crypto: keywrap - memzero the correct memory
[linux/fpc-iii.git] / drivers / cpufreq / cpufreq_governor.c
blobd994b0f652d32320c525801d140e23b2d4607329
1 /*
2 * drivers/cpufreq/cpufreq_governor.c
4 * CPUFREQ governors common code
6 * Copyright (C) 2001 Russell King
7 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
23 #include "cpufreq_governor.h"
25 static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
27 if (have_governor_per_policy())
28 return dbs_data->cdata->attr_group_gov_pol;
29 else
30 return dbs_data->cdata->attr_group_gov_sys;
33 void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
35 struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
36 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
37 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
38 struct cpufreq_policy *policy = cdbs->shared->policy;
39 unsigned int sampling_rate;
40 unsigned int max_load = 0;
41 unsigned int ignore_nice;
42 unsigned int j;
44 if (dbs_data->cdata->governor == GOV_ONDEMAND) {
45 struct od_cpu_dbs_info_s *od_dbs_info =
46 dbs_data->cdata->get_cpu_dbs_info_s(cpu);
49 * Sometimes, the ondemand governor uses an additional
50 * multiplier to give long delays. So apply this multiplier to
51 * the 'sampling_rate', so as to keep the wake-up-from-idle
52 * detection logic a bit conservative.
54 sampling_rate = od_tuners->sampling_rate;
55 sampling_rate *= od_dbs_info->rate_mult;
57 ignore_nice = od_tuners->ignore_nice_load;
58 } else {
59 sampling_rate = cs_tuners->sampling_rate;
60 ignore_nice = cs_tuners->ignore_nice_load;
63 /* Get Absolute Load */
64 for_each_cpu(j, policy->cpus) {
65 struct cpu_dbs_info *j_cdbs;
66 u64 cur_wall_time, cur_idle_time;
67 unsigned int idle_time, wall_time;
68 unsigned int load;
69 int io_busy = 0;
71 j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
74 * For the purpose of ondemand, waiting for disk IO is
75 * an indication that you're performance critical, and
76 * not that the system is actually idle. So do not add
77 * the iowait time to the cpu idle time.
79 if (dbs_data->cdata->governor == GOV_ONDEMAND)
80 io_busy = od_tuners->io_is_busy;
81 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
83 wall_time = (unsigned int)
84 (cur_wall_time - j_cdbs->prev_cpu_wall);
85 j_cdbs->prev_cpu_wall = cur_wall_time;
87 idle_time = (unsigned int)
88 (cur_idle_time - j_cdbs->prev_cpu_idle);
89 j_cdbs->prev_cpu_idle = cur_idle_time;
91 if (ignore_nice) {
92 u64 cur_nice;
93 unsigned long cur_nice_jiffies;
95 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
96 cdbs->prev_cpu_nice;
98 * Assumption: nice time between sampling periods will
99 * be less than 2^32 jiffies for 32 bit sys
101 cur_nice_jiffies = (unsigned long)
102 cputime64_to_jiffies64(cur_nice);
104 cdbs->prev_cpu_nice =
105 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
106 idle_time += jiffies_to_usecs(cur_nice_jiffies);
109 if (unlikely(!wall_time || wall_time < idle_time))
110 continue;
113 * If the CPU had gone completely idle, and a task just woke up
114 * on this CPU now, it would be unfair to calculate 'load' the
115 * usual way for this elapsed time-window, because it will show
116 * near-zero load, irrespective of how CPU intensive that task
117 * actually is. This is undesirable for latency-sensitive bursty
118 * workloads.
120 * To avoid this, we reuse the 'load' from the previous
121 * time-window and give this task a chance to start with a
122 * reasonably high CPU frequency. (However, we shouldn't over-do
123 * this copy, lest we get stuck at a high load (high frequency)
124 * for too long, even when the current system load has actually
125 * dropped down. So we perform the copy only once, upon the
126 * first wake-up from idle.)
128 * Detecting this situation is easy: the governor's deferrable
129 * timer would not have fired during CPU-idle periods. Hence
130 * an unusually large 'wall_time' (as compared to the sampling
131 * rate) indicates this scenario.
133 * prev_load can be zero in two cases and we must recalculate it
134 * for both cases:
135 * - during long idle intervals
136 * - explicitly set to zero
138 if (unlikely(wall_time > (2 * sampling_rate) &&
139 j_cdbs->prev_load)) {
140 load = j_cdbs->prev_load;
143 * Perform a destructive copy, to ensure that we copy
144 * the previous load only once, upon the first wake-up
145 * from idle.
147 j_cdbs->prev_load = 0;
148 } else {
149 load = 100 * (wall_time - idle_time) / wall_time;
150 j_cdbs->prev_load = load;
153 if (load > max_load)
154 max_load = load;
157 dbs_data->cdata->gov_check_cpu(cpu, max_load);
159 EXPORT_SYMBOL_GPL(dbs_check_cpu);
161 static inline void __gov_queue_work(int cpu, struct dbs_data *dbs_data,
162 unsigned int delay)
164 struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
166 mod_delayed_work_on(cpu, system_wq, &cdbs->dwork, delay);
169 void gov_queue_work(struct dbs_data *dbs_data, struct cpufreq_policy *policy,
170 unsigned int delay, bool all_cpus)
172 int i;
174 if (!all_cpus) {
176 * Use raw_smp_processor_id() to avoid preemptible warnings.
177 * We know that this is only called with all_cpus == false from
178 * works that have been queued with *_work_on() functions and
179 * those works are canceled during CPU_DOWN_PREPARE so they
180 * can't possibly run on any other CPU.
182 __gov_queue_work(raw_smp_processor_id(), dbs_data, delay);
183 } else {
184 for_each_cpu(i, policy->cpus)
185 __gov_queue_work(i, dbs_data, delay);
188 EXPORT_SYMBOL_GPL(gov_queue_work);
190 static inline void gov_cancel_work(struct dbs_data *dbs_data,
191 struct cpufreq_policy *policy)
193 struct cpu_dbs_info *cdbs;
194 int i;
196 for_each_cpu(i, policy->cpus) {
197 cdbs = dbs_data->cdata->get_cpu_cdbs(i);
198 cancel_delayed_work_sync(&cdbs->dwork);
202 /* Will return if we need to evaluate cpu load again or not */
203 static bool need_load_eval(struct cpu_common_dbs_info *shared,
204 unsigned int sampling_rate)
206 if (policy_is_shared(shared->policy)) {
207 ktime_t time_now = ktime_get();
208 s64 delta_us = ktime_us_delta(time_now, shared->time_stamp);
210 /* Do nothing if we recently have sampled */
211 if (delta_us < (s64)(sampling_rate / 2))
212 return false;
213 else
214 shared->time_stamp = time_now;
217 return true;
220 static void dbs_timer(struct work_struct *work)
222 struct cpu_dbs_info *cdbs = container_of(work, struct cpu_dbs_info,
223 dwork.work);
224 struct cpu_common_dbs_info *shared = cdbs->shared;
225 struct cpufreq_policy *policy;
226 struct dbs_data *dbs_data;
227 unsigned int sampling_rate, delay;
228 bool modify_all = true;
230 mutex_lock(&shared->timer_mutex);
232 policy = shared->policy;
235 * Governor might already be disabled and there is no point continuing
236 * with the work-handler.
238 if (!policy)
239 goto unlock;
241 dbs_data = policy->governor_data;
243 if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
244 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
246 sampling_rate = cs_tuners->sampling_rate;
247 } else {
248 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
250 sampling_rate = od_tuners->sampling_rate;
253 if (!need_load_eval(cdbs->shared, sampling_rate))
254 modify_all = false;
256 delay = dbs_data->cdata->gov_dbs_timer(cdbs, dbs_data, modify_all);
257 gov_queue_work(dbs_data, policy, delay, modify_all);
259 unlock:
260 mutex_unlock(&shared->timer_mutex);
263 static void set_sampling_rate(struct dbs_data *dbs_data,
264 unsigned int sampling_rate)
266 if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
267 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
268 cs_tuners->sampling_rate = sampling_rate;
269 } else {
270 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
271 od_tuners->sampling_rate = sampling_rate;
275 static int alloc_common_dbs_info(struct cpufreq_policy *policy,
276 struct common_dbs_data *cdata)
278 struct cpu_common_dbs_info *shared;
279 int j;
281 /* Allocate memory for the common information for policy->cpus */
282 shared = kzalloc(sizeof(*shared), GFP_KERNEL);
283 if (!shared)
284 return -ENOMEM;
286 /* Set shared for all CPUs, online+offline */
287 for_each_cpu(j, policy->related_cpus)
288 cdata->get_cpu_cdbs(j)->shared = shared;
290 return 0;
293 static void free_common_dbs_info(struct cpufreq_policy *policy,
294 struct common_dbs_data *cdata)
296 struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
297 struct cpu_common_dbs_info *shared = cdbs->shared;
298 int j;
300 for_each_cpu(j, policy->cpus)
301 cdata->get_cpu_cdbs(j)->shared = NULL;
303 kfree(shared);
306 static int cpufreq_governor_init(struct cpufreq_policy *policy,
307 struct dbs_data *dbs_data,
308 struct common_dbs_data *cdata)
310 unsigned int latency;
311 int ret;
313 /* State should be equivalent to EXIT */
314 if (policy->governor_data)
315 return -EBUSY;
317 if (dbs_data) {
318 if (WARN_ON(have_governor_per_policy()))
319 return -EINVAL;
321 ret = alloc_common_dbs_info(policy, cdata);
322 if (ret)
323 return ret;
325 dbs_data->usage_count++;
326 policy->governor_data = dbs_data;
327 return 0;
330 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
331 if (!dbs_data)
332 return -ENOMEM;
334 ret = alloc_common_dbs_info(policy, cdata);
335 if (ret)
336 goto free_dbs_data;
338 dbs_data->cdata = cdata;
339 dbs_data->usage_count = 1;
341 ret = cdata->init(dbs_data, !policy->governor->initialized);
342 if (ret)
343 goto free_common_dbs_info;
345 /* policy latency is in ns. Convert it to us first */
346 latency = policy->cpuinfo.transition_latency / 1000;
347 if (latency == 0)
348 latency = 1;
350 /* Bring kernel and HW constraints together */
351 dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
352 MIN_LATENCY_MULTIPLIER * latency);
353 set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
354 latency * LATENCY_MULTIPLIER));
356 if (!have_governor_per_policy())
357 cdata->gdbs_data = dbs_data;
359 policy->governor_data = dbs_data;
361 ret = sysfs_create_group(get_governor_parent_kobj(policy),
362 get_sysfs_attr(dbs_data));
363 if (ret)
364 goto reset_gdbs_data;
366 return 0;
368 reset_gdbs_data:
369 policy->governor_data = NULL;
371 if (!have_governor_per_policy())
372 cdata->gdbs_data = NULL;
373 cdata->exit(dbs_data, !policy->governor->initialized);
374 free_common_dbs_info:
375 free_common_dbs_info(policy, cdata);
376 free_dbs_data:
377 kfree(dbs_data);
378 return ret;
381 static int cpufreq_governor_exit(struct cpufreq_policy *policy,
382 struct dbs_data *dbs_data)
384 struct common_dbs_data *cdata = dbs_data->cdata;
385 struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
387 /* State should be equivalent to INIT */
388 if (!cdbs->shared || cdbs->shared->policy)
389 return -EBUSY;
391 if (!--dbs_data->usage_count) {
392 sysfs_remove_group(get_governor_parent_kobj(policy),
393 get_sysfs_attr(dbs_data));
395 policy->governor_data = NULL;
397 if (!have_governor_per_policy())
398 cdata->gdbs_data = NULL;
400 cdata->exit(dbs_data, policy->governor->initialized == 1);
401 kfree(dbs_data);
402 } else {
403 policy->governor_data = NULL;
406 free_common_dbs_info(policy, cdata);
407 return 0;
410 static int cpufreq_governor_start(struct cpufreq_policy *policy,
411 struct dbs_data *dbs_data)
413 struct common_dbs_data *cdata = dbs_data->cdata;
414 unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
415 struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
416 struct cpu_common_dbs_info *shared = cdbs->shared;
417 int io_busy = 0;
419 if (!policy->cur)
420 return -EINVAL;
422 /* State should be equivalent to INIT */
423 if (!shared || shared->policy)
424 return -EBUSY;
426 if (cdata->governor == GOV_CONSERVATIVE) {
427 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
429 sampling_rate = cs_tuners->sampling_rate;
430 ignore_nice = cs_tuners->ignore_nice_load;
431 } else {
432 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
434 sampling_rate = od_tuners->sampling_rate;
435 ignore_nice = od_tuners->ignore_nice_load;
436 io_busy = od_tuners->io_is_busy;
439 shared->policy = policy;
440 shared->time_stamp = ktime_get();
441 mutex_init(&shared->timer_mutex);
443 for_each_cpu(j, policy->cpus) {
444 struct cpu_dbs_info *j_cdbs = cdata->get_cpu_cdbs(j);
445 unsigned int prev_load;
447 j_cdbs->prev_cpu_idle =
448 get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
450 prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
451 j_cdbs->prev_cpu_idle);
452 j_cdbs->prev_load = 100 * prev_load /
453 (unsigned int)j_cdbs->prev_cpu_wall;
455 if (ignore_nice)
456 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
458 INIT_DEFERRABLE_WORK(&j_cdbs->dwork, dbs_timer);
461 if (cdata->governor == GOV_CONSERVATIVE) {
462 struct cs_cpu_dbs_info_s *cs_dbs_info =
463 cdata->get_cpu_dbs_info_s(cpu);
465 cs_dbs_info->down_skip = 0;
466 cs_dbs_info->requested_freq = policy->cur;
467 } else {
468 struct od_ops *od_ops = cdata->gov_ops;
469 struct od_cpu_dbs_info_s *od_dbs_info = cdata->get_cpu_dbs_info_s(cpu);
471 od_dbs_info->rate_mult = 1;
472 od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
473 od_ops->powersave_bias_init_cpu(cpu);
476 gov_queue_work(dbs_data, policy, delay_for_sampling_rate(sampling_rate),
477 true);
478 return 0;
481 static int cpufreq_governor_stop(struct cpufreq_policy *policy,
482 struct dbs_data *dbs_data)
484 struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(policy->cpu);
485 struct cpu_common_dbs_info *shared = cdbs->shared;
487 /* State should be equivalent to START */
488 if (!shared || !shared->policy)
489 return -EBUSY;
492 * Work-handler must see this updated, as it should not proceed any
493 * further after governor is disabled. And so timer_mutex is taken while
494 * updating this value.
496 mutex_lock(&shared->timer_mutex);
497 shared->policy = NULL;
498 mutex_unlock(&shared->timer_mutex);
500 gov_cancel_work(dbs_data, policy);
502 mutex_destroy(&shared->timer_mutex);
503 return 0;
506 static int cpufreq_governor_limits(struct cpufreq_policy *policy,
507 struct dbs_data *dbs_data)
509 struct common_dbs_data *cdata = dbs_data->cdata;
510 unsigned int cpu = policy->cpu;
511 struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
513 /* State should be equivalent to START */
514 if (!cdbs->shared || !cdbs->shared->policy)
515 return -EBUSY;
517 mutex_lock(&cdbs->shared->timer_mutex);
518 if (policy->max < cdbs->shared->policy->cur)
519 __cpufreq_driver_target(cdbs->shared->policy, policy->max,
520 CPUFREQ_RELATION_H);
521 else if (policy->min > cdbs->shared->policy->cur)
522 __cpufreq_driver_target(cdbs->shared->policy, policy->min,
523 CPUFREQ_RELATION_L);
524 dbs_check_cpu(dbs_data, cpu);
525 mutex_unlock(&cdbs->shared->timer_mutex);
527 return 0;
530 int cpufreq_governor_dbs(struct cpufreq_policy *policy,
531 struct common_dbs_data *cdata, unsigned int event)
533 struct dbs_data *dbs_data;
534 int ret;
536 /* Lock governor to block concurrent initialization of governor */
537 mutex_lock(&cdata->mutex);
539 if (have_governor_per_policy())
540 dbs_data = policy->governor_data;
541 else
542 dbs_data = cdata->gdbs_data;
544 if (!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT)) {
545 ret = -EINVAL;
546 goto unlock;
549 switch (event) {
550 case CPUFREQ_GOV_POLICY_INIT:
551 ret = cpufreq_governor_init(policy, dbs_data, cdata);
552 break;
553 case CPUFREQ_GOV_POLICY_EXIT:
554 ret = cpufreq_governor_exit(policy, dbs_data);
555 break;
556 case CPUFREQ_GOV_START:
557 ret = cpufreq_governor_start(policy, dbs_data);
558 break;
559 case CPUFREQ_GOV_STOP:
560 ret = cpufreq_governor_stop(policy, dbs_data);
561 break;
562 case CPUFREQ_GOV_LIMITS:
563 ret = cpufreq_governor_limits(policy, dbs_data);
564 break;
565 default:
566 ret = -EINVAL;
569 unlock:
570 mutex_unlock(&cdata->mutex);
572 return ret;
574 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);