2 * intel_pstate.c: Native P state management for Intel processors
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <linux/vmalloc.h>
30 #include <trace/events/power.h>
32 #include <asm/div64.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
37 #define ATOM_RATIOS 0x66a
38 #define ATOM_VIDS 0x66b
39 #define ATOM_TURBO_RATIOS 0x66c
40 #define ATOM_TURBO_VIDS 0x66d
43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44 #define fp_toint(X) ((X) >> FRAC_BITS)
46 static inline int32_t mul_fp(int32_t x
, int32_t y
)
48 return ((int64_t)x
* (int64_t)y
) >> FRAC_BITS
;
51 static inline int32_t div_fp(s64 x
, s64 y
)
53 return div64_s64((int64_t)x
<< FRAC_BITS
, y
);
56 static inline int ceiling_fp(int32_t x
)
61 mask
= (1 << FRAC_BITS
) - 1;
68 int32_t core_pct_busy
;
80 int max_pstate_physical
;
105 struct timer_list timer
;
107 struct pstate_data pstate
;
111 ktime_t last_sample_time
;
115 struct sample sample
;
118 static struct cpudata
**all_cpu_data
;
119 struct pstate_adjust_policy
{
128 struct pstate_funcs
{
129 int (*get_max
)(void);
130 int (*get_max_physical
)(void);
131 int (*get_min
)(void);
132 int (*get_turbo
)(void);
133 int (*get_scaling
)(void);
134 void (*set
)(struct cpudata
*, int pstate
);
135 void (*get_vid
)(struct cpudata
*);
138 struct cpu_defaults
{
139 struct pstate_adjust_policy pid_policy
;
140 struct pstate_funcs funcs
;
143 static struct pstate_adjust_policy pid_params
;
144 static struct pstate_funcs pstate_funcs
;
145 static int hwp_active
;
160 static struct perf_limits performance_limits
= {
164 .max_perf
= int_tofp(1),
166 .min_perf
= int_tofp(1),
167 .max_policy_pct
= 100,
168 .max_sysfs_pct
= 100,
173 static struct perf_limits powersave_limits
= {
177 .max_perf
= int_tofp(1),
180 .max_policy_pct
= 100,
181 .max_sysfs_pct
= 100,
186 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
187 static struct perf_limits
*limits
= &performance_limits
;
189 static struct perf_limits
*limits
= &powersave_limits
;
192 static inline void pid_reset(struct _pid
*pid
, int setpoint
, int busy
,
193 int deadband
, int integral
) {
194 pid
->setpoint
= setpoint
;
195 pid
->deadband
= deadband
;
196 pid
->integral
= int_tofp(integral
);
197 pid
->last_err
= int_tofp(setpoint
) - int_tofp(busy
);
200 static inline void pid_p_gain_set(struct _pid
*pid
, int percent
)
202 pid
->p_gain
= div_fp(int_tofp(percent
), int_tofp(100));
205 static inline void pid_i_gain_set(struct _pid
*pid
, int percent
)
207 pid
->i_gain
= div_fp(int_tofp(percent
), int_tofp(100));
210 static inline void pid_d_gain_set(struct _pid
*pid
, int percent
)
212 pid
->d_gain
= div_fp(int_tofp(percent
), int_tofp(100));
215 static signed int pid_calc(struct _pid
*pid
, int32_t busy
)
218 int32_t pterm
, dterm
, fp_error
;
219 int32_t integral_limit
;
221 fp_error
= int_tofp(pid
->setpoint
) - busy
;
223 if (abs(fp_error
) <= int_tofp(pid
->deadband
))
226 pterm
= mul_fp(pid
->p_gain
, fp_error
);
228 pid
->integral
+= fp_error
;
231 * We limit the integral here so that it will never
232 * get higher than 30. This prevents it from becoming
233 * too large an input over long periods of time and allows
234 * it to get factored out sooner.
236 * The value of 30 was chosen through experimentation.
238 integral_limit
= int_tofp(30);
239 if (pid
->integral
> integral_limit
)
240 pid
->integral
= integral_limit
;
241 if (pid
->integral
< -integral_limit
)
242 pid
->integral
= -integral_limit
;
244 dterm
= mul_fp(pid
->d_gain
, fp_error
- pid
->last_err
);
245 pid
->last_err
= fp_error
;
247 result
= pterm
+ mul_fp(pid
->integral
, pid
->i_gain
) + dterm
;
248 result
= result
+ (1 << (FRAC_BITS
-1));
249 return (signed int)fp_toint(result
);
252 static inline void intel_pstate_busy_pid_reset(struct cpudata
*cpu
)
254 pid_p_gain_set(&cpu
->pid
, pid_params
.p_gain_pct
);
255 pid_d_gain_set(&cpu
->pid
, pid_params
.d_gain_pct
);
256 pid_i_gain_set(&cpu
->pid
, pid_params
.i_gain_pct
);
258 pid_reset(&cpu
->pid
, pid_params
.setpoint
, 100, pid_params
.deadband
, 0);
261 static inline void intel_pstate_reset_all_pid(void)
265 for_each_online_cpu(cpu
) {
266 if (all_cpu_data
[cpu
])
267 intel_pstate_busy_pid_reset(all_cpu_data
[cpu
]);
271 static inline void update_turbo_state(void)
276 cpu
= all_cpu_data
[0];
277 rdmsrl(MSR_IA32_MISC_ENABLE
, misc_en
);
278 limits
->turbo_disabled
=
279 (misc_en
& MSR_IA32_MISC_ENABLE_TURBO_DISABLE
||
280 cpu
->pstate
.max_pstate
== cpu
->pstate
.turbo_pstate
);
283 static void intel_pstate_hwp_set(void)
285 int min
, hw_min
, max
, hw_max
, cpu
, range
, adj_range
;
288 rdmsrl(MSR_HWP_CAPABILITIES
, cap
);
289 hw_min
= HWP_LOWEST_PERF(cap
);
290 hw_max
= HWP_HIGHEST_PERF(cap
);
291 range
= hw_max
- hw_min
;
295 for_each_online_cpu(cpu
) {
296 rdmsrl_on_cpu(cpu
, MSR_HWP_REQUEST
, &value
);
297 adj_range
= limits
->min_perf_pct
* range
/ 100;
298 min
= hw_min
+ adj_range
;
299 value
&= ~HWP_MIN_PERF(~0L);
300 value
|= HWP_MIN_PERF(min
);
302 adj_range
= limits
->max_perf_pct
* range
/ 100;
303 max
= hw_min
+ adj_range
;
304 if (limits
->no_turbo
) {
305 hw_max
= HWP_GUARANTEED_PERF(cap
);
310 value
&= ~HWP_MAX_PERF(~0L);
311 value
|= HWP_MAX_PERF(max
);
312 wrmsrl_on_cpu(cpu
, MSR_HWP_REQUEST
, value
);
318 /************************** debugfs begin ************************/
319 static int pid_param_set(void *data
, u64 val
)
322 intel_pstate_reset_all_pid();
326 static int pid_param_get(void *data
, u64
*val
)
331 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param
, pid_param_get
, pid_param_set
, "%llu\n");
338 static struct pid_param pid_files
[] = {
339 {"sample_rate_ms", &pid_params
.sample_rate_ms
},
340 {"d_gain_pct", &pid_params
.d_gain_pct
},
341 {"i_gain_pct", &pid_params
.i_gain_pct
},
342 {"deadband", &pid_params
.deadband
},
343 {"setpoint", &pid_params
.setpoint
},
344 {"p_gain_pct", &pid_params
.p_gain_pct
},
348 static void __init
intel_pstate_debug_expose_params(void)
350 struct dentry
*debugfs_parent
;
355 debugfs_parent
= debugfs_create_dir("pstate_snb", NULL
);
356 if (IS_ERR_OR_NULL(debugfs_parent
))
358 while (pid_files
[i
].name
) {
359 debugfs_create_file(pid_files
[i
].name
, 0660,
360 debugfs_parent
, pid_files
[i
].value
,
366 /************************** debugfs end ************************/
368 /************************** sysfs begin ************************/
369 #define show_one(file_name, object) \
370 static ssize_t show_##file_name \
371 (struct kobject *kobj, struct attribute *attr, char *buf) \
373 return sprintf(buf, "%u\n", limits->object); \
376 static ssize_t
show_turbo_pct(struct kobject
*kobj
,
377 struct attribute
*attr
, char *buf
)
380 int total
, no_turbo
, turbo_pct
;
383 cpu
= all_cpu_data
[0];
385 total
= cpu
->pstate
.turbo_pstate
- cpu
->pstate
.min_pstate
+ 1;
386 no_turbo
= cpu
->pstate
.max_pstate
- cpu
->pstate
.min_pstate
+ 1;
387 turbo_fp
= div_fp(int_tofp(no_turbo
), int_tofp(total
));
388 turbo_pct
= 100 - fp_toint(mul_fp(turbo_fp
, int_tofp(100)));
389 return sprintf(buf
, "%u\n", turbo_pct
);
392 static ssize_t
show_num_pstates(struct kobject
*kobj
,
393 struct attribute
*attr
, char *buf
)
398 cpu
= all_cpu_data
[0];
399 total
= cpu
->pstate
.turbo_pstate
- cpu
->pstate
.min_pstate
+ 1;
400 return sprintf(buf
, "%u\n", total
);
403 static ssize_t
show_no_turbo(struct kobject
*kobj
,
404 struct attribute
*attr
, char *buf
)
408 update_turbo_state();
409 if (limits
->turbo_disabled
)
410 ret
= sprintf(buf
, "%u\n", limits
->turbo_disabled
);
412 ret
= sprintf(buf
, "%u\n", limits
->no_turbo
);
417 static ssize_t
store_no_turbo(struct kobject
*a
, struct attribute
*b
,
418 const char *buf
, size_t count
)
423 ret
= sscanf(buf
, "%u", &input
);
427 update_turbo_state();
428 if (limits
->turbo_disabled
) {
429 pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
433 limits
->no_turbo
= clamp_t(int, input
, 0, 1);
436 intel_pstate_hwp_set();
441 static ssize_t
store_max_perf_pct(struct kobject
*a
, struct attribute
*b
,
442 const char *buf
, size_t count
)
447 ret
= sscanf(buf
, "%u", &input
);
451 limits
->max_sysfs_pct
= clamp_t(int, input
, 0 , 100);
452 limits
->max_perf_pct
= min(limits
->max_policy_pct
,
453 limits
->max_sysfs_pct
);
454 limits
->max_perf_pct
= max(limits
->min_policy_pct
,
455 limits
->max_perf_pct
);
456 limits
->max_perf_pct
= max(limits
->min_perf_pct
,
457 limits
->max_perf_pct
);
458 limits
->max_perf
= div_fp(int_tofp(limits
->max_perf_pct
),
462 intel_pstate_hwp_set();
466 static ssize_t
store_min_perf_pct(struct kobject
*a
, struct attribute
*b
,
467 const char *buf
, size_t count
)
472 ret
= sscanf(buf
, "%u", &input
);
476 limits
->min_sysfs_pct
= clamp_t(int, input
, 0 , 100);
477 limits
->min_perf_pct
= max(limits
->min_policy_pct
,
478 limits
->min_sysfs_pct
);
479 limits
->min_perf_pct
= min(limits
->max_policy_pct
,
480 limits
->min_perf_pct
);
481 limits
->min_perf_pct
= min(limits
->max_perf_pct
,
482 limits
->min_perf_pct
);
483 limits
->min_perf
= div_fp(int_tofp(limits
->min_perf_pct
),
487 intel_pstate_hwp_set();
491 show_one(max_perf_pct
, max_perf_pct
);
492 show_one(min_perf_pct
, min_perf_pct
);
494 define_one_global_rw(no_turbo
);
495 define_one_global_rw(max_perf_pct
);
496 define_one_global_rw(min_perf_pct
);
497 define_one_global_ro(turbo_pct
);
498 define_one_global_ro(num_pstates
);
500 static struct attribute
*intel_pstate_attributes
[] = {
509 static struct attribute_group intel_pstate_attr_group
= {
510 .attrs
= intel_pstate_attributes
,
513 static void __init
intel_pstate_sysfs_expose_params(void)
515 struct kobject
*intel_pstate_kobject
;
518 intel_pstate_kobject
= kobject_create_and_add("intel_pstate",
519 &cpu_subsys
.dev_root
->kobj
);
520 BUG_ON(!intel_pstate_kobject
);
521 rc
= sysfs_create_group(intel_pstate_kobject
, &intel_pstate_attr_group
);
524 /************************** sysfs end ************************/
526 static void intel_pstate_hwp_enable(struct cpudata
*cpudata
)
528 wrmsrl_on_cpu(cpudata
->cpu
, MSR_PM_ENABLE
, 0x1);
531 static int atom_get_min_pstate(void)
535 rdmsrl(ATOM_RATIOS
, value
);
536 return (value
>> 8) & 0x7F;
539 static int atom_get_max_pstate(void)
543 rdmsrl(ATOM_RATIOS
, value
);
544 return (value
>> 16) & 0x7F;
547 static int atom_get_turbo_pstate(void)
551 rdmsrl(ATOM_TURBO_RATIOS
, value
);
555 static void atom_set_pstate(struct cpudata
*cpudata
, int pstate
)
561 val
= (u64
)pstate
<< 8;
562 if (limits
->no_turbo
&& !limits
->turbo_disabled
)
565 vid_fp
= cpudata
->vid
.min
+ mul_fp(
566 int_tofp(pstate
- cpudata
->pstate
.min_pstate
),
569 vid_fp
= clamp_t(int32_t, vid_fp
, cpudata
->vid
.min
, cpudata
->vid
.max
);
570 vid
= ceiling_fp(vid_fp
);
572 if (pstate
> cpudata
->pstate
.max_pstate
)
573 vid
= cpudata
->vid
.turbo
;
577 wrmsrl_on_cpu(cpudata
->cpu
, MSR_IA32_PERF_CTL
, val
);
580 static int silvermont_get_scaling(void)
584 /* Defined in Table 35-6 from SDM (Sept 2015) */
585 static int silvermont_freq_table
[] = {
586 83300, 100000, 133300, 116700, 80000};
588 rdmsrl(MSR_FSB_FREQ
, value
);
592 return silvermont_freq_table
[i
];
595 static int airmont_get_scaling(void)
599 /* Defined in Table 35-10 from SDM (Sept 2015) */
600 static int airmont_freq_table
[] = {
601 83300, 100000, 133300, 116700, 80000,
602 93300, 90000, 88900, 87500};
604 rdmsrl(MSR_FSB_FREQ
, value
);
608 return airmont_freq_table
[i
];
611 static void atom_get_vid(struct cpudata
*cpudata
)
615 rdmsrl(ATOM_VIDS
, value
);
616 cpudata
->vid
.min
= int_tofp((value
>> 8) & 0x7f);
617 cpudata
->vid
.max
= int_tofp((value
>> 16) & 0x7f);
618 cpudata
->vid
.ratio
= div_fp(
619 cpudata
->vid
.max
- cpudata
->vid
.min
,
620 int_tofp(cpudata
->pstate
.max_pstate
-
621 cpudata
->pstate
.min_pstate
));
623 rdmsrl(ATOM_TURBO_VIDS
, value
);
624 cpudata
->vid
.turbo
= value
& 0x7f;
627 static int core_get_min_pstate(void)
631 rdmsrl(MSR_PLATFORM_INFO
, value
);
632 return (value
>> 40) & 0xFF;
635 static int core_get_max_pstate_physical(void)
639 rdmsrl(MSR_PLATFORM_INFO
, value
);
640 return (value
>> 8) & 0xFF;
643 static int core_get_max_pstate(void)
650 rdmsrl(MSR_PLATFORM_INFO
, plat_info
);
651 max_pstate
= (plat_info
>> 8) & 0xFF;
653 err
= rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO
, &tar
);
655 /* Do some sanity checking for safety */
656 if (plat_info
& 0x600000000) {
661 err
= rdmsrl_safe(MSR_CONFIG_TDP_CONTROL
, &tdp_ctrl
);
665 tdp_msr
= MSR_CONFIG_TDP_NOMINAL
+ tdp_ctrl
;
666 err
= rdmsrl_safe(tdp_msr
, &tdp_ratio
);
670 if (tdp_ratio
- 1 == tar
) {
672 pr_debug("max_pstate=TAC %x\n", max_pstate
);
683 static int core_get_turbo_pstate(void)
688 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT
, value
);
689 nont
= core_get_max_pstate();
696 static inline int core_get_scaling(void)
701 static void core_set_pstate(struct cpudata
*cpudata
, int pstate
)
705 val
= (u64
)pstate
<< 8;
706 if (limits
->no_turbo
&& !limits
->turbo_disabled
)
709 wrmsrl_on_cpu(cpudata
->cpu
, MSR_IA32_PERF_CTL
, val
);
712 static int knl_get_turbo_pstate(void)
717 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT
, value
);
718 nont
= core_get_max_pstate();
719 ret
= (((value
) >> 8) & 0xFF);
725 static struct cpu_defaults core_params
= {
727 .sample_rate_ms
= 10,
735 .get_max
= core_get_max_pstate
,
736 .get_max_physical
= core_get_max_pstate_physical
,
737 .get_min
= core_get_min_pstate
,
738 .get_turbo
= core_get_turbo_pstate
,
739 .get_scaling
= core_get_scaling
,
740 .set
= core_set_pstate
,
744 static struct cpu_defaults silvermont_params
= {
746 .sample_rate_ms
= 10,
754 .get_max
= atom_get_max_pstate
,
755 .get_max_physical
= atom_get_max_pstate
,
756 .get_min
= atom_get_min_pstate
,
757 .get_turbo
= atom_get_turbo_pstate
,
758 .set
= atom_set_pstate
,
759 .get_scaling
= silvermont_get_scaling
,
760 .get_vid
= atom_get_vid
,
764 static struct cpu_defaults airmont_params
= {
766 .sample_rate_ms
= 10,
774 .get_max
= atom_get_max_pstate
,
775 .get_max_physical
= atom_get_max_pstate
,
776 .get_min
= atom_get_min_pstate
,
777 .get_turbo
= atom_get_turbo_pstate
,
778 .set
= atom_set_pstate
,
779 .get_scaling
= airmont_get_scaling
,
780 .get_vid
= atom_get_vid
,
784 static struct cpu_defaults knl_params
= {
786 .sample_rate_ms
= 10,
794 .get_max
= core_get_max_pstate
,
795 .get_max_physical
= core_get_max_pstate_physical
,
796 .get_min
= core_get_min_pstate
,
797 .get_turbo
= knl_get_turbo_pstate
,
798 .get_scaling
= core_get_scaling
,
799 .set
= core_set_pstate
,
803 static void intel_pstate_get_min_max(struct cpudata
*cpu
, int *min
, int *max
)
805 int max_perf
= cpu
->pstate
.turbo_pstate
;
809 if (limits
->no_turbo
|| limits
->turbo_disabled
)
810 max_perf
= cpu
->pstate
.max_pstate
;
813 * performance can be limited by user through sysfs, by cpufreq
814 * policy, or by cpu specific default values determined through
817 max_perf_adj
= fp_toint(mul_fp(int_tofp(max_perf
), limits
->max_perf
));
818 *max
= clamp_t(int, max_perf_adj
,
819 cpu
->pstate
.min_pstate
, cpu
->pstate
.turbo_pstate
);
821 min_perf
= fp_toint(mul_fp(int_tofp(max_perf
), limits
->min_perf
));
822 *min
= clamp_t(int, min_perf
, cpu
->pstate
.min_pstate
, max_perf
);
825 static void intel_pstate_set_pstate(struct cpudata
*cpu
, int pstate
, bool force
)
827 int max_perf
, min_perf
;
830 update_turbo_state();
832 intel_pstate_get_min_max(cpu
, &min_perf
, &max_perf
);
834 pstate
= clamp_t(int, pstate
, min_perf
, max_perf
);
836 if (pstate
== cpu
->pstate
.current_pstate
)
839 trace_cpu_frequency(pstate
* cpu
->pstate
.scaling
, cpu
->cpu
);
841 cpu
->pstate
.current_pstate
= pstate
;
843 pstate_funcs
.set(cpu
, pstate
);
846 static void intel_pstate_get_cpu_pstates(struct cpudata
*cpu
)
848 cpu
->pstate
.min_pstate
= pstate_funcs
.get_min();
849 cpu
->pstate
.max_pstate
= pstate_funcs
.get_max();
850 cpu
->pstate
.max_pstate_physical
= pstate_funcs
.get_max_physical();
851 cpu
->pstate
.turbo_pstate
= pstate_funcs
.get_turbo();
852 cpu
->pstate
.scaling
= pstate_funcs
.get_scaling();
854 if (pstate_funcs
.get_vid
)
855 pstate_funcs
.get_vid(cpu
);
856 intel_pstate_set_pstate(cpu
, cpu
->pstate
.min_pstate
, false);
859 static inline void intel_pstate_calc_busy(struct cpudata
*cpu
)
861 struct sample
*sample
= &cpu
->sample
;
864 core_pct
= int_tofp(sample
->aperf
) * int_tofp(100);
865 core_pct
= div64_u64(core_pct
, int_tofp(sample
->mperf
));
867 sample
->freq
= fp_toint(
869 cpu
->pstate
.max_pstate_physical
*
870 cpu
->pstate
.scaling
/ 100),
873 sample
->core_pct_busy
= (int32_t)core_pct
;
876 static inline void intel_pstate_sample(struct cpudata
*cpu
)
882 local_irq_save(flags
);
883 rdmsrl(MSR_IA32_APERF
, aperf
);
884 rdmsrl(MSR_IA32_MPERF
, mperf
);
885 if (cpu
->prev_mperf
== mperf
) {
886 local_irq_restore(flags
);
891 local_irq_restore(flags
);
893 cpu
->last_sample_time
= cpu
->sample
.time
;
894 cpu
->sample
.time
= ktime_get();
895 cpu
->sample
.aperf
= aperf
;
896 cpu
->sample
.mperf
= mperf
;
897 cpu
->sample
.tsc
= tsc
;
898 cpu
->sample
.aperf
-= cpu
->prev_aperf
;
899 cpu
->sample
.mperf
-= cpu
->prev_mperf
;
900 cpu
->sample
.tsc
-= cpu
->prev_tsc
;
902 intel_pstate_calc_busy(cpu
);
904 cpu
->prev_aperf
= aperf
;
905 cpu
->prev_mperf
= mperf
;
909 static inline void intel_hwp_set_sample_time(struct cpudata
*cpu
)
913 delay
= msecs_to_jiffies(50);
914 mod_timer_pinned(&cpu
->timer
, jiffies
+ delay
);
917 static inline void intel_pstate_set_sample_time(struct cpudata
*cpu
)
921 delay
= msecs_to_jiffies(pid_params
.sample_rate_ms
);
922 mod_timer_pinned(&cpu
->timer
, jiffies
+ delay
);
925 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata
*cpu
)
927 int32_t core_busy
, max_pstate
, current_pstate
, sample_ratio
;
932 * core_busy is the ratio of actual performance to max
933 * max_pstate is the max non turbo pstate available
934 * current_pstate was the pstate that was requested during
935 * the last sample period.
937 * We normalize core_busy, which was our actual percent
938 * performance to what we requested during the last sample
939 * period. The result will be a percentage of busy at a
942 core_busy
= cpu
->sample
.core_pct_busy
;
943 max_pstate
= int_tofp(cpu
->pstate
.max_pstate_physical
);
944 current_pstate
= int_tofp(cpu
->pstate
.current_pstate
);
945 core_busy
= mul_fp(core_busy
, div_fp(max_pstate
, current_pstate
));
948 * Since we have a deferred timer, it will not fire unless
949 * we are in C0. So, determine if the actual elapsed time
950 * is significantly greater (3x) than our sample interval. If it
951 * is, then we were idle for a long enough period of time
952 * to adjust our busyness.
954 sample_time
= pid_params
.sample_rate_ms
* USEC_PER_MSEC
;
955 duration_us
= ktime_us_delta(cpu
->sample
.time
,
956 cpu
->last_sample_time
);
957 if (duration_us
> sample_time
* 3) {
958 sample_ratio
= div_fp(int_tofp(sample_time
),
959 int_tofp(duration_us
));
960 core_busy
= mul_fp(core_busy
, sample_ratio
);
966 static inline void intel_pstate_adjust_busy_pstate(struct cpudata
*cpu
)
972 struct sample
*sample
;
974 from
= cpu
->pstate
.current_pstate
;
977 busy_scaled
= intel_pstate_get_scaled_busy(cpu
);
979 ctl
= pid_calc(pid
, busy_scaled
);
981 /* Negative values of ctl increase the pstate and vice versa */
982 intel_pstate_set_pstate(cpu
, cpu
->pstate
.current_pstate
- ctl
, true);
984 sample
= &cpu
->sample
;
985 trace_pstate_sample(fp_toint(sample
->core_pct_busy
),
986 fp_toint(busy_scaled
),
988 cpu
->pstate
.current_pstate
,
995 static void intel_hwp_timer_func(unsigned long __data
)
997 struct cpudata
*cpu
= (struct cpudata
*) __data
;
999 intel_pstate_sample(cpu
);
1000 intel_hwp_set_sample_time(cpu
);
1003 static void intel_pstate_timer_func(unsigned long __data
)
1005 struct cpudata
*cpu
= (struct cpudata
*) __data
;
1007 intel_pstate_sample(cpu
);
1009 intel_pstate_adjust_busy_pstate(cpu
);
1011 intel_pstate_set_sample_time(cpu
);
1014 #define ICPU(model, policy) \
1015 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1016 (unsigned long)&policy }
1018 static const struct x86_cpu_id intel_pstate_cpu_ids
[] = {
1019 ICPU(0x2a, core_params
),
1020 ICPU(0x2d, core_params
),
1021 ICPU(0x37, silvermont_params
),
1022 ICPU(0x3a, core_params
),
1023 ICPU(0x3c, core_params
),
1024 ICPU(0x3d, core_params
),
1025 ICPU(0x3e, core_params
),
1026 ICPU(0x3f, core_params
),
1027 ICPU(0x45, core_params
),
1028 ICPU(0x46, core_params
),
1029 ICPU(0x47, core_params
),
1030 ICPU(0x4c, airmont_params
),
1031 ICPU(0x4e, core_params
),
1032 ICPU(0x4f, core_params
),
1033 ICPU(0x5e, core_params
),
1034 ICPU(0x56, core_params
),
1035 ICPU(0x57, knl_params
),
1038 MODULE_DEVICE_TABLE(x86cpu
, intel_pstate_cpu_ids
);
1040 static const struct x86_cpu_id intel_pstate_cpu_oob_ids
[] = {
1041 ICPU(0x56, core_params
),
1045 static int intel_pstate_init_cpu(unsigned int cpunum
)
1047 struct cpudata
*cpu
;
1049 if (!all_cpu_data
[cpunum
])
1050 all_cpu_data
[cpunum
] = kzalloc(sizeof(struct cpudata
),
1052 if (!all_cpu_data
[cpunum
])
1055 cpu
= all_cpu_data
[cpunum
];
1060 intel_pstate_hwp_enable(cpu
);
1062 intel_pstate_get_cpu_pstates(cpu
);
1064 init_timer_deferrable(&cpu
->timer
);
1065 cpu
->timer
.data
= (unsigned long)cpu
;
1066 cpu
->timer
.expires
= jiffies
+ HZ
/100;
1069 cpu
->timer
.function
= intel_pstate_timer_func
;
1071 cpu
->timer
.function
= intel_hwp_timer_func
;
1073 intel_pstate_busy_pid_reset(cpu
);
1074 intel_pstate_sample(cpu
);
1076 add_timer_on(&cpu
->timer
, cpunum
);
1078 pr_debug("intel_pstate: controlling: cpu %d\n", cpunum
);
1083 static unsigned int intel_pstate_get(unsigned int cpu_num
)
1085 struct sample
*sample
;
1086 struct cpudata
*cpu
;
1088 cpu
= all_cpu_data
[cpu_num
];
1091 sample
= &cpu
->sample
;
1092 return sample
->freq
;
1095 static int intel_pstate_set_policy(struct cpufreq_policy
*policy
)
1097 if (!policy
->cpuinfo
.max_freq
)
1100 if (policy
->policy
== CPUFREQ_POLICY_PERFORMANCE
&&
1101 policy
->max
>= policy
->cpuinfo
.max_freq
) {
1102 pr_debug("intel_pstate: set performance\n");
1103 limits
= &performance_limits
;
1105 intel_pstate_hwp_set();
1109 pr_debug("intel_pstate: set powersave\n");
1110 limits
= &powersave_limits
;
1111 limits
->min_policy_pct
= (policy
->min
* 100) / policy
->cpuinfo
.max_freq
;
1112 limits
->min_policy_pct
= clamp_t(int, limits
->min_policy_pct
, 0 , 100);
1113 limits
->max_policy_pct
= DIV_ROUND_UP(policy
->max
* 100,
1114 policy
->cpuinfo
.max_freq
);
1115 limits
->max_policy_pct
= clamp_t(int, limits
->max_policy_pct
, 0 , 100);
1117 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1118 limits
->min_perf_pct
= max(limits
->min_policy_pct
,
1119 limits
->min_sysfs_pct
);
1120 limits
->min_perf_pct
= min(limits
->max_policy_pct
,
1121 limits
->min_perf_pct
);
1122 limits
->max_perf_pct
= min(limits
->max_policy_pct
,
1123 limits
->max_sysfs_pct
);
1124 limits
->max_perf_pct
= max(limits
->min_policy_pct
,
1125 limits
->max_perf_pct
);
1126 limits
->max_perf
= round_up(limits
->max_perf
, FRAC_BITS
);
1128 /* Make sure min_perf_pct <= max_perf_pct */
1129 limits
->min_perf_pct
= min(limits
->max_perf_pct
, limits
->min_perf_pct
);
1131 limits
->min_perf
= div_fp(int_tofp(limits
->min_perf_pct
),
1133 limits
->max_perf
= div_fp(int_tofp(limits
->max_perf_pct
),
1137 intel_pstate_hwp_set();
1142 static int intel_pstate_verify_policy(struct cpufreq_policy
*policy
)
1144 cpufreq_verify_within_cpu_limits(policy
);
1146 if (policy
->policy
!= CPUFREQ_POLICY_POWERSAVE
&&
1147 policy
->policy
!= CPUFREQ_POLICY_PERFORMANCE
)
1153 static void intel_pstate_stop_cpu(struct cpufreq_policy
*policy
)
1155 int cpu_num
= policy
->cpu
;
1156 struct cpudata
*cpu
= all_cpu_data
[cpu_num
];
1158 pr_debug("intel_pstate: CPU %d exiting\n", cpu_num
);
1160 del_timer_sync(&all_cpu_data
[cpu_num
]->timer
);
1164 intel_pstate_set_pstate(cpu
, cpu
->pstate
.min_pstate
, false);
1167 static int intel_pstate_cpu_init(struct cpufreq_policy
*policy
)
1169 struct cpudata
*cpu
;
1172 rc
= intel_pstate_init_cpu(policy
->cpu
);
1176 cpu
= all_cpu_data
[policy
->cpu
];
1178 if (limits
->min_perf_pct
== 100 && limits
->max_perf_pct
== 100)
1179 policy
->policy
= CPUFREQ_POLICY_PERFORMANCE
;
1181 policy
->policy
= CPUFREQ_POLICY_POWERSAVE
;
1183 policy
->min
= cpu
->pstate
.min_pstate
* cpu
->pstate
.scaling
;
1184 policy
->max
= cpu
->pstate
.turbo_pstate
* cpu
->pstate
.scaling
;
1186 /* cpuinfo and default policy values */
1187 policy
->cpuinfo
.min_freq
= cpu
->pstate
.min_pstate
* cpu
->pstate
.scaling
;
1188 policy
->cpuinfo
.max_freq
=
1189 cpu
->pstate
.turbo_pstate
* cpu
->pstate
.scaling
;
1190 policy
->cpuinfo
.transition_latency
= CPUFREQ_ETERNAL
;
1191 cpumask_set_cpu(policy
->cpu
, policy
->cpus
);
1196 static struct cpufreq_driver intel_pstate_driver
= {
1197 .flags
= CPUFREQ_CONST_LOOPS
,
1198 .verify
= intel_pstate_verify_policy
,
1199 .setpolicy
= intel_pstate_set_policy
,
1200 .get
= intel_pstate_get
,
1201 .init
= intel_pstate_cpu_init
,
1202 .stop_cpu
= intel_pstate_stop_cpu
,
1203 .name
= "intel_pstate",
1206 static int __initdata no_load
;
1207 static int __initdata no_hwp
;
1208 static int __initdata hwp_only
;
1209 static unsigned int force_load
;
1211 static int intel_pstate_msrs_not_valid(void)
1213 if (!pstate_funcs
.get_max() ||
1214 !pstate_funcs
.get_min() ||
1215 !pstate_funcs
.get_turbo())
1221 static void copy_pid_params(struct pstate_adjust_policy
*policy
)
1223 pid_params
.sample_rate_ms
= policy
->sample_rate_ms
;
1224 pid_params
.p_gain_pct
= policy
->p_gain_pct
;
1225 pid_params
.i_gain_pct
= policy
->i_gain_pct
;
1226 pid_params
.d_gain_pct
= policy
->d_gain_pct
;
1227 pid_params
.deadband
= policy
->deadband
;
1228 pid_params
.setpoint
= policy
->setpoint
;
1231 static void copy_cpu_funcs(struct pstate_funcs
*funcs
)
1233 pstate_funcs
.get_max
= funcs
->get_max
;
1234 pstate_funcs
.get_max_physical
= funcs
->get_max_physical
;
1235 pstate_funcs
.get_min
= funcs
->get_min
;
1236 pstate_funcs
.get_turbo
= funcs
->get_turbo
;
1237 pstate_funcs
.get_scaling
= funcs
->get_scaling
;
1238 pstate_funcs
.set
= funcs
->set
;
1239 pstate_funcs
.get_vid
= funcs
->get_vid
;
1242 #if IS_ENABLED(CONFIG_ACPI)
1243 #include <acpi/processor.h>
1245 static bool intel_pstate_no_acpi_pss(void)
1249 for_each_possible_cpu(i
) {
1251 union acpi_object
*pss
;
1252 struct acpi_buffer buffer
= { ACPI_ALLOCATE_BUFFER
, NULL
};
1253 struct acpi_processor
*pr
= per_cpu(processors
, i
);
1258 status
= acpi_evaluate_object(pr
->handle
, "_PSS", NULL
, &buffer
);
1259 if (ACPI_FAILURE(status
))
1262 pss
= buffer
.pointer
;
1263 if (pss
&& pss
->type
== ACPI_TYPE_PACKAGE
) {
1274 static bool intel_pstate_has_acpi_ppc(void)
1278 for_each_possible_cpu(i
) {
1279 struct acpi_processor
*pr
= per_cpu(processors
, i
);
1283 if (acpi_has_method(pr
->handle
, "_PPC"))
1294 struct hw_vendor_info
{
1296 char oem_id
[ACPI_OEM_ID_SIZE
];
1297 char oem_table_id
[ACPI_OEM_TABLE_ID_SIZE
];
1301 /* Hardware vendor-specific info that has its own power management modes */
1302 static struct hw_vendor_info vendor_info
[] = {
1303 {1, "HP ", "ProLiant", PSS
},
1304 {1, "ORACLE", "X4-2 ", PPC
},
1305 {1, "ORACLE", "X4-2L ", PPC
},
1306 {1, "ORACLE", "X4-2B ", PPC
},
1307 {1, "ORACLE", "X3-2 ", PPC
},
1308 {1, "ORACLE", "X3-2L ", PPC
},
1309 {1, "ORACLE", "X3-2B ", PPC
},
1310 {1, "ORACLE", "X4470M2 ", PPC
},
1311 {1, "ORACLE", "X4270M3 ", PPC
},
1312 {1, "ORACLE", "X4270M2 ", PPC
},
1313 {1, "ORACLE", "X4170M2 ", PPC
},
1314 {1, "ORACLE", "X4170 M3", PPC
},
1315 {1, "ORACLE", "X4275 M3", PPC
},
1316 {1, "ORACLE", "X6-2 ", PPC
},
1317 {1, "ORACLE", "Sudbury ", PPC
},
1321 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1323 struct acpi_table_header hdr
;
1324 struct hw_vendor_info
*v_info
;
1325 const struct x86_cpu_id
*id
;
1328 id
= x86_match_cpu(intel_pstate_cpu_oob_ids
);
1330 rdmsrl(MSR_MISC_PWR_MGMT
, misc_pwr
);
1331 if ( misc_pwr
& (1 << 8))
1335 if (acpi_disabled
||
1336 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT
, 0, &hdr
)))
1339 for (v_info
= vendor_info
; v_info
->valid
; v_info
++) {
1340 if (!strncmp(hdr
.oem_id
, v_info
->oem_id
, ACPI_OEM_ID_SIZE
) &&
1341 !strncmp(hdr
.oem_table_id
, v_info
->oem_table_id
,
1342 ACPI_OEM_TABLE_ID_SIZE
))
1343 switch (v_info
->oem_pwr_table
) {
1345 return intel_pstate_no_acpi_pss();
1347 return intel_pstate_has_acpi_ppc() &&
1354 #else /* CONFIG_ACPI not enabled */
1355 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1356 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1357 #endif /* CONFIG_ACPI */
1359 static int __init
intel_pstate_init(void)
1362 const struct x86_cpu_id
*id
;
1363 struct cpu_defaults
*cpu_def
;
1368 id
= x86_match_cpu(intel_pstate_cpu_ids
);
1373 * The Intel pstate driver will be ignored if the platform
1374 * firmware has its own power management modes.
1376 if (intel_pstate_platform_pwr_mgmt_exists())
1379 cpu_def
= (struct cpu_defaults
*)id
->driver_data
;
1381 copy_pid_params(&cpu_def
->pid_policy
);
1382 copy_cpu_funcs(&cpu_def
->funcs
);
1384 if (intel_pstate_msrs_not_valid())
1387 pr_info("Intel P-state driver initializing.\n");
1389 all_cpu_data
= vzalloc(sizeof(void *) * num_possible_cpus());
1393 if (static_cpu_has_safe(X86_FEATURE_HWP
) && !no_hwp
) {
1394 pr_info("intel_pstate: HWP enabled\n");
1398 if (!hwp_active
&& hwp_only
)
1401 rc
= cpufreq_register_driver(&intel_pstate_driver
);
1405 intel_pstate_debug_expose_params();
1406 intel_pstate_sysfs_expose_params();
1411 for_each_online_cpu(cpu
) {
1412 if (all_cpu_data
[cpu
]) {
1413 del_timer_sync(&all_cpu_data
[cpu
]->timer
);
1414 kfree(all_cpu_data
[cpu
]);
1419 vfree(all_cpu_data
);
1422 device_initcall(intel_pstate_init
);
1424 static int __init
intel_pstate_setup(char *str
)
1429 if (!strcmp(str
, "disable"))
1431 if (!strcmp(str
, "no_hwp")) {
1432 pr_info("intel_pstate: HWP disabled\n");
1435 if (!strcmp(str
, "force"))
1437 if (!strcmp(str
, "hwp_only"))
1441 early_param("intel_pstate", intel_pstate_setup
);
1443 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1444 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1445 MODULE_LICENSE("GPL");