags
= blk_mq_tags_from_data(data
);
282 struct request
*rq
= tags
->static_rqs
[tag
];
283 req_flags_t rq_flags
= 0;
285 if (data
->flags
& BLK_MQ_REQ_INTERNAL
) {
287 rq
->internal_tag
= tag
;
289 if (data
->hctx
->flags
& BLK_MQ_F_TAG_SHARED
) {
290 rq_flags
= RQF_MQ_INFLIGHT
;
291 atomic_inc(&data
->hctx
->nr_active
);
294 rq
->internal_tag
= -1;
295 data
->hctx
->tags
->rqs
[rq
->tag
] = rq
;
298 /* csd/requeue_work/fifo_time is initialized before use */
300 rq
->mq_ctx
= data
->ctx
;
301 rq
->rq_flags
= rq_flags
;
304 if (data
->flags
& BLK_MQ_REQ_PREEMPT
)
305 rq
->rq_flags
|= RQF_PREEMPT
;
306 if (blk_queue_io_stat(data
->q
))
307 rq
->rq_flags
|= RQF_IO_STAT
;
308 INIT_LIST_HEAD(&rq
->queuelist
);
309 INIT_HLIST_NODE(&rq
->hash
);
310 RB_CLEAR_NODE(&rq
->rb_node
);
313 rq
->start_time_ns
= ktime_get_ns();
314 rq
->io_start_time_ns
= 0;
315 rq
->nr_phys_segments
= 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317 rq
->nr_integrity_segments
= 0;
320 /* tag was already set */
324 INIT_LIST_HEAD(&rq
->timeout_list
);
328 rq
->end_io_data
= NULL
;
331 #ifdef CONFIG_BLK_CGROUP
335 data
->ctx
->rq_dispatched
[op_is_sync(op
)]++;
336 refcount_set(&rq
->ref
, 1);
340 static struct request
*blk_mq_get_request(struct request_queue
*q
,
341 struct bio
*bio
, unsigned int op
,
342 struct blk_mq_alloc_data
*data
)
344 struct elevator_queue
*e
= q
->elevator
;
347 bool put_ctx_on_error
= false;
349 blk_queue_enter_live(q
);
351 if (likely(!data
->ctx
)) {
352 data
->ctx
= blk_mq_get_ctx(q
);
353 put_ctx_on_error
= true;
355 if (likely(!data
->hctx
))
356 data
->hctx
= blk_mq_map_queue(q
, data
->ctx
->cpu
);
358 data
->flags
|= BLK_MQ_REQ_NOWAIT
;
361 data
->flags
|= BLK_MQ_REQ_INTERNAL
;
364 * Flush requests are special and go directly to the
365 * dispatch list. Don't include reserved tags in the
366 * limiting, as it isn't useful.
368 if (!op_is_flush(op
) && e
->type
->ops
.mq
.limit_depth
&&
369 !(data
->flags
& BLK_MQ_REQ_RESERVED
))
370 e
->type
->ops
.mq
.limit_depth(op
, data
);
372 blk_mq_tag_busy(data
->hctx
);
375 tag
= blk_mq_get_tag(data
);
376 if (tag
== BLK_MQ_TAG_FAIL
) {
377 if (put_ctx_on_error
) {
378 blk_mq_put_ctx(data
->ctx
);
385 rq
= blk_mq_rq_ctx_init(data
, tag
, op
);
386 if (!op_is_flush(op
)) {
388 if (e
&& e
->type
->ops
.mq
.prepare_request
) {
389 if (e
->type
->icq_cache
&& rq_ioc(bio
))
390 blk_mq_sched_assign_ioc(rq
, bio
);
392 e
->type
->ops
.mq
.prepare_request(rq
, bio
);
393 rq
->rq_flags
|= RQF_ELVPRIV
;
396 data
->hctx
->queued
++;
400 struct request
*blk_mq_alloc_request(struct request_queue
*q
, unsigned int op
,
401 blk_mq_req_flags_t flags
)
403 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
};
407 ret
= blk_queue_enter(q
, flags
);
411 rq
= blk_mq_get_request(q
, NULL
, op
, &alloc_data
);
415 return ERR_PTR(-EWOULDBLOCK
);
417 blk_mq_put_ctx(alloc_data
.ctx
);
420 rq
->__sector
= (sector_t
) -1;
421 rq
->bio
= rq
->biotail
= NULL
;
424 EXPORT_SYMBOL(blk_mq_alloc_request
);
426 struct request
*blk_mq_alloc_request_hctx(struct request_queue
*q
,
427 unsigned int op
, blk_mq_req_flags_t flags
, unsigned int hctx_idx
)
429 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
};
435 * If the tag allocator sleeps we could get an allocation for a
436 * different hardware context. No need to complicate the low level
437 * allocator for this for the rare use case of a command tied to
440 if (WARN_ON_ONCE(!(flags
& BLK_MQ_REQ_NOWAIT
)))
441 return ERR_PTR(-EINVAL
);
443 if (hctx_idx
>= q
->nr_hw_queues
)
444 return ERR_PTR(-EIO
);
446 ret
= blk_queue_enter(q
, flags
);
451 * Check if the hardware context is actually mapped to anything.
452 * If not tell the caller that it should skip this queue.
454 alloc_data
.hctx
= q
->queue_hw_ctx
[hctx_idx
];
455 if (!blk_mq_hw_queue_mapped(alloc_data
.hctx
)) {
457 return ERR_PTR(-EXDEV
);
459 cpu
= cpumask_first_and(alloc_data
.hctx
->cpumask
, cpu_online_mask
);
460 alloc_data
.ctx
= __blk_mq_get_ctx(q
, cpu
);
462 rq
= blk_mq_get_request(q
, NULL
, op
, &alloc_data
);
466 return ERR_PTR(-EWOULDBLOCK
);
470 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx
);
472 static void __blk_mq_free_request(struct request
*rq
)
474 struct request_queue
*q
= rq
->q
;
475 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
476 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
477 const int sched_tag
= rq
->internal_tag
;
479 blk_pm_mark_last_busy(rq
);
481 blk_mq_put_tag(hctx
, hctx
->tags
, ctx
, rq
->tag
);
483 blk_mq_put_tag(hctx
, hctx
->sched_tags
, ctx
, sched_tag
);
484 blk_mq_sched_restart(hctx
);
488 void blk_mq_free_request(struct request
*rq
)
490 struct request_queue
*q
= rq
->q
;
491 struct elevator_queue
*e
= q
->elevator
;
492 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
493 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
495 if (rq
->rq_flags
& RQF_ELVPRIV
) {
496 if (e
&& e
->type
->ops
.mq
.finish_request
)
497 e
->type
->ops
.mq
.finish_request(rq
);
499 put_io_context(rq
->elv
.icq
->ioc
);
504 ctx
->rq_completed
[rq_is_sync(rq
)]++;
505 if (rq
->rq_flags
& RQF_MQ_INFLIGHT
)
506 atomic_dec(&hctx
->nr_active
);
508 if (unlikely(laptop_mode
&& !blk_rq_is_passthrough(rq
)))
509 laptop_io_completion(q
->backing_dev_info
);
514 blk_put_rl(blk_rq_rl(rq
));
516 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
517 if (refcount_dec_and_test(&rq
->ref
))
518 __blk_mq_free_request(rq
);
520 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
522 inline void __blk_mq_end_request(struct request
*rq
, blk_status_t error
)
524 u64 now
= ktime_get_ns();
526 if (rq
->rq_flags
& RQF_STATS
) {
527 blk_mq_poll_stats_start(rq
->q
);
528 blk_stat_add(rq
, now
);
531 if (rq
->internal_tag
!= -1)
532 blk_mq_sched_completed_request(rq
, now
);
534 blk_account_io_done(rq
, now
);
537 rq_qos_done(rq
->q
, rq
);
538 rq
->end_io(rq
, error
);
540 if (unlikely(blk_bidi_rq(rq
)))
541 blk_mq_free_request(rq
->next_rq
);
542 blk_mq_free_request(rq
);
545 EXPORT_SYMBOL(__blk_mq_end_request
);
547 void blk_mq_end_request(struct request
*rq
, blk_status_t error
)
549 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
551 __blk_mq_end_request(rq
, error
);
553 EXPORT_SYMBOL(blk_mq_end_request
);
555 static void __blk_mq_complete_request_remote(void *data
)
557 struct request
*rq
= data
;
559 rq
->q
->softirq_done_fn(rq
);
562 static void __blk_mq_complete_request(struct request
*rq
)
564 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
568 if (!blk_mq_mark_complete(rq
))
572 * Most of single queue controllers, there is only one irq vector
573 * for handling IO completion, and the only irq's affinity is set
574 * as all possible CPUs. On most of ARCHs, this affinity means the
575 * irq is handled on one specific CPU.
577 * So complete IO reqeust in softirq context in case of single queue
578 * for not degrading IO performance by irqsoff latency.
580 if (rq
->q
->nr_hw_queues
== 1) {
581 __blk_complete_request(rq
);
585 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
586 rq
->q
->softirq_done_fn(rq
);
591 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
592 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
594 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
595 rq
->csd
.func
= __blk_mq_complete_request_remote
;
598 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
600 rq
->q
->softirq_done_fn(rq
);
605 static void hctx_unlock(struct blk_mq_hw_ctx
*hctx
, int srcu_idx
)
606 __releases(hctx
->srcu
)
608 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
))
611 srcu_read_unlock(hctx
->srcu
, srcu_idx
);
614 static void hctx_lock(struct blk_mq_hw_ctx
*hctx
, int *srcu_idx
)
615 __acquires(hctx
->srcu
)
617 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
618 /* shut up gcc false positive */
622 *srcu_idx
= srcu_read_lock(hctx
->srcu
);
626 * blk_mq_complete_request - end I/O on a request
627 * @rq: the request being processed
630 * Ends all I/O on a request. It does not handle partial completions.
631 * The actual completion happens out-of-order, through a IPI handler.
633 void blk_mq_complete_request(struct request
*rq
)
635 if (unlikely(blk_should_fake_timeout(rq
->q
)))
637 __blk_mq_complete_request(rq
);
639 EXPORT_SYMBOL(blk_mq_complete_request
);
641 int blk_mq_request_started(struct request
*rq
)
643 return blk_mq_rq_state(rq
) != MQ_RQ_IDLE
;
645 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
647 void blk_mq_start_request(struct request
*rq
)
649 struct request_queue
*q
= rq
->q
;
651 blk_mq_sched_started_request(rq
);
653 trace_block_rq_issue(q
, rq
);
655 if (test_bit(QUEUE_FLAG_STATS
, &q
->queue_flags
)) {
656 rq
->io_start_time_ns
= ktime_get_ns();
657 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
658 rq
->throtl_size
= blk_rq_sectors(rq
);
660 rq
->rq_flags
|= RQF_STATS
;
664 WARN_ON_ONCE(blk_mq_rq_state(rq
) != MQ_RQ_IDLE
);
667 WRITE_ONCE(rq
->state
, MQ_RQ_IN_FLIGHT
);
669 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
671 * Make sure space for the drain appears. We know we can do
672 * this because max_hw_segments has been adjusted to be one
673 * fewer than the device can handle.
675 rq
->nr_phys_segments
++;
678 EXPORT_SYMBOL(blk_mq_start_request
);
680 static void __blk_mq_requeue_request(struct request
*rq
)
682 struct request_queue
*q
= rq
->q
;
684 blk_mq_put_driver_tag(rq
);
686 trace_block_rq_requeue(q
, rq
);
687 rq_qos_requeue(q
, rq
);
689 if (blk_mq_request_started(rq
)) {
690 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
691 rq
->rq_flags
&= ~RQF_TIMED_OUT
;
692 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
693 rq
->nr_phys_segments
--;
697 void blk_mq_requeue_request(struct request
*rq
, bool kick_requeue_list
)
699 __blk_mq_requeue_request(rq
);
701 /* this request will be re-inserted to io scheduler queue */
702 blk_mq_sched_requeue_request(rq
);
704 BUG_ON(blk_queued_rq(rq
));
705 blk_mq_add_to_requeue_list(rq
, true, kick_requeue_list
);
707 EXPORT_SYMBOL(blk_mq_requeue_request
);
709 static void blk_mq_requeue_work(struct work_struct
*work
)
711 struct request_queue
*q
=
712 container_of(work
, struct request_queue
, requeue_work
.work
);
714 struct request
*rq
, *next
;
716 spin_lock_irq(&q
->requeue_lock
);
717 list_splice_init(&q
->requeue_list
, &rq_list
);
718 spin_unlock_irq(&q
->requeue_lock
);
720 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
721 if (!(rq
->rq_flags
& RQF_SOFTBARRIER
))
724 rq
->rq_flags
&= ~RQF_SOFTBARRIER
;
725 list_del_init(&rq
->queuelist
);
726 blk_mq_sched_insert_request(rq
, true, false, false);
729 while (!list_empty(&rq_list
)) {
730 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
731 list_del_init(&rq
->queuelist
);
732 blk_mq_sched_insert_request(rq
, false, false, false);
735 blk_mq_run_hw_queues(q
, false);
738 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
,
739 bool kick_requeue_list
)
741 struct request_queue
*q
= rq
->q
;
745 * We abuse this flag that is otherwise used by the I/O scheduler to
746 * request head insertion from the workqueue.
748 BUG_ON(rq
->rq_flags
& RQF_SOFTBARRIER
);
750 spin_lock_irqsave(&q
->requeue_lock
, flags
);
752 rq
->rq_flags
|= RQF_SOFTBARRIER
;
753 list_add(&rq
->queuelist
, &q
->requeue_list
);
755 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
757 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
759 if (kick_requeue_list
)
760 blk_mq_kick_requeue_list(q
);
762 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
764 void blk_mq_kick_requeue_list(struct request_queue
*q
)
766 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
, 0);
768 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
770 void blk_mq_delay_kick_requeue_list(struct request_queue
*q
,
773 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
,
774 msecs_to_jiffies(msecs
));
776 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list
);
778 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
780 if (tag
< tags
->nr_tags
) {
781 prefetch(tags
->rqs
[tag
]);
782 return tags
->rqs
[tag
];
787 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
789 static void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
791 req
->rq_flags
|= RQF_TIMED_OUT
;
792 if (req
->q
->mq_ops
->timeout
) {
793 enum blk_eh_timer_return ret
;
795 ret
= req
->q
->mq_ops
->timeout(req
, reserved
);
796 if (ret
== BLK_EH_DONE
)
798 WARN_ON_ONCE(ret
!= BLK_EH_RESET_TIMER
);
804 static bool blk_mq_req_expired(struct request
*rq
, unsigned long *next
)
806 unsigned long deadline
;
808 if (blk_mq_rq_state(rq
) != MQ_RQ_IN_FLIGHT
)
810 if (rq
->rq_flags
& RQF_TIMED_OUT
)
813 deadline
= blk_rq_deadline(rq
);
814 if (time_after_eq(jiffies
, deadline
))
819 else if (time_after(*next
, deadline
))
824 static void blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
825 struct request
*rq
, void *priv
, bool reserved
)
827 unsigned long *next
= priv
;
830 * Just do a quick check if it is expired before locking the request in
831 * so we're not unnecessarilly synchronizing across CPUs.
833 if (!blk_mq_req_expired(rq
, next
))
837 * We have reason to believe the request may be expired. Take a
838 * reference on the request to lock this request lifetime into its
839 * currently allocated context to prevent it from being reallocated in
840 * the event the completion by-passes this timeout handler.
842 * If the reference was already released, then the driver beat the
843 * timeout handler to posting a natural completion.
845 if (!refcount_inc_not_zero(&rq
->ref
))
849 * The request is now locked and cannot be reallocated underneath the
850 * timeout handler's processing. Re-verify this exact request is truly
851 * expired; if it is not expired, then the request was completed and
852 * reallocated as a new request.
854 if (blk_mq_req_expired(rq
, next
))
855 blk_mq_rq_timed_out(rq
, reserved
);
856 if (refcount_dec_and_test(&rq
->ref
))
857 __blk_mq_free_request(rq
);
860 static void blk_mq_timeout_work(struct work_struct
*work
)
862 struct request_queue
*q
=
863 container_of(work
, struct request_queue
, timeout_work
);
864 unsigned long next
= 0;
865 struct blk_mq_hw_ctx
*hctx
;
868 /* A deadlock might occur if a request is stuck requiring a
869 * timeout at the same time a queue freeze is waiting
870 * completion, since the timeout code would not be able to
871 * acquire the queue reference here.
873 * That's why we don't use blk_queue_enter here; instead, we use
874 * percpu_ref_tryget directly, because we need to be able to
875 * obtain a reference even in the short window between the queue
876 * starting to freeze, by dropping the first reference in
877 * blk_freeze_queue_start, and the moment the last request is
878 * consumed, marked by the instant q_usage_counter reaches
881 if (!percpu_ref_tryget(&q
->q_usage_counter
))
884 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &next
);
887 mod_timer(&q
->timeout
, next
);
890 * Request timeouts are handled as a forward rolling timer. If
891 * we end up here it means that no requests are pending and
892 * also that no request has been pending for a while. Mark
895 queue_for_each_hw_ctx(q
, hctx
, i
) {
896 /* the hctx may be unmapped, so check it here */
897 if (blk_mq_hw_queue_mapped(hctx
))
898 blk_mq_tag_idle(hctx
);
904 struct flush_busy_ctx_data
{
905 struct blk_mq_hw_ctx
*hctx
;
906 struct list_head
*list
;
909 static bool flush_busy_ctx(struct sbitmap
*sb
, unsigned int bitnr
, void *data
)
911 struct flush_busy_ctx_data
*flush_data
= data
;
912 struct blk_mq_hw_ctx
*hctx
= flush_data
->hctx
;
913 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
915 spin_lock(&ctx
->lock
);
916 list_splice_tail_init(&ctx
->rq_list
, flush_data
->list
);
917 sbitmap_clear_bit(sb
, bitnr
);
918 spin_unlock(&ctx
->lock
);
923 * Process software queues that have been marked busy, splicing them
924 * to the for-dispatch
926 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
928 struct flush_busy_ctx_data data
= {
933 sbitmap_for_each_set(&hctx
->ctx_map
, flush_busy_ctx
, &data
);
935 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs
);
937 struct dispatch_rq_data
{
938 struct blk_mq_hw_ctx
*hctx
;
942 static bool dispatch_rq_from_ctx(struct sbitmap
*sb
, unsigned int bitnr
,
945 struct dispatch_rq_data
*dispatch_data
= data
;
946 struct blk_mq_hw_ctx
*hctx
= dispatch_data
->hctx
;
947 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
949 spin_lock(&ctx
->lock
);
950 if (!list_empty(&ctx
->rq_list
)) {
951 dispatch_data
->rq
= list_entry_rq(ctx
->rq_list
.next
);
952 list_del_init(&dispatch_data
->rq
->queuelist
);
953 if (list_empty(&ctx
->rq_list
))
954 sbitmap_clear_bit(sb
, bitnr
);
956 spin_unlock(&ctx
->lock
);
958 return !dispatch_data
->rq
;
961 struct request
*blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx
*hctx
,
962 struct blk_mq_ctx
*start
)
964 unsigned off
= start
? start
->index_hw
: 0;
965 struct dispatch_rq_data data
= {
970 __sbitmap_for_each_set(&hctx
->ctx_map
, off
,
971 dispatch_rq_from_ctx
, &data
);
976 static inline unsigned int queued_to_index(unsigned int queued
)
981 return min(BLK_MQ_MAX_DISPATCH_ORDER
- 1, ilog2(queued
) + 1);
984 bool blk_mq_get_driver_tag(struct request
*rq
)
986 struct blk_mq_alloc_data data
= {
988 .hctx
= blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
),
989 .flags
= BLK_MQ_REQ_NOWAIT
,
996 if (blk_mq_tag_is_reserved(data
.hctx
->sched_tags
, rq
->internal_tag
))
997 data
.flags
|= BLK_MQ_REQ_RESERVED
;
999 shared
= blk_mq_tag_busy(data
.hctx
);
1000 rq
->tag
= blk_mq_get_tag(&data
);
1003 rq
->rq_flags
|= RQF_MQ_INFLIGHT
;
1004 atomic_inc(&data
.hctx
->nr_active
);
1006 data
.hctx
->tags
->rqs
[rq
->tag
] = rq
;
1010 return rq
->tag
!= -1;
1013 static int blk_mq_dispatch_wake(wait_queue_entry_t
*wait
, unsigned mode
,
1014 int flags
, void *key
)
1016 struct blk_mq_hw_ctx
*hctx
;
1018 hctx
= container_of(wait
, struct blk_mq_hw_ctx
, dispatch_wait
);
1020 spin_lock(&hctx
->dispatch_wait_lock
);
1021 list_del_init(&wait
->entry
);
1022 spin_unlock(&hctx
->dispatch_wait_lock
);
1024 blk_mq_run_hw_queue(hctx
, true);
1029 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1030 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1031 * restart. For both cases, take care to check the condition again after
1032 * marking us as waiting.
1034 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx
*hctx
,
1037 struct wait_queue_head
*wq
;
1038 wait_queue_entry_t
*wait
;
1041 if (!(hctx
->flags
& BLK_MQ_F_TAG_SHARED
)) {
1042 if (!test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
1043 set_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
);
1046 * It's possible that a tag was freed in the window between the
1047 * allocation failure and adding the hardware queue to the wait
1050 * Don't clear RESTART here, someone else could have set it.
1051 * At most this will cost an extra queue run.
1053 return blk_mq_get_driver_tag(rq
);
1056 wait
= &hctx
->dispatch_wait
;
1057 if (!list_empty_careful(&wait
->entry
))
1060 wq
= &bt_wait_ptr(&hctx
->tags
->bitmap_tags
, hctx
)->wait
;
1062 spin_lock_irq(&wq
->lock
);
1063 spin_lock(&hctx
->dispatch_wait_lock
);
1064 if (!list_empty(&wait
->entry
)) {
1065 spin_unlock(&hctx
->dispatch_wait_lock
);
1066 spin_unlock_irq(&wq
->lock
);
1070 wait
->flags
&= ~WQ_FLAG_EXCLUSIVE
;
1071 __add_wait_queue(wq
, wait
);
1074 * It's possible that a tag was freed in the window between the
1075 * allocation failure and adding the hardware queue to the wait
1078 ret
= blk_mq_get_driver_tag(rq
);
1080 spin_unlock(&hctx
->dispatch_wait_lock
);
1081 spin_unlock_irq(&wq
->lock
);
1086 * We got a tag, remove ourselves from the wait queue to ensure
1087 * someone else gets the wakeup.
1089 list_del_init(&wait
->entry
);
1090 spin_unlock(&hctx
->dispatch_wait_lock
);
1091 spin_unlock_irq(&wq
->lock
);
1096 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1097 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1099 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1100 * - EWMA is one simple way to compute running average value
1101 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1102 * - take 4 as factor for avoiding to get too small(0) result, and this
1103 * factor doesn't matter because EWMA decreases exponentially
1105 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx
*hctx
, bool busy
)
1109 if (hctx
->queue
->elevator
)
1112 ewma
= hctx
->dispatch_busy
;
1117 ewma
*= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT
- 1;
1119 ewma
+= 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR
;
1120 ewma
/= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT
;
1122 hctx
->dispatch_busy
= ewma
;
1125 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1128 * Returns true if we did some work AND can potentially do more.
1130 bool blk_mq_dispatch_rq_list(struct request_queue
*q
, struct list_head
*list
,
1133 struct blk_mq_hw_ctx
*hctx
;
1134 struct request
*rq
, *nxt
;
1135 bool no_tag
= false;
1137 blk_status_t ret
= BLK_STS_OK
;
1139 if (list_empty(list
))
1142 WARN_ON(!list_is_singular(list
) && got_budget
);
1145 * Now process all the entries, sending them to the driver.
1147 errors
= queued
= 0;
1149 struct blk_mq_queue_data bd
;
1151 rq
= list_first_entry(list
, struct request
, queuelist
);
1153 hctx
= blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
);
1154 if (!got_budget
&& !blk_mq_get_dispatch_budget(hctx
))
1157 if (!blk_mq_get_driver_tag(rq
)) {
1159 * The initial allocation attempt failed, so we need to
1160 * rerun the hardware queue when a tag is freed. The
1161 * waitqueue takes care of that. If the queue is run
1162 * before we add this entry back on the dispatch list,
1163 * we'll re-run it below.
1165 if (!blk_mq_mark_tag_wait(hctx
, rq
)) {
1166 blk_mq_put_dispatch_budget(hctx
);
1168 * For non-shared tags, the RESTART check
1171 if (hctx
->flags
& BLK_MQ_F_TAG_SHARED
)
1177 list_del_init(&rq
->queuelist
);
1182 * Flag last if we have no more requests, or if we have more
1183 * but can't assign a driver tag to it.
1185 if (list_empty(list
))
1188 nxt
= list_first_entry(list
, struct request
, queuelist
);
1189 bd
.last
= !blk_mq_get_driver_tag(nxt
);
1192 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1193 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
) {
1195 * If an I/O scheduler has been configured and we got a
1196 * driver tag for the next request already, free it
1199 if (!list_empty(list
)) {
1200 nxt
= list_first_entry(list
, struct request
, queuelist
);
1201 blk_mq_put_driver_tag(nxt
);
1203 list_add(&rq
->queuelist
, list
);
1204 __blk_mq_requeue_request(rq
);
1208 if (unlikely(ret
!= BLK_STS_OK
)) {
1210 blk_mq_end_request(rq
, BLK_STS_IOERR
);
1215 } while (!list_empty(list
));
1217 hctx
->dispatched
[queued_to_index(queued
)]++;
1220 * Any items that need requeuing? Stuff them into hctx->dispatch,
1221 * that is where we will continue on next queue run.
1223 if (!list_empty(list
)) {
1226 spin_lock(&hctx
->lock
);
1227 list_splice_init(list
, &hctx
->dispatch
);
1228 spin_unlock(&hctx
->lock
);
1231 * If SCHED_RESTART was set by the caller of this function and
1232 * it is no longer set that means that it was cleared by another
1233 * thread and hence that a queue rerun is needed.
1235 * If 'no_tag' is set, that means that we failed getting
1236 * a driver tag with an I/O scheduler attached. If our dispatch
1237 * waitqueue is no longer active, ensure that we run the queue
1238 * AFTER adding our entries back to the list.
1240 * If no I/O scheduler has been configured it is possible that
1241 * the hardware queue got stopped and restarted before requests
1242 * were pushed back onto the dispatch list. Rerun the queue to
1243 * avoid starvation. Notes:
1244 * - blk_mq_run_hw_queue() checks whether or not a queue has
1245 * been stopped before rerunning a queue.
1246 * - Some but not all block drivers stop a queue before
1247 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1250 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1251 * bit is set, run queue after a delay to avoid IO stalls
1252 * that could otherwise occur if the queue is idle.
1254 needs_restart
= blk_mq_sched_needs_restart(hctx
);
1255 if (!needs_restart
||
1256 (no_tag
&& list_empty_careful(&hctx
->dispatch_wait
.entry
)))
1257 blk_mq_run_hw_queue(hctx
, true);
1258 else if (needs_restart
&& (ret
== BLK_STS_RESOURCE
))
1259 blk_mq_delay_run_hw_queue(hctx
, BLK_MQ_RESOURCE_DELAY
);
1261 blk_mq_update_dispatch_busy(hctx
, true);
1264 blk_mq_update_dispatch_busy(hctx
, false);
1267 * If the host/device is unable to accept more work, inform the
1270 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
)
1273 return (queued
+ errors
) != 0;
1276 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1281 * We should be running this queue from one of the CPUs that
1284 * There are at least two related races now between setting
1285 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1286 * __blk_mq_run_hw_queue():
1288 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1289 * but later it becomes online, then this warning is harmless
1292 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1293 * but later it becomes offline, then the warning can't be
1294 * triggered, and we depend on blk-mq timeout handler to
1295 * handle dispatched requests to this hctx
1297 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
) &&
1298 cpu_online(hctx
->next_cpu
)) {
1299 printk(KERN_WARNING
"run queue from wrong CPU %d, hctx %s\n",
1300 raw_smp_processor_id(),
1301 cpumask_empty(hctx
->cpumask
) ? "inactive": "active");
1306 * We can't run the queue inline with ints disabled. Ensure that
1307 * we catch bad users of this early.
1309 WARN_ON_ONCE(in_interrupt());
1311 might_sleep_if(hctx
->flags
& BLK_MQ_F_BLOCKING
);
1313 hctx_lock(hctx
, &srcu_idx
);
1314 blk_mq_sched_dispatch_requests(hctx
);
1315 hctx_unlock(hctx
, srcu_idx
);
1318 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx
*hctx
)
1320 int cpu
= cpumask_first_and(hctx
->cpumask
, cpu_online_mask
);
1322 if (cpu
>= nr_cpu_ids
)
1323 cpu
= cpumask_first(hctx
->cpumask
);
1328 * It'd be great if the workqueue API had a way to pass
1329 * in a mask and had some smarts for more clever placement.
1330 * For now we just round-robin here, switching for every
1331 * BLK_MQ_CPU_WORK_BATCH queued items.
1333 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
1336 int next_cpu
= hctx
->next_cpu
;
1338 if (hctx
->queue
->nr_hw_queues
== 1)
1339 return WORK_CPU_UNBOUND
;
1341 if (--hctx
->next_cpu_batch
<= 0) {
1343 next_cpu
= cpumask_next_and(next_cpu
, hctx
->cpumask
,
1345 if (next_cpu
>= nr_cpu_ids
)
1346 next_cpu
= blk_mq_first_mapped_cpu(hctx
);
1347 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1351 * Do unbound schedule if we can't find a online CPU for this hctx,
1352 * and it should only happen in the path of handling CPU DEAD.
1354 if (!cpu_online(next_cpu
)) {
1361 * Make sure to re-select CPU next time once after CPUs
1362 * in hctx->cpumask become online again.
1364 hctx
->next_cpu
= next_cpu
;
1365 hctx
->next_cpu_batch
= 1;
1366 return WORK_CPU_UNBOUND
;
1369 hctx
->next_cpu
= next_cpu
;
1373 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
,
1374 unsigned long msecs
)
1376 if (unlikely(blk_mq_hctx_stopped(hctx
)))
1379 if (!async
&& !(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1380 int cpu
= get_cpu();
1381 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
1382 __blk_mq_run_hw_queue(hctx
);
1390 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx
), &hctx
->run_work
,
1391 msecs_to_jiffies(msecs
));
1394 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1396 __blk_mq_delay_run_hw_queue(hctx
, true, msecs
);
1398 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue
);
1400 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1406 * When queue is quiesced, we may be switching io scheduler, or
1407 * updating nr_hw_queues, or other things, and we can't run queue
1408 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1410 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1413 hctx_lock(hctx
, &srcu_idx
);
1414 need_run
= !blk_queue_quiesced(hctx
->queue
) &&
1415 blk_mq_hctx_has_pending(hctx
);
1416 hctx_unlock(hctx
, srcu_idx
);
1419 __blk_mq_delay_run_hw_queue(hctx
, async
, 0);
1425 EXPORT_SYMBOL(blk_mq_run_hw_queue
);
1427 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
1429 struct blk_mq_hw_ctx
*hctx
;
1432 queue_for_each_hw_ctx(q
, hctx
, i
) {
1433 if (blk_mq_hctx_stopped(hctx
))
1436 blk_mq_run_hw_queue(hctx
, async
);
1439 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
1442 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1443 * @q: request queue.
1445 * The caller is responsible for serializing this function against
1446 * blk_mq_{start,stop}_hw_queue().
1448 bool blk_mq_queue_stopped(struct request_queue
*q
)
1450 struct blk_mq_hw_ctx
*hctx
;
1453 queue_for_each_hw_ctx(q
, hctx
, i
)
1454 if (blk_mq_hctx_stopped(hctx
))
1459 EXPORT_SYMBOL(blk_mq_queue_stopped
);
1462 * This function is often used for pausing .queue_rq() by driver when
1463 * there isn't enough resource or some conditions aren't satisfied, and
1464 * BLK_STS_RESOURCE is usually returned.
1466 * We do not guarantee that dispatch can be drained or blocked
1467 * after blk_mq_stop_hw_queue() returns. Please use
1468 * blk_mq_quiesce_queue() for that requirement.
1470 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1472 cancel_delayed_work(&hctx
->run_work
);
1474 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1476 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
1479 * This function is often used for pausing .queue_rq() by driver when
1480 * there isn't enough resource or some conditions aren't satisfied, and
1481 * BLK_STS_RESOURCE is usually returned.
1483 * We do not guarantee that dispatch can be drained or blocked
1484 * after blk_mq_stop_hw_queues() returns. Please use
1485 * blk_mq_quiesce_queue() for that requirement.
1487 void blk_mq_stop_hw_queues(struct request_queue
*q
)
1489 struct blk_mq_hw_ctx
*hctx
;
1492 queue_for_each_hw_ctx(q
, hctx
, i
)
1493 blk_mq_stop_hw_queue(hctx
);
1495 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
1497 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1499 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1501 blk_mq_run_hw_queue(hctx
, false);
1503 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
1505 void blk_mq_start_hw_queues(struct request_queue
*q
)
1507 struct blk_mq_hw_ctx
*hctx
;
1510 queue_for_each_hw_ctx(q
, hctx
, i
)
1511 blk_mq_start_hw_queue(hctx
);
1513 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
1515 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1517 if (!blk_mq_hctx_stopped(hctx
))
1520 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1521 blk_mq_run_hw_queue(hctx
, async
);
1523 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue
);
1525 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
1527 struct blk_mq_hw_ctx
*hctx
;
1530 queue_for_each_hw_ctx(q
, hctx
, i
)
1531 blk_mq_start_stopped_hw_queue(hctx
, async
);
1533 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
1535 static void blk_mq_run_work_fn(struct work_struct
*work
)
1537 struct blk_mq_hw_ctx
*hctx
;
1539 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
1542 * If we are stopped, don't run the queue.
1544 if (test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
1547 __blk_mq_run_hw_queue(hctx
);
1550 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx
*hctx
,
1554 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1556 lockdep_assert_held(&ctx
->lock
);
1558 trace_block_rq_insert(hctx
->queue
, rq
);
1561 list_add(&rq
->queuelist
, &ctx
->rq_list
);
1563 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
1566 void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
,
1569 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1571 lockdep_assert_held(&ctx
->lock
);
1573 __blk_mq_insert_req_list(hctx
, rq
, at_head
);
1574 blk_mq_hctx_mark_pending(hctx
, ctx
);
1578 * Should only be used carefully, when the caller knows we want to
1579 * bypass a potential IO scheduler on the target device.
1581 void blk_mq_request_bypass_insert(struct request
*rq
, bool run_queue
)
1583 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1584 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(rq
->q
, ctx
->cpu
);
1586 spin_lock(&hctx
->lock
);
1587 list_add_tail(&rq
->queuelist
, &hctx
->dispatch
);
1588 spin_unlock(&hctx
->lock
);
1591 blk_mq_run_hw_queue(hctx
, false);
1594 void blk_mq_insert_requests(struct blk_mq_hw_ctx
*hctx
, struct blk_mq_ctx
*ctx
,
1595 struct list_head
*list
)
1601 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1604 list_for_each_entry(rq
, list
, queuelist
) {
1605 BUG_ON(rq
->mq_ctx
!= ctx
);
1606 trace_block_rq_insert(hctx
->queue
, rq
);
1609 spin_lock(&ctx
->lock
);
1610 list_splice_tail_init(list
, &ctx
->rq_list
);
1611 blk_mq_hctx_mark_pending(hctx
, ctx
);
1612 spin_unlock(&ctx
->lock
);
1615 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1617 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1618 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1620 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
1621 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
1622 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
1625 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1627 struct blk_mq_ctx
*this_ctx
;
1628 struct request_queue
*this_q
;
1631 LIST_HEAD(ctx_list
);
1634 list_splice_init(&plug
->mq_list
, &list
);
1636 list_sort(NULL
, &list
, plug_ctx_cmp
);
1642 while (!list_empty(&list
)) {
1643 rq
= list_entry_rq(list
.next
);
1644 list_del_init(&rq
->queuelist
);
1646 if (rq
->mq_ctx
!= this_ctx
) {
1648 trace_block_unplug(this_q
, depth
, !from_schedule
);
1649 blk_mq_sched_insert_requests(this_q
, this_ctx
,
1654 this_ctx
= rq
->mq_ctx
;
1660 list_add_tail(&rq
->queuelist
, &ctx_list
);
1664 * If 'this_ctx' is set, we know we have entries to complete
1665 * on 'ctx_list'. Do those.
1668 trace_block_unplug(this_q
, depth
, !from_schedule
);
1669 blk_mq_sched_insert_requests(this_q
, this_ctx
, &ctx_list
,
1674 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1676 blk_init_request_from_bio(rq
, bio
);
1678 blk_rq_set_rl(rq
, blk_get_rl(rq
->q
, bio
));
1680 blk_account_io_start(rq
, true);
1683 static blk_qc_t
request_to_qc_t(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
1686 return blk_tag_to_qc_t(rq
->tag
, hctx
->queue_num
, false);
1688 return blk_tag_to_qc_t(rq
->internal_tag
, hctx
->queue_num
, true);
1691 static blk_status_t
__blk_mq_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1695 struct request_queue
*q
= rq
->q
;
1696 struct blk_mq_queue_data bd
= {
1700 blk_qc_t new_cookie
;
1703 new_cookie
= request_to_qc_t(hctx
, rq
);
1706 * For OK queue, we are done. For error, caller may kill it.
1707 * Any other error (busy), just add it to our list as we
1708 * previously would have done.
1710 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1713 blk_mq_update_dispatch_busy(hctx
, false);
1714 *cookie
= new_cookie
;
1716 case BLK_STS_RESOURCE
:
1717 case BLK_STS_DEV_RESOURCE
:
1718 blk_mq_update_dispatch_busy(hctx
, true);
1719 __blk_mq_requeue_request(rq
);
1722 blk_mq_update_dispatch_busy(hctx
, false);
1723 *cookie
= BLK_QC_T_NONE
;
1730 static blk_status_t
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1735 struct request_queue
*q
= rq
->q
;
1736 bool run_queue
= true;
1739 * RCU or SRCU read lock is needed before checking quiesced flag.
1741 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1742 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1743 * and avoid driver to try to dispatch again.
1745 if (blk_mq_hctx_stopped(hctx
) || blk_queue_quiesced(q
)) {
1747 bypass_insert
= false;
1751 if (q
->elevator
&& !bypass_insert
)
1754 if (!blk_mq_get_dispatch_budget(hctx
))
1757 if (!blk_mq_get_driver_tag(rq
)) {
1758 blk_mq_put_dispatch_budget(hctx
);
1762 return __blk_mq_issue_directly(hctx
, rq
, cookie
);
1765 return BLK_STS_RESOURCE
;
1767 blk_mq_sched_insert_request(rq
, false, run_queue
, false);
1771 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1772 struct request
*rq
, blk_qc_t
*cookie
)
1777 might_sleep_if(hctx
->flags
& BLK_MQ_F_BLOCKING
);
1779 hctx_lock(hctx
, &srcu_idx
);
1781 ret
= __blk_mq_try_issue_directly(hctx
, rq
, cookie
, false);
1782 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
)
1783 blk_mq_sched_insert_request(rq
, false, true, false);
1784 else if (ret
!= BLK_STS_OK
)
1785 blk_mq_end_request(rq
, ret
);
1787 hctx_unlock(hctx
, srcu_idx
);
1790 blk_status_t
blk_mq_request_issue_directly(struct request
*rq
)
1794 blk_qc_t unused_cookie
;
1795 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1796 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(rq
->q
, ctx
->cpu
);
1798 hctx_lock(hctx
, &srcu_idx
);
1799 ret
= __blk_mq_try_issue_directly(hctx
, rq
, &unused_cookie
, true);
1800 hctx_unlock(hctx
, srcu_idx
);
1805 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx
*hctx
,
1806 struct list_head
*list
)
1808 while (!list_empty(list
)) {
1810 struct request
*rq
= list_first_entry(list
, struct request
,
1813 list_del_init(&rq
->queuelist
);
1814 ret
= blk_mq_request_issue_directly(rq
);
1815 if (ret
!= BLK_STS_OK
) {
1816 if (ret
== BLK_STS_RESOURCE
||
1817 ret
== BLK_STS_DEV_RESOURCE
) {
1818 list_add(&rq
->queuelist
, list
);
1821 blk_mq_end_request(rq
, ret
);
1826 static blk_qc_t
blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1828 const int is_sync
= op_is_sync(bio
->bi_opf
);
1829 const int is_flush_fua
= op_is_flush(bio
->bi_opf
);
1830 struct blk_mq_alloc_data data
= { .flags
= 0 };
1832 unsigned int request_count
= 0;
1833 struct blk_plug
*plug
;
1834 struct request
*same_queue_rq
= NULL
;
1837 blk_queue_bounce(q
, &bio
);
1839 blk_queue_split(q
, &bio
);
1841 if (!bio_integrity_prep(bio
))
1842 return BLK_QC_T_NONE
;
1844 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
1845 blk_attempt_plug_merge(q
, bio
, &request_count
, &same_queue_rq
))
1846 return BLK_QC_T_NONE
;
1848 if (blk_mq_sched_bio_merge(q
, bio
))
1849 return BLK_QC_T_NONE
;
1851 rq_qos_throttle(q
, bio
, NULL
);
1853 trace_block_getrq(q
, bio
, bio
->bi_opf
);
1855 rq
= blk_mq_get_request(q
, bio
, bio
->bi_opf
, &data
);
1856 if (unlikely(!rq
)) {
1857 rq_qos_cleanup(q
, bio
);
1858 if (bio
->bi_opf
& REQ_NOWAIT
)
1859 bio_wouldblock_error(bio
);
1860 return BLK_QC_T_NONE
;
1863 rq_qos_track(q
, rq
, bio
);
1865 cookie
= request_to_qc_t(data
.hctx
, rq
);
1867 plug
= current
->plug
;
1868 if (unlikely(is_flush_fua
)) {
1869 blk_mq_put_ctx(data
.ctx
);
1870 blk_mq_bio_to_request(rq
, bio
);
1872 /* bypass scheduler for flush rq */
1873 blk_insert_flush(rq
);
1874 blk_mq_run_hw_queue(data
.hctx
, true);
1875 } else if (plug
&& q
->nr_hw_queues
== 1) {
1876 struct request
*last
= NULL
;
1878 blk_mq_put_ctx(data
.ctx
);
1879 blk_mq_bio_to_request(rq
, bio
);
1882 * @request_count may become stale because of schedule
1883 * out, so check the list again.
1885 if (list_empty(&plug
->mq_list
))
1887 else if (blk_queue_nomerges(q
))
1888 request_count
= blk_plug_queued_count(q
);
1891 trace_block_plug(q
);
1893 last
= list_entry_rq(plug
->mq_list
.prev
);
1895 if (request_count
>= BLK_MAX_REQUEST_COUNT
|| (last
&&
1896 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
)) {
1897 blk_flush_plug_list(plug
, false);
1898 trace_block_plug(q
);
1901 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1902 } else if (plug
&& !blk_queue_nomerges(q
)) {
1903 blk_mq_bio_to_request(rq
, bio
);
1906 * We do limited plugging. If the bio can be merged, do that.
1907 * Otherwise the existing request in the plug list will be
1908 * issued. So the plug list will have one request at most
1909 * The plug list might get flushed before this. If that happens,
1910 * the plug list is empty, and same_queue_rq is invalid.
1912 if (list_empty(&plug
->mq_list
))
1913 same_queue_rq
= NULL
;
1915 list_del_init(&same_queue_rq
->queuelist
);
1916 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1918 blk_mq_put_ctx(data
.ctx
);
1920 if (same_queue_rq
) {
1921 data
.hctx
= blk_mq_map_queue(q
,
1922 same_queue_rq
->mq_ctx
->cpu
);
1923 blk_mq_try_issue_directly(data
.hctx
, same_queue_rq
,
1926 } else if ((q
->nr_hw_queues
> 1 && is_sync
) || (!q
->elevator
&&
1927 !data
.hctx
->dispatch_busy
)) {
1928 blk_mq_put_ctx(data
.ctx
);
1929 blk_mq_bio_to_request(rq
, bio
);
1930 blk_mq_try_issue_directly(data
.hctx
, rq
, &cookie
);
1932 blk_mq_put_ctx(data
.ctx
);
1933 blk_mq_bio_to_request(rq
, bio
);
1934 blk_mq_sched_insert_request(rq
, false, true, true);
1940 void blk_mq_free_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
1941 unsigned int hctx_idx
)
1945 if (tags
->rqs
&& set
->ops
->exit_request
) {
1948 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1949 struct request
*rq
= tags
->static_rqs
[i
];
1953 set
->ops
->exit_request(set
, rq
, hctx_idx
);
1954 tags
->static_rqs
[i
] = NULL
;
1958 while (!list_empty(&tags
->page_list
)) {
1959 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1960 list_del_init(&page
->lru
);
1962 * Remove kmemleak object previously allocated in
1963 * blk_mq_init_rq_map().
1965 kmemleak_free(page_address(page
));
1966 __free_pages(page
, page
->private);
1970 void blk_mq_free_rq_map(struct blk_mq_tags
*tags
)
1974 kfree(tags
->static_rqs
);
1975 tags
->static_rqs
= NULL
;
1977 blk_mq_free_tags(tags
);
1980 struct blk_mq_tags
*blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
,
1981 unsigned int hctx_idx
,
1982 unsigned int nr_tags
,
1983 unsigned int reserved_tags
)
1985 struct blk_mq_tags
*tags
;
1988 node
= blk_mq_hw_queue_to_node(set
->mq_map
, hctx_idx
);
1989 if (node
== NUMA_NO_NODE
)
1990 node
= set
->numa_node
;
1992 tags
= blk_mq_init_tags(nr_tags
, reserved_tags
, node
,
1993 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
1997 tags
->rqs
= kcalloc_node(nr_tags
, sizeof(struct request
*),
1998 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
2001 blk_mq_free_tags(tags
);
2005 tags
->static_rqs
= kcalloc_node(nr_tags
, sizeof(struct request
*),
2006 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
2008 if (!tags
->static_rqs
) {
2010 blk_mq_free_tags(tags
);
2017 static size_t order_to_size(unsigned int order
)
2019 return (size_t)PAGE_SIZE
<< order
;
2022 static int blk_mq_init_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
2023 unsigned int hctx_idx
, int node
)
2027 if (set
->ops
->init_request
) {
2028 ret
= set
->ops
->init_request(set
, rq
, hctx_idx
, node
);
2033 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
2037 int blk_mq_alloc_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
2038 unsigned int hctx_idx
, unsigned int depth
)
2040 unsigned int i
, j
, entries_per_page
, max_order
= 4;
2041 size_t rq_size
, left
;
2044 node
= blk_mq_hw_queue_to_node(set
->mq_map
, hctx_idx
);
2045 if (node
== NUMA_NO_NODE
)
2046 node
= set
->numa_node
;
2048 INIT_LIST_HEAD(&tags
->page_list
);
2051 * rq_size is the size of the request plus driver payload, rounded
2052 * to the cacheline size
2054 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
2056 left
= rq_size
* depth
;
2058 for (i
= 0; i
< depth
; ) {
2059 int this_order
= max_order
;
2064 while (this_order
&& left
< order_to_size(this_order
- 1))
2068 page
= alloc_pages_node(node
,
2069 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
2075 if (order_to_size(this_order
) < rq_size
)
2082 page
->private = this_order
;
2083 list_add_tail(&page
->lru
, &tags
->page_list
);
2085 p
= page_address(page
);
2087 * Allow kmemleak to scan these pages as they contain pointers
2088 * to additional allocations like via ops->init_request().
2090 kmemleak_alloc(p
, order_to_size(this_order
), 1, GFP_NOIO
);
2091 entries_per_page
= order_to_size(this_order
) / rq_size
;
2092 to_do
= min(entries_per_page
, depth
- i
);
2093 left
-= to_do
* rq_size
;
2094 for (j
= 0; j
< to_do
; j
++) {
2095 struct request
*rq
= p
;
2097 tags
->static_rqs
[i
] = rq
;
2098 if (blk_mq_init_request(set
, rq
, hctx_idx
, node
)) {
2099 tags
->static_rqs
[i
] = NULL
;
2110 blk_mq_free_rqs(set
, tags
, hctx_idx
);
2115 * 'cpu' is going away. splice any existing rq_list entries from this
2116 * software queue to the hw queue dispatch list, and ensure that it
2119 static int blk_mq_hctx_notify_dead(unsigned int cpu
, struct hlist_node
*node
)
2121 struct blk_mq_hw_ctx
*hctx
;
2122 struct blk_mq_ctx
*ctx
;
2125 hctx
= hlist_entry_safe(node
, struct blk_mq_hw_ctx
, cpuhp_dead
);
2126 ctx
= __blk_mq_get_ctx(hctx
->queue
, cpu
);
2128 spin_lock(&ctx
->lock
);
2129 if (!list_empty(&ctx
->rq_list
)) {
2130 list_splice_init(&ctx
->rq_list
, &tmp
);
2131 blk_mq_hctx_clear_pending(hctx
, ctx
);
2133 spin_unlock(&ctx
->lock
);
2135 if (list_empty(&tmp
))
2138 spin_lock(&hctx
->lock
);
2139 list_splice_tail_init(&tmp
, &hctx
->dispatch
);
2140 spin_unlock(&hctx
->lock
);
2142 blk_mq_run_hw_queue(hctx
, true);
2146 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx
*hctx
)
2148 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD
,
2152 /* hctx->ctxs will be freed in queue's release handler */
2153 static void blk_mq_exit_hctx(struct request_queue
*q
,
2154 struct blk_mq_tag_set
*set
,
2155 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
2157 if (blk_mq_hw_queue_mapped(hctx
))
2158 blk_mq_tag_idle(hctx
);
2160 if (set
->ops
->exit_request
)
2161 set
->ops
->exit_request(set
, hctx
->fq
->flush_rq
, hctx_idx
);
2163 if (set
->ops
->exit_hctx
)
2164 set
->ops
->exit_hctx(hctx
, hctx_idx
);
2166 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
2167 cleanup_srcu_struct(hctx
->srcu
);
2169 blk_mq_remove_cpuhp(hctx
);
2170 blk_free_flush_queue(hctx
->fq
);
2171 sbitmap_free(&hctx
->ctx_map
);
2174 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
2175 struct blk_mq_tag_set
*set
, int nr_queue
)
2177 struct blk_mq_hw_ctx
*hctx
;
2180 queue_for_each_hw_ctx(q
, hctx
, i
) {
2183 blk_mq_debugfs_unregister_hctx(hctx
);
2184 blk_mq_exit_hctx(q
, set
, hctx
, i
);
2188 static int blk_mq_init_hctx(struct request_queue
*q
,
2189 struct blk_mq_tag_set
*set
,
2190 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
2194 node
= hctx
->numa_node
;
2195 if (node
== NUMA_NO_NODE
)
2196 node
= hctx
->numa_node
= set
->numa_node
;
2198 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
2199 spin_lock_init(&hctx
->lock
);
2200 INIT_LIST_HEAD(&hctx
->dispatch
);
2202 hctx
->flags
= set
->flags
& ~BLK_MQ_F_TAG_SHARED
;
2204 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD
, &hctx
->cpuhp_dead
);
2206 hctx
->tags
= set
->tags
[hctx_idx
];
2209 * Allocate space for all possible cpus to avoid allocation at
2212 hctx
->ctxs
= kmalloc_array_node(nr_cpu_ids
, sizeof(void *),
2213 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
, node
);
2215 goto unregister_cpu_notifier
;
2217 if (sbitmap_init_node(&hctx
->ctx_map
, nr_cpu_ids
, ilog2(8),
2218 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
, node
))
2223 spin_lock_init(&hctx
->dispatch_wait_lock
);
2224 init_waitqueue_func_entry(&hctx
->dispatch_wait
, blk_mq_dispatch_wake
);
2225 INIT_LIST_HEAD(&hctx
->dispatch_wait
.entry
);
2227 if (set
->ops
->init_hctx
&&
2228 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
2231 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
,
2232 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
);
2236 if (blk_mq_init_request(set
, hctx
->fq
->flush_rq
, hctx_idx
, node
))
2239 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
2240 init_srcu_struct(hctx
->srcu
);
2247 if (set
->ops
->exit_hctx
)
2248 set
->ops
->exit_hctx(hctx
, hctx_idx
);
2250 sbitmap_free(&hctx
->ctx_map
);
2253 unregister_cpu_notifier
:
2254 blk_mq_remove_cpuhp(hctx
);
2258 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
2259 unsigned int nr_hw_queues
)
2263 for_each_possible_cpu(i
) {
2264 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2265 struct blk_mq_hw_ctx
*hctx
;
2268 spin_lock_init(&__ctx
->lock
);
2269 INIT_LIST_HEAD(&__ctx
->rq_list
);
2273 * Set local node, IFF we have more than one hw queue. If
2274 * not, we remain on the home node of the device
2276 hctx
= blk_mq_map_queue(q
, i
);
2277 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
2278 hctx
->numa_node
= local_memory_node(cpu_to_node(i
));
2282 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
, int hctx_idx
)
2286 set
->tags
[hctx_idx
] = blk_mq_alloc_rq_map(set
, hctx_idx
,
2287 set
->queue_depth
, set
->reserved_tags
);
2288 if (!set
->tags
[hctx_idx
])
2291 ret
= blk_mq_alloc_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
,
2296 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2297 set
->tags
[hctx_idx
] = NULL
;
2301 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set
*set
,
2302 unsigned int hctx_idx
)
2304 if (set
->tags
[hctx_idx
]) {
2305 blk_mq_free_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
);
2306 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2307 set
->tags
[hctx_idx
] = NULL
;
2311 static void blk_mq_map_swqueue(struct request_queue
*q
)
2313 unsigned int i
, hctx_idx
;
2314 struct blk_mq_hw_ctx
*hctx
;
2315 struct blk_mq_ctx
*ctx
;
2316 struct blk_mq_tag_set
*set
= q
->tag_set
;
2319 * Avoid others reading imcomplete hctx->cpumask through sysfs
2321 mutex_lock(&q
->sysfs_lock
);
2323 queue_for_each_hw_ctx(q
, hctx
, i
) {
2324 cpumask_clear(hctx
->cpumask
);
2326 hctx
->dispatch_from
= NULL
;
2330 * Map software to hardware queues.
2332 * If the cpu isn't present, the cpu is mapped to first hctx.
2334 for_each_possible_cpu(i
) {
2335 hctx_idx
= q
->mq_map
[i
];
2336 /* unmapped hw queue can be remapped after CPU topo changed */
2337 if (!set
->tags
[hctx_idx
] &&
2338 !__blk_mq_alloc_rq_map(set
, hctx_idx
)) {
2340 * If tags initialization fail for some hctx,
2341 * that hctx won't be brought online. In this
2342 * case, remap the current ctx to hctx[0] which
2343 * is guaranteed to always have tags allocated
2348 ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2349 hctx
= blk_mq_map_queue(q
, i
);
2351 cpumask_set_cpu(i
, hctx
->cpumask
);
2352 ctx
->index_hw
= hctx
->nr_ctx
;
2353 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
2356 mutex_unlock(&q
->sysfs_lock
);
2358 queue_for_each_hw_ctx(q
, hctx
, i
) {
2360 * If no software queues are mapped to this hardware queue,
2361 * disable it and free the request entries.
2363 if (!hctx
->nr_ctx
) {
2364 /* Never unmap queue 0. We need it as a
2365 * fallback in case of a new remap fails
2368 if (i
&& set
->tags
[i
])
2369 blk_mq_free_map_and_requests(set
, i
);
2375 hctx
->tags
= set
->tags
[i
];
2376 WARN_ON(!hctx
->tags
);
2379 * Set the map size to the number of mapped software queues.
2380 * This is more accurate and more efficient than looping
2381 * over all possibly mapped software queues.
2383 sbitmap_resize(&hctx
->ctx_map
, hctx
->nr_ctx
);
2386 * Initialize batch roundrobin counts
2388 hctx
->next_cpu
= blk_mq_first_mapped_cpu(hctx
);
2389 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
2394 * Caller needs to ensure that we're either frozen/quiesced, or that
2395 * the queue isn't live yet.
2397 static void queue_set_hctx_shared(struct request_queue
*q
, bool shared
)
2399 struct blk_mq_hw_ctx
*hctx
;
2402 queue_for_each_hw_ctx(q
, hctx
, i
) {
2404 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
2406 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2410 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
,
2413 struct request_queue
*q
;
2415 lockdep_assert_held(&set
->tag_list_lock
);
2417 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2418 blk_mq_freeze_queue(q
);
2419 queue_set_hctx_shared(q
, shared
);
2420 blk_mq_unfreeze_queue(q
);
2424 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
2426 struct blk_mq_tag_set
*set
= q
->tag_set
;
2428 mutex_lock(&set
->tag_list_lock
);
2429 list_del_rcu(&q
->tag_set_list
);
2430 if (list_is_singular(&set
->tag_list
)) {
2431 /* just transitioned to unshared */
2432 set
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2433 /* update existing queue */
2434 blk_mq_update_tag_set_depth(set
, false);
2436 mutex_unlock(&set
->tag_list_lock
);
2437 INIT_LIST_HEAD(&q
->tag_set_list
);
2440 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
2441 struct request_queue
*q
)
2445 mutex_lock(&set
->tag_list_lock
);
2448 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2450 if (!list_empty(&set
->tag_list
) &&
2451 !(set
->flags
& BLK_MQ_F_TAG_SHARED
)) {
2452 set
->flags
|= BLK_MQ_F_TAG_SHARED
;
2453 /* update existing queue */
2454 blk_mq_update_tag_set_depth(set
, true);
2456 if (set
->flags
& BLK_MQ_F_TAG_SHARED
)
2457 queue_set_hctx_shared(q
, true);
2458 list_add_tail_rcu(&q
->tag_set_list
, &set
->tag_list
);
2460 mutex_unlock(&set
->tag_list_lock
);
2464 * It is the actual release handler for mq, but we do it from
2465 * request queue's release handler for avoiding use-after-free
2466 * and headache because q->mq_kobj shouldn't have been introduced,
2467 * but we can't group ctx/kctx kobj without it.
2469 void blk_mq_release(struct request_queue
*q
)
2471 struct blk_mq_hw_ctx
*hctx
;
2474 /* hctx kobj stays in hctx */
2475 queue_for_each_hw_ctx(q
, hctx
, i
) {
2478 kobject_put(&hctx
->kobj
);
2483 kfree(q
->queue_hw_ctx
);
2486 * release .mq_kobj and sw queue's kobject now because
2487 * both share lifetime with request queue.
2489 blk_mq_sysfs_deinit(q
);
2491 free_percpu(q
->queue_ctx
);
2494 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
2496 struct request_queue
*uninit_q
, *q
;
2498 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
, NULL
);
2500 return ERR_PTR(-ENOMEM
);
2502 q
= blk_mq_init_allocated_queue(set
, uninit_q
);
2504 blk_cleanup_queue(uninit_q
);
2508 EXPORT_SYMBOL(blk_mq_init_queue
);
2511 * Helper for setting up a queue with mq ops, given queue depth, and
2512 * the passed in mq ops flags.
2514 struct request_queue
*blk_mq_init_sq_queue(struct blk_mq_tag_set
*set
,
2515 const struct blk_mq_ops
*ops
,
2516 unsigned int queue_depth
,
2517 unsigned int set_flags
)
2519 struct request_queue
*q
;
2522 memset(set
, 0, sizeof(*set
));
2524 set
->nr_hw_queues
= 1;
2525 set
->queue_depth
= queue_depth
;
2526 set
->numa_node
= NUMA_NO_NODE
;
2527 set
->flags
= set_flags
;
2529 ret
= blk_mq_alloc_tag_set(set
);
2531 return ERR_PTR(ret
);
2533 q
= blk_mq_init_queue(set
);
2535 blk_mq_free_tag_set(set
);
2541 EXPORT_SYMBOL(blk_mq_init_sq_queue
);
2543 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set
*tag_set
)
2545 int hw_ctx_size
= sizeof(struct blk_mq_hw_ctx
);
2547 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx
, srcu
),
2548 __alignof__(struct blk_mq_hw_ctx
)) !=
2549 sizeof(struct blk_mq_hw_ctx
));
2551 if (tag_set
->flags
& BLK_MQ_F_BLOCKING
)
2552 hw_ctx_size
+= sizeof(struct srcu_struct
);
2557 static struct blk_mq_hw_ctx
*blk_mq_alloc_and_init_hctx(
2558 struct blk_mq_tag_set
*set
, struct request_queue
*q
,
2559 int hctx_idx
, int node
)
2561 struct blk_mq_hw_ctx
*hctx
;
2563 hctx
= kzalloc_node(blk_mq_hw_ctx_size(set
),
2564 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
2569 if (!zalloc_cpumask_var_node(&hctx
->cpumask
,
2570 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
2576 atomic_set(&hctx
->nr_active
, 0);
2577 hctx
->numa_node
= node
;
2578 hctx
->queue_num
= hctx_idx
;
2580 if (blk_mq_init_hctx(q
, set
, hctx
, hctx_idx
)) {
2581 free_cpumask_var(hctx
->cpumask
);
2585 blk_mq_hctx_kobj_init(hctx
);
2590 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set
*set
,
2591 struct request_queue
*q
)
2594 struct blk_mq_hw_ctx
**hctxs
= q
->queue_hw_ctx
;
2596 /* protect against switching io scheduler */
2597 mutex_lock(&q
->sysfs_lock
);
2598 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2600 struct blk_mq_hw_ctx
*hctx
;
2602 node
= blk_mq_hw_queue_to_node(q
->mq_map
, i
);
2604 * If the hw queue has been mapped to another numa node,
2605 * we need to realloc the hctx. If allocation fails, fallback
2606 * to use the previous one.
2608 if (hctxs
[i
] && (hctxs
[i
]->numa_node
== node
))
2611 hctx
= blk_mq_alloc_and_init_hctx(set
, q
, i
, node
);
2614 blk_mq_exit_hctx(q
, set
, hctxs
[i
], i
);
2615 kobject_put(&hctxs
[i
]->kobj
);
2620 pr_warn("Allocate new hctx on node %d fails,\
2621 fallback to previous one on node %d\n",
2622 node
, hctxs
[i
]->numa_node
);
2628 * Increasing nr_hw_queues fails. Free the newly allocated
2629 * hctxs and keep the previous q->nr_hw_queues.
2631 if (i
!= set
->nr_hw_queues
) {
2632 j
= q
->nr_hw_queues
;
2636 end
= q
->nr_hw_queues
;
2637 q
->nr_hw_queues
= set
->nr_hw_queues
;
2640 for (; j
< end
; j
++) {
2641 struct blk_mq_hw_ctx
*hctx
= hctxs
[j
];
2645 blk_mq_free_map_and_requests(set
, j
);
2646 blk_mq_exit_hctx(q
, set
, hctx
, j
);
2647 kobject_put(&hctx
->kobj
);
2652 mutex_unlock(&q
->sysfs_lock
);
2655 struct request_queue
*blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
2656 struct request_queue
*q
)
2658 /* mark the queue as mq asap */
2659 q
->mq_ops
= set
->ops
;
2661 q
->poll_cb
= blk_stat_alloc_callback(blk_mq_poll_stats_fn
,
2662 blk_mq_poll_stats_bkt
,
2663 BLK_MQ_POLL_STATS_BKTS
, q
);
2667 q
->queue_ctx
= alloc_percpu(struct blk_mq_ctx
);
2671 /* init q->mq_kobj and sw queues' kobjects */
2672 blk_mq_sysfs_init(q
);
2674 q
->queue_hw_ctx
= kcalloc_node(nr_cpu_ids
, sizeof(*(q
->queue_hw_ctx
)),
2675 GFP_KERNEL
, set
->numa_node
);
2676 if (!q
->queue_hw_ctx
)
2679 q
->mq_map
= set
->mq_map
;
2681 blk_mq_realloc_hw_ctxs(set
, q
);
2682 if (!q
->nr_hw_queues
)
2685 INIT_WORK(&q
->timeout_work
, blk_mq_timeout_work
);
2686 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
2688 q
->nr_queues
= nr_cpu_ids
;
2690 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
2692 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
2693 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE
, q
);
2695 q
->sg_reserved_size
= INT_MAX
;
2697 INIT_DELAYED_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
2698 INIT_LIST_HEAD(&q
->requeue_list
);
2699 spin_lock_init(&q
->requeue_lock
);
2701 blk_queue_make_request(q
, blk_mq_make_request
);
2702 if (q
->mq_ops
->poll
)
2703 q
->poll_fn
= blk_mq_poll
;
2706 * Do this after blk_queue_make_request() overrides it...
2708 q
->nr_requests
= set
->queue_depth
;
2711 * Default to classic polling
2715 if (set
->ops
->complete
)
2716 blk_queue_softirq_done(q
, set
->ops
->complete
);
2718 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
2719 blk_mq_add_queue_tag_set(set
, q
);
2720 blk_mq_map_swqueue(q
);
2722 if (!(set
->flags
& BLK_MQ_F_NO_SCHED
)) {
2725 ret
= elevator_init_mq(q
);
2727 return ERR_PTR(ret
);
2733 kfree(q
->queue_hw_ctx
);
2735 free_percpu(q
->queue_ctx
);
2738 return ERR_PTR(-ENOMEM
);
2740 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
2742 void blk_mq_free_queue(struct request_queue
*q
)
2744 struct blk_mq_tag_set
*set
= q
->tag_set
;
2746 blk_mq_del_queue_tag_set(q
);
2747 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2750 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2754 for (i
= 0; i
< set
->nr_hw_queues
; i
++)
2755 if (!__blk_mq_alloc_rq_map(set
, i
))
2762 blk_mq_free_rq_map(set
->tags
[i
]);
2768 * Allocate the request maps associated with this tag_set. Note that this
2769 * may reduce the depth asked for, if memory is tight. set->queue_depth
2770 * will be updated to reflect the allocated depth.
2772 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2777 depth
= set
->queue_depth
;
2779 err
= __blk_mq_alloc_rq_maps(set
);
2783 set
->queue_depth
>>= 1;
2784 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2788 } while (set
->queue_depth
);
2790 if (!set
->queue_depth
|| err
) {
2791 pr_err("blk-mq: failed to allocate request map\n");
2795 if (depth
!= set
->queue_depth
)
2796 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2797 depth
, set
->queue_depth
);
2802 static int blk_mq_update_queue_map(struct blk_mq_tag_set
*set
)
2804 if (set
->ops
->map_queues
) {
2806 * transport .map_queues is usually done in the following
2809 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2810 * mask = get_cpu_mask(queue)
2811 * for_each_cpu(cpu, mask)
2812 * set->mq_map[cpu] = queue;
2815 * When we need to remap, the table has to be cleared for
2816 * killing stale mapping since one CPU may not be mapped
2819 blk_mq_clear_mq_map(set
);
2821 return set
->ops
->map_queues(set
);
2823 return blk_mq_map_queues(set
);
2827 * Alloc a tag set to be associated with one or more request queues.
2828 * May fail with EINVAL for various error conditions. May adjust the
2829 * requested depth down, if it's too large. In that case, the set
2830 * value will be stored in set->queue_depth.
2832 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
2836 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
2838 if (!set
->nr_hw_queues
)
2840 if (!set
->queue_depth
)
2842 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
2845 if (!set
->ops
->queue_rq
)
2848 if (!set
->ops
->get_budget
^ !set
->ops
->put_budget
)
2851 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
2852 pr_info("blk-mq: reduced tag depth to %u\n",
2854 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
2858 * If a crashdump is active, then we are potentially in a very
2859 * memory constrained environment. Limit us to 1 queue and
2860 * 64 tags to prevent using too much memory.
2862 if (is_kdump_kernel()) {
2863 set
->nr_hw_queues
= 1;
2864 set
->queue_depth
= min(64U, set
->queue_depth
);
2867 * There is no use for more h/w queues than cpus.
2869 if (set
->nr_hw_queues
> nr_cpu_ids
)
2870 set
->nr_hw_queues
= nr_cpu_ids
;
2872 set
->tags
= kcalloc_node(nr_cpu_ids
, sizeof(struct blk_mq_tags
*),
2873 GFP_KERNEL
, set
->numa_node
);
2878 set
->mq_map
= kcalloc_node(nr_cpu_ids
, sizeof(*set
->mq_map
),
2879 GFP_KERNEL
, set
->numa_node
);
2883 ret
= blk_mq_update_queue_map(set
);
2885 goto out_free_mq_map
;
2887 ret
= blk_mq_alloc_rq_maps(set
);
2889 goto out_free_mq_map
;
2891 mutex_init(&set
->tag_list_lock
);
2892 INIT_LIST_HEAD(&set
->tag_list
);
2904 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2906 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2910 for (i
= 0; i
< nr_cpu_ids
; i
++)
2911 blk_mq_free_map_and_requests(set
, i
);
2919 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2921 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2923 struct blk_mq_tag_set
*set
= q
->tag_set
;
2924 struct blk_mq_hw_ctx
*hctx
;
2930 blk_mq_freeze_queue(q
);
2931 blk_mq_quiesce_queue(q
);
2934 queue_for_each_hw_ctx(q
, hctx
, i
) {
2938 * If we're using an MQ scheduler, just update the scheduler
2939 * queue depth. This is similar to what the old code would do.
2941 if (!hctx
->sched_tags
) {
2942 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->tags
, nr
,
2945 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->sched_tags
,
2953 q
->nr_requests
= nr
;
2955 blk_mq_unquiesce_queue(q
);
2956 blk_mq_unfreeze_queue(q
);
2962 * request_queue and elevator_type pair.
2963 * It is just used by __blk_mq_update_nr_hw_queues to cache
2964 * the elevator_type associated with a request_queue.
2966 struct blk_mq_qe_pair
{
2967 struct list_head node
;
2968 struct request_queue
*q
;
2969 struct elevator_type
*type
;
2973 * Cache the elevator_type in qe pair list and switch the
2974 * io scheduler to 'none'
2976 static bool blk_mq_elv_switch_none(struct list_head
*head
,
2977 struct request_queue
*q
)
2979 struct blk_mq_qe_pair
*qe
;
2984 qe
= kmalloc(sizeof(*qe
), GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
);
2988 INIT_LIST_HEAD(&qe
->node
);
2990 qe
->type
= q
->elevator
->type
;
2991 list_add(&qe
->node
, head
);
2993 mutex_lock(&q
->sysfs_lock
);
2995 * After elevator_switch_mq, the previous elevator_queue will be
2996 * released by elevator_release. The reference of the io scheduler
2997 * module get by elevator_get will also be put. So we need to get
2998 * a reference of the io scheduler module here to prevent it to be
3001 __module_get(qe
->type
->elevator_owner
);
3002 elevator_switch_mq(q
, NULL
);
3003 mutex_unlock(&q
->sysfs_lock
);
3008 static void blk_mq_elv_switch_back(struct list_head
*head
,
3009 struct request_queue
*q
)
3011 struct blk_mq_qe_pair
*qe
;
3012 struct elevator_type
*t
= NULL
;
3014 list_for_each_entry(qe
, head
, node
)
3023 list_del(&qe
->node
);
3026 mutex_lock(&q
->sysfs_lock
);
3027 elevator_switch_mq(q
, t
);
3028 mutex_unlock(&q
->sysfs_lock
);
3031 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
,
3034 struct request_queue
*q
;
3036 int prev_nr_hw_queues
;
3038 lockdep_assert_held(&set
->tag_list_lock
);
3040 if (nr_hw_queues
> nr_cpu_ids
)
3041 nr_hw_queues
= nr_cpu_ids
;
3042 if (nr_hw_queues
< 1 || nr_hw_queues
== set
->nr_hw_queues
)
3045 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3046 blk_mq_freeze_queue(q
);
3048 * Sync with blk_mq_queue_tag_busy_iter.
3052 * Switch IO scheduler to 'none', cleaning up the data associated
3053 * with the previous scheduler. We will switch back once we are done
3054 * updating the new sw to hw queue mappings.
3056 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3057 if (!blk_mq_elv_switch_none(&head
, q
))
3060 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
3061 blk_mq_debugfs_unregister_hctxs(q
);
3062 blk_mq_sysfs_unregister(q
);
3065 prev_nr_hw_queues
= set
->nr_hw_queues
;
3066 set
->nr_hw_queues
= nr_hw_queues
;
3067 blk_mq_update_queue_map(set
);
3069 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
3070 blk_mq_realloc_hw_ctxs(set
, q
);
3071 if (q
->nr_hw_queues
!= set
->nr_hw_queues
) {
3072 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3073 nr_hw_queues
, prev_nr_hw_queues
);
3074 set
->nr_hw_queues
= prev_nr_hw_queues
;
3075 blk_mq_map_queues(set
);
3078 blk_mq_map_swqueue(q
);
3081 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
3082 blk_mq_sysfs_register(q
);
3083 blk_mq_debugfs_register_hctxs(q
);
3087 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3088 blk_mq_elv_switch_back(&head
, q
);
3090 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3091 blk_mq_unfreeze_queue(q
);
3094 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
, int nr_hw_queues
)
3096 mutex_lock(&set
->tag_list_lock
);
3097 __blk_mq_update_nr_hw_queues(set
, nr_hw_queues
);
3098 mutex_unlock(&set
->tag_list_lock
);
3100 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues
);
3102 /* Enable polling stats and return whether they were already enabled. */
3103 static bool blk_poll_stats_enable(struct request_queue
*q
)
3105 if (test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
3106 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS
, q
))
3108 blk_stat_add_callback(q
, q
->poll_cb
);
3112 static void blk_mq_poll_stats_start(struct request_queue
*q
)
3115 * We don't arm the callback if polling stats are not enabled or the
3116 * callback is already active.
3118 if (!test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
3119 blk_stat_is_active(q
->poll_cb
))
3122 blk_stat_activate_msecs(q
->poll_cb
, 100);
3125 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
)
3127 struct request_queue
*q
= cb
->data
;
3130 for (bucket
= 0; bucket
< BLK_MQ_POLL_STATS_BKTS
; bucket
++) {
3131 if (cb
->stat
[bucket
].nr_samples
)
3132 q
->poll_stat
[bucket
] = cb
->stat
[bucket
];
3136 static unsigned long blk_mq_poll_nsecs(struct request_queue
*q
,
3137 struct blk_mq_hw_ctx
*hctx
,
3140 unsigned long ret
= 0;
3144 * If stats collection isn't on, don't sleep but turn it on for
3147 if (!blk_poll_stats_enable(q
))
3151 * As an optimistic guess, use half of the mean service time
3152 * for this type of request. We can (and should) make this smarter.
3153 * For instance, if the completion latencies are tight, we can
3154 * get closer than just half the mean. This is especially
3155 * important on devices where the completion latencies are longer
3156 * than ~10 usec. We do use the stats for the relevant IO size
3157 * if available which does lead to better estimates.
3159 bucket
= blk_mq_poll_stats_bkt(rq
);
3163 if (q
->poll_stat
[bucket
].nr_samples
)
3164 ret
= (q
->poll_stat
[bucket
].mean
+ 1) / 2;
3169 static bool blk_mq_poll_hybrid_sleep(struct request_queue
*q
,
3170 struct blk_mq_hw_ctx
*hctx
,
3173 struct hrtimer_sleeper hs
;
3174 enum hrtimer_mode mode
;
3178 if (rq
->rq_flags
& RQF_MQ_POLL_SLEPT
)
3184 * -1: don't ever hybrid sleep
3185 * 0: use half of prev avg
3186 * >0: use this specific value
3188 if (q
->poll_nsec
== -1)
3190 else if (q
->poll_nsec
> 0)
3191 nsecs
= q
->poll_nsec
;
3193 nsecs
= blk_mq_poll_nsecs(q
, hctx
, rq
);
3198 rq
->rq_flags
|= RQF_MQ_POLL_SLEPT
;
3201 * This will be replaced with the stats tracking code, using
3202 * 'avg_completion_time / 2' as the pre-sleep target.
3206 mode
= HRTIMER_MODE_REL
;
3207 hrtimer_init_on_stack(&hs
.timer
, CLOCK_MONOTONIC
, mode
);
3208 hrtimer_set_expires(&hs
.timer
, kt
);
3210 hrtimer_init_sleeper(&hs
, current
);
3212 if (blk_mq_rq_state(rq
) == MQ_RQ_COMPLETE
)
3214 set_current_state(TASK_UNINTERRUPTIBLE
);
3215 hrtimer_start_expires(&hs
.timer
, mode
);
3218 hrtimer_cancel(&hs
.timer
);
3219 mode
= HRTIMER_MODE_ABS
;
3220 } while (hs
.task
&& !signal_pending(current
));
3222 __set_current_state(TASK_RUNNING
);
3223 destroy_hrtimer_on_stack(&hs
.timer
);
3227 static bool __blk_mq_poll(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
3229 struct request_queue
*q
= hctx
->queue
;
3233 * If we sleep, have the caller restart the poll loop to reset
3234 * the state. Like for the other success return cases, the
3235 * caller is responsible for checking if the IO completed. If
3236 * the IO isn't complete, we'll get called again and will go
3237 * straight to the busy poll loop.
3239 if (blk_mq_poll_hybrid_sleep(q
, hctx
, rq
))
3242 hctx
->poll_considered
++;
3244 state
= current
->state
;
3245 while (!need_resched()) {
3248 hctx
->poll_invoked
++;
3250 ret
= q
->mq_ops
->poll(hctx
, rq
->tag
);
3252 hctx
->poll_success
++;
3253 set_current_state(TASK_RUNNING
);
3257 if (signal_pending_state(state
, current
))
3258 set_current_state(TASK_RUNNING
);
3260 if (current
->state
== TASK_RUNNING
)
3267 __set_current_state(TASK_RUNNING
);
3271 static bool blk_mq_poll(struct request_queue
*q
, blk_qc_t cookie
)
3273 struct blk_mq_hw_ctx
*hctx
;
3276 if (!test_bit(QUEUE_FLAG_POLL
, &q
->queue_flags
))
3279 hctx
= q
->queue_hw_ctx
[blk_qc_t_to_queue_num(cookie
)];
3280 if (!blk_qc_t_is_internal(cookie
))
3281 rq
= blk_mq_tag_to_rq(hctx
->tags
, blk_qc_t_to_tag(cookie
));
3283 rq
= blk_mq_tag_to_rq(hctx
->sched_tags
, blk_qc_t_to_tag(cookie
));
3285 * With scheduling, if the request has completed, we'll
3286 * get a NULL return here, as we clear the sched tag when
3287 * that happens. The request still remains valid, like always,
3288 * so we should be safe with just the NULL check.
3294 return __blk_mq_poll(hctx
, rq
);
3297 static int __init
blk_mq_init(void)
3299 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD
, "block/mq:dead", NULL
,
3300 blk_mq_hctx_notify_dead
);
3303 subsys_initcall(blk_mq_init
);